WorldWideScience

Sample records for standing wave effects

  1. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    Science.gov (United States)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  2. Future directions in standing-wave photoemission

    International Nuclear Information System (INIS)

    Gray, Alexander X.

    2014-01-01

    Highlights: • Probing magnetic properties at the buried interface with SW-MCD. • Probing electronic structure at the buried interface with resonant SW-XPS and SW-HAXPES. • Probing momentum-resolved electronic structure at a buried interface with SWARPES. • Adding depth resolution to photoemission microscopy with standing-wave excitation. • Standing-wave localization, total reflection and waveguide effects. - Abstract: Over the past decade, standing-wave photoemission (SW-XPS) has evolved into a powerful and versatile non-destructive technique for probing element-specific electronic, magnetic, and structural properties of buried layers and interfaces with sub-nanometer depth resolution. In this article, I will discuss several promising future directions in this emergent field stemming from experimental and theoretical studies wherein SW-XPS is combined with other X-ray techniques, such as magnetic circular dichroism (MCD), hard X-ray photoemission spectroscopy (HAXPES), angle-resolved photoemission (ARPES), and photoemission microscopy (PEEM), adding extra dimensions to the measurement and thus widening the scope of scientific and technological questions accessible via the use of standing waves. I will further discuss examples of recently developed methods for X-ray standing-wave data analysis, which yield layer-resolved matrix-element-weighted densities of states at interfaces as well as Ångstrom-level changes in periodicity of synthetic superlattices. Finally, I will explore the possibility of localizing the standing waves near the surface and within a buried layer by the use of aperiodic superlattices, total reflection, and X-ray waveguide effects

  3. Future directions in standing-wave photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alexander X., E-mail: axgray@temple.edu

    2014-08-15

    Highlights: • Probing magnetic properties at the buried interface with SW-MCD. • Probing electronic structure at the buried interface with resonant SW-XPS and SW-HAXPES. • Probing momentum-resolved electronic structure at a buried interface with SWARPES. • Adding depth resolution to photoemission microscopy with standing-wave excitation. • Standing-wave localization, total reflection and waveguide effects. - Abstract: Over the past decade, standing-wave photoemission (SW-XPS) has evolved into a powerful and versatile non-destructive technique for probing element-specific electronic, magnetic, and structural properties of buried layers and interfaces with sub-nanometer depth resolution. In this article, I will discuss several promising future directions in this emergent field stemming from experimental and theoretical studies wherein SW-XPS is combined with other X-ray techniques, such as magnetic circular dichroism (MCD), hard X-ray photoemission spectroscopy (HAXPES), angle-resolved photoemission (ARPES), and photoemission microscopy (PEEM), adding extra dimensions to the measurement and thus widening the scope of scientific and technological questions accessible via the use of standing waves. I will further discuss examples of recently developed methods for X-ray standing-wave data analysis, which yield layer-resolved matrix-element-weighted densities of states at interfaces as well as Ångstrom-level changes in periodicity of synthetic superlattices. Finally, I will explore the possibility of localizing the standing waves near the surface and within a buried layer by the use of aperiodic superlattices, total reflection, and X-ray waveguide effects.

  4. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  5. Revisiting the difference between traveling-wave and standing-wave thermoacoustic engines - A simple analytical model for the standing-wave one

    Science.gov (United States)

    Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi

    2015-11-01

    There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.

  6. Refrigeration system having standing wave compressor

    Science.gov (United States)

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  7. Isotope separation by standing waves

    International Nuclear Information System (INIS)

    Altshuler, S.

    1984-01-01

    The separation of isotopes is accomplished by scattering a beam of particles from a standing electromagnetic wave. The particles may consist of either atoms or molecules, the beam having in either case a desired isotope and at least one other. The particle beam is directed so as to impinge on the standing electromagnetic wave, which may be a light wave. The particles, that is, the atomic or molecular quantum-mechanical waves, see basically a diffraction grating corresponding to the troughs and peaks of the electromagnetic wave. The frequency of the standing electromagnetic wave substantially corresponds to an internal energy level-transition of the desired isotope. Accordingly, the desired isotope is spatially separated by being scattered or diffracted. (author)

  8. Standing wave accelerating structures

    International Nuclear Information System (INIS)

    Zavadtsev, A.A.; Zverev, B.V.; Sobepin, N.P.

    1984-01-01

    Accelerating ELA structures are considered and chosen for applied purposes of special designation. Accelerating structures with the standing wave are considered most effective for small size ELA. Designs and results of experimental investigation of two new accelerating structures are described. These are structures of the ''ring'' type with a decreased number of excitinq oscillation types and strucuture with transverse rods with a twice smaller transverse size as compared with the biperiodical structure with internal connection resonators. The accelerating biperiodical structures of the conventional type by the fact that the whole structure is not a linear chain of connected resonators, but a ring one. Model tests have shown that the homogeneous structure with transverse rods (STR) at the frequency of 2.8 GHz in the regime of the standing wave has an effective shunt resistance equalling 23 MOhm/m. It is shown that the small transverse size of biperiodic STR makes its application in logging linear electron accelerators

  9. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...

  10. Numerical Investigation of Three-dimensional Instability of Standing Waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  11. Standing wave acoustic levitation on an annular plate

    Science.gov (United States)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  12. Standing Wave Field Distribution in Graded-Index Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Hongxiang Deng

    2018-01-01

    Full Text Available Standing wave field distributions in three classic types of graded-index antireflection coatings are studied. These graded-index antireflection coatings are designed at wavelengths from 200 nm to 1200 nm, which is the working wavelength range of high energy laser system for inertial-fusion research. The standing wave field distributions in these coatings are obtained by the numerical calculation of electromagnetic wave equation. We find that standing wave field distributions in these three graded-index anti-reflection coatings are quite different. For the coating with linear index distribution, intensity of standing wave field decreases periodically from surface to substrate with narrow oscillation range and the period is proportional to the incident wavelength. For the coating with exponential index distribution, intensity of standing wave field decreases periodically from surface to substrate with large oscillation range and the period is also proportional to the incident wavelength. Finally, for the coating with polynomial index, intensity of standing wave field is quickly falling down from surface to substrate without an obvious oscillation. We find that the intensity of standing wave field in the interface between coating and substrate for linear index, exponential index and polynomial index are about 0.7, 0.9 and 0.7, respectively. Our results indicate that the distributions of standing wave field in linear index coating and polynomial index coating are better than that in exponential index coating for the application in high energy laser system. Moreover, we find that the transmittance of linear index coating and polynomial index coating are also better than exponential index coating at the designed wavelength range. Present simulation results are useful for the design and application of graded-index antireflection coating in high energy laser system.

  13. A Note on Standing Internal Inertial Gravity Waves of Finite Amplitude

    Science.gov (United States)

    Thorpe, S. A.

    2003-01-01

    The effects of finite amplitude are examined in two-dimensional, standing, internal gravity waves in a rectangular container which rotates about a vertical axis at frequency f/2. Expressions are given for the velocity components, density fluctuations and isopycnal displacements to second order in the wave steepness in fluids with buoyancy frequency, N, of general form, and the effect of finite amplitude on wave frequency is given in an expansion to third order. The first order solutions, and the solutions to second order in the absence of rotation, are shown to conserve energy during a wave cycle. Analytical solutions are found to second order for the first two modes in a deep fluid with N proportional to sech(az), where z is the upward vertical coordinate and a is scaling factor. In the absence of rotation, results for the first mode in the latter stratification are found to be consistent with those for interfacial waves. An analytical solution to fourth order in a fluid with constant N is given and used to examine the effects of rotation on the development of static instability or of conditions in which shear instability may occur. As in progressive internal waves, an effect of rotation is to enhance the possibility of shear instability for waves with frequencies close to f. The analysis points to a significant difference between the dynamics of standing waves in containers of limited size and progressive internal waves in an unlimited fluid; the effect of boundaries on standing waves may inhibit the onset of instability. A possible application of the analysis is to transverse oscillations in long, narrow, steep-sided lakes such as Loch Ness, Scotland.

  14. Potential health effects of standing waves generated by low frequency noise

    Directory of Open Access Journals (Sweden)

    Stanislav Ziaran

    2013-01-01

    Full Text Available The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  15. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model

    International Nuclear Information System (INIS)

    O'Reilly, Meaghan A; Huang Yuexi; Hynynen, Kullervo

    2010-01-01

    Microbubble-mediated disruption of the blood-brain barrier (BBB) for targeted drug delivery using focused ultrasound shows great potential as a therapy for a wide range of brain disorders. This technique is currently at the pre-clinical stage and important work is being conducted in animal models. Measurements of standing waves in ex vivo rat skulls were conducted using an optical hydrophone and a geometry dependence was identified. Standing waves could not be eliminated through the use of swept frequencies, which have been suggested to eliminate standing waves. Definitive standing wave patterns were detected in over 25% of animals used in a single study. Standing waves were successfully eliminated using a wideband composite sharply focused transducer and a reduced duty cycle. The modified pulse parameters were used in vivo to disrupt the BBB in a rat indicating that, unlike some other bioeffects, BBB disruption is not dependent on standing wave conditions. Due to the high variability of standing waves and the inability to correctly estimate in situ pressures given standing wave conditions, attempts to minimize standing waves should be made in all future work in this field to ensure that results are clinically translatable.

  16. The electric field standing wave effect in infrared transflection spectroscopy

    Science.gov (United States)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-02-01

    We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.

  17. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge

    International Nuclear Information System (INIS)

    Chabert, P.; Raimbault, J.L.; Rax, J.M.; Lieberman, M.A.

    2004-01-01

    It has been shown previously [Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)], using a non-self-consistent model based on solutions of Maxwell's equations, that several electromagnetic effects may compromise capacitive discharge uniformity. Among these, the standing wave effect dominates at low and moderate electron densities when the driving frequency is significantly greater than the usual 13.56 MHz. In the present work, two different global discharge models have been coupled to a transmission line model and used to obtain the self-consistent characteristics of the standing wave effect. An analytical solution for the wavelength λ was derived for the lossless case and compared to the numerical results. For typical plasma etching conditions (pressure 10-100 mTorr), a good approximation of the wavelength is λ/λ 0 ≅40 V 0 1/10 l -1/2 f -2/5 , where λ 0 is the wavelength in vacuum, V 0 is the rf voltage magnitude in volts at the discharge center, l is the electrode spacing in meters, and f the driving frequency in hertz

  18. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    Science.gov (United States)

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  19. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measurements...... were synchronized with video recording of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height H= 5.9-12.0 cm, wave period T= 1.09s, and water depth h=30 cm. The experiments show that the seabed liquefaction under standing waves, although...... qualitatively similar, show features different from that caused by progressive waves. The pore water pressure builds up (or accumulated) in the areas around the node and subsequently spreads out toward the antinodes. The experimental results imply that this transport is caused by a diffusion mechanism...

  20. Experimental investigation of standing wave effect in dual-frequency capacitively coupled argon discharges: role of a low-frequency source

    Science.gov (United States)

    Zhao, Kai; Liu, Yong-Xin; Kawamura, E.; Wen, De-Qi; Lieberman, M. A.; Wang, You-Nian

    2018-05-01

    It is well known that the plasma non-uniformity caused by the standing wave effect has brought about great challenges for plasma material processing. To improve the plasma uniformity, a low-frequency (LF) power source is introduced into a 100 MHz very-high-frequency (VHF) capacitively coupled argon plasma reactor. The effect of the LF parameters (LF voltage amplitude ϕ L and LF source f L) on the radial profile of plasma density has been investigated by utilizing a hairpin probe. The result at a low pressure (1 Pa) is compared to the one obtained by a 2D fluid-analytical capacitively coupled plasma model, showing good agreement in the plasma density radial profile. The experimental results show that the plasma density profile exhibits different dependences on ϕ L and f L at different gas pressures/electrode driven types (i.e., the two rf sources are applied on one electrode (case I) and separate electrodes (case II)). At low pressures (e.g., 8 Pa), the pronounced standing wave effect revealed in a VHF discharge can be suppressed at a relatively high ϕ L or a low f L in case I, because the HF sheath heating is largely weakened due to strong modulation by the LF source. By contrast, ϕ L and f L play insignificant roles in suppressing the standing wave effect in case II. At high pressures (e.g., 20 Pa), the opposite is true. The plasma density radial profile is more sensitive to ϕ L and f L in case II than in case I. In case II, the standing wave effect is surprisingly enhanced with increasing ϕ L at higher pressures; however, the center-high density profile caused by the standing wave effect can be compensated by increasing f L due to the enhanced electrostatic edge effect dominated by the LF source. In contrast, the density radial profile shows a much weaker dependence on ϕ L and f L in case I at higher pressures. To understand the different roles of ϕ L and f L, the electron excitation dynamics in each case are analyzed based on the measured spatio

  1. Coherent scattering of three-level atoms in the field of a bichromatic standing light wave

    International Nuclear Information System (INIS)

    Pazgalev, A.S.; Rozhdestvenskii, Yu.V.

    1996-01-01

    We discuss the coherent scattering of three-level atoms in the field of two standing light waves for two values of the spatial shift. In the case of a zero spatial shift and equal frequency detunings of the standing waves, the problem of scattering of a three-level atoms is reduced to scattering of an effectively two-level atom. For the case of an exact resonance between the waves and transitions we give expressions for the population probability of the states of the three-level atom obtained in the short-interaction-time approximation. Depending on the initial population distribution over the states, different scattering modes are realized. In particular, we show that there can be initial conditions for which the three-level system does not interact with the field of the standing waves, with the result that there is no coherent scattering of atoms. In the case of standing waves shifted by π/2, there are two types of solution, depending on the values of the frequency detuning. For instance, when the light waves are detuned equally we give the exact solution for arbitrary relationships between the detuning and the standing wave intensities valid for any atom-field interaction times. The case of 'mirror' detunings and shifted standing waves is studied only numerically

  2. Nonlinear theory of localized standing waves

    OpenAIRE

    Denardo, Bruce; Larraza, Andrés; Putterman, Seth; Roberts, Paul

    1992-01-01

    An investigation of the nonlinear dispersive equations of continuum mechanics reveals localized standing-wave solutions that are domain walls between regions of different wave number. These states can appear even when the dispersion law is a single-valued function of the wave number. In addition, we calculate solutions for kinks in cutoff and noncutoff modes, as well as cutoff breather solitons. Division of Engineering and Geophysics of the Office of Basic Energy Science of U.S. DOE for su...

  3. Research on levitation coupled with standing wave levitation and electromagnetic levitation:

    OpenAIRE

    Jiao, Xiao Yang; Li, Xinbo; Liu, GuoJun; Liu, JianFang; Liu, XiaoLun; Lu, Song

    2013-01-01

    In order to solve the problem caused by metal materials' inability to be cooled without contact with other materials after being heated by electromagnetic levitation, a new method is proposed: using a standing wave levitator to levitate the melted metal. The standing wave levitator adopts a concave spherical surface on the emitter and the reflector. Using ANSYS software, the transducer and the standing wave fields were simulated. Based on the simulation, the distribution and the maximum acous...

  4. The 5D Standing Wave Braneworld with Real Scalar Field

    OpenAIRE

    Merab Gogberashvili; Pavle Midodashvili

    2013-01-01

    We introduce the new 5D braneworld with the real scalar field in the bulk. The model represents the brane which bounds collective oscillations of gravitational and scalar field standing waves. These waves are out of phase; that is, the energy of oscillations passes back and forth between the scalar and gravitational waves. When the amplitude of the standing waves is small, the brane width and the size of the horizon in extra space are of a same order of magnitude, and matter fields are locali...

  5. OPTIMIZATION OF HEMISPHERICAL RESONATOR GYROSCOPE STANDING WAVE PARAMETERS

    Directory of Open Access Journals (Sweden)

    Olga Sergeevna Khalyutina

    2017-01-01

    Full Text Available Traditionally, the problem of autonomous navigation is solved by dead reckoning navigation flight parameters (NFP of the aircraft (AC. With increasing requirements to accuracy of definition NFP improved the sensors of the prima- ry navigation information: gyroscopes and accelerometers. the gyroscopes of a new type, the so-called solid-state wave gyroscopes (SSVG are currently developed and put into practice. The work deals with the problem of increasing the accu- racy of measurements of angular velocity of the hemispherical resonator gyroscope (HRG. The reduction in the accuracy characteristics of HRG is caused by the presence of defects in the distribution of mass in the volume of its design. The syn- thesis of control system for optimal damping of the distortion parameters of the standing wave due to the influence of the mass defect resonator is adapted. The research challenge was: to examine and analytically offset the impact of the standing wave (amplitude and frequency parameters defect. Research was performed by mathematical modeling in the environment of SolidWorks Simulation for the case when the characteristics of the sensitive element of the HRG met the technological drawings of a particular type of resonator. The method of the inverse dynamics was chosen for synthesis. The research re- sults are presented in graphs the amplitude-frequency characteristics (AFC of the resonator output signal. Simulation was performed for the cases: the perfect distribution of weight; the presence of the mass defect; the presence of the mass defects are shown using the synthesized control action. Evaluating the effectiveness of the proposed control algorithm is deter- mined by the results of the resonator output signal simulation provided the perfect constructive and its performance in the presence of a mass defect in it. It is assumed that the excitation signals are standing waves in the two cases are identical in both amplitude and frequency. In this

  6. Exchange anisotropy pinning of a standing spin-wave mode

    Science.gov (United States)

    Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.

    2011-02-01

    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.

  7. Beam loading effects in a standing wave accelerator structure

    International Nuclear Information System (INIS)

    Arai, Shigeaki; Katayama, Takeshi; Tojyo, Eiki; Yoshida, Katsuhide.

    1978-11-01

    The steady-state beam loading effects on the accelerating field in the disk-loaded structure of a standing wave type have been systematically studied. The electron bunch from a 15 MeV electron linac is injected at arbitrary phase of the external driving field in the test structure. The change of the phase shift of the accelerating field and that of the stored energy are measured as a function of the phase on which the bunch rides. The former shows drastic change when the bunch is around the crest of the driving field and when the beam loading is heavy, whereas the latter varies sinusoidally for any beam loading. The resonant frequency shift of the structure due to beam loading is estimated by using the measured results. All the experimental results are well explained by the normal mode analysis of the microwave cavity theory. (author)

  8. Relativistic reversal of the ponderomotive force in a standing laser wave

    International Nuclear Information System (INIS)

    Pokrovsky, A.L.; Kaplan, A.E.

    2005-01-01

    Effect of relativistic reversal of the ponderomotive force (PF), reported earlier for a collinear configuration of electron and laser standing wave [A. E. Kaplan and A. L. Pokrovsky, Phys. Rev. Lett., 95, 053601 (2005)], is studied here theoretically for various types of polarizations of the laser beam. We demonstrated that the collinear configuration, in which the laser wave is linearly polarized with electric field E-vector parallel to the initial electron momentum p-vector 0 , is the optimal configuration for the relativistic reversal. In that case, the transverse PF reverses its direction when the incident momentum is p 0 =mc. The reversal effect vanishes in the cases of circular and linear with E-vector perpendicular p-vector 0 polarizations. We have discovered, however, that the counter-rotating circularly polarized standing waves develop attraction and repulsion areas along the axis of laser, in the laser field whose intensity is homogeneous in that axis, i.e., has no field gradient

  9. The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma

    Directory of Open Access Journals (Sweden)

    D. A. Kozlov

    2006-03-01

    Full Text Available The structure and spectrum of standing Alfvén waves were theoretically investigated in a dipole magnetosphere with moving plasma. Plasma motion was simulated with its azimuthal rotation. The model's scope allowed for describing a transition from the inner plasmasphere at rest to the outer magnetosphere with convecting plasma and, through the magnetopause, to the moving plasma of the solar wind. Solutions were found to equations describing longitudinal and transverse (those formed, respectively, along field lines and across magnetic shells structures of standing Alfvén waves with high azimuthal wave numbers m>>1. Spectra were constructed for a number of first harmonics of poloidal and toroidal standing Alfvén waves inside the magnetosphere. For charged particles with velocities greatly exceeding the velocity of the background plasma, an effective parallel wave component of the electric field appears in the region occupied by such waves. This results in structured high-energy-particle flows and in the appearance of multiband aurorae. The transverse structure of the standing Alfvén waves' basic harmonic was shown to be analogous to the structure of a discrete auroral arc.

  10. STATUS OF X-BAND STANDING WAVE STRUCTURE STUDIES AT SLAC

    International Nuclear Information System (INIS)

    Dolgashev, Valery A.

    2003-01-01

    The linacs proposed for the Next Linear Collider (NLC) and Japanese Linear Collider (JLC) would contain several thousand X-Band accelerator structures that would operate at a loaded gradient of 50 MV/m. An extensive experimental and theoretical program is underway at SLAC, FNAL and KEK to develop structures that reliably operate at this gradient. The development of standing wave structures is a part of this program. The properties of standing wave structures allow them to operate at the loaded gradient in contrast to traveling wave structures that need conditioning to the unloaded gradient (65 MV/m for NLC/JLC). The gradients in the standing structures tested thus far have been limited by input coupler breakdowns. The behavior of these breakdowns is consistent with a model of pulsed heating due to high magnetic fields. New input couplers have been designed to reduce maximum magnetic fields. This paper discusses design considerations related to high power performance, wakefield suppression and results of high power tests of prototype standing wave structures

  11. Stationary Density Variation Produced by a Standing Plasma Wave

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field.......Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field....

  12. Effects of Driving Frequency on Propagation Characteristics of Methane - Air Premixed Flame Influenced by Ultrasonic Standing Wave

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae Seok; Kim, Jeong Soo [Pukyong National University, Busan (Korea, Republic of); Seo, Hang Seok [Hanwha Corporation, DaeJeon (Korea, Republic of)

    2015-02-15

    An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

  13. Diffraction of ultracold fermions by quantized light fields: Standing versus traveling waves

    International Nuclear Information System (INIS)

    Meiser, D.; Search, C.P.; Meystre, P.

    2005-01-01

    We study the diffraction of quantum-degenerate fermionic atoms off of quantized light fields in an optical cavity. We compare the case of a linear cavity with standing-wave modes to that of a ring cavity with two counterpropagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the quantization procedure for the cavity field. For standing waves, no correlations develop between the cavity field and the atoms. Consequently, standing-wave Fock states yield the same results as a classical standing wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast, for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This leads to a collapse and revival of the scattering probability even for Fock states. The Pauli exclusion principle manifests itself as an additional dephasing of the scattering probability

  14. Simple Excitation of Standing Waves in Rubber Bands and Membranes

    Science.gov (United States)

    Cortel, Adolf

    2004-04-01

    Many methods to excite standing waves in strings, plates, membranes, rods, tubes, and soap bubbles have been described. Usually a loudspeaker or a vibrating reed is driven by the amplified output of an audio oscillator. A novel and simple method consists of using a tuning fork or a singing rod to excite transversal standing waves in stretched rubber membranes sprinkled with fine sand.

  15. Sub-half-wavelength atom localization via two standing-wave fields

    International Nuclear Information System (INIS)

    Jin Luling; Sun Hui; Niu Yueping; Gong Shangqing

    2008-01-01

    We propose a scheme for sub-half-wavelength atom localization in a four-level ladder-type atomic system, which is coupled by two classical standing-wave fields. We find that one of the standing-wave fields can help in enhancing the localization precision, and the other is of crucial importance in increasing the detecting probability and leading sub-half-wavelength localization

  16. Overdetermined shooting methods for computing standing water waves with spectral accuracy

    International Nuclear Information System (INIS)

    Wilkening, Jon; Yu Jia

    2012-01-01

    A high-performance shooting algorithm is developed to compute time-periodic solutions of the free-surface Euler equations with spectral accuracy in double and quadruple precision. The method is used to study resonance and its effect on standing water waves. We identify new nucleation mechanisms in which isolated large-amplitude solutions, and closed loops of such solutions, suddenly exist for depths below a critical threshold. We also study degenerate and secondary bifurcations related to Wilton's ripples in the traveling case, and explore the breakdown of self-similarity at the crests of extreme standing waves. In shallow water, we find that standing waves take the form of counter-propagating solitary waves that repeatedly collide quasi-elastically. In deep water with surface tension, we find that standing waves resemble counter-propagating depression waves. We also discuss the existence and non-uniqueness of solutions, and smooth versus erratic dependence of Fourier modes on wave amplitude and fluid depth. In the numerical method, robustness is achieved by posing the problem as an overdetermined nonlinear system and using either adjoint-based minimization techniques or a quadratically convergent trust-region method to minimize the objective function. Efficiency is achieved in the trust-region approach by parallelizing the Jacobian computation, so the setup cost of computing the Dirichlet-to-Neumann operator in the variational equation is not repeated for each column. Updates of the Jacobian are also delayed until the previous Jacobian ceases to be useful. Accuracy is maintained using spectral collocation with optional mesh refinement in space, a high-order Runge–Kutta or spectral deferred correction method in time and quadruple precision for improved navigation of delicate regions of parameter space as well as validation of double-precision results. Implementation issues for transferring much of the computation to a graphic processing units are briefly

  17. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  18. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.

    2011-01-01

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac

  19. Effective shunt impedance comparison between s-band standing wave accelerators with on-axis and off-axis couplers

    International Nuclear Information System (INIS)

    Schriber, S.O.; Funk, L.W.; Hutcheon, R.M.

    1976-01-01

    The effective shunt impedances of a side-coupled S-band standing wave accelerating structure and a structure employing on-axis couplers have been compared by measuring the energy of accelerated electrons. Criteria for choosing an on-axis coupled structure compared to side-coupled and ''disk and washer'' accelerating structures are given. (author)

  20. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  1. Isotope enrichment effect of gaseous mixtures in standing sound vibration

    International Nuclear Information System (INIS)

    Knesebeck, R.L.

    1984-01-01

    When standing acoustic waves are excited in a tube containing a mixture of two gases, a partial zonal fractioning of the components arises as consequence of mass transport by diffusion, driven by the thermal and pressure gradients which are associeted with the standing waves. This effect is present in each zone corresponding to a quarter wavelength, with the heavier component becoming enriched at the nodes fo the standing waves and deplected at the crests. The magnitude of the enrichment in one of the components of a binary gas mixture is given by Δω=ap 2 /lambda [b + (1-bω)] 2 . Where ω is the mass concentration of the component in the mixture, a and b are parameters which are related to molecular proprieties of the gases, p is the relative pressure amplitude of the standing wave and lambda is its wavelength. For a natural mixture of uranium hexafluorate, with 0.715% of the uranium isotope 340 an enrichment of about 2 x 10 -6 % in the concentration of this isotope is theorecticaly attainable per stage consisting of a quarter wavelenght, when a standing acoustical wave of relative pressure amplitude of 0,2 and wavelenght of 20 cm is used. Since standing acoustical waves are easely excited in gas columns, an isotope enrichment plant made of a cascade of tubes in which standing waves are excited, is presumably feasible with relatively low investment and operation costs. (Author) [pt

  2. Counter-rotating standing spin waves: A magneto-optical illusion

    Science.gov (United States)

    Shihab, S.; Thevenard, L.; Lemaître, A.; Gourdon, C.

    2017-04-01

    We excite perpendicular standing spin waves by a laser pulse in a GaMnAsP ferromagnetic layer and detect them using time-resolved magneto-optical effects. Quite counterintuitively, we find the first two excited modes to be of opposite chirality. We show that this can only be explained by taking into account absorption and optical phase shift inside the layer. This optical illusion is particularly strong in weakly absorbing layers. These results provide a correct identification of spin waves modes, enabling a trustworthy estimation of their respective weight as well as an unambiguous determination of the spin stiffness parameter.

  3. Heat driven thermoacoustic cooler based on traveling-standing wave

    International Nuclear Information System (INIS)

    Kang Huifang; Zhou Gang; Li Qing

    2010-01-01

    This paper presents a heat driven thermoacoustic cooler system without any moving part. It consists of a thermoacoustic engine and a thermoacoustic cooler, and the former is the driving source of the latter. Both the engine and the cooler are located in one loop tube coupled with a resonator tube, and the acoustic power produced by the engine is used to drive the cooler directly. Both regenerators of the engine and the cooler are located in the near region of the pressure antinode, and operate in traveling-standing wave phase region. In the engine's regenerator, both components of the standing wave and the traveling wave realize the conversion from heat to acoustic energy. This improves the efficiency of the engine. In the cooler's regenerator, both components of the traveling wave and the standing wave pump heat from the cold end. This improves the efficiency of the cooler. At the operating point with a mean pressure of 22 bar, helium as working gas, a frequency of 234 Hz, and a heating power of 300 W, the experimental cooler provides a no-load temperature of -30 deg. C and a cooling power of 40 W at the cooling temperature of 0 deg. C. The total length of this cooler system is less than 1 m, which shows a good prospect for the domestic cooler system in room-temperature cooling such as food refrigeration and air-conditioning.

  4. Reduced clot debris size using standing waves formed via high intensity focused ultrasound

    Science.gov (United States)

    Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi

    2017-09-01

    The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.

  5. Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Se Hyeok; Jeon, Jun Young; Kim, Du Hwan; Park, Gyuhae [Chonnam Nat’l Univ., Gwangju (Korea, Republic of); Kang, To; Han, Soon Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

  6. Wavelength variation of a standing wave along a vertical spring

    Science.gov (United States)

    Welsch, Dylan; Baker, Blane

    2018-03-01

    Hand-driven resonance can be observed readily in a number of mechanical systems including thin boards, rods, strings, and springs. In order to show such behavior in the vertical spring pictured in Fig. 1, a section of spring is grasped at a location about one meter from its free end and driven by small, circular motions of the hand. At driving frequencies of a few hertz, a dramatic standing wave is generated. One of the fascinating features of this particular standing wave is that its wavelength varies along the length of the spring.

  7. Stimulated Brillouin scattering phase-locking using a transient acoustic standing wave excited through an optical interference field

    International Nuclear Information System (INIS)

    Ondrej Slezak; Milan Kalal; Hon Jin Kong

    2010-01-01

    Complete text of publication follows. Analytical description of an experimentally verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS), used in a laser beam combination systems, is presented. The essential condition for the phase-locking effect for SBS is the fixation of the starting position and time of the acoustic Brillouin wave. It is shown that the starting position fixation of this acoustic wave may have its origin in a transient acoustic standing wave initiated by an arising optical interference field produced by the back-seeding concave mirror. This interference field leads to a stationary density modulation of the medium. However, the way to the formation of this density modulation leads via the acoustic standing wave. An appropriate solution, in the form of the standing wave, was obtained from solving the acoustic wave-equation using the electrostriction as a driving force. As a consequence of the damping term included in this equation the acoustic standing wave becomes gradually attenuated and contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon. Using a mathematical formalism similar to that which is used for the SBS description in the case of a random phase, the coupled equations describing the phase-locked SBS were derived. Contrary to the case without the back-seeding mirror, where the wave chosen from the thermal noise background subsequently plays the role of a trigger of the stimulated process, in this case it is replaced by the transient standing wave produced as a consequence of the presence of an optical interference field arisen in the focal region of the back-seeding concave mirror.

  8. Top layer's thickness dependence on total electron-yield X-ray standing-wave

    International Nuclear Information System (INIS)

    Ejima, Takeo; Yamazaki, Atsushi; Banse, Takanori; Hatano, Tadashi

    2005-01-01

    A Mo single-layer film with a stepwise thickness distribution was fabricated on the same Mo/Si reflection multilayer film. Total electron-yield X-ray standing-wave (TEY-XSW) spectra of the aperiodic multilayer were measured with reflection spectra. The peak positions of the standing waves in the TEY-XSW spectra changed as the film thickness of the top Mo-layer increased

  9. Plasma turbulence driven by transversely large-scale standing shear Alfvén waves

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan

    2012-01-01

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  10. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  11. Contribution to the study of standing wave bi-periodical accelerating structures for electrons

    International Nuclear Information System (INIS)

    Fuhrmann, Celso

    1985-01-01

    Experimental results on bi-periodic standing wave accelerating structures are presented. These structures which are characterized by a high effective shunt impedance, are designed for standing wave, high duty cycle electron accelerators. Two types of structures are studied: the on-axis coupled structure and the coaxial coupled structure. The expressions for the dispersion relation, coupling coefficients, phase and group velocity are derived from a coupled resonator model. An experimental method to eliminate the stop-band is put forward. The influence of the coupling slots on the dispersion curves is studied experimentally. The effective shunt impedance and the transit time factor are measured by the field perturbation techniques. Measured parameters are compared with SUPERFISH theoretical calculations. The field perturbation technique is also applied to measure the transverse shunt impedance of the dipole modes which are responsible for the beam breakup phenomenon. (author) [fr

  12. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    Science.gov (United States)

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Reentrant stability of Bose-Einstein-condensate standing-wave patterns

    International Nuclear Information System (INIS)

    Kalas, Ryan M.; Solenov, Dmitry; Timmermans, Eddy

    2010-01-01

    We describe standing-wave patterns induced by an attractive finite-ranged external potential inside a large Bose-Einstein Condensate (BEC). As the potential depth increases, the time-independent Gross-Pitaevskii equation develops pairs of solutions that have nodes in their wave function. We elucidate the nature of these states and study their dynamical stability. Although we study the problem in a two-dimensional BEC subject to a cylindrically symmetric square well potential of a radius that is comparable to the coherence length of the BEC, our analysis reveals general trends that are valid in two and three dimensions, independent of the symmetry of the localized potential well, and suggestive of the behavior in general short-range and large-range potentials. One set of nodal BEC wave functions resembles the single particle n-node bound-state wave function of the potential well, the other wave functions resemble the n-1-node bound-state wave function with a kink state pinned by the potential. The second state, though corresponding to the lower free energy value of the pair of n-node BEC states, is always unstable, whereas the first can be dynamically stable in intervals of the potential well depth, implying that the standing-wave BEC can evolve from being dynamically unstable to stable and back to unstable as the potential well is adiabatically deepened - a phenomenon that we refer to as 'reentrant dynamical stability'.

  14. Control of synchrotron x-ray diffraction by means of standing acoustic waves

    International Nuclear Information System (INIS)

    Zolotoyabko, E.; Quintana, J.P.

    2004-01-01

    Synchrotron x-ray diffraction measurements in quartz crystals of different thickness excited by standing acoustic waves were carried out at the Advanced Photon Source of Argonne National Laboratory. We demonstrated the ability to significantly modify the quartz rocking curves for 20-25 keV x rays by changing the shear wave parameters in the frequency range between 15 and 105 MHz. Dynamic deformation introduced into the crystal lattice by acoustic waves resulted in a remarkable broadening of the rocking curves. The broadening effect strongly depends on the strength of the ultrasound, which can be easily regulated by changing the acoustic amplitude or frequency near the resonance. The maximum rocking curve broadening reached 17 times, which corresponds to the wavelength band, Δλ/λ=4x10 -3 , when used as a monochromator or analyzer for 20-25 keV x rays. The initial rocking curve shape is restored by sweeping the acoustic frequency within a 50-100 kHz range near the resonance. The tunable broadening effect allows effective manipulation of x-ray intensities in time domain. Time-resolved x-ray diffraction measurements under a 19.6 MHz acoustic wave excitation were performed by synchronizing the acoustic wave and x-ray burst periodicity. We used the fact that twice per period the standing wave produces a zero net deformation across the crystal thickness. By introducing an oscillating delay to the acoustic excitation, we were able to effectively change the phase of the acoustic wave relative to the x-ray burst periodicity. The x-ray diffraction intensity was strongly affected by tuning the timing of the x-ray arrivals to the minimum or maximum acoustic deformation. A deep modulation of x rays was observed in a wide frequency range between 0.1 Hz and 1 MHz, which certifies that acoustically excited quartz crystals can potentially be used as slow and fast x-ray modulators with high duty cycle

  15. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    International Nuclear Information System (INIS)

    Mitri, F. G.

    2015-01-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries

  16. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  17. On the pressure field of nonlinear standing water waves

    Science.gov (United States)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  18. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    Science.gov (United States)

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Development of small C-band standing-wave accelerator structure

    International Nuclear Information System (INIS)

    Miura, S.; Takahashi, A.; Hisanaga, N.; Sekido, H.; Yoshizumi, A.

    2000-01-01

    We have newly developed a compact C-band (5712 MHz) standing-wave accelerator for the medical product/waste sterilization applications. The accelerator consists of an electron gun operating at 25 kV DC followed by a single-cell pre-buncher and 3-cell buncher section, and 11-cell of the side-coupled standing-wave accelerating structure. The total length including the electron gun is about 600 mm. The first high-power test was performed in March 2000, where the accelerator successively generated the electron beam of 9 MeV energy and 160 mA peak-current at 3.8 MW RF input power. Mitsubishi Heavy Industry starts to serve the sterilization systems using C-band accelerator reported here, and also supplies the accelerator components for the medical oncology applications. (author)

  20. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  1. Design of hybrid electron linac with standing wave buncher and traveling wave structure

    International Nuclear Information System (INIS)

    Kutsaev, S.V.; Sobenin, N.P.; Smirnov, A.Yu.; Kamenschikov, D.S.; Gusarova, M.A.; Nikolskiy, K.I.; Zavadtsev, A.A.; Lalayan, M.V.

    2011-01-01

    A disk-loaded waveguide (DLW) is the most common structure for compact linear accelerators working in a traveling wave (TW) regime. Among its advantages are high shunt impedance and manufacturing simplicity. The other popular structure is an on-axis coupled bi-periodical accelerating structure (BAS) that works in standing wave (SW) regime. Both the standing and the traveling wave regimes have their own advantages and disadvantages. The design of the hybrid accelerator with SW buncher and TW accelerating section presented in this paper unites the advantages of both regimes. For example, the buncher in the hybrid accelerator is shorter than in a pure TW accelerator, and it requires no solenoid; this structure is more technologically convenient as it does not require a circulator. The other way to combine the advantages of DLW and BAS is to design a magnetic coupled disk-loaded waveguide (DLW-M). This paper also presents the results of a survey study that analyzed the electrodynamical parameters of such a structure and compared them with those of DLW. The experimental data is also presented. Higher order modes, multipacting discharge and thermal simulations show that DLW-M structure is more preferable to classical DLW.

  2. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    Directory of Open Access Journals (Sweden)

    Liang Zeng

    2014-07-01

    Full Text Available In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  3. Validation of Standing Wave Liner Impedance Measurement Method, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hersh Acoustical Engineering, Inc. proposes to establish the feasibility and practicality of using the Standing Wave Method (SWM) to measure the impedance of...

  4. Polarization-dependent ponderomotive gradient force in a standing wave

    NARCIS (Netherlands)

    Smorenburg, P.W.; Kanters, J.H.M.; Lassise, A.; Brussaard, G.J.H.; Kamp, L.P.J.; Luiten, O.J.

    2011-01-01

    The ponderomotive force is derived for a relativistic charged particle entering an electromagnetic standing wave with a general three-dimensional field distribution and a nonrelativistic intensity, using a perturbation expansion method. It is shown that the well-known ponderomotive gradient force

  5. Generation of neutron standing waves at total reflection of polarized neutrons

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Kozhevnikov, S.V.; Radu, F.; Kruijs, R.; Rekveldt, M.Th.

    1999-01-01

    The regime of neutron standing waves at reflection of polarized thermal neutrons from the structure glass/Cu (1000 A Angstrom)/Ti (2000 A Angstrom)/Co (60 A Angstrom)/Ti (300 A Angstrom) in a magnetic field directed at an angle to the sample plane is realized. The intensity of neutrons with a particular spin projection on the external magnetic field direction appears to be a periodic function of the neutron wavelength and the glancing angle of the reflected beam. It is shown that the neutron standing wave regime can be a very sensitive method for the determination of changes in the spatial position of magnetic noncollinear layers. (author)

  6. Stress wave propagation on standing trees. Part 2, Formation of 3D stress wave contour maps.

    Science.gov (United States)

    Juan Su; Houjiang Zhang; Xiping Wang

    2009-01-01

    Nondestructive evaluation (NDE) of wood quality in standing trees is an important procedure in the forest operational value chain worldwide. The goal of this paper is to investigate how a stress wave travel in a tree stem as it is introduced into the tree through a mechanical impact. Experimental stress wave data was obtained on freshly cut red pine logs in the...

  7. Fermions in the 5D Gravity-Scalar Standing Wave Braneworld

    OpenAIRE

    Gogberashvili, Merab; Midodashvili, Pavle

    2014-01-01

    In the article we investigate localization problem for spinor fields within the 5D standing wave braneworld with the bulk real scalar field and show that there exist normalizable fermion field zero modes on the brane.

  8. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  9. Localization Problem in the 5D Standing Wave Braneworld

    OpenAIRE

    Gogberashvili, Merab; Midodashvili, Pavle; Midodashvili, Levan

    2012-01-01

    We investigate the problem of pure gravitational localization of matter fields within the 5D standing wave braneworld generated by gravity coupled to a phantom-like scalar field. We show that in the case of increasing warp factor there exist normalizable zero modes of spin-0, -1/2, -1, and -2 fields on the brane.

  10. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2014-01-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves

  11. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  12. 10 GHz Standing-Wave Coplanar Stripline on LiNbO3 Crystal for Radio to Optical-Wave Conversion

    Science.gov (United States)

    Darwis, F.; Wijayanto, Y. N.; Setiawan, A.; Mahmudin, D.; Rahman, A. N.; Daud, P.

    2018-04-01

    Recently, X-band radar systems are used widely for surveillance and navigation applications. Especially in archipelago or maritime country, the surveillance/navigation radar systems are required to monitoring critical areas and managing marine traffic. Accurate detection and fast analysis should be improved furthermore to provide security and safety condition. Therefore, several radar systems should be installed in many places to coverage the critical areas within radar networks. The radar network can be connected using optical fibers since it has extremely low propagation loss with optical-wave to carry-out the radar-wave. One important component in the scenario is a radio to optical-wave conversion component. In this paper, we report a 10 GHz radio to optical-wave conversion component using standing-wave coplanar stripline (CPS) on LiNbO3 optical crystal as the substrate. The standing-wave CPS electrodes with narrow slot are arranged in an array structure. An optical waveguide is located close to the narrow slot. The CPS electrodes were analysed using electromagnetic analysis software for 10 GHz operational frequency. Responses for slot width and electrode length variation are reported. As results, return loss of -14.580 dB and -19.517 dB are obtained for single and array CPS electrodes respectively. Optimization of the designed radio to optical-wave conversion devices was also done.

  13. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf

    2009-01-01

    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953......-dimensional simulations of standing waves have also been made by application of a general purpose Navier-Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory...

  14. Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops

    Science.gov (United States)

    Merrell, Tyler; Saylor, J. R.

    2015-11-01

    A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.

  15. A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Yang-Yih, Chen; Hung-Chu, Hsu

    2009-01-01

    Asymptotic solutions up to third-order which describe irrotational finite amplitude standing waves are derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid for large times satisfies the irrotational condition and the pressure p = 0 at the free surface, which is in contrast with the Eulerian solution existing under a residual pressure at the free surface due to Taylor's series expansion. In the third-order Lagrangian approximation, the explicit parametric equation and the Lagrangian wave frequency of water particles could be obtained. In particular, the Lagrangian mean level of a particle motion that is a function of vertical label is found as a part of the solution which is different from that in an Eulerian description. The dynamic properties of nonlinear standing waves in water of a finite depth, including particle trajectory, surface profile and wave pressure are investigated. It is also shown that the Lagrangian solution is superior to an Eulerian solution of the same order for describing the wave shape and the kinematics above the mean water level. (general)

  16. First Imaging Observation of Standing Slow Wave in Coronal Fan Loops

    International Nuclear Information System (INIS)

    Pant, V.; Tiwari, A.; Banerjee, D.; Yuan, D.

    2017-01-01

    We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations are very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s"−"1. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.

  17. First Imaging Observation of Standing Slow Wave in Coronal Fan Loops

    Energy Technology Data Exchange (ETDEWEB)

    Pant, V.; Tiwari, A.; Banerjee, D. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Yuan, D. [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518000 (China)

    2017-09-20

    We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations are very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s{sup −1}. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.

  18. Anisotropic inflation in a 5D standing wave braneworld and effective dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gogberashvili, Merab, E-mail: gogber@gmail.com [Andronikashvili Institute of Physics, 6 Tamarashvili St., Tbilisi 0177, Georgia (United States); Javakhishvili State University, 3 Chavchavadze Ave., Tbilisi 0128, Georgia (United States); Herrera-Aguilar, Alfredo, E-mail: aha@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Malagón-Morejón, Dagoberto, E-mail: malagon@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Mora-Luna, Refugio Rigel, E-mail: rigel@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico)

    2013-10-01

    We investigate a cosmological solution within the framework of a 5D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to (i) inflation along certain spatial dimensions, and (ii) deflation and a shrinking reduction of the number of spatial dimensions along other directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher-dimensional theories in the attempt of getting a 4D isotropic expanding space–time.

  19. Anisotropic inflation in a 5D standing wave braneworld and effective dimensional reduction

    International Nuclear Information System (INIS)

    Gogberashvili, Merab; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto; Mora-Luna, Refugio Rigel

    2013-01-01

    We investigate a cosmological solution within the framework of a 5D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to (i) inflation along certain spatial dimensions, and (ii) deflation and a shrinking reduction of the number of spatial dimensions along other directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher-dimensional theories in the attempt of getting a 4D isotropic expanding space–time

  20. Droplets bouncing on a standing wave field

    Science.gov (United States)

    Pucci, Giuseppe; Tambasco, Lucas; Harris, Daniel; Bush, John

    2017-11-01

    A liquid bath subject to a vertical vibration becomes unstable to standing surface waves at a critical vibrational acceleration known as the Faraday threshold. We examine the behavior of a millimetric droplet bouncing on the surface of a quasi-one-dimensional fluid channel above the Faraday threshold. We identify a sequence of bifurcations that occurs as the vibrational acceleration is increased progressively, ultimately leading to the erratic, diffusive motion of the droplet along the length of the channel. A simple theoretical model is presented. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  1. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Guevara Vasquez, F. [Department of Mathematics, University of Utah, Salt Lake City, Utah 84112 (United States)

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependent on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.

  2. Suppression of beam-break-up in a standing wave free electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Kim, J.S.

    1994-03-01

    Various schemes are examined in this study on the suppression of beam break-up (BBU) in a standing wave free electron laser two-beam accelerator (SWFEL/TBA). Two schemes are found to be not only able to effectively suppress the BBU but at the same time have minimum effect on the microwave generation process inside the SWFEL cavities. One is making the cavity-iris junction sufficiently gradual and the other is stagger-tuning the cavities

  3. Drop behavior in acoustic standing waves; Teizaihachu ni okeru ekiteki no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, H. [National Aerospace Laboratory, Tokyo (Japan); Yamanaka, T. [Yokohama National University, Yokohama (Japan)

    1997-10-01

    When new materials, such as those for space shuttles, are developed, it is necessary to hold then in a non-contacting manner. Described herein is behavior of drops in a holding device which utilizes acoustic radiation pressure. When an object sufficiently small as compared with wavelength of a sound wave is placed in acoustic standing waves, it is subjected to acoustic radiation pressure. Chandrasekahr developed the theory on the stability of a rotating drop by equating the entire mechanical energy of a drop with its surface energy. This theory, based on the assumption of symmetric surface energy, is incapable of theoretically dealing with multi-lobed waves evolved by surface tension. In this study, multi-lobed waves excited by sound waves in a rotating drop are analytically found without assuming symmetry of drop surface energy. The multi-lobe waves are first found on the assumption that the acoustic radiation pressure around a drop is constant. Then, the effects of the deformed drop on the radiation pressure around the drop are considered. In addition, the equation for the relationship between the radiation pressure and a drop that becomes oblate due to the radiation pressure is obtained. The theoretically derived results by this equation are in good agreement with the observed results by the ground and flight tests. 17 refs., 18 figs.

  4. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Helbo, Jan; Blanke, Mogens

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  5. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Helbo, Jan; Andersen, Brian; Blanke, Mogens

    2002-01-01

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  6. On possible contribution of standing wave like spacer dynamics in polymer liquid crystals to quasi-elastic cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Jecl, R.; Cvikl, B.

    1998-01-01

    The quasi-elastic cold neutron incoherent scattering law, QNS, for the assumed case of transversal standing wave type of motion of the linear chain a spacer-of the polyacrylate polymer liquid crystal, based upon the random walk of the particle between two perfectly potential barriers, is derived. The spacer protons are taken to vibrate (within the stationary plane) transversely to the line joining the oxygen atoms in a way where they are all simultaneously displaced in the same direction with amplitudes of the standing wave fundamental mode of the vibration excited. The calculated relevant incoherent scattering law is found to be a non-distinct function of the scattering vector Q, in the sense that the postulated dynamical effect of the spacer protons causes the peak value of the calculated incoherent scattering law, S(Q,ω), to remain constant throughout the experimentally accessible range of the scattering vector Q. It appears that, when the experimental resolution broadening effects is taken into account, the contribution of the postulated dynamical behavior to the measured QNS spectra might be small, particularly so, if dome additional motion of the scatters is present, and consequently the standing wave like spacer dynamics in polymer liquid crystals will be very difficult to be identified uniquely in the quasielastic neutron scattering experiments.(author)

  7. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    Science.gov (United States)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  8. Acoustic radiation force on cylindrical shells in a plane standing wave

    International Nuclear Information System (INIS)

    Mitri, F G

    2005-01-01

    In this paper, the radiation force per length resulting from a plane standing wave incident on an infinitely long cylindrical shell is computed. The cases of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are considered with particular emphasis on their thickness and the content of their interior hollow spaces. Numerical calculations of the radiation force function Y st are performed. The fluid-loading effect on the radiation force function curves is analysed as well. The results show several features quite different when the interior hollow space is changed from air to water. Moreover, the theory developed here is more general since it includes the results on cylinders

  9. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-01-01

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  10. An anisotropic standing wave braneworld and associated Sturm-Liouville problem

    International Nuclear Information System (INIS)

    Gogberashvili, Merab; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto

    2012-01-01

    We present a consistent derivation of the recently proposed 5D anisotropic standing wave braneworld generated by gravity coupled to a phantom-like scalar field. We explicitly solve the corresponding junction conditions, a fact that enables us to give a physical interpretation to the anisotropic energy-momentum tensor components of the brane. So matter on the brane represents an oscillating fluid which emits anisotropic waves into the bulk. We also analyze the Sturm-Liouville problem associated with the correct localization condition of the transverse to the brane metric and scalar fields. It is shown that this condition restricts the physically meaningful space of solutions for the localization of the fluctuations of the model. (paper)

  11. An x-ray standing wave study of silver nano-wires on Cu(110)

    International Nuclear Information System (INIS)

    Stampfl, A.P.J.; Nyberg, G.

    1998-01-01

    Full text: The growth of Ag on Cu(110) is a well characterised adsorption system. At low coverages (under 1 ML), several reconstructions have been reported. Silver is believed to occupy the troughs of the Cu(110) surface, forming one-dimensional linear chains. We have carried out X-ray standing wave measurements especially in the low coverage limit (< 0.5 ML) using the [200], [220] and [111] Bragg reflection planes of copper and several core and auger lines. The usual dipole approximation analysis scheme was replaced by a more accurate description of the standing wave process which allowed use of the intense high energy core levels. We show that Ag does indeed sit along the troughs of the copper surface: the coherent fraction of the silver increased with decreasing coverage, its position being nearly the same as the bulk lattice at low coverages

  12. Standing, Periodic and Solitary Waves in (1 + 1)-Dimensional Caudry-Dodd-Gibbon-Sawada-Kortera System

    International Nuclear Information System (INIS)

    Zheng Chunlong; Qiang Jiye; Wang Shaohua

    2010-01-01

    In the paper, the variable separation approach, homoclinic test technique and bilinear method are successfully extended to a (1 + 1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera (CDGSK) system, respectively. Based on the derived exact solutions, some significant types of localized excitations such as standing waves, periodic waves, solitary waves are simultaneously derived from the (1 + 1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera system by entrancing appropriate parameters. (general)

  13. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  14. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  15. Influence of standing-wave electric field pattern on the laser damage resistance of HfO sub 2 thin films

    CERN Document Server

    Protopapa, M L; De Tomasi, F; Di Giulio, M; Perrone, M R; Scaglione, S

    2002-01-01

    The standing-wave electric field pattern that forms inside an optical coating as a consequence of laser irradiation is one of the factors influencing the coating laser-induced damage threshold. The influence of the standing-wave electric field profile on the damage resistance to ultraviolet radiation of hafnium dioxide (HfO sub 2) thin films was investigated in this work. To this end, HfO sub 2 thin films of different thicknesses deposited by the electron beam evaporation technique at the same deposition conditions were analyzed. Laser damage thresholds of the samples were measured at 308 nm (XeCl laser) by the photoacoustic beam deflection technique and microscopic inspections. The dependence of the laser damage threshold on the standing-wave electric field pattern was analyzed.

  16. Slot-coupled CW standing wave accelerating cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  17. The effect of gravitational wave on electromagnetic field and the possibility about electromagnetic detection of gravitational wave

    International Nuclear Information System (INIS)

    Tao Fuzhen; He Zhiqiang

    1983-01-01

    If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)

  18. Observation of neutron standing waves at total reflection by precision gamma spectroscopy

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Gundorin, N.A.; Nikitenko, Yu.V.; Popov, Yu.P.; Cser, L.

    1998-01-01

    Total reflection of polarized neutrons from the layered structure glass/Fe (1000 A Angstrom)/Gd (50 A Angstrom) is investigated by registering neutrons and gamma-quanta from thermal neutron capture. The polarization ratio of gamma counts of neutron beams polarized in and opposite the direction of the magnetic field is measured. The polarization ratio is larger than unity for the neutron wavelengths λ 2.2 A Angstrom. Such behaviour of the wavelength dependence of the gamma-quanta polarization ratio points to the fact that over the surface of the Fe Layer a neutron standing wave caused by the interference of the incident neutron wave and the wave refracted from the magnetized Fe layer is formed

  19. Structure of small-scale standing azimuthal Alfven waves interacting with high-energy particles in the magnetosphere

    International Nuclear Information System (INIS)

    Klimushkin, D.Yu.

    1998-01-01

    The effect of bounce-drift instability on the structure of small-scale azimuthal Alfven waves in the magnetosphere is studied with allowance for the curvature of the geomagnetic field lines. The pressure of the background plasma is assumed to be zero. As early as 1993, Leonovich and Mazur showed that Alfven waves with m>>1, being standing waves along magnetic field lines, propagate, at the same time, across the magnetic surfaces. As these waves propagate through the magnetosphere, they interact with a group of high-energy particles and, thereby, are amplified with a growth rate dependent on the radial coordinate, i.e., a coordinate perpendicular to the magnetic sheaths. Near the Alfven resonance surface, the growth rate approaches zero, and the waves are damped completely due to the energy dissipation in the ionosphere. As the growth rate increases, the maximum of the wave amplitude is displaced to the Alfven resonance region and the most amplified waves are those whose magnetic field vectors oscillate in the azimuthal direction. Among the waves excited in a plasma resonator that is formed near the plasmapause, the most amplified are those with radial polarization

  20. Influence of standing-wave fields on the laser damage resistance of dielectric films

    International Nuclear Information System (INIS)

    Newnam, B.E.; Gill, D.H.; Faulkner, G.

    1973-01-01

    The influence of standing-wave electric fields on the damage resistance of dielectric thin films was evaluated for the case of 30-ps laser pulses at 1.06 μm. Single-layer films of TiO 2 , ZrO 2 , SiO 2 , and MgF 2 were deposited by state-of-the-art electron-gun evaporation on BK-7 glass substrates with uniform surface preparation. The film thicknesses ranged from one to five quarter-wave increments. The thresholds for TiO 2 films of odd quarter-wave thickness were greater than for even multiples which correlated well with the calculated internal maximum electric fields. Threshold variations for ZrO 2 films were apparent but not as distinctly periodic with film thickness. Negligible variations were obtained for SiO 2 films, again correlating with electric-field calculations. Results of additional tests allowed comparisons of thresholds for 1) back-and front-surface films for normal incidence; 2) S- and P-polarized radiation at an incidence angle of 60 0 ; and 3) circular and linear polarizations for normal incidence. The thresholds were compared with calculated standing-wave field patterns at various locations in the films. A correlation was generally found between the internal field maxima and the thresholds, but in a few coatings, defects apparently decreased or prevented any correlation. (auth)

  1. Thin films and buried interfaces characterization with X-ray standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S [CNR, Rome (Italy). Istituto Elettronica Stato Solido

    1996-09-01

    The X-ray standing wave techniques is a powerful, non destructive method to study interfaces at the atomic level. Its basic features are described here together with the peculiarities of its applications to epitaxial films and buried interfaces. As examples of applications, experiments carried out on Si/silicide interfaces, on GaAs/InAs/GaAs buried interfaces and on Si/Ge superlattices are shown.

  2. Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Čižmár, Tomáš; Jonáš, Alexandr; Zemánek, Pavel

    2008-01-01

    Roč. 10, č. 11 (2008), 113010: 1-16 ISSN 1367-2630 R&D Projects: GA MŠk(CZ) LC06007; GA MŠk OC08034 Institutional research plan: CEZ:AV0Z20650511 Keywords : nanoparticle * evanescent field * standing-wave illumination * surface delivery Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.440, year: 2008

  3. Observed mixed standing-wave signatures in Cochin Estuary on the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Srinivas, K.; Muraleedharan, K.R.; Thottam, T.J.

    Study of the characteristics of currents and water-level variations in the Cochin estuary reveals, for the first time, unique signatures of mixed standing-waves in the southern region. Analysis of the simultaneous water-level data generated...

  4. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell

    International Nuclear Information System (INIS)

    Bae, In-Ho; Moon, Han Seb

    2011-01-01

    We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.

  5. Standing-wave free-electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Whittum, D.H.; Wurtele, J.S.

    1991-01-01

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set. (orig.)

  6. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep.

    Science.gov (United States)

    Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in

  7. Rotating and standing waves in a diffractive nonlinear optical system with delayed feedback under O(2) Hopf bifurcation

    Science.gov (United States)

    Budzinskiy, S. S.; Razgulin, A. V.

    2017-08-01

    In this paper we study one-dimensional rotating and standing waves in a model of an O(2)-symmetric nonlinear optical system with diffraction and delay in the feedback loop whose dynamics is governed by a system of coupled delayed parabolic equation and linear Schrodinger-type equation. We elaborate a two-step approach: transition to a rotating coordinate system to obtain the profiles of the waves as small parameter expansions and the normal form technique to study their qualitative dynamic behavior and stability. Theoretical results stand in a good agreement with direct computer simulations presented.

  8. Waves in periodic medium. Atomic matter waves in light crystals

    International Nuclear Information System (INIS)

    Oberthaler, M. K.

    1997-07-01

    This work deals with the propagation of matter waves inside a periodic potential. In analogy to photon optics a potential can be described by a refractive index for matter waves. A real potential leads to a refractive spatial structure while an imaginary potential leads to an absorptive structure. A general theoretical description is given in the framework of Floquet theory. The equivalent approach of dynamical diffraction theory will be treated in detail. The analytic solution for weak potentials are given in a general form so that they are applicable for every kind of wave and medium. For our experiments an open two level atom (metastable Argon) propagating inside a standing light wave was used. Detuning the frequency of the light wave from the atomic resonance leads to a real (refractive) periodic potential. Tuning the laser exact on resonance gives rise to a pure imaginary (absorptive) periodic potential. In analogy to solid state crystals in X-ray and neutron optics we call a standing light wave a light crystal. Tuning the standing light field on resonance we demonstrated experimentally the Borrmann effect. This effect describes the increase of the total transmission through a crystal for Bragg incidence. Furthermore, we confirmed that this effect is coherent and that a sinusoidal wave field is formed inside the crystal. The nodes of the wave field were found to coincide with the maxima of absorption. For a detuned standing light field a refractive crystal was realized, for which the expected Pendelloesung effect was demonstrated. In this case the maximum of the wave field inside the crystal was found at the steepest gradient of the potential as predicted by dynamical diffraction theory. Superposing an absorptive and a refractive light crystal a complex light crystal was realized. With such a crystal the violation of Friedel's law was demonstrated in a very clear way. (author)

  9. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.

    Science.gov (United States)

    Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.

  10. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  11. Generation of Autologous Platelet-Rich Plasma by the Ultrasonic Standing Waves.

    Science.gov (United States)

    Wu, Yue; Kanna, Murugappan Suresh; Liu, Chenhui; Zhou, Yufeng; Chan, Casey K

    2016-08-01

    Platelet-rich plasma (PRP) is a volume of autologous plasma that has a higher platelet concentration above baseline. It has already been approved as a new therapeutic modality and investigated in clinics, such as bone repair and regeneration, and oral surgery, with low cost-effectiveness ratio. At present, PRP is mostly prepared using a centrifuge. However, this method has several shortcomings, such as long preparation time (30 min), complexity in operation, and contamination of red blood cells (RBCs). In this paper, a new PRP preparation approach was proposed and tested. Ultrasound waves (4.5 MHz) generated from piezoelectric ceramics can establish standing waves inside a syringe filled with the whole blood. Subsequently, RBCs would accumulate at the locations of pressure nodes in response to acoustic radiation force, and the formed clusters would have a high speed of sedimentation. It is found that the PRP prepared by the proposed device can achieve higher platelet concentration and less RBCs contamination than a commercial centrifugal device, but similar growth factor (i.e., PDGF-ββ). In addition, the sedimentation process under centrifugation and sonication was simulated using the Mason-Weaver equation and compared with each other to illustrate the differences between these two technologies and to optimize the design in the future. Altogether, ultrasound method is an effective method of PRP preparation with comparable outcomes as the commercially available centrifugal products.

  12. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.

  13. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space

  14. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

    Science.gov (United States)

    Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry

    2018-05-01

    Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

  15. Two-Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  16. Detuning effect in a traveling wave type linac

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1981-10-01

    Detailed measurement of acceleration characteristics has been performed on a 15 MeV electron linac as the injector of the electron synchrotron at Institute for Nuclear Study, University of Tokyo. Remarkable feature of the results is that the energy gain as well as the energy spread of the output beam, are optimized when the linac is operated with the microwave whose frequency is higher than the resonant frequency of the accelerator waveguide. The difference of this operating frequency from the resonant frequency grows up as the beam intensity is increased, and amounts to 250 KHz when the beam intensity is 350 mA. In order to clarify the mechanism of the phenomena, the interaction of electron beam with the microwave in the accelerator structure of traveling wave type, is examined on the linac and also on a test accelerator structure. For the analysis of the experimental results, the normal mode method which has been used for standing wave cavities, is developed so as to be applied to the accelerator structure of traveling wave type. The results of analysis show that the observed phenomena at INS linac are caused by the resonant frequency shift, detuning, due to the reactive beam loading and this detuning effects are compensated by use of the microwave of higher frequency. Thus the detuning effects are significant even in the traveling wave type linac composed of buncher and regular sections as well as in the standing wave type accelerator structure. (author)

  17. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Science.gov (United States)

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  18. Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2008-01-01

    Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle β of its plane wave components, such that β = 0 represents a plane wave. It is assumed here that the half-cone angle β for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments

  19. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    International Nuclear Information System (INIS)

    Ross, N.; Kostylev, M.; Stamps, R. L.

    2014-01-01

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.

  20. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    Science.gov (United States)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  1. Spatial structure of standing wave electromagnetic fields at the lower harmonics of the ionospheric Alfvén resonator

    Czech Academy of Sciences Publication Activity Database

    Prikner, Karel; Feygin, F. Z.; Raita, T.

    2014-01-01

    Roč. 58, č. 2 (2014), s. 326-337 ISSN 0039-3169 Grant - others:European Commission(XE) HPRI 200100132 Institutional research plan: CEZ:AV0Z30120515 Keywords : ionospheric Alfvén resonator * full-wave numerical simulation * EISCAT measurements * standing wave oscillations Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  2. Identification of Standing Pressure Waves Sources in Primary Loops of NPP with WWER and PWR

    Directory of Open Access Journals (Sweden)

    K.N. Proskuriakov

    2016-05-01

    Full Text Available Results of measurement and calculation of Eigen frequencies of coolant pressure oscillations in primary loops of NPP are presented. The simple calculation model based on equivalence of electric circuit with elastic wave propagation in liquids and gases, which gives a sensible interpretation of standing pressure waves sources is developed. It is shown, that pressurizer manifest itself as managed Helmholtz resonator generating a number of SPW (with Eigen frequencies of steam volume, water volume and their combination with coolant volume of respiratory line.

  3. Non-linear interactions of multi-level atoms with a near-resonant standing wave

    International Nuclear Information System (INIS)

    O'Kane, T.J.; Scholten, R.E.; Walkiewicz, M.R.; Farrell, P.M.

    1998-01-01

    Using a semiclassical density matrix formalism we have calculated the behavior of multi-level atoms interacting with a standing wave field, and show how complex non-linear phenomena, including multi-photon effects, combine to produce saturation spectra as observed in experiments. We consider both 20-level sodium and 24-level rubidium models, contrasting these with a simple 2-level case. The influence of parameters such as atomic trajectory and the time the atom remains in the beam are shown to have a critical effect on the lineshape of these resonances and the emission/absorption processes. Stable oscillations in the excited state populations for both the two-level and multi-level cases are shown to be limit cycles. These limit cycles undergo period doubling as the system evolves into chaos. Finally, using a Monte Carlo treatment, these processes average to produce saturated absorption spectra complete with power and Doppler broadening effects consistent with experiment. (authors)

  4. Properties of TEM standing waves with E||B

    Science.gov (United States)

    Zaghloul, H.; Buckmaster, H. A.

    This paper summarizes the known properties of E∥B TEM standing waves and shows that for such waves (i) E and B cannot be linearly polarized, (ii) E ≠ αB where α is a constant (iii) it is impossible to find a Lorentz frame where E>B, (iv) direction of the propagation vector cannot be inferred from the fields at one point of the space, (v) their behaviour under Lorentz, parity, time-reversal and gauge transformations is proper, (vi) both Lorentz invariants E2 - B2 and E·B are nonzero, (vii) the magnetic helicity may be nonzero, (viii) the magnetic field may be force-free, and (ix) kμFμv ≠ 0. It also shows how electromagnetic waves can be classified using Lorentz invariants. Cet article résume les qualités connues des ondes stationnaires E∥B TEM et montre que pour des ondes parallèles (i) E et B ne peuvent pas être polarisées linéairement, (ii) E ≠ αB où a est une constante, (iii) il est impossible de trouver une construction de Lorentz où E>B, (iv) la direction de propagation d'un vecteur ne peut pas être déduite des opérations à un point d'intervalle, (v) leur conduite sous Lorentz, parité, temps inverse et transformations de jauge est propre, (vi) les deux invariants de Lorentz E2 - B2 et E·B sont non nulles (vii) l'hélice magnétique peut être non nulle (viii) l'opération magnétique peut être de force libre et (ix) KμFμ v ≠ 0. Ceci montre aussi comment les ondes électromagnétiques peuvent être classifiées, en employant les invariants de Lorentz.

  5. Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by two counterpropagating leaky surface waves.

    Science.gov (United States)

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2017-07-01

    A theory is developed for the modeling of acoustic streaming in a microfluidic channel confined between an elastic solid wall and a rigid reflector. A situation is studied where the acoustic streaming is produced by two leaky surface waves that propagate towards each other in the solid wall and thus form a combined standing wave in the fluid. Full analytical solutions are found for both the linear acoustic field and the field of the acoustic streaming. A dispersion equation is derived that allows one to calculate the wave speed in the system under study. The obtained solutions are used to consider particular numerical examples and to reveal the structure of the acoustic streaming. It is shown that two systems of vortices are established along the boundaries of the microfluidic channel.

  6. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  7. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.

    Science.gov (United States)

    Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao

    2018-03-01

    A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III

    Directory of Open Access Journals (Sweden)

    T. Reusch

    2013-07-01

    Full Text Available We have carried out time resolved stroboscopic diffraction experiments on standing surface acoustic waves (SAWs of Rayleigh type on a LiNbO3 substrate. A novel timing system has been developed and commissioned at the storage ring Petra III of Desy, allowing for phase locked stroboscopic diffraction experiments applicable to a broad range of timescales and experimental conditions. The combination of atomic structural resolution with temporal resolution on the picosecond time scale allows for the observation of the atomistic displacements for each time (or phase point within the SAW period. A seamless transition between dynamical and kinematic scattering regimes as a function of the instantaneous surface amplitude induced by the standing SAW is observed. The interpretation and control of the experiment, in particular disentangling the diffraction effects (kinematic to dynamical diffraction regime from possible non-linear surface effects is unambiguously enabled by the precise control of phase between the standing SAW and the synchrotron bunches. The example illustrates the great flexibility and universality of the presented timing system, opening up new opportunities for a broad range of time resolved experiments.

  9. Field control in a standing wave structure at high average beam power

    International Nuclear Information System (INIS)

    McKeown, J.; Fraser, J.S.; McMichael, G.E.

    1976-01-01

    A 100% duty factor electron beam has been accelerated through a graded-β side-coupled standing wave structure operating in π/2 mode. Three non-interacting control loops are necessary to provide the accelerating field amplitude and phase and to control structure resonance. The principal disturbances have been identified and measured over the beam current range of 0 to 20 mA. Design details are presented of control loops which regulate the accelerating field amplitude to +-0.3% and its phase to +-0.5 deg for 50% beam loading. (author)

  10. Full polarimetric millimetre wave radar for stand-off security screening

    Science.gov (United States)

    Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew

    2017-10-01

    The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.

  11. Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation

    KAUST Repository

    Hadj Selem, Fouad

    2014-08-26

    This paper is concerned with the mathematical analysis of a masssubcritical nonlinear Schrödinger equation arising from fiber optic applications. We show the existence and symmetry of minimizers of the associated constrained variational problem. We also prove the orbital stability of such solutions referred to as standing waves and characterize the associated orbit. In the last section, we illustrate our results with few numerical simulations. © 2014 Springer Basel.

  12. Blume-Capel ferromagnet driven by propagating and standing magnetic field wave: Dynamical modes and nonequilibrium phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Acharyya, Muktish, E-mail: muktish.physics@presiuniv.ac.in; Halder, Ajay, E-mail: ajay.rs@presiuniv.ac.in

    2017-03-15

    The dynamical responses of Blume-Capel (S=1) ferromagnet to the plane propagating (with fixed frequency and wavelength) and standing magnetic field waves are studied separately in two dimensions by extensive Monte Carlo simulation. Depending on the values of temperature, amplitude of the propagating magnetic field and the strength of anisotropy, two different dynamical phases are observed. For a fixed value of anisotropy and the amplitude of the propagating magnetic field, the system undergoes a dynamical phase transition from a driven spin wave propagating phase to a pinned or spin frozen state as the system is cooled down. The time averaged magnetisation over a full cycle of the propagating magnetic field plays the role of the dynamic order parameter. A comprehensive phase diagram is plotted in the plane formed by the amplitude of the propagating wave and the temperature of the system. It is found that the phase boundary shrinks inward as the anisotropy increases. The phase boundary, in the plane described by the strength of the anisotropy and temperature, is also drawn. This phase boundary was observed to shrink inward as the field amplitude increases. - Highlights: • The Blume-Capel ferromagnet in propagating and standing magnetic wave. • Monte Carlo single spin flip Metropolis algorithm is employed. • The dynamical modes are observed. • The nonequilibrium phase transitions are studied. • The phase boundaries are drawn.

  13. An experimental study on the structural alteration of C3H8-air premixed flame affected by ultrasonic standing waves of various frequencies

    International Nuclear Information System (INIS)

    Lee, Sang Shin; Kim, Jeong Soo; Kim, Heuy Dong

    2015-01-01

    This experimental study scrutinizes the structural variation of a premixed propane-air flame according to the frequency change of ultrasonic standing waves (USWs) at various equivalence ratios. Visualization technique via Schlieren photography is employed in the observation of the flame structure and in the analysis of the flame velocities along the propagation. A distorted flame front and horizontal splitting in the burnt zone result from the USW. The vertical locations of the distortion and horizontal stripes are closely dependent on the frequency of the USW. In addition, the propagation velocity of the flame front floored by the standing wave is greater than that in the case without the excitation by the standing wave. As expected, the influence of the USW on the premixed-flame propagation becomes prominent as the frequency increases. The results suggest that a well-defined USW may be applied to combustion devices, such as gas turbines and chemical rocket engines, to achieve an active control of the instability that frequently intervenes in such systems.

  14. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).

    Science.gov (United States)

    Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun

    2011-07-21

    Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.

  15. Standing and travelling waves in a spherical brain model: The Nunez model revisited

    Science.gov (United States)

    Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.

    2017-06-01

    The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.

  16. Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves.

    Science.gov (United States)

    Hennig, Martin; Neumann, Jürgen; Wixforth, Achim; Rädler, Joachim O; Schneider, Matthias F

    2009-11-07

    In the past decades supported lipid bilayers (SLBs) have been an important tool in order to study the physical properties of biological membranes and cells. So far, controlled manipulation of SLBs is very limited. Here we present a new technology to create lateral patterns in lipid membranes controllable in both space and time. Surface acoustic waves (SAWs) are used to generate lateral standing waves on a piezoelectric substrate which create local "traps" in the lipid bilayer and lead to a lateral modulation in lipid concentration. We demonstrate that pattern formation is reversible and does not affect the integrity of the lipid bilayer as shown by extracting the diffusion constant of fluid membranes. The described method could possibly be used to design switchable interfaces for the lateral transport and organization of membrane bound macromolecules to create dynamic bioarrays and control biofilm formation.

  17. From antinode clusters to node clusters: the concentration-dependent transition of floaters on a standing Faraday wave.

    Science.gov (United States)

    Sanlı, Ceyda; Lohse, Detlef; van der Meer, Devaraj

    2014-05-01

    A hydrophilic floating sphere that is denser than water drifts to an amplitude maximum (antinode) of a surface standing wave. A few identical floaters therefore organize into antinode clusters. However, beyond a transitional value of the floater concentration ϕ, we observe that the same spheres spontaneously accumulate at the nodal lines, completely inverting the self-organized particle pattern on the wave. From a potential energy estimate we show (i) that at low ϕ antinode clusters are energetically favorable over nodal ones and (ii) how this situation reverses at high ϕ, in agreement with the experiment.

  18. The Effect of Waves with Different Patterns on On-Shore Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    This paper represents a contribution to the standing discussion on whether model tests in waves should be carried out with waves which are, both in time and frequency domaine, reproduced in accordance with field records (and thus conserving the succession of the waves) or whether irregular waves ...

  19. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  20. The experimental definition of the acoustic standing wave series shapes, formed in the coolant of the primary circuit of VVER-440 type reactor

    International Nuclear Information System (INIS)

    Bulavin, V.V.; Pavelko, V.I.

    1995-01-01

    On the basis of pressure fluctuation measurements in some primary circuit loops at 2 nd Unit of Kola NPP with VVER-440 type reactors, the shapes of acoustic standing waves (ASW) were determined at frequencies corresponding to four minimal oscillation eigenfrequencies in the primary circuit coolant. On identification of the ASW modes and properties, experimental results based on six circulating loops in symmetric arrangement allowed determination of the three-dimensional space structure of the wave nodes and antinodes inside and outside of the reactor vessel (RV). As part of this analysis, the geometric features of the primary circuit that caused the formation of these standing waves were identified. Differences in each ASW shape were shown to cause different individual effects on the neutron field in the reactor core and on fuel assembly vibration. This has been partially confirmed by ex-core neutron ionization chamber noise analysis. One type of ASW, possessing an antinode inside the RV, can be used for measurement of the pressure coefficient of reactivity. However, this must be done with care to avoid the potential for incorrect results in some cases. The results presented in this paper can be readily extended to other VVER type reactors with both odd and even number of loops. (author)

  1. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    Science.gov (United States)

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  2. High-efficiency one-dimensional atom localization via two parallel standing-wave fields

    International Nuclear Information System (INIS)

    Wang, Zhiping; Wu, Xuqiang; Lu, Liang; Yu, Benli

    2014-01-01

    We present a new scheme of high-efficiency one-dimensional (1D) atom localization via measurement of upper state population or the probe absorption in a four-level N-type atomic system. By applying two classical standing-wave fields, the localization peak position and number, as well as the conditional position probability, can be easily controlled by the system parameters, and the sub-half-wavelength atom localization is also observed. More importantly, there is 100% detecting probability of the atom in the subwavelength domain when the corresponding conditions are satisfied. The proposed scheme may open up a promising way to achieve high-precision and high-efficiency 1D atom localization. (paper)

  3. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    Science.gov (United States)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  4. An experimental study on the structural alteration of C{sub 3}H{sub 8}-air premixed flame affected by ultrasonic standing waves of various frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Shin [SK E and S, Busan (Korea, Republic of); Kim, Jeong Soo [Pukyong National University, Busan (Korea, Republic of); Kim, Heuy Dong [Andong National University, Andong (Korea, Republic of)

    2015-03-15

    This experimental study scrutinizes the structural variation of a premixed propane-air flame according to the frequency change of ultrasonic standing waves (USWs) at various equivalence ratios. Visualization technique via Schlieren photography is employed in the observation of the flame structure and in the analysis of the flame velocities along the propagation. A distorted flame front and horizontal splitting in the burnt zone result from the USW. The vertical locations of the distortion and horizontal stripes are closely dependent on the frequency of the USW. In addition, the propagation velocity of the flame front floored by the standing wave is greater than that in the case without the excitation by the standing wave. As expected, the influence of the USW on the premixed-flame propagation becomes prominent as the frequency increases. The results suggest that a well-defined USW may be applied to combustion devices, such as gas turbines and chemical rocket engines, to achieve an active control of the instability that frequently intervenes in such systems.

  5. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  6. Localization of rf breakdowns in a standing wave cavity

    Directory of Open Access Journals (Sweden)

    Faya Wang

    2009-04-01

    Full Text Available At SLAC, a five-cell, normal-conducting, L-band (1.3 GHz, standing-wave (SW cavity was built as a prototype positron capture accelerator for the ILC. The structure met the ILC gradient goal but required extensive rf processing. When rf breakdowns occurred, a large variation was observed in the decay rate of the stored energy in the cavity after the input power was shut off. It appeared that the breakdowns were isolating sections of the cavity, and that the trapped energy in those sections was then partitioned among its natural modes, producing a distinct beating pattern during the decay. To explore this phenomenon further, an equivalent circuit model of cavity was created that reproduces well its normal operating characteristics. The model was then used to compute the spectra of trapped energy for different numbers of isolated cells. The resulting modal patterns agree well with those of the breakdown data, and thus such a comparison appears to provide a means of identifying the irises on which the breakdowns occurred.

  7. Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy

    Science.gov (United States)

    Conti, G.; Nemšák, S.; Kuo, C.-T.; Gehlmann, M.; Conlon, C.; Keqi, A.; Rattanachata, A.; Karslıoǧlu, O.; Mueller, J.; Sethian, J.; Bluhm, H.; Rault, J. E.; Rueff, J. P.; Fang, H.; Javey, A.; Fadley, C. S.

    2018-05-01

    Free-standing nanoribbons of InAs quantum membranes (QMs) transferred onto a (Si/Mo) multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS) and by standing-wave HXPS (SW-HXPS). Information on the chemical composition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM) and its interfaces were quantitatively derived with ångström precision. We determined that (i) the exposure to air induced the formation of an InAsO4 layer on top of the stoichiometric InAs(QM); (ii) the top interface between the air-side InAsO4 and the InAs(QM) is not sharp, indicating that interdiffusion occurs between these two layers; (iii) the bottom interface between the InAs(QM) and the native oxide SiO2 on top of the (Si/Mo) substrate is abrupt. In addition, the valence band offset (VBO) between the InAs(QM) and the SiO2/(Si/Mo) substrate was determined by HXPS. The value of VBO = 0.2 ± 0.04 eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO2 heterojunction. We have demonstrated that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.

  8. Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Conti

    2018-05-01

    Full Text Available Free-standing nanoribbons of InAs quantum membranes (QMs transferred onto a (Si/Mo multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS and by standing-wave HXPS (SW-HXPS. Information on the chemical composition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM and its interfaces were quantitatively derived with ångström precision. We determined that (i the exposure to air induced the formation of an InAsO4 layer on top of the stoichiometric InAs(QM; (ii the top interface between the air-side InAsO4 and the InAs(QM is not sharp, indicating that interdiffusion occurs between these two layers; (iii the bottom interface between the InAs(QM and the native oxide SiO2 on top of the (Si/Mo substrate is abrupt. In addition, the valence band offset (VBO between the InAs(QM and the SiO2/(Si/Mo substrate was determined by HXPS. The value of VBO = 0.2 ± 0.04 eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO2 heterojunction. We have demonstrated that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.

  9. On the neutron diffraction in a crystal in the field of a standing laser wave

    International Nuclear Information System (INIS)

    Grigoryan, K.K.; Hayrapetyan, A.G.; Petrosyan, R.G.

    2010-01-01

    The possibility of high-energy neutron diffraction in a crystal is shown by applying the solution of time-dependent Schroedinger equation for a neutron in the field of a standing laser wave. The scattering picture is examined within the framework of non-stationary S-matrix theory, where the neutron-laser field interaction is considered exactly and the neutron-crystal interaction is considered as a perturbation described by Fermi pseudopotential (Farri representation). The neutron-crystal interaction is elastic, and the neutron-laser field interaction has both inelastic and elastic behaviors which results in the observation of an analogous to the Kapitza-Dirac effect for neutrons. The neutron scattering probability is calculated and the analysis of the results are adduced. Both inelastic and elastic diffraction conditions are obtained and the formation of a 'sublattice' is illustrated in the process of neutron-photon-phonon elastic interaction.

  10. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  11. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    Science.gov (United States)

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  12. Suitability of high-current standing-wave linac technology for ultra-relativistic electron beam propagation experiments

    International Nuclear Information System (INIS)

    Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.

    1981-01-01

    Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division

  13. A standing pressure wave hypothesis of oscillating forces generated during a steam line break

    International Nuclear Information System (INIS)

    Tinoco, H.

    2001-01-01

    A rapid glance at the figure depicting the net forces acting on the reactor vessel and internals, as obtained through a CFD simulation of a BWR steam line break, reveals an amazing oscillating regularity of these forces which is in glaring contrast to the chaotic behaviour of the steam pressure field in the steam annulus. Assuming that the decompression process excites and maintains standing pressure waves in the annular cylindrical region constituted by the steam annulus, it is possible to reconstruct the net forces acting on the reactor vessel and internals through the contribution of almost only the first dispersive mode. If a Neumann boundary condition is assumed at the section connecting the steam annulus to the steam dome, the frequency predicted is approximately % 5.9 higher than that of the CFD simulations. However, this connecting section allows wave transmission, and a more appropriate boundary condition should be one of the Robin type. Therefore, this section is modelled as an absorbing wall, and the corresponding normal impedance is calculated using the CFD simulations. Week non-linear effects can also be observed in the calculated forces through the presence of the first subharmonic. By the methodology described above, an estimate of the forces acting on the reactor vessel and internals of unit 3 of Forsmark Nuclear Power Plant has been obtained. (author)

  14. Standing wave brass-PZT square tubular ultrasonic motor.

    Science.gov (United States)

    Park, Soonho; He, Siyuan

    2012-09-01

    This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise). Copyright © 2012. Published by Elsevier B.V.

  15. Mixing Effects in Norway Spruce—European Beech Stands Are Modulated by Site Quality, Stand Age and Moisture Availability

    Directory of Open Access Journals (Sweden)

    Léa Houpert

    2018-02-01

    Full Text Available Although mixing tree species is considered an efficient risk-reduction strategy in the face of climate change, the conditions where mixtures are more productive than monocultures are under ongoing debate. Generalizations have been difficult because of the variety of methods used and due to contradictory findings regarding the effects of the species investigated, mixing proportions, and many site and stand conditions. Using data from 960 plots of the Swiss National Forest Inventory data, we assessed whether Picea abies (L. Karst–Fagus sylvatica L. mixed stands are more productive than pure stands, and whether the mixing effect depends on site- or stand-characteristics. The species proportions were estimated using species proportion by area, which depends on the maximum stand basal area of an unmanaged stand (BAmax. Four different alternatives were used to estimate BAmax and to investigate the effect of these differing alternatives on the estimated mixture effect. On average, the mixture had a negative effect on the growth of Picea abies. However, this effect decreased as moisture availability increased. Fagus sylvatica grew better in mixtures and this effect increased with site quality. A significant interaction between species proportions and quadratic mean diameter, a proxy for stand age, was found for both species: the older the stand, the better the growth of Fagus sylvatica and the lower the growth of Picea abies. Overyielding was predicted for 80% of the investigated sites. The alternative to estimate BAmax weakly modulated the estimated mixture effect, but it did not affect the way mixing effects changed with site characteristics.

  16. Mechanical design considerations of a standing wave s-band accelerator with on-axis couplers

    International Nuclear Information System (INIS)

    Hodge, S.B.; Funk, L.W.; Schriber, S.O.

    1976-01-01

    The mechanical design of S-band standing wave accelerator structures with on-axis coupling cells includes material selection, cavity design, segment production, rf tuning and brazing procedures. Pre-assembly tuning operations have been minimized by determining segment dimensions and tolerances so that segments can easily be fabricated in a near-finished condition by a commercial machining firm. Final tuning, if necessary, is easily achieved by removal of material from the cavity wall or drift tube nose. Considerations in choosing brazing procedures were vacuum integrity, resistivity of brazing alloy, joint thickness, alignment of the structure assembly and restriction of grain growth. (author)

  17. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves

    Directory of Open Access Journals (Sweden)

    Jeonghun Nam

    2017-01-01

    Full Text Available We present continuous, sheathless microparticle patterning using conductive liquid (CL-based standing surface acoustic waves (SSAWs. Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.

  18. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    Science.gov (United States)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  19. Low Frequency Waves Detected in a Large Wave Flume under Irregular Waves with Different Grouping Factor and Combination of Regular Waves

    Directory of Open Access Journals (Sweden)

    Luigia Riefolo

    2018-02-01

    Full Text Available This paper describes a set of experiments undertaken at Universitat Politècnica de Catalunya in the large wave flume of the Maritime Engineering Laboratory. The purpose of this study is to highlight the effects of wave grouping and long-wave short-wave combinations regimes on low frequency generations. An eigen-value decomposition has been performed to discriminate low frequencies. In particular, measured eigen modes, determined through the spectral analysis, have been compared with calculated modes by means of eigen analysis. The low frequencies detection appears to confirm the dependence on groupiness of the modal amplitudes generated in the wave flume. Some evidence of the influence of low frequency waves on runup and transport patterns are shown. In particular, the generation and evolution of secondary bedforms are consistent with energy transferred between the standing wave modes.

  20. Flooding effects on stand development in cypress-tupelo

    Science.gov (United States)

    Richard F. Keim; Thomas J. Dean; Jim L. Chambers

    2013-01-01

    The effects of inundation on growth of cypress (Taxodium spp.) and tupelo (Nyssa spp.) trees have been extensively researched, but conclusions are often complicated by attendant effects on stand development. Flooding affects development of cypress-tupelo stands by limiting seedling germination and survival, truncating species...

  1. Standing Wave Linear Accelerators: An Investigation of the Fundamental Field Stability and Tuning Characteristics

    International Nuclear Information System (INIS)

    2002-01-01

    The first accelerators were designed as a tool in high-energy particle physics. Their development has given rise to numerous applications in industry, such as materials processing, sterilization, food preservation, and radiopharmaceutical product generation (Barbalat, 1994). Modern day linear accelerators for particle physics accelerate multiple bunches of electrons and positrons up to 50 GeV. Accelerators of the next generation, such as the Next Linear Collider (NLC), aim to accelerate the bunches initially to a center of mass of 500GeV and later to 1.5 TeV (Decking 2001, Miyamoto 2002, Phinney 2002). The NLC will operate under gradient fields on the order of 70 MV/m (Phinney, 2002). For all accelerators, two issues are fundamental for their construction: maximizing the efficiency of acceleration while, at the same time, preserving the luminosity of the beam. These issues are critically important in the design of the NLC. A linear accelerator operates as follows: An electron gun fires electrons into a structure that bunches the electrons and tightly focuses the beam. At the same time, a radiofrequency wave is fed into the accelerating structure. The electron bunches enter the accelerating structure in phase with the crest of the radiofrequency wave in order to achieve maximum energy. There are two principal types of accelerating structures: traveling wave (TW) and standing wave (SW). The electromagnetic wave in a TW structure travels in one direction; the electromagnetic wave in a SW structure travels in two directions. Many TW structures have been designed for the NLC, but recent experiments indicate that TW structures suffer from electrical breakdown at high gradients (Miller et. al., 2001). To address this problem, SW structures are being considered as the alternative for the NLC (Jones and Miller et. al., 2002). The input power required for an accelerating cavity increases with the length of the cavity (Miller et. al., 2001). Since SW structures can be made

  2. Localization of metastable atom beams with optical standing waves: nanolithography at the heisenberg limit

    Science.gov (United States)

    Johnson; Thywissen; Dekker; Berggren; Chu; Younkin; Prentiss

    1998-06-05

    The spatially dependent de-excitation of a beam of metastable argon atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atom beam were patterned by the metastable atoms. The de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching. Thus, quantum-mechanical steady-state atom distributions can be used for sub-0.1-micrometer lithography.

  3. Copepod Behavior Response in an Internal Wave Apparatus

    Science.gov (United States)

    Webster, D. R.; Jung, S.; Haas, K. A.

    2017-11-01

    This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.

  4. A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage.

    Science.gov (United States)

    Koyama, Daisuke; Takei, Hiroyuki; Nakamura, Kentaro; Ueha, Sadayuki

    2008-08-01

    A slider for a self-running standing wave-type, ultrasonically levitated, thin linear stage is discussed. The slider can be levitated and moved using acoustic radiation force and acoustic streaming. The slider has a simple configuration and consists of an aluminum vibrating plate and a piezoelectric zirconate titanate (PZT) element. The large asymmetric vibration distribution for the high thrust and levitation performance was obtained by adjusting the configuration determined by finite elemental analysis (FEA). As a preliminary step, the computed results of the sound pressure distribution in the 1-mm air gap by FEA was com pared with experimental results obtained using a fiber optic probe. The direction of the total driving force for the acoustic streaming in the small air gap was estimated by the sound pressure distribution calculated by FEA, and it was found that the direction of the acoustic streaming could be altered by controlling the vibration mode of the slider. The flexural standing wave could be generated along the vibrating plate near the frequencies predicted based on the FEA results. The slider could be levitated by the acoustic radiation force radiated from its own vibrating plate at several frequencies. The slider could be moved in the negative and positive directions at 68 kHz and 69 kHz, which correspond to the results computed by FEA, with the asymmetric vibration distribution of the slider's vibrating plate. Larger thrust could be obtained with the smaller levitation distance, and the maximum thrust was 19 mN.

  5. Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity

    KAUST Repository

    Cho, Yonggeun

    2016-05-04

    This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company

  6. The global coherence initiative: creating a coherent planetary standing wave.

    Science.gov (United States)

    McCraty, Rollin; Deyhle, Annette; Childre, Doc

    2012-03-01

    via biological, electromagnetic, and nonlocal fields, it stands to reason that humans can work together in a co-creative relationship to consciously increase the coherence in the global field environment, which in turn distributes this information to all living systems within the field. GCI was established to help facilitate the shift in global consciousness from instability and discord to balance, cooperation, and enduring peace. A primary goal of GCI is to test the hypothesis that large numbers of people when in a heart-coherent state and holding a shared intention can encode information on the earth's energetic and geomagnetic fields, which act as carrier waves of this physiologically patterned and relevant information. In order to conduct this research, a global network of 12 to 14 ultrasensitive magnetic field detectors specifically designed to measure the earth's magnetic resonances is being installed strategically around the planet. More important is GCI's primary goal to motivate as many people as possible to work together in a more coherent and collaborative manner to increase the collective human consciousness. If we are persuaded that not only external fields of solar and cosmic origins but also human attention and emotion can directly affect the physical world and the mental and emotional states of others (consciousness), it broadens our view of what interconnectedness means and how it can be intentionally utilized to shape the future of the world we live in. It implies that our attitudes, emotions, and intentions matter and that coherent, cooperative intent can have positive effects. GCI hypothesizes that when enough individuals and social groups increase their coherence baseline and utilize that increased coherence to intentionally create a more coherent standing reference wave in the global field, it will help increase global consciousness. This can be achieved when an increasing number of people move towards more balanced and self-regulated emotions

  7. Acoustic wave coupled magnetoelectric effect

    International Nuclear Information System (INIS)

    Gao, J.S.; Zhang, N.

    2016-01-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm −1 Oe −1 ) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially. - Highlights: • Magnetoelectric (ME) coupling by acoustic waveguide was developed. • The frequency and size dependence of the ME effects were investigated. • A resonant condition about the geometrical size of the waveguide was obtained. • A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.

  8. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    Science.gov (United States)

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  9. Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets.

    Science.gov (United States)

    Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2018-05-01

    Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. The dominant mode of standing Alfven waves at the synchronous orbit

    International Nuclear Information System (INIS)

    Cummings, W.D.; Countee, C.; Lyons, D.; Wiley, W. III

    1975-01-01

    Low-frequency oscillations of the earth's magnetic field recorded by the University of California at Los Angeles magnetometer on board ATS 1 have been examined for the 6-month interval January-June 1968. Using evidence from Ogo 5 and ATS 5 as well as the data from ATS 1, we argue that the dominant mode at ATS 1 must be the fundamental rather than the second harmonic of a standing Alfven wave. We also conclude that these transverse oscillations are more accurately associated with magnetically disturbed days than with quiet days. Both of these results represent changes of tentative conclusions based on our initial analysis. From 14 instances when oscillations of distinctly different periods occurred during the same time interval at ATS 1 we also conclude that higher harmonics can exist. The period ratio in seven of the 14 cases corresponds to the simultaneous occurrence of the second harmonic with the fundamental, and four other cases could be identified as the simultaneous occurrence of the fourth harmonic with the fundamental

  11. Transformation of solar radiation in Norway spruce stands into produced biomass - the effect of stand density

    International Nuclear Information System (INIS)

    Marková, I.; Marek, M.V.; Pokorný, R.

    2011-01-01

    The present paper is focused on the assessment of the effects of stand density and leaf area development on radiation use efficiency in the mountain cultivated Norway spruce stand. The young even-aged (17-years-old in 1998) plantation of Norway spruce was divided into two experimental plots differing in their stand density in 1995. During the late spring of 2001 next cultivating high-type of thinning of 15% intensity in a reduction of stocking density was performed. The PAR regime of investigated stands was continually measured since 1992. Total aboveground biomass (TBa) and TBa increment were obtained on the basis of stand inventory. The dynamic of LAI development showed a tendency to be saturated, i.e. the LAI value close to 11 seems to be maximal for the local conditions of the investigated mountain cultivated Norway spruce stand in the Beskids Mts. Remarkable stimuli (up to 17%) of LAI formation were started in 2002, i.e. as an immediate response to thinning. Thus, the positive effect of thinning on LAI increase was confirmed. The data set of absorbed PAR and produced TBa in the period 1998-2003 was processed by the linear regression of Monteith's model, which provided the values of the coefficient of solar energy conversion efficiency into biomass formation. The differences in biomass formation values between the dense and sparse plot after thinning amounted to 18%

  12. Orbital stability of standing waves for a class of Schrödinger equations with unbounded potential

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This paper is concerned with the nonlinear Schrödinger equation with an unbounded potential i ϕ t = − Δ ϕ + V ( x ϕ − μ | ϕ | p − 1 ϕ − λ | ϕ | q − 1 ϕ , x ∈ ℝ N , t ≥ 0 , where 0$"> μ > 0 , 0,$"> λ > 0 , and 1 < p < q < 1 + 4 / N . The potential V ( x is bounded from below and satisfies V ( x → ∞ as | x | → ∞ . From variational calculus and a compactness lemma, the existence of standing waves and their orbital stability are obtained.

  13. Educational analysis of a first year engineering physics experiment on standing waves: based on the ACELL approach

    International Nuclear Information System (INIS)

    Bhathal, Ragbir; Sharma, Manjula D; Mendez, Alberto

    2010-01-01

    This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The experiment is likely to be found in many physics departments, hence is appropriate to illustrate the ACELL approach in physics. The concepts associated with standing waves are difficult; however, they are underpinned by mathematical formulation which lend themselves to be visualized in experiments. The challenge is to strike a balance between these two for the particular student cohort. In this study, this balance is achieved by using simple equipment and providing appropriate scaffolds for students to associate abstract concepts with concrete visuals. In essence the experiment is designed to adequately manage cognitive resources. Students work in pairs and are questioned and assisted by demonstrators and academic staff during a 2 h practical class. Students were surveyed using the ACELL instrument. Analysis of the data showed that by completing the practical students felt that their understanding of physics had increased. Furthermore, students could see the relevance of this experiment to their engineering studies and that it provided them with an opportunity to take responsibility for their own learning. Overall they had a positive learning experience. In short there is a lot of dividend from a small outlay of resources.

  14. Cavitation and non-cavitation regime for large-scale ultrasonic standing wave particle separation systems--In situ gentle cavitation threshold determination and free radical related oxidation.

    Science.gov (United States)

    Johansson, Linda; Singh, Tanoj; Leong, Thomas; Mawson, Raymond; McArthur, Sally; Manasseh, Richard; Juliano, Pablo

    2016-01-01

    We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    Science.gov (United States)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  16. On revealing the vertical structure of nanoparticle films with elemental resolution: A total external reflection X-ray standing waves study

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan, E-mail: zargham@ifp.uni-bremen.d [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Schmidt, Thomas; Flege, Jan Ingo; Sauerbrey, Marc; Hildebrand, Radowan [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Roehe, Sarah; Baeumer, Marcus [Applied and Physical Chemistry, University of Bremen, Leobener Str. 2, 28359, Bremen (Germany); Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany)

    2010-02-15

    We present a promising combination of methods to precisely determine the morphology of nanostructures, drawing on the example of monodisperse CoPt{sub 3} nanoparticle films deposited by spin coating and dip coating techniques on functionalized Au substrates. Ex-situ X-ray standing waves in total external reflection combined with X-ray reflectivity measurements were employed to determine element-specific atomic-density distributions in vertical direction.

  17. Effects of wave-induced forcing on a circulation model of the North Sea

    Science.gov (United States)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-04-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.

  18. Separation of traveling and standing waves in a finite dispersive string with partial or continuous viscoelastic foundation

    Science.gov (United States)

    Cheng, Xiangle; Blanchard, Antoine; Tan, Chin An; Lu, Huancai; Bergman, Lawrence A.; McFarland, D. Michael; Vakakis, Alexander F.

    2017-12-01

    The free and forced vibrations of a linear string with a local spring-damper on a partial elastic foundation, as well as a linear string on a viscoelastic foundation conceptualized as a continuous distribution of springs and dampers, are studied in this paper. Exact, analytical results are obtained for the free and forced response to a harmonic excitation applied at one end of the string. Relations between mode complexity and energy confinement with the dispersion in the string system are examined for the steady-state forced vibration, and numerical methods are applied to simulate the transient evolution of energy propagation. Eigenvalue loci veering and normal mode localization are observed for weakly coupled subsystems, when the foundation stiffness is sufficiently large, for both the spatially symmetric and asymmetric systems. The forced vibration results show that nonproportional damping-induced mode complexity, for which there are co-existing regions of purely traveling waves and standing waves, is attainable for the dispersive string system. However, this wave transition phenomenon depends strongly on the location of the attached discrete spring-damper relative to the foundation and whether the excitation frequency Ω is above or below the cutoff frequency ωc. When Ωcontrol strategies.

  19. Waves and Tsunami Project

    Science.gov (United States)

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  20. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.

    Science.gov (United States)

    Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Shin, Sehyun

    2011-10-07

    Platelet separation from blood is essential for biochemical analyses and clinical diagnosis. In this article, we propose a method to separate platelets from undiluted whole blood using standing surface acoustic waves (SSAWs) in a microfluidic device. A polydimethylsiloxane (PDMS) microfluidic channel was fabricated and integrated with interdigitated transducer (IDT) electrodes patterned on a piezoelectric substrate. To avoid shear-induced activation of platelets, the blood sample flow was hydrodynamically focused by introducing sheath flow from two side-inlets and pressure nodes were designed to locate at side walls. By means of flow cytometric analysis, the RBC clearance ratio from whole blood was found to be over 99% and the purity of platelets was close to 98%. Conclusively, the present technique using SSAWs can directly separate platelets from undiluted whole blood with higher purity than other methods.

  1. Effect of two Notebook stands on work posture and productivity

    NARCIS (Netherlands)

    Könemann, R.; Kuijt-Evers, L.F.M.; Lingen, P. van; Sauvage, S.; Hallbeck, S.

    2009-01-01

    The aim of this study was to investigate the effect of using a notebook stand on the physical load when working with a notebook in a home environment. Sixteen subjects evaluated working with a notebook by performing three different tasks using two notebook stands and without using a notebook stand.

  2. Common analysis of the relativistic klystron and the standing-wave free-electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-07-01

    This paper summarizes a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ''coupling impedance'' for both the RK and SWFEL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. The analysis allows, for the first time, a relative comparison of the RF and SWFEL TBAs

  3. Relative merits of travelling-wave and resonant operation of linac

    International Nuclear Information System (INIS)

    Shoffstall, D.R.; Gallagher, W.J.

    1985-01-01

    Discussion of the relative merits of so-called standing wave vis-a-vis travelling wave operation of linear accelerator waveguides is complicated by various considerations. In the first instance, standing wave should be distinguished from resonant operation. Standing wave operation is exactly the same as travelling wave, excepting that the waveguide is terminated by a total reflection of power instead of a matched load. In resonant operation a length of slow wave structure is terminated, theoretically at reflection planes of symmetry; the discrete modes of resonance consist of two oppositely directed travelling wave ensembles, one of which will provide a space harmonic of an intended phase velocity

  4. Optical resonator for a standing wave dipole trap for fermionic lithium atoms

    International Nuclear Information System (INIS)

    Elsaesser, T.

    2000-01-01

    This thesis reports on the the construction of an optical resonator for a new resonator dipole trap to store the fermionic 6 Li-isotope and to investigate its scattering properties. It was demonstrated that the resonator enhances the energy density of a (1064 nm and 40 mW) laser beam by a factor of more than 100. A fused silica vacuum cell is positioned inside the resonator under Brewster's angle. The losses of the resonator depend mainly on the optical quality of the cell. The expected trap depth of the dipole trap is 200 μK and the photon scattering rate is expected to be about 0.4 s -1 . The resonator is stabilized by means of a polarization spectroscopy method. Due to high trap frequencies, which are produced by the tight enclosure of the standing wave in the resonator, the axial motion must be quantized. A simple model to describe this quantization has been developed. A magneto-optical trap, which serves as a source of cold lithium atoms, was put in operation. (orig.)

  5. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  6. STOCHASTIC NATURE OF GRAVITATIONAL WAVES FROM SUPERNOVA EXPLOSIONS WITH STANDING ACCRETION SHOCK INSTABILITY

    International Nuclear Information System (INIS)

    Kotake, Kei; Iwakami, Wakana; Ohnishi, Naofumi; Yamada, Shoichi

    2009-01-01

    We study the properties of gravitational waves (GWs) based on three-dimensional (3D) simulations, which demonstrate neutrino-driven explosions aided by standing accretion shock instability (SASI). Pushed by evidence supporting slow rotation prior to core collapse, we focus on the asphericities in neutrino emissions and matter motions outside the protoneutron star. By performing a ray-tracing calculation in 3D, we estimate accurately the gravitational waveforms from anisotropic neutrino emissions. In contrast to the previous work assuming axisymmetry, we find that the gravitational waveforms vary much more stochastically because the explosion anisotropies depend sensitively on the growth of SASI which develops chaotically in all directions. Our results show that the GW spectrum has its peak near ∼100 Hz, reflecting SASI-induced matter overturns of ∼O(10) ms. We point out that the detection of such signals, possibly visible to the LIGO-class detectors for a Galactic supernova, could be an important probe into the long-veiled explosion mechanism.

  7. Investigation of a high frequency pulse tube cryocooler driven by a standing wave thermoacoustic engine

    International Nuclear Information System (INIS)

    Boroujerdi, A.A.; Ziabasharhagh, M.

    2014-01-01

    Highlights: • A nonlinear numerical model of a high frequency TADPTC has been developed. • The finite volume method has been used for discretization of governing equations. • The self-excitation process has been simulated very well. • The effects of APAT on the performance of the device have been investigated. • Lagrangian approach has been used to trace the thermodynamic cycle of gas parcels. - Abstract: In this work, a typical thermoacoustically driven pulse tube cooler as a no-moving part device has been investigated by a numerical method. A standing wave thermoacoustic engine as a prime mover in coupled with an inertance tube pulse tube cryocooler has been modeled. Nonlinear equations of unsteady one-dimensional compressible flow have been solved by the finite volume method. The model presents an important step towards the development of nonlinear simulation tools for the high amplitude thermoacoustic systems that are needed for practical use. The results of the computations show that the self-excited oscillations are well accompanied by the increasing of the pressure amplitude. The necessity of implementation of a nonlinear model to investigate such devices has been proven. The effect of APAT length as an amplifier coupler on the performance of the cooler has been investigated. Furthermore, by using Lagrangian approach, thermodynamic cycle of gas parcels has been attained

  8. Multi-muscle electrical stimulation and stand training: Effects on standing.

    Science.gov (United States)

    Momeni, Kamyar; Ramanujam, Arvind; Garbarini, Erica L; Forrest, Gail F

    2018-02-15

    To examine the biomechanical and neuromuscular effects of a longitudinal multi-muscle electrical stimulation (submaximal intensities) training of the lower limbs combined with/without activity-based stand training, on the recovery of stability and function for one individual with spinal cord injury (SCI). Single-subject, longitudinal study. Neuroplasticity laboratory. A 34-year-old male, with sensory- and motor-complete SCI (C5/C6). Two consecutive interventions: 61 hours of supine, lower-limb ES (ES-alone) and 51 hours of ES combined with stand training using an overhead body-weight support system (ST + ES). Clinical measures, trunk stability, and muscle activity were assessed and compared across time points. Trunk Stability Limit (TSL) determined improvements in trunk independence. Functional clinical values increased after both interventions, with further increases post ST + ES. Post ES-alone, trunk stability was maintained at 81% body-weight (BW) loading before failure; post ST + ES, BW loading increased to 95%. TSL values decreased post ST + ES (TSL A/P =54.0 kg.cm, TSL M/L =14.5 kg.cm), compared to ES-alone (TSL A/P =8.5 kg.cm, TSL M/L =3.9 kg.cm). Trunk muscle activity decreased post ST + ES training, compared to ES-alone. Neuromuscular and postural trunk control dramatically improved following the multi-muscle ES of the lower limbs with stand training. Multi-muscle ES training paradigm of the lower limb, using traditional parameters, may contribute to the functional recovery of the trunk.

  9. Effect of thermo-solutal Marangoni convection on the azimuthal wave number in a liquid bridge

    Science.gov (United States)

    Minakuchi, H.; Okano, Y.; Dost, S.

    2017-06-01

    A numerical simulation study was carried out to investigate the effect of thermo-solutal Marangoni convection on the flow patterns and the azimuthal wave number (m) in a liquid bridge under zero-gravity. The liquid bridge in the model represents a three dimensional half-zone configuration of the Floating Zone (FZ) growth system. Three dimensional field equations of the liquid zone, i.e. continuity, momentum, energy, and diffusion equations, were solved by the PISO algorithm. The physical properties of the silicon-germanium melt were used (Pr=6.37×10-3 and Sc=14.0, where Pr and Sc stand for the Prandtl number and the Schmidt number). The aspect ratio Asp was set to 0.5 (Asp= L/a, where L and a stand for the length of free surface and the radius of liquid bridge). Computations were performed using the open source software OpenFOAM. The numerical simulation results show that the co-existence of thermal and solutal Marangoni convections significantly affects the azimuthal wave number m in the liquid bridge.

  10. X-ray diffraction and X-ray standing-wave study of the lead stearate film structure

    Energy Technology Data Exchange (ETDEWEB)

    Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.; Kohn, V. G.; Marchenkova, M. A.; Pisarevskiy, Yu. V.; Prosekov, P. A., E-mail: prosekov@crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-05-15

    A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer of the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.

  11. Determination of preferential molecular orientation in porphyrin-fullerene dyad ZnDHD6ee monolayers by the X-ray standing-wave method and X-ray reflectometry

    NARCIS (Netherlands)

    Seregin, A. Y.; D' Yakova, Y. A.; Yakunin, S. N.; Makhotkin, I. A.; Alekseev, A. S.; Klechkovskaya, V. V.; Tereschenko, E. Y.; Tkachenko, N. V.; Lemmetyinen, H.; Feigin, L. A.; Kovalchuk, M. V.

    2013-01-01

    Monolayers of porphyrin-fullerene dyad molecules with zinc atoms incorporated into the porphyrin ring (ZnDHD6ee) on the surface of aqueous subphase and on Si substrates have been investigated by the X-ray standing-wave method and X-ray reflectometry. The experiments have been performed under

  12. The effect of a hybrid assistive limb® on sit-to-stand and standing patterns of stroke patients

    Science.gov (United States)

    Kasai, Rie; Takeda, Sunao

    2016-01-01

    [Purpose] The Hybrid Assistive Limb® (HAL®) robot suit is a powered exoskeleton that can assist a user’s lower limb movement. The purpose of this study was to assess the effectiveness of HAL® in stroke rehabilitation, focusing on the change of the sit-to-stand (STS) movement pattern and standing posture. [Subjects and Methods] Five stroke patients participated in this study. Single leg HAL® was attached to each subject’s paretic lower limb. The subjects performed STS three times both with and without HAL® use. A tri-axial accelerometer was used to assess the STS movement pattern. Forward-tilt angle (FTA) and the time required for STS were measured with and without HAL® use. Surface electromyography (EMG) of STS and standing were recorded to assess the vastus medialis muscle activities of the paretic limb. [Results] The average FTA without HAL® use was 35° and it improved to 43° with HAL® use. The time required for STS was longer for all subjects with HAL® use (without HAL® use: 3.42 s, with HAL® use: 5.11 s). The integrated EMGs of HAL® use compared to those without HAL®, were 83.6% and 66.3% for STS and standing, respectively. [Conclusion] HAL® may be effective in improving STS and standing patterns of stroke patients. PMID:27390416

  13. Effects of deer exclosures on oak regeneration in closed-canopy stands

    Science.gov (United States)

    Angela M. Yuska; Kim C. Steiner; James C. Finley

    2008-01-01

    Studies of the effects of high deer densities on forest regeneration have shown altered species composition and reduced diversity in stands regenerating after harvest. The effects of browsing in fully stocked, undisturbed stands are less well known but important, as establishment of seedlings of oaks and other species prior to disturbance is very important for self-...

  14. I Can Stand Learning: A Controlled Pilot Intervention Study on the Effects of Increased Standing Time on Cognitive Function in Primary School Children

    Directory of Open Access Journals (Sweden)

    Katharina Wick

    2018-02-01

    Full Text Available Sedentarism is considered an independent cardiovascular risk factor. Thus, the present study investigated the effects of employing standing desks in classrooms on cognitive function. The intervention class (IG; n = 19 was supplied with standing desks and balance pads for 11 weeks. The control class (CG; n = 19 received lessons as usual. Standing time was assessed objectively (accelerometers and subjectively (self-report sheets, external classroom observers. The impact of standing on the digit span task and Eriksen flanker task was analysed. The standing time of the IG was higher during the school day in comparison to the CG (lesson: p = 0.004; break: p = 0.003. The intra-class correlation coefficient between self-reports and external observation was high (ICC = 0.94. The IG improved slightly on the Digit Span Task compared to CG. Employing standing desks for at least 1 h per school day serves as a feasible and effective opportunity to improve cognitive function.

  15. Nonlinear pattern formation of Faraday waves

    NARCIS (Netherlands)

    Binks, D.J.; Water, van de W.

    1997-01-01

    A cascade of surface wave patterns with increasing rotational symmetry ranging from simple square to tenfold quasiperiodic is observed for Faraday waves. The experiment concerns the excitation of subharmonic standing surface waves by oscillating vertical acceleration. Our observation agrees with the

  16. Subharmonic edge waves on a large, shallow island

    Science.gov (United States)

    Foda, Mostafa A.

    1988-08-01

    Subharmonic resonance of edge waves by incident and reflected waves has been studied thus far for the case of a plane infinite beach. The analysis will be extended here to the case of a curved coastline, with a large radius of curvature and slowly varying beach slope in the longshore direction. It will be shown that the effects of such slow beach slope changes on a propagating edge wave are similar to the familiar shoaling effects on incident waves. The case of subharmonic edge wave generation on large shallow islands will be discussed in detail. The nonlinear analysis will show that within a certain range of island sizes, the generation mechanism can produce a stable standing edge wave around the island. For larger islands the solution disintegrates into two out-of-phase envelopes of opposite-going edge waves. For still larger islands, the generated progressive edge waves become unstable to sideband modulations.

  17. The interaction of an electromagnetic wave with an inhomogeneous plasma slab

    International Nuclear Information System (INIS)

    Lacina, J.; Preinhaelter, J.

    1982-07-01

    In connection with the problem of plasma heating by high-frequency waves a numerical code was developed which makes it possible to study the incidence of an electromagnetic wave on an inhomogeneous plasma slab. Using a one-dimensional model, non-magnetized plasma is described by means of two-fluid equations with finite electron pressure and with the adiabatic condition for all processes. It is shown that at normal incidence of a wave on a cold plasma, the wave is reflected from the region of plasma resonance. A standing wave arises which generates an electrostatic standing wave of a double frequency. At the same time the density gradient sharply rises in this region. In a warm plasma the incident wave again creates a standing wave but nonlinear perturbations propagate from the region of plasma resonance at ion acoustic velocity to the whole plasma volume. In this case the density gradient does not change very much. In the region of plasma resonance ion acoustic waves are also generated. (author)

  18. Stand tending and root rot in Norway spruce stands - economical effects caused by root rot at different thinning regimes

    International Nuclear Information System (INIS)

    Johansson, Mats

    1997-01-01

    This report is divided into three parts: 1) a literature study describing the most common fungi causing rot in wood and descriptions of various strategies to reduce economic loss from root rot, 2) a check of a model describing the development of butt rot in pure Norway spruce plantations in southern Sweden, and 3) simulated economic effects of root rot in stands with various stand tending. The rot model was used to estimate future rot frequencies in the economic calculations. In order to avoid overestimations of rot frequencies, the calculations were also executed when assuming slower growth of rot than shown in the model. When analysing the economical effects of rot, the following three thinning programmes were used: Program 1: thinning at the ages of 30- and 45 years. Final felling at the ages 50-, 55-, 60-, 65-, and 70 years. Program 2: thinning at the ages of 40- and 60- years. Final felling at the ages 65 and 75 years. Program 3: thinning at the ages of 30-, 40-, 55-, and 70 years. Final felling at the ages 80 and 90 years. With an interest rate of 3%, programme 2 (final felling at the age of 65 years) had the highest value at present. This result was valid when presuming butt rot in the stand as well as when presuming no butt rot in the stand. There was a small difference between the value at present in programme 1 (final felling at the age of 60 years) and in programme 3 (final felling at the age of 80 years). When presuming butt rot in the stand, the value at present in programme 3 decreased somewhat more in comparison to the value at present in programme 1. Compared to no butt rot in the stand, the optimal final felling time appeared five to ten years earlier when assuming butt rot in the stand. Stand tending programme 1 and an interest rate of 3% were used. Interest rates 2 and 4% did not indicate shorter rotation. The calculated optimal time of final felling appeared at the same stand age whether assuming rot preset or not. The results in this study

  19. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    Science.gov (United States)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  20. How to turn gravity waves into Alfven waves and other such tricks

    International Nuclear Information System (INIS)

    Newington, Marie E; Cally, Paul S

    2011-01-01

    Recent observations of travelling gravity waves at the base of the chromosphere suggest an interplay between gravity wave propagation and magnetic field. Our aims are: to explain the observation that gravity wave flux is suppressed in magnetic regions; to understand why we see travelling waves instead of standing waves; and to see if gravity waves can undergo mode conversion and couple to Alfven waves in regions where the plasma beta is of order unity. We model gravity waves in a VAL C atmosphere, subject to a uniform magnetic field of various orientations, considering both adiabatic and radiatively damped propagation. Results indicate that in the presence of a magnetic field, the gravity wave can propagate as a travelling wave, with the magnetic field orientation playing a crucial role in determining the wave character. For the majority of magnetic field orientations, the gravity wave is reflected at low heights as a slow magneto-acoustic wave, explaining the observation of reduced flux in magnetic regions. In a highly inclined magnetic field, the gravity wave undergoes mode conversion to either field guided acoustic waves or Alfven waves. The primary effect of incorporating radiative damping is a reduction in acoustic and magnetic fluxes measured at the top of the integration region. By demonstrating the mode conversion of gravity waves to Alfven waves, this work identifies a possible pathway for energy transport from the solar surface to the upper atmosphere.

  1. Electromagnetic waves in single- and multi-Josephson junctions

    International Nuclear Information System (INIS)

    Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko

    2008-01-01

    The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed

  2. Faraday waves in a Hele-Shaw cell

    Science.gov (United States)

    Li, Jing; Li, Xiaochen; Chen, Kaijie; Xie, Bin; Liao, Shijun

    2018-04-01

    We investigate Faraday waves in a Hele-Shaw cell via experimental, numerical, and theoretical studies. Inspired by the Kelvin-Helmholtz-Darcy theory, we develop the gap-averaged Navier-Stokes equations and end up with the stable standing waves with half frequency of the external forced vibration. To overcome the dependency of a numerical model on the experimental parameter of wave length, we take two-phase flow into consideration and a novel dispersion relation is derived. The numerical results compare well with our experimental data, which effectively validates our proposed mathematical model. Therefore, this model can produce robust solutions of Faraday wave patterns and resolve related physical phenomena, which demonstrates the practical importance of the present study.

  3. Human waves in stadiums

    Science.gov (United States)

    Farkas, I.; Helbing, D.; Vicsek, T.

    2003-12-01

    Mexican wave first widely broadcasted during the 1986 World Cup held in Mexico, is a human wave moving along the stands of stadiums as one section of spectators stands up, arms lifting, then sits down as the next section does the same. Here we use variants of models originally developed for the description of excitable media to demonstrate that this collective human behaviour can be quantitatively interpreted by methods of statistical physics. Adequate modelling of reactions to triggering attempts provides a deeper insight into the mechanisms by which a crowd can be stimulated to execute a particular pattern of behaviour and represents a possible tool of control during events involving excited groups of people. Interactive simulations, video recordings and further images are available at the webpage dedicated to this work: http://angel.elte.hu/wave.

  4. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops ...

    Indian Academy of Sciences (India)

    The standing slow magneto-acoustic oscillations in cooling coronal loops ... turbation and, eventually, reduces the MHD equations to a 1D system modelling ..... where the function Q is expanded in power series with respect to ǫ, i.e.,. Q = Q0 + ...

  5. Nonlinear effects in water waves

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1989-05-01

    This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs

  6. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    Science.gov (United States)

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Effects of bilateral swing-away grab bars on the biomechanics of stand-to-sit and sit-to-stand toilet transfers.

    Science.gov (United States)

    Lee, Su Jin; Mehta-Desai, Ricky; Oh, Kyunggeune; Sanford, Jon; Prilutsky, Boris I

    2018-03-09

    Kinetic characteristics of transfers to and from a toilet performed using bilateral grab bars are not fully quantified to inform grab bar design and configuration. The purpose of this study was to (1) determine effects of bilateral swing-away grab bars on peaks of ankle, knee and hip joint moments during grab bar assisted stand-to-sit and sit-to-stand transfers; and (2) determine effects of three different heights and widths of swing-away grab bars on the same kinetic characteristics. Healthy subjects (N = 11, age 25-58 years) performed stand-to-sit and sit-to-stand transfers with and without grab bars. In transfers with grab bars, 9 grab bar configurations were tested by varying their height from the floor (0.787 m, 0.813 m, 0.838 m; 31″-33″) and width, the distance of each grab bar from the toilet's centerline (0.330 m, 0.356 m, 0.381 m; 13″-15″). Motion capture, force plate and inverse dynamics analysis were used to determine lower limb joint moments. The use of bilateral grab bars generally reduced the peak magnitude of extension moments at lower limb joints during stand-to-sit and sit-to-stand transfers (p away grab bars is useful for informing grab bar design and configuration recommendations for assisted living and skilled nursing facilities. Our findings suggest that the swing-away grab bars located at certain ranges are a reasonable alternative to the grab bars mandated by the current Americans with Disabilities Act (ADA) Accessibility Guidelines. Future research investigating the effects of grab bars on transfer performance should consider additional factors, such as a wider range of abilities and transfer methods of the users.

  8. The effect of lower-hybrid waves on the propagation of hydromagnetic waves

    International Nuclear Information System (INIS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro

    1988-01-01

    Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)

  9. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  10. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    International Nuclear Information System (INIS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-01-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n  = −1 or −2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction. (paper)

  11. Modelling modulus of elasticity of Pinus pinaster Ait. in northwestern Spain with standing tree acoustic measurements, tree, stand and site variables

    Directory of Open Access Journals (Sweden)

    Esther Merlo

    2014-04-01

    Full Text Available Aim of study: Modelling the structural quality of Pinus pinaster Ait. wood on the basis of measurements made on standing trees is essential because of the importance of the species in the Galician forestry and timber industries and the good mechanical properties of its wood. In this study, we investigated how timber stiffness is affected by tree and stand properties, climatic and edaphic characteristics and competition. Area of study: The study was performed in Galicia, north-western Spain.Material and methods: Ten pure and even-aged P. pinaster stands were selected and tree and stand variables and the stress wave velocity of 410 standing trees were measured. A sub-sample of 73 trees, representing the variability in acoustic velocity, were felled and sawed into structural timber pieces (224 which were subjected to a bending test to determine the modulus of elasticity (MOE. Main results: Linear models including wood properties explained more than 97%, 73% and 60% of the observed MOE variability at site, tree and board level, respectively, with acoustic velocity and wood density as the main regressors. Other linear models, which did not include wood density, explained more than 88%, 69% and 55% of the observed MOE variability at site, tree and board level, respectively, with acoustic velocity as the main regressor. Moreover, a classification tree for estimating the visual grade according to standard UNE 56544:2011 was developed. Research highlights: The results have demonstrated the usefulness of acoustic velocity for predicting MOE in standing trees. The use of the fitted equations together with existing dynamic growth models will enable preliminary assessment of timber stiffness in relation to different silvicultural alternatives used with this species.Keywords: stress wave velocity, modulus of elasticity, site index, competition index, stepwise regression, CART.

  12. The effectiveness of sit-stand workstations for changing office workers' sitting time: results from the Stand@Work randomized controlled trial pilot

    NARCIS (Netherlands)

    Chau, J.Y.; Daley, M.; Dunn, S.; Srinivasan, A.; Do, A.; Bauman, A.E.; van der Ploeg, H.P.

    2014-01-01

    Prolonged sitting time is detrimental for health. Individuals with desk-based occupations tend to sit a great deal and sit-stand workstations have been identified as a potential strategy to reduce sitting time. Hence, the objective of the current study was to examine the effects of using sit-stand

  13. Drag reduction by streamwise traveling wave-like Lorenz Force in channel flow

    International Nuclear Information System (INIS)

    Mamori, Hiroya; Fukagata, Koji

    2011-01-01

    Skin-friction drag reduction effect of traveling wave-like wall-normal Lorenz force in a fully developed turbulent channel flow is investigated by means of direct numerical simulation. A sinusoidal profile of the wall-normal body force is assumed as the Lorenz force. While upstream traveling waves reduce the drag in the case of blowing/suction, standing waves reduce it in the case of present forcing. Visualization of vortical structure under the standing wave-like wall-normal Lorenz force reveals that the near-wall streamwise vortices, which increase the skin-friction drag, disappear and spanwise roller-like vortices are generated instead. Three component decomposition of the Reynolds shear stress indicates that the spanwise roller-like vortices contribute to the negative Reynolds shear stress in the region near the wall, similarly to the case of laminar flows. While the analogy between the wall-normal and streamwise forcings can be expected, the statistics are found to exhibit different behaviors due to the difference in the energy flow.

  14. Effects of stand density on top height estimation for ponderosa pine

    Science.gov (United States)

    Martin Ritchie; Jianwei Zhang; Todd Hamilton

    2012-01-01

    Site index, estimated as a function of dominant-tree height and age, is often used as an expression of site quality. This expression is assumed to be effectively independent of stand density. Observation of dominant height at two different ponderosa pine levels-of-growing-stock studies revealed that top height stability with respect to stand density depends on the...

  15. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...29 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone 5b

  16. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  17. Experiment and theory of a drift wave in the levitated octupole

    International Nuclear Information System (INIS)

    Rose, E.A.

    1982-08-01

    A very coherent 30 kHz drift wave is observed in the Levitated Toroidal Octupole at the University of Wisconsin - Madison. The density and floating potential fluctuations have a well-defined spatial structure in the poloidal magnetic field. Radially the wave has a standing wave structure with amplitude peaked in regions of locally bad magnetic curvature. Poloidally the wave has a standing wave structure with odd symmetry; nodes are located in the regions of locally good magnetic curvature. The wave propagates toroidally in the electron diamagnetic drift direction with a wavelength of 20 centimeters. No changes occur in the wave structure as the plasma is varied over three orders of magnitude in density and beta

  18. Theoretical study of ghost imaging with cold atomic waves under the condition of partial coherence

    International Nuclear Information System (INIS)

    Chen, Jun; Liu, Yun-Xian

    2014-01-01

    A matter wave ghost imaging mechanism is proposed and demonstrated theoretically. This mechanism is based on the Talbot-Lau effect. Periodic gratings of matter wave density, which appear as a result of interference of atoms diffracted by pulses of an optical standing wave, are utilized to produce the reference wave and the signal wave simultaneously for the ghost imaging. An advantage of this mechanism is that during the imaging process, the beam-splitter is not needed, which highly simplifies the experimental setup and makes the ghost imaging possible in the field of matter wave

  19. Effect of footwear on standing balance in healthy young adult males.

    Science.gov (United States)

    Alghadir, Ahmad H; Zafar, Hamayun; Anwer, Shahnawaz

    2018-03-01

    The present study aimed to evaluate the effect of footwear on standing balance in healthy young adult males. Thirty healthy male participants aged 20-30 years were tested for standing balance on the Balance Master on three occasions, including wearing a sandal, standard shoe, or no footwear (barefoot). The tests of postural stability include; "Modified Clinical Test of Sensory Interaction on Balance" (mCTSIB), "Unilateral Stance" (US), and the "Limits of Stability" (LOS). The balance scores (mCTSIB, US, and LOS) was analyzed. There was a significant effect between footwear conditions for mCTIB with eye closed on a firm surface (p=0.002). There was a significant effect between footwear conditions for the US with eye open and closed (p⟨0.05). There was a significant effect between footwear conditions for LOS reaction time during forward movement (p=0.02). Similarly, there was a significant effect between footwear conditions for LOS reaction time during left side movement (p=0.01). Wearing sandals compared to bare feet significantly increased postural sway and reduced stability in healthy young adult males. However, wearing a standard shoe compared to bare feet did not significantly affect balance scores in standing.

  20. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    Science.gov (United States)

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Analysis of the dimerized Sb/Si(001)-(2x1) surface by x-ray standing waves

    International Nuclear Information System (INIS)

    Lyman, P.F.; Qian, Y.; Bedzyk, M.J.

    1994-12-01

    X-ray standing wave measurements were undertaken to study the bonding position of Sb adatoms on the Sb-saturated Si(001)-(2x1) surface. Using the (004) and (022) Bragg reflections, the authors find that the Sb atoms form dimers, and that the center of the Sb ad-dimers lies 1.64 angstrom above the bulk-like Si(004) surface atomic plane. These in-plane results are compared to two structural models consisting of dimers whose bonds are parallel to the surface plane and whose centers are either shifted or unshifted (parallel to the dimer bond direction) relative to the underlying substrate planes. The authors thus find two special cases consistent with these data: one with symmetric (unshifted) dimers having a dimer bond length of 2.81 angstrom, and the other with midpoint-shifted dimers, having a bond length of 2.88 angstrom and a lateral shift of 0.21 angstrom

  2. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    Science.gov (United States)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  3. A numerical study of the wave shoaling effect on wind-wave momentum flux

    Science.gov (United States)

    Hao, Xuanting; Shen, Lian

    2017-11-01

    Momentum transfer between wind and waves is crucial to many physical processes in air-sea interactions. For decades, there has been a number of observational evidence that the surface roughness in the nearshore region is notably higher than in the open sea. In order to explain the mechanism behind this important phenomenon, in particular the wave shoaling effect on surface roughness, we conduct a series of numerical experiments using the wind-wave module of WOW (Wave-Ocean-Wind), a high-fidelity computational framework developed in house. We use prescribed monochromatic waves with linear shoaling effect incorporated, while the wind field is simulated using wall-resolved large-eddy simulation. A comparison between a shallow water wave case and deep water wave cases shows remarkably stronger wave effects on the wind for the former. Detailed analyses show that the increased surface roughness is closely associated with the increased form drag that is mainly due to the reduced wave age in wave shoaling.

  4. Effects of intermediate-severity disturbance on composition and structure in mixed Pinus-hardwood stands

    Science.gov (United States)

    Benjamin Trammell; Justin Hart; Callie Schweitzer; Daniel C. Dey; Michael Steinberg

    2017-01-01

    Increasingly, forest managers intend to create or maintain mixed Pinus-hardwood stands. This stand assemblage may be driven by a variety of objectives but is often motivated by the desire to enhance native forest diversity and promote resilience to perturbations. Documenting the effects of natural disturbances on species composition and stand...

  5. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Science.gov (United States)

    2010-04-01

    ..., control console, imaging/localization system, and patient table. Prior to treatment, the urinary stone is targeted using either an integral or stand-alone localization/imaging system. Shock waves are typically... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that...

  6. TE Wave Measurement and Modeling

    CERN Document Server

    Sikora, John P; Sonnad, Kiran G; Alesini, David; De Santis, Stefano

    2013-01-01

    In the TE wave method, microwaves are coupled into the beam-pipe and the effect of the electron cloud on these microwaves is measured. An electron cloud (EC) density can then be calculated from this measurement. There are two analysis methods currently in use. The first treats the microwaves as being transmitted from one point to another in the accelerator. The second more recent method, treats the beam-pipe as a resonant cavity. This paper will summarize the reasons for adopting the resonant TE wave analysis as well as give examples from CESRTA and DA{\\Phi}NE of resonant beam-pipe. The results of bead-pull bench measurements will show some possible standing wave patterns, including a cutoff mode (evanescent) where the field decreases exponentially with distance from the drive point. We will outline other recent developments in the TE wave method including VORPAL simulations of microwave resonances, as well as the simulation of transmission in the presence of both an electron cloud and magnetic fields.

  7. Introducing sit-stand desks increases classroom standing time among university students

    Directory of Open Access Journals (Sweden)

    Matthew Jerome

    2017-12-01

    Full Text Available Excessive sedentary behavior has been associated with many negative health outcomes. While an understudied health topic, there is evidence that university students are excessively sedentary. Sit-stand desks have been shown to reduce sedentary time among pre-university students (ages 5–18years and sedentary workers but have not been tested in university classrooms. This study tested the effects of introducing sit-stand desks into a university classroom on student's classroom sitting and standing behaviors. Using a cross-over design, students received access to both traditional seated desks and sit-stand desks for six weeks. Data were collected between September and December, 2016. We recruited 304 healthy undergraduate university students enrolled in one of two small (25 seats classrooms at a large Midwestern university during the fall of 2016. Average minutes of standing/hour/student, average percent class time spent standing, and the number of sit-stand transitions/student/hour were directly observed with video camera surveillance. Participants stood significantly more (p<0.001 when provided access to sit-stand desks (7.2min/h/student; 9.3% of class time spent standing compared to when they had access to seated desks (0.7min/h/student; 1.6% of class time spent standing but no differences were observed for the number of sit-stand transitions (p=0.47. Students reported high favorability for the sit-stand desks and improvements in several student engagement and affective outcomes while using the sit-stand desks. These findings support introducing sit-stand desks in university classrooms as an approach to reduce sedentary behaviors of university students. Keywords: Sedentary, University students, Sit-stand desk

  8. Velocity profiles of acoustic streaming in resulting stokes layer by acoustic standing wave in a duct; Kannai kichi shindo ni okeru stokes sonai onkyoryu ryusoku bunpu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, M; Kawahashi, M [Saitama University, Saitama (Japan). Faculty of Engineering

    1995-07-25

    Acoustic streaming is generated by Reynolds stress in the sense of mean acoustic momentum flux in a sound field. In the case of an acoustic standing wave produced by an air column oscillation in a closed duct, the friction and the Reynolds stress in the resulting Stokes layer are the essentials of acoustic streaming generation in the vicinity of the duct wall. The thickness of the Stokes layer decreases with the oscillatory Reynolds number. The plane wave propagation in the duct is assumed for the case of high Reynolds number except for the thin Stokes layer adjacent to the duct wall. The velocity profiles of the streaming are estimated theoretically from the steady component of the second-order term of a perturbation expansion in which the first-order approximation is a sinusoidal oscillation of the air column with plane waves. The present paper describes theoretical analysis of the velocity profiles of the acoustic streaming in the Stokes layer by means of the matched asymptotic expansion method. The results obtained show the existence of reverse streaming in a very thin layer adjacent to the wall and the effects of thermal boundary conditions at the wall on the velocity profiles of acoustic streaming in the Stokes layer. 9 refs., 8 figs.

  9. Design of cavities of a standing wave accelerating tube for a 6 MeV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Zarei

    2017-08-01

    Full Text Available Side-coupled standing wave tubes in  mode are widely used in the low-energy electron linear accelerator, due to high accelerating gradient and low sensitivity to construction tolerances. The use of various simulation software for designing these kinds of tubes is very common nowadays. In this paper, SUPERFISH code and COMSOL are used for designing the accelerating and coupling cavities for a 6 MeV electron linear accelerator. Finite difference method in SUPERFISH code and Finite element method in COMSOL are used to solve the equations. Besides, dimension of accelerating and coupling cavities and also coupling iris dimension are optimized to achieve resonance frequency of 2.9985 MHz and coupling constant of 0.0112. Considering the results of this study and designing of the RF energy injection port subsequently, the construction of 6 MeV electron tube will be provided

  10. Characterization of microchannel anechoic corners formed by surface acoustic waves

    Science.gov (United States)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  11. Development of prolonged standing strain index to quantify risk levels of standing jobs.

    Science.gov (United States)

    Halim, Isa; Omar, Abdul Rahman

    2012-01-01

    Many occupations in industry such as metal stamping workers, electronics parts assembly operators, automotive industry welders, and lathe operators require working in a standing posture for a long time. Prolonged standing can contribute to discomfort and muscle fatigue particularly in the back and legs. This study developed the prolonged standing strain index (PSSI) to quantify the risk levels caused by standing jobs, and proposed recommendations to minimize the risk levels. Risk factors associated with standing jobs, such as working posture, muscles activity, standing duration, holding time, whole-body vibration, and indoor air quality, were the basis for developing the PSSI. All risk factors were assigned multipliers, and the PSSI was the product of those multipliers. Recommendations for improvement are based on the PSSI; however, extensive studies are required to validate their effectiveness. multipliers, and the PSSI was the product of those multipliers. Recommendations for improvement are based on the PSSI; however, extensive studies are required to validate their effectiveness.

  12. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  13. Determination of dopant atomic positions with kinematical X-ray standing waves

    International Nuclear Information System (INIS)

    Walz, Bente

    2011-11-01

    Recent advances in the kinematic X-ray standing wave technique (KXSW) for the determination of the atomic coordinates and displacement parameters in nonperfect crystalline materials are described in this thesis. The methodology has been improved by considering three significant aspects: - the inclusion of weak multiple beam contributions - the excitation of secondary fluorescence in multiple-element samples - the influence of the crystal mosaicity on the fluorescence yield. The improvements allowed to successfully apply the method to investigate complex oxide materials of current interest for potential device applications. The thermally-induced interdiffusion of cobalt and manganese thin films on zinc oxide single crystals has been studied to determine which lattice sites are occupied preferentially. The data analysis revealed that after thermal diffusion the adsorbed atoms occupied zinc sites in the host lattice. The mean deviation of the cobalt atomic position from the zinc lattice site was comparable to the thermal displacement parameter of the zinc atoms. In the case of manganese a secondary phase was found on the surface. Measurements performed on LaSrMnO 4 provided new insight concerning the rotation of the oxygen octahedron around the manganese atoms and the concomitant displacements of the strontium and lanthanum atoms. It was found that the oxygen octahedra are rotated around the [100]-direction by 4,5 . The measurements in transmission geometry performed on titanium dioxide (rutile) demonstrated that KXSW measurements in the Laue geometry is a viable technique. By performing KXSW under grazing-incidence conditions it is possible to achieve depth resolution. The results clearly show that the extended KXSW technique is a versatile method for characterizing complex material systems. (orig.)

  14. Crowd behaves as excitable media during Mexican wave

    OpenAIRE

    Farkas, Illes; Helbing, Dirk; Vicsek, Tamas

    2002-01-01

    Mexican wave, or La Ola, first widely broadcasted during the 1986 World Cup held in Mexico, is a human wave moving along the stands of stadiums as one section of spectators stands up, arms lifting, then sits down as the next section does the same. Here we use variants of models originally developed for the description of excitable media to demonstrate that this collective human behaviour can be quantitatively interpreted by methods of statistical physics. Adequate modelling of reactions to tr...

  15. Standing torsional waves in a fully saturated, porous, circular cylinder

    CERN Document Server

    Solorza, S; 10.1111/j.1365-246X.2004.02198.x

    2004-01-01

    For dynamic measurement of the elastic moduli of a porous material saturated with viscous fluid using the resonance-bar technique, one also observes attenuation. In this article we have carried out the solution of the boundary-value problem associated with standing torsional oscillations of a finite, poroelastic, circular cylinder cast in the framework of volume-averaged theory of poroelasticity. Analysing this solution by eigenvalue perturbation approach we are able to develop expressions for torsional resonance and temporal attenuation frequencies in which the dependence upon the material properties are transparent. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry solid-frame due to the drag effect of fluid mass. Based upon this work we have a firm basis to determine solid-frame shear modulus, permeability, and tortuosity factor from torsional oscillation experiments.

  16. Energy in one-dimensional linear waves

    International Nuclear Information System (INIS)

    Repetto, C E; Roatta, A; Welti, R J

    2011-01-01

    This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)

  17. Introducing sit-stand desks increases classroom standing time among university students.

    Science.gov (United States)

    Jerome, Matthew; Janz, Kathleen F; Baquero, Barbara; Carr, Lucas J

    2017-12-01

    Excessive sedentary behavior has been associated with many negative health outcomes. While an understudied health topic, there is evidence that university students are excessively sedentary. Sit-stand desks have been shown to reduce sedentary time among pre-university students (ages 5-18 years) and sedentary workers but have not been tested in university classrooms. This study tested the effects of introducing sit-stand desks into a university classroom on student's classroom sitting and standing behaviors. Using a cross-over design, students received access to both traditional seated desks and sit-stand desks for six weeks. Data were collected between September and December, 2016. We recruited 304 healthy undergraduate university students enrolled in one of two small (25 seats) classrooms at a large Midwestern university during the fall of 2016. Average minutes of standing/hour/student, average percent class time spent standing, and the number of sit-stand transitions/student/hour were directly observed with video camera surveillance. Participants stood significantly more (p classrooms as an approach to reduce sedentary behaviors of university students.

  18. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  19. Mixed-effects models for estimating stand volume by means of small footprint airborne laser scanner data.

    Science.gov (United States)

    J. Breidenbach; E. Kublin; R. McGaughey; H.-E. Andersen; S. Reutebuch

    2008-01-01

    For this study, hierarchical data sets--in that several sample plots are located within a stand--were analyzed for study sites in the USA and Germany. The German data had an additional hierarchy as the stands are located within four distinct public forests. Fixed-effects models and mixed-effects models with a random intercept on the stand level were fit to each data...

  20. Laser control of electron matter waves

    NARCIS (Netherlands)

    Jones, E.; Becker, M.; Luiten, O.J.; Batelaan, H.

    2016-01-01

    In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto-second and atto-second laser-induced electrons are emitted

  1. The effect of a sit-stand workstation intervention on daily sitting, standing and physical activity: protocol for a 12 month workplace randomised control trial.

    Science.gov (United States)

    Hall, Jennifer; Mansfield, Louise; Kay, Tess; McConnell, Alison K

    2015-02-15

    A lack of physical activity and excessive sitting can contribute to poor physical health and wellbeing. The high percentage of the UK adult population in employment, and the prolonged sitting associated with desk-based office-work, make these workplaces an appropriate setting for interventions to reduce sedentary behaviour and increase physical activity. This pilot study aims to determine the effect of an office-based sit-stand workstation intervention, compared with usual desk use, on daily sitting, standing and physical activity, and to examine the factors that underlie sitting, standing and physical activity, within and outside, the workplace. A randomised control trial (RCT) comparing the effects of a sit-stand workstation only and a multi-component sit-stand workstation intervention, with usual desk-based working practice (no sit-stand workstation) will be conducted with office workers across two organisations, over a 12 month period (N = 30). The multicomponent intervention will comprise organisational, environmental and individual elements. Objective data will be collected at baseline, and after 2-weeks, 3-months, 6-months and 12-months of the intervention. Objective measures of sitting, standing, and physical activity will be made concurrently (ActivPAL3™ and ActiGraph (GT3X+)). Activity diaries, ethnographic participant observation, and interviews with participants and key organisational personnel will be used to elicit understanding of the influence of organisational culture on sitting, standing and physical activity behaviour in the workplace. This study will be the first long-term sit-stand workstation intervention study utilising an RCT design, and incorporating a comprehensive process evaluation. The study will generate an understanding of the factors that encourage and restrict successful implementation of sit-stand workstation interventions, and will help inform future occupational wellbeing policy and practice. Other strengths include the

  2. Independent effects of adding weight and inertia on balance during quiet standing.

    Science.gov (United States)

    Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence

    2012-04-16

    Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.

  3. Gravitational waves and dragging effects

    Science.gov (United States)

    Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald

    2008-08-01

    Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.

  4. Lower hybrid parametric instabilities nonuniform pump waves and tokamak applications

    International Nuclear Information System (INIS)

    Berger, R.L.; Chen, L.; Kaw, P.K.; Perkins, F.W.

    1976-11-01

    Electrostatic lower hybrid ''pump'' waves often launched into tokamak plasmas by structures (e.g., waveguides) whose dimensions are considerably smaller than characteristic plasma sizes. Such waves propagate in well-defined resonance cones and give rise to parametric instabilities driven by electron E x B velocities. The finite size of the resonance cone region determines the threshold for both convective quasimode decay instabilities and absolute instabilities. The excitation of absolute instabilities depends on whether a travelling or standing wave pump model is used; travelling wave pumps require the daughter waves to have a definite frequency shift. Altogether, parametric instabilities driven by E x B velocities occur for threshold fields significantly below the threshold for filamentation instabilities driven by pondermotive forces. Applications to tokamak heating show that nonlinear effects set in when a certain power-per-wave-launching port is exceeded

  5. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    Science.gov (United States)

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  6. Spatiotemporal chaos involving wave instability.

    Science.gov (United States)

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  7. Proofs for the Wave Theory of Plants

    Science.gov (United States)

    Wagner, Orvin E.

    1997-03-01

    Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.

  8. [Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation].

    Science.gov (United States)

    Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan

    2015-02-01

    Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.

  9. Multiphysics modelling of the separation of suspended particles via frequency ramping of ultrasonic standing waves.

    Science.gov (United States)

    Trujillo, Francisco J; Eberhardt, Sebastian; Möller, Dirk; Dual, Jurg; Knoerzer, Kai

    2013-03-01

    A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics™ (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  10. VARIABILITY FROM NON-AXISYMMETRIC FLUCTUATIONS INTERACTING WITH STANDING SHOCKS IN TILTED BLACK HOLE ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Henisey, Ken B. [Natural Science Division, Pepperdine University, Malibu, CA 90263 (United States); Blaes, Omer M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States)

    2012-12-10

    We study the spatial and temporal behavior of fluid in fully three-dimensional, general relativistic, magnetohydrodynamical simulations of both tilted and untilted black hole accretion flows. We uncover characteristically greater variability in tilted simulations at frequencies similar to those predicted by the formalism of trapped modes, but ultimately conclude that its spatial structure is inconsistent with a modal interpretation. We find instead that previously identified, transient, overdense clumps orbiting on roughly Keplerian trajectories appear generically in our global simulations, independent of tilt. Associated with these fluctuations are acoustic spiral waves interior to the orbits of the clumps. We show that the two non-axisymmetric standing shock structures that exist in the inner regions of these tilted flows effectively amplify the variability caused by these spiral waves to markedly higher levels than in untilted flows, which lack standing shocks. Our identification of clumps, spirals, and spiral-shock interactions in these fully general relativistic, magnetohydrodynamical simulations suggests that these features may be important dynamical elements in models that incorporate tilt as a way to explain the observed variability in black hole accretion flows.

  11. Oscillatory infragravity wave contribution to surf zone sediment transport

    DEFF Research Database (Denmark)

    Aagaard, Troels; Greenwood, Brian

    2008-01-01

    . It is shown that infragravity sediment transports are onshore directed at the landward side of relative (incident) wave height maxima, and offshore directed at the seaward side of such maxima. If a longshore infragravity wave structure exists, such as in the case of standing edge waves, the advection process...

  12. Horizon effects with surface waves on moving water

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, Germain; Maissa, Philippe; Mathis, Christian; Coullet, Pierre [Universite de Nice-Sophia Antipolis, Laboratoire J-A Dieudonne, UMR CNRS-UNS 6621, Parc Valrose, 06108 Nice Cedex 02 (France); Philbin, Thomas G; Leonhardt, Ulf, E-mail: Germain.Rousseaux@unice.f [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2010-09-15

    Surface waves on a stationary flow of water are considered in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases, three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity (Schuetzhold R and Unruh W G 2002 Phys. Rev. D 66 044019). A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/ short wavelength case kh>>1, where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  13. Advantages of traveling wave resonant antennas for fast wave heating systems

    International Nuclear Information System (INIS)

    Phelps, D.A.; Callis, R.W.; Grassie, J.S. de

    1997-04-01

    The resilience of a maximally flat externally coupled traveling wave antenna (TWA) is contrasted with the sensitivity of a simple directly driven resonant loop array to vacuum and plasma conditions in DIII-D. We find a unique synergy between standing and traveling wave resonant TWA components. This synergy extends TWA operation to several passbands between 60 and 120 MHZ, provides 60 degrees- 120 degrees tunability between elements within a 1-2 MHZ bandwidth and permits efficient and continuous operation during ELMing H-mode

  14. Studies on anti-tumor effect of electromagnetic waves

    International Nuclear Information System (INIS)

    Kadota, Ikuhito; Wakabayashi, Toshio; Ogoshi, Kyoji; Kamijo, Akemi

    1995-01-01

    Hyperthermia have treated cancer with thermal effect of electromagnetic waves for biological systems, but the expected effect is not shown. Also non-thermal effect of electromagnetic waves is out of consideration. If irradiation conditions of electromagnetic waves with non-thermal anti-tumor effect are obtained, we can expect newly spread in cancer therapy. We had in vivo experiments that electromagnetic waves were irradiated to mice. In some irradiation conditions, the non-thermal anti-tumor effect of electromagnetic waves showed. In order to specify the irradiation conditions, we had in vitro experiments. We found that activity ratio of tumor cells which was measured by MTT method depended on irradiation time and power of electromagnetic waves. These results are useful for the cancer therapy. (author)

  15. Effects of DanceSport on walking balance and standing balance among the elderly.

    Science.gov (United States)

    Sohn, Jeehoon; Park, Sung-Ha; Kim, Sukwon

    2018-05-04

    Dancesport is a popular activity among older adults who look for fun and fitness in Korea. Studies reported positive sociological and psychological effects of dancesport. But, little studies were performed to evaluate the effects of dancesport on balance performances. The objective of the present study was to evaluate the effects of dancesport for 15 weeks on walking balance and standing balance of older adults. Older adults regularly participated in the dancesport program 3 times a week for 15 weeks. The program included Rumba, Cha-cha-cha, and Jive. They exercised the prescribed dancesport at intermediate level for 50-60 mins for each time. A total 22 reflective markers were placed on the anatomical landmarks and 8 cameras were used to measure 3-D positions of participants. Also, center of pressure (COP) data were measured to analyze standing balance using a ground reaction board at 1200 Hz for 30 seconds. One-way analysis of variance (ANOVA) was performed to test the effects of 15 weeks of dancesport on walking balance and standing balance. The results suggested that, after 15 weeks of dancesport participation, older adults' walking balance (48.3 ± 20.3 cm2 vs 38.2 ± 18.2 cm2) and standing balance (COP area: 189.4 ± 85.4 mm2 vs 103.5 ± 55.4mm2, COP distance: 84.2 ± 34.4 cm vs 76.5 ± 21.4 cm) were significantly improved. Performing dancesport would require moving center of mass rapidly and frequently while maintaining posture. This may result in improving walking balance and standing balance in the present study. The study concluded that dancesport would be an effective exercise method in enhancing postural stability of older adults.

  16. Solitary waves for a coupled nonlinear Schrodinger system with dispersion management

    Directory of Open Access Journals (Sweden)

    Panayotis Panayotaros

    2010-08-01

    Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.

  17. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    Science.gov (United States)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.

  18. Acute effects of rearfoot manipulation on dynamic standing balance in healthy individuals.

    Science.gov (United States)

    Wassinger, Craig A; Rockett, Ariel; Pitman, Lucas; Murphy, Matthew Matt; Peters, Charles

    2014-06-01

    Dynamic standing balance is essential to perform functional activities and is included in the treatment of many lower extremity injuries. Physiotherapists utilize many methods to restore standing balance including stability exercises, functional retraining, and manual therapy. The purpose of this study was to investigate the effects of a rearfoot distraction manipulation on dynamic standing balance. Twenty healthy participants (age: 24.4 ± 2.8 years; height: 162.9 ± 37.7 cm; mass: 68.0 ± 4.8 kg; right leg dominant = 20) completed this study. Following familiarization, dynamic standing balance was assessed during: (1) an experimental condition immediately following a rearfoot distraction manipulation, and (2) a control condition. Dominant leg balance was quantified using the Y-balance test which measures lower extremity reach distances. Reach distances were normalized to leg length and measured in the anterior, posteromedial and posterolateral directions. Overall balance was calculated through the summing of all normalized directions. Paired t-tests and Wilcoxon rank tests were used to compare balance scores for parametric and non-parametric data as appropriate. Significance was set at 0.05 a priori. Effect size (ES) was calculated to determine the clinical impact of the manipulation. Increased reach distances (indicating improved balance) were noted following manipulation for overall balance (p = 0.03, ES = 0.26) and in the posteromedial direction (p = 0.01, ES = 0.42). Reach distances did not differ for the anterior (p = 0.11, ES = 0.16) or posterolateral (p = 0.11, ES = 0.25) components. Dynamic standing balance improved after a rearfoot distraction manipulation in healthy participants. It is hypothesized that manual therapy applied to the foot and ankle may be beneficial to augment other therapeutic modalities when working with patients to improve dynamic standing balance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    Science.gov (United States)

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  20. The effect of different unstable footwear constructions on centre of pressure motion during standing.

    Science.gov (United States)

    Plom, W; Strike, S C; Taylor, M J D

    2014-06-01

    The aim of this study was to test the effect different unstable footwear constructions have on centre of pressure motion when standing. Sixteen young female volunteers were tested in five conditions, three unstable footwear (Reebok Easy-Tone, FitFlop and Skechers Shape-Ups), a standard shoe and barefoot in a randomised order. Double and single leg balance on a force plate was assessed via centre of pressure excursions and displacements in each condition. For double leg and single leg standing centre of pressure excursions in the anterior-posterior direction were significantly increased wearing Skechers Shape-Ups compared to barefoot and the standard shoe. For the Reebok Easy Tone during single leg standing excursions in the anterior-posterior direction were significantly greater compared to the barefoot condition. Cumulative displacement of the centre of pressure in medial-lateral direction increased significantly during single leg standing when wearing Skechers Shape-Ups compared to barefoot and standard shoe as well as for Reebok Easy Tone vs. barefoot. It would appear from these quiet standing results that the manner of the construction of instability shoes effects the CoP movement which is associated with induced instability. Greater CoP excursion occurred in the A-P direction while the cumulative displacements were greater in the M-L direction for those shoes with the rounded sole and soft foam and those with airpods. The shoe construction with altered density foam did not induce any change in the CoP movement, during quite standing, which tends to suggest that it is not effective at inducing balance. Not all instability shoes are effective in altering the overall instability of the wearer. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A Novel High-Frequency Voltage Standing-Wave Ratio-Based Grounding Electrode Line Fault Supervision in Ultra-High Voltage DC Transmission Systems

    Directory of Open Access Journals (Sweden)

    Yufei Teng

    2017-03-01

    Full Text Available In order to improve the fault monitoring performance of grounding electrode lines in ultra-high voltage DC (UHVDC transmission systems, a novel fault monitoring approach based on the high-frequency voltage standing-wave ratio (VSWR is proposed in this paper. The VSWR is defined considering a lossless transmission line, and the characteristics of the VSWR under different conditions are analyzed. It is shown that the VSWR equals 1 when the terminal resistance completely matches the characteristic impedance of the line, and when a short circuit fault occurs on the grounding electrode line, the VSWR will be greater than 1. The VSWR will approach positive infinity under metallic earth fault conditions, whereas the VSWR in non-metallic earth faults will be smaller. Based on these analytical results, a fault supervision criterion is formulated. The effectiveness of the proposed VSWR-based fault supervision technique is verified with a typical UHVDC project established in Power Systems Computer Aided Design/Electromagnetic Transients including DC(PSCAD/EMTDC. Simulation results indicate that the proposed strategy can reliably identify the grounding electrode line fault and has strong anti-fault resistance capability.

  2. Study of blast wave overpressures using the computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    M. L. COSTA NETO

    Full Text Available ABSTRACT The threats of bomb attacks by criminal organizations and accidental events involving chemical explosives are a danger to the people and buildings. Due the severity of these issues and the need of data required for a safety design, more research is required about explosions and shock waves. This paper presents an assessment of blast wave overpressures using a computational fluid dynamics software. Analyses of phenomena as reflection of shock waves and channeling effects were done and a comparison between numerical results and analytical predictions has been executed, based on the simulation on several models. The results suggest that the common analytical predictions aren’t accurate enough for an overpressure analysis in small stand-off distances and that poorly designed buildings may increase the shock wave overpressures due multiple blast wave reflections, increasing the destructive potential of the explosions.

  3. The gravitational-wave memory effect

    International Nuclear Information System (INIS)

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.

  4. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  5. INVESTIGETING THE EFFECTS OF STANDING TRAINING ON BODY FUNCTIONS AND ACTIVITY FOR NONAMBULATORY CHILDREN WITH MYELOMENINGOCELE

    Directory of Open Access Journals (Sweden)

    Ozge Cankaya

    2017-09-01

    Full Text Available Background: It was indicated in many studies that verticalization have positive effects such as preventing fractures,regulating cardiopulmonary functions, increasing the head control, and the facilitation of postural muscles in pediatric patients, however, no study showing the effect of supported standing in patients with myelomeningocele on body functions and activity was encountered. The aim of this study is to examine the effects of structured supported standing training in children with myelomeningocele on body functions and activity according to ICF-CY. Methods: Twenty-five children with MMC aged between 3 and 17, who were divided into two groups-SST and control. The supported standing training was given to supported standing group 2 hours a day for 8 weeks in addition to the routine physical therapy program. Body functions were assessed with the Trunk Impairment Scale, and activity levels were assessed with the Gross Motor Function Measurement-88 and Pediatric Functional Independence Measurement at the beginning of the study, at the end of 8 weeks and at the end of 12 weeks from beginning. Results: The results of the structured supported standing training program during 8 weeks showed that children’s body functions and activity increased statistically significantly in SST group (p0.05. Conclusion: The results show that supported standing training effects the body functions and activity positively. It is recommended to educate the families for the supported standing training to be added to the routine physiotherapy and rehabilitation program for children with MMC and continue the training at home.

  6. Kapitza–Dirac effect with traveling waves

    International Nuclear Information System (INIS)

    Hayrapetyan, Armen G; Götte, Jörg B; Grigoryan, Karen K; Petrosyan, Rubik G

    2015-01-01

    We report on the possibility of diffracting electrons from light waves traveling inside a dielectric medium. We show that, in the frame of reference which moves with the group velocity of light, the traveling wave acts as a stationary diffraction grating from which electrons can diffract, similar to the conventional Kapitza–Dirac effect. To characterize the Kapitza–Dirac effect with traveling light waves, we make use of the Hamiltonian Analogy between electron optics and quantum mechanics and apply the Helmholtz–Kirchhoff theory of diffraction. (fast track communication)

  7. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    Science.gov (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  8. Thinning in artificially regenerated young beech stands

    Directory of Open Access Journals (Sweden)

    Novák Jiří

    2015-12-01

    Full Text Available Although beech stands are usually regenerated naturally, an area of up to 5,000 ha year−1 is artificially regenerated by beech in the Czech Republic annually. Unfortunately, these stands often showed insufficient stand density and, consequently, lower quality of stems. Therefore, thinning methods developed for naturally regenerated beech stands are applicable with difficulties. The paper evaluates the data from two thinning experiments established in young artificially regenerated beech stands located in different growing conditions. In both experiments, thinning resulted in the lower amount of salvage cut in following years. Positive effect of thinning on periodic stand basal area increment and on periodic diameter increment of dominant trees was found in the beech stand located at middle elevations. On the other hand, thinning effects in mountain conditions were negligible. Thinning focusing on future stand quality cannot be commonly applied in artificially regenerated beech stands because of their worse initial quality and lower density. However, these stands show good growth and response to thinning, hence their management can be focused on maximising beech wood production.

  9. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Directory of Open Access Journals (Sweden)

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  10. Immediate effect of subliminal priming with positive reward stimuli on standing balance in healthy individuals

    OpenAIRE

    Aoyama, Yasuhiro; Uchida, Hiroyuki; Sugi, Yasuyuki; Kawakami, Akinobu; Fujii, Miki; Kiso, Kanae; Kono, Ryota; Takebayashi, Takashi; Hirao, Kazuki

    2017-01-01

    Abstract Background: Information received subconsciously can influence exercise performance; however, it remains unclear whether subliminal or supraliminal reward is more effective in improving standing balance ability when priming stimuli are subconsciously delivered. The present study aimed to compare the effects of subliminal priming-plus-subliminal reward stimuli (experimental) with subliminal priming-plus-supraliminal reward stimuli (control) on standing balance ability. Methods: This wa...

  11. On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats

    Science.gov (United States)

    2007-05-16

    15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave

  12. Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method.

    Science.gov (United States)

    Jonsson, Ulf; Lindahl, Olof; Andersson, Britt

    2014-12-01

    To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.

  13. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ( f ast waves ) . In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  14. Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo.

    Science.gov (United States)

    Linares, Juan Carlos; Camarero, Jesús Julio; Bowker, Matthew A; Ochoa, Victoria; Carreira, José Antonio

    2010-12-01

    Climate change may affect tree-pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands' resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.

  15. Simple wave drivers: electric toothbrush, shaver and razor

    Science.gov (United States)

    Kağan Temiz, Burak; Yavuz, Ahmet

    2018-05-01

    This study was conducted to develop simple and low-cost wave drivers that can be used in experiments on string waves. These wave drivers were made using a toothbrush (Oral-B Vitality), an electric shaver (Braun 7505) and a razor (Gillette Fusion Proglide Power). A common feature of all of these product is that they have vibration motors. In the experiments, string waves were generated by transferring these vibrations to a stretched string. By changing the tightness and length of the string, standing waves were generated, and various harmonics were observed.

  16. Modelling of the nonlinear evolution of 2D waves and vortices in plasmas

    International Nuclear Information System (INIS)

    Taranov, V.B.

    1998-01-01

    In this report an antisymmetric lattice formed by standing waves of vorticity is considered. For small but finite amplitudes multiple-time-scale analysis is performed, higher harmonics generation and frequency shifts are evaluated analytically and critical amplitude for perturbation theory is determined. For amplitudes bigger than critical numerical simulations are carried out taking into account vortex nonlinearity, drift and dispersion effects. Numerical code is developed which allows to study long-term evolution of two-dimensional spatially periodic waves and vortex structures

  17. Parametric excitation of drift waves in a sheared slab geometry

    International Nuclear Information System (INIS)

    Vranjes, J.; Weiland, J.

    1992-01-01

    The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)

  18. Developing de Broglie Wave

    Directory of Open Access Journals (Sweden)

    Zheng-Johansson J. X.

    2006-10-01

    Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.

  19. Rayleigh wave effects in an elastic half-space.

    Science.gov (United States)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  20. Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids

    Science.gov (United States)

    Adler, Laszlo; Cantrell, John H.; Yost, William T.

    2016-01-01

    Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.

  1. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Science.gov (United States)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-10-01

    In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  2. The long-term hydrological effect of forest stands on the stability of slopes

    Science.gov (United States)

    Bogaard, T. A.; Meng, W.; van Beek, L. P. H.

    2012-04-01

    Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we

  3. Remote recoil: a new wave mean interaction effect

    Science.gov (United States)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the

  4. I'm still standing: A longitudinal study on the effect of a default nudge.

    Science.gov (United States)

    Venema, Tina A G; Kroese, Floor M; De Ridder, Denise T D

    2018-05-01

    This study assessed the effect of a default nudge to reduce sedentary behaviour at work over time. A field study was conducted at a governmental organisation. In the present study, the default setting of sit-stand desks (SSDs) was changed from sitting to standing height during a two-week intervention. Stand-up working rates were calculated based on observations that were done prior to, during, two weeks after and two months after the intervention. Additionally, a pre-measure survey (n = 606) and post-measure survey (n = 354) were completed. Intention and social norms concerning stand-up working were compared for the 183 employees who completed both pre- and post-assessments (45.4% female, M age  = 44.21). Stand-up working rates raised from 1.82% in the baseline to 13.13% during the intervention. After the nudge was removed the percentage was 10.01% after two weeks and 7.78% after two months. A multilevel analysis indicated a significant increase in both intention and social norms after the nudge intervention. This study shows that a default nudge can increase stand-up working rates in offices with SSDs at least until two months after the nudge intervention.

  5. Parametric excitation of electromagnetic waves by electron Bernstein waves

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1992-01-01

    A parametric instability involving the decay of a standing electron Bernstein pump into electromagnetic sidebands and lower-hybrid decay waves is studied. A general dispersion relation is derived and analyzed. Threshold fields and growth rates are obtained for the two cases that the electron Bernstein pump is introduced near the X-mode cutoff layer or introduced in the region between the upper-hybrid resonance layer and the O-mode cutoff layer. Applications of these results to the recent observation [P. Stubbe and H. Kopka, Phys. Rev. Lett. 65, 183 (1990)] of stimulated electromagnetic emission (SEE) with a broad symmetrical structure (BSS) in the ionospheric modifications by powerful high-frequency (HF) wave are discussed

  6. Long-range particle manipulation in a micro-capillary tube by using a flexural acoustic wave

    International Nuclear Information System (INIS)

    Kim, Eun-Sun; Kim, Nari; Kim, Young-Ho; Lee, Kwang-Jo; Hwang, In-Kag

    2010-01-01

    We report a one-dimensional manipulation of dry Ag particles in micro-capillary tube by using a flexural acoustic wave propagating along the tube. The capillary tube is used as a mechanical guide for both the particles and the acoustic wave, resulting in an effective interaction between them over a long range of 14 cm in length. Linear transport and local trapping of the particles are demonstrated by the excitation of traveling and standing acoustic waves, respectively. The mechanisms for the particle movements are qualitatively explained by frictional forces between the particles and the inner wall of the capillary tube.

  7. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change

    Directory of Open Access Journals (Sweden)

    Miren del Río

    2017-10-01

    Full Text Available Aim of the study: Thinning experiments in Scots pine (Pinus sylvestris L. stands have been carried out since long in different regions of its distribution. The aim of this paper is to gather the knowledge about the thinning effects on Scots pine stands, from the effects on growth and yield to the provision of ecosystem services in the framework of climate change. Area of study: The review covered studies from different regions of the distribution area of Scots pine Aim of the study: Thinning experiments in Scots pine (Pinus sylvestris L. stands have been carried out for many years in different regions of its distribution. The aim of this paper is to gather knowledge regarding the effects of thinning on Scots pine stands, from the effects on growth and yield to the provision of ecosystem services in the context of climate change. Area of study: The review covers studies from different regions of the distribution area of Scots pine Material and methods: We reviewed the effect of thinning on four aspects: growth and yield, stability against snow and wind, response to drought, and ecosystem services. Main results: Heavy thinning involves a loss in volume yield, although the magnitude depends on the region, site and stand age. Thinning generally does not affect dominant height while the positive effect on tree diameter depends on the thinning regime. The stability of the stand against snow and wind is lower after the first thinning and increases in the long term. The impact of extreme droughts on tree growth is lower in thinned stands, which is linked to a better capacity to recover after the drought. Thinning generally reduces the wood quality, litter mass, and stand structural diversity, while having neutral or positive effects on other ecosystem services, although these effects can vary depending on the thinning regime. However, scarce information is available for most of the ecosystem services. Research highlight: Existing thinning experiments in

  8. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change

    International Nuclear Information System (INIS)

    Miren del Río, M.P.; Bravo-Oviedo, Andrés; Pretzsch, Hans; Löf, Magnus; Ruiz-Peinado, Ricardo

    2017-01-01

    Aim of the study: Thinning experiments in Scots pine (Pinus sylvestris L.) stands have been carried out since long in different regions of its distribution. The aim of this paper is to gather the knowledge about the thinning effects on Scots pine stands, from the effects on growth and yield to the provision of ecosystem services in the framework of climate change. Area of study: The review covered studies from different regions of the distribution area of Scots pine Aim of the study: Thinning experiments in Scots pine (Pinus sylvestris L.) stands have been carried out for many years in different regions of its distribution. The aim of this paper is to gather knowledge regarding the effects of thinning on Scots pine stands, from the effects on growth and yield to the provision of ecosystem services in the context of climate change. Area of study: The review covers studies from different regions of the distribution area of Scots pine Material and methods: We reviewed the effect of thinning on four aspects: growth and yield, stability against snow and wind, response to drought, and ecosystem services. Main results: Heavy thinning involves a loss in volume yield, although the magnitude depends on the region, site and stand age. Thinning generally does not affect dominant height while the positive effect on tree diameter depends on the thinning regime. The stability of the stand against snow and wind is lower after the first thinning and increases in the long term. The impact of extreme droughts on tree growth is lower in thinned stands, which is linked to a better capacity to recover after the drought. Thinning generally reduces the wood quality, litter mass, and stand structural diversity, while having neutral or positive effects on other ecosystem services, although these effects can vary depending on the thinning regime. However, scarce information is available for most of the ecosystem services. Research highlight: Existing thinning experiments in Scots pine stands

  9. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change

    Energy Technology Data Exchange (ETDEWEB)

    Miren del Río, M.P.; Bravo-Oviedo, Andrés; Pretzsch, Hans; Löf, Magnus; Ruiz-Peinado, Ricardo

    2017-11-01

    Aim of the study: Thinning experiments in Scots pine (Pinus sylvestris L.) stands have been carried out since long in different regions of its distribution. The aim of this paper is to gather the knowledge about the thinning effects on Scots pine stands, from the effects on growth and yield to the provision of ecosystem services in the framework of climate change. Area of study: The review covered studies from different regions of the distribution area of Scots pine Aim of the study: Thinning experiments in Scots pine (Pinus sylvestris L.) stands have been carried out for many years in different regions of its distribution. The aim of this paper is to gather knowledge regarding the effects of thinning on Scots pine stands, from the effects on growth and yield to the provision of ecosystem services in the context of climate change. Area of study: The review covers studies from different regions of the distribution area of Scots pine Material and methods: We reviewed the effect of thinning on four aspects: growth and yield, stability against snow and wind, response to drought, and ecosystem services. Main results: Heavy thinning involves a loss in volume yield, although the magnitude depends on the region, site and stand age. Thinning generally does not affect dominant height while the positive effect on tree diameter depends on the thinning regime. The stability of the stand against snow and wind is lower after the first thinning and increases in the long term. The impact of extreme droughts on tree growth is lower in thinned stands, which is linked to a better capacity to recover after the drought. Thinning generally reduces the wood quality, litter mass, and stand structural diversity, while having neutral or positive effects on other ecosystem services, although these effects can vary depending on the thinning regime. However, scarce information is available for most of the ecosystem services. Research highlight: Existing thinning experiments in Scots pine stands

  10. Mathieu functions describing particles evolving in electromagnetic waves

    Science.gov (United States)

    Mihu, Denisa-Andreea; Dariescu, Marina-Aura

    2017-12-01

    Solutions of Klein-Gordon equation for particles moving in a standing wave configuration bring into attention an intricate and complicated category of special functions, namely the Mathieu functions. The stability of the solutions governed by the intercorrelation between Mathieu equation' parameters is discussed. For specific intervals of the wave number, the instability regime installs, pointing out the tendency of exponential growth for the oscillatory wave functions, as a consequence of parametric resonance phenomenon. The expression of the wave function allows the computation of the four-dimensional conserved current density components.

  11. Acute and long-term effects of irradiation on pine (Pinus silvestris) stands post-Chernobyl

    International Nuclear Information System (INIS)

    Arkhipov, N.P.; Kuchma, N.D.; Askbrant, S.; Pasternak, P.S.; Musica, V.V.

    1994-01-01

    The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas

  12. Acute and long-term effects of irradiation on pine (Pinus silvestris) stands post-Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.P.; Kuchma, N.D. (Department of Radiology and Land Restoration, Pripyat Research and Industrial Association, Chernobyl (Ukraine)); Askbrant, S. (National Radiation Protection Institute, Stockholm (Sweden)); Pasternak, P.S.; Musica, V.V. (Lyes Research and Industrial Association, Kharykov (Ukraine))

    1994-10-14

    The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas.

  13. Environmental Effects for Gravitational-wave Astrophysics

    International Nuclear Information System (INIS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)

  14. Effect of information feedback on training standing up following stroke: a pilot feasibility study.

    Science.gov (United States)

    Stanton, Rosalyn; Ada, Louise; Dean, Catherine M; Preston, Elisabeth

    2016-12-01

    The ability to stand up is reduced following stroke. Traditional biofeedback is effective in improving the performance of lower limb activities. The aim of this study was to investigate the feasibility of and potential for information feedback from a simple inexpensive device to improve the ability to stand up from a chair in people following stroke. A single-group study with pre-post measures design was used. Twenty people with hemiplegic stroke in inpatient rehabilitation received 10 sessions over 2 weeks of information feedback about foot placement during training of standing up. Progression involved increasing repetitions, increasing difficulty and fading feedback. Feasibility was determined by adherence, time taken, acceptability and safety. Clinical outcomes were the time taken to stand up, quality and foot position measured using the 5-Times-Sit-To-Stand-Test and carryover into daily activities measured by covert observation. The study was feasible with 97% of sessions completed, taking 19 (SD 6) to 25 (SD 10) minutes. Participants understood (4.6/5), found useful (4.6/5), challenging (4.4/5) and would recommend (4.7/5) the training. The time to stand up 5 times decreased by 24 (95% CI -48 to -1) s, and the quality of standing improved by 1.0/10.0 (95% CI 0.2 to 1.8). Carryover of the correct foot placement occurred to real life, with the beginning foot position correct 2.1/3.0 (95% CI 1.6 to 2.6) and end foot position correct 1.8/3.0 (95% CI 1.2 to 2.4) occasions. The training is feasible and has the potential to improve the ability to stand up.

  15. Ship motion-based wave estimation using a spectral residual-calculation

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; H. Brodtkorb, Astrid

    2018-01-01

    This paper presents a study focused on a newly developed procedure for wave spectrum estimation using wave-induced motion recordings from a ship. The particular procedure stands out from other existing, similar ship motion-based pro-cedures by its computational efficiency and - at the same time- ...

  16. Theory of Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions, changing the exchange field and the angles between the normal to the interfaces and the crystal axes of d-wave superconductors. We find a 0–π transition at a certain value of the exchange field.

  17. Effects of ship-induced waves on aquatic ecosystems.

    Science.gov (United States)

    Gabel, Friederike; Lorenz, Stefan; Stoll, Stefan

    2017-12-01

    Most larger water bodies worldwide are used for navigation, and the intensity of commercial and recreational navigation is expected to further increase. Navigation profoundly affects aquatic ecosystems. To facilitate navigation, rivers are trained and developed, and the direct effects of navigation include chemical and biological impacts (e.g., inputs of toxic substances and dispersal of non-native species, respectively). Furthermore, propagating ships create hydrodynamic alterations, often simply summarized as waves. Although ship-induced waves are recognized as influential stressors, knowledge on their effects is poorly synthesized. We present here a review on the effects of ship-induced waves on the structure, function and services of aquatic ecosystems based on more than 200 peer reviewed publications and technical reports. Ship-induced waves act at multiple organizational levels and different spatial and temporal scales. All the abiotic and biotic components of aquatic ecosystems are affected, from the sediment and nutrient budget to the planktonic, benthic and fish communities. We highlight how the effects of ship-induced waves cascade through ecosystems and how different effects interact and feed back into the ecosystem finally leading to altered ecosystem services and human health effects. Based on this synthesis of wave effects, we discuss strategies for mitigation. This may help to develop scientifically based and target-oriented management plans for navigational waters that optimize abiotic and biotic integrity and their ecosystem services and uses. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  19. Practical research of free standing rack. Seismic experiment study on full scale free standing rack

    International Nuclear Information System (INIS)

    Iwasaki, Akihisa; Nekomoto, Yoshitsugu; Morita, Hideyuki; Taniguchi, Katsuhiko; Okuno, Daisaku; Matsuoka, Toshihiro; Chigusa, Naoki

    2015-01-01

    The spent fuel taken out of a plant reactor is temporarily stored in a spent fuel rack. This fuel will often have to be stored in the rack for long periods before it can be moved to a reprocessing facility. Therefore, the spent fuel rack must have a high tolerance against big seismic loads. The free standing spent fuel rack has been developed as the optimal equipment meeting these requirements. It can be placed on the spent fuel pool floor without fixation to any support structure. Response of the free standing rack is reduced by the effect of the water and friction force on the spent fuel pool floor. For nuclear plant safety, it is necessary to understand the free standing rack behavior under earthquake in pools to verify the design of free standing racks and peripheral components. Several tests on a shaking table have been conducted on full-scale one free standing rack in air and in water, and sliding and rocking have been measured. The rack response is very complex and the study necessitates to take into account the sliding, the rocking, the effect of the water and of the arrangement of the fuel assemblies inside. (author)

  20. Using a standing-tree acoustic tool to identify forest stands for the production of mechanically-graded lumber.

    Science.gov (United States)

    Paradis, Normand; Auty, David; Carter, Peter; Achim, Alexis

    2013-03-12

    This study investigates how the use of a Hitman ST300 acoustic sensor can help identify the best forest stands to be used as supply sources for the production of Machine Stress-Rated (MSR) lumber. Using two piezoelectric sensors, the ST300 measures the velocity of a mechanical wave induced in a standing tree. Measurements were made on 333 black spruce (Picea mariana (Mill.) BSP) trees from the North Shore region, Quebec (Canada) selected across a range of locations and along a chronosequence of elapsed time since the last fire (TSF). Logs were cut from a subsample of 39 trees, and sawn into 77 pieces of 38 mm × 89 mm cross-section before undergoing mechanical testing according to ASTM standard D-4761. A linear regression model was developed to predict the static modulus of elasticity of lumber using tree acoustic velocity and stem diameter at 1.3 m above ground level (R2 = 0.41). Results suggest that, at a regional level, 92% of the black spruce trees meet the requirements of MSR grade 1650Fb-1.5E, whilst 64% and 34% meet the 2100Fb-1.8E and 2400Fb-2.0E, respectively. Mature stands with a TSF < 150 years had 11 and 18% more boards in the latter two categories, respectively, and therefore represented the best supply source for MSR lumber.

  1. Learning to Stand: The Acceptability and Feasibility of Introducing Standing Desks into College Classrooms

    Directory of Open Access Journals (Sweden)

    Roberto M. Benzo

    2016-08-01

    Full Text Available Prolonged sedentary behavior is an independent risk factor for multiple negative health outcomes. Evidence supports introducing standing desks into K-12 classrooms and work settings to reduce sitting time, but no studies have been conducted in the college classroom environment. The present study explored the acceptability and feasibility of introducing standing desks in college classrooms. A total of 993 students and 149 instructors completed a single online needs assessment survey. This cross-sectional study was conducted during the fall semester of 2015 at a large Midwestern University. The large majority of students (95% reported they would prefer the option to stand in class. Most students (82.7% reported they currently sit during their entire class time. Most students (76.6% and instructors (86.6% reported being in favor of introducing standing desks into college classrooms. More than half of students and instructors predicted having access to standing desks in class would improve student’s “physical health”, “attention”, and “restlessness”. Collectively, these findings support the acceptability of introducing standing desks in college classrooms. Future research is needed to test the feasibility, cost-effectiveness and efficacy of introducing standing desks in college classrooms. Such studies would be useful for informing institutional policies regarding classroom designs.

  2. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  3. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  4. Stability of plane wave solutions of the two-space-dimensional nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Martin, D.U.; Yuen, H.C.; Saffman, P.G.

    1980-01-01

    The stability of plane, periodic solutions of the two-dimensional nonlinear Schroedinger equation to infinitesimal, two-dimensional perturbation has been calculated and verified numerically. For standing wave disturbances, instability is found for both odd and even modes; as the period of the unperturbed solution increases, the instability associated with the odd modes remains but that associated with the even mode disappears, which is consistent with the results of Zakharov and Rubenchik, Saffman and Yuen and Ablowitz and Segur on the stability of solitons. In addition, we have identified travelling wave instabilities for the even mode perturbations which are absent in the long-wave limit. Extrapolation to the case of an unperturbed solution with infinite period suggests that these instabilities may also be present for the soliton. In other words, the soliton is unstable to odd, standing-wave perturbations, and very likely also to even, travelling-wave perturbations. (orig.)

  5. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  6. Effect of quadriceps and hamstrings muscle cooling on standing balance in healthy young men.

    Science.gov (United States)

    Alghadir, A H; Anwer, S; Zafar, H; Al-Eisa, E S

    2017-09-01

    The present study compared the effect of quadriceps and hamstring muscle cooling on standing balance in healthy young men. Thirty healthy young men (18-30 years) participated in the study. The participants were randomly assigned to three groups (n=10 each): quadriceps cooling (QC), hamstring cooling (HC), or control group (no cooling). Participants in the QC and HC groups received 20 minutes of cooling using a cold pack (gel pack), placed on the anterior thigh (from the apex of the patella to the mid-thigh) and the posterior thigh (from the base of the popliteal fossa to the mid-thigh), respectively. Balance score including unilateral stance was measured at baseline and immediately after the application of the cold pack. No significant difference in the balance score was noted in any group after the application of the cold pack (p⟩0.05). Similarly, no significant differences in post-test balance score were noted among the three groups (p⟩0.05). Cooling of the quadriceps and hamstring muscles has no immediate effect on standing balance in healthy young men. However, longitudinal studies are warranted to investigate the long-term effects of cooling these muscles on standing balance.

  7. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    International Nuclear Information System (INIS)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-01-01

    In the cold-fluid dispersion relation ω=ω p /[1+(k perpendicular /k z ) 2 ] 1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k perpendicular /k z . As a result, for any frequency ω p , there are infinitely many degenerate waves, all having the same value of k perpendicular /k z . On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr=±(ω p 2 /ω 2 -1) 1/2 . Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  8. Added effect of heat wave on mortality in Seoul, Korea.

    Science.gov (United States)

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  9. TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique

    Science.gov (United States)

    Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.

    2018-06-01

    Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.

  10. Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States

    Science.gov (United States)

    Christopher W. Woodall; Anthony W. D' Amato; John B. Bradford; Andrew O. Finley

    2011-01-01

    There is expanding interest in management strategies that maximize forest carbon (C) storage to mitigate increased atmospheric carbon dioxide. The tremendous tree species diversity and range of stand stocking found across the eastern United States presents a challenge for determining optimal combinations for the maximization of standing tree C storage. Using a...

  11. Reflection and diffraction of atomic de Broglie waves by evanescent laser waves. Bare-state method

    International Nuclear Information System (INIS)

    Feng, Xiaoping; Witte, N.S.; Hollenberg, C.L.; Opat, G.

    1994-01-01

    Two methods are presented for the investigation of the reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both methods use the bare-state rather than dressed-state picture. One method is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two methods yield the same theoretical expressions for the reflected and diffracted atomic waves in the whole space including the interaction and the asymptotic regions. 1 ref., 1 fig

  12. The effects of stand characteristics on reindeer lichens and range use by semi-domesticated reindeer

    Directory of Open Access Journals (Sweden)

    T. Helle

    1990-09-01

    Full Text Available The study was carried out in Kuusamo (66°15'N, 29°05'E and Inari (68°30'N, 28°15'E, northern Finland, where 24 and 22 Scots pine stands were studied respectively. Clear-cutting (logging residue caused a decline in lichen biomass for some few years, but otherwise the age of the stand had no effect upon lichen biomass. Instead, a positive correlation was found between litter/logging residue and the mean height of lichens; in Kuusamo, logging residue decreased significantly with the age of the stand. Grazing pressure in terms of fecal group density increased with the age of the stand. The preference of old forests came visible also as a lower mean height of lichens, which eliminates the possibility that the preference of old forests is associated only to the use of arboreal lichens. In Inari, grazing pressure sharply increased after the stand had reached the age of 100 years despite scarce litter/logging residue and fair lichen ranges in younger forests; there prevailed a negative correlation between stand density and grazing pressure. It has been suggested that there might be three main reasons for reindeers preferring old forests: 1 hardening of the snow (because of winds on clear-cut areas, 2 logging residue preventing digging for the food beneath the snow, and 3 poor visibility in young pine stands (Inari which might increase predation risk.

  13. Mechanical Waves Conceptual Survey: Its Modification and Conversion to a Standard Multiple-Choice Test

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2016-01-01

    In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of…

  14. Effects of plantation and juvenile spacing on tree and stand development.

    Science.gov (United States)

    J. Harry G. Smith; Donald L. Reukema

    1986-01-01

    The aim of this paper is to summarize current knowledge of effects of initial spacing and respacing of plantations and natural stands on early growth until the time of first commercial entry—for coastal Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco), concentrating on conclusions that can be drawn from the literature and the authors...

  15. Spin effect on parametric interactions of waves in magnetoplasmas

    International Nuclear Information System (INIS)

    Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.

    2012-01-01

    The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfvén wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfvén wave even in classical regime.

  16. A first course in vibrations and waves

    CERN Document Server

    Samiullah, Mohammad

    2015-01-01

    This book builds on introductory physics and emphasizes understanding of vibratory motion and waves based on first principles. The book is divided into three parts. Part I contains a preliminary chapter that serves as a review of relevant ideas of mechanics and complex numbers. Part II is devoted to a detailed discussion of vibrations of mechanical systems. This part covers a simple harmonic oscillator, coupled oscillators, normal coordinates, beaded string, continuous string, standing waves, and Fourier series. Part II ends with a presentation of stationary solutions of driven finite systems. Part III is concerned with waves. Here, the emphasis is on the discussion of common aspects of all types of waves. The applications to sound, electromagnetic, and matter waves are illustrated. The book also includes examples from water waves and electromagnetic waves on a transmission line. The emphasis of the book is to bring out the similarities among various types of waves. The book includes treatment of reflection a...

  17. Effect of different tree mortality patterns on stand development in the forest model SIBYLA

    Directory of Open Access Journals (Sweden)

    Trombik Jiří

    2016-09-01

    Full Text Available Forest mortality critically affects stand structure and the quality of ecosystem services provided by forests. Spruce bark beetle (Ips typographus generates rather complex infestation and mortality patterns, and implementation of such patterns in forest models is challenging. We present here the procedure, which allows to simulate the bark beetle-related tree mortality in the forest dynamics model Sibyla. We explored how sensitive various production and stand structure indicators are to tree mortality patterns, which can be generated by bark beetles. We compared the simulation outputs for three unmanaged forest stands with 40, 70 and 100% proportion of spruce as affected by the disturbance-related mortality that occurred in a random pattern and in a patchy pattern. The used tree species and age class-specific mortality rates were derived from the disturbance-related mortality records from Slovakia. The proposed algorithm was developed in the SQLite using the Python language, and the algorithm allowed us to define the degree of spatial clustering of dead trees ranging from a random distribution to a completely clustered distribution; a number of trees that died in either mode is set to remain equal. We found significant differences between the long-term developments of the three investigated forest stands, but we found very little effect of the tested mortality modes on stand increment, tree species composition and diversity, and tree size diversity. Hence, our hypothesis that the different pattern of dead trees emergence should affect the competitive interactions between trees and regeneration, and thus affect selected productivity and stand structure indicators was not confirmed.

  18. Standing footprint diagnostic method

    Science.gov (United States)

    Fan, Y. F.; Fan, Y. B.; Li, Z. Y.; Newman, T.; Lv, C. S.; Fan, Y. Z.

    2013-10-01

    Center of pressure is commonly used to evaluate standing balance. Even though it is incomplete, no better evaluation method has been presented. We designed our experiment with three standing postures: standing with feet together, standing with feet shoulder width apart, and standing with feet slightly wider than shoulder width. Our platform-based pressure system collected the instantaneous plantar pressure (standing footprint). A physical quantity of instantaneous standing footprint principal axis was defined, and it was used to construct an index to evaluate standing balance. Comparison between results from our newly established index and those from the center of pressure index to evaluate the stability of different standing postures revealed that the standing footprint principal axis index could better respond to the standing posture change than the existing one. Analysis indicated that the insensitive response to the relative position between feet and to the standing posture change from the center of pressure could be better detected by the standing footprint principal axis index. This predicts a wide application of standing footprint principal axis index when evaluating standing balance.

  19. Dispersion relation of test waves in an electron beam plasma system

    International Nuclear Information System (INIS)

    Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.

    1994-01-01

    Test waves are propagated in an electron beam plasma system and the dispersion relation is measured. At the center of the experimental region a beam mode is excited. Near the chamber wall an electron plasma wave is excited and propagates from the chamber wall to the center of the experimental region. It is also found that observed unstable waves are standing wave which is formed by superposing the beam modes propagating in the opposite directions each other. (author). 6 refs, 6 figs

  20. Velocity Memory Effect for polarized gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  1. Enigmatic electrons, photons, and ''empty'' waves

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1995-01-01

    A spectroscopic analysis is made of electrons and photons from the standpoint of physical realism. In this conceptual framework, moving particles are portrayed as localized entities which are surrounded by ''empty'' waves. A spectroscopic model for the electron Stands as a guide for a somewhat similar, but in essential respects radically different, model for the photon. This leads in turn to a model for the ''zeron''. the quantum of the empty wave. The properties of these quanta mandate new basis states, and hence an extension of our customary framework for dealing with them. The zeron wave field of a photon differs in one important respect from the standard formalism for an electromagnetic wave. The vacuum state emerges as more than just a passive bystander. Its polarization properties provide wave stabilization, particle probability distributions, and orbit quantization. Questions with regard to special relativity are discussed

  2. Possibility of gravitational wave detector production on the base of light diffraction

    International Nuclear Information System (INIS)

    Segizboev, T.I.

    1989-01-01

    Gravitational wave detector based on the light diffraction is proposed. Under the gravitation wave incidence on an elastic rod standing acoustic oscillations are excited in it, which are then used as a diffraction grating for the light scattering. A detailed mathematical analysis of this detector is given. 1 ref

  3. Numerical Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters

    DEFF Research Database (Denmark)

    Beels, C.; Troch, P.; De Visch, K.

    2009-01-01

    . In this paper wake effects in the lee of a single Wave Dragon WEC and multiple Wave Dragon WECs are studied in a time-dependent mild-slope equation model. The Wave Dragon WEC is a floating offshore converter of the overtopping type. The water volume of overtopped waves is first captured in a basin above mean...

  4. Effects of age and stand density of mother trees on early Pinus thunbergii seedling establishment in the coastal zone, China.

    Science.gov (United States)

    Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo

    2014-01-01

    Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest.

  5. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo; Sparber, Christof

    2011-01-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  6. Theoretical investigation of a travelling-wave rf gun

    International Nuclear Information System (INIS)

    Gao, J.

    1991-12-01

    A travelling-wave type rf gun (TW gun) is investigated theoretically. Analytical formulae concerning energy gain, energy spread, and transverse emittance are derived. After showing the corresponding formulae for the standing-wave rf gun (SW gun), comparisons are made between the two types of rf gun. Finally, some numerical results are calculated to demonstrate further the behaviours of the TW gun, and to compare with those from analytical formulae. (author) 11 refs.; 27 figs

  7. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo

    2011-02-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  8. Wave energy potential in Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)

    2009-11-15

    Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)

  9. Strength and stiffness assessment of standing trees using a nondestructive stress wave technique.

    Science.gov (United States)

    Xiping. Wang; Robert J. Ross; Michael. McClellan; R. James. Barbour; John R. Erickson; John W. Forsman; Gary D. McGinnis

    Natureas engineering of wood through genetics, stand conditions, and environment creates wide variability in wood as a material, which in turn introduces difficulties in wood processing and utilization. Manufacturers sometimes find it difficult to consistently process wood into quality products because of its wide range of properties. The primary objective of this...

  10. Experimental Observation of Negative Effective Gravity in Water Waves

    Science.gov (United States)

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  11. The gravitational Schwinger effect and attenuation of gravitational waves

    Science.gov (United States)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  12. The effect of moving waves on neutral marine atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2014-01-01

    Full Text Available Large eddy simulations are performed to study the effects of wind-wave direction misalignment of the neutral marine atmospheric boundary layer over a wavy wall. The results show that the wind-wave misalignment has a significant effect on the velocity profiles and the pressure fluctuation over the wave surface. These effects are not confined to the near wave surface region but extend over the whole atmospheric surface layer.

  13. Effect of Pelvic Tilt and Rotation on Cup Orientation in Both Supine and Standing Positions.

    Science.gov (United States)

    Yun, Hohyun; Murphy, William S; Ward, Daniel M; Zheng, Guoyan; Hayden, Brett L; Murphy, Stephen B

    2018-05-01

    The purpose of this study is to analyze the effect of pelvic tilt and rotation on radiographic measurement of cup orientation. A total of 68 patients (79 hips) were included in this study. The patients had a computed tomography study and approximately 3 months of postoperative standing anteroposterior pelvic radiographs in both supine and standing positions. We used 2-dimensional (2D)/3-dimensional (3D) matching to measure pelvic tilt and rotation, and cup orientation. There was a wide range of pelvic tilt between individuals in both supine and standing positions. Supine pelvic tilt was different from standing pelvic tilt (P cup anteversion before and after 2D/3D matching in both supine and standing positions (P cup anteversion before and after 2D/3D matching. When all 79 hips were separated into right and left side, pelvic rotation inversely correlated with the pelvic tilt-adjusted difference in anteversion before and after 2D/3D matching of the right side but directly correlated with that of the left side in both supine and standing positions. This study demonstrated that the measurement of cup anteversion on anteroposterior radiographs is significantly affected by both pelvic tilt and pelvic rotation (depending on the side). Improved understanding of pelvic orientation and improved ability to measure pelvic orientation may eventually allow for desired cup positioning to potentially protect against complications associated with malposition of the cup. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Arterial wave reflection decreases gradually from supine to upright

    DEFF Research Database (Denmark)

    van den Bogaard, Bas; Westerhof, Berend E; Best, Hendrik

    2011-01-01

    BACKGROUND. An increase in total peripheral resistance (TPR) usually increases arterial wave reflection. During passive head-up tilt (HUT), however, arterial wave reflection decreases with increasing TPR. This study addressed whether arterial wave reflection gradually decreases during HUT. METHODS....... In 10 healthy volunteers (22-39 years, nine males), we recorded finger arterial pressures in supine position (0°), and 30°and 70°degrees HUT and active standing (90°). Aortic pressure was constructed from the finger pressure signal and hemodynamics were calculated. Arterial wave reflection...... from 0.9 dyn s/cm(5) at 0? to 1.2, 1.4 and 1.4 dyn s/cm(5) at 30°, 70° and 90° (p wave reflection...

  15. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  16. Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2018-03-01

    The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.

  17. An Asymptotic and Stochastic Theory for the Effects of Surface Gravity Waves on Currents and Infragravity Waves

    Science.gov (United States)

    McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.

    2004-12-01

    Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some

  18. Relationship of Tree Stand Heterogeneity and Forest Naturalness

    Directory of Open Access Journals (Sweden)

    BARTHA, Dénes

    2006-01-01

    Full Text Available The aim of our study was to investigate if compositional (tree species richness andstructural (vertical structure, age-structure, patterns of canopy closure heterogeneity of the canopylayer is related to individual naturalness criteria and to overall forest naturalness at the stand scale. Thenaturalness values of the assessed criteria (tree species composition, tree stand structure, speciescomposition and structure of shrub layer and forest floor vegetation, dead wood, effects of game, sitecharacteristics showed similar behaviour when groups of stands with different heterogeneity werecompared, regardless of the studied aspect of canopy heterogeneity. The greatest difference was foundfor criteria describing the canopy layer. Composition and structure of canopy layer, dead wood andtotal naturalness of the stand differed significantly among the stand groups showing consistentlyhigher values from homogeneous to the most heterogeneous group. Naturalness of the compositionand structure of the shrub layer is slightly but significantly higher in stands with heterogeneous canopylayer. Regarding other criteria, significant differences were found only between the homogeneous andthe most heterogeneous groups, while groups with intermediate level of heterogeneity did not differsignificantly from one extreme. However, the criterion describing effects of game got lowernaturalness values in more heterogeneous stands. Naturalness of site characteristics did not differsignificantly among the groups except for when stands were grouped based on pattern of canopyclosure. From the practical viewpoint it is shown that purposeful forestry operations affecting thecanopy layer cause changes in compositional and structural characteristics of other layers as well as inoverall stand scale forest naturalness.

  19. High frequency time modulation of neutrons by LiNbO3 crystals with surface acoustic waves excited under the diffraction condition

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Granzer, E.; Kikuta, Seishi; Tomimitsu, Hiroshi; Doi, Kenji.

    1985-01-01

    High frequency time modulation of neutrons was investigated by using Y-cut LiNbO 3 crystals with surface acoustic waves excited. A double crystal arrangement of (+, -) parallel setting was used for 030 symmetric Bragg-case reflections. Synchronized standing waves with a resonance frequency of 14.26 MHz were excited on the both crystals. Variation of the diffracted intensity with phase difference between two standing waves was studied. The result showed an intensity change of diffracted neutrons with twice the resonance frequency. (author)

  20. On the excitation of ULF waves by solar wind pressure enhancements

    Directory of Open Access Journals (Sweden)

    P. T. I. Eriksson

    2006-11-01

    Full Text Available We study the onset and development of an ultra low frequency (ULF pulsation excited by a storm sudden commencement. On 30 August 2001, 14:10 UT, the Cluster spacecraft are located in the dayside magnetosphere and observe the excitation of a ULF pulsation by a threefold enhancement in the solar wind dynamic pressure. Two different harmonics are observed by Cluster, one at 6.8 mHz and another at 27 mHz. We observe a compressional wave and the development of a toroidal and poloidal standing wave mode. The toroidal mode is observed over a narrow range of L-shells whereas the poloidal mode is observed to have a much larger radial extent. By looking at the phase difference between the electric and magnetic fields we see that for the first two wave periods both the poloidal and toroidal mode are travelling waves and then suddenly change into standing waves. We estimate the azimuthal wave number for the 6.8 mHz to be m=10±3. For the 27 mHz wave, m seems to be several times larger and we discuss the implications of this. We conclude that the enhancement in solar wind pressure excites eigenmodes of the geomagnetic cavity/waveguide that propagate tailward and that these eigenmodes in turn couple to toroidal and poloidal mode waves. Thus our observations give firm support to the magnetospheric waveguide theory.

  1. Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt

    KAUST Repository

    Hu, Youfan; Gao, Yifan; Singamaneni, Srikanth; Tsukruk, Vladimir V.; Wang, Zhong Lin

    2009-01-01

    We demonstrate the first electric field induced transverse deflection of a single-crystal, free-standing ZnO microbelt as a result of converse piezoelectric effect. For a microbelt growing along the c-axis, a shear stress in the a-c plane can

  2. Effect of Sitting Pause Times on Balance After Supine to Standing Transfer in Dim Light.

    Science.gov (United States)

    Johnson, Eric G; Albalwi, Abdulaziz A; Al-Dabbak, Fuad M; Daher, Noha S

    2017-06-01

    The risk of falling for older adults increases in dimly lit environments. Longer sitting pause times, before getting out of bed and standing during the night, may improve postural stability. The purpose of this study was to measure the effect of sitting pause times on postural sway velocity immediately after a supine to standing transfer in a dimly lit room in older adult women. Eighteen healthy women aged 65 to 75 years who were able to independently perform supine to standing transfers participated in the study. On each of 2 consecutive days, participants assumed the supine position on a mat table and closed their eyes for 45 minutes. Then, participants were instructed to open their eyes and transfer from supine to sitting, with either 2- or 30-second pause in the sitting position followed by standing. The sitting pause time order was randomized. A significant difference was observed in postural sway velocity between the 2- and 30-second sitting pause times. The results revealed that there was less postural sway velocity after 30-second than 2-second sitting pause time (0.61 ± 0.19 vs 1.22 ± 0.68, P Falls related to bathroom usage at night are the most common reported falls among older adults. In the present study, the investigators studied the effect of sitting pause times on postural sway velocity after changing position from supine to standing in a dimly lit environment. The findings showed that the mean postural sway velocity was significantly less after 30-second sitting pause time compared with 2-second sitting pause time. Postural sway velocity decreased when participants performed a sitting pause of 30 seconds before standing in a dimly lit environment. These results suggest that longer sitting pause times may improve adaptability to dimly lit environments, contributing to improved postural stability and reduced risk of fall in older adult women when getting out of bed at night.

  3. The effect of medial arch support over the plantar pressure and triceps surae muscle strength after prolonged standing

    OpenAIRE

    Hindun Saadah; Deswaty Furqonita; Angela Tulaar

    2015-01-01

    Background: The activity with prolonged standing position is one of the causes of abnormalities in the lower leg and foot. The aim of this study is to discover the effect of medial arch support over the distribution of plantar pressure when standing and walking.Methods: This was an experimental study with pre- and post-design the strength of triceps surae muscle after prolonged standing, was also evaluated in an experimental study with pre- and post-design. Variables of plantar pressure measu...

  4. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  5. Energy in one-dimensional linear waves in a string

    International Nuclear Information System (INIS)

    Burko, Lior M

    2010-01-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course. (letters and comments)

  6. Traveling Wave Modes of a Plane Layered Anelastic Earth

    Science.gov (United States)

    2016-05-20

    grant, “Coupled Modes in Elastic Bottoms” (1) is the publication “Traveling wave modes of a plane layered anelastic earth ” accepted for...anelastic earth Robert I. Odom Applied Physics Laboratory and Department of Earth and Space Sciences University of Washington, 1013 NE 40th St., Seattle...contrast to a similar standing wave problem for the earth free oscillations (Tromp and Dahlen, 1990). Attenuation is commonly incorporated into synthetic

  7. Effect of detector size and position on measured vibration spectra of strings and rods

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Por, G.

    1993-04-01

    Weight functions of string and rod vibrations are described by standing and travelling wave models. The effects of detector size and position on the measured vibration spectra was investigated, and the main characteristics of the transfer function were calculated by a simple standing wave model. The theoretical results were compared with data from laboratory rod vibration experiments, and with pressure fluctuation spectra obtained at the Paks Nuclear Power Plant. In addition, some fundamental physical consequences can be made using the theory of superposition of travelling waves and their reflection on clamped rod ends. (R.P.) 5 refs.; 10 figs

  8. Effective Orthorhombic Anisotropic Models for Wave field Extrapolation

    KAUST Repository

    Ibanez Jacome, Wilson

    2013-05-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the

  9. Nonlinear effects on mode-converted lower-hybrid waves

    International Nuclear Information System (INIS)

    Kuehl, H.H.

    1976-01-01

    Nonlinear ponderomotive force effects on mode-converted lower-hybrid waves are considered. The nonlinear distortion of these waves is shown to be governed by the cubic nonlinear Schroedinger equation. The threshold condition for self-focusing and filamentation is derived

  10. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  11. Surfing a Standing Wave

    Science.gov (United States)

    de Campos Valadares, Eduardo; Alves, Esdras Garcia

    2005-05-01

    Local "reversal of gravity" can be simulated with an inverted pendulum whose pivot is made to oscillate vertically. A beautiful demonstration of this surprising effect can be found in Ref. 1. In this case, the pendulum is a piece of plastic straw and its pivot pin is fixed at the end of a plastic ruler that is made to oscillate vertically by a small eccentric motor. A theoretical treatment of this inverted pendulum may be found in Ref. 2.

  12. Effect of nonlinear wave-particle interaction on electron-cyclotron absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, C; Vlahos, L [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2006-09-15

    We perform a self-consistent analysis of the nonlinear interaction of magnetized plasmas with electron-cyclotron (EC) waves. A closed set of equations is derived, which consists of the relativistic equations of motion under the wave field and the wave equation for the vector potential. The plasma is described in terms of ensembles of electrons which collectively determine the evolution of the wave amplitude and frequency through the current response. This description allows for effects of the electron motions on the efficiency of the wave absorption, for example, the asynchrony between the wave phase and the gyroperiod. As an application, we study the absorption of an EC wave beam in a simplified tokamak geometry, for plasma parameters relevant to current and future fusion experiments. We conclude that, within the limits of our model, there are cases where the linear theory for the absorption of EC waves, used widely in the current literature, may overestimate the energy deposition. In such cases, nonlinear effects are essential for the accurate estimation of the plasma-wave coupling and their inclusion should be considered, especially when the wave power is dramatically increased as in the case of ITER.

  13. Effect of nonlinear wave-particle interaction on electron-cyclotron absorption

    International Nuclear Information System (INIS)

    Tsironis, C; Vlahos, L

    2006-01-01

    We perform a self-consistent analysis of the nonlinear interaction of magnetized plasmas with electron-cyclotron (EC) waves. A closed set of equations is derived, which consists of the relativistic equations of motion under the wave field and the wave equation for the vector potential. The plasma is described in terms of ensembles of electrons which collectively determine the evolution of the wave amplitude and frequency through the current response. This description allows for effects of the electron motions on the efficiency of the wave absorption, for example, the asynchrony between the wave phase and the gyroperiod. As an application, we study the absorption of an EC wave beam in a simplified tokamak geometry, for plasma parameters relevant to current and future fusion experiments. We conclude that, within the limits of our model, there are cases where the linear theory for the absorption of EC waves, used widely in the current literature, may overestimate the energy deposition. In such cases, nonlinear effects are essential for the accurate estimation of the plasma-wave coupling and their inclusion should be considered, especially when the wave power is dramatically increased as in the case of ITER

  14. The effect of medial arch support over the plantar pressure and triceps surae muscle strength after prolonged standing

    Directory of Open Access Journals (Sweden)

    Hindun Saadah

    2015-11-01

    Full Text Available Background: The activity with prolonged standing position is one of the causes of abnormalities in the lower leg and foot. The aim of this study is to discover the effect of medial arch support over the distribution of plantar pressure when standing and walking.Methods: This was an experimental study with pre- and post-design the strength of triceps surae muscle after prolonged standing, was also evaluated in an experimental study with pre- and post-design. Variables of plantar pressure measurement are the contact area and pressure peak were measured by using the Mat-scan tool. The measurement of the triceps surae muscle strength was done with a hand-held dynamometer, before and after using the medial arch support. Measurement was performed before and after working with prolonged standing position which took place about seven hours using the medial arch support inserted in the shoes. Data was analyzed using paired T-test.Results: There was a significant difference of peak pressure between standing (p = 0.041 and walking (p = 0.001. Whereas the contact area showed a significant decrease in the width of the contact area when standing (104.12 ± 12.42 vs 99.08 ± 10.21 p = 0.023. Whereas, the triceps surae muscle strength pre- and post-standing prolonged did not indicate a significant difference.Conclusion: There was decrease in peak pressure when standing and walking and decrease in contact area when standing on plantar after used of the medial arch support after prolonged standing.

  15. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  16. Effect of Core Stability Training on Trunk Function, Standing Balance, and Mobility in Stroke Patients.

    Science.gov (United States)

    Haruyama, Koshiro; Kawakami, Michiyuki; Otsuka, Tomoyoshi

    2017-03-01

    Trunk function is important for standing balance, mobility, and functional outcome after stroke, but few studies have evaluated the effects of exercises aimed at improving core stability in stroke patients. To investigate the effectiveness of core stability training on trunk function, standing balance, and mobility in stroke patients. An assessor-blinded, randomized controlled trial was undertaken in a stroke rehabilitation ward, with 32 participants randomly assigned to an experimental group or a control group (n = 16 each). The experimental group received 400 minutes of core stability training in place of conventional programs within total training time, while the control group received only conventional programs. Primary outcome measures were evaluated using the Trunk Impairment Scale (TIS), which reflects trunk function. Secondary outcome measures were evaluated by pelvic tilt active range of motion in the sagittal plane, the Balance Evaluation Systems Test-brief version (Brief-BESTest), Functional Reach test, Timed Up-and-Go test (TUG), and Functional Ambulation Categories (FAC). A general linear repeated-measures model was used to analyze the results. A treatment effect was found for the experimental group on the dynamic balance subscale and total score of the TIS ( P = .002 and P Core stability training has beneficial effects on trunk function, standing balance, and mobility in stroke patients. Our findings might provide support for introducing core stability training in stroke rehabilitation.

  17. Simulation and analysis of TE wave propagation for measurement of electron cloud densities in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sonnad, Kiran G., E-mail: kgs52@cornell.edu [CLASSE, Cornell University, Ithaca, NY (United States); Hammond, Kenneth C. [Department of Physics, Harvard University, Cambridge, MA (United States); Schwartz, Robert M. [CLASSE, Cornell University, Ithaca, NY (United States); Veitzer, Seth A. [Tech-X Corporation, Boulder, CO (United States)

    2014-08-01

    The use of transverse electric (TE) waves has proved to be a powerful, noninvasive method for estimating the densities of electron clouds formed in particle accelerators. Results from the plasma simulation program VSim have served as a useful guide for experimental studies related to this method, which have been performed at various accelerator facilities. This paper provides results of the simulation and modeling work done in conjunction with experimental efforts carried out at the Cornell electron storage ring “Test Accelerator” (CESRTA). This paper begins with a discussion of the phase shift induced by electron clouds in the transmission of RF waves, followed by the effect of reflections along the beam pipe, simulation of the resonant standing wave frequency shifts and finally the effects of external magnetic fields, namely dipoles and wigglers. A derivation of the dispersion relationship of wave propagation for arbitrary geometries in field free regions with a cold, uniform cloud density is also provided.

  18. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  19. Variable Attitude Test Stand

    Data.gov (United States)

    Federal Laboratory Consortium — The Variable Attitude Test Stand designed and built for testing of the V-22 tilt rotor aircraft propulsion system, is used to evaluate the effect of aircraft flight...

  20. Biological effects of laser-induced stress waves

    International Nuclear Information System (INIS)

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-01-01

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress

  1. Drive Stands

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrical Systems Laboratory (ESL)houses numerous electrically driven drive stands. A drive stand consists of an electric motor driving a gearbox and a mounting...

  2. Short-wave albedo of a pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, A.

    1985-06-01

    In this paper nine years of continuous records of the short-wave albedo above a Scotch pine forest in middle Europe were analysed. Special emphasis was given to the dependencies of the albedo on its diurnal variation, its annual variation, the solar altitude, the structure of the stand, the cloud cover, the soil moisture and the spectral reflectance. A long-termed trend of the albedo could not be found, e.g. caused by the stand growth. Finally the annual variation of the albedo of the Scotch pine forest was compared with measurements above different surface types in middle Europe.

  3. Management alternatives of energy wood thinning stands

    International Nuclear Information System (INIS)

    Heikkilae, Jani; Siren, Matti; Aeijaelae, Olli

    2007-01-01

    Energy wood thinning has become a feasible treatment alternative of young stands in Finland. Energy wood thinnings have been carried out mainly in stands where precommercial thinning has been neglected and the harvesting conditions for industrial wood thinning are difficult. Despite of its positive effects on harvesting costs and on renewable energy potential, whole-tree harvesting has been constantly criticized for causing growth loss. In this paper, the profitability of energy wood thinning was studied in 20 Scots pine-dominated stands where energy wood thinning was carried out. The growth of the stands after thinning was predicted with the help of Motti-stand simulator. Entire rotation time of the stands was simulated with different management alternatives. The intensity of first thinning and recovery level of logging residues varied between alternatives. In order to attain acceptable harvesting conditions, industrial wood thinning had to be delayed. The effect of energy wood thinning on subsequent stem wood growth was almost the same as in conventional thinning. Whole-tree harvesting for energy proved to be profitable alternative if the stumpage price is around 3EUR m -3 , the interest rate is 3% or 5% and the removal of pulpwood is less than 20 m 3 ha -1 . If the harvestable pulpwood yield is over 20 m 3 ha -1 , integrated harvesting of industrial and energy wood or delayed industrial wood harvesting becomes more profitable. (author)

  4. Flow under standing waves Part 2. Scour and deposition in front of breakwaters

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    and routines for, updating the computational mesh based on the mass balance of sediment. Laboratory experiments of scour also were conducted in a wave flume to obtain data for model verification. Both in the numerical simulations and in the laboratory experiment, two kinds of breakwaters were used: A vertical......A 3-D general purpose Navier-Stokes solver was used to calculate the 2-D flow in front of the breakwater. The k-omega, SST (shear-stress transport) model was selected as the turbulence model. The morphologic model of the present code couples the flow solution with a sediment transport description......-wall breakwater; and a sloping-wall breakwater (Slope: 1:1.5). Numerically obtained scour-deposition profiles were compared with the experiments. The numerical results show that the equilibrium scour depth normalized by the wave height decreases with increasing water-depth-to-wave-length ratio. Although...

  5. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire.

    Science.gov (United States)

    Fei, Peng; Yeh, Ping-Hung; Zhou, Jun; Xu, Sheng; Gao, Yifan; Song, Jinhui; Gu, Yudong; Huang, Yanyi; Wang, Zhong Lin

    2009-10-01

    We report an external force triggered field-effect transistor based on a free-standing piezoelectric fine wire (PFW). The device consists of an Ag source electrode and an Au drain electrode at two ends of a ZnO PFW, which were separated by an insulating polydimethylsiloxane (PDMS) thin layer. The working principle of the sensor is proposed based on the piezoelectric potential gating effect. Once subjected to a mechanical impact, the bent ZnO PFW cantilever creates a piezoelectric potential distribution across it width at its root and simultaneously produces a local reverse depletion layer with much higher donor concentration than normal, which can dramatically change the current flowing from the source electrode to drain electrode when the device is under a fixed voltage bias. Due to the free-standing structure of the sensor device, it has a prompt response time less than 20 ms and quite high and stable sensitivity of 2%/microN. The effect from contact resistance has been ruled out.

  6. The ambiguity of standing in standing devices: a qualitative interview study concerning children and parents experiences of the use of standing devices.

    Science.gov (United States)

    Nordström, Birgitta; Näslund, Annika; Ekenberg, Lilly; Zingmark, Karin

    2014-10-01

    The aim of this study was to describe children's and parents' experiences of the significance of standing in a standing device. Individual interviews were performed with six children/teenagers (aged 7-19 years) and 14 parents. The interviews were transcribed and analyzed using a qualitative content analysis. The analysis resulted in the major theme, the duality of uprightness and the related themes: (1) the instrumental dimension of standing; (2) the social dimension of standing; and (3) the ambivalent dimension of standing. Each of the themes comprised several subthemes. There is an inherent duality related to the use of a standing device. Standing in a standing device was seen as a treatment of body structures and functions, as well as a possible source of pain. Standing was considered to influence freedom in activities and participation both positively and negatively. The parents experienced that standing influenced other peoples' views of their child, while the children experienced standing as a way to extend the body and as something that gave them benefits in some activities. Physiotherapists working with children should take into account both the social and physical dimensions of using a standing device and consider both the child's and the parents' views.

  7. Instability of a planar expansion wave.

    Science.gov (United States)

    Velikovich, A L; Zalesak, S T; Metzler, N; Wouchuk, J G

    2005-10-01

    An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent gamma. At gamma > 3, the mass modulation amplitude delta(m) in a rippled expansion wave exhibits a power-law growth with time alpha(t)beta, where beta = (gamma - 3)/(gamma - 1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme gamma - 1 gas with low . Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results.

  8. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-01

    Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v vph diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.

  9. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation

    International Nuclear Information System (INIS)

    Li Xin-Xia; Xiang Nong; Gan Chun-Yun

    2015-01-01

    The effect of the wave accessibility condition on the lower hybrid current drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n ‖ = 2.1 or n ‖ = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroidal geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n ‖ = 2.1 if a toroidal magnetic field B T = 2.5 T is applied. (paper)

  10. High-power TM01 millimeter wave pulse sensor in circular waveguide

    International Nuclear Information System (INIS)

    Wang Guang-Qiang; Zhu Xiang-Qin; Chen Zai-Gao; Wang Xue-Feng; Zhang Li-Jun

    2015-01-01

    By investigating the interaction of an n-type silicon sample with the TM 01 mode millimeter wave in a circular waveguide, a viable high-power TM 01 millimeter wave sensor is proposed. Based on the hot electron effect, the silicon sample serving as a sensing element (SE) and appropriately mounted on the inner wall of the circular waveguide is devoted to the on-line measurement of a high-power millimeter wave pulse. A three-dimensional parallel finite-difference time-domain method is applied to simulate the wave propagation within the measuring structure. The transverse electric field distribution, the dependences of the frequency response of the voltage standing-wave ratio (VSWR) in the circular waveguide, and the average electric field amplitude within the SE on the electrophysical parameters of the SE are calculated and analyzed in the frequency range of 300–400 GHz. As a result, the optimal dimensions and specific resistance of the SE are obtained, which provide a VSWR of no more than 2.0, a relative sensitivity around 0.0046 kW −1 fluctuating within ± 17.3%, and a maximum enduring power of about 4.3 MW. (paper)

  11. Kinesthetic Transverse Wave Demonstration

    Science.gov (United States)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  12. Stand and within-stand factors influencing Golden-winged Warbler use of regenerating stands in the central Appalachian Mountains

    Directory of Open Access Journals (Sweden)

    Marja H. Bakermans

    2015-06-01

    Full Text Available The Golden-winged Warbler (Vermivora chrysoptera is currently being considered for protected status under the U.S. Endangered Species Act. The creation of breeding habitat in the Appalachian Mountains is considered a conservation priority for this songbird, which is dependent on extensively forested landscapes with adequate availability of young forest. We modeled abundance of Golden-winged Warbler males in regenerating harvested forest stands that were 0-17 years postharvest at both mid-Appalachian and northeast Pennsylvania regional scales using stand and within-stand characteristics of 222 regenerating stands, 2010-2011. Variables that were most influential at the mid-Appalachian scale were different than those in the northeast region. Across the mid-Appalachian ecoregion, the proportion of young forest cover, i.e., shrub/scrub cover, within 1 km of regenerating stands best explained abundance of Golden-winged Warblers. Golden-winged Warbler response was best explained by a concave quadratic relationship in which abundance was highest with 5-15% land in young forest cover. We also found evidence that the amount of herbaceous cover, i.e., the amount of grasses and forbs, within a regenerating stand positively influenced abundance of Golden-winged Warblers. In northeastern Pennsylvania, where young forest cover is found in high proportions, the distance to the nearest regenerating stand best explained variation in abundance of Golden-winged Warblers. Abundance of Golden-winged Warblers was 1500 m away. When modeling within-stand features in the northeast region, many of the models were closely ranked, indicating that multiple variables likely explained Golden-winged Warbler response to within-stand conditions. Based on our findings, we have proposed several management guidelines for land managers interested in creating breeding habitat for Golden-winged Warblers using commercial timber operations. For example, we recommend when managing for

  13. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    Science.gov (United States)

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  14. Effective constants for wave propagation through partially saturated porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.; Thigpen, L.

    1985-01-01

    The multipole scattering coefficients for elastic wave scattering from a spherical inhomogeneity in a fluid-saturated porous medium have been calculated. These coefficients may be used to obtain estimates of the effective macroscopic constants for long-wavelength propagation of elastic waves through partially saturated media. If the volume average of the single scattering from spherical bubbles of gas and liquid is required to vanish, the resulting equations determine the effective bulk modulus, density, and viscosity of the multiphase fluid filling the pores. The formula for the effective viscosity during compressional wave excitation is apparently new

  15. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    Science.gov (United States)

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.

  16. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  17. Concept of an ionizing time-domain matter-wave interferometer

    OpenAIRE

    Nimmrichter, Stefan; Haslinger, Philipp; Hornberger, Klaus; Arndt, Markus

    2011-01-01

    We discuss the concept of an all-optical and ionizing matter-wave interferometer in the time domain. The proposed setup aims at testing the wave nature of highly massive clusters and molecules, and it will enable new precision experiments with a broad class of atoms, using the same laser system. The propagating particles are illuminated by three pulses of a standing ultraviolet laser beam, which detaches an electron via efficient single photon-absorption. Optical gratings may have periods as ...

  18. EFFECT OF A RADIATION COOLING AND HEATING FUNCTION ON STANDING LONGITUDINAL OSCILLATIONS IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J., E-mail: sanjaykumar@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2016-06-10

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  19. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  20. Radiation from channeled positrons in a hypersonic wave field

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Gasparyan, R.A.; Gabrielyan, R.G.

    1987-01-01

    The radiation emitted by channeled positrons in a longitudinal or transverse standing hypersonic wave field is considered. In the case of plane channeling the spectral distribution of the radiation intensity is shown to be of a resonance nature depending on the hypersound frequency

  1. Use of non-quarter-wave designs to increase the damage resistance of reflectors at 532 and 1064 nanometers

    International Nuclear Information System (INIS)

    Gill, D.H.; Newnam, B.E.; McLeod, J.

    1977-01-01

    The damage resistance of multilayer dielectric laser reflectors has been increased by using non-quarter-wave thicknesses for the top few layers. These designs minimize the standing-wave electric field in the high-index layers, which are generally the weaker layers. Algebraic equations have been derived for optimum film thicknesses and for the resulting peak electric fields. Five sets of reflectors for 532 and 1064 nm were fabricated according to these designs by two vendors using two different material combinations. Each set contained one reflector of standard all-quarter-wave design and three reflectors each with a different number of modified layers. The damage thresholds of the modified designs were found to be higher than the all-quarter-wave designs, in some cases by a factor greater than 2. The damage thresholds have been analyzed and explained in terms of standing-wave electric field patterns

  2. Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1997-01-01

    This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({ω Alf (r)} min Alf (r)} max ) and discrete range, DR, where global Alfven eigenmodes, GAEs (ω Alf (r)} min ) exist, are considered. (Here, ω Alf (r) ≡ ω Alf [n(r), B 0 (r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author)

  3. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  4. Effects of Prolonged Standing on Gait in Children with Spastic Cerebral Palsy

    Science.gov (United States)

    Salem, Yasser; Lovelace-Chandler, Venita; Zabel, Reta J.; McMillan, Amy Gross

    2010-01-01

    The purpose of this study was to determine the effects of prolonged standing on gait characteristics in children with spastic cerebral palsy. Six children with spastic cerebral palsy participated in this study with an average age of 6.5 years (SD = 2.5, range = 4.0-9.8 years). A reverse baseline design (A-B-A) was used over a 9-week period. During…

  5. Electroencephalographic and electromyographic changes during the use of detomidine and detomidine-butorphanol combination in standing horses.

    Science.gov (United States)

    Kruluc, P; Nemec, Alenka

    2006-03-01

    Clinically, the use of detomidine and butorphanol is suitable for sedation and deepening of analgosedation. The aim of our study was to establish the influence of detomidine used alone and a butorphanol-detomidine combination on brain activity and to evaluate and compare brain responses (using electroencephalography, EEG) by recording SEF90 (spectral edge frequency 90%), individual brain wave fractions (beta, alpha, theta and delta) and electromyographic (EMG) changes in the left temporal muscle in standing horses. Ten clinically healthy cold-blooded horses were divided into two groups of five animals each. Group I received detomidine and Group II received detomidine followed by butorphanol 10 min later. SEF90, individual brain wave fractions and EMG were recorded with a pEEG (processed EEG) monitor using computerised processed electroencephalography and electromyography. The present study found that detomidine alone and the detomidine-butorphanol combination significantly reduced SEF90 and EMG, and they caused changes in individual brain wave fractions during sedation and particularly during analgosedation. The EMG results showed that the detomidine-butorphanol combination provided greater and longer muscle relaxation. Our EEG and EMG results confirmed that the detomidine-butorphanol combination is safer and more appropriate for painless and non-painless procedures on standing horses compared to detomidine alone.

  6. ICRF wave propagation and absorption in axisymmetric mirrors. Annual report, July 1, 1985-February 28, 1986

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Phillips, M.W.

    1986-04-01

    A numerical code called GARFIELD has been developed to calculate the structure of ICRF electric fields in axisymmetric mirrors. It is being used to investigate ICRF wave structure of central cells of tandem mirror experiments. Fields are solved on a 2-D grid in the axial and radial directions. This permits us to study the effect that axial as well as radial variations of the magnetic field and density have on ICRF wave propagation and absorption. Much of this time frame was spent writing the code and refining the numerics. Initial calculations have been completed for the Phaedrus tandem mirror. These show that there is an evanescent fast wave structure in the radial direction, a standing wave formation in the axial direction, and a small amount of propagating ion cyclotron wave towards a shallow magnetic beach in the center of the mirror. In general, the fields peak on the outside which would show that the resulting pondermotive force would tend to stabilize the plasma

  7. Faraday instability of crystallization waves in 4He

    International Nuclear Information System (INIS)

    Abe, H; Ueda, T; Morikawa, M; Saitoh, Y; Nomura, R; Okuda, Y

    2007-01-01

    Periodic modulation of the gravity acceleration makes a flat surface of a fluid unstable and standing waves are parametrically excited on the surface. This phenomenon is called Faraday instability. Since a crystal-superfluid interface of 4 He at low temperatures is very mobile and behaves like a fluid surface, Saarloos and Weeks predicted that Faraday instability of the crystallization waves exists in 4 He and that the threshold excitation for the instability depends on the crystal growth coefficient. We successfully observed the Faraday instability of the crystal-liquid interface at 160 mK. Faraday waves were parametrically generated at one half of the driving frequency 90 Hz. Amplitude of the Faraday wave becomes smaller at higher temperature due to decrease of the crystal growth coefficient and disappears above 200 mK

  8. Effects of shock waves on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Zhang Yongtao; Shu Chiwang; Zhou Ye

    2006-01-01

    A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process

  9. Meissner effect in diffusive normal metal/d-wave superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, Takehito; Tanaka, Yukio; Golubov, Alexandre Avraamovitch; Inoue, Jun-ichiro; Asano, Yasuhiro

    2005-01-01

    The Meissner effect in diffusive normal metal/insulator/d-wave superconductor junctions is studied theoretically in the framework of the Usadel equation under the generalized boundary condition. The effect of midgap Andreev resonant states (MARS) formed at the interface of d-wave superconductor is

  10. Analytical structural optimization and experimental verifications for traveling wave generation in self-assembling swimming smart boxes

    International Nuclear Information System (INIS)

    Bani-Hani, M A; Karami, M A

    2015-01-01

    This paper presents vibration analysis and structural optimization of a swimming–morphing structure. The swimming of the structure is achieved by utilization of piezoelectric patches to generate traveling waves. The third mode shape of the structure in the longitudinal direction resembles the body waveform of a swimming eel. After swimming to its destination, the morphing structure changes shape from an open box to a cube using shape memory alloys (SMAs). The SMAs used for the configuration change of the box robot cannot be used for swimming since they fail to operate at high frequencies. Piezoelectric patches are actuated at the third natural frequency of the structure. We optimize the thickness of the panels and the stiffness of the springs at the joints to generate swimming waveforms that most closely resemble the body waveform of an eel. The traveling wave is generated using two piezoelectric sets of patches bonded to the first and last segments of the beams in the longitudinal direction. Excitation of the piezoelectric results in coupled system dynamics equations that can be translated into the generation of waves. Theoretical analysis based on the distributed parameter model is conducted in this paper. A scalar measure of the traveling to standing wave ratio is introduced using a 2-dimensional Fourier transform (2D-FFT) of the body deformation waveform. An optimization algorithm based on tuning the flexural transverse wave is established to obtain a higher traveling to standing wave ratio. The results are then compared to common methods in the literature for assessment of standing to traveling wave ratios. The analytical models are verified by the close agreement between the traveling waves predicted by the model and those measured in the experiments. (paper)

  11. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  12. Prototyping high-gradient mm-wave accelerating structures

    International Nuclear Information System (INIS)

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; Neilson, Jeffrey; Tantawi, Sami

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value of 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.

  13. The memory effect for plane gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-09-01

    We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.

  14. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS).

    Science.gov (United States)

    Horikoshi, Satoshi; Watanabe, Tomoki; Narita, Atsushi; Suzuki, Yumiko; Serpone, Nick

    2018-03-26

    Organic reactions driven by microwaves have been subjected for several years to some enigmatic phenomenon referred to as the microwave effect, an effect often mentioned in microwave chemistry but seldom understood. We identify this microwave effect as an electromagnetic wave effect that influences many chemical reactions. In this article, we demonstrate its existence using three different types of microwave generators with dissimilar oscillation characteristics. We show that this effect is operative in photocatalyzed TiO 2 reactions; it negatively influences electro-conductive catalyzed reactions, and yet has but a negligible effect on organic syntheses. The relationship between this electromagnetic wave effect and chemical reactions is elucidated from such energetic considerations as the photon energy and the reactions' activation energies.

  15. Effects of Simulated Heat Waves on Cardiovascular Functions in Senile Mice

    Directory of Open Access Journals (Sweden)

    Xiakun Zhang

    2014-08-01

    Full Text Available The mechanism of the effects of simulated heat waves on cardiovascular disease in senile mice was investigated. Heat waves were simulated in a TEM1880 meteorological environment simulation chamber, according to a heat wave that occurred in July 2001 in Nanjing, China. Eighteen senile mice were divided into control, heat wave, and heat wave BH4 groups, respectively. Mice in the heat wave and heat wave BH4 groups were exposed to simulated heat waves in the simulation chamber. The levels of ET-1, NO, HSP60, SOD, TNF, sICAM-1, and HIF-1α in each group of mice were measured after heat wave simulation. Results show that heat waves decreased SOD activity in the myocardial tissue of senile mice, increased NO, HSP60, TNF, sICAM-1, and HIF-1α levels, and slightly decreased ET-1 levels, BH4 can relieve the effects of heat waves on various biological indicators. After a comprehensive analysis of the experiments above, we draw the followings conclusions regarding the influence of heat waves on senile mice: excess HSP60 activated immune cells, and induced endothelial cells and macrophages to secrete large amounts of ICAM-1, TNF-α, and other inflammatory cytokines, it also activated the inflammation response in the body and damaged the coronary endothelial cell structure, which increased the permeability of blood vessel intima and decreased SOD activity in cardiac tissues. The oxidation of lipoproteins in the blood increased, and large amounts of cholesterol were generated. Cholesterol penetrated the intima and deposited on the blood vessel wall, forming atherosclerosis and leading to the occurrence of cardiovascular disease in senile mice. These results maybe are useful for studying the effects of heat waves on elderly humans, which we discussed in the discussion chapter.

  16. The structure of steady shock waves in porous metals

    Science.gov (United States)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  17. Damping of surface waves due to oil emulsions in application to ocean remote sensing

    Science.gov (United States)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.

    2017-10-01

    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  18. Applicability of coda wave interferometry technique for measurement of acoustoelastic effect of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Woo [Dept. of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)

    2016-12-15

    In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

  19. Applicability of coda wave interferometry technique for measurement of acoustoelastic effect of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung Woo [Dept. of of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)

    2014-12-15

    In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

  20. Writing magnetic patterns with surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  1. Discovery of an Important Previously Unknown Longitudinal Wave.

    Science.gov (United States)

    Wagner, Orvin

    2002-03-01

    In 1988 a new species of longitudinal sound like wave was identified in this laboratory. These waves travel through (dark matter filled) vacuum as well as through ordinary matter. So far as is known these waves always appear as standing waves. The data suggest that they organize plants, organize structures in manipulated granular materials, organize planetary systems, and other structures of the universe. They are likely the basis for the beginnings of life and are closely associated with quantum waves. The repeating structures that they produce suggest that they are a basis for fractal structures. Their velocities appear to be a function of the medium as well as the timing of their sources since quantized velocities have been found. 12 years of data collected in this laboratory suggest that the waves are all pervading but they still interact with ordinary matter. These waves apparently provide for the stability of the solar system and probably the whole universe. They interact with gravity within plants, for example, to provide a basis for a plant's response to gravity. See the Wagner web site.

  2. Subwavelength position measurements with running-wave driving fields

    Energy Technology Data Exchange (ETDEWEB)

    Evers, Joerg [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Qamar, Sajid [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-08-15

    Subwavelength position measurement of quantum particles is discussed. Our setup is based on a closed-loop driving-field configuration, which enforces a sensitivity of the particle dynamics to the phases of the applied fields. Thus, running wave fields are sufficient, avoiding limitations associated with standing-wave-based localization schemes. Reversing the directions of the driving laser fields switches between different magnification levels for the position determination. This allows us to optimize the localization, and at the same time eliminates the need for additional classical measurements common to all previous localization schemes based on spatial periodicity.

  3. Effect of material parameters on stress wave propagation during fast upsetting

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-jin; CHENG Li-dong

    2008-01-01

    Based'on a dynamic analysis method and an explicit algorithm, a dynamic explicit finite element code was developed for modeling the fast upsetting process of block under drop hammer impact, in which the hammer velocity during the deformation was calculated by energy conservation law according to the operating principle of hammer equipment. The stress wave propagation and its effect on the deformation were analyzed by the stress and strain distributions. Industrial pure lead, oxygen-free high-conductivity (OFHC) copper and 7039 aluminum alloy were chosen to investigate the effect of material parameters on the stress wave propagation. The results show that the stress wave propagates from top to bottom of block, and then reflects back when it reaches the bottom surface. After that, stress wave propagates and reflects repeatedly between the upper surface and bottom surface. The stress wave propagation has a significant effect on the deformation at the initial stage, and then becomes weak at the middle-final stage. When the ratio of elastic modulus or the slope of stress-strain curve to mass density becomes larger, the velocity of stress wave propagation increases, and the influence of stress wave on the deformation becomes small.

  4. Effect of Weeds and Some Methods for their Control in Seed Production Stands of Sainfoin (Onobrychis viciifolia Scop.

    Directory of Open Access Journals (Sweden)

    Tsvetanka Dimitrova

    2010-01-01

    Full Text Available During the 2007-2009 period in the experimental field of the Institute of Forage Cropsa study was conducted with the purpose of investigating the effect of weeds and somemethods for their control in seed production stands of sainfoin (Onobrychis viciifolia Scop..The trial was carried out on a slightly leached chernozem on an area with a natural backgroundof weed infestation. As a result of the study it was found:Establishment of very uniform and productive seed production stands of sainfoinrequired effective weed control concentrated mainly in the first year when the degree ofweed infestation was the highest and reached to a number of 245 plants/m2 and the freshweed biomass to 1311 g/m2.The chemical control method showed the highest efficacy had the highest efficiencywhen, in the year of stand establishment at the stage of second-fourth true leaf of sainfoin,the treatment was conducted with imazamox 40g/l (Pulsar 40 at the dose of 48 g a.i./haor with the system of Bentazon 600 g/l (Basagran 600 SL – 900 g a.i./ha – fluazifop-P-butylg/l (Fusilad Forte – 120 g a.i./ha. In the years of seed production in spring at the beginningof vegetation, the treatment was conducted with imazamox 40 g/l (Pulsar 40 at the doseof 20 g a.i./ha + adjuvant DESH at the dose of 1000 ml/ha.An alternative to the chemical method is to sow sainfoin under cover of spring barleyachieving more complete use of the area in the first year, a weed suppressive and ecologicaleffect, but some negative residual effect on the crop was also observed;The pure stands of sainfoin with chemical control of weeds had the highest seed productivity,exceeding the zero check by 24 to 28%, followed by the stands with spring barleyas a cover crop with an increase of 12% and the mixed stands of sainfoin with crestedwheatgrass had the lowest productivity.

  5. Observations of magnetohydrodynamic waves on the ground and on a satellite

    International Nuclear Information System (INIS)

    Lanzerotti, L.J.; Fukunishi, H.; Maclennan, C.G.; Cahill, L.J. Jr.

    1976-01-01

    A comparison is made of magnetohydrodynamic waves observed near the equator on Explorer 45 and at an array of ground stations in the northern hemisphere and at their conjugate station at Siple, Antartica. The data comparisons strongly support the notion that the observed waves can be considered odd mode standing waves in the magnetosphere. This conclusion has important implications for the interpretation of single-point satellite and/or ground measurements of ULF plasma wave phenomena in the magnetosphere. Further, the data comparisons strongly suggest that the overall ULF (approx.5-30 mHz) power levels are quite similar in the magnetosphere and on the ground, at least during the intervals studied

  6. Emotion-related personality traits and peer social standing: unique and interactive effects in cyberbullying behaviors.

    Science.gov (United States)

    Ciucci, Enrica; Baroncelli, Andrea

    2014-09-01

    This study investigated the unique and interactive effects of emotion-related personality traits (i.e., callousness and uncaring traits) and peer social standing (i.e., social preference and perceived popularity) on cyberbullying behaviors in preadolescents. A total of 529 preadolescents (247 boys, 46.69%) were recruited from an Italian middle school (Mage=12 years and 7 months; SD=1 year and 2 months). The participants primarily consisted of Italian children (91.12%). A series of binary logistic regression analyses parted by gender were conducted to examine the main and interactive effects of self-reported emotion-related variables and peer-reported social standing in the prediction of self-reported cyberbullying behaviors, while controlling for cyber victimization and grade effects. In girls, an uncaring disposition was directly associated with cyberbullying behaviors, whereas in boys this association only emerged for those with low perceived popularity. Our results indicated that, in developing anti(cyber)bullying programs, school researchers and practitioners should jointly consider individual and contextual factors.

  7. Injurious effects of millimeter waves: current status of research

    International Nuclear Information System (INIS)

    Yang Zaifu; Qian Huanwen

    2005-01-01

    Millimeter waves refer to extremely high-frequency (30-300 GHz) electromagnetic oscillations. The wide application of millimeter techniques to military affairs and medicine, especially the success of non-lethal millimeter weapon gives rise to serious concern about millimeter wave damage and protection against it. Millimeter wave radiation can cause circulatory failure and subsequent death when irradiated systemically, while it can only cause direct injury to cornea and skin because of its poor penetrability (less than 1 mm into biological tissue). In this paper a brief review of cornea and skin damage and lethal effect caused by millimeter wave radiation is given. (authors)

  8. Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films

    Science.gov (United States)

    Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2013-06-01

    A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.

  9. Effect of Temperature on Acoustic Evaluation of Standing trees and logs: Part 1-Laboratory investigation

    Science.gov (United States)

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce. Allison

    2012-01-01

    The goals of this study were to investigate the effect of environment temperature on acoustic velocity of standing trees and green logs and to develop workable models for compensating temperature differences as acoustic measurements are performed in different climates and seasons. The objective of Part 1 was to investigate interactive effects of temperature and...

  10. Probing buried solid-solid interfaces in magnetic multilayer structures and other nanostructures using spectroscopy excited by soft x-ray standing waves

    International Nuclear Information System (INIS)

    Yang, S.-H.; Mun, B.S.; Mannella, N.; Sell, B.; Ritchey, S.B.; Fadley, C.S.; Pham, L.; Nambu, A.; Watanabe, M.

    2004-01-01

    Full text: Buried solid-solid interfaces are becoming increasingly more important in all aspects of nanoscience, and we here dis- cuss the st applications of a new method for selectively studying them with the vuv/soft x-ray spectroscopies. As specific examples, magnetic multilayer structures represent key elements of current developments in spintronics, including giant magnetoresistance, exchange bias, and magnetic tunnel resistance. The buried interfaces in such structures are of key importance to their performance, but have up to now been difficult to study selectively with these spectroscopies. This novel method involves excitation of photoelectrons or fluorescent x-rays with soft x-ray standing waves created by Bragg reflection from a multilayer mirror substrate on which the sample is grown. We will discuss core and valence photoemission, as well soft x-ray emission, results from applying this method to multilayer structures relevant to both giant magnetoresistance (Fe/Cr-[2]) and magnetic tunnel junctions (Al 2 O 3 /FeCo) , including magnetic dichroism measurements. Work supported by the Director, Of e of Science, Of e of Basic Energy Sciences, Materials Science and Engineering Division, U.S. Department of Energy, Contract No. DE-AC03-76SF000

  11. LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string

    Science.gov (United States)

    Burko, Lior M.

    2010-09-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.

  12. Ion cyclotron emission calculations using a 2D full wave numerical code

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1987-01-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code 2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included

  13. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

    Directory of Open Access Journals (Sweden)

    Sharay Astariz

    2015-07-01

    Full Text Available Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be realised through these co-located energy farms and, thus, some challenges of offshore wind energy can be met. Among them, this paper focuses on the longer non-operational periods of offshore wind turbines—relative to their onshore counterparts—typically caused by delays in maintenance due to the harsh marine conditions. Co-located wave energy converters would act as a barrier extracting energy from the waves and resulting in a shielding effect over the wind farm. On this basis, the aim of this paper is to analyse wave energy economics in a holistic way, as well as the synergies between wave and offshore wind energy, focusing on the shadow effect and the associated increase in the accessibility to the wind turbines.

  14. I'm still standing : A longitudinal study on the effect of a default nudge

    NARCIS (Netherlands)

    Venema, A.G.; Kroese, F.M.; de Ridder, D.T.D.

    Objective: This study assessed the effect of a default nudge to reduce sedentary behaviour at work over time. Design and main outcome measures: A field study was conducted at a governmental organisation. In the present study, the default setting of sit–stand desks (SSDs) was changed from sitting to

  15. Instability of a planar expansion wave

    International Nuclear Information System (INIS)

    Velikovich, A.L.; Zalesak, S.T.; Metzler, N.; Wouchuk, J.G.

    2005-01-01

    An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent γ. At γ>3, the mass modulation amplitude δm in a rippled expansion wave exhibits a power-law growth with time ∝t β , where β=(γ-3)/(γ-1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme γ-1 -1/2 , and then starts to decrease. The mechanism driving the growth is the same as that of Vishniac's instability of a blast wave in a gas with low γ. Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results

  16. Size Effect on Failure of Pre-stretched Free-Standing Nanomembranes

    Directory of Open Access Journals (Sweden)

    Cheng Wenlong

    2010-01-01

    Full Text Available Abstract Free-standing nanomembranes are two-dimensional materials with nanometer thickness but can have macroscopic lateral dimensions. We develop a fracture model to evaluate a pre-stretched free standing circular ultrathin nanomembrane and establish a relation between the energy release rate of a circumferential interface crack and the pre-strain in the membrane. Our results demonstrate that detachment cannot occur when the radius of the membrane is smaller than a critical size. This critical radius is inversely proportional to the Young’s modulus and square of the pre-strain of the membrane.

  17. Experimental evaluation of the effect of wave focusing walls on the performance of the Sea-wave Slot-cone Generator

    International Nuclear Information System (INIS)

    Oliveira, P.; Taveira-Pinto, F.; Morais, T.; Rosa-Santos, P.

    2016-01-01

    Highlights: • The application of the Sea-wave Slot-cone Generator (SSG) in breakwaters is promising. • The use of wave focusing walls (WFW) improves the performance of the SSG technology. • The WFW concentrate the incident wave energy and increase the overtopping flow rates. • The design of new SSG devices should take into account the eventual use of WFW. • The use of WFW increased the annual energy production approximately to the double. - Abstract: The Sea-wave Slot-cone Generator (SSG) is a multi-level overtopping based wave energy converter that can be installed either nearshore or offshore. The installation in harbor breakwaters and in the shoreline presents several advantages despite the usual exposure to smaller waves than at offshore locations. This work analyzes the effect of wave focusing walls (i.e., wave concentrators) on the performance of isolated SSG units using a physical model built on a geometric scale of 1/40. Seven configurations were defined by changing the opening angle and the crest level of those elements. The use of wave concentrators proved to be advantageous since a wider wave front is captured and the run-up and overtopping phenomena are enhanced on the SSG ramp owing to the wave energy concentration (walls tapering effect). In fact, the total mean power captured increased for all SSG configurations with concentrators in comparison to the base configuration (without concentrators), regardless of the sea state considered. In terms of hydraulic performance, the gain associated to the use of wave concentrators depends on the characteristics of incident waves, being higher for the smaller significant wave heights and the shorter peak wave periods. The hydraulic efficiency, defined as the ratio between the total mean power captured per meter of SSG width and the wave power per meter width of the incident waves, increases with the significant wave height and reduces with the peak wave period in all tested SSG configurations. In

  18. Traveling waves of the regularized short pulse equation

    International Nuclear Information System (INIS)

    Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J

    2014-01-01

    The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)

  19. Effects on musculoskeletal pain from "Take a Stand!" - a cluster-randomized controlled trial reducing sitting time among office workers

    DEFF Research Database (Denmark)

    Danquah, Ida Høgstedt; Kloster, Stine; Holtermann, Andreas

    2017-01-01

    Objectives Prolonged sitting at work has been found to increase risk for musculoskeletal pain. The office-based intervention "Take a Stand!" was effective in reducing sitting time at work. We aimed to study the effect of the intervention on a secondary outcome: musculoskeletal pain. Methods Take...... a Stand! included 19 offices (317 workers) at four workplaces cluster randomized to intervention or control. The multicomponent intervention lasted three months and included management support, environmental changes, and local adaptation. Control participants behaved as usual. Musculoskeletal pain...

  20. Sit-to-Stand in People with Stroke: Effect of Lower Limb Constraint-Induced Movement Strategies

    Directory of Open Access Journals (Sweden)

    Charla Krystine Gray

    2014-01-01

    Full Text Available Background. Weight-bearing asymmetry and impaired balance may contribute to the increased fall risk in people with stroke when rising to stand from sitting. Objective. This study investigated the effect of constraint-induced movement (CIM strategies on weight-bearing symmetry and balance during sit-to-stand in people with stroke. Methods. A nonrandom convenience sample of fifteen people with stroke performed the sit-to-stand task using three CIM strategies including a solid or compliant (foam block strategy, with the unaffected limb placed on the block, and an asymmetrical foot position strategy, with the unaffected limb placed ahead of the affected limb. Duration of the task, affected limb weight-bearing, and centre of pressure and centre of mass displacement were measured in the frontal and sagittal plane. Results. Affected limb weight-bearing was increased and frontal plane centre of pressure and centre of mass moved toward the affected limb compared to baseline with all CIM strategies. Centre of mass displacement in the sagittal plane was greater with the compliant block and asymmetrical foot strategies. Conclusions. The CIM strategies demonstrated greater loading of the affected limb and movement of the centre of pressure and centre of mass toward the affected limb. The compliant block and asymmetrical foot conditions may challenge sagittal plane balance during sit-to-stand in people with stroke.

  1. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    Science.gov (United States)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  2. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  3. Seasonal changing sand waves and the effect of surface waves

    NARCIS (Netherlands)

    Sterlini, Fenneke; van Dijk, Thaiënne A.G.P.; IJzer, Steven; Hulscher, Suzanne; Schüttrumpf, Holger; Tomasicchio, Guiseppe Roberto

    2012-01-01

    Sand waves are wavelike subaqueous sediment structures that exist in large areas in shelf seas. Due to their characteristics sand waves can severely affect human offshore activities, such as navigation. This makes it important to understand the physical processes that shape and change sand waves. In

  4. Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO{sub 3}/SrTiO{sub 3} Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Eiteneer, D. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Pálsson, G.K., E-mail: gunnar.palsson@physics.uu.se [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nemšák, S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Julich, 52425 Julich (Germany); Gray, A.X. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kaiser, A.M. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Son, J.; LeBeau, J. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Conti, G. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); and others

    2016-08-15

    Highlights: • Depth resolved electronic structure of LaNiO{sub 3}/SrTiO{sub 3} superlattices is measured. • The structure is determined by x-ray standing wave angle-resolved photoemission. • Similarity to the electronic structure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} is discussed. - Abstract: LaNiO{sub 3} (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO{sub 3} (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d e{sub g} and t{sub 2g} states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our

  5. Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Cuperman, S.; Komoshvili, K. [Tel Aviv Univ. (Israel). Faculty of Exact Sciences

    1997-05-01

    This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({l_brace}{omega}{sub Alf}(r){r_brace}{sub min} < {omega} < {l_brace}{omega}{sub Alf}(r){r_brace}{sub max}) and discrete range, DR, where global Alfven eigenmodes, GAEs ({omega} < {l_brace}{sub Alf}(r){r_brace}{sub min}) exist, are considered. (Here, {omega}{sub Alf}(r) {identical_to} {omega}{sub Alf}[n(r), B{sub 0}(r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author).

  6. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects

    Science.gov (United States)

    Zhen, Ya-Xin

    2017-02-01

    In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.

  7. Study on a particle separator using ultrasonic wave

    International Nuclear Information System (INIS)

    Lee, Young Seop; Kwon, Jae Hwa; Seo, Dae Chul; Yun, Dong Jin

    2005-01-01

    This paper presents the theory, design and evaluation of a smart device for the enhanced separation of particles mixed in fluid. The smart device takes advantage of the ultrasonic standing wave, which was generated by the operation of a piezoceramic PZT patch installed in the smart device. The details of the device design including the electro-acoustical modelling for separation and PZT transducer are described at the first. Based on this design, the separation device was fabricated and evaluated. In the experiments, an optical camera with a zoom lense was used to monitor the position of interested particles within the separation channel layer in the device. The electric impedance of the PZT patch bonded on the separation device was measured. The device shows a strong levitation and separation force against 50m diameter particles mixed with water at the separation channel in the device. Experimental results also showed that the device can work at both heavy and light sand particles mixed with water due to the generated standing wave field in the separation channel.

  8. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    International Nuclear Information System (INIS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified

  9. Interaction of two walkers: wave-mediated energy and force.

    Science.gov (United States)

    Borghesi, Christian; Moukhtar, Julien; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

    2014-12-01

    A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

  10. On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: physical perspectives and theoretical analysis

    Science.gov (United States)

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Wu, Qisheng

    2018-05-01

    Since its first proposition at the end of the last century (Schasfoort et al 1999 Science 286 942-5), field-effect flow control at micrometer dimensions has attracted tremendous attention from the microfluidic community. Most previous research on this subject has mainly focused on enhancing the electroosmotic pump flow rate by introducing an additional in-phase counterionic charge across the diffusing screening cloud with external gate electrodes of static DC voltages. However, there is a flaw, namely that AC fields, which suppress undesirable electrochemical reactions, result in zero time-averaged flow. Starting from this point, we present herein a brand new approach to traveling-wave field-effect electroosmosis control from a theoretical point of view, in the context of a smart manipulation tool for the stratified liquid content of miniaturization systems. In the configuration of a traveling-wave flow field-effect transistor (TW-FFET), the field-induced out-of-phase Debye screening charge within the thin double layer originates from the forward propagation of a traveling potential wave along a discrete arrangement of external gating electrode arrays, which interacts actively with the horizontal standing-wave electric field imposed across the source-drain terminal. Since the voltage waves and induced free charge are all sinusoidal functions of the observation time, the net ICEO flow component can survive in a broad frequency range. Due to the action of the background AC electric field on the inhomogeneous counterionic charge induced at the solution/sidewall interface, asymmetric ICEO vortex patterns appear above the traveling-wave gate arrays, giving rise to simultaneous induced-charge electroosmotic pumping and mixing of fluidic samples. A mathematical model is then developed to numerically investigate the feasibility of TW-FFETs in electrokinetic microflow manipulation. A prototyping paradigm of fully electrokinetics-driven microfabricated fluidic networks in a

  11. Discovery of an All-Pervading Previously Unknown Longitudinal Wave

    Science.gov (United States)

    Wagner, Orvin E.

    2002-04-01

    In 1988 a new species of longitudinal sound like wave was identified in this laboratory. These waves travel through (dark matter filled) vacuum as well as through ordinary matter. So far as is known these waves always appear as standing waves. The data suggest that they organize plants, organize structures in manipulated granular materials, organize planetary systems, and other structures of the universe. They are likely the basis for the beginnings of life and are closely associated with quantum waves. The repeating structures that they produce suggest that they are a basis for fractal structures. Their velocities appear to be a function of the medium as well as the timing of their sources since quantized velocities have been found. 12 years of data collected in this laboratory suggest that the waves are all pervading but they still interact with ordinary matter. These waves apparently provide for the stability of the solar system and probably the whole universe. They interact with gravity within plants, for example, to provide a basis for a plant's response to gravity. See the Wagner web site.

  12. Rogue periodic waves of the modified KdV equation

    Science.gov (United States)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-05-01

    Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.

  13. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  14. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  15. Direct measurement of the intrinsic ankle stiffness during standing

    NARCIS (Netherlands)

    Vlutters, Mark; Vlutters, M.; Boonstra, Tjitske; Schouten, Alfred Christiaan; van der Kooij, Herman

    2015-01-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic

  16. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    Science.gov (United States)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases

  17. Two-dimensional linear and nonlinear Talbot effect from rogue waves.

    Science.gov (United States)

    Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng

    2015-03-01

    We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.

  18. Phase Defects as a Measure of Disorder in Traveling-Wave Convection

    International Nuclear Information System (INIS)

    La Porta, A.; Surko, C.M.

    1996-01-01

    Spatiotemporal disorder is studied in traveling-wave convection in an ethanol-water mixture. A technique for calculating the complex order parameter of the pattern is described, and the identification of phase defects is demonstrated. Point defects, domain boundaries, and standing wave patterns are shown to produce unique defect structures. The transition from a disordered state to a more ordered pattern is described in terms of the dynamics of defects and their statistics. copyright 1996 The American Physical Society

  19. Vlasov simulation of the relativistic effect on the breaking of large amplitude plasma waves

    International Nuclear Information System (INIS)

    Xu Hui; Sheng Zhengming; Zhang Jie

    2007-01-01

    The influence of relativistic and thermal effects on plasma wave breaking has been studied by solving the coupled Vlasov-Poisson equations. When the relativistic effect is not considered, the wave breaking will not occur, provided the initial perturbation is less than certain value as predicted previously, and the largest amplitude of the plasma wave will decrease with the increase of the initial temperature. When the relativistic effect is considered, wave breaking always occurs during the time evolution, irrespective of the initial perturbation amplitude. Yet the smaller the initial perturbation amplitude is, the longer is the time for wave breaking to occur. With large initial perturbations, wave breaking can always occur with the without the relativistic effect. However, the results are significantly different in the two cases. The thermal effects of electrons decrease the threshold value to initial amplitude for wave breaking and large phase velocity makes the nonlinear phenomenon occur more easily. (authors)

  20. Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas

    Science.gov (United States)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.

    2017-08-01

    Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of kFeng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.

  1. Effect of Achilles tendon loading on plantar fascia tension in the standing foot.

    Science.gov (United States)

    Cheung, Jason Tak-Man; Zhang, Ming; An, Kai-Nan

    2006-02-01

    The plantar fascia, which is one of the major arch-supporting structures of the human foot, sustains high tensions during weight-bearing. A positive correlation between Achilles tendon loading and plantar fascia tension has been reported. Excessive stretching and tightness of the Achilles tendon are thought to be the risk factors of plantar fasciitis but their biomechanical effects on the plantar fascia have not been fully addressed. A three-dimensional finite element model of the human foot and ankle, incorporating geometrical and material nonlinearity, was employed to investigate the loading response of the plantar fascia in the standing foot with different magnitudes of Achilles tendon loading. With the total ground reaction forces of one foot maintained at 350 N to represent half body weight, an increase in Achilles tendon load from (0-700 N) resulted in a general increase in total force and peak plantar pressure at the forefoot of up to about 250%. There was a lateral and anterior shift of the centre of pressure and a reduction in the arch height with an increasing Achilles tendon load as a result of the plantar flexion moment on the calcaneus. From the finite element predictions of simulated balanced standing, Achilles tendon forces of 75% of the total weight on the foot (350 N) were found to provide the closest match of the measured centre of pressure of the subject during balanced standing. Both the weight on the foot and Achilles tendon loading resulted in an increase in tension of the plantar fascia with the latter showing a two-times larger straining effect. Increasing tension on the Achilles tendon is coupled with an increasing strain on the plantar fascia. Overstretching of the Achilles tendon resulting from intense muscle contraction and passive stretching of tight Achilles tendon are plausible mechanical factors for overstraining of the plantar fascia.

  2. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank.

    Science.gov (United States)

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2010-09-01

    The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p or = 400 microm). Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Effects of wafer-level packaging on millimetre-wave antennas

    KAUST Repository

    Abutarboush, Hattan

    2011-11-01

    A cost-effective antenna package suitable for mass production mm-wave applications is investigated. Different packaging material that can be possibly used in mm-wave antennas are presented and compared. Moreover, this study investigates different methods of packaging millimetre-wave (60 GHz) MEMS antennas. The paper first introduces the custom needs for optimum operation of the MEMS antenna and then examines the current available enabling technologies for packaging. The sensitivity of the antenna\\'s reflection coefficient, gain and radiation efficiency to the packaging environment is investigated through EM simulations. © 2011 IEEE.

  4. Peer effects in unethical behavior: standing or reputation?

    Directory of Open Access Journals (Sweden)

    David Pascual-Ezama

    Full Text Available Recent empirical evidence shows that working in an unsupervised, isolated situation under competition, can increase dishonest behavior to achieve prestige. However, could working in a common space, in the presence of colleagues affect cheating? Here, we examine how familiar-peer influence, supervision and social incentives affect worker performance and dishonest behavior. First, we show that working in the presence of peers is an effective mechanism to constrain honest/dishonest behavior compared to an isolated work situation (experiment 1. Second, we demonstrate that the mere suspicion of dishonesty from another peer is not enough to affect individual cheating behavior (experiment 2, suggesting that reputation holds great importance in a worker's self-image acting as a strong social incentives. Third, we show that when the suspicion of dishonesty increases with multiple peers behaving dishonestly, the desire to increase standing is sufficient to nudge individuals' behavior back to cheating at the same levels as isolated situations (experiment 3.

  5. Fluorescent screens and image processing for the APS linac test stand

    International Nuclear Information System (INIS)

    Berg, W.; Ko, K.

    1992-01-01

    A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image

  6. Signal Processing Effects for Ultrasonic Guided Wave Scanning of Composites

    International Nuclear Information System (INIS)

    Roth, D.J.; Cosgriff, L.M.; Martin, R.E.; Burns, E.A.; Teemer, L.

    2005-01-01

    The goal of this ongoing work is to optimize experimental variables for a guided wave scanning method to obtain the most revealing and accurate images of defect conditions in composite materials. This study focuses on signal processing effects involved in forming guided wave scan images. Signal processing is involved at two basic levels for deriving ultrasonic guided wave scan images. At the primary level, NASA GRC has developed algorithms to extract over 30 parameters from the multimode signal and its power spectral density. At the secondary level, there are many variables for which values must be chosen that affect actual computation of these parameters. In this study, a ceramic matrix composite sample having a delamination is characterized using the ultrasonic guided wave scan method. Energy balance and decay rate parameters of the guided wave at each scan location are calculated to form images. These images are compared with ultrasonic c-scan and thermography images. The effect of the time portion of the waveform processed on image quality is assessed by comparing with images formed using the total waveform acquired

  7. Epicormic branching of California black oak: effect of stand and tree characteristics

    Science.gov (United States)

    Philip M. McDonald; Martin W. Ritchie

    1994-01-01

    Young California black oak (Quercus kelloggii Newb.) stands usually require thinning to increase production of acorns and wood products, but epicormic branches, which yield no acorns and constitute a serious lumber degrade. often result. A crown thinning in 60-year-old hardwood stands on a south exposure at the Challenge Experimental Forest in thenorthern Sierra Nevada...

  8. Standing Up for Learning: A Pilot Investigation on the Neurocognitive Benefits of Stand-Biased School Desks

    Directory of Open Access Journals (Sweden)

    Ranjana K. Mehta

    2015-12-01

    Full Text Available Standing desks have proven to be effective and viable solutions to combat sedentary behavior among children during the school day in studies around the world. However, little is known regarding the potential of such interventions on cognitive outcomes in children over time. The purpose of this pilot study was to determine the neurocognitive benefits, i.e., improvements in executive functioning and working memory, of stand-biased desks and explore any associated changes in frontal brain function. 34 freshman high school students were recruited for neurocognitive testing at two time points during the school year: (1 in the fall semester and (2 in the spring semester (after 27.57 (1.63 weeks of continued exposure. Executive function and working memory was evaluated using a computerized neurocognitive test battery, and brain activation patterns of the prefrontal cortex were obtained using functional near infrared spectroscopy. Continued utilization of the stand-biased desks was associated with significant improvements in executive function and working memory capabilities. Changes in corresponding brain activation patterns were also observed. These findings provide the first preliminary evidence on the neurocognitive benefits of standing desks, which to date have focused largely on energy expenditure. Findings obtained here can drive future research with larger samples and multiple schools, with comparison groups that may in turn implicate the importance of stand-biased desks, as simple environmental changes in classrooms, on enhancing children’s cognitive functioning that drive their cognitive development and impact educational outcomes.

  9. Effects of Wave Energy Converter (WEC) Arrays on Wave, Current, and Sediment Circulation

    Science.gov (United States)

    Ruehl, K.; Roberts, J. D.; Jones, C.; Magalen, J.; James, S. C.

    2012-12-01

    The characterization of the physical environment and commensurate alteration of that environment due to Wave Energy Conversion (WEC) devices, or arrays of devices, must be understood to make informed device-performance predictions, specifications of hydrodynamic loads, and environmental evaluations of eco-system responses (e.g., changes to circulation patterns, sediment dynamics, and water quality). Hydrodynamic and sediment issues associated with performance of wave-energy devices will primarily be nearshore where WEC infrastructure (e.g., anchors, piles) are exposed to large forces from the surface-wave action and currents. Wave-energy devices will be subject to additional corrosion, fouling, and wear of moving parts caused by suspended sediments in the water column. The alteration of the circulation and sediment transport patterns may also alter local ecosystems through changes in benthic habitat, circulation patterns, or other environmental parameters. Sandia National Laboratories is developing tools and performing studies to quantitatively characterize the environments where WEC devices may be installed and to assess potential affects to hydrodynamics and local sediment transport. The primary tools are wave, hydrodynamic, and sediment transport models. To ensure confidence in the resulting evaluation of system-wide effects, the models are appropriately constrained and validated with measured data where available. An extension of the US EPA's EFDC code, SNL-EFDC, provides a suitable platform for modeling the necessary hydrodynamics;it has been modified to directly incorporate output from a SWAN wave model of the region. Model development and results are presented. In this work, a model is exercised for Monterey Bay, near Santa Cruz where a WEC array could be deployed. Santa Cruz is located on the northern coast of Monterey Bay, in Central California, USA. This site was selected for preliminary research due to the readily available historical hydrodynamic data

  10. A stability investigation of two-dimensional surface waves on evaporating, isothermal or condensing liquid films - Part I, Thermal non-equilibrium effects on wave velocity

    International Nuclear Information System (INIS)

    Chunxi, L.; Xuemin, Y.

    2004-01-01

    The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers

  11. The one-leg standing radiograph

    OpenAIRE

    Pinsornsak, P.; Naratrikun, K.; Kanitnate, S.; Sangkomkamhang, T.

    2016-01-01

    Objectives The purpose of this study was to compare the joint space width between one-leg and both-legs standing radiographs in order to diagnose a primary osteoarthritis of the knee. Methods Digital radiographs of 100 medial osteoarthritic knees in 50 patients were performed. The patients had undergone one-leg standing anteroposterior (AP) views by standing on the affected leg while a both-legs standing AP view was undertaken while standing on both legs. The severity of the osteoarthritis wa...

  12. Propagation and scattering of electromagnetic waves by the ionospheric irregularities

    International Nuclear Information System (INIS)

    Ho, A.Y.; Kuo, S.P.; Lee, M.C.

    1993-01-01

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, remote-sensing and detection. The ionosphere is often perturbed with coherently structured (quasiperiodic) density irregularities. Experimental observations suggest that these irregularities could give rise to significant ionospheric effect on wave propagation such as causing spread-F of the probing HF sounding signals and scintillation of beacon satellite signals. It was show by the latter that scintillation index S 4 ∼ 0.5 and may be as high as 0.8. In this work a quasi-particle theory is developed to study the scintillation phenomenon. A Wigner distribution function for the wave intensity in the (k,r) space is introduced and its governing equation is derived with an effective collision term giving rise to the attenuation and scattering of the wave. This kinetic equation leads to a hierarchy of moment equations in r space. This systems of equations is then truncated to the second moment which is equivalent to assuming a cold quasi-particle distribution In this analysis, the irregularities are modeled as a two dimensional density modulation on an uniform background plasma. The analysis shows that this two dimensional density grating, effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then contributes to the scintillation of the beacon satellite signals. Using the proper plasma parameters and equatorial measured data of irregularities, it is shown that the scintillation index defined by S4=( 2 >- 2 )/ 2 where stands for spatial average over an irregularity wavelength is in the range of the experimentally detected values

  13. Effect of ion composition on oblique magnetosonic waves

    International Nuclear Information System (INIS)

    Kondo, Yuichi; Toida, Mieko

    2011-01-01

    The effects of ion composition on oblique magnetosonic waves in a two-ion-species plasma are studied theoretically and numerically. First, it is analytically shown that the KdV equation for the low-frequency mode, the lower branch of magnetosonic waves, is valid for amplitudes ε max (l-) , where ε max (l-) is a measure of the upper limit of the amplitude of the rarefactive solitary pulse of the low-frequency mode and is given as a function of the propagation angle of the wave θ, the density ratio and cyclotron frequency ratio of two ion species. The value of ε max (l-) increases with decreasing θ. Next, with electromagnetic particle simulations, the nonlinear evolution of the low- and high-frequency modes is examined. It is demonstrated that shorter-wavelength low- and high-frequency-mode waves are generated from a long-wavelength low-frequency-mode pulse if its amplitude ε exceeds ε max (l-) . (author)

  14. Effect of Sound Waves on Decarburization Rate of Fe-C Melt

    Science.gov (United States)

    Komarov, Sergey V.; Sano, Masamichi

    2018-02-01

    Sound waves have the ability to propagate through a gas phase and, thus, to supply the acoustic energy from a sound generator to materials being processed. This offers an attractive tool, for example, for controlling the rates of interfacial reactions in steelmaking processes. This study investigates the kinetics of decarburization in molten Fe-C alloys, the surface of which was exposed to sound waves and Ar-O2 gas blown onto the melt surface. The main emphasis is placed on clarifying effects of sound frequency, sound pressure, and gas flow rate. A series of water model experiments and numerical simulations are also performed to explain the results of high-temperature experiments and to elucidate the mechanism of sound wave application. This is explained by two phenomena that occur simultaneously: (1) turbulization of Ar-O2 gas flow by sound wave above the melt surface and (2) motion and agitation of the melt surface when exposed to sound wave. It is found that sound waves can both accelerate and inhibit the decarburization rate depending on the Ar-O2 gas flow rate and the presence of oxide film on the melt surface. The effect of sound waves is clearly observed only at higher sound pressures on resonance frequencies, which are defined by geometrical features of the experimental setup. The resonance phenomenon makes it difficult to separate the effect of sound frequency from that of sound pressure under the present experimental conditions.

  15. GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE

    Energy Technology Data Exchange (ETDEWEB)

    Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, José A.; Obergaulinger, Martin, E-mail: pablo.cerda@uv.es [Departamento de Astronomia y Astrofísica, Universidad de Valencia, c/Dr. Moliner 50, E-46100-Burjassot (Spain)

    2013-12-20

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ≲ 0.1 yr{sup –1}.

  16. Quasiparticle Green's function theory of the Josephson effect in chiral p-wave superconductor/diffusive normal metal/chiral p-wave superconductor junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is

  17. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-04-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  18. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-02-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  19. Investigating Alfvénic wave propagation in coronal open-field regions

    Science.gov (United States)

    Morton, R. J.; Tomczyk, S.; Pinto, R.

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  20. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Science.gov (United States)

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  1. Effect of stand edge on the natural regeneration of spruce, beech and Douglas-fir

    Directory of Open Access Journals (Sweden)

    Lumír Dobrovolný

    2012-01-01

    Full Text Available Our work aimed at studying the strategy of woody plants regeneration during the regeneration of a spruce stand with the admixture of beech and Douglas-fir by border cutting (NW-SE aspect on acidic sites of higher elevations in the Bohemian-Moravian Upland. Spruce is better adapted to bear shade than Douglas-fir. Nevertheless, in optimal light conditions up to a distance of ca. 35 m (about 16% DIFFSF from the stand edge, the Douglas-fir can put the spruce into danger as to height growth. By contrast to beech, the density of spruce is significantly higher within the distance of 45 m (about 15% DIFFSF from the stand edge but further on the situation would change to the benefit of beech. The density of Douglas-fir significantly dominates over beech within a distance of 35 m from the stand edge; from 55 m (less than 15% DIFFSF, the situation changes in favour of beech. Beech can survive in full shade deep in the stand core waiting for its opportunity to come. As compared to spruce and Douglas-fir, the height growth of beech was at all times significantly greater at a distance of 25 m from the stand edge. Converted to practical conditions, spruce and Douglas-fir with individually admixed beech seedlings showed good prosperity approximately up to a distance of one stand height from the edge. A mixture of spruce and beech did well at a greater distance but good prosperity at a distance of 2–3 stand heights was shown only by beech. Thus, border regeneration eliminates disadvantages of the climatic extremes of clear-cutting and specifics of shelterwood felling during which one – usually shade-tolerant tree species dominates in the natural regeneration (e.g. beech.

  2. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics.

    Keywords

  3. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics. Keywords. Ionosphere (Ionosphere

  4. Artificial excitation of ELF waves with frequency of Schumann resonance

    Science.gov (United States)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  5. Climate Change Effects on Heat Waves and Future Heat Wave-Associated IHD Mortality in Germany

    Directory of Open Access Journals (Sweden)

    Stefan Zacharias

    2014-12-01

    Full Text Available The influence of future climate change on the occurrence of heat waves and its implications for heat wave-related mortality due to ischemic heart diseases (IHD in Germany is studied. Simulations of 19 regional climate models with a spatial resolution of 0.25° × 0.25° forced by the moderate climate change scenario A1B are analyzed. Three model time periods of 30 years are evaluated, representing present climate (1971–2000, near future climate (2021–2050, and remote future climate (2069–2098. Heat waves are defined as periods of at least three consecutive days with daily mean air temperature above the 97.5th percentile of the all-season temperature distribution. Based on the model simulations, future heat waves in Germany will be significantly more frequent, longer lasting and more intense. By the end of the 21st century, the number of heat waves will be tripled compared to present climate. Additionally, the average duration of heat waves will increase by 25%, accompanied by an increase of the average temperature during heat waves by about 1 K. Regional analyses show that stronger than average climate change effects are observed particularly in the southern regions of Germany. Furthermore, we investigated climate change impacts on IHD mortality in Germany applying temperature projections from 19 regional climate models to heat wave mortality relationships identified in a previous study. Future IHD excess deaths were calculated both in the absence and presence of some acclimatization (i.e., that people are able to physiologically acclimatize to enhanced temperature levels in the future time periods by 0% and 50%, respectively. In addition to changes in heat wave frequency, we incorporated also changes in heat wave intensity and duration into the future mortality evaluations. The results indicate that by the end of the 21st century the annual number of IHD excess deaths in Germany attributable to heat waves is expected to rise by factor 2

  6. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    Energy Technology Data Exchange (ETDEWEB)

    Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Afanasyev, A. N. [Institute of Solar-Terrestrial Physics SB RAS, P.O. Box 291, Lermontov St. 126A, Irkutsk 664033 (Russian Federation); Kumar, S.; Moon, Y.-J., E-mail: V.Nakariakov@warwick.ac.uk [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2017-11-01

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. This effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.

  7. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.

  8. Effects of crown release on growth and quality of even-aged red maple stands

    Science.gov (United States)

    Terry F. Strong; Audra E. Hubbell; Adam H. Weise; Gayne G. Erdmann

    2006-01-01

    The effects of six crown-release treatments on growth and bole quality of 54 dominant, codominant, and intermediate red maples (Acer rubrum L.) were examined in an even-aged stand in upper Michigan. Treatments included an unreleased control, a single-tree and a two-tree crown release, and a full crown-to-crown release of 5, 10, and 15ft. Twenty-two...

  9. Effect of millimeter waves on survival of UVC-exposed Escherichia coli

    International Nuclear Information System (INIS)

    Rojavin, M.A.; Ziskin, M.C.

    1995-01-01

    Bacterial cells of the strain Escherichia coli K12 were exposed to millimeter electromagnetic waves (mm waves) with and without additional exposure to ultraviolet light λ = 254 nm (UVC). The mm waves were produced by a medical microwave generator emitting a 4-GHz-wide band around a 61 GHz center frequency and delivering an irradiation of 1mW/cm 2 and a standard absorption rate (SAR) of 84 W/kg to the bacteria. Exposure to the mm waves alone for up to 30 minutes did not change the survival rate of bacteria. Exposure to mm waves followed by UVC irradiation also did not alter the number of surviving E. coli cells in comparison to UVC-treated controls. When mm waves were applied after the UVC exposure, a dose-dependent increase of up to 30% in the survival of E. coli was observed compared to UVC + sham-irradiated bacteria. Because sham controls and experimental samples were maintained under the same thermal conditions, the effect is not likely to be due to heating, although the possibility of nonuniform distribution of microwave heating in different layers of irradiated bacterial suspension cannot be ruled out. The mechanism for this effect appears to involve certain DNA repair systems that act as cellular targets for mm waves

  10. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  11. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces.

    Science.gov (United States)

    Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard

    2015-03-15

    Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  13. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes

    Science.gov (United States)

    Geist, Eric L.

    2018-01-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  14. The effects of standing, lifting and noise exposure on preterm birth, growth restriction, and perinatal death in healthy low-risk working military women.

    Science.gov (United States)

    Magann, Everett F; Evans, Sharon F; Chauhan, Suneet P; Nolan, Thomas E; Henderson, Jenni; Klausen, Jack H; Newnham, John P; Morrison, John C

    2005-09-01

    The effects of standing, lifting and noise in low-risk, healthy pregnant women are uncertain. In the past, the heterogeneity of the populations studied, the limitations of the designs of the retrospective and case control studies, and a failure of some of the larger investigations to evaluate all the potential confounding variables has hampered many studies. The purpose of this investigation was to evaluate, throughout pregnancy, the effects of standing, repetitive lifting, and noise in the workplace compared with no standing, lifting or noise exposure, on maternal and perinatal outcomes in a large prospective study of a low-risk healthy population of working women cared for by a single group of health providers. This prospective observational study used an extensive questionnaire to collect antepartum, intrapartum, and postpartum information. Information was collected on the initial visit, each subsequent visit, and immediately after delivery. The participating women were divided into groups based on the amount of time spent standing, the amount and extent of repetitive lifting, and noise exposure in the workplace. Eight hundred and fourteen low-risk active duty women participated in this investigation over a 4-year period. Multivariate analysis with non-exposure compared with exposure reinforced the effect of standing on preterm labor (OR 1.80, 95% CI 1.05, 3.16) and preterm birth (OR 1.69, 95% CI 1.03, 2.80) and showed a trend toward an effect of noise exposure on preterm labor (OR 1.76, 95% CI 0.78, 3.39) after controlling for other exposures. This investigation suggests an association of occupational standing with preterm labor and preterm birth.

  15. Two weeks of additional standing balance circuit classes during inpatient rehabilitation are cost saving and effective: an economic evaluation.

    Science.gov (United States)

    Treacy, Daniel; Howard, Kirsten; Hayes, Alison; Hassett, Leanne; Schurr, Karl; Sherrington, Catherine

    2018-01-01

    Among people admitted for inpatient rehabilitation, is usual care plus standing balance circuit classes more cost-effective than usual care alone? Cost-effectiveness study embedded within a randomised controlled trial with concealed allocation, assessor blinding and intention-to-treat analysis. 162 rehabilitation inpatients from a metropolitan hospital in Sydney, Australia. The experimental group received a 1-hour standing balance circuit class, delivered three times a week for 2 weeks, in addition to usual therapy. The circuit classes were supervised by one physiotherapist and one physiotherapy assistant for up to eight patients. The control group received usual therapy alone. Costs were estimated from routinely collected hospital use data in the 3 months after randomisation. The functional outcome measure was mobility measured at 3 months using the Short Physical Performance Battery administered by a blinded assessor. An incremental analysis was conducted and the joint probability distribution of costs and outcomes was examined using bootstrapping. The median cost savings for the intervention group was AUD4,741 (95% CI 137 to 9,372) per participant; 94% of bootstraps showed that the intervention was both effective and cost saving. Two weeks of additional standing balance circuit classes delivered in addition to usual therapy resulted in decreased healthcare costs at 3 months in hospital inpatients admitted for rehabilitation. There is a high probability that this intervention is both cost saving and effective. ACTRN12611000412932. [Treacy D, Howard K, Hayes A, Hassett L, Schurr K, Sherrington C (2018) Two weeks of additional standing balance circuit classes during inpatient rehabilitation are cost saving and effective: an economic evaluation. Journal of Physiotherapy 64: 41-47]. Copyright © 2017 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  16. Secondary Instabilities and Spatiotemporal Chaos in Parametric Surface Waves

    International Nuclear Information System (INIS)

    Zhang, W.; Vinals, J.

    1995-01-01

    A 2D model is introduced to study the onset of parametric surface waves, their secondary instabilities, and the transition to spatiotemporal chaos. We obtain the stability boundary of a periodic standing wave above onset against Eckhaus, zigzag, and transverse amplitude modulations (TAM), as a function of the control parameter var-epsilon and the wavelength of the pattern. The Eckhaus and TAM boundaries cross at a finite value of var-epsilon, thus explaining the finite threshold for the TAM observed experimentally. At larger values of var-epsilon, a numerical solution reveals a transition to spatiotemporal chaotic states mediated by the TAM instability

  17. Effect of temperature on Acoustic Evaluation of standing trees and logs: Part 2: Field Investigation

    Science.gov (United States)

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce Allison

    2013-01-01

    The objectives of this study were to investigate the effect of seasonal temperature changes on acoustic velocity measured on standing trees and green logs and to develop models for compensating temperature differences because acoustic measurements are performed in different climates and seasons. Field testing was conducted on 20 red pine (Pinus resinosa...

  18. High-energy effective action from scattering of QCD shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky

    2005-07-01

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  19. A Universal Educational and Research Stand to Simulate Electrical Drive Loading

    Directory of Open Access Journals (Sweden)

    V. S. Grishin

    2016-01-01

    Full Text Available Universal educational and research stand was developed for analyzing an electrical drive’s behavior with different load disturbance effects. Major components of the stand are two electrical drives with rigidly coupled shafts. As a result, first electrical drive (loader has a capability to imitate effects of different loading types to another one (trial drive.Control software for the stand is developed. It allows us to combine a variety of loading types and change parameters of current loading such as joint moment, damping, additional inertia, and external torque. Also there is a capability to imitate effects of elasticity and backlash of mechanical transmissions. The paper considers the main challenge of creating the given system, i.e. discretization with a variable step. Some methods to decrease its negative effects on system stability are suggested.The given system allows to change loading parameters more rapidly and in a wider range as compared to a system with real mechanical outfit.These stands are currently used for laboratory classes within the course “Electrical robotic drives” at SM7 department in Bauman Moscow State Technical University. Also the system of interdepended stands for semi-realistic simulation of manipulation systems is under development.

  20. Internal wave turbulence near a Texel beach.

    Directory of Open Access Journals (Sweden)

    Hans van Haren

    Full Text Available A summer bather entering a calm sea from the beach may sense alternating warm and cold water. This can be felt when moving forward into the sea ('vertically homogeneous' and 'horizontally different', but also when standing still between one's feet and body ('vertically different'. On a calm summer-day, an array of high-precision sensors has measured fast temperature-changes up to 1 °C near a Texel-island (NL beach. The measurements show that sensed variations are in fact internal waves, fronts and turbulence, supported in part by vertical stable stratification in density (temperature. Such motions are common in the deep ocean, but generally not in shallow seas where turbulent mixing is expected strong enough to homogenize. The internal beach-waves have amplitudes ten-times larger than those of the small surface wind waves. Quantifying their turbulent mixing gives diffusivity estimates of 10(-4-10(-3 m(2 s(-1, which are larger than found in open-ocean but smaller than wave breaking above deep sloping topography.

  1. Effect of surface conditions on blast wave propagation

    International Nuclear Information System (INIS)

    Song, Seung Ho; Li, Yi Bao; Lee, Chang Hoon; Choi, Jung Il

    2016-01-01

    We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface

  2. Slice-based supine-to-standing posture deformation for chinese anatomical models and the dosimetric results with wide band frequency electromagnetic field exposure: Simulation

    International Nuclear Information System (INIS)

    Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.

    2013-01-01

    Standing Chinese adult anatomical models are obtained from supine-postured cadaver slices. This paper presents the dosimetric differences between the supine and the standing postures over wide band frequencies and various incident configurations. Both the body level and the tissue/organ level differences are reported for plane wave and the 3T magnetic resonance imaging radiofrequency electromagnetic field exposure. The influence of posture on the whole body specific absorption rate and tissue specified specific absorption rate values is discussed. . (authors)

  3. Tree- and Stand-Level Thinning Effects on Growth of European Beech (Fagus sylvatica L. on a Northeast- and a Southwest-Facing Slope in Southwest Germany

    Directory of Open Access Journals (Sweden)

    Daniela Diaconu

    2015-09-01

    Full Text Available Anticipated changes in climate and research findings on the drought sensitivity of beech have triggered controversial discussions about the future of European beech. We investigated the growth response of beech on the tree- and stand-level in mature stands to three different thinning intensities (no thinning, strong thinning, very strong thinning on a northeast- and southwest-facing slope in Southwest Germany. Linear mixed-effects models were formulated to describe effects on growth parameters on the tree- and stand-level (diameter, height, basal area, volume. At the stand-level, the stand basal area increment and stand volume increment were lower on the thinned plots. At the tree-level, the basal area increment significantly increased with increasing thinning intensity. The growth of individual trees was also influenced by initial tree size, the size-related rank of the tree within a stand, and by the aspect of the site. Our data indicate that growth of European beech is impaired on the southwest-facing slope with a warmer and drier climate and that a very strong thinning regime applied at advanced age can accelerate growth of European beech trees even on the warmer and drier site. Our findings, therefore, imply that in a warmer climate intensive thinning may also represent an important adaptive forest management measure in European beech stands.

  4. Enhanced Removal of Hydrophobic Gas by Aerial Ultrasonic Waves and Two Kinds of Water Mists of Different Particle Sizes

    Science.gov (United States)

    Matsumoto, Keisuke; Miura, Hikaru

    2012-07-01

    Air pollutants can cause health problems, such as bronchitis and cancer, and are now recognized as a social problem. Hence, a method is proposed for the collection and removal of gaseous air pollutants by aerial ultrasonic waves and water mist. Typically, gas removal effects are studied using lemon oil vapor (“lemon gas”), which is a hydrophobic gas. Previous experiments using lemon gas have shown that a removal rate of up to 40% can be achieved in an intense standing wave at 20 kHz, for an amount of water mist of 1.39 cm3/s and an electrical input power of 50 W. Increasing the surface area of the water mist leads to greater removal of hydrophobic gas. In this study, the effects of gas removal are examined by conducting experiments using intense aerial ultrasonic waves to disperse two kinds of water mists, each composed of particles of different sizes: small particles (diameter: ≈3 µm) and conventional large particles (diameter: ≈60 µm).

  5. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions

    Directory of Open Access Journals (Sweden)

    Malikeh Pour Ebrahim

    2017-03-01

    Full Text Available Doppler radar can be implemented for sensing physiological parameters wirelessly at a distance. Detecting respiration rate, an important human body parameter, is essential in a range of applications like emergency and military healthcare environments, and Doppler radar records actual chest motion. One challenge in using Doppler radar is being able to monitor several patients simultaneously and in different situations like standing, walking, or lying. This paper presents a complete transmitter-receiver Doppler radar system, which uses a 4 GHz continuous wave radar signal transmission and receiving system, to extract base-band data from a phase-shifted signal. This work reports experimental evaluations of the system for one and two subjects in various standing and walking positions. It provides a detailed signal analysis of various breathing rates of these two subjects simultaneously. These results will be useful in future medical monitoring applications.

  6. Variations in rest vertical dimension: effects of standing posture in edentulous patients.

    Science.gov (United States)

    Makzoume, Joseph E

    2007-01-01

    The orientation of a patient's head changes, depending on whether he or she is sitting or standing in a relaxed upright position. An edentulous patient's vertical dimension at rest may show variations that can result in an inaccurate determination of his or her occlusal vertical dimension. This study recorded the rest vertical dimension (RVD) established among 60 totally edentulous subjects who were standing in the position of greatest comfort (self-balance position) and compared it with the patients' RVD when they were seated in a relaxed upright position, with the Frankfort Plane parallel to the horizontal. The RVD was measured (in mm) between two dots located on the midline of the face. Two measurements were made: one when the patient was seated upright and relaxed (with the Frankfort Plane parallel to the horizontal) with no head support, and the other when the patient was standing relaxed on both feet in a self-balance position. Five alternated measurements were made for each subject in each position. A mean RVD was calculated for each subject in each body posture and the mean values from both positions were compared. Statistical analysis was performed using Student's t-test (alpha = 0.05). No significant differences were noted between the RVD of the seated and standing positions (P = 0.67).

  7. Waves on fluid-loaded shells and their resonance frequency spectrum

    DEFF Research Database (Denmark)

    Bao, X.L.; Uberall, H.; Raju, P.K.

    2005-01-01

    , or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...

  8. Coastal flooding: impact of waves on storm surge during extremes – a case study for the German Bight

    Directory of Open Access Journals (Sweden)

    J. Staneva

    2016-11-01

    Full Text Available This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. A coupled high-resolution modelling system is used to simulate wind waves, the water level and the three-dimensional hydrodynamics. The models used are the wave model WAM and the circulation model GETM. The two-way coupling is performed via the OASIS3-MCT coupler. The effects of wind waves on sea level variability are studied, accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model is significantly enhanced during extreme storm events when considering wave–current interaction processes. This wave-dependent approach yields a contribution of more than 30 % in some coastal areas during extreme storm events. The contribution of a fully three-dimensional model compared with a two-dimensional barotropic model showed up to 20 % differences in the water level of the coastal areas of the German Bight during Xaver. The improved skill resulting from the new developments justifies further use of the coupled-wave and three-dimensional circulation models in coastal flooding predictions.

  9. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  10. Tunnel effect wave energy detection

    Science.gov (United States)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  11. Oscillations in sunspot umbras due to trapped Alfven waves excited by overstability

    International Nuclear Information System (INIS)

    Uchida, Yutaka; Sakurai, Takashi.

    1975-01-01

    Oscillations observed in sunspot umbras are interpreted as a vertical motion in the atmosphere induced by a standing Alfven wave trapped in the region between the overstable layer under the photosphere and the chromosphere-corona transition layer. The Alfven wave motion is considered to be excited by the overstable convection occurring at the bottom of the abovementioned oscillating layer, and waves with special frequencies are selected as eigen-mode waves standing in the ''cavity,'' while other waves which are out of phase with themselves after reflections will disappear. It is shown by solving the eigen-value problem that the fundamental eigen frequency falls in a range around 0.04 rad s -1 (corresponding to 140-180 s) for the condition in the umbra of a typical spot, and also that the eigen frequencies do not depend greatly on the circumstantial physical or geometric parameters of the model atmosphere, such as the temperature in the layer, or the height of the transition layer, etc. The eigen frequencies, however, depend on the Alfven velocity at the base of the oscillating layer (or at the top of the overstable layer), but the latter quantity, which represents the stiffness of the magnetic tube of force against the overturning motion, takes roughly a common value for different sunspots according to SAVAGE's (1969) stability analysis of the umbral atmosphere against thermal convection, and thus gives a comparatively narrow range of resonant frequencies. In addition to the selection mechanism for oscillations of 140-180-s period, some other aspects of the oscillation, such as the relation to the running penumbral waves, are discussed. (auth.)

  12. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  13. Effect of weak nonlinearities on the plane waves in a plasma stream

    International Nuclear Information System (INIS)

    Seshadri, S.R.

    1976-01-01

    The effect of weak nonlinearities on the monochromatic plane waves in a cold infinite plasma stream is investigated for the case in which the waves are progressing parallel to the drift velocity. The fast and the slow space-charge waves undergo amplitude-dependent frequency and wave number shifts. There is a long time slow modulation of the amplitude of the electromagnetic mode which becomes unstable to this nonlinear wave modulation. The importance of using the relativistically correct equation of motion for predicting correctly the modulational stability of the electromagnetic mode is pointed out. (author)

  14. Effects of a Nintendo Wii exercise program on spasticity and static standing balance in spastic cerebral palsy.

    Science.gov (United States)

    Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Guzman-Muñoz, Eduardo; Lizama, L Eduardo Cofré

    2017-08-01

    This study sought to evaluate the effects of a Nintendo Wii Balance Board (NWBB) intervention on ankle spasticity and static standing balance in young people with spastic cerebral palsy (SCP). Ten children and adolescents (aged 72-204 months) with SCP participated in an exercise program with NWBB. The intervention lasted 6 weeks, 3 sessions per week, 25 minutes for each session. Ankle spasticity was assessed using the Modified Modified Ashworth Scale (MMAS), and static standing balance was quantified using posturographic measures (center-of-pressure [CoP] measures). Pre- and post-intervention measures were compared. Significant decreases of spasticity in the ankle plantar flexor muscles (p balance in young people with SCP.

  15. Temporal changes in vegetation of a virgin beech woodland remnant: stand-scale stability with intensive fine-scale dynamics governed by stand dynamic events

    Directory of Open Access Journals (Sweden)

    Tibor Standovár

    2017-03-01

    Full Text Available The aim of this resurvey study is to check if herbaceous vegetation on the forest floor exhibits overall stability at the stand-scale in spite of intensive dynamics at the scale of individual plots and stand dynamic events (driven by natural fine scale canopy gap dynamics. In 1996, we sampled a 1.5 ha patch using 0.25 m² plots placed along a 5 m × 5 m grid in the best remnant of central European montane beech woods in Hungary. All species in the herbaceous layer and their cover estimates were recorded. Five patches representing different stand developmental situations (SDS were selected for resurvey. In 2013, 306 plots were resurveyed by using blocks of four 0.25 m² plots to test the effects of imperfect relocation. We found very intensive fine-scale dynamics in the herbaceous layer with high species turnover and sharp changes in ground layer cover at the local-scale (< 1 m2. A decrease in species richness and herbaceous layer cover, as well as high species turnover, characterized the closing gaps. Colonization events and increasing species richness and herbaceous layer cover prevailed in the two newly created gaps. A pronounced decrease in the total cover, but low species turnover and survival of the majority of the closed forest specialists was detected by the resurvey at the stand-scale. The test aiming at assessing the effect of relocation showed a higher time effect than the effect of imprecise relocation. The very intensive fine-scale dynamics of the studied beech forest are profoundly determined by natural stand dynamics. Extinction and colonisation episodes even out at the stand-scale, implying an overall compositional stability of the herbaceous vegetation at the given spatial and temporal scale. We argue that fine-scale gap dynamics, driven by natural processes or applied as a management method, can warrant the survival of many closed forest specialist species in the long-run. Nomenclature: Flora Europaea (Tutin et al. 2010 for

  16. Mechanisms of realization of THz-waves of nitrogen oxide occurrence physiological effects

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available In this review, there is generalized material of many experimental researches in interaction of THz-waves molecular emission and absorption spectrum (MEAS of nitrogen oxide occurrence with bioobjects. Thrombocytes and experimental animals were used as bioobjects. The experiments let indicate changes caused by THz-waves: at the cellular, tissular, system, organismic levels. There are all data of changes in physiological mechanisms of reglations at all levels: autocrine, paracrine, endocrine and nervous. There is a complex overview of experimental material firstly performed in the article. There had been shown that the effect of THz-waves of the given occurrence is realized by the changed activity of nitroxidergic system. It had been proved that THz-waves of nitrogen oxide occurrence can stimulate nitrogen oxide producing in organs and tissues in condition of its low concentration. Possible mechanisms of antiaggregative effect of the given waves had been described. There had been shown the possibility of regulating of vascular tone and system hemodynamics with the help of the studying these frequencies. The represented data of lipid peroxidation and enzymatic and nonenzymatic components of organism system under the influence of THz-waves of nitrogen oxide occurrence in stress conditions. Besides, there were shown changes of stress-regulating system activity and in concentration of important mediators - catecholamines and glucocorticosteroids. These data let characterize mechanism of realization of THz-waves basic effects. The research had shown the possibility of THz-waves of nitrogen oxide occurrence usage as a method of natural physiological noninvasive regulation of significant organism functions.

  17. Testing the effectiveness of monolayers under wind and wave conditions.

    Science.gov (United States)

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  18. Quasiparticle conductance-voltage characteristics for break junctions involving d-wave superconductors: charge-density-wave effects.

    Science.gov (United States)

    Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I

    2017-12-20

    Quasiparticle tunnel conductance-voltage characteristics (CVCs), [Formula: see text], were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of [Formula: see text] dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, [Formula: see text] can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.

  19. Penetration to the Earth's surface of standing Alfvén waves excited by external currents in the ionosphere

    Directory of Open Access Journals (Sweden)

    A. S. Leonovich

    1996-05-01

    Full Text Available The problem of boundary conditions for monochromatic Alfvén waves, excited in the magnetosphere by external currents in the ionospheric E-layer, is solved analytically. Waves with large azimuthal wave numbers m»1 are considered. In our calculations, we used a model for the horizontally homogeneous ionosphere with an arbitrary inclination of geomagnetic field lines and a realistic height disribution of Alfvén velocity and conductivity tensor components. A relationship between such Alfvén waves on the upper ionospheric boundary with electromagnetic oscillations on the ground was detected, and the spatial structure of these oscillations determined.

  20. Effect of attenuation correction on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Some selected wave profiles recorded using a ship borne wave recorder are analysed to study the effect of attenuation correction on the distribution of the surface amplitudes. A new spectral width parameter is defined to account for wide band...