WorldWideScience

Sample records for standard dark matter

  1. SUSY dark matter: Beyond the standard paradigm

    International Nuclear Information System (INIS)

    Sandick, Pearl

    2016-01-01

    Within the framework of the Minimal Supersymmetric Standard Model (MSSM), we explore a decoupling of the parameters into separate sectors that determine consistency with collider data, the abundance of dark matter, and potential signatures at direct dark matter searches. We consider weak-scale bino-like neutralino dark matter, and find that annihilations via light slepton exchange present a viable mechanism for obtaining the appropriate dark matter abundance assuming a thermal history. Constraints and prospects for discovery of these models are discussed, including the possibility that direct dark matter searches may be sensitive to these models if light squarks exhibit left-right mixing. Differences between the scenarios presented here and the typical expectations for the MSSM are discussed.

  2. From the standard model to dark matter

    International Nuclear Information System (INIS)

    Wilczek, F.

    1995-01-01

    The standard model of particle physics is marvelously successful. However, it is obviously not a complete or final theory. I shall argue here that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Taking these hints seriously, one is led to predict the existence of new types of very weakly interacting matter, stable on cosmological time scales and produced with cosmologically interesting densities--that is, ''dark matter''. copyright 1995 American Institute of Physics

  3. Can An Amended Standard Model Account For Cold Dark Matter?

    International Nuclear Information System (INIS)

    Goldhaber, Maurice

    2004-01-01

    It is generally believed that one has to invoke theories beyond the Standard Model to account for cold dark matter particles. However, there may be undiscovered universal interactions that, if added to the Standard Model, would lead to new members of the three generations of elementary fermions that might be candidates for cold dark matter particles

  4. Quantum Fields, Dark Matter and Non-Standard Wigner Classes

    Science.gov (United States)

    Gillard, A. B.; Martin, B. M. S.

    2010-12-01

    The Elko field of Ahluwalia and Grumiller is a quantum field for massive spin-1/2 particles. It has been suggested as a candidate for dark matter. We discuss our attempts to interpret the Elko field as a quantum field in the sense of Weinberg. Our work suggests that one should investigate quantum fields based on representations of the full Poincaré group which belong to one of the non-standard Wigner classes.

  5. Dark Matter and Color Octets Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Krnjaic, Gordan Zdenko [Johns Hopkins Univ., Baltimore, MD (United States)

    2012-07-01

    Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that address each of these issues.

  6. Dark Matter in the Standard Model? arXiv

    CERN Document Server

    Gross, Christian; Strumia, Alessandro; Urbano, Alfredo; Xue, Wei

    We critically reexamine two possible Dark Matter candidate within the Standard Model. First, we consider the $uuddss$ exa-quark. Its QCD binding energy could be large enough to make it (quasi) stable. We show that the cosmological Dark Matter abundance is reproduced thermally if its mass is 1.2 GeV. However, we also find that such mass is excluded by the stability of Oxygen nuclei. Second, we consider the possibility that the instability in the Higgs potential leads to the formation of primordial black holes while avoiding vacuum decay during inflation. We show that the non-minimal Higgs coupling to gravity must be as small as allowed by quantum corrections, $|\\xi_H| < 0.01$. Even so, one must assume that the Universe survived in $e^{120}$ independent regions to fluctuations that lead to vacuum decay with probability 1/2 each.

  7. New extended standard model, dark matters and relativity theory

    Science.gov (United States)

    Hwang, Jae-Kwang

    2016-03-01

    Three-dimensional quantized space model is newly introduced as the extended standard model. Four three-dimensional quantized spaces with total 12 dimensions are used to explain the universes including ours. Electric (EC), lepton (LC) and color (CC) charges are defined to be the charges of the x1x2x3, x4x5x6 and x7x8x9 warped spaces, respectively. Then, the lepton is the xi(EC) - xj(LC) correlated state which makes 3x3 = 9 leptons and the quark is the xi(EC) - xj(LC) - xk(CC) correlated state which makes 3x3x3 = 27 quarks. The new three bastons with the xi(EC) state are proposed as the dark matters seen in the x1x2x3 space, too. The matter universe question, three generations of the leptons and quarks, dark matter and dark energy, hadronization, the big bang, quantum entanglement, quantum mechanics and general relativity are briefly discussed in terms of this new model. The details can be found in the article titled as ``journey into the universe; three-dimensional quantized spaces, elementary particles and quantum mechanics at https://www.researchgate.net/profile/J_Hwang2''.

  8. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  9. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  10. Dark group: dark energy and dark matter

    International Nuclear Information System (INIS)

    Macorra, A. de la

    2004-01-01

    We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λ c and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λ c must be Ω DGc ≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λ c and the IPL parameter n giving Λ c =O(1-10 3 ) eV and 0.28≤n≤1.04

  11. Dark matter and dark radiation

    International Nuclear Information System (INIS)

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant α-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α-circumflex -3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  12. MSSM (Minimal Supersymmetric Standard Model) Dark Matter Without Prejudice

    International Nuclear Information System (INIS)

    Gainer, James S.

    2009-01-01

    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.

  13. The COBE normalization for standard cold dark matter

    Science.gov (United States)

    Bunn, Emory F.; Scott, Douglas; White, Martin

    1995-01-01

    The Cosmic Background Explorer Satellite (COBE) detection of microwave anisotropies provides the best way of fixing the amplitude of cosmological fluctuations on the largest scales. This normalization is usually given for an n = 1 spectrum, including only the anisotropy caused by the Sachs-Wolfe effect. This is certainly not a good approximation for a model containing any reasonable amount of baryonic matter. In fact, even tilted Sachs-Wolfe spectra are not a good fit to models like cold dark matter (CDM). Here, we normalize standard CDM (sCDM) to the two-year COBE data and quote the best amplitude in terms of the conventionally used measures of power. We also give normalizations for some specific variants of this standard model, and we indicate how the normalization depends on the assumed values on n, Omega(sub B) and H(sub 0). For sCDM we find the mean value of Q = 19.9 +/- 1.5 micro-K, corresponding to sigma(sub 8) = 1.34 +/- 0.10, with the normalization at large scales being B = (8.16 +/- 1.04) x 10(exp 5)(Mpc/h)(exp 4), and other numbers given in the table. The measured rms temperature fluctuation smoothed on 10 deg is a little low relative to this normalization. This is mainly due to the low quadrupole in the data: when the quadrupole is removed, the measured value of sigma(10 deg) is quite consistent with the best-fitting the mean value of Q. The use of the mean value of Q should be preferred over sigma(10 deg), when its value can be determined for a particular theory, since it makes full use of the data.

  14. Dark Matter

    Indian Academy of Sciences (India)

    In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this second part we will see that even clusters of galaxies must harbour dark matter. As if this was not enough, it turns out that if our knowledge of the ...

  15. Glueball dark matter in non-standard cosmologies

    Science.gov (United States)

    Acharya, Bobby S.; Fairbairn, Malcolm; Hardy, Edward

    2017-07-01

    Hidden sector glueball dark matter is well motivated by string theory, compactifications of which often have extra gauge groups uncoupled to the visible sector. We study the dynamics of glueballs in theories with a period of late time primordial matter domination followed by a low final reheating temperature due to a gravitationally coupled modulus. Compared to scenarios with a high reheating temperature, the required relic abundance is possible with higher hidden sector confinement scales, and less extreme differences in the entropy densities of the hidden and visible sectors. Both of these can occur in string derived models, and relatively light moduli are helpful for obtaining viable phenomenology. We also study the effects of hidden sector gluinos. In some parts of parameter space these can be the dominant dark matter component, while in others their abundance is much smaller than that of glueballs. Finally, we show that heavy glueballs produced from energy in the hidden sector prior to matter domination can have the correct relic abundance if they are sufficiently long lived.

  16. Dark matter: the astrophysical case

    International Nuclear Information System (INIS)

    Silk, J.

    2012-01-01

    The identification of dark matter is one of the most urgent problems in cosmology. I describe the astrophysical case for dark matter, from both an observational and a theoretical perspective. This overview will therefore focus on the observational motivations rather than the particle physics aspects of dark matter constraints on specific dark matter candidates. First, however, I summarize the astronomical evidence for dark matter, then I highlight the weaknesses of the standard cold dark matter model (LCDM) to provide a robust explanation of some observations. The greatest weakness in the dark matter saga is that we have not yet identified the nature of dark matter itself

  17. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  18. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  19. Dark Matter

    Indian Academy of Sciences (India)

    interests include cinema, stamps and sketching. GENERAL I ARTICLE. Dark Matter. 1. What You See Ain'/ What You Got. Bikram Phookun and Biman Nath. The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide.

  20. Decaying dark matter from dark instantons

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Primulando, Reinard

    2010-01-01

    We construct an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. The dominant dark matter decay channels are to standard model leptons. Annihilation of the dark matter to standard model states occurs primarily through the Higgs portal. We show that the mass and lifetime of the dark matter candidate in this model can be chosen to be consistent with the values favored by fits to data from the PAMELA and Fermi-LAT experiments.

  1. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  2. Asymmetric dark matter from spontaneous cogenesis in the supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics

    2012-01-15

    The observational relation between the density of baryon and dark matter in the Universe, {omega}{sub DM}/{omega}{sub B}{approx_equal}5, is one of the most difficult problems to solve in modern cosmology. We discuss a scenario that explains this relation by combining the asymmetric dark matter scenario and the spontaneous baryogenesis associated with the flat direction in the supersymmetric standard model. A part of baryon asymmetry is transferred to charge asymmetry D that dark matter carries, if a symmetry violating interaction that works at high temperature breaks not only B-L but also D symmetries simultaneously. In this case, the present number density of baryon and dark matter can be same order if the symmetric part of dark matter annihilates sufficiently. Moreover, the baryon number density can be enhanced as compared to that of dark matter if another B-L violating interaction is still in thermal equilibrium after the spontaneous genesis of dark matter, which accommodates a TeV scale asymmetric dark matter model. (orig.)

  3. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter.

    Science.gov (United States)

    Espinosa, J R; Racco, D; Riotto, A

    2018-03-23

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11}  GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  4. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter

    Science.gov (United States)

    Espinosa, J. R.; Racco, D.; Riotto, A.

    2018-03-01

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  5. Non-standard interactions and neutrinos from dark matter annihilation in the Sun

    Science.gov (United States)

    Demidov, S. V.

    2018-02-01

    We perform an analysis of the influence of non-standard neutrino interactions (NSI) on neutrino signal from dark matter annihilations in the Sun. Taking experimentally allowed benchmark values for the matter NSI parameters we show that the evolution of such neutrinos with energies at GeV scale can be considerably modified. We simulate propagation of neutrinos from the Sun to the Earth for realistic dark matter annihilation channels and find that the matter NSI can result in at most 30% correction to the signal rate of muon track events at neutrino telescopes. Still present experimental bounds on dark matter from these searches are robust in the presence of NSI within considerable part of their allowed parameter space. At the same time electron neutrino flux from dark matter annihilation in the Sun can be changed by a factor of few.

  6. Dark matter and dark energy

    CERN Multimedia

    Caldwell, Robert

    2009-01-01

    "Observations continue to indicate that the Universe is dominated by invisible components - dark matter and dark energy. Shedding light on this cosmic darkness is a priority for astronomers and physicists" (3 pages)

  7. Extracting the properties of dark matter particles in minimal extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maira Dutra Vasconcelos dos; Santos, Antonio Carlos Oliveira; Silva, Paulo Sergio Rodrigues da; Pires, Carlos Antonio de Sousa; Siqueira, Clarissa [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Queiroz, Farinaldo da Silva [University of California (United States)

    2013-07-01

    Full text: Nature has provided a striking evidence for physics beyond the Standard Model, namely dark matter. Observations coming from a variety of sources point to the existence of a non-baryonic matter that accounts for roughly 27% of the total abundance of the universe and is composed of neutral, massive, stable and weakly interacting particles. Once the Standard Model has no candidate that fulfills all these properties we must extend it. There are many interesting proposals in the literature that have a good dark matter candidate. Essentially, all of them invoke an extended scalar or gauge sector. Here we aim to extract information about the underlying beyond Standard Model theory able to address the dark matter and many other theoretical puzzles through minimal extensions of the standard model. The minimality perspective it is a worthwhile approach because we can focus on the dark side of many particle physics models. We will carry on our investigation in a pedagogic way Firstly, we will add a neutral fermion, which is our dark matter candidate, and one neutral scalar, both being singlet under the Standard Model gauge group. In this model we compute the abundance of our dark matter candidate and the scattering cross sections off nuclei in order to face our results with the current direct detection experiments data. Secondly, we add a charged scalar field, which is predicted in many standard model extensions, to the first model and investigate the role of this scalar in our results. Lastly, we add a Z' boson to the latter model, and study how our results are affected, with the purpose of, further on, exploring the complementarity between direct detection and collider physics regarding the search of this boson. Thus, we will be able to extract precise information about the beyond Standard Model theory and the properties of the dark matter particles. (author)

  8. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  9. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  10. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  11. Dark Matter in ATLAS

    CERN Document Server

    Resconi, Silvia; The ATLAS collaboration

    2016-01-01

    Results of Dark Matter searches in mono-X analysis with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton–proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 fb-1. A description of the main characteristics of each analysis and how the main backgrounds are estimated is shown. The observed data are in agreement with the expected Standard Model backgrounds for all analysis described. Exclusion limits are presented for Dark Matter models including pair production of dark matter candidates.

  12. Dark Matter in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222441; The ATLAS collaboration

    2016-01-01

    An overview of Dark Matter searches with the ATLAS experiment at the Large Hadron Collider (LHC) is shown. Results of Mono-X analyses requiring large missing transverse momentum and a recoiling detectable physics object (X) are reported. The data were collected in proton-proton collisions at a centre-of-mass energy of 13 TeV. The observed data are in agreement with the expected Standard Model backgrounds for all analyses described. Exclusion limits are presented for Dark Matter models including pair production of Dark Matter candidates.

  13. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  14. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  15. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  16. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  17. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  18. Dark matter that can form dark stars

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano

    2010-01-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution

  19. Dark Matter

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  20. Dark matter wants Linear Collider

    International Nuclear Information System (INIS)

    Matsumoto, S.; Asano, M.; Fujii, K.; Takubo, Y.; Honda, T.; Saito, T.; Yamamoto, H.; Humdi, R.S.; Ito, H.; Kanemura, S; Nabeshima, T.; Okada, N.; Suehara, T.

    2011-01-01

    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: 1) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and 2) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the Higgs boson.

  1. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  2. Particle physics and cosmology beyond the Standard Model: inflation, dark matter and flavour

    International Nuclear Information System (INIS)

    Heurtier, L.

    2015-01-01

    This thesis has been focusing on beyond the Standard Model aspects of particle physics and their implication in cosmology. We have gone through this work along the timeline of the Universe History focusing on three major topics that are the inflationary period, the dark matter relic density production and detection, and finally the question of flavor changing constraints on low energy supersymmetric theories. In the first part of this thesis, after reviewing the theoretical and phenomenological aspects of both the Big Bang theory and the theory of Inflation we will study in detail how describing Inflation in a high energy supersymmetric theory. The second part of this thesis is dedicated to dark matter. We have studied phenomenological aspects of simple models, extending the present Standard Model with simple abelian symmetries, by assuming that the constituent of dark matter would be able to exchange information with the visible sector by the help of a mediator particle. We have studied in particular possible interactions of heavy or light dark matter with respectively the strong and the electroweak sectors of the Standard Model. Our models are strongly constrained of course by experiments. The third part of this work will be dedicated to a different aspect of beyond Standard Model theories, that is the treatment of the flavour changing processes of particle physics. The Minimal Supersymmetric Standard Model (MSSM), as one of these possible enlargement of the Standard Model, introduces new processes of flavour changing that are highly constrained by experiment. We present some works in which we consider the possibility of adding so called Dirac Gauginos to the MSSM to render flavour changing weaker in the theory, and propose different flavour patterns theories

  3. with dark matter

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... to have a dramatic impact on neutrino physics, dark matter and all fermion masses and mixings. Keywords. Radiative see-saw; fermion masses; grand unification. PACS Nos 12.10.Dm; 12.60.Jv; 14.60.Pq. 1. Introduction. In SO(10) grand unified theory which contains all standard fermions of one generation.

  4. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  5. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  6. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  7. Dark Matter

    Indian Academy of Sciences (India)

    ics of small satellite galaxies around large galaxies have shown that the luminous part of galaxies must be immersed in a huge halo of non-luminous matter, much larger than what the studies from rotation curves of spiral galaxies would suggest (see Part 1 of this article). These studies essentially use the same arguments.

  8. Planck scale boundary conditions in the standard model with singlet scalar dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan); Kaneta, Kunio [Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Takahashi, Ryo [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan)

    2014-04-04

    We investigate Planck scale boundary conditions on the Higgs sector of the standard model with a gauge singlet scalar dark matter. We will find that vanishing self-coupling and Veltman condition at the Planck scale are realized with the 126 GeV Higgs mass and top pole mass, 172 GeV≲M{sub t}≲173.5 GeV, where a correct abundance of scalar dark matter is obtained with mass of 300 GeV≲m{sub S}≲1 TeV. It means that the Higgs potential is flat at the Planck scale, and this situation can not be realized in the standard model with the top pole mass.

  9. Dark matter in the universe

    International Nuclear Information System (INIS)

    Opher, Reuven

    2001-01-01

    We treat here the problem of dark matter in galaxies. Recent articles seem to imply that we are entering into the precision era of cosmology, implying that all of the basic physics of cosmology is known. However, we show here that recent observations question the pillar of the standard model: the presence of nonbaryonic 'dark matter' in galaxies. Using Newton's law of gravitation, observations indicate that most of the matter in galaxies in invisible or dark. From the observed abundances of light elements, dark matter in galaxies must be primarily nonbaryonic. The standard model and its problems in explaining nonbaryonic dark matter will first be discussed. This will be followed by a discussion of a modification of Newton's law of gravitation to explain dark matter in galaxies. (author)

  10. Baryonic Dark Matter

    OpenAIRE

    Silk, Joseph

    1994-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  11. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  12. Strategies for dark matter detection

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The present status of alternative forms of dark matter, both baryonic and nonbaryonic, is reviewed. Alternative arguments are presented for the predominance of either cold dark matter (CDM) or of baryonic dark matter (BDM). Strategies are described for dark matter detection, both for dark matter that consists of weakly interacting relic particles and for dark matter that consists of dark stellar remnants

  13. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  14. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  15. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  16. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  17. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  18. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  19. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  20. Kaluza-Klein dark matter

    CERN Document Server

    Cheng, H C; Matchev, K T; Cheng, Hsin-Chia; Feng, Jonathan L; Matchev, Konstantin T.

    2002-01-01

    We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.

  1. Dark Matter Caustics

    International Nuclear Information System (INIS)

    Natarajan, Aravind

    2010-01-01

    The continuous infall of dark matter with low velocity dispersion in galactic halos leads to the formation of high density structures called caustics. Dark matter caustics are of two kinds : outer and inner. Outer caustics are thin spherical shells surrounding galaxies while inner caustics have a more complicated structure that depends on the dark matter angular momentum distribution. The presence of a dark matter caustic in the plane of the galaxy modifies the gas density in its neighborhood which may lead to observable effects. Caustics are also relevant to direct and indirect dark matter searches.

  2. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  3. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  4. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    The current status of indirect searches for dark matter has been reviewed in a schematic way here. The main relevant experimental results of the recent years have been listed and the excitements and disappointments that their phenomenological interpretations in terms of almost-standard annihilating dark matter have ...

  5. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    Abstract. The current status of indirect searches for dark matter has been reviewed in a schematic way here. The main relevant experimental results of the recent years have been listed and the excite- ments and disappointments that their phenomenological interpretations in terms of almost-standard annihilating dark matter ...

  6. Astrophysical probes of dark matter

    Science.gov (United States)

    Hurst, Travis J.

    In the ACDM model,≈ 26% of the matter-energy content of the Universe is in the form of an unidentified Cold Dark Matter. Observations indicate that the Dark Matter is a new exotic particle not accounted for in the Standard Model of particle physics. Identifying the Dark Matter particle is one of the most pressing problems in cosmology and particle physics. In this thesis we investigate several possible astrophysical signatures of Dark Matter: Dark Matter annihilations in cold White Dwarfs provide a source of luminosity that could halt their cooling. This effect can be used to constrain the Dark Matter density local to the White Dwarf. In the case of the coldest White Dwarf in a Globular Cluster, a constraint on the maximum Dark Matter content is derived. Globular Clusters do not appear to have Dark Matter halos today, but could have possessed them in the past. We investigate whether Globular Clusters could have lost their halos through multi-body gravitational interactions--we find that this scenario is unlikely. Finally, we explore the effects of Asymmetric Dark Matter on stellar evolution. Asymmetric Dark Matter can alter the transport of energy in the cores of stars. We show that this has potentially observable effects on low mass Main Sequence and post-Main Sequence stars. Our main conclusion is that astrophysical observations can potentially rule out some Dark Matter models. On the other hand, if the properties of the Dark Matter particle become known, then its astrophysical effects must be taken into account when evaluating observations.

  7. Z2 SIMP dark matter

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z 2 symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model

  8. Collapsed Dark Matter Structures

    OpenAIRE

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-01-01

    The distributions of dark matter and baryons in the Universe are known to be very different: the dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption, and show that a simple model where dark matter is charged under a "dark elect...

  9. Neutrino signals from dark matter

    Science.gov (United States)

    Erkoca, Arif Emre

    Large-scale neutrino telescopes will be powerful tools to observe multitude of mysterious phenomena happening in the Universe. The dark matter puzzle is listed as one of them. In this study, indirect detection of dark matter via neutrino signals is presented. The upward muon, the contained muon and the hadronic shower fluxes are calculated, assuming annihilation/decay of the dark matter in the core of the astrophysical objects and in the Galactic center. Direct neutrino production and secondary neutrino production from the decay of Standard Model particles produced in the annihilation/decay of dark matter are studied. The results are contrasted to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss for the upward muon flux. The dependence of the dark matter signals on the density profile, the dark matter mass and the detector threshold are discussed. Different dark matter models (gravitino, Kaluza-Klein and leptophilic) which can account for recent observations of some indirect searches are analyzed regarding their detection in the kilometer size neutrino detectors in the near future. Muon and shower rates and the minimum observation times in order to reach 2sigma detection significance are evaluated, with the result suggesting that the optimum cone half angles chosen about the Galactic center are about 10° (50°) for the muon (shower) events. A detailed analysis shows that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers yield promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. The analytical results for the final fluxes are also obtained as well as parametric forms for the muon and shower fluxes for the dark matter models considered in this study.

  10. Dark matter an introduction

    CERN Document Server

    Majumdar, Debasish

    2015-01-01

    Dark Matter: An Introduction tackles the rather recent but fast-growing subject of astroparticle physics, encompassing three main areas of fundamental physics: cosmology, particle physics, and astrophysics. Accordingly, the book discusses symmetries, conservation laws, relativity, and cosmological parameters and measurements, as well as the astrophysical behaviors of galaxies and galaxy clusters that indicate the presence of dark matter and the possible nature of dark matter distribution.

  11. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  12. Early kinetic decoupling of dark matter: When the standard way of calculating the thermal relic density fails

    Science.gov (United States)

    Binder, Tobias; Bringmann, Torsten; Gustafsson, Michael; Hryczuk, Andrzej

    2017-12-01

    Calculating the abundance of thermally produced dark matter particles has become a standard procedure, with sophisticated methods guaranteeing a precision that matches the percent-level accuracy in the observational determination of the dark matter density. Here, we point out that one of the main assumptions in the commonly adopted formalism, namely local thermal equilibrium during the freeze-out of annihilating dark matter particles, does not have to be satisfied in general. We present two methods for how to deal with such situations, in which the kinetic decoupling of dark matter happens so early that it interferes with the chemical decoupling process: (i) an approximate treatment in terms of a coupled system of differential equations for the leading momentum moments of the dark matter distribution, and (ii) a full numerical solution of the Boltzmann equation in phase space. For illustration, we apply these methods to the case of scalar singlet dark matter. We explicitly show that even in this simple model the prediction for the dark matter abundance can be affected by up to 1 order of magnitude compared to the traditional treatment.

  13. Statistical analysis of supersymmetric dark matter in the minimal supersymmetric standard model after WMAP

    International Nuclear Information System (INIS)

    Profumo, S.; Yaguna, C.E.

    2004-01-01

    We study supersymmetric dark matter in the general flavor diagonal minimal supersymmetric standard model by means of an extensive random scan of its parameter space. We find that, in contrast with the standard minimal supergravity lore, the large majority of viable models features either a Higgsino or a winolike lightest neutralino, and yields a relic abundance well below the Wilkinson Microwave Anisotropy Probe (WMAP) bound. Among the models with neutralino relic density within the WMAP range, Higgsinolike neutralinos are still dominant, though a sizable fraction of binos is also present. In this latter case, coannihilations are shown to be essential in order to obtain the correct neutralino abundance. We then carry out a statistical analysis and a general discussion of neutralino dark matter direct detection and of indirect neutralino detection at neutrino telescopes and at antimatter search experiments. We point out that current data exclude only a marginal portion of the viable parameter space, and that models whose thermal relic abundance lies in the WMAP range will be significantly probed only at future direct detection experiments. Finally, we emphasize the importance of relic density enhancement mechanisms for indirect detection perspectives, in particular, at future antimatter search experiments

  14. Inelastic dark matter, non-standard halos and the DAMA/LIBRA results

    International Nuclear Information System (INIS)

    March-Russell, John; McCabe, Christopher; McCullough, Matthew

    2009-01-01

    The DAMA collaboration have claimed to detect particle dark matter (DM) via an annual modulation in their observed recoil event rate. This appears to be in strong disagreement with the null results of other experiments if interpreted in terms of elastic DM scattering, while agreement for a small region of parameter space is possible for inelastic DM (iDM) due to the altered kinematics of the collision. To date most analyses assume a simple galactic halo DM velocity distribution, the Standard Halo Model, but direct experimental support for the SHM is severely lacking and theoretical studies indicate possible significant differences. We investigate the dependence of DAMA and the other direct detection experiments on the local DM velocity distribution, utilizing the results of the Via Lactea and Dark Disc numerical simulations. We also investigate effects of varying the solar circular velocity, the DM escape velocity, and the DAMA quenching factor within experimental limits. Our data set includes the latest ZEPLIN-III results, as well as full publicly available data sets. Due to the more sensitive dependence of the inelastic cross section on the velocity distribution, we find that with Via Lactea the DAMA results can be consistent with all other experiments over an enlarged region of iDM parameter space, with higher mass particles being preferred, while Dark Disc does not lead to an improvement. A definitive test of DAMA for iDM requires heavy element detectors.

  15. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  16. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  17. Dark Matter before the LHC in a Natural Supersymmetric Standard Model

    CERN Document Server

    Kitano, R; Kitano, Ryuichiro; Nomura, Yasunori

    2006-01-01

    We show that the solid lower bound of about 10^{-44} cm^2 is obtained for the cross section between the supersymmetric dark matter and nucleon in a theory in which the supersymmetric fine-tuning problem is solved without extending the Higgs sector at the weak scale. This bound arises because of relatively small superparticle masses and a fortunate correlation that the two dominant diagrams for the dark matter detection always interfere constructively if the constraint from the b -> s \\gamma measurements is obeyed. It is, therefore, quite promising in the present scenario that the supersymmetric dark matter is discovered before the LHC, assuming that the dark matter is the lightest supersymmetric particle.

  18. Interacting dark matter and dark radiation

    Science.gov (United States)

    Tang, Yong

    2017-05-01

    We give a brief review on the interacting Dark Matter (iDM) scenario and its effects on cosmology and particle physics. If DM candidates can have strong self-interactions or interactions with other relativistic particles, we can refer them generally as iDM. IDM is an interesting possibility that is motivated both theoretically and observationally. The relativistic particles could belong to Standard Model (SM), such as photons and neutrinos, or be dark radiation (DR) in new physics. The resulting perturbed Boltzmann equations are concisely discussed and illustrations on matter power spectrum are given.

  19. Constraining Dark Matter with ATLAS

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  20. The universe in a box - Thermal effects in the standard cold dark matter scenario

    Science.gov (United States)

    Cen, R. Y.; Ostriker, Jeremiah P.; Jameson, Anthony; Liu, Feng

    1990-01-01

    An attempt is made to compute the evolution of a representative piece of the universe at a minimal resolution of a flux-based mesh code coupled with a standard particle-mesh dark matter code. It is found that, on scales greater than 1/h Mpc, dark matter is more clumped than gas. Bremsstrahlung and Compton cooling are unimportant on scales of 1 Mpc or greater. Shocks gradually heat the gas, leaving most of it in voids at T = 10 exp 3.5 K or less, but with a small fraction reaching T = 10 million K or more. Ultraviolet and soft X-ray emission from the heated gas is significant, providing an important part of the background radiation field and significant ionizing of the intergalactic medium. The mean induced Delta T/T for microwave background radiation in the Rayleigh-Jeans part of the spectrum is 1.1 x 10 to the -6th with fluctuation of 5.6 x 10 to the -7th on arcmin scales and a mean y parameter of 5.5 x 10 to the -7th, which is potentially detectable by the COBE satellite.

  1. Enabling forbidden dark matter

    Science.gov (United States)

    Cline, James M.; Liu, Hongwan; Slatyer, Tracy R.; Xue, Wei

    2017-10-01

    The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3 →2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3 →2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of mχ˜MeV -10 GeV , 3 →2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments.

  2. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  3. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  4. Self-interacting warm dark matter

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2000-01-01

    It has been shown by many independent studies that the cold dark matter scenario produces singular galactic dark halos, in strong contrast with observations. Possible remedies are that either the dark matter is warm so that it has significant thermal motion or that the dark matter has strong self-interactions. We combine these ideas to calculate the linear mass power spectrum and the spectrum of cosmic microwave background (CMB) fluctuations for self-interacting warm dark matter. Our results indicate that such models have more power on small scales than is the case for the standard warm dark matter model, with a CMB fluctuation spectrum which is nearly indistinguishable from standard cold dark matter. This enhanced small-scale power may provide better agreement with the observations than does standard warm dark matter. (c) 2000 The American Physical Society

  5. Interacting warm dark matter

    International Nuclear Information System (INIS)

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo

    2013-01-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ m α ρ e β form, where ρ m and ρ e are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w m and w e of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used

  6. New Constraints on Dark Matter Effective Theories from Standard Model Loops

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2014-01-01

    We consider an effective field theory for a gauge singlet Dirac dark matter (DM) particle interacting with the Standard Model (SM) fields via effective operators suppressed by the scale $\\Lambda \\gtrsim 1$ TeV. We perform a systematic analysis of the leading loop contributions to spin-independent (SI) DM--nucleon scattering using renormalization group evolution between $\\Lambda$ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity-suppressed and spin-dependent can actually contribute to SI scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are comparable to LHC bounds, and will significantly improve in the near future. Interestingly, the loop contribution we find is maximally isospin violating even if the underlying theory is isospin conserving.

  7. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  8. Self-Destructing Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Cornell U., LEPP; Harnik, Roni [Fermilab; Telem, Ofri [Cornell U., LEPP; Zhang, Yue [Northwestern U.

    2017-12-01

    We present Self-Destructing Dark Matter (SDDM), a new class of dark matter models which are detectable in large neutrino detectors. In this class of models, a component of dark matter can transition from a long-lived state to a short-lived one by scattering off of a nucleus or an electron in the Earth. The short-lived state then decays to Standard Model particles, generating a dark matter signal with a visible energy of order the dark matter mass rather than just its recoil. This leads to striking signals in large detectors with high energy thresholds. We present a few examples of models which exhibit self destruction, all inspired by bound state dynamics in the Standard Model. The models under consideration exhibit a rich phenomenology, possibly featuring events with one, two, or even three lepton pairs, each with a fixed invariant mass and a fixed energy, as well as non-trivial directional distributions. This motivates dedicated searches for dark matter in large underground detectors such as Super-K, Borexino, SNO+, and DUNE.

  9. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  10. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  11. Xenophobic dark matter

    Science.gov (United States)

    Feng, Jonathan L.; Kumar, Jason; Sanford, David

    2013-07-01

    We consider models of xenophobic dark matter, in which isospin-violating dark matter-nucleon interactions significantly degrade the response of xenon direct detection experiments. For models of near-maximal xenophobia, with neutron-to-proton coupling ratio fn/fp≈-0.64, and dark matter mass near 8 GeV, the regions of interest for CoGeNT and CDMS-Si and the region of interest identified by Collar and Fields in CDMS-Ge data can be brought into agreement. This model may be tested in future direct, indirect, and collider searches. Interestingly, because the natural isotope abundance of xenon implies that xenophobia has its limits, we find that this xenophobic model may be probed in the near future by xenon experiments. Near-future data from the LHC and Fermi-LAT may also provide interesting alternative probes of xenophobic dark matter.

  12. Dark matter warms up

    CERN Multimedia

    Peplow, Mark

    2006-01-01

    "Unseen mass looks to be more "tepid" than thought. Astronomers have measured the temperature of dark matter for the first time. The discovery should help particle hunters to identify exactly what this mysterious substance is made of" (1 page)

  13. Cleaning up dark matter

    CERN Multimedia

    Bignami, Giovanni Fabrizio

    2006-01-01

    "An experiment in Italy has found tantalizing but puzzling evidence for axions, one if the leading candidates for dark matter. The authors explain how a pair of spinning neutron stars should settle the issue once and for all." (3 pages)

  14. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  15. Lectures on dark matter

    International Nuclear Information System (INIS)

    Seljak, U.

    2001-01-01

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  16. Asymmetric Dark Matter and Dark Radiation

    International Nuclear Information System (INIS)

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum

  17. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  18. Supersymmetric Dark Matter Candidates

    CERN Document Server

    Ellis, John

    2010-01-01

    After reviewing the theoretical, phenomenological and experimental motivations for supersymmetric extensions of the Standard Model, we recall that supersymmetric relics from the Big Bang are expected in models that conserve R parity. We then discuss possible supersymmetric dark matter candidates, focusing on the lightest neutralino and the gravitino. In the latter case, the next-to-lightest supersymmetric particle is expected to be long-lived, and possible candidates include spartners of the tau lepton, top quark and neutrino. We then discuss the roles of the renormalization-group equations and electroweak symmetry breaking in delimiting the supersymmetric parameter space. We discuss in particular the constrained minimal extension of the Standard Model (CMSSM), in which the supersymmetry-breaking parameters are assumed to be universal at the grand unification scale, presenting predictions from a frequentist analysis of its parameter space. We also discuss astrophysical and cosmological constraints on gravitin...

  19. Ultralight particle dark matter

    International Nuclear Information System (INIS)

    Ringwald, A.

    2013-10-01

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  20. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  1. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.

    Science.gov (United States)

    Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B

    2014-05-02

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeVdark matter mass. The dynamical approach also predicts a small scalar-singlet self-coupling, providing a natural explanation for the astrophysical observations that place upper bounds on dark matter self-interaction. The predictions in all three approaches are within the M(s)>80 GeV detection region of the next generation XENON experiment.

  2. Dark matter detection - II

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  3. Dark matter detection - III

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  4. Dark matter detection - I

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  5. Sterile neutrino portal to Dark Matter II: exact dark symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Rius, Nuria [Universidad de Valencia-CSIC, Departamento de Fisica Teorica and IFIC, C/Catedratico Jose Beltran, 2, 46980, Paterna (Spain); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV. (orig.)

  6. Dark matter in and around stars

    International Nuclear Information System (INIS)

    Sivertsson, Sofia

    2009-01-01

    There is by now compelling evidence that most of the matter in the universe is in the form of dark matter, a form of matter quite different from the matter we experience in every day life. The gravitational effects of this dark matter have been observed in many different ways but its true nature is still unknown. In most models dark matter particles can annihilate with each other into standard model particles. The direct or indirect observation of such annihilation products could give important clues for the dark matter puzzle. For signals from dark matter annihilations to be detectable, typically high dark matter densities are required. Massive objects, such as stars, can increase the local dark matter density both via scattering off nucleons and by pulling in dark matter gravitationally as the star forms. Dark matter annihilations outside the star would give rise to gamma rays and this is discussed in the first paper. Furthermore dark matter annihilations inside the star would deposit energy inside the star which, if abundant enough, could alter the stellar evolution. Aspects of this are investigated in the second paper. Finally, local dark matter over densities formed in the early universe could still be around today; prospects of detecting gamma rays from such clumps are discussed in the third paper

  7. The search for dark matter

    International Nuclear Information System (INIS)

    Smith, Nigel; Spooner, Neil

    2000-01-01

    Experiments housed deep underground are searching for new particles that could simultaneously solve one of the biggest mysteries in astrophysics and reveal what lies beyond the Standard Model of particle physics. Physicists are very particular about balancing budgets. Energy, charge and momentum all have to be conserved and often money as well. Astronomers were therefore surprised and disturbed to learn in the 1930s that our own Milky Way galaxy behaved as if it contained more matter than could be seen with telescopes. This puzzling non-luminous matter became known as ''dark matter'' and we now know that over 90% of the matter in the entire universe is dark. In later decades the search for this dark matter shifted from the heavens to the Earth. In fact, the search for dark matter went underground. Today there are experiments searching for dark matter hundreds and thousands of metres below ground in mines, road tunnels and other subterranean locations. These experiments are becoming more sensitive every year and are beginning to test various new models and theories in particle physics and cosmology. (UK)

  8. Implications of right-handed neutrinos in B -L extended standard model with scalar dark matter

    Science.gov (United States)

    Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa

    2018-01-01

    We investigate the standard model (SM) with a U (1 )B-L gauge extension where a B -L charged scalar is a viable dark matter (DM) candidate. The dominant annihilation process, for the DM particle is through the B -L symmetry breaking scalar to a right-handed neutrino pair. We exploit the effect of decay and inverse decay of the right-handed neutrino in thermal relic abundance of the DM. Depending on the values of the decay rate, the DM relic density can be significantly different from what is obtained in the standard calculation assuming the right-handed neutrino is in thermal equilibrium and there appear different regions of the parameter space satisfying the observed DM relic density. For a DM mass less than O (TeV ) , the direct detection experiments impose a competitive bound on the mass of the U (1 )B-L gauge boson Z' with the collider experiments. Utilizing the nonobservation of the displaced vertices arising from the right-handed neutrino decays, the bound on the mass of Z' has been obtained at present and higher luminosities at the LHC with 14 TeV center of mass energy where an integrated luminosity of 100 fb-1 is sufficient to probe mZ'˜5.5 TeV .

  9. Can dark matter decay in dark energy?

    International Nuclear Information System (INIS)

    Pereira, S. H.; Jesus, J. F.

    2009-01-01

    We analyze the interaction between dark energy and dark matter from a thermodynamical perspective. By assuming they have different temperatures, we study the possibility of occurring a decay from dark matter into dark energy, characterized by a negative parameter Q. We find that, if at least one of the fluids has nonvanishing chemical potential, for instance μ x dm =0 or μ x =0 and μ dm >0, the decay is possible, where μ x and μ dm are the chemical potentials of dark energy and dark matter, respectively. Using recent cosmological data, we find that, for a fairly simple interaction, the dark matter decay is favored with a probability of ∼93% over the dark energy decay. This result comes from a likelihood analysis where only background evolution has been considered.

  10. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  11. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  12. The Cosmology of Composite Inelastic Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; /SLAC /Stanford U., ITP; Schuster, Philip; Wacker, Jay G.; /SLAC

    2011-08-19

    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.

  13. Flavored dark matter beyond Minimal Flavor Violation

    International Nuclear Information System (INIS)

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-01-01

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator with a coupling. We identify a number of ''flavor-safe'' scenarios for the structure of which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed

  14. Dark Matter "Collider" from Inelastic Boosted Dark Matter.

    Science.gov (United States)

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2017-10-20

    We propose a novel dark matter (DM) detection strategy for models with a nonminimal dark sector. The main ingredients in the underlying DM scenario are a boosted DM particle and a heavier dark sector state. The relativistic DM impinged on target material scatters off inelastically to the heavier state, which subsequently decays into DM along with lighter states including visible (standard model) particles. The expected signal event, therefore, accompanies a visible signature by the secondary cascade process associated with a recoiling of the target particle, differing from the typical neutrino signal not involving the secondary signature. We then discuss various kinematic features followed by DM detection prospects at large-volume neutrino detectors with a model framework where a dark gauge boson is the mediator between the standard model particles and DM.

  15. Weakly interacting dark matter and baryogenesis

    International Nuclear Information System (INIS)

    Gu Peihong; Lindner, Manfred; Sarkar, Utpal; Zhang Xinmin

    2011-01-01

    In the present Universe visible and dark matter contribute comparable energy density although they have different properties. This phenomenon can be explained if the dark matter relic density, originating from a dark matter asymmetry, is fully determined by the baryon asymmetry. Thus the dark matter mass is not arbitrary; rather, it becomes predictive. We realize this scenario in baryon (lepton) number conserving models where two or more neutral singlet scalars decay into two or three baryonic (leptonic) dark matter scalars, and also decay into quarks (leptons) through other on-shell and/or off-shell exotic scalar bilinears. The produced baryon (lepton) asymmetries in the dark matter scalar and in the standard model quarks (leptons) are thus equal and opposite. The dark matter mass can be predicted in a range from a few GeV to a few TeV, depending on the baryon (lepton) numbers of the decaying scalars and the dark matter scalar. The dark matter scalar can interact with the visible matter through the exchange of the standard model Higgs boson, opening a window for the dark matter direct detection experiments. These models also provide testable predictions in the searches for the exotic scalar bilinears at LHC.

  16. Dark Matter Searches at ATLAS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The astrophysical evidence of dark matter provides some of the most compelling clues to the nature of physics beyond the Standard Model. From these clues, ATLAS has developed a broad and systematic search program for dark matter production in LHC collisions. These searches are now entering their prime, with the LHC now colliding protons at the increased 13 TeV centre-of-mass energy and set to deliver much larger datasets than ever before. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  17. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    ... of almost-standard annihilating dark matter have brought along have been discussed. The main sources of uncertainties that affect this kind of searches are also listed. [Report number: Saclay T11/206, CERN-PH-TH/2011-257, extended version in arXiv:1202.1454], [Prepared for the Proceedings of Lepton–Photon 2011, ...

  18. Dark Matter searches at ATLAS

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2016-01-01

    If Dark Matter interacts weakly with the Standard Model it can be produced at the LHC. It can be identified via initial state radiation (ISR) of the incoming partons, leaving a signature in the detector of the ISR particle (jet, photon, Z or W) recoiling off of the invisible Dark Matter particles, resulting in a large momentum imbalance. Many signatures of large missing transverse momentum recoiling against jets, photons, heavy-flavor quarks, weak gauge bosons or Higgs bosons provide an interesting channel for Dark Matter searches. These LHC searches complement those from (in)direct detection experiments. Results of these searches with the ATLAS experiment, in both effective field theory and simplified models with pair WIMP production are discussed. Both 8TeV and 13TeV pp collision data has been used in these results.

  19. Dark matter in the universe

    CERN Document Server

    Seigar, Marc S

    2015-01-01

    The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes on to describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly or indirectly.

  20. Dark matter and its detection

    International Nuclear Information System (INIS)

    Bi Xiaojun; Qin Bo

    2011-01-01

    We first explain the concept of dark matter,then review the history of its discovery and the evidence of its existence. We describe our understanding of the nature of dark matter particles, the popular dark matter models,and why the weakly interacting massive particles (called WIMPs) are the most attractive candidates for dark matter. Then we introduce the three methods of dark matter detection: colliders, direct detection and indirect detection. Finally, we review the recent development of dark matter detection, including the new results from DAMA, CoGent, PAMELA, ATIC and Fermi. (authors)

  1. DARK MATTER: Optical shears

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Evidence for dark matter continues to build up. Last year (December 1993, page 4) excitement rose when the French EROS (Experience de Recherche d'Objets Sombres) and the US/Australia MACHO collaborations reported hints that small inert 'brown dwarf stars could provide some of the Universe's missing matter. In the 1930s, astronomers first began to suspect that there is a lot more to the Universe than meets the eye

  2. Dichromatic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Su, Meng; Zhao, Yue

    2013-02-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.

  3. Dark matter axions '96

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions' energy spectra and galactic halos' properties

  4. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)

    2017-07-15

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  5. Little composite dark matter

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  6. Simplified Dark Matter Models

    OpenAIRE

    Morgante, Enrico

    2018-01-01

    I review the construction of Simplified Models for Dark Matter searches. After discussing the philosophy and some simple examples, I turn the attention to the aspect of the theoretical consistency and to the implications of the necessary extensions of these models.

  7. Phenomenology of ELDER dark matter

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2017-08-01

    We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.

  8. Right-handed neutrino dark matter in the classically conformal U(1 ) ' extended standard model

    Science.gov (United States)

    Oda, Satsuki; Okada, Nobuchika; Takahashi, Dai-suke

    2017-11-01

    We consider the dark matter (DM) scenario in the context of the classically conformal U(1 ) ' extended standard model (SM), with three right-handed neutrinos (RHNs) and the U(1 ) ' Higgs field. The model is free from all of the U(1 ) ' gauge and gravitational anomalies in the presence of the three RHNs. We introduce a Z2 parity in the model, under which an odd parity is assigned to one RHN, while all of the other particles are assigned to be Z2 even, and hence the Z2-odd RHN serves as a DM candidate. In this model, the U(1 ) ' gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the electroweak symmetry breaking is triggered. There are three free parameters in our model—the U(1 ) ' charge of the SM Higgs doublet (xH ), the new U(1 ) ' gauge coupling (gX ), and the U(1 ) ' gauge boson (Z') mass (mZ')—which are severely constrained in order to solve the electroweak vacuum instability problem, and satisfy the LHC Run-2 bounds from the search for the Z' boson resonance. In addition to these constraints, we investigate the RHN DM physics. Because of the nature of classical conformality, we find that a RHN DM pair mainly annihilates into the SM particles through Z' boson exchange. This is the so-called Z'-portal DM scenario. Combining the electroweak vacuum stability condition, the LHC Run-2 bounds, and the cosmological constraint from the observed DM relic density, we find that all constraints work together to narrow the allowed parameter regions and, in particular, exclude mZ'≲3.5 TeV . For the obtained allowed regions, we calculate the spin-independent cross section of the RHN DM with nucleons. We find that the resultant cross section is well below the current experimental upper bounds.

  9. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  10. Probes for Dark Matter Physics

    OpenAIRE

    Khlopov, Maxim Yu.

    2018-01-01

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and to consist of new stable particles. However if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. In such models the excessive negatively double charged particles are bo...

  11. Interacting dark matter disguised as warm dark matter

    International Nuclear Information System (INIS)

    Boehm, Celine; Riazuelo, Alain; Hansen, Steen H.; Schaeffer, Richard

    2002-01-01

    We explore some of the consequences of dark-matter-photon interactions on structure formation, focusing on the evolution of cosmological perturbations and performing both an analytical and a numerical study. We compute the cosmic microwave background anisotropies and matter power spectrum in this class of models. We find, as the main result, that when dark matter and photons are coupled, dark matter perturbations can experience a new damping regime in addition to the usual collisional Silk damping effect. Such dark matter particles (having quite large photon interactions) behave like cold dark matter or warm dark matter as far as the cosmic microwave background anisotropies or matter power spectrum are concerned, respectively. These dark-matter-photon interactions leave specific imprints at sufficiently small scales on both of these two spectra, which may allow us to put new constraints on the acceptable photon-dark-matter interactions. Under the conservative assumption that the abundance of 10 12 M · galaxies is correctly given by the cold dark matter, and without any knowledge of the abundance of smaller objects, we obtain the limit on the ratio of the dark-matter-photon cross section to the dark matter mass σ γ-DM /m DM -6 σ Th /(100 GeV)≅6x10 -33 cm 2 GeV -1

  12. Non-baryonic dark matter

    International Nuclear Information System (INIS)

    Berkes, I.

    1996-01-01

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author)

  13. Signals of Supersymmetric Dark Matter

    OpenAIRE

    Abbas, Afsar

    1999-01-01

    The Lightest Supersymmetric Particle predicted in most of the supersymmetric scenarios is an ideal candidate for the dark matter of cosmology. Their detection is of extreme significance today. Recently there have been intriguing signals of a 59 Gev neutralino dark matter at DAMA in Gran Sasso. We look at other possible signatures of dark matter in astrophysical and geological frameworks. The passage of the earth through dense clumps of dark matter would produce large quantities of heat in the...

  14. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  15. Caustic rings of dark matter

    OpenAIRE

    Sikivie, Pierre

    1997-01-01

    It is shown that the infall of collisionless dark matter onto isolated galaxies produces a series of caustic rings in the halo dark matter distribution. The properties of these caustics are investigated. The density profile of the caustic is derived for a specific case. Bumps in the rotation curve of NGC 3198 are interpreted as due to caustic rings of dark matter.

  16. Dark Matter Searches at LHC

    CERN Document Server

    Terashi, Koji; The ATLAS collaboration

    2017-01-01

    This talk will present dark matter searches at the LHC in the PIC2017 conference. The main emphasis is placed on the direct dark matter searches while the interpretation of searches for SUSY and invisible Higgs signals for the dark matter is also presented.

  17. Sourcing dark matter and dark energy from α-attractors

    International Nuclear Information System (INIS)

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri

    2017-01-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m 2 φ 2 , while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m 2 φ 2 potential in describing dark matter.

  18. Natural Implementation of Neutralino Dark Matter

    CERN Document Server

    King, S F

    2006-01-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simu...

  19. Dark Matter Coannihilation with a Lighter Species.

    Science.gov (United States)

    Berlin, Asher

    2017-09-22

    We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, M_{GUT}∼10^{16}  GeV.

  20. Dark matter candidates

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of? Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs

  1. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  2. An elusive vector dark matter

    Directory of Open Access Journals (Sweden)

    Chuan-Ren Chen

    2015-02-01

    Full Text Available Even though the sensitivity of direct dark matter search experiments reaches the level of about 10−45 cm2, no confident signal of dark matter has been observed. We point out that, if dark matter is a vector boson, the null result in direct dark matter search experiments may be due to the destructive effects in dark-matter–nucleon elastic scattering. We illustrate the scenario using a modified Higgs portal model that includes exotic quarks. The significant cancellation can occur for a certain mass gap between new heavy quark and dark matter. As a result, the spin-independent dark-matter–nucleon elastic scattering is so suppressed that the future direct search experiments will hardly observe the signal of dark matter.

  3. Black Holes as Dark Matter

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.

  4. Turning off the lights: How dark is dark matter?

    International Nuclear Information System (INIS)

    McDermott, Samuel D.; Yu Haibo; Zurek, Kathryn M.

    2011-01-01

    We consider current observational constraints on the electromagnetic charge of dark matter. The velocity dependence of the scattering cross section through the photon gives rise to qualitatively different constraints than standard dark matter scattering through massive force carriers. In particular, recombination epoch observations of dark matter density perturbations require that ε, the ratio of the dark matter to electronic charge, is less than 10 -6 for m X =1 GeV, rising to ε -4 for m X =10 TeV. Though naively one would expect that dark matter carrying a charge well below this constraint could still give rise to large scattering in current direct detection experiments, we show that charged dark matter particles that could be detected with upcoming experiments are expected to be evacuated from the Galactic disk by the Galactic magnetic fields and supernova shock waves and hence will not give rise to a signal. Thus dark matter with a small charge is likely not a source of a signal in current or upcoming dark matter direct detection experiments.

  5. Flavored dark matter beyond Minimal Flavor Violation

    CERN Document Server

    Agrawal, Prateek; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a $U(3)_\\chi$ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter $\\chi$ which transforms as triplet under $U(3)_\\chi$, and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator $\\phi$ with a coupling $\\lambda$. We identify a number of "flavor-safe" scenarios for the structure of $\\lambda$ which are beyond Minimal Flavor Violation. For dark matter and collider phenomenology we focus on the well-motivated case of $b$-...

  6. Dipolar dark matter with massive bigravity

    International Nuclear Information System (INIS)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-01-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model

  7. Dark matter from decaying topological defects

    International Nuclear Information System (INIS)

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M.

    2014-01-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits

  8. Z{sub 2} SIMP dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Nicolás [ICTP South American Institute for Fundamental Research, Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Chu, Xiaoyong, E-mail: nicolas@ift.unesp.br, E-mail: xchu@ictp.it [ICTP International Centre for Theoretical Physics Strada Costiera 11, 34014 Trieste (Italy)

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z{sub 2} symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model.

  9. ℤ{sub 2} SIMP dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Nicolás [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Chu, Xiaoyong [ICTP International Centre for Theoretical PhysicsStrada Costiera 11, 34014 Trieste (Italy)

    2016-01-05

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N{sup ′} processes, where N dark matter particles annihilate to N{sup ′} of them. In the most common scenarios, where dark matter stability is guaranteed by a ℤ{sub 2} symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model.

  10. Direct search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  11. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  12. Imperfect Dark Matter

    Science.gov (United States)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  13. Perturbative extension of the standard model with a 125 GeV Higgs and Magnetic Dark Matter

    DEFF Research Database (Denmark)

    Dissauer, Karin; Frandsen, Mads Toudal; Hapola, Tuomas

    2012-01-01

    among several direct dark matter search experiments. We further constrain the parameters of the underlying theory using results from the Large Hadron Collider. The extension can accommodate the recently observed properties of the Higgs-like state and leads to interesting predictions. Finally we show...... that the model's collider phenomenology and constraints nicely complement the ones coming from dark matter searches....

  14. Flooded Dark Matter and S level rise

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Lisa; Scholtz, Jakub [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Unwin, James [Department of Physics, University of Illinois at Chicago,Chicago, IL 60607 (United States)

    2016-03-03

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as “Maximum Baroqueness”. We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant

  15. Flooded Dark Matter and S level rise

    International Nuclear Information System (INIS)

    Randall, Lisa; Scholtz, Jakub; Unwin, James

    2016-01-01

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as “Maximum Baroqueness”. We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant

  16. DarkSide search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D' Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  17. Dark matter model with non-Abelian gauge symmetry

    International Nuclear Information System (INIS)

    Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao

    2010-01-01

    We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.

  18. Correlation between dark matter and dark radiation in string compactifications

    International Nuclear Information System (INIS)

    Allahverdi, Rouzbeh; Cicoli, Michele; Dutta, Bhaskar; Sinha, Kuver

    2014-01-01

    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N eff with lower bounds on the reheating temperature as a function of the dark matter mass m DM from Fermi data, we obtain strong constraints on the (N eff , m DM )-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N eff tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s

  19. Interactions between dark energy and dark matter

    International Nuclear Information System (INIS)

    Baldi, Marco

    2009-01-01

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with Λ CDM . Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the Λ CDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  20. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  1. Directly detecting isospin-violating dark matter

    Science.gov (United States)

    Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-03-01

    We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z , or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-or Z -mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.

  2. Baryonic dark matter

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Gilmore, G.

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small Ω B . However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with Ω B = 1 cosmological nucleosynthesis

  3. Caustic rings of dark matter

    International Nuclear Information System (INIS)

    Sikivie, P.

    1997-01-01

    It is shown that the infall of collisionless dark matter onto isolated galaxies produce a series of caustic rings in the halo dark matter distribution. The properties of these caustics are investigated. It is found in particular that the density profile of the caustic behaves as the inverse distance to the ring. Bumps in the rotation curve of NGC 3198 are interpreted as due to caustic rings of dark matter

  4. An introduction to particle dark matter

    CERN Document Server

    Profumo, Stefano

    2017-01-01

    What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...

  5. Scalar dark matter with type II seesaw

    Directory of Open Access Journals (Sweden)

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  6. Supersymmetric dark matter: Indirect detection

    International Nuclear Information System (INIS)

    Bergstroem, L.

    2000-01-01

    Dark matter detection experiments are improving to the point where they can detect or restrict the primary particle physics candidates for non baryonic dark matter. The methods for detection are usually categorized as direct, i.e., searching for signals caused by passage of dark matter particles in terrestrial detectors, or indirect. Indirect detection methods include searching for antimatter and gamma rays, in particular gamma ray lines, in cosmic rays and high-energy neutrinos from the centre of the Earth or Sun caused by accretion and annihilation of dark matter particles. A review is given of recent progress in indirect detection, both on the theoretical and experimental side

  7. Dark matter. A light move

    International Nuclear Information System (INIS)

    Redondo, Javier; Doebrich, Babette

    2013-11-01

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  8. Dark matter. A light move

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Doebrich, Babette [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  9. Natural implementation of neutralino dark matter

    International Nuclear Information System (INIS)

    King, Steve F.; Roberts, Jonathan P.

    2006-01-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to 'supernatural dark matter' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed 'well tempered neutralino' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of 'supernatural dark matter' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains

  10. Natural implementation of neutralino dark matter

    Science.gov (United States)

    King, Steve F.; Roberts, Jonathan P.

    2006-09-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of ``supernatural dark matter'' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains.

  11. Quantum vacuum and dark matter

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2012-01-01

    Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.

  12. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  13. Thermal Dark Matter Below an MeV

    OpenAIRE

    Berlin, Asher; Blinov, Nikita

    2017-01-01

    We consider a class of models in which thermal dark matter is lighter than an MeV. If dark matter thermalizes with the Standard Model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cools and heats the Standard Model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as...

  14. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Wei; Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,116 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Hanif, T. [Department of Theoretical Physics, University of Dhaka,Dhaka-1000 (Bangladesh); Mann, R.B. [Department of Physics, University of Waterloo,Waterloo, ON, N2L 3G1 (Canada)

    2016-08-09

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model’s couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ≈0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F, which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  15. TeV scale singlet dark matter

    International Nuclear Information System (INIS)

    Ponton, Eduardo; Randall, Lisa

    2009-01-01

    It is well known that stable weak scale particles are viable dark matter candidates since the annihilation cross section is naturally about the right magnitude to leave the correct thermal residual abundance. Many dark matter searches have focused on relatively light dark matter consistent with weak couplings to the Standard Model. However, in a strongly coupled theory, or even if the coupling is just a few times bigger than the Standard Model couplings, dark matter can have TeV-scale mass with the correct thermal relic abundance. Here we consider neutral TeV-mass scalar dark matter, its necessary interactions, and potential signals. We consider signals both with and without higher-dimension operators generated by strong coupling at the TeV scale, as might happen for example in an RS scenario. We find some potential for detection in high energy photons that depends on the dark matter distribution. Detection in positrons at lower energies, such as those PAMELA probes, would be difficult though a higher energy positron signal could in principle be detectable over background. However, a light dark matter particle with higher-dimensional interactions consistent with a TeV cutoff can in principle match PAMELA data.

  16. Standard coupling unification in SO(10), hybrid seesaw neutrino mass and leptogenesis, dark matter, and proton lifetime predictions

    Energy Technology Data Exchange (ETDEWEB)

    Parida, M.K.; Nayak, Bidyut Prava; Satpathy, Rajesh [Centre of Excellence in Theoretical and Mathematical Sciences,Siksha ‘O’ Anusandhan University,Khandagiri Square, Bhubaneswar 751030 (India); Awasthi, Ram Lal [Indian Institute of Science Education and Research,Knowledge City, Sector 81, SAS Nagar, Manauli 140306 (India)

    2017-04-12

    We discuss gauge coupling unification of SU(3){sub C}×SU(2){sub L}×U(1){sub Y} descending directly from non-supersymmetric SO(10) while providing solutions to the three outstanding problems of the standard model: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry for the stability and identification of dark matter in the model calls for high-scale spontaneous symmetry breaking through 126{sub H} Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. Being quadratic in the Majorana coupling, the seesaw formula predicts two distinct patterns of right-handed neutrino masses, one hierarchical and another not so hierarchical (or compact), when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RHν masses. A complete flavor analysis has been carried out to compute CP-asymmetries including washouts and solutions to Boltzmann equations have been utilised to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of right-handed neutrino masses. The SU(2){sub L} triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation 45{sub F} of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass ∼5×10{sup 7} GeV to achieve precision gauge coupling unification at the GUT mass scale M{sub U}{sup 0}=10{sup 15.56} GeV. Threshold corrections due to superheavy components of 126{sub H} and other representations are estimated and found to be

  17. Non-baryonic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Berkes, I.

    1996-12-31

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author). 19 refs.

  18. Dark Matter Searches with the ATLAS Detector

    CERN Document Server

    Elliot, Alison; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature.  The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  19. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  20. Dark matter searches with the ATLAS detector

    CERN Document Server

    Whalen, Kathleen; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches using the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  1. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Ippolito, Valerio; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic Dark Matter component in the Universe is inferred from the observation of its gravitational interaction. If Dark Matter interacts weakly with the Standard Model particles it may be produced at the Large Hadron Collider (LHC), escaping detection and leaving large missing transverse momentum as its signature. New results from the Dark Matter search programme of the ATLAS experiment are presented, based on LHC proton-proton collision data collected at a center-of-mass energy of 13 TeV.

  2. Dark Matter Searches with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Elliot Alison

    2017-01-01

    Full Text Available The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  3. Dark matter searches with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379232; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  4. Searches for Dark Matter at the LHC

    CERN Document Server

    Sciolla, Gabriella; The ATLAS collaboration

    2016-01-01

    Dark Matter can be produced in large amounts in pp collisions at the Large Hadron Collider (LHC) assuming it interacts non-gravitationally with Standard Model particles. While Dark Matter escapes direct detection at the LHC, it leaves a distinct signature of significant missing transverse momentum. In this talk, recent results from the ATLAS and CMS detectors will be presented, based on events with large missing transverse momentum accompanied by a variety of other objects such as jets, photons, heavy-flavor quarks, weak gauge bosons, or Higgs bosons. These measurements are complementary to those obtained in direct and indirect Dark Matter detection experiments.

  5. Dark matter searches in ATLAS

    CERN Document Server

    Diehl, Edward; The ATLAS collaboration

    2016-01-01

    Dark matter particles may be produced at the LHC in combination with other particles, typically from initial state radiation. We present results from the ATLAS experiment from searches for phenomena with jets, photons, heavy quarks, electroweak gauge bosons, or Higgs bosons recoiling against large missing transverse momentum. The measurements are interpreted using several theoretical frameworks including simplified models with pair production of Weakly Interacting Massive Particles, effective field theories, and other beyond the Standard Model scenarios. Constraints from dijet searches are compared with results from the “Mono-X” searches to provide a combined interpretation in the context of simplified models.

  6. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  7. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  8. Inverse Compton Gamma Rays from Dark Matter Annihilation in the ...

    Indian Academy of Sciences (India)

    didates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino. (neutral χ particle) as predicted in the Minimal Supersymmetric Standard. Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming ...

  9. Constraining properties of dark matter particles using astrophysical data

    NARCIS (Netherlands)

    Iakubovskyi, Dmytro

    2013-01-01

    A microscopic origin of dark matter phenomenon is the most plausible hypothesis to explain the mystery of dark matter. The dark matter particle hypothesis necessarily implies an extension of the Standard Model. In this thesis, we undertook a systematic model-independent program of studying the

  10. Taming astrophysical bias in direct dark matter searches

    NARCIS (Netherlands)

    Pato, M.; Strigari, L.E.; Trotta, R.; Bertone, G.

    2013-01-01

    We explore systematic biases in the identification of dark matter in future direct detection experiments and compare the reconstructed dark matter properties when assuming a self-consistent dark matter distribution function and the standard Maxwellian velocity distribution. We find that the

  11. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    International Nuclear Information System (INIS)

    Piattella, O.F.; Martins, D.L.A.; Casarini, L.

    2014-01-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100

  12. Dipolar dark matter

    International Nuclear Information System (INIS)

    Masso, Eduard; Mohanty, Subhendra; Rao, Soumya

    2009-01-01

    If dark matter (DM) has nonzero direct or transition, electric or magnetic dipole moment then it can scatter nucleons electromagnetically in direct detection experiments. Using the results from experiments like XENON, CDMS, DAMA, and COGENT, we put bounds on the electric and magnetic dipole moments of DM. If DM consists of Dirac fermions with direct dipole moments, then DM of mass less than 10 GeV is consistent with the DAMA signal and with null results of other experiments. If on the other hand DM consists of Majorana fermions then they can have only nonzero transition moments between different mass eigenstates. We find that Majorana fermions with masses 38 χ < or approx. 100-200 GeV and mass splitting of the order of (150-200) keV can explain the DAMA signal and the null observations from other experiments and in addition give the observed relic density of DM by dipole-mediated annihilation. The absence of the heavier DM state in the present Universe can be explained by dipole-mediated radiative decay. This parameter space for the mass and for dipole moments is allowed by limits from L3 but may have observable signals at LHC.

  13. Searches for Dark Matter with in Events with Hadronic Activity

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The astrophysical evidence of dark matter provides some of the most compelling clues to the nature of physics beyond the Standard Model. From these clues, ATLAS has developed a broad and systematic search program for dark matter production in LHC collisions. In the framework of Simplified models the searches are divided into invisible and visible channels, corresponding to dark matter searches, with a missing energy signature, and dark matter mediator searches, looking for bump in invariant mass distributions.

  14. Mixed dark matter from technicolor

    DEFF Research Database (Denmark)

    Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....

  15. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Dark matter searches at ATLAS

    CERN Document Server

    Gustavino, Giuliano; The ATLAS collaboration

    2016-01-01

    Although the existence of Dark Matter is a well-established hypothesis to explain a range of astrophysical and cosmological measurements, its nature and particle properties still remain one of the greatest unsolved puzzles of particle and astro-particle physics. The collider experiments have developed a comprehensive search program in this sector looking at a wide spectrum of channels in which a Dark Matter evidence can be traced. In this context the last results using the data sample collected at LHC at the new centre-of-mass energy of 13 TeV will be presented giving an outlook of the Dark Matter search status in the ATLAS experiment.

  17. "Dark Matter searches at ATLAS"

    CERN Document Server

    Gustavino, Giuliano; The ATLAS collaboration

    2016-01-01

    Although the existence of Dark Matter is a well-established hypothesis to explain a range of astrophysical and cosmological measurements, its nature and particle properties still remain one of the greatest unsolved puzzles of particle and astro-particle physics. The collider experiments have developed a comprehensive search program in this sector looking at a wide spectrum of channels in which a Dark Matter evidence can be traced. In this context the last results using the data sample collected at LHC at the new centre-of-mass energy of 13 TeV will be presented giving an outlook of the Dark Matter search status in the ATLAS experiment.

  18. Unified origin for baryonic visible matter and antibaryonic dark matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  19. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  20. Dark-matter QCD-axion searches

    International Nuclear Information System (INIS)

    Rosenberg, Leslie J

    2010-01-01

    The axion is a hypothetical elementary particle appearing in a simple and elegant extension to the Standard Model of particle physics that cancels otherwise huge CP-violating effects in QCD; this extension has a broken U(1) axial symmetry, where the resulting Goldstone Boson is the axion. A light axion of mass 10 -(6-3) eV (the so-called i nvisible axion ) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion would be a compelling dark-matter candidate and is therefore a target of a number of searches. Compared to other dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This restricted search space allows for 'definitive' searches, where non-observation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches employ a wide range of technologies and techniques, from astrophysical observations to laboratory electromagnetic signal detection. For some experiments, sensitivities are have reached likely dark-matter axion couplings and masses. This is a brief and selective overview of axion searches. With only very limited space, I briefly describe just two of the many experiments that are searching for dark-matter axions.

  1. Experimental Searches for Dark Matter

    Directory of Open Access Journals (Sweden)

    Sumner Timothy J.

    2002-01-01

    Full Text Available There is now an enormously rich variety of experimental techniques being brought to bear on experimental searches for dark matter, covering a wide range of suggested forms for it. The existence of 'dark matter', in some form or other, is inferred from a number of relatively simple observations and the problem has been known for over half a century. To explain 'dark matter' is one of the foremost challenges today -- the answer will be of fundamental importance to cosmologists, astrophysicists, particle physicists, and general relativists. In this article, I will give a brief review of the observational evidence (concentrating on areas of current significant activity, followed by an equally brief summary of candidate solutions for the 'dark matter'. I will then discuss experimental searches, both direct and indirect. Finally, I will offer prospects for the future.

  2. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. The mystery of dark matter

    International Nuclear Information System (INIS)

    Khalatbari, Azar

    2015-01-01

    As only 0.5 per cent (the shining part) of the Universe is seen by telescopes, and corresponds to a tenth of ordinary matter or 5 per cent of the cosmos, astrophysicists postulated that the remaining 95 per cent are made of dark matter and dark energy. But always more researchers put the existence of this dark matter and energy into question again. They notably think of giving up Newton's law of universal gravitation, and also the basic assumption of cosmology, i.e. the homogeneous character of the Universe. The article recalls the emergence of the notion of dark matter to explain the fact that stars stay within a galaxy, whereas with their observed speed and the application of the gravitational theory they should escape their galaxy. Then, the issue has been to find evidence of the existence of dark matter. Neutrinos were supposed to be a clue, but only for a while. The notion of dark energy was introduced more recently by researchers who, by the observation of supernovae, noticed that the Universe expansion was accelerated in time. Then, after having discussed the issues raised by the possible existence of dark energy, the article explains how and why a new non homogeneous cosmology emerged. It also evokes current and future researches in this field. In an interview, an astrophysicist outlines why we should dare to modify Newton's law

  4. Dark matter triggers of supernovae

    Science.gov (United States)

    Graham, Peter W.; Rajendran, Surjeet; Varela, Jaime

    2015-09-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to 1.25 M⊙ rules out primordial black holes with masses ˜1019- 1020 gm as a dominant constituent of the local dark matter density. Black holes with masses as large as 1024 gm will be excluded if recent observations by the NuStar Collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range 1020- 1022 gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large spacetime volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.

  5. Enlightening Students about Dark Matter

    Science.gov (United States)

    Hamilton, Kathleen; Barr, Alex; Eidelman, Dave

    2018-01-01

    Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.

  6. Dark matter and global symmetries

    Directory of Open Access Journals (Sweden)

    Yann Mambrini

    2016-09-01

    Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.

  7. Dark matter beams at LBNF

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni [Theory Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States)

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Z{sup ′} boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z{sup ′} couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. This illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.

  8. Sterile neutrino, hidden dark matter and their cosmological signatures

    International Nuclear Information System (INIS)

    Das, Subinoy

    2012-01-01

    Though thermal dark matter has been the central idea behind the dark matter candidates, it is highly possible that dark matter of the universe is non-thermal in origin or it might be in thermal contact with some hidden or dark sector but not with standard model. Here we explore the cosmological bounds as well as the signatures on two types of non-thermal dark matter candidates. First we discuss a hidden dark matter with almost no interaction (or very feeble) with standard model particles so that it is not in thermal contact with visible sector but we assume it is thermalized with in a hidden sector due to some interaction. While encompassing the standard cold WIMP scenario, we do not require the freeze-out process to be non-relativistic. Rather, freeze-out may also occur when dark matter particles are semi-relativistic or relativistic. Especially we focus on the warm dark matter scenario in this set up and find the constraints on the warm dark matter mass, cross-section and hidden to visible sector temperature ratio which accounts for the observed dark-matter density, satisfies the Tremaine-Gunn bound on dark-matter phase space density and has a free-streaming length consistent with cosmological constraints on the matter power spectrum. Our method can also be applied to keV sterile neutrino dark matter which is not thermalized with standard model but is thermalized with in a dark sector. The second part of this proceeding focuses on an exotic dark matter candidate which arises from the existence of eV mass sterile neutrino through a late phase transition. Due to existence of a strong scalar force the light sterile states get trapped into stable degenerate micro nuggets. We find that its signature in matter power spectra is close to a warm dark matter candidate.

  9. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel D.

    2017-11-02

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV). Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.

  10. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    Science.gov (United States)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  11. Is Large-Scale-Structure formation a new probe of the Dark Matter interactions with Standard Model particles?

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In the last few decades, there have been extensive efforts made to discover dark matter particles through a significant experimental program based on direct and indirect detection techniques. However so far these searches remain unsuccessful, thus questioning our ability to elucidate one of the biggest challenges of modern Cosmology. In this talk I will review some of the key aspects of these techniques and present a new strategy to characterise the dark matter interactions with the visible sector without having to rely on critical assumptions.

  12. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  13. Directly detecting isospin-violating dark matter

    OpenAIRE

    Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-01-01

    We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon–...

  14. The dark side of matter

    International Nuclear Information System (INIS)

    Cline, D.

    2003-01-01

    The number of baryons (protons and neutrons) of the universe can be deduced from the relative abundances of light elements (deuterium, helium and lithium) that were generated during the very first minutes of the cosmic history. This calculation has shown that the baryonic matter represents only 5% of the total mass of the universe. As for neutrinos (hot dark matter), their very low mass restraints their contribution to only 0,3%. The spinning movement of galaxies requires the existence of huge quantity of matter that seems invisible (black matter). Astrophysicists have recently discovered that the universal expansion is accelerating and that the space geometry is euclidean, from these 2 facts they have deduced a value of the mass-energy density that implies the existence of something different from dark matter called dark energy and that is expected to represent about 70% of the mass of the universe. Physicists face the challenge of detecting black matter and black energy. The first attempt for detecting black matter began in 1997 when the UKDMC detector entered into service. Now more than half a dozen of detectors are searching for dark matter but till now in vain. A new generation of detectors (CDMS-2, ZEPLIN-2, CRESST-2 and Edelweiss-2) combining detection, new methods of particle discrimination and the study of the evolution of the signal over very long periods of time are progressively entering into operation. (A.C.)

  15. CP violating scalar Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Cid, A.; Hernández-Sánchez, J. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Keus, V. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Gustaf Hallstromin katu 2, Helsinki, FIN-00014 (Finland); School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, S.F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Moretti, S. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom); Rojas, D. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Sokołowska, D. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-12-05

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z{sub 2} symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  16. Window in the dark matter exclusion limits

    International Nuclear Information System (INIS)

    Zaharijas, Gabrijela; Farrar, Glennys R.

    2005-01-01

    We consider the cross section limits for light dark matter cadnidates (m=0.4 to 10 GeV). We calculate the interaction of dark matter in the crust above underground dark matter detectors and find that in the intermediate cross section range, the energy loss of dark matter is sufficient to fall below the energy threshold of current underground experiments. This implies the existence of a window in the dark matter exclusion limits in the micro-barn range

  17. Dark Matter and Dark Energy Summary and Future Directions

    CERN Document Server

    Ellis, Jonathan Richard

    2003-01-01

    This paper reviews the progress reported at this Royal Society Discussion Meeting and advertizes some possible future directions in our drive to understand dark matter and dark energy. Additionally, a first attempt is made to place in context the exciting new results from the WMAP satellite, which were published shortly after this Meeting. In the first part of this review, pieces of observational evidence shown here that bear on the amounts of dark matter and dark energy are reviewed. Subsequently, particle candidates for dark matter are mentioned, and detection strategies are discussed. Finally, ideas are presented for calculating the amounts of dark matter and dark energy, and possibly relating them to laboratory data.

  18. DarkSUSY 6 : An Advanced Tool to Compute Dark Matter Properties Numerically

    OpenAIRE

    Bringmann, Torsten; Edsjo, Joakim; Gondolo, Paolo; Ullio, Piero; Bergstrom, Lars

    2018-01-01

    The nature of dark matter remains one of the key science questions. Weakly Interacting Massive Particles (WIMPs) are among the best motivated particle physics candidates, allowing to explain the measured dark matter density by employing standard big-bang thermodynamics. Examples include the lightest supersymmetric particle, though many alternative particles have been suggested as a solution to the dark matter puzzle. We introduce here a radically new version of the widely used DarkSUSY packag...

  19. Elementary Goldstone Higgs Boson and Dark Matter

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco

    2015-01-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....

  20. Dark matter and dark energy solutions using by observational evidence

    Science.gov (United States)

    Demirel, E. C. Gunay; Yilmaz, I.

    2018-02-01

    In this study, we examine dark energy, dark matter and baryonic matter in FRW by observational evidences. Also we study our model by considering possible dark energy candidates such as Phantom energy. Obtained solutions show that dark energy candidate may be phantom energy depending on accuracy of today's observation.

  1. Planckian Interacting Massive Particles as Dark Matter.

    Science.gov (United States)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  2. Beyond vanilla dark matter: New channels in the multifaceted search for dark matter

    Science.gov (United States)

    Yaylali, David E.

    Though we are extremely confident that non-baryonic dark matter exists in our universe, very little is known about its fundamental nature or its relationship with the Standard Model. Guided by theoretical motivations, a desire for generality in our experimental strategies, and a certain amount of hopeful optimism, we have established a basic framework and set of assumptions about the dark sector which we are now actively testing. After years of probing the parameter spaces of these vanilla dark-matter scenarios, through a variety of different search channels, a conclusive direct (non-gravitational) discovery of dark matter eludes us. This very well may suggest that our first-order expectations of the dark sector are too simplistic. This work describes two ways in which we can expand the experimental reach of vanilla dark-matter scenarios while maintaining the model-independent generality which is at this point still warranted. One way in which this is done is to consider coupling structures between the SM and the dark sector other than the two canonical types --- scalar and axial-vector --- leading to spin dependent and independent interactions at direct-detection experiments. The second way we generalize the vanilla scenarios is to consider multi-component dark sectors. We find that both of these generalizations lead to new and interesting phenomenology, and provide a richer complementarity structure between the different experimental probes we are using to search for dark matter.

  3. Exploring the mirror matter interpretation of the DAMA experiment: Has the dark matter problem been solved?

    OpenAIRE

    Foot, R.

    2004-01-01

    The self consistency between the impressive DAMA annual modulation signal and the differential energy spectrum is an important test for dark matter candidates.Mirror matter-type dark matter passes this test while other dark matter candidates, including standard (spin-independent) WIMPs and mini-electric charged particle dark matter, do not do so well.We argue that the unique properties of mirror matter-type dark matter seem to be just those required to fully explain the data, suggesting that ...

  4. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  5. Dark matter versus Mach's principle.

    Science.gov (United States)

    von Borzeszkowski, H.-H.; Treder, H.-J.

    1998-02-01

    Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.

  6. The DAMIC Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    de Mello Neto, J. R.T. [Federal Univ. of Rio de Janeiro (Brazil). et al

    2015-10-07

    The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installed at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.

  7. Decoupling dark energy from matter

    Science.gov (United States)

    Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine; Martin, Jérôme

    2009-09-01

    We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe.

  8. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  9. Signals of dark matter in a supersymmetric two dark matter model

    International Nuclear Information System (INIS)

    Fukuoka, Hiroki; Suematsu, Daijiro; Toma, Takashi

    2011-01-01

    Supersymmetric radiative neutrino mass models have often two dark matter candidates. One is the usual lightest neutralino with odd R parity and the other is a new neutral particle whose stability is guaranteed by a discrete symmetry that forbids tree-level neutrino Yukawa couplings. If their relic abundance is comparable, dark matter phenomenology can be largely different from the minimal supersymmetric standard model (MSSM). We study this in a supersymmetric radiative neutrino mass model with the conserved R parity and a Z 2 symmetry weakly broken by the anomaly effect. The second dark matter with odd parity of this new Z 2 is metastable and decays to the neutralino dark matter. Charged particles and photons associated to this decay can cause the deviation from the expected background of the cosmic rays. Direct search of the neutralino dark matter is also expected to show different features from the MSSM since the relic abundance is not composed of the neutralino dark matter only. We discuss the nature of dark matter in this model by analyzing these signals quantitatively

  10. Multiscatter stellar capture of dark matter

    Science.gov (United States)

    Bramante, Joseph; Delgado, Antonio; Martin, Adam

    2017-09-01

    Dark matter may be discovered through its capture in stars and subsequent annihilation. It is usually assumed that dark matter is captured after a single scattering event in the star; however this assumption breaks down for heavy dark matter, which requires multiple collisions with the star to lose enough kinetic energy to become captured. We analytically compute how multiple scatters alter the capture rate of dark matter and identify the parameter space where the effect is largest. Using these results, we then show how multiscatter capture of dark matter on compact stars can be used to probe heavy mX≫TeV dark matter with remarkably small dark matter-nucleon scattering cross sections. As one example, it is demonstrated how measuring the temperature of old neutron stars in the Milky Way's center provides sensitivity to high mass dark matter with dark matter-nucleon scattering cross sections smaller than the xenon direct detection neutrino floor.

  11. Invisible Higgs and Dark Matter

    DEFF Research Database (Denmark)

    Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2012-01-01

    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking...... technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded....

  12. Twin Higgs WIMP dark matter

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-01

    Dark matter (DM) without a matter asymmetry is studied in the context of twin Higgs (TH) theories in which the LHC naturalness problem is addressed. These possess a twin sector related to the Standard Model (SM) by a (broken) Z2 symmetry, and interacting with the SM via a specific Higgs portal. We focus on the minimal realization of the TH mechanism, the fraternal twin Higgs, with only a single generation of twin quarks and leptons, and the S U (3 )'×S U (2 )' gauge group. We show that a variety of natural twin-WIMP DM candidates are present (directly linked to the weak scale by naturalness), the simplest and most attractive being the τ' lepton with a mass mτ'>mHiggs/2 , although spin-1 W'± DM and multicomponent DM are also possible (twin baryons are strongly disfavored by tuning). We consider in detail the dynamics of the possibly (meta)stable glueballs in the twin sector, the nature of the twin QCD phase transition, and possible new contributions to the number of relativistic degrees of freedom, Δ Neff . Direct detection signals are below current bounds but accessible in near-future experiments. Indirect detection phenomenology is rich and requires detailed studies of twin hadronization and fragmentation to twin glueballs and quarkonia and their subsequent decay to SM, and possible light twin sector states.

  13. Did LIGO Detect Dark Matter?

    Science.gov (United States)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  14. A Higgsploding Theory of Dark Matter

    OpenAIRE

    Khoze, Valentin V.; Reiness, Joey; Scholtz, Jakub; Spannowsky, Michael

    2018-01-01

    We show that the Higgsplosion mechanism makes a prediction for the mass and coupling of a WIMP-like minimal scalar dark matter model. In particular the currently favoured minimal value for the Higgsplosion scale, $E_\\mathrm{H}\\sim 25$ TeV, implies a dark matter mass $m_\\mathrm{DM} \\sim 1.25$ TeV and a moderate quartic coupling with the Standard Model Higgs field $\\lambda_\\mathrm{H,DM} \\sim 0.4$. This point in the parameter space is still allowed by all current experimental bounds, including d...

  15. Axions as hot and cold dark matter

    International Nuclear Information System (INIS)

    Jeong, Kwang Sik; Kawasaki, Masahiro; Tokyo Univ., Kashiwa; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2013-10-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f a 10 ) GeV, if they are produced by the saxion decay and the domain wall annihilation. We also investigate the cases of thermal QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  16. WIMP Dark Matter interpretation of Higgs results

    CERN Document Server

    Wang, Renjie; The ATLAS collaboration

    2017-01-01

    The results from searching for dark matter either directly from invisible decay of Higgs bosons or in association with a Higgs boson at the LHC are presented. No significant excess is found beyond the Standard Model prediction, and upper limits are set on the production cross section times branching fraction using data collected in proton-proton collisions at center-of-mass energies of 13 TeV by the ATLAS and CMS detectors. An interpreted upper limit is presented on the allowed dark matter-nucleon scattering cross section.

  17. Simulating Gravity: Dark Matter and Gravitational Lensing in the Classroom

    Science.gov (United States)

    Ford, Jes; Stang, Jared; Anderson, Catherine

    2015-01-01

    Dark matter makes up most of the matter in the universe but very little of a standard introductory physics curriculum. Here we present our construction and use of a spandex sheet-style gravity simulator to qualitatively demonstrate two aspects of modern physics related to dark matter. First, we describe an activity in which students explore the…

  18. Particle dark matter-A theorist's perspective

    Indian Academy of Sciences (India)

    Abstract. Dark matter (DM) is presumably made of some new, exotic particles that appear in extensions of the standard model. After giving a brief overview of some popular candidates, I discuss in more detail the most appealing case of the supersymmetric neutralino.

  19. Superheavy dark matter through Higgs portal operators

    Science.gov (United States)

    Kolb, Edward W.; Long, Andrew J.

    2017-11-01

    The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.

  20. Cosmic Ray Signatures of Decaying Dark Matter

    International Nuclear Information System (INIS)

    Ibarra, Alejandro

    2011-01-01

    Astrophysical and cosmological observations do not require the dark matter particles to be absolutely stable. If they are indeed unstable, their decay into Standard Model particles might occur at a sufficiently large rate to allow the indirect detection of dark matter through an anomalous contribution to the high energy cosmic ray fluxes. We analyze the implications of the excess in the total electron plus positron flux and the positron fraction reported by the Fermi and PAMELA collaborations, respectively, for the scenario of decaying dark matter. We also discuss the constraints on this scenario from measurements of other cosmic ray species and the predictions for the diffuse gamma ray flux and the neutrino flux. In particular, we expect a sizable dipole-like anisotropy which may be observed in the near future by the Fermi-LAT.

  1. Cold Positrons from Decaying Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Boubekeur, Lotfi [Universitate de Valencia (Spain); Dodelson, Scott [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Vives, Oscar [Universitate de Valencia (Spain)

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  2. Why we need to see the dark matter to understand the dark energy

    International Nuclear Information System (INIS)

    Kunz, M

    2008-01-01

    Abstract. The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents separately without making strong assumptions

  3. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  4. Non--Baryonic Dark Matter

    OpenAIRE

    Berezinsky, V.; Bottino, A.; Mignola, G.

    1996-01-01

    The best particle candidates for non--baryonic cold dark matter are reviewed, namely, neutralino, axion, axino and Majoron. These particles are considered in the context of cosmological models with the restrictions given by the observed mass spectrum of large scale structures, data on clusters of galaxies, age of the Universe etc.

  5. Black Component of Dark Matter

    Directory of Open Access Journals (Sweden)

    A. V. Grobov

    2014-01-01

    Full Text Available A mechanism of primordial black hole formation with specific mass spectrum is discussed. It is shown that these black holes could contribute to the energy density of dark matter. Our approach is elaborated in the framework of universal extra dimensions.

  6. Modified gravity without dark matter

    NARCIS (Netherlands)

    Sanders, Robert; Papantonopoulos, L

    2007-01-01

    On an empirical level, the most successful alternative to dark matter in bound gravitational systems is the modified Newtonian dynamics, or MOND, proposed by Milgrom. Here I discuss the attempts to formulate MOND as a modification of General Relativity. I begin with a summary of the phenomenological

  7. Dark matter in NGC 4472

    Science.gov (United States)

    Loewenstein, Michael

    1992-01-01

    An attempt is made to constrain the total mass distribution of the giant elliptical galaxy NGC 4472 by constructing simultaneous equilibrium models for the gas and stars. Emphasis is given to reconciling the value of the emission-weighted average value of kT derived from the Ginga spectrum with the amount of dark matter needed to account for velocity dispersion observations.

  8. Wino dark matter under siege

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Theory Group, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025 (United States); Lisanti, Mariangela [Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544 (United States); Pierce, Aaron [Michigan Center for Theoretical Physics, Department of Physics, Ann Arbor, MI, 48109 (United States); Slatyer, Tracy R., E-mail: timcohen@slac.stanford.edu, E-mail: mlisanti@princeton.edu, E-mail: atpierce@umich.edu, E-mail: tslatyer@mit.edu [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540 (United States)

    2013-10-01

    A fermion triplet of SU(2){sub L} — a wino — is a well-motivated dark matter candidate. This work shows that present-day wino annihilations are constrained by indirect detection experiments, with the strongest limits coming from H.E.S.S. and Fermi. The bounds on wino dark matter are presented as a function of mass for two scenarios: thermal (winos constitute a subdominant component of the dark matter for masses less than 3.1 TeV) and non-thermal (winos comprise all the dark matter). Assuming the NFW halo model, the H.E.S.S. search for gamma-ray lines excludes the 3.1 TeV thermal wino; the combined H.E.S.S. and Fermi results completely exclude the non-thermal scenario. Uncertainties in the exclusions are explored. Indirect detection may provide the only probe for models of anomaly plus gravity mediation where the wino is the lightest superpartner and scalars reside at the 100 TeV scale.

  9. Direct couplings of mimetic dark matter and their cosmological effects

    Science.gov (United States)

    Shen, Liuyuan; Mou, Yicen; Zheng, Yunlong; Li, Mingzhe

    2018-01-01

    The original mimetic model was proposed to take the role of dark matter. In this paper we consider possible direct interactions of mimetic dark matter with other matter in the universe, especially standard model particles such as baryons and photons. By imposing shift symmetry, the mimetic dark matter field can only have derivative couplings. We discuss the possibilities of generating baryon number asymmetry and cosmic birefringence in the universe based on the derivative couplings of mimetic dark matter to baryons and photons. Supported by NSFC (11422543, 11653002)

  10. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  11. Two-singlet model for light cold dark matter

    International Nuclear Information System (INIS)

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-01-01

    We extend the standard model by adding two gauge-singlet Z 2 -symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  12. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-01-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  13. Dark Matter in the Universe

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The question “What is the Universe made of?” is the longest outstanding problem in all of physics. Ordinary atoms only constitute 5% of the total, while the rest is of unknown composition. Already in 1933 Fritz Zwicky observed that the rapid motions of objects within clusters of galaxies were unexplained by the gravitation pull of luminous matter, and he postulated the existence of Dunkle Materie, or dark matter. A variety of dark matter candidates exist, including new fundamental particles already postulated in particle theories: axions and WIMPs (weakly interacting massive particles). Over the past 25 years, there has been a three pronged approach to WIMP detection: creating them at particle accelerators; searched for detection of astrophysical WIMPs scattering off of nuclei in underground detectors; and “indirect detection” of WIMP annihilation products (neutrinos, positrons, or photons). As yet the LHC has only placed bounds rather than finding discovery. For 13 years the DAMA experiment has proc...

  14. Significant gamma-ray lines from dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Fileviez Perez, Pavel; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-07-01

    Gamma-ray lines from dark matter annihilation are commonly seen as a ''smoking gun'' for the particle nature of dark matter. However, in many dark matter models the continuum background from tree-level annihilations makes such a line invisible. I present two simple extensions of the Standard Model where the continuum contributions are suppressed and the gamma-ray lines are easily visible over the continuum background.

  15. Dark matter axions and caustic rings

    International Nuclear Information System (INIS)

    Sikivie, P.

    1997-01-01

    This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos

  16. Forbidden Channels and SIMP Dark Matter

    OpenAIRE

    Choi Soo-Min; Kang Yoo-Jin; Lee Hyun Min

    2018-01-01

    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

  17. The relevance of Very Light Dark Matter

    OpenAIRE

    Yajnik Urjit A.

    2014-01-01

    A concordant model of Dark Matter and Dark Energy is presented. Dark Energy arises out of magnetic condensation of very light fermions of micro-eV mass charged under an unbroken gauge group U(1)X. The Dark Matter candidate is an oppositely charged fermionic species which is then shown to be naturally in the MeV to keV range.

  18. Cold dark matter plus not-so-clumpy dark relics

    NARCIS (Netherlands)

    Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark

  19. White Dwarf Constraints on Dark Matter Particles

    Science.gov (United States)

    Malec, B.; Biesiada, M.

    2009-11-01

    Matter budget in the Universe together with primordial nucleosynthesis bounds on baryonic density suggests that dark matter in galaxies should have non-baryonic nature. On the other hand, considerable agreement of a variety of astrophysical observations with standard physics can serve as a source of constraints on non-standard ideas. In this context we consider G117-B15A pulsating white dwarf for which the rate of period change of its fundamental mode has been accurately measured. This star has been claimed the most stable oscillator ever recorded in the optical band. Here we use this object to derive a bound on theories with large extra dimensions as well as to constrain supersymmetric dark matter.

  20. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....

  1. Exponentially Light Dark Matter from Coannihilation

    OpenAIRE

    D'Agnolo, Raffaele Tito; Mondino, Cristina; Ruderman, Joshua T.; Wang, Po-Jen

    2018-01-01

    Dark matter may be a thermal relic whose abundance is set by mutual annihilations among multiple species. Traditionally, this coannihilation scenario has been applied to weak scale dark matter that is highly degenerate with other states. We show that coannihilation among states with split masses points to dark matter that is exponentially lighter than the weak scale, down to the keV scale. We highlight the regime where dark matter does not participate in the annihilations that dilute its numb...

  2. Dark energy from quantum matter

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Hack, Thomas-Paul; Moeller, Jan; Pinamonti, Nicola

    2010-07-01

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  3. Dark matter in elliptical galaxies

    Science.gov (United States)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  4. Dark energy from quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moeller, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Pinamonti, Nicola [Rome-2 Univ. (Italy). Dipt. di Matematica

    2010-07-15

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  5. Dark matter, hot and cold

    International Nuclear Information System (INIS)

    Shafi, Qaisar

    1993-01-01

    Cosmologists responded enthusiastically to the announcement at the Washington meeting of the American Physical Society in April 1992 that the Cosmic Background Explorer (COBE) had succeeded in detecting primordial anisotropies in the cosmic microwave background radiation (CMB - June 1992, page 1). The COBE satellite was launched in November 1989 into an orbit approximately 900 km above the Earth, carrying instruments to make precise measurements of the spectrum and anisotropy of the CMB. Data from the Far-lnfra Red Absolute Spectrophotometer (FIRAS) beautifully shows the CMB spectrum to be that of a black body at a temperature of 2.73±0.06K. An even more important result, at least from the viewpoint of theories of large scale structure formation (LSS), comes from the Differential Microwave Radiometer (DMR) which provided the first evidence for CMB anisotropy. Some anisotropy on the angular slice probed by COBE is expected in any reasonable model of LSS. COBE's measurement of the quadrupole anisotropy at six parts per million provides an important clue for developing a 'standard model' of LSS. The COBE numbers are in remarkably good agreement with the predictions of a particularly simple class of LSS models proposed almost a decade ago, with far reaching implications for dark matter searches

  6. Very Degenerate Higgsino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Eung Jin [Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Jung, Sunghoon [SLAC National Accelerator Laboratory,Menlo Park, CA 94025 (United States); Kavli Institute for Theoretical Physics,Santa Barbara, CA 93106 (United States); Park, Jong-Chul [Department of Physics, Chungnam National University,Daejeon 34134 (Korea, Republic of)

    2017-01-03

    We present a study of the Very Degenerate Higgsino Dark Matter (DM), whose mass splitting between the lightest neutral and charged components is O(1) MeV, much smaller than radiative splitting of 355 MeV. The scenario is realized in the minimal supersymmetric standard model by small gaugino mixings. In contrast to the pure Higgsino DM with the radiative splitting only, various observable signatures with distinct features are induced. First of all, the very small mass splitting makes (a) sizable Sommerfeld enhancement and Ramsauer-Townsend (RT) suppression relevant to ∼1 TeV Higgsino DM, and (b) Sommerfeld-Ramsauer-Townsend effect saturate at lower velocities v/c≲10{sup −3}. As a result, annihilation signals can be large enough to be observed from the galactic center and/or dwarf galaxies, while the relative signal sizes can vary depending on the locations of Sommerfeld peaks and RT dips. In addition, at collider experiments, stable chargino signatures can be searched for to probe the model in the future. DM direct detection signals, however, depend on the Wino mass; even no detectable signals can be induced if the Wino is heavier than about 10 TeV.

  7. Particle Dark Matter (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I review the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  8. Dark matter searches at the LHC

    CERN Document Server

    Hong, Tae Min; The ATLAS collaboration

    2017-01-01

    We present a summary of the current status of searches for dark matter at the LHC from the ATLAS and CMS experiments. For various assumptions in the simplified parameter space, the LHC exclusions is complementary to direct detection results. Mono-object analyses in search of dark matter and various analyses searching for dark matter mediators are presented.

  9. A galaxy lacking dark matter

    Science.gov (United States)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J.; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-01

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio Mhalo/Mstars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 1010 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052–DF2, which has a stellar mass of approximately 2 × 108 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 108 solar masses. This implies that the ratio Mhalo/Mstars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052–DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  10. A galaxy lacking dark matter.

    Science.gov (United States)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-28

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio M halo /M stars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10 10 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052-DF2, which has a stellar mass of approximately 2 × 10 8 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10 8 solar masses. This implies that the ratio M halo /M stars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052-DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  11. Flavoured Dark Matter moving left

    Science.gov (United States)

    Blanke, Monika; Das, Satrajit; Kast, Simon

    2018-02-01

    We investigate the phenomenology of a simplified model of flavoured Dark Matter (DM), with a dark fermionic flavour triplet coupling to the left-handed SU(2) L quark doublets via a scalar mediator. The DM-quark coupling matrix is assumed to constitute the only new source of flavour and CP violation, following the hypothesis of Dark Minimal Flavour Violation. We analyse the constraints from LHC searches, from meson mixing data in the K, D, and B d,s meson systems, from thermal DM freeze-out, and from direct detection experiments. Our combined analysis shows that while the experimental constraints are similar to the DMFV models with DM coupling to right-handed quarks, the multitude of couplings between DM and the SM quark sector resulting from the SU(2) L structure implies a richer phenomenology and significantly alters the resulting impact on the viable parameter space.

  12. Signature of the interaction between dark energy and dark matter in observations

    International Nuclear Information System (INIS)

    Abdalla, Elcio; Abramo, L. Raul; Souza, Jose C. C. de

    2010-01-01

    We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.

  13. Astrophysical search strategies for accelerator blind dark matter

    International Nuclear Information System (INIS)

    Wells, J.D.

    1998-04-01

    A weakly interacting dark matter particle may be very difficult to discover at an accelerator because it either (1) is too heavy, (2) has no standard model gauge interactions, or (3) is almost degenerate with other states. In each of these cases, searches for annihilation products in the galactic halo are useful probes of dark matter properties. Using the example of supersymmetric dark matter, the author demonstrates how astrophysical searches for dark matter may provide discovery and mass information inaccessible to collider physics programs such as the Tevatron and LHC

  14. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  15. Oscillating spin-2 dark matter

    Science.gov (United States)

    Marzola, Luca; Raidal, Martti; Urban, Federico R.

    2018-01-01

    The negative outcomes of laboratory searches, juxtaposed with cosmological observations, may indicate that dark matter has a gravitational origin. We show that coherent oscillations of a massive spin-2 field emerging from bimetric theory can easily account for the observed dark matter abundance. The framework, based on the only known consistent extension of general relativity to interacting spin-2 fields, is testable in precision measurements of the electric charge variation by means of atomic clocks, molecular systems, dedicated resonant mass detectors, as well as gravity interferometers and axionlike-particle experiments. These searches, therefore, provide a new window into the phenomenology of gravity which complements the results of dedicated tests of gravitation. We also present a multimetric extension of the scenario that straightforwardly implements the clockwork mechanism for gravity, explaining the apparent weakness of this force.

  16. Analysis of the theoretical bias in dark matter direct detection

    International Nuclear Information System (INIS)

    Catena, Riccardo

    2014-01-01

    Fitting the model ''A'' to dark matter direct detection data, when the model that underlies the data is ''B'', introduces a theoretical bias in the fit. We perform a quantitative study of the theoretical bias in dark matter direct detection, with a focus on assumptions regarding the dark matter interactions, and velocity distribution. We address this problem within the effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. We analyze 24 benchmark points in the parameter space of the theory, using frequentist and Bayesian statistical methods. First, we simulate the data of future direct detection experiments assuming a momentum/velocity dependent dark matter-nucleon interaction, and an anisotropic dark matter velocity distribution. Then, we fit a constant scattering cross section, and an isotropic Maxwell-Boltzmann velocity distribution to the simulated data, thereby introducing a bias in the analysis. The best fit values of the dark matter particle mass differ from their benchmark values up to 2 standard deviations. The best fit values of the dark matter-nucleon coupling constant differ from their benchmark values up to several standard deviations. We conclude that common assumptions in dark matter direct detection are a source of potentially significant bias

  17. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  18. Superconducting Detectors for Superlight Dark Matter.

    Science.gov (United States)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  19. Cold dark matter plus not-so-clumpy dark relics

    Science.gov (United States)

    Diamanti, Roberta; Ando, Shin'ichiro; Gariazzo, Stefano; Mena, Olga; Weniger, Christoph

    2017-06-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction fncdm of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1-10 keV are fncdm100 keV range they are fncdm<=0.43 (0.45), respectively.

  20. Cold dark matter plus not-so-clumpy dark relics

    International Nuclear Information System (INIS)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph; Gariazzo, Stefano; Mena, Olga

    2017-01-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f ncdm of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f ncdm ≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f ncdm ≤0.43 (0.45), respectively.

  1. Impact of semi-annihilations on dark matter phenomenology - an example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Belanger, G.; Kannike, K.; Pukhov, A.; Raidal, M.

    2012-01-01

    We study the impact of semi-annihilations χχ ↔ χX; where χ is dark matter and X is any standard model particle, on dark matter phenomenology. We formulate scalar dark matter models with minimal field content that predict non-trivial dark matter phenomenology for different discrete Abelian symmetries Z N , N > 2, and contain semi-annihilation processes. We implement such an example model in micrOMEGAs and show that semi-annihilations modify the phenomenology of this type of models. (authors)

  2. Looking for dark matter on the light side

    International Nuclear Information System (INIS)

    Doebrich, Babette

    2015-01-01

    Among the prominent low-mass dark matter candidates is the QCD axion but also other light and weakly interacting particles beyond the Standard Model. We review briefly the case for such dark matter and give an overview on most recent experimental efforts within laboratory searches, where we focus on experiments exploiting a potential electromagnetic coupling of such particles.

  3. Dilaton could affect abundance of dark matter particles

    CERN Multimedia

    2007-01-01

    "The amount of dark matter left over from the early universe may be less than previously believed. new research shows that the "relic abundance" of stable dark matter particles such as the neutralino may be reduced as compared to standard cosmology theories due to the effects of the "dilaton", a particle with zero spin in the gravitational sector of strings." (1 page)

  4. Can dark matter explain the braking index of neutron stars?

    DEFF Research Database (Denmark)

    Kouvaris, C.; Perez-Garcia, M. A.

    2014-01-01

    We explore a new mechanism of slowing down the rotation of neutron stars via accretion of millicharged dark matter. We find that this mechanism yields pulsar braking indices that can be substantially smaller than the standard n similar to 3 of the magnetic dipole radiation model for millicharged...... dark matter particles that are not excluded by existing experimental constraints thus accommodating existing observations....

  5. Detector and trigger challenge for supersymmetrical dark matter ...

    Indian Academy of Sciences (India)

    Two supersymmetrical (SUSY) dark matter scenarios are discussed to il- lustrate how challenging it is to detect and trigger these events out of standard model background events at a future international linear collider (ILC). Keywords. Detector; trigger; supersymmetry; dark matter. PACS Nos 13.66.Hk; 14.80.Ly; 11.30.

  6. Dark matter in the universe

    International Nuclear Information System (INIS)

    Turner, M.S.; Chicago Univ., IL

    1990-11-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is ''dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If Ω is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10 -6 eV to 10 -4 eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs

  7. Dark matter in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1990-11-01

    What is the quantity and composition of material in the Universe This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs.

  8. Dark matter in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1991-03-01

    What is the quantity and composition of material in the universe This is one of the most fundamental questions we can ask about the universe, and its answer bears on a number of important issues including the formation of structure in the universe, and the ultimate fate and the earliest history of the universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: most of the material in the universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments -- structure formation, the temporal Copernican principle, and inflation -- and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 71 refs., 6 figs.

  9. Fuzzy dark matter and nonstandard neutrino interactions

    OpenAIRE

    Brdar, Vedran; Kopp, Joachim; Liu, Jia; Prass, Pascal; Wang, Xiao-Ping

    2018-01-01

    We discuss novel ways in which neutrino oscillation experiments can probe dark matter. In particular, we focus on interactions between neutrinos and ultralight (“fuzzy”) dark matter particles with masses of order 10−22 eV. It has been shown previously that such dark matter candidates are phenomenologically successful and might help ameliorate the tension between predicted and observed small scale structures in the Universe. We argue that coherent forward scattering of neutrinos on fuzzy dark...

  10. Review of dark matter direct detection experiments

    Indian Academy of Sciences (India)

    Matter, as we know it, makes up less than 5% of the Universe. Various astrophysical observations have confirmed that one quarter of the Universe and most of the matter content in the Universe is made up of dark matter. The nature of dark matter is yet to be discovered and is one of the biggest questions in physics. Particle ...

  11. Evidence for dark matter interactions in cosmological precision data?

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Marques-Tavares, Gustavo; Schmaltz, Martin

    2016-01-01

    We study a two-parameter extension of the cosmological standard model ΛCDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid ΔN fluid and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak ''dark matter drag'' which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of σ 8 . We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the χ-squared relative to ΛCDM by about 12, corresponding to a preference for non-zero dark matter drag by more than 3σ. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons

  12. Neutralino dark matter from heavy gravitino decay

    International Nuclear Information System (INIS)

    Kohri, Kazunori; Yamaguchi, Masahiro; Yokoyama, Jun'ichi

    2005-01-01

    We propose a new scenario of nonthermal production of neutralino cold dark matter, in which the overproduction problem of lightest supersymmetric particles (LSPs) in the standard thermal history is naturally solved. The mechanism requires a heavy modulus field which decays mainly to ordinary particles releasing large entropy to dilute gravitinos produced just after inflation and thermal relics of LSPs. Significant amount of gravitinos are also pair-produced at the decay, which subsequently decay into the neutralinos. We identify the regions of the parameter space in which the requisite abundance of the neutralino dark matter is obtained without spoiling the big-bang nucleosynthesis by injection of hadronic showers from gravitino decay. The neutralino abundance obtained in this mechanism is insensitive to the details of the superparticle mass spectrum, unlike the standard thermal abundance. We also briefly mention the testability of the scenario in future experiments

  13. Axion cold dark matter in nonstandard cosmologies

    International Nuclear Information System (INIS)

    Visinelli, Luca; Gondolo, Paolo

    2010-01-01

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  14. Dark Matter Decay between Phase Transitions at the Weak Scale.

    Science.gov (United States)

    Baker, Michael J; Kopp, Joachim

    2017-08-11

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  15. Constraints on the coupling between dark energy and dark matter from CMB data

    International Nuclear Information System (INIS)

    Murgia, R.; Gariazzo, S.; Fornengo, N.

    2016-01-01

    We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H 0 and σ 8 , already present for standard cosmology, increases: this model in fact predicts lower H 0 and higher σ 8 , mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H 0 and σ 8 nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data

  16. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Hooberman, Benjamin Henry; The ATLAS collaboration

    2016-01-01

    The presence of a non-baryonic Dark Matter (DM) component in the Universe is inferred from the observation of its gravitational interaction. If DM interacts non-gravitationally with the Standard Model, it could be produced at the LHC, escaping the detector and leaving missing transverse momentum (MET) as a signature. Recent results from the ATLAS detector will be presented, based on events with large MET accompanied by a variety of other objects.

  17. Dark matter in the universe

    Science.gov (United States)

    Turner, Michael S.

    1991-01-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand. Most of the radiation in the Universe does not give off detectable radiation; it is dark. The dark matter associated with bright galaxies contributes somewhere between 10 and 30 percent of the critical density; baryonic matter contributes between 1.1 and 12 percent of the critical. The case for the spatially flat, Einstein-de Sitter model is supported by three compelling theoretical arguments - structure formation, the temporal Copernican principle, and inflation - and by some observational data. If Omega is indeed unity, or even just significantly greater than 0.1, then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark matter candidates: an axion of mass 10 (exp -6) eV to 10 (exp -4) eV; a neutrino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either planned or are underway.

  18. Dark matter and the equivalence principle

    Science.gov (United States)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  19. Superheavy thermal dark matter and primordial asymmetries

    International Nuclear Information System (INIS)

    Bramante, Joseph; Unwin, James

    2017-01-01

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10 10 GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  20. Baryon destruction by asymmetric dark matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-01-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10 29 -10 32 yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  1. Naturalness, dark matter, and the muon anomalous magnetic moment in supersymmetric extensions of the standard model with a pseudo-Dirac gluino

    Science.gov (United States)

    Li, Chuang; Zhu, Bin; Li, Tianjun

    2018-02-01

    We study the naturalness, dark matter, and muon anomalous magnetic moment in the Supersymmetric Standard Models (SSMs) with a pseudo-Dirac gluino (PDGSSMs) from hybrid F- and D-term supersymmetry (SUSY) breakings. To obtain the observed dark matter relic density and explain the muon anomalous magnetic moment, we find that the low energy fine-tuning measures are larger than about 30 due to strong constraints from the LUX and PANDAX experiments. Thus, to study the natural PDGSSMs, we consider multi-component dark matter and then the relic density of the lightest supersymmetric particle (LSP) neutralino is smaller than the correct value. We classify our models into six kinds: (i) Case A is a general case, which has small low energy fine-tuning measure and can explain the anomalous magnetic moment of the muon; (ii) Case B with the LSP neutralino and light stau coannihilation; (iii) Case C with Higgs funnel; (iv) Case D with Higgsino LSP; (v) Case E with light stau coannihilation and Higgsino LSP; (vi) Case F with Higgs funnel and Higgsino LSP. We study these Cases in details, and show that our models can be natural and consistent with the LUX and PANDAX experiments, as well as explain the muon anomalous magnetic moment. In particular, all these cases except the stau coannihilation can even have low energy fine-tuning measures around 10.

  2. Signatures of Majorana dark matter with t-channel mediators

    CERN Document Server

    Garny, Mathias; Vogl, Stefan

    2015-01-01

    Three main strategies are being pursued to search for non-gravitational dark matter signals: direct detection, indirect detection and collider searches. Interestingly, experiments have reached sensitivities in these three search strategies which may allow detection in the near future. In order to take full benefit of the wealth of experimental data, and in order to confirm a possible dark matter signal, it is necessary to specify the nature of the dark matter particle and of the mediator to the Standard Model. In this paper, we focus on a simplified model where the dark matter particle is a Majorana fermion that couples to a light Standard Model fermion via a Yukawa coupling with a scalar mediator. We review the observational signatures of this model and we discuss the complementarity among the various search strategies, with emphasis in the well motivated scenario where the dark matter particles are produced in the early Universe via thermal freeze-out.

  3. Thermal Dark Matter Below a MeV.

    Science.gov (United States)

    Berlin, Asher; Blinov, Nikita

    2018-01-12

    We consider a class of models in which thermal dark matter is lighter than a MeV. If dark matter thermalizes with the standard model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cool and heat the standard model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as light as a few keV, while remaining compatible with existing cosmological and astrophysical observations. This framework motivates new experiments in the direct search for sub-MeV thermal dark matter and light force carriers.

  4. Adiabatic instability in coupled dark energy/dark matter models

    International Nuclear Information System (INIS)

    Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark

    2008-01-01

    We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.

  5. The Quest for Dark Matter

    CERN Document Server

    Rubbia, Carlo

    2005-01-01

    Recent experiments have brought for the first time under a strong experimental basis that the total density of the Universe is Wo = 1.02 ± 0.02. We have for the first time a cosmic agreement, namely matter density WM = 0.27 ± 0.04 and dark energy density WL = 0.73 ± 0.04 add up precisely to Wo ! WM + WL. On the other hand ordinary hadronic matter (quarks and leptons) determined by the Big Bang Nucleo-synthesis (BBN) is also firmly set to WBBN = 0.044 ± 0.004. About 100 years after Einstein's birth we know experimentally the identity of less than 5% of what the Universe is made of, the remaining > 95% escaping to us completely. An enormous effort is being made at LHC in order to discover SUSY particles. SUSY is an “almost necessity” of elementary particle physics. The fact that such particles may also account for the observed non baryonic dark matter is either a big coincidence or a big hint. If such SUSY particles indeed exist, they must have been...

  6. Dark matter at the Fermi scale

    International Nuclear Information System (INIS)

    Feng, Jonathan L

    2006-01-01

    Recent breakthroughs in cosmology reveal that a quarter of the Universe is composed of dark matter, but the microscopic identity of dark matter remains a deep mystery. I review recent progress in resolving this puzzle, focusing on two well-motivated classes of dark matter candidates: weakly interacting massive particles (WIMPs) and superWIMPs. These possibilities have similar motivations: they exist in the same well-motivated particle physics models, the observed dark matter relic density emerges naturally and dark matter particles have mass around 100 GeV, the energy scale identified as interesting over 70 years ago by Fermi. At the same time, they have widely varying implications for direct and indirect dark matter searches, particle colliders, Big Bang nucleosynthesis, the cosmic microwave background, and halo profiles and structure formation. If WIMPs or superWIMPs are a significant component of dark matter, we will soon be entering a golden era in which dark matter will be studied through diverse probes at the interface of particle physics, astroparticle physics and cosmology. I outline a programme of dark matter studies for each of these scenarios and discuss the prospects for identifying dark matter in the coming years. (topical review)

  7. EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS

    International Nuclear Information System (INIS)

    Baushev, A. N.

    2013-01-01

    Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute ∼12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed (∼600 km s –1 ), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow (∼20 km s –1 ). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s –1 ), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

  8. ADMX Dark-Matter Axion Search

    International Nuclear Information System (INIS)

    Rosenberg, Leslie J.

    2004-01-01

    The axion, a hypothetical elementary particle, emerged from a compelling solution to the Strong-CP Problem in QCD. Subsequently, the axion was recognized to be a good Cold Dark Matter candidate. Although dark-matter axions have only feeble couplings to matter and radiation, these axions may be detected through resonant conversion of axions into microwave photons in a high-Q cavity threaded by a strong static magnetic field. This technique is at present the only means whereby dark-matter axions with plausible couplings may be detected at the required sensitivity. This talk describes recent results from the Axion Dark Matter Experiment (ADMX), now the world's most sensitive search for axions. There will also be a short overview of the ADMX upgrade, which promises sensitivity to even the more feebly coupled dark matter axions even should they make up only a minority fraction of the local dark matter halo

  9. Simplified models for dark matter face their consistent completions

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    2017-03-01

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.

  10. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up

  11. Distinguishing cold dark matter dwarfs from self-interacting dark matter dwarfs in baryonic simulations

    Science.gov (United States)

    Strickland, Emily; Fitts, Alex; Boylan-Kolchin, Michael

    2018-01-01

    Our collaboration has simulated several high-resolution (mbaryon = 500Mo, mdm = 2500Mo) cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as a self-interacting dark matter (SIDM) (with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass (MFM) hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark matter dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (UFDs) (at ~105 Mo) provides the clearest window for distinguishing between the two theories. Here our SIDM galaxies continue to display a cored inner profile unlike their CDM counterparts. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts.

  12. Impact of semi-annihilations on dark matter phenomenology. An example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti

    2012-01-01

    We study the impact of semi-annihilations x i x j ↔x k X and dark matter conversion x i x j ↔x k x l , where x i is any dark matter and X is any standard model particle, on dark matter phenomenology. We formulate minimal scalar dark matter models with an extra doublet and a complex singlet that predict non-trivial dark matter phenomenology with semi-annihilation processes for different discrete Abelian symmetries Z N , N > 2. We implement two such example models with Z 3 and Z 4 symmetry in micrOMEGAs and work out their phenomenology. We show that both semi-annihilations and dark matter conversion significantly modify the dark matter relic abundance in this type of models. In the Z 4 model, there are two stable neutral particles and therefore multi-component dark matter. We also study the possibility of dark matter direct detection in XENON100 in those models

  13. Dark matter as a weakly coupled dark baryon

    Science.gov (United States)

    Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro

    2017-10-01

    Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.

  14. Dark Matter in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2009-04-07

    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.

  15. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano

    2017-09-01

    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  16. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  17. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  18. Dark Matter Decays from Nonminimal Coupling to Gravity.

    Science.gov (United States)

    Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian

    2016-07-08

    We consider the standard model extended with a dark matter particle in curved spacetime, motivated by the fact that the only current evidence for dark matter is through its gravitational interactions, and we investigate the impact on the dark matter stability of terms in the Lagrangian linear in the dark matter field and proportional to the Ricci scalar. We show that this "gravity portal" induces decay even if the dark matter particle only has gravitational interactions, and that the decay branching ratios into standard model particles only depend on one free parameter: the dark matter mass. We study in detail the case of a singlet scalar as a dark matter candidate, which is assumed to be absolutely stable in flat spacetime due to a discrete Z_{2} symmetry, but which may decay in curved spacetimes due to a Z_{2}-breaking nonminimal coupling to gravity. We calculate the dark matter decay widths and we set conservative limits on the nonminimal coupling parameter from experiments. The limits are very stringent and suggest that there must exist an additional mechanism protecting the singlet scalar from decaying via this gravity portal.

  19. Scalar dark matter in the B−L model

    International Nuclear Information System (INIS)

    Rodejohann, Werner; Yaguna, Carlos E.

    2015-01-01

    The U(1) B−L extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, ϕ DM , that is a singlet of the Standard Model but charged under U(1) B−L . An advantage of this scenario is that the stability of ϕ DM can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles

  20. Axions as hot and cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kawasaki, Masahiro [Tokyo Univ., Kashiwa (Japan). Inst. for Cosmic Ray Research; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS; Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-10-15

    The presence of a hot dark matter component has been hinted at 3{sigma} by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}standard model sector through the Higgs portal, and axions produced by modulus decay.

  1. Massive hidden photons as lukewarm dark matter

    International Nuclear Information System (INIS)

    Redondo, Javier; Postma, Marieke

    2008-11-01

    We study the possibility that a keV-MeV mass hidden photon (HP), i.e. a hidden sector U(1) gauge boson, accounts for the observed amount of dark matter. We focus on the case where the HP interacts with the standard model sector only through kinetic mixing with the photon. The relic abundance is computed including all relevant plasma effects into the photon's self-energy, which leads to a resonant yield almost independent of the HP mass. The HP can decay into three photons. Moreover, if light enough it can be copiously produced in stars. Including bounds from cosmic photon backgrounds and stellar evolution, we find that the hidden photon can only give a subdominant contribution to the dark matter. This negative conclusion may be avoided if another production mechanism besides kinetic mixing is operative. (orig.)

  2. Supernovae and Weinberg's Higgs portal dark radiation and dark matter

    Science.gov (United States)

    Tu, Huitzu; Ng, Kin-Wang

    2017-07-01

    The observed burst duration and energies of the neutrinos from Supernova 1987A strongly limit the possibility of any weakly-interacting light particle species being produced in the proto-neutron star (PNS) core and leading to efficient energy loss. We reexamine this constraint on Weinberg's Higgs portal model, in which the dark radiation particles (the Goldstone bosons) and the dark matter candidate (a Majorana fermion) interact with Standard Model (SM) fields solely through the mixing of the SM Higgs boson and a light Higgs boson. In order for the Goldstone bosons to freely stream out of the PNS core region, the Higgs portal coupling has to be about a factor of 4-9 smaller than the current collider bound inferred from the SM Higgs invisible decay width. We find that in the energy loss rate calculations, results obtained by using the one-pion exchange (OPE) approximation and the SP07 global fits for the nucleon-nucleon total elastic cross section differ only by a factor ≲ 3. The SN 1987A constraints surpass those set by laboratory experiments or by the energy loss arguments in other astrophysical objects such as the gamma-ray bursts, even with other nuclear uncertainties taken into account. Furthermore, the SN 1987A constraints are comparable to bounds from the latest dark matter direct search for low-mass WIMPs (≲10 GeV.)

  3. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  4. Galactic signatures of decaying dark matter

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Guenter

    2009-05-01

    If dark matter decays into electrons and positrons, it can affect Galactic radio emissions and the local cosmic ray fluxes. We propose a new, more general analysis of constraints on dark matter. The constraints can be obtained for any decaying dark matter model by convolving the specific dark matter decay spectrum with a response function. We derive this response function from full-sky radio surveys at 408 MHz, 1.42 GHz and 23 GHz, as well as from the positron flux recently reported by PAMELA. We discuss the influence of astrophysical uncertainties on the response function, such as from propagation and from the profiles of the dark matter and the Galactic magnetic field. As an application, we find that some widely used dark matter decay scenarios can be ruled out under modest assumptions. (orig.)

  5. Galactic signatures of decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-05-15

    If dark matter decays into electrons and positrons, it can affect Galactic radio emissions and the local cosmic ray fluxes. We propose a new, more general analysis of constraints on dark matter. The constraints can be obtained for any decaying dark matter model by convolving the specific dark matter decay spectrum with a response function. We derive this response function from full-sky radio surveys at 408 MHz, 1.42 GHz and 23 GHz, as well as from the positron flux recently reported by PAMELA. We discuss the influence of astrophysical uncertainties on the response function, such as from propagation and from the profiles of the dark matter and the Galactic magnetic field. As an application, we find that some widely used dark matter decay scenarios can be ruled out under modest assumptions. (orig.)

  6. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki

    1987-01-01

    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  7. sUsY dark matter - a collider physicist's perspective

    Indian Academy of Sciences (India)

    Recently the existence of dark matter is established through the CMB measure- ments [1]. Because the baryon density of the universe Ω is only 1/6 of the matter density of the universe ΩСh¾ = 0.27 소004, the dark matter should be explained by the physics beyond standard model (sM). There are numerous on-going and.

  8. Searches for dark matter production with ATLAS (MET+X)

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00335606; The ATLAS collaboration

    2016-01-01

    Dark Matter constitutes more than 80% of the matter in the universe but cannot be accommodated within the Standard Model of particle physics. The search for Dark Matter is one of the main objectives of the LHC physics programme. This contribution summarises searches performed in final states with large missing transverse momentum using 3.2 fb$^{-1}$ of data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector in 2015.

  9. Unified dark energy-dark matter model with inverse quintessence

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Guendelman, Eduardo I.

    2013-01-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future

  10. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  11. Dark matter as a cancer hazard

    Directory of Open Access Journals (Sweden)

    Olga Chashchina

    2016-07-01

    Full Text Available We comment on the paper “Dark matter collisions with the human body” by K. Freese and C. Savage (2012 [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  12. Surrogate Models for Direct Dark Matter Detection

    OpenAIRE

    Cerdeno, D. G.; Cheek, A.; Reid, E.; Schulz, H.

    2018-01-01

    In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in general involves up to three nested integrals) with a much faster parametrization in terms of ordinary polynomials of the dark matter mass and couplings, obtained in an initial training phase. In this article, we validate our surrogate model on t...

  13. Galaxy Structure, Dark Matter, and Galaxy Formation

    OpenAIRE

    Weinberg, David H.

    1996-01-01

    The structure of galaxies, the nature of dark matter, and the physics of galaxy formation were the interlocking themes of DM 1996: Dark and Visible Matter in Galaxies and Cosmological Implications. In this conference summary report, I review recent observational and theoretical advances in these areas, then describe highlights of the meeting and discuss their implications. I include as an appendix the lyrics of The Dark Matter Rap: A Cosmological History for the MTV Generation.

  14. Axion: Mass -- Dark Matter Abundance Relation

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The axion is a hypothetical particle which would explain why QCD is approximately T-conserving, and is also an excellent Cold Dark Matter candidate. It should be possible to make a clean theoretical prediction relating the dark matter density in axions and the axion mass (under reasonable assumptions about inflation). But the axion's early-Universe dynamics, which establish its density as dark matter, are unexpectedly rich in a way which is only starting to yield to quantitative numerical study.

  15. arXiv Signatures of Dark Radiation in Neutrino and Dark Matter Detectors

    CERN Document Server

    Cui, Yanou; Pradler, Josef

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with non-gravitational interactions with Standard Model (SM) particles. Such dark radiation may consist of SM singlets or a non-thermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In pa...

  16. Dark matter halos with cores from hierarchical structure formation

    International Nuclear Information System (INIS)

    Strigari, Louis E.; Kaplinghat, Manoj; Bullock, James S.

    2007-01-01

    We show that dark matter emerging from late decays (z or approx. 0.1 Mpc), and simultaneously generates observable constant-density cores in small dark matter halos. We refer to this class of models as meta-cold dark matter (mCDM), because it is born with nonrelativistic velocities from the decays of cold thermal relics. The constant-density cores are a result of the low phase-space density of mCDM at birth. Warm dark matter cannot produce similar size phase-space limited cores without saturating the Lyα power spectrum bounds. Dark matter-dominated galaxy rotation curves and stellar velocity dispersion profiles may provide the best means to discriminate between mCDM and CDM. mCDM candidates are motivated by the particle spectrum of supersymmetric and extra dimensional extensions to the standard model of particle physics

  17. Detector and trigger challenge for supersymmetrical dark matter ...

    Indian Academy of Sciences (India)

    Abstract. Two supersymmetrical (SUSY) dark matter scenarios are discussed to illustrate how challenging it is to detect and trigger these events out of standard model background events at a future international linear collider (ILC).

  18. Baryonic and Non-Baryonic Dark Matter

    OpenAIRE

    Carr, Bernard

    2000-01-01

    Cosmological nucleosynthesis calculations imply that there should be both non-baryonic and baryonic dark matter. Recent data suggest that some of the non-baryonic dark matter must be "hot" (i.e. massive neutrinos) and there may also be evidence for "cold" dark matter (i.e. WIMPs). If the baryonic dark matter resides in galactic halos, it is likely to be in the form of compact objects (i.e. MACHOs) and these would probably be the remnants of a first generation of pregalactic or protogalactic P...

  19. Search for Dark Matter at ATLAS

    CERN Document Server

    Conventi, Francesco; The ATLAS collaboration

    2017-01-01

    Dark Matter composes almost 25% of our Universe, but its identity is still unknown which makes it a large challenge for current fundamental physics. A lot of approaches are used to discover the identity of Dark Matter and one of them, collider searches, are discussed in this talk. The latest results on Dark Matter search at ATLAS using 2015 and 2016 data are presented. Results from searches for new physics in the events with final states containing large missing transverse energy + X (photons, jets, boson) are shown. Higgs to invisible and dijet searches are used in sense of complementarity to constrain properties of Dark Matter.

  20. Sterile neutrino dark matter with supersymmetry

    Science.gov (United States)

    Shakya, Bibhushan; Wells, James D.

    2017-08-01

    Sterile neutrino dark matter, a popular alternative to the WIMP paradigm, has generally been studied in non-supersymmetric setups. If the underlying theory is supersymmetric, we find that several interesting and novel dark matter features can arise. In particular, in scenarios of freeze-in production of sterile neutrino dark matter, its superpartner, the sterile sneutrino, can play a crucial role in early Universe cosmology as the dominant source of cold, warm, or hot dark matter, or of a subdominant relativistic population of sterile neutrinos that can contribute to the effective number of relativistic degrees of freedom Neff during big bang nucleosynthesis.

  1. Direct Dark Matter Searches: Status and Perspectives

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    There is overwhelming indirect evidence that dark matter exists, however, the dark matter particle has not yet been directly detected in laboratory experiments. In order to be able to identify the rare dark matter interactions with the target nuclei, such instruments have to feature a very low threshold and an extremely low radioactive background. They are therefore installed in underground laboratories to reduce cosmic ray backgrounds. I will review the status of direct dark matter searches and will discuss the perspectives for the future.

  2. DAMIC: a novel dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tiffenberg, Javier; Bertou, Xavier [Centro Atomico Bariloche; Butner, Melissa J. [Fermilab; Cancelo, Gustavo [Fermilab; Chavarria, Alvaro [Chicago U., KICP; D' Olivo, Juan Carlos [Mexico U., ICN; Estrada Vigil, Juan Cruz [Fermilab; Moroni, Guillermo Fernandez [Bahia Blanca, U. Natl. Del Sur; Izraelevitch, Federico [Fermilab; Kilminster, Ben [Zurich U.; Lawson, Ian T. [SNOLAB, Lively; Marsal, Fernando [Asuncion Natl. U.; Molina, Jorge [Asuncion Natl. U.; Privitera, Paolo [Chicago U., KICP; Schwarz, Tom [Michigan U.; Sofo haro, Miguel [Centro Atomico Bariloche; Tiffenberg, Javier [Fermilab; Trillaud, Frederic [Mexico U.; Zhou, Jing [Chicago U., KICP

    2013-10-24

    DAMIC (Dark Matter in CCDs) is a novel dark matter experiment that has unique sensitivity to dark matter particles with masses below 10 GeV. Due to its low electronic readout noise (R.M.S. ~3 e-) this instrument is able to reach a detection threshold below 0.5 keV nuclear recoil energy, making the search for dark matter particles with low masses possible. We report on early results and experience gained from a detector that has been running at SNOLAB from Dec 2012. We also discuss the measured and expected backgrounds and present the plan for future detectors to be installed in 2014.

  3. WIMP dark matter and supersymmetry searches with neutrino telescopes

    International Nuclear Information System (INIS)

    Fornengo, N.

    2011-01-01

    The particle physics interpretation of the missing-mass, or dark-matter, a problem of cosmological and astrophysical nature, is going to be placed under strong scrutiny in the next years. From the particle physics side, accelerator physics will deeply test theoretical ideas about new physics beyond the Standard Model, where a particle physics candidate to dark matter is often naturally obtained. From the astrophysical side, many probes are already providing a great deal of independent information on signals which can be produced by the galactic or extra-galactic dark matter. The current and new-generation experimental efforts are therefore going to place under deep scrutiny the theoretical explanations of the relevant signals. The ultimate hope is in fact to be able to disentangle a dark matter signal from the various sources of backgrounds. Neutrino telescopes are one of the prominent tools for looking at dark matter and search for a signal, the neutrino flux from Earth and Sun. In this neutrino dark matter searches share properties with both direct dark matter searches and cosmic-ray indirect dark matter searches, and therefore complement these different detection techniques.

  4. Stellar Bar Evolution in the Absence of Dark Matter Halo

    Science.gov (United States)

    Roshan, Mahmood

    2018-02-01

    We study the stellar bar growth in high-resolution numerical galaxy models with and without dark matter halos. In all models, the galactic disk is exponential, and the halos are rigid or live Plummer spheres. More specifically, when there is no dark matter halo, we modify the gravitational force between point particles. To do so, we use the weak field limit of an alternative theory of dark matter known as MOG in the literature. The galaxy model in MOG has the same initial conditions as galaxy models with a dark matter halo. On the other hand, the initial random velocities and Toomre’s local stability parameter are the same for all of the models. We show that the evolution and growth of the bar in MOG is substantially different from the standard cases including dark matter halo. More importantly, we find that the bar growth rate and its final magnitude are smaller in MOG. On the other hand, the maximum value of the bar in MOG is smaller than that in the Newtonian models. It is shown that although the live dark matter halo may support bar instability, MOG has stabilizing effects. Furthermore, we show that MOG supports fast pattern speeds, and unlike in the dark matter halo models, the pattern speed does not decrease with time. These differences, combined with the relevant observations, may help to distinguish between dark matter and modified gravity in galactic scales.

  5. Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter

    OpenAIRE

    Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott

    2018-01-01

    We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout...

  6. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  7. Dark matter and galactic cosmic rays

    International Nuclear Information System (INIS)

    Taillet, R.

    2010-12-01

    Dark matter is one of the major problems encountered by modern cosmology and astrophysics, resisting the efforts of both theoreticians and experimentalists. The problem itself is easy to state: many indirect astrophysical measurements indicate that the mass contained in the Universe seems to be dominated by a new type of matter which has never been directly seen yet, this is why it is called dark matter. This hypothesis of dark matter being made of new particles is of great interest for particle physicists, whose theories provide many candidates: dark matter is one of the major topics of astro-particle physics. This work focuses on searching dark matter in the form of new particles, more precisely to indirect detection, i.e. the search of particles produced by dark matter annihilation rather than dark matter particles themselves. In this framework, I will present the studies I have been doing in the field of cosmic rays physics (particularly cosmic ray sources), in several collaborations. In particular, the study of the antimatter component of cosmic rays can give relevant information about dark matter. The last chapter is dedicated to my teaching activities

  8. Dark matter in central galaxies

    Science.gov (United States)

    Salinas, R.; Richtler, T.; Romanowsky, A. J.; Schuberth, Y.; Gomez, M.; Hilker, M.

    The study of the dynamics of globular clusters systems (GCSs) is a powerful tool to test the dark matter (DM) content at galactic scales, especially in early type galaxies which present a lack of suitable DM probes (Romanowsky 2006). So far, this method has been only applied to a handful of nearby ellipticals, mainly due to the observational difficulties (Cote et al. 2001; Richtler et al. 2004; Schuberth et al. 2006; Woodley et al. 2007). In this talk I will present the first results of our VLT-VIMOS study of the dynamics of the GCS of NGC 3311, the nearest cD galaxy, which hosts an enormous GC population (McLaughlin et al. 1995). These results include the spectroscopic confirmation of the first ultra compact dwarf in Hydra I, from the candidate list of Wehner & Harris (2007).

  9. Microlensing searches of dark matter

    CERN Document Server

    Roulet, Esteban

    2000-01-01

    The evolution of the observational results of microlensing towards the LMC and some of the suggested interpretations to account for them are discussed. It is emphasized that the results at present are indicative of a lensing population of white dwarfs, possibly in the spheroid (not dark halo) of the Galaxy, together with the more standard backgrounds of stellar populations in the Magellanic Clouds and in the Galaxy. This is also hinted by dynamical estimates of the spheroid mass and by recent direct searches of old white dwarfs.

  10. The interaction between dark energy and dark matter

    International Nuclear Information System (INIS)

    He Jianhua; Wang Bin

    2010-01-01

    In this review we first present a general formalism to study the growth of dark matter perturbations in the presence of interactions between dark matter(DM) and dark energy(DE). We also study the signature of such interaction on the temperature anisotropies of the large scale cosmic microwave background (CMB). We find that the effect of such interaction has significant signature on both the growth of dark matter structure and the late Integrated Sachs Wolfe effect(ISW). We further discuss the potential possibility to detect the coupling by cross-correlating CMB maps with tracers of the large scale structure. We finally confront this interacting model with WMAP 5-year data as well as other data sets. We find that in the 1σ range, the constrained coupling between dark sectors can solve the coincidence problem.

  11. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  12. Collision of Bose Condensate Dark Matter structures

    International Nuclear Information System (INIS)

    Guzman, F. S.

    2008-01-01

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  13. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2006-01-01

    Abstract: We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM;

  14. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2007-01-01

    We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f(abs) similar to 0.5 of their rest mass energy into the IGM;

  15. Corrigendum: 'Anomalous Kolar events revisited: Dark matter?'

    Indian Academy of Sciences (India)

    2017-03-08

    Mar 8, 2017 ... problems in one stroke, namely the explanation of the. Kolar events as well as the observation of dark matter particles in laboratory conditions. In the meantime, the authors have become aware of some limits on the lifetime of decaying dark matter due to the data from Fermi LAT observations of the extra-.

  16. DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically

    Energy Technology Data Exchange (ETDEWEB)

    Gondolo, P.

    2004-07-16

    The question of the nature of the dark matter in the Universe remains one of the most outstanding unsolved problems in basic science. One of the best motivated particle physics candidates is the lightest supersymmetric particle, assumed to be the lightest neutralino - a linear combination of the supersymmetric partners of the photon, the Z boson and neutral scalar Higgs particles. Here we describe DarkSUSY, a publicly-available advanced numerical package for neutralino dark matter calculations. In DarkSUSY one can compute the neutralino density in the Universe today using precision methods which include resonances, pair production thresholds and coannihilations. Masses and mixings of supersymmetric particles can be computed within DarkSUSY or with the help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator bounds can be checked to identify viable dark matter candidates. DarkSUSY also computes a large variety of astrophysical signals from neutralino dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and positrons from the Galactic halo or high-energy neutrinos from the center of the Earth or of the Sun. Here we describe the physics behind the package. A detailed manual will be provided with the computer package.

  17. Tiny galaxies help unravel dark matter mystery

    CERN Multimedia

    O'Hanlon, Larry

    2007-01-01

    "The 70-year effort to unravel the mysteries of dark matter just got a big boost from some very puny galaxies. In the pas few years, a score of dwarf galaxies have been discovered hanging about the fringes of the Milky way. Now new measurements of the few stars int hese dwarfs reveal them to be dark mater distilleries, with upwards of 1'000 times more dark than normal matter." (3 pages)

  18. Dark Matter Universal Properties in Galaxies

    International Nuclear Information System (INIS)

    Frigerio Martins, Christiane

    2011-01-01

    In the past years a wealth of observations has unraveled the structural properties of dark and luminous mass distribution in galaxies, a benchmark for understanding dark matter and the process of galaxy formation. The study of the kinematics of over thousand spirals has evidenced a dark-luminous matter coupling and the presence of a series of scaling laws, pictured by the Universal Rotation Curve paradigm, an intriguing observational scenario not easily explained by present theories of galaxy formation.

  19. Dark Matter Universal Properties in Galaxies

    OpenAIRE

    Martins, Christiane Frigerio

    2010-01-01

    In the past years a wealth of observations has unraveled the structural properties of dark and luminous mass distribution in galaxies, a benchmark for understanding dark matter and the process of galaxy formation. The study of the kinematics of over thousand spirals has evidenced a dark-luminous matter coupling and the presence of a series of scaling laws, pictured by the Universal Rotation Curve paradigm, an intriguing observational scenario not easily explained by present theories of galaxy...

  20. Bouncing Cosmologies with Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Yi-Fu Cai

    2016-12-01

    Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  1. Recent developments in dark matter searches

    Indian Academy of Sciences (India)

    large scale structure (LSS) data, indicates that the matter content of the Universe cannot be completely comprised of visible baryonic matter. In fact, what is suggested by the data is that the visible baryonic matter can only be a small fraction of the total matter content, ∼4% only, with the remainder comprised of dark energy ...

  2. Dark matter relic abundance and light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yi-Lei [Center for High Energy Physics,Peking University, Beijing 100871 (China); Zhu, Shou-hua [Center for High Energy Physics,Peking University, Beijing 100871 (China); Institute of Theoretical Physics & State Key Laboratory of Nuclear Physics and Technology,Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,Beijing 100871 (China)

    2017-01-09

    In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass ≲100 GeV in a simple model. Unlike the usual standard calculations, the sterile neutrino may fall out of the thermal equilibrium with the thermal bath before the dark matter freezes out. In such a case, if the Yukawa coupling y{sub N} between the Higgs and the sterile neutrino is small, this process gives rise to a larger Ω{sub DM}h{sup 2} so we need a larger coupling between the dark matter and the sterile neutrino for a correct relic abundance.

  3. MeV dark matter: model independent bounds

    Science.gov (United States)

    Bertuzzo, Enrico; Caniu Barros, Cristian J.; Grilli di Cortona, Giovanni

    2017-09-01

    We use the framework of dark matter effective field theories to study the complementarity of bounds for a dark matter particle with mass in the MeV range. Taking properly into account the mixing between operators induced by the renormalization group running, we impose experimental constraints coming from the CMB, BBN, LHC, LEP, direct detection experiments and meson decays. In particular, we focus on the case of a vector coupling between the dark matter and the standard model fermions, and study to which extent future experiments can hope to probe regions of parameters space which are not already ruled out by current data.

  4. Cancellation Mechanism for Dark-Matter-Nucleon Interaction.

    Science.gov (United States)

    Gross, Christian; Lebedev, Oleg; Toma, Takashi

    2017-11-10

    We consider a simple Higgs portal dark-matter model, where the standard model is supplemented with a complex scalar whose imaginary part plays the role of weakly interacting massive particle dark matter (DM). We show that the direct DM detection cross section vanishes at the tree level and zero momentum transfer due to a cancellation by virtue of a softly broken symmetry. This cancellation is operative for any mediator masses. As a result, our electroweak-scale dark matter satisfies all of the phenomenological constraints quite naturally.

  5. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    Science.gov (United States)

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  6. Revisiting the direct detection of dark matter in simplified models

    OpenAIRE

    Li, Tong

    2018-01-01

    In this work we numerically re-examine the loop-induced WIMP-nucleon scattering cross section for the simplified dark matter models and the constraint set by the latest direct detection experiment. We consider a fermion, scalar or vector dark matter component from five simplified models with leptophobic spin-0 mediators coupled only to Standard Model quarks and dark matter particles. The tree-level WIMP-nucleon cross sections in these models are all momentum-suppressed. We calculate the non-s...

  7. Origins and challenges of viral dark matter.

    Science.gov (United States)

    Krishnamurthy, Siddharth R; Wang, David

    2017-07-15

    The accurate classification of viral dark matter - metagenomic sequences that originate from viruses but do not align to any reference virus sequences - is one of the major obstacles in comprehensively defining the virome. Depending on the sample, viral dark matter can make up from anywhere between 40 and 90% of sequences. This review focuses on the specific nature of dark matter as it relates to viral sequences. We identify three factors that contribute to the existence of viral dark matter: the divergence and length of virus sequences, the limitations of alignment based classification, and limited representation of viruses in reference sequence databases. We then discuss current methods that have been developed to at least partially circumvent these limitations and thereby reduce the extent of viral dark matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cosmological simulations of multicomponent cold dark matter.

    Science.gov (United States)

    Medvedev, Mikhail V

    2014-08-15

    The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.

  9. Gravity-mediated (or Composite) Dark Matter

    CERN Document Server

    Lee, Hyun Min; Sanz, Veronica

    2014-01-01

    Dark matter could have an electroweak origin, yet communicate with the visible sector exclusively through gravitational interactions. In a set-up addressing the hierarchy problem, we propose a new dark matter scenario where gravitational mediators, arising from the compactification of extra-dimensions, are responsible for dark matter interactions and its relic abundance in the Universe. We write an explicit example of this mechanism in warped extra-dimensions and work out its constraints. We also develop a dual picture of the model, based on a four-dimensional scenario with partial compositeness. We show that Gravity-mediated Dark Matter is equivalent to a mechanism of generating viable dark matter scenarios in a strongly-coupled, near-conformal theory, such as in composite Higgs models.

  10. Re-ionization and decaying dark matter

    Science.gov (United States)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  11. Big Bang synthesis of nuclear dark matter

    International Nuclear Information System (INIS)

    Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.

    2015-01-01

    We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark “nucleon” number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳10 8 , may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫10 8 , are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.

  12. Dipolar dark matter as an effective field theory

    Science.gov (United States)

    Blanchet, Luc; Heisenberg, Lavinia

    2017-10-01

    Dipolar dark matter is an alternative model motivated by the challenges faced by the standard cold dark matter model to describe the right phenomenology at galactic scales. A promising realization of dipolar dark matter was recently proposed in the context of massive bigravity theory. The model contains dark matter particles as well as a vector field coupled to the effective composite metric of bigravity. This model is completely safe in the gravitational sector thanks to the underlying properties of massive bigravity. In this work, we investigate the exact decoupling limit of the theory, including the contribution of the matter sector, and prove that it is free of ghosts in this limit. We conclude that the theory is acceptable as an effective field theory below the strong coupling scale.

  13. Parallel Universe, Dark Matter and Invisible Higgs Decays

    OpenAIRE

    Chakdar, Shreyashi; Ghosh, Kirtiman; Nandi, S.

    2013-01-01

    The existence of the dark matter with amount about five times the ordinary matter is now well established experimentally. There are now many candidates for this dark matter. However, dark matter could be just like the ordinary matter in a parallel universe. If both universes are described by a non-abelian gauge symmetries, then there will be no kinetic mixing between the ordinary photon and the dark photon, and the dark proton, dark electron and the corresponding dark nuclei, belonging to the...

  14. Residual non-Abelian dark matter and dark radiation

    Directory of Open Access Journals (Sweden)

    P. Ko

    2017-05-01

    Full Text Available We propose a novel particle physics model in which vector dark matter (VDM and dark radiation (DR originate from the same non-Abelian dark sector. We show an illustrating example where dark SU(3 is spontaneously broken into SU(2 subgroup by the nonzero vacuum expectation value (VEV of a complex scalar in fundamental representation of SU(3. The massless gauge bosons associated with the residual unbroken SU(2 constitute DR and help to relieve the tension in Hubble constant measurements between Planck and Hubble Space Telescope. In the meantime, massive dark gauge bosons associated with the broken generators are VDM candidates. Intrinsically, this non-Abelian VDM can interact with non-Abelian DR in the cosmic background, which results in a suppressed matter power spectrum and leads to a smaller σ8 for structure formation.

  15. Ratcheting Up The Search for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel Dylan [Univ. of Michigan, Ann Arbor, MI (United States)

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and

  16. Implication of collider experiments for detecting cold dark matter

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    2000-01-01

    Investigation of Minimal Supersymmetry Standard Model shows, that any discovery with high-energy colliders at least one supersymmetric particle would strongly enhance importance of very accurate experiments. which search for lightest supersymmetric neutralinos as cold dark matter particles. Form other side, non-observations of any signal of cold dark matter in such experiments would force us to change strategy of searching for, for instance, light charged Higgs bosons at high energies [ru

  17. On Minimal Dark Matter coupled to the Higgs

    OpenAIRE

    Honorez, Laura; Tytgat, Michel; Tziveloglou, Pantelis; Zaldivar, Bryan

    2018-01-01

    We provide a unified presentation of extensions of the Minimal Dark Matter framework in which new fermionic electroweak multiplets are coupled to each other via the Standard Model Higgs doublet. We study systematically the generic features of all the possibilities, starting with a singlet and two doublets (akin to Bino-Higgsino dark matter) up to a Majorana quintuplet coupled to two Weyl quadruplets. We pay special attention to this last case, since it has not yet been discussed in the litera...

  18. Dark matter with a late decaying dark partner

    CERN Document Server

    Fairbairn, Malcolm

    2009-01-01

    We explain the PAMELA positron excess and the PPB-BETS/ATIC e++e− data using a simple two component dark sector model (2CDS). The two particle species in the dark matter sector are assumed to be in thermal equilibrium in the early universe. While one particle is stable and is the present day dark matter, the second one is metastable and decays after the universe is 10−8 s old. In this model it is simple to accommodate the large boost factors required to explain the PAMELA positron excess without the need for large spikes in the local dark matter density. We provide the constraints on the parameters of the model and comment on possible signals at future colliders.

  19. A minimal model for two-component dark matter

    International Nuclear Information System (INIS)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z 2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  20. Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, Mark David [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-12-01

    An ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, “dark matter”. Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) project operated at the Soudan Underground Laboratory from 2003–2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various gamma and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter t c2 inent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode v to decrease their energy thresholds and correspondingly increase their sensitivity

  1. Planckian Interacting Massive Particles as Dark Matter

    DEFF Research Database (Denmark)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-01-01

    . In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle......, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode...... as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark...

  2. Di-photon excess illuminates dark matter

    International Nuclear Information System (INIS)

    Backović, Mihailo; Mariotti, Alberto; Redigolo, Diego

    2016-01-01

    We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with ∼300 GeV dark matter particle and ∼750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario.

  3. Results from the DarkSide-50 Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Alden [Univ. of California, Los Angeles, CA (United States)

    2016-01-01

    While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP dark matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion

  4. Condensation of galactic cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Visinelli, Luca [Nordita, KTH Royal Institute of Technology and Stockholm University,SE-106 91 Stockholm (Sweden)

    2016-07-07

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M{sub χ}c{sup 2}≈10{sup −24} eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  5. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  6. Condensation of galactic cold dark matter

    International Nuclear Information System (INIS)

    Visinelli, Luca

    2016-01-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M χ c 2 ≈10 −24 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  7. SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER

    International Nuclear Information System (INIS)

    Lopes, Ilídio; Silk, Joseph

    2012-01-01

    The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these η-parameterized asymmetric dark matter (ηADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry η close to the baryon asymmetry η B . Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain ηADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an η-asymmetry with a value in the interval 10 –12 -10 –10 , would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological ηADM scenarios that we discuss have a relic dark matter density Ωh 2 and baryon asymmetry η B in agreement with the current WMAP measured values, Ω DM h 2 = 0

  8. Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory

    Science.gov (United States)

    2002-10-01

    New evidence from NASA's Chandra X-ray Observatory challenges an alternative theory of gravity that eliminates the need for dark matter. The observation also narrows the field for competing forms of dark matter, the elusive material thought to be the dominant form of matter in the universe. An observation of the galaxy NGC 720 shows it is enveloped in a slightly flattened, or ellipsoidal cloud of hot gas that has an orientation different from that of the optical image of the galaxy. The flattening is too large to be explained by theories in which stars and gas are assumed to contain most of the mass in the galaxy. "The shape and orientation of the hot gas cloud require it to be confined by an egg-shaped dark matter halo," said David Buote of the University of California, Irvine, and lead author of a report on this research in the 2002 September 20 issue of The Astrophysical Journal. "This means that dark matter is not just an illusion due to a shortcoming of the standard theory of gravity - it is real." According to the generally accepted standard theory of gravity, the hot X-ray cloud would need an additional source of gravity - a halo of dark matter - to keep the hot gas from expanding away. The mass of dark matter required would be about five to ten times the mass of the stars in the galaxy. If the dark matter tracked the optical light from the stars in the galaxy, the hot X-ray cloud would be more round than it is. The flattened shape of the hot gas cloud requires a flattened dark matter halo. An alternative theory of gravity called MOND, for Modified Newtonian Dynamics, was proposed in 1983 by Mordecai Milgrom of the Weizmann Institute in Israel, and has remained viable over the years. MOND does away with the need for dark matter by modifying the theory where the acceleration produced by gravity is very small, such as the outskirts of galaxies. However, MOND cannot explain the Chandra observation of NGC 720. This is apparently the first dynamical evidence that

  9. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  10. The nongravitational interactions of dark matter in colliding galaxy clusters.

    Science.gov (United States)

    Harvey, David; Massey, Richard; Kitching, Thomas; Taylor, Andy; Tittley, Eric

    2015-03-27

    Collisions between galaxy clusters provide a test of the nongravitational forces acting on dark matter. Dark matter's lack of deceleration in the "bullet cluster" collision constrained its self-interaction cross section σ(DM)/m dark matter) for long-ranged forces. Using the Chandra and Hubble Space Telescopes, we have now observed 72 collisions, including both major and minor mergers. Combining these measurements statistically, we detect the existence of dark mass at 7.6σ significance. The position of the dark mass has remained closely aligned within 5.8 ± 8.2 kiloparsecs of associated stars, implying a self-interaction cross section σ(DM)/m < 0.47 cm(2)/g (95% CL) and disfavoring some proposed extensions to the standard model. Copyright © 2015, American Association for the Advancement of Science.

  11. Testing Lorentz invariance of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Ivanov, Mikhail M.; Sibiryakov, Sergey, E-mail: diego.blas@cern.ch, E-mail: mm.ivanov@physics.msu.ru, E-mail: sibir@inr.ac.ru [Faculty of Physics, Moscow State University, Vorobjevy Gory, 119991 Moscow (Russian Federation)

    2012-10-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  12. Testing Lorentz invariance of dark matter

    CERN Document Server

    Blas, Diego; Sibiryakov, Sergey

    2012-01-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  13. Naturalness of MSSM dark matter

    International Nuclear Information System (INIS)

    Cabrera, María Eugenia; Casas, J. Alberto; Delgado, Antonio; Robles, Sandra; Austri, Roberto Ruiz de

    2016-01-01

    There exists a vast literature examining the electroweak (EW) fine-tuning problem in supersymmetric scenarios, but little concerned with the dark matter (DM) one, which should be combined with the former. In this paper, we study this problem in an, as much as possible, exhaustive and rigorous way. We have considered the MSSM framework, assuming that the LSP is the lightest neutralino, χ 1 0 , and exploring the various possibilities for the mass and composition of χ 1 0 , as well as different mechanisms for annihilation of the DM particles in the early Universe (well-tempered neutralinos, funnels and co-annihilation scenarios). We also present a discussion about the statistical meaning of the fine-tuning and how it should be computed for the DM abundance, and combined with the EW fine-tuning. The results are very robust and model-independent and favour some scenarios (like the h-funnel when M χ 1 0 is not too close to m h /2) with respect to others (such as the pure wino case). These features should be taken into account when one explores “natural SUSY” scenarios and their possible signatures at the LHC and in DM detection experiments.

  14. Brief History of Ultra-light Scalar Dark Matter Models

    Directory of Open Access Journals (Sweden)

    Lee Jae-Weon

    2018-01-01

    dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than galaxies the dark matter acts like cold dark matter, while below the scale quantum pressure from the uncertainty principle suppresses the smaller structure formation so that it can resolve the small scale crisis of the conventional cold dark matter model.

  15. The cosmic cocktail three parts dark matter

    CERN Document Server

    Freese, Katherine

    2014-01-01

    The ordinary atoms that make up the known universe-from our bodies and the air we breathe to the planets and stars-constitute only 5 percent of all matter and energy in the cosmos. The rest is known as dark matter and dark energy, because their precise identities are unknown. The Cosmic Cocktail is the inside story of the epic quest to solve one of the most compelling enigmas of modern science - what is the universe made of? - told by one of today's foremost pioneers in the study of dark matter. Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the

  16. Constraints on hadronically decaying dark matter

    International Nuclear Information System (INIS)

    Garny, Mathias; Ibarra, Alejandro; Tran, David; Minnesota Univ., Minneapolis, MN

    2012-05-01

    We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons.We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.

  17. Dark Matter from new Technicolor Theories

    DEFF Research Database (Denmark)

    Bjarke Gudnason, Sven; Kouvaris, Christoforos; Sannino, Francesco

    2006-01-01

    We investigate dark matter candidates emerging in recently proposed technicolor theories. We determine the relic density of the lightest, neutral, stable technibaryon having imposed weak thermal equilibrium conditions and overall electric neutrality of the Universe. In addition we consider...... sphaleron processes that violate baryon, lepton and technibaryon number. Our analysis is performed in the case of a first order electroweak phase transition as well as a second order one. We argue that, in both cases, the new technibaryon contributes to the dark matter in the Universe. Finally we examine...... the problem of the constraints on these types of dark matter components from earth based experiments....

  18. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  19. Searches for Dark Matter in ATLAS

    CERN Document Server

    Alpigiani, Cristiano; The ATLAS collaboration

    2017-01-01

    Although the existence of Dark Matter (DM) is well established by many astronomical measurements, its nature still remains one of the unsolved puzzles of particles physics. The unprecedented energy reached by the Large Hadron Collider (LHC) at CERN has allowed exploration of previously unaccessible kinematic regimes in the search for new phenomena. An overview of most recent searches for dark matter with the ATLAS detector at LHC is presented and the interpretation of the results in terms of effective field theory and simplified models is discussed. The exclusion limits set by the ATLAS searches are compared to the constraints from direct dark matter detection experiments.

  20. Can Neutron stars constrain Dark Matter?

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Tinyakov, Peter

    2010-01-01

    We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface...... temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates....

  1. Dark matter and alternative recipes for the missing mass

    International Nuclear Information System (INIS)

    Tortora, Crescenzo; Jetzer, Philippe; Napolitano, Nicola R

    2012-01-01

    Within the standard cosmological scenario the Universe is found to be filled by obscure components (dark matter and dark energy) for ∼ 95% of its energy budget. In particular, almost all the matter content in the Universe is given by dark matter, which dominates the mass budget and drives the dynamics of galaxies and clusters of galaxies. Unfortunately, dark matter and dark energy have not been detected and no direct or indirected observations have allowed to prove their existence and amount. For this reason, some authors have suggested that a modification of Einstein Relativity or the change of the Newton's dynamics law (within a relativistic and classical framework, respectively) could allow to replace these unobserved components. We will start discussing the role of dark matter in the early-type galaxies, mainly in their central regions, investigating how its content changes as a function of the mass and the size of each galaxy and few considerations about the stellar Initial mass function have been made. In the second part of the paper we have described, as examples, some ways to overcome the dark matter hypothesis, by fitting to the observations the modified dynamics coming out from general relativistic extended theories and the MOdyfled Newtonian dynamics (MOND).

  2. The diphoton resonance as a gravity mediator of dark matter

    Directory of Open Access Journals (Sweden)

    Chengcheng Han

    2016-04-01

    Full Text Available We consider the possibility of interpreting the recently reported diphoton excess at 750 GeV as a spin-two massive particle (such as a Kaluza–Klein graviton in warped extra-dimensions which serves as a mediator to Dark Matter via its gravitational couplings to the dark sector and to the Standard Model (SM. We model non-universal couplings of the resonance to gauge bosons in the SM and to Dark Matter as a function on their localization in the extra dimension. We find that scalar, fermion or vector dark matter can saturate the dark matter relic density by the annihilation of dark matter into a pair of the SM particles or heavy resonances, in agreement with the diphoton resonance signal strength. We check the compatibility of our hypothesis with other searches for the KK graviton. We show that the invisible decay rate of the resonance into a pair of dark matter is subdominant in the region of the correct relic density, hence leading to no constraints from the mono-jet bound at 8 TeV via the gluon coupling. We also discuss the kinematic features of the decay products of a KK graviton to distinguish the KK graviton from the SM backgrounds or a scalar particle interpretation of the diphoton resonance.

  3. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  4. New Efforts to Identify Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    Could the dark matter in our universe be warm instead of cold? Recent observations have placed new constraints on the warm dark matter model.Whats the Deal with Cold/Warm/Hot Dark Matter?An example of cold dark matter: MACHOs, massive objects like black holes that are hiding in the halo of our galaxy. [Alain r]Nobody knows what dark matter is made of, but we have a few theories. The objects or particles that could make up dark matter fall into three broad categories cold, warm, and hot dark matter based on something called their free streaming length, or how far they moved due to random motions in the early universe.Neutrinos are an example of hot dark matter: very light particles with free streaming lengths much longer than the size of a typical galaxy. Cold dark matter could consist of objects like black holes or brown dwarfs, or particles like WIMPs all of which are very heavy and therefore have free streaming lengths much shorter than the size of a galaxy.Warm dark matter is whats in between: middle-mass particles with free streaming lengths roughly the size of a galaxy. There arent any known particles that fit this description, but there are theorized particles such as sterile neutrinos or gravitinos that do.Cumulative mass functions at z = 6 for different values of the warm dark matter particle mass mX. The shaded boxs on the left correspond to the observed number density of faint galaxies within different confidence levels. [Menci et al. 2016]Smoothing Out the UniverseThe widely favored model is lambda-CDM, in which cold dark matter makes up the missing matter in our universe. This model nicely explains much of what we observe, but it still has a few problems. The biggest issue with lambda-CDM is that it predicts that there should be many more small, dwarf galaxies than we observe.While this could just mean that we havent yet managed to see all the existing, faint dwarf galaxies, we should also consider alternative models the warm dark matter model chief

  5. MeV dark matter complementarity and the dark photon portal

    Science.gov (United States)

    Dutra, Maíra; Lindner, Manfred; Profumo, Stefano; Queiroz, Farinaldo S.; Rodejohann, Werner; Siqueira, Clarissa

    2018-03-01

    We discuss the phenomenology of an MeV-scale Dirac fermion coupled to the Standard Model through a dark photon with kinetic mixing with the electromagnetic field. We compute the dark matter relic density and explore the interplay of direct detection and accelerator searches for dark photons. We show that precise measurements of the temperature and polarization power spectra of the Cosmic Microwave Background Radiation lead to stringent constraints, leaving a small window for the thermal production of this MeV dark matter candidate. The forthcoming MeV gamma-ray telescope e-ASTROGAM will offer important and complementary opportunities to discover dark matter particles with masses below ~ 10 MeV . Lastly, we discuss how a late-time inflation episode and freeze-in production could conspire to yield the correct relic density while being consistent with existing and future constraints.

  6. Analyzing the Discovery Potential for Light Dark Matter.

    Science.gov (United States)

    Izaguirre, Eder; Krnjaic, Gordan; Schuster, Philip; Toro, Natalia

    2015-12-18

    In this Letter, we determine the present status of sub-GeV thermal dark matter annihilating through standard model mixing, with special emphasis on interactions through the vector portal. Within representative simple models, we carry out a complete and precise calculation of the dark matter abundance and of all available constraints. We also introduce a concise framework for comparing different experimental approaches, and use this comparison to identify important ranges of dark matter mass and couplings to better explore in future experiments. The requirement that dark matter be a thermal relic sets a sharp sensitivity target for terrestrial experiments, and so we highlight complementary experimental approaches that can decisively reach this milestone sensitivity over the entire sub-GeV mass range.

  7. Global limits and interference patterns in dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Catena, Riccardo [Institut für Theoretische Physik,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Gondolo, Paolo [Department of Physics and Astronomy, University of Utah,115 South 1400 East #201, Salt Lake City, UT 84112 (United States)

    2015-08-13

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limits by up to one order of magnitude in the coupling constants.

  8. The Cryogenic Dark Matter Search low ionization-threshold experiment

    Energy Technology Data Exchange (ETDEWEB)

    Basu Thakur, Ritoban [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-01

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in

  9. Dark and visible matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.; Durham Univ.

    1988-01-01

    Exploiting relevant information from the profiles of rotation curves, we calculate the dark-to-luminous mass ratio within the disc size for a sample of 43 spiral galaxies. The values we find, while proving the ubiquitous presence of dark matter, vary with luminosity. Faint and bright galaxies are found to be respectively halo- and disc-dominated in the disc regions. The luminosity sequence turns out to be a dark-to-luminous sequence. (author)

  10. General Relativity eliminates Dark Energy, Dark Matter and Universal Expansion

    OpenAIRE

    Bartlett, Rodney

    2018-01-01

    This letter was rejected by International Knowledge Press because "we are unable to conclude that these findings would warrant publication in this journal." The letter is suggesting that dark energy, dark matter and universal expansion are intimately related. However, they aren't viewed as revolutions in cosmology which are essential to a complete understanding of the modern universe. They are instead viewed as properties which need to be added to the cosmos when Einstein...

  11. Simplified models for dark matter searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Jalal; Araujo, Henrique; Arbey, Alexandre; Ashkenazi, Adi; Belyaev, Alexander; Berger, Joshua; Boehm, Celine; Boveia, Antonio; Brennan, Amelia; Brooke, Jim; Buchmueller, Oliver; Buckley, Matthew; Busoni, Giorgio; Calibbi, Lorenzo; Chauhan, Sushil; Daci, Nadir; Davies, Gavin; De Bruyn, Isabelle; De Jong, Paul; De Roeck, Albert; de Vries, Kees; Del Re, Daniele; De Simone, Andrea; Di Simone, Andrea; Doglioni, Caterina; Dolan, Matthew; Dreiner, Herbi K.; Ellis, John; Eno, Sarah; Etzion, Erez; Fairbairn, Malcolm; Feldstein, Brian; Flaecher, Henning; Feng, Eric; Fox, Patrick; Genest, Marie-Hélène; Gouskos, Loukas; Gramling, Johanna; Haisch, Ulrich; Harnik, Roni; Hibbs, Anthony; Hoh, Siewyan; Hopkins, Walter; Ippolito, Valerio; Jacques, Thomas; Kahlhoefer, Felix; Khoze, Valentin V.; Kirk, Russell; Korn, Andreas; Kotov, Khristian; Kunori, Shuichi; Landsberg, Greg; Liem, Sebastian; Lin, Tongyan; Lowette, Steven; Lucas, Robyn; Malgeri, Luca; Malik, Sarah; McCabe, Christopher; Mete, Alaettin Serhan; Morgante, Enrico; Mrenna, Stephen; Nakahama, Yu; Newbold, Dave; Nordstrom, Karl; Pani, Priscilla; Papucci, Michele; Pataraia, Sophio; Penning, Bjoern; Pinna, Deborah; Polesello, Giacomo; Racco, Davide; Re, Emanuele; Riotto, Antonio Walter; Rizzo, Thomas; Salek, David; Sarkar, Subir; Schramm, Steven; Skubic, Patrick; Slone, Oren; Smirnov, Juri; Soreq, Yotam; Sumner, Timothy; Tait, Tim M. P.; Thomas, Marc; Tomalin, Ian; Tunnell, Christopher; Vichi, Alessandro; Volansky, Tomer; Weiner, Neal; West, Stephen M.; Wielers, Monika; Worm, Steven; Yavin, Itay; Zaldivar, Bryan; Zhou, Ning; Zurek, Kathryn

    2015-09-01

    This document a outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.

  12. Simplified Models for Dark Matter Searches at the LHC

    CERN Document Server

    Abdallah, Jalal; Arbey, Alexandre; Ashkenazi, Adi; Belyaev, Alexander; Berger, Joshua; Boehm, Celine; Boveia, Antonio; Brennan, Amelia; Brooke, Jim; Buchmueller, Oliver; Buckley, Matthew; Busoni, Giorgio; Calibbi, Lorenzo; Chauhan, Sushil; Daci, Nadir; Davies, Gavin; De Bruyn, Isabelle; de Jong, Paul; De Roeck, Albert; de Vries, Kees; del Re, Daniele; De Simone, Andrea; Di Simone, Andrea; Doglioni, Caterina; Dolan, Matthew; Dreiner, Herbi K.; Ellis, John; Eno, Sarah; Etzion, Erez; Fairbairn, Malcolm; Feldstein, Brian; Flaecher, Henning; Feng, Eric; Fox, Patrick; Genest, Marie-Hélène; Gouskos, Loukas; Gramling, Johanna; Haisch, Ulrich; Harnik, Roni; Hibbs, Anthony; Hoh, Siewyan; Hopkins, Walter; Ippolito, Valerio; Jacques, Thomas; Kahlhoefer, Felix; Khoze, Valentin V.; Kirk, Russell; Korn, Andreas; Kotov, Khristian; Kunori, Shuichi; Landsberg, Greg; Liem, Sebastian; Lin, Tongyan; Lowette, Steven; Lucas, Robyn; Malgeri, Luca; Malik, Sarah; McCabe, Christopher; Mete, Alaettin Serhan; Morgante, Enrico; Mrenna, Stephen; Nakahama, Yu; Newbold, Dave; Nordstrom, Karl; Pani, Priscilla; Papucci, Michele; Pataraia, Sophio; Penning, Bjoern; Pinna, Deborah; Polesello, Giacomo; Racco, Davide; Re, Emanuele; Riotto, Antonio Walter; Rizzo, Thomas; Salek, David; Sarkar, Subir; Schramm, Steven; Skubic, Patrick; Slone, Oren; Smirnov, Juri; Soreq, Yotam; Sumner, Timothy; Tait, Tim M.P.; Thomas, Marc; Tomalin, Ian; Tunnell, Christopher; Vichi, Alessandro; Volansky, Tomer; Weiner, Neal; West, Stephen M.; Wielers, Monika; Worm, Steven; Yavin, Itay; Zaldivar, Bryan; Zhou, Ning; Zurek, Kathryn

    2015-01-01

    This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediation is discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.

  13. Black hole genesis of dark matter

    Science.gov (United States)

    Lennon, Olivier; March-Russell, John; Petrossian-Byrne, Rudin; Tillim, Hannah

    2018-04-01

    We present a purely gravitational infra-red-calculable production mechanism for dark matter (DM) . The source of both the DM relic abundance and the hot Standard Model (SM) plasma is a primordial density of micro black holes (BHs), which evaporate via Hawking emission into both the dark and SM sectors. The mechanism has four qualitatively different regimes depending upon whether the BH evaporation is 'fast' or 'slow' relative to the initial Hubble rate, and whether the mass of the DM particle is 'light' or 'heavy' compared to the initial BH temperature. For each of these regimes we calculate the DM yield, Y, as a function of the initial state and DM mass and spin. In the 'slow' regime Y depends on only the initial BH mass over a wide range of initial conditions, including scenarios where the BHs are a small fraction of the initial energy density. The DM is produced with a highly non-thermal energy spectrum, leading in the 'light' DM mass regime (~260 eV and above depending on DM spin) to a strong constraint from free-streaming, but also possible observational signatures in structure formation in the spin 3/2 and 2 cases. The 'heavy' regime (~1.2 × 108 GeV to MPl depending on spin) is free of these constraints and provides new possibilities for DM detection. In all cases there is a dark radiation component predicted.

  14. Effective description of dark matter self-interactions in small dark matter haloes★

    Science.gov (United States)

    Kummer, Janis; Kahlhoefer, Felix; Schmidt-Hoberg, Kai

    2018-02-01

    Self-interacting dark matter may have striking astrophysical signatures, such as observable offsets between galaxies and dark matter in merging galaxy clusters. Numerical N-body simulations used to predict such observables typically treat the galaxies as collisionless test particles, a questionable assumption given that each galaxy is embedded in its own dark matter halo. To enable a more accurate treatment we develop an effective description of small dark matter haloes taking into account the two major effects due to dark matter self-scatterings: deceleration and evaporation. We point out that self-scatterings can have a sizeable impact on the trajectories of galaxies, diminishing the separation between galaxies and dark matter in merging clusters. This effect depends sensitively on the underlying particle physics, in particular the angular dependence of the self-scattering cross section, and cannot be predicted from the momentum transfer cross section alone.

  15. Scalar Dark Matter From Theory Space

    Energy Technology Data Exchange (ETDEWEB)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2003-12-26

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).

  16. The Search of Axion Dark Matter

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The axion provides a solution to the strong CP problem and is a cold dark matter candidate. I will review the limits on the axion from particle physics, stellar evolution and cosmology. The various constraints suggest that the axion mass is in the micro-eV to milli-eV range. In this range, axions contribute significantly to the energy density of the universe in the form of cold dark matter. Dark matter axions can be searched for on Earth by stimulating their conversion to microwave photons in an electromagnetic cavity permeated by a strong magnetic field. Using this technique, limits on the local halo density have been placed by the Axion Dark Matter experiment at Lawrence Livermore National Laboratory. I will give a status report on ADMX and its upgrade presently under construction. I will also discuss the results from solar axion searches (Tokyo helioscope, CAST) and laser experiments (PVLAS).

  17. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Suchek, Stanislav; The ATLAS collaboration

    2017-01-01

    Dark Matter composes almost 25% of our Universe, but its identity is still unknown which makes it a large challenge for current fundamental physics. A lot of approaches are used to discover the identity of Dark Matter and one of them, collider searches, are discussed in this talk. The latest results on Dark Matter search at ATLAS using 2015 and 2016 data are presented. Results from searches for new physics in the events with final states containing large missing transverse energy and a single photon or Higgs boson are shown. Higgs to invisible and dijet searches are used in sense of complementarity to constrain properties of Dark Matter. Results and perspectives for all these searches are presented.

  18. Galactic Dark Matter and Terrestrial Periodicities

    National Research Council Canada - National Science Library

    Clube, S

    1998-01-01

    .... The Earth may thus be regarded as a probe of the disc environment; and to account for the periodicity, the Galactic disc is required to have a substantial dark matter component ( approx .15 molar mass/cu pc...

  19. Have neutron stars a dark matter core?

    International Nuclear Information System (INIS)

    Ciarcelluti, Paolo; Sandin, Fredrik

    2011-01-01

    Recent observational results for the masses and radii of some neutron stars are in contrast with typical observations and theoretical predictions for 'normal' neutron stars. We propose that their unusual properties can be interpreted as the signature of a dark matter core inside them. This interpretation requires that the dark matter is made of some form of stable, long-living or in general non-annihilating particles, that can accumulate in the star (Sandin and Ciarcelluti (2009) ). In the proposed scenario all mass-radius measurements can be explained with one nuclear matter equation of state and a dark core of varying relative size. This hypothesis will be challenged by forthcoming observations and could eventually be a useful tool for the determination of dark matter.

  20. Supernova cooling in a dark matter smog

    International Nuclear Information System (INIS)

    Zhang, Yue

    2014-01-01

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail

  1. Supernova cooling in a dark matter smog

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-27

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  2. Supernova cooling in a dark matter smog

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue, E-mail: yuezhang@theory.caltech.edu [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-01

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter ''smog'' inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  3. Comments on the SU(4) dark matter

    OpenAIRE

    Shuryak, Edward

    2018-01-01

    We discuss possible scale of $SU(4)$ dark matter, in form of neutral baryons. We argue that it is very likely that those would have time to cluster into large "nuclear drops" in which they are Bose-condensed.

  4. The nature of dark matter

    International Nuclear Information System (INIS)

    Kirillov, A.A.

    2006-01-01

    The observed strong dark-to-luminous matter coupling [F. Donato, et al., astro-ph/0403206, Mon. Not. R. Astron. Soc., submitted for publication; G. Gentile, et al., Mon. Not. R. Astron. Soc. 351 (2004) 903; D.T.F. Weldrake, et al., Mon. Not. R. Astron. Soc. 340 (2003) 12; W.J.G. de Blok, A. Bosma, Astron. Astrophys. 385 (2002) 816; O. Gerhard, et al., Astrophys. J. 121 (2001) 1936; A. Borriello, et al., Mon. Not. R. Astron. Soc. 341 (2003) 1109] suggests the existence of a some functional relation between visible and DM sources which leads to biased Einstein equations. We show that such a bias appears in the case when the topological structure of the actual Universe at very large distances does not match properly that of the Friedman space. We introduce a bias operator ρ DM =B-bar ρ vis and show that the simple bias function b=1/(4πr 0 r 2 )θ(r-r max ) (the kernel of B-bar ) allows to account for all the variety of observed DM halos in astrophysical systems. In galaxies such a bias forms the cored DM distribution with the radius R C ∼R opt (which explains the recently observed strong correlation between R C and R opt [F. Donato, et al., astro-ph/0403206, Mon. Not. R. Astron. Soc., submitted for publication]), while for a point source it produces the logarithmic correction to the Newton's potential (which explains the observed flat rotation curves in spirals). Finally, we show that in the theory suggested the galaxy formation process leads to a specific variation with time of all interaction constants and, in particular, of the fine structure constant

  5. Hidden charged dark matter and chiral dark radiation

    Science.gov (United States)

    Ko, P.; Nagata, Natsumi; Tang, Yong

    2017-10-01

    In the light of recent possible tensions in the Hubble constant H0 and the structure growth rate σ8 between the Planck and other measurements, we investigate a hidden-charged dark matter (DM) model where DM interacts with hidden chiral fermions, which are charged under the hidden SU(N) and U(1) gauge interactions. The symmetries in this model assure these fermions to be massless. The DM in this model, which is a Dirac fermion and singlet under the hidden SU(N), is also assumed to be charged under the U(1) gauge symmetry, through which it can interact with the chiral fermions. Below the confinement scale of SU(N), the hidden quark condensate spontaneously breaks the U(1) gauge symmetry such that there remains a discrete symmetry, which accounts for the stability of DM. This condensate also breaks a flavor symmetry in this model and Nambu-Goldstone bosons associated with this flavor symmetry appear below the confinement scale. The hidden U(1) gauge boson and hidden quarks/Nambu-Goldstone bosons are components of dark radiation (DR) above/below the confinement scale. These light fields increase the effective number of neutrinos by δNeff ≃ 0.59 above the confinement scale for N = 2, resolving the tension in the measurements of the Hubble constant by Planck and Hubble Space Telescope if the confinement scale is ≲1 eV. DM and DR continuously scatter with each other via the hidden U(1) gauge interaction, which suppresses the matter power spectrum and results in a smaller structure growth rate. The DM sector couples to the Standard Model sector through the exchange of a real singlet scalar mixing with the Higgs boson, which makes it possible to probe our model in DM direct detection experiments. Variants of this model are also discussed, which may offer alternative ways to investigate this scenario.

  6. Candidates for non-baryonic dark matter

    OpenAIRE

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes.

  7. Decaying Dark Matter at the LHC

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    We discuss a few scenarios with decaying Dark Matter and their prospect for detection at the LHC. First we present a simple minimal scenario, where Dark Matter is produced from the decay of a heavier colored or EW charged scalar via the FIMP or SuperWIMP mechanisms, then we discuss supersymmetric scenarios with RPV and gravitino DM, in particular a scenario allowing for simultaneous generation of DM and baryogenesis at a (relatively) low scale.

  8. Anomalous Kolar events revisited: Dark matter?

    Indian Academy of Sciences (India)

    2014-03-06

    Mar 6, 2014 ... due to the decays of dark matter particles of mass in the range of 5–10 GeV, is pointed out. Keywords. Dark matter; Kolar events. PACS Nos 95.35.+d; 13.15.+g. 1. Introduction. Many years ago, in the cosmic ray neutrino experiments [1] and later in the proton decay experiment [2], both at Kolar gold fields ...

  9. 21-cm Fluctuations from Charged Dark Matter

    OpenAIRE

    Muñoz, Julian B.; Dvorkin, Cora; Loeb, Abraham

    2018-01-01

    The epoch of the formation of the first stars, known as the cosmic dawn, has emerged as a new arena in the search for dark matter. In particular, the first claimed 21-cm detection exhibits a deeper global absorption feature than expected, which could be caused by a low baryonic temperature. This has been interpreted as a sign for electromagnetic interactions between baryons and dark matter. However, in order to remain consistent with the rest of cosmological observations, only part of the dar...

  10. DLHA: Dark Matter Les Houches Agreement

    International Nuclear Information System (INIS)

    Balazs, C.; Cerdeno, D.G.; Leane, R.; Kakizaki, M.; Kraml, S.; Savage, C.; Scott, P.; Sekmen, S.

    2012-01-01

    This work presents a set of conventions and numerical structures that aim to provide a universal interface between computer programs calculating dark matter related observables. It specifies input and output parameters for the calculation of observables such as abundance, direct and various indirect detection rates. These parameters range from cosmological to astrophysical to nuclear observables. The present conventions lay the foundations for defining a future Les Houches Dark Matter Accord. (authors)

  11. Cold dark matter from the hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica

    2012-02-15

    Weakly interacting slim particles (WISPs) such as hidden photons (HP) and axion-like particles (ALPs) have been proposed as cold dark matter candidates. They might be produced non-thermally via the misalignment mechanism, similarly to cold axions. In this talk we review the main processes of thermalisation of HP and we compute the parameter space that may survive as cold dark matter population until today. Our findings are quite encouraging for experimental searches in the laboratory in the near future.

  12. Phenomenology of Dirac Neutralino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Matthew R.; Hooper, Dan; Kumar, Jason

    2013-09-01

    In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.

  13. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    International Nuclear Information System (INIS)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2017-01-01

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2ΔlnL=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2ΔlnL=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ N fluid , will be improved by an order of magnitude compared to current bounds.

  14. Decaying dark matter and the PAMELA anomaly

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Tran, David

    2009-01-01

    Astrophysical and cosmological observations do not require the dark matter particles to be absolutely stable. If they are indeed unstable, their decay into positrons might occur at a sufficiently large rate to allow the indirect detection of dark matter through an anomalous contribution to the cosmic positron flux. In this paper we discuss the implications of the excess in the positron fraction recently reported by the PAMELA collaboration for the scenario of decaying dark matter. To this end, we have performed a model-independent analysis of possible signatures by studying various decay channels in the case of both a fermionic and a scalar dark matter particle. We find that the steep rise in the positron fraction measured by PAMELA at energies larger than 10 GeV can naturally be accommodated in several realizations of the decaying dark matter scenario. The data point toward a rather heavy dark matter particle, m DM ∼> 300 GeV, which preferentially decays directly into first or second generation charged leptons with a lifetime τ DM ∼ 10 26 s

  15. Fuzzy dark matter and nonstandard neutrino interactions

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia; Prass, Pascal; Wang, Xiao-Ping

    2018-02-01

    We discuss novel ways in which neutrino oscillation experiments can probe dark matter. In particular, we focus on interactions between neutrinos and ultralight ("fuzzy") dark matter particles with masses of order 10-22 eV . It has been shown previously that such dark matter candidates are phenomenologically successful and might help ameliorate the tension between predicted and observed small scale structures in the Universe. We argue that coherent forward scattering of neutrinos on fuzzy dark matter particles can significantly alter neutrino oscillation probabilities. These effects could be observable in current and future experiments. We set new limits on fuzzy dark matter interacting with neutrinos using T2K and solar neutrino data, and we estimate the sensitivity of reactor neutrino experiments and of future long-baseline accelerator experiments. These results are based on detailed simulations in GLoBES. We allow the dark matter particle to be either a scalar or a vector boson. In the latter case, we find potentially interesting connections to models addressing various B physics anomalies.

  16. Wanted! Nuclear Data for Dark Matter Astrophysics

    International Nuclear Information System (INIS)

    Gondolo, P.

    2014-01-01

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei

  17. Relic abundance of mass-varying cold dark matter particles

    International Nuclear Information System (INIS)

    Rosenfeld, Rogerio

    2005-01-01

    In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter

  18. Boosted dark matter signals uplifted with self-interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Kyoungchul, E-mail: kckong@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Mohlabeng, Gopolang, E-mail: mohlabeng319@gmail.com [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Park, Jong-Chul, E-mail: log1079@gmail.com [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-04-09

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.

  19. Boosted dark matter signals uplifted with self-interaction

    Directory of Open Access Journals (Sweden)

    Kyoungchul Kong

    2015-04-01

    Full Text Available We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.

  20. On baryogenesis from dark matter annihilation

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Colucci, Stefano; Ubaldi, Lorenzo; Josse-Michaux, François-Xavier; Racker, J.

    2013-01-01

    We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B−L. In addition, one of the models we propose yields some connection to neutrino masses

  1. Extracting dark matter signatures from atomic clock stability measurements

    Science.gov (United States)

    Kalaydzhyan, Tigran; Yu, Nan

    2017-10-01

    We analyze possible effects of the dark matter environment on the atomic clock stability measurements. The dark matter is assumed to exist in the form of waves of ultralight scalar fields or in the form of topological defects (monopoles and strings). We identify dark matter signal signatures in clock Allan deviation plots that can be used to constrain the dark matter coupling to the Standard Model fields. The existing data on the Al+/Hg+ clock comparison are used to put new limits on the dilaton dark matter in the region of masses mϕ>10-15 eV . We also estimate the sensitivities of future atomic clock experiments in space, including the cesium microwave and strontium optical clocks aboard the International Space Station, as well as a potential nuclear clock. These experiments are expected to put new limits on the topological dark matter in the range of masses 10-10 eV

  2. Astronomical Constraints on Quantum Cold Dark Matter

    Science.gov (United States)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  3. Gravitational waves from SU(N glueball dark matter

    Directory of Open Access Journals (Sweden)

    Amarjit Soni

    2017-08-01

    Full Text Available A hidden sector with pure non-abelian gauge symmetry is an elegant and just about the simplest model of dark matter. In this model the dark matter candidate is the lightest bound state made of the confined gauge fields, the dark glueball. In spite of its simplicity, the model has been shown to have several interesting non-standard implications in cosmology. In this work, we explore the gravitational waves from binary boson stars made of self-gravitating dark glueball fields as a natural and important consequence. We derive the dark SU(N star mass and radius as functions of the only two fundamental parameters in the model, the glueball mass m and the number of colors N, and identify the regions that could be probed by the LIGO and future gravitational wave observatories.

  4. Dark energy with a gradient coupling to the dark matter fluid: cosmological dynamics and structure formation

    Science.gov (United States)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2018-01-01

    We consider scalar field models of dark energy interacting with dark matter through a coupling proportional to the contraction of the four-derivative of the scalar field with the four-velocity of the dark matter fluid. The coupling is realized at the Lagrangian level employing the formalism of Scalar-Fluid theories, which use a consistent Lagrangian approach for relativistic fluid to describe dark matter. This framework produces fully covariant field equations, from which we can derive unequivocal cosmological equations at both background and linear perturbations levels. The background evolution is analyzed in detail applying dynamical systems techniques, which allow us to find the complete asymptotic behavior of the universe given any set of model parameters and initial conditions. Furthermore we study linear cosmological perturbations investigating the growth of cosmic structures within the quasi-static approximation. We find that these interacting dark energy models give rise to interesting phenomenological dynamics, including late-time transitions from dark matter to dark energy domination, matter and accelerated scaling solutions and dynamical crossing of the phantom barrier. Moreover we obtain possible deviations from standard ΛCDM behavior at the linear perturbations level, which have an impact on the dynamics of structure formation and might provide characteristic observational signatures.

  5. Model-independent approach for dark matter phenomenology ...

    Indian Academy of Sciences (India)

    We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detection experiments of dark matter. Once the dark matter is discovered in the ...

  6. Model-independent approach for dark matter phenomenology

    Indian Academy of Sciences (India)

    We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detection experiments of dark matter. Once the dark matter is discovered in the ...

  7. Model-independent approach for dark matter phenomenology ...

    Indian Academy of Sciences (India)

    Abstract. We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detec- tion experiments of dark matter. Once the dark matter is discovered ...

  8. NASA's Dark Matter and Dark Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Gehrels, N.; Cannizzo, J.K.

    2013-10-15

    We present an overview of selected high value scientific results and prospects for future advances from NASA's “Dark” missions, i.e., those covering dark matter (DM) and dark energy (DE). This includes current missions HST, Chandra, Swift, GALEX, Suzaku, Fermi, and future missions JWST and WFIRST. These missions and earlier ones, such as WMAP, have brought about a revolution in our understanding of the fundamental properties of the universe – its age, rate of expansion, deceleration history, and composition (i.e., relative mix of luminous matter, dark matter, and dark energy). The next chapters in this story will be written by JWST and WFIRST. JWST was the highest priority of the 2000 Decadal Survey. It will observe in the near and medium infrared, and revolutionize our understanding of the high redshift universe. WFIRST is the highest ranked large space mission of the 2010 Decadal Survey. It is a NASA observatory designed to perform wide-field imaging and slitless spectroscopic surveys of the NIR sky (0.7 – 2.5μ). WFIRST will: (i) measure the expansion history of the universe, and thereby constrain dark energy, (ii) find Earth-like planets around other stars using microlensing, and (iii) perform surveys that are ∼100 times more sensitive than current NIR surveys.

  9. How clustering dark energy affects matter perturbations

    Science.gov (United States)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  10. X-ray lines and self-interacting dark matter.

    Science.gov (United States)

    Mambrini, Yann; Toma, Takashi

    We study the correlation between a monochromatic signal from annihilating dark matter and its self-interacting cross section. We apply our argument to a complex scalar dark sector, where the pseudo-scalar plays the role of a warm dark matter candidate while the scalar mediates its interaction with the Standard Model. We combine the recent observation of the cluster Abell 3827 for self-interacting dark matter and the constraints on the annihilation cross section for monochromatic X-ray lines. We also confront our model to a set of recent experimental analyses and find that such an extension can naturally produce a monochromatic keV signal corresponding to recent observations of Perseus or Andromeda, while in the meantime it predicts a self-interacting cross section of the order of [Formula: see text], as recently claimed in the observation of the cluster Abell 3827. We also propose a way to distinguish such models by future direct detection techniques.

  11. Implications of the DAMA and CRESST experiments for mirror matter-type dark matter

    International Nuclear Information System (INIS)

    Foot, R.

    2004-01-01

    Mirror atoms are expected to be a significant component of the galactic dark matter halo if mirror matter is identified with the nonbaryonic dark matter in the Universe. Mirror matter can interact with ordinary matter via gravity and via the photon-mirror photon kinetic mixing interaction--causing mirror charged particles to couple to ordinary photons with an effective electric charge εe. This means that the nuclei of mirror atoms can elastically scatter off the nuclei of ordinary atoms, leading to nuclear recoils, which can be detected in existing dark matter experiments. We show that the dark matter experiments most sensitive to this type of dark matter candidate (via the nuclear recoil signature) are the DAMA/NaI and CRESST/Sapphire experiments. Furthermore, we show that the impressive annual modulation signal obtained by the DAMA/NaI experiment can be explained by mirror matter-type dark matter for vertical bar ε vertical bar ∼5x10 -9 and is supported by DAMA's absolute rate measurement as well as the CRESST/Sapphire data. This value of vertical bar ε vertical bar is consistent with the value obtained from various solar system anomalies including the Pioneer spacecraft anomaly, anomalous meteorite events and lack of small craters on the asteroid Eros. It is also consistent with standard big bang nucleosynthesis

  12. Dark matter directional detection in non-relativistic effective theories

    International Nuclear Information System (INIS)

    Catena, Riccardo

    2015-01-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF 4 , CS 2 and 3 He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments

  13. Dark matter maps reveal cosmic scaffolding.

    Science.gov (United States)

    Massey, Richard; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Leauthaud, Alexie; Finoguenov, Alexis; Capak, Peter; Bacon, David; Aussel, Hervé; Kneib, Jean-Paul; Koekemoer, Anton; McCracken, Henry; Mobasher, Bahram; Pires, Sandrine; Refregier, Alexandre; Sasaki, Shunji; Starck, Jean-Luc; Taniguchi, Yoshi; Taylor, Andy; Taylor, James

    2007-01-18

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.

  14. Spin-0± portal induced Dark Matter

    Science.gov (United States)

    Dutta, Sukanta; Goyal, Ashok; Saini, Lalit Kumar

    2018-02-01

    Standard model (SM) spin-zero singlets are constrained through their di-Bosonic decay channels via an effective coupling induced by a vector-like quark (VLQ) loop at the LHC for √{s}=13 TeV. These spin-zero resonances are then considered as portals for scalar, vector or fermionic dark matter particle interactions with SM gauge bosons. We find that the model is validated with respect to the observations from LHC data and from cosmology, indirect and direct detection experiments for an appreciable range of scalar, vector and fermionic DM masses greater than 300 GeV and VLQ masses ≥ 400 GeV, corresponding to the three choice of portal masses 270 GeV, 500 GeV and 750 GeV respectively.

  15. Mini little Higgs and dark matter

    Science.gov (United States)

    Bai, Yang

    2008-09-01

    We construct a little Higgs model with the most minimal extension of the standard model gauge group by an extra U(1) gauge symmetry. For specific charge assignments of scalars, an approximate U(3) global symmetry appears in the cutoff-squared scalar mass terms generated from gauge bosons at one-loop level. Hence, the Higgs boson, identified as a pseudo-Goldstone boson of the broken global symmetry, has its mass radiatively protected up to scales of 5 10 TeV. In this model, a Z symmetry, ensuring the two U(1) gauge groups to be identical, also makes the extra massive neutral gauge boson stable and a viable dark matter candidate with a promising prospect of direct detection.

  16. Cosmological constraints on the gravitational interactions of matter and dark matter

    International Nuclear Information System (INIS)

    Bai, Yang; Salvado, Jordi; Stefanek, Ben A.

    2015-01-01

    Although there is overwhelming evidence of dark matter from its gravitational interaction, we still do not know its precise gravitational interaction strength or whether it obeys the equivalence principle. Using the latest available cosmological data and working within the framework of ΛCDM, we first update the measurement of the multiplicative factor of cosmology-relevant Newton’s constant over the standard laboratory-based value and find that it is consistent with one. In general relativity, dark matter equivalence principle breaking can be mimicked by a long-range dark matter force mediated by an ultra light scalar field. Using the Planck three year data, we find that the dark matter “fifth-force” strength is constrained to be weaker than 10 −4 of the gravitational force. We also introduce a phenomenological, post-Newtonian two-fluid description to explicitly break the equivalence principle by introducing a difference between dark matter inertial and gravitational masses. Depending on the decoupling time of the dark matter and ordinary matter fluids, the ratio of the dark matter gravitational mass to inertial mass is constrained to be unity at the 10 −6 level

  17. DAMA annual modulation and mirror Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cerulli, R.; Cappella, F. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Villar, P. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Saragossa (Spain); Laboratorio Subterraneo de Canfranc, Canfranc Estacion, Huesca (Spain); Bernabei, R.; Belli, P. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN ' ' Tor Vergata' ' , Rome (Italy); Incicchitti, A. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Addazi, A.; Berezhiani, Z. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Universita di L' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito, AQ (Italy)

    2017-02-15

    The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities. (orig.)

  18. High-energy neutrinos from multibody decaying dark matter

    Science.gov (United States)

    Hiroshima, Nagisa; Kitano, Ryuichiro; Kohri, Kazunori; Murase, Kohta

    2018-01-01

    Since the report of the PeV-TeV neutrinos by the IceCube Collaboration, various particle physics models have been proposed to explain the neutrino spectrum by dark matter particles decaying into neutrinos and other standard model particles. In such scenarios, simultaneous γ -ray emission is commonly expected. Therefore, multimessenger connections are generally important for the indirect searches of dark matters. The recent development of γ -ray astronomy puts stringent constraints on the properties of dark matter, especially by observations with the Fermi γ -ray satellite in the last several years. Motivated by the lack of γ -ray as well as the shape of the neutrino spectrum observed by IceCube, we discuss a scenario in which the DM is a PeV scale particle which couples strongly to other invisible particles and its decay products do not contain a charged particle. As an example to realize such possibilities, we consider a model of fermionic dark matter that decays into a neutrino and many invisible fermions. The dark matter decay is secluded in the sense that the emitted products are mostly neutrinos and dark fermions. One remarkable feature of this model is the resulting broadband neutrino spectra around the energy scale of the dark matter. We apply this model to multi-PeV dark matter, and discuss possible observable consequences in light of the IceCube data. In particular, this model could account for the large flux at medium energies of ˜10 - 100 TeV , possibly as well as the second peak at PeV, without violating the stringent γ -ray constraints from Fermi and air-shower experiments such as CASA-MIA.

  19. Insights on Dark Matter from Hydrogen during Cosmic Dawn

    OpenAIRE

    Muñoz, Julian B.; Loeb, Abraham

    2018-01-01

    The origin and composition of the cosmological dark matter remain a mystery. However, upcoming 21-cm measurements during cosmic dawn, the period of the first stellar formation, can provide new clues on the nature of dark matter. During this era, the baryon-dark matter fluid is the slowest it will ever be, making it ideal to search for dark matter elastically scattering with baryons through massless mediators, such as the photon. Here we explore whether dark-matter particles with an electric "...

  20. DarkBit: a GAMBIT module for computing dark matter observables and likelihoods

    Science.gov (United States)

    Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-12-01

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments ( gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments ( DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool ( GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes ( DarkSUSY and micrOMEGAs), and application of DarkBit 's advanced direct and indirect detection routines to a simple effective dark matter model.

  1. DarkBit. A GAMBIT module for computing dark matter observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Bringmann, Torsten; Dal, Lars A. [University of Oslo, Department of Physics, Oslo (Norway); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Kahlhoefer, Felix; Wild, Sebastian [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Scott, Pat [Blackett Laboratory, Imperial College London, Department of Physics, London (United Kingdom); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); White, Martin [University of Adelaide, Department of Physics, Adelaide, SA (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Parkville (Australia); Collaboration: The GAMBIT Dark Matter Workgroup

    2017-12-15

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit's advanced direct and indirect detection routines to a simple effective dark matter model. (orig.)

  2. Cosmological anisotropy from non-comoving dark matter and dark energy

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S. N.

    2013-01-01

    We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a

  3. Structure formation constraints on Sommerfeld-enhanced dark matter annihilation

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2012-01-01

    We study the growth of cosmic structure in a ΛCDM universe under the assumption that dark matter self-annihilates with an averaged cross section times relative velocity that grows with the scale factor, an increase known as Sommerfeld-enhancement. Such an evolution is expected in models in which a light force carrier in the dark sector enhances the annihilation cross section of dark matter particles, and has been invoked, for instance, to explain anomalies in cosmic ray spectra reported in the past. In order to make our results as general as possible, we assume that dark matter annihilates into a relativistic species that only interacts gravitationally with the standard model. This assumption also allows us to test whether the additional relativistic species mildly favored by cosmic-microwave background data could originate from dark matter annihilation. We do not find evidence for Sommerfeld-enhanced dark matter annihilation and derive the corresponding upper limits on the annihilation cross-section

  4. Unified picture for Dirac neutrinos, dark matter, dark energy and matter-antimatter asymmetry

    OpenAIRE

    Gu, Pei-Hong

    2007-01-01

    We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter-antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.

  5. Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)

    Energy Technology Data Exchange (ETDEWEB)

    Arrenberg, Sebastian; et al.,

    2013-10-31

    In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches.

  6. D-brane disformal coupling and thermal dark matter

    Science.gov (United States)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne

    2017-11-01

    Conformal and disformal couplings between a scalar field and matter occur naturally in general scalar-tensor theories. In D-brane models of cosmology and particle physics, these couplings originate from the D-brane action describing the dynamics of its transverse (the scalar) and longitudinal (matter) fluctuations, which are thus coupled. During the post-inflationary regime and before the onset of big bang nucleosynthesis (BBN), these couplings can modify the expansion rate felt by matter, changing the predictions for the thermal relic abundance of dark matter particles and thus the annihilation rate required to satisfy the dark matter content today. We study the D-brane-like conformal and disformal couplings effect on the expansion rate of the Universe prior to BBN and its impact on the dark matter relic abundance and annihilation rate. For a purely disformal coupling, the expansion rate is always enhanced with respect to the standard one. This gives rise to larger cross sections when compared to the standard thermal prediction for a range of dark matter masses, which will be probed by future experiments. In a D-brane-like scenario, the scale at which the expansion rate enhancement occurs depends on the string coupling and the string scale.

  7. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  8. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  9. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  10. Origin of ΔNeff as a result of an interaction between dark radiation and dark matter

    International Nuclear Information System (INIS)

    Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam

    2012-01-01

    Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decaying into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation

  11. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  12. Can dark matter be a scalar field?

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, J.F.; Malatrasi, J.L.G. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Campus Experimental de Itapeva—R. Geraldo Alckmin, 519, Itapeva, SP (Brazil); Pereira, S.H. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Departamento de Física e Química, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410—Guaratinguetá, SP (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: shpereira@gmail.com, E-mail: malatrasi440@gmail.com, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, PO1 3FX, Portsmouth (United Kingdom)

    2016-08-01

    In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads to m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.

  13. Dark fluid: A complex scalar field to unify dark energy and dark matter

    International Nuclear Information System (INIS)

    Arbey, Alexandre

    2006-01-01

    In this article, we examine a model which proposes a common explanation for the presence of additional attractive gravitational effects - generally considered to be due to dark matter - in galaxies and in clusters, and for the presence of a repulsive effect at cosmological scales - generally taken as an indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid based on a complex scalar field with a conserved U(1)-charge and associated to a specific potential, and show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the cosmological observations and constraints on dark energy and dark matter

  14. The Cryogenic Dark Matter Search (CDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.D., Jr. [UC, Berkeley

    1996-01-01

    A substantial body of observational evidence indicates that the universe contains much more material than we observe directly via photons of any wavelength. The existence of this "missing" mass or "dark" matter is inferred by its gravitational effects on the luminous material. Accepting the existence of dark matter has profoundly shaken our understanding in most areas of cosmology. If it exists at the lowest densities measured it is hard to understand in detail the creation of the elements in the early universe. If moderate density values are correct, then we have trouble understanding how the universe came to have so much structure on large scales. If the largest densities are correct, then dark matter is not ordinary matter, but must be something exotic like a new fundamental particle. We would like to measure the properties of the dark matter directly. Supposing that the dark matter consists of a WIMP, that was in thermal equilibrium in the early universe, we have built an experiment to detect dark matter directly by elastic scattering with germanium or silicon nuclei. Our detectors are large (~ 200 g) calorimeters that can discriminate between interactions with the electrons, due to background photons and beta particles, and interactions with the nuclei, due to WIMPs and background neutrons. The detectors operate at low temperatures (~ 20 mK) in a specially constructed cryostat. To reduce the rate of background events to a manageable level, the detectors and cryostat have been constructed out of selected materials and properly shielded. This dissertation discusses the properties of the hypothetical WIMPs, the detectors, cryostat, and shielding system, and finally, the analysis methods.new fundamental particle, a

  15. Cosmological searches for a noncold dark matter component

    Science.gov (United States)

    Gariazzo, Stefano; Escudero, Miguel; Diamanti, Roberta; Mena, Olga

    2017-08-01

    We explore an extended cosmological scenario where the dark matter is an admixture of cold and additional noncold species. The mass and temperature of the noncold dark matter particles are extracted from a number of cosmological measurements. Among others, we consider tomographic weak lensing data and Milky Way dwarf satellite galaxy counts. We also study the potential of these scenarios in alleviating the existing tensions between local measurements and cosmic microwave background (CMB) estimates of the S8 parameter, with S8=σ8√{Ωm } , and of the Hubble constant H0. In principle, a subdominant, noncold dark matter particle with a mass mX˜keV , could achieve the goals above. However, the preferred ranges for its temperature and its mass are different when extracted from weak lensing observations and from Milky Way dwarf satellite galaxy counts, since these two measurements require suppressions of the matter power spectrum at different scales. Therefore, solving simultaneously the CMB-weak lensing tensions and the small scale crisis in the standard cold dark matter picture via only one noncold dark matter component seems to be challenging.

  16. Dark matter and dark forces from a supersymmetric hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, S.; Goodsell, M.D.; Ringwald, A.

    2011-09-15

    We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)

  17. Dark Energy and Dark Matter from Emergent Gravity Picture

    OpenAIRE

    Seok Yang Hyun

    2018-01-01

    We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuation...

  18. Excluding the light dark matter window of a 331 model using LHC and direct dark matter detection data

    International Nuclear Information System (INIS)

    Cogollo, D.; Gonzalez-Morales, Alma X.; Queiroz, Farinaldo S.; Teles, P. Rebello

    2014-01-01

    We sift the impact of the recent Higgs precise measurements, and recent dark matter direct detection results, on the dark sector of an electroweak extension of the Standard Model that has a complex scalar as dark matter. We find that in this model the Higgs decays with a large branching ratio into dark matter particles, and charged scalars when these are kinematically available, for any coupling strength differently from the so called Higgs portal. Moreover, we compute the abundance and spin-independent WIMP-nucleon scattering cross section, which are driven by the Higgs and Z ' boson processes. We decisively exclude the 1–500 GeV dark matter window and find the most stringent lower bound in the literature on the scale of symmetry breaking of the model namely 10 TeV, after applying the LUX-2013 limit. Interestingly, the projected XENON1T constraint will be able to rule out the entire 1 GeV–1000 GeV dark matter mass range. Lastly, for completeness, we compute the charged scalar production cross section at the LHC and comment on the possibility of detection at current and future LHC runnings

  19. Self-interacting spin-2 dark matter

    Science.gov (United States)

    Chu, Xiaoyong; Garcia-Cely, Camilo

    2017-11-01

    Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.

  20. Accretion of dark matter by stars.

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Okawa, Hirotada

    2015-09-11

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV)  Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  1. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  2. Condensate of massive graviton and dark matter

    Science.gov (United States)

    Aoki, Katsuki; Maeda, Kei-ichi

    2018-02-01

    We study coherently oscillating massive gravitons in the ghost-free bigravity theory. This coherent field can be interpreted as a condensate of the massive gravitons. We first define the effective energy-momentum tensor of the coherent massive gravitons in a curved spacetime. We then study the background dynamics of the Universe and the cosmic structure formation including the effects of the coherent massive gravitons. We find that the condensate of the massive graviton behaves as a dark matter component of the Universe. From the geometrical point of view the condensate is regarded as a spacetime anisotropy. Hence, in our scenario, dark matter is originated from the tiny deformation of the spacetime. We also discuss a production of the spacetime anisotropy and find that the extragalactic magnetic field of a primordial origin can yield a sufficient amount for dark matter.

  3. A possible signature of annihilating dark matter

    Science.gov (United States)

    Chan, Man Ho

    2018-02-01

    In this article, we report a new signature of dark matter annihilation based on the radio continuum data of NGC 1569 galaxy detected in the past few decades. After eliminating the thermal contribution of the radio signal, an abrupt change in the spectral index is shown in the radio spectrum. Previously, this signature was interpreted as an evidence of convective outflow of cosmic ray. However, we show that the cosmic ray contribution is not enough to account for the observed radio flux. We then discover that if dark matter annihilates via the 4-e channel with the thermal relic cross-section, the electrons and positrons produced would emit a strong radio flux which can provide an excellent agreement with the observed signature. The best-fitting dark matter mass is 25 GeV.

  4. Dark matter particle production in b→s transitions with missing energy

    International Nuclear Information System (INIS)

    Bird, Chris; Jackson, Paul; Kowalewski, Robert; Pospelov, Maxim

    2004-01-01

    Dedicated underground experiments searching for dark matter have little sensitivity to GeV and sub-GeV masses of dark matter particles. We show that the decay of B mesons to K(K * ) and missing energy in the final state can be an efficient probe of dark matter models in this mass range. We analyze the minimal scalar dark matter model to show that the width of the decay mode with two dark matter scalars B→KSS may exceed the decay width in the standard model channel, B→Kνν-bar, by up to 2 orders of magnitude. Existing data from B physics experiments almost entirely exclude dark matter scalars with masses less than 1 GeV. Expected data from B factories probe the range of dark matter masses up to 2 GeV

  5. Prospects for indirect detection of frozen-in dark matter

    Science.gov (United States)

    Heikinheimo, Matti; Tenkanen, Tommi; Tuominen, Kimmo

    2018-03-01

    We study observational consequences arising from dark matter (DM) of nonthermal origin, produced by dark freeze-out from a hidden sector heat bath. We assume this heat bath was populated by feebly coupled mediator particles, produced via a Higgs portal interaction with the Standard Model (SM). The dark sector then attained internal equilibrium with a characteristic temperature different from the SM photon temperature. We find that even if the coupling between the DM and the SM sectors is very weak, the scenario allows for indirect observational signals. We show how the expected strength of these signals depends on the temperature of the hidden sector at DM freeze-out.

  6. Inverted dipole feature in directional detection of exothermic dark matter

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo

    2017-01-01

    Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the mean recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.

  7. Indirect searches for gravitino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Michael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica and Inst. de Fisica Teorica UAM/CSIC

    2011-11-15

    The gravitino in models with a small violation of R-parity is a well-motivated decaying dark matter candidate that leads to a cosmological scenario that is consistent with big bang nucleosynthesis and thermal leptogenesis. The gravitino lifetime is cosmologically long-lived since its decays are suppressed by the Planck-scale as well as the small R-parity violating parameter. We discuss the signals in different cosmic-ray species coming from the decay of gravitino dark matter, namely gamma rays, positrons, antiprotons, antideuterons and neutrinos. Comparison to cosmic-ray data can be used to constrain the parameters of the model. (orig.)

  8. Scalar dark matter: real vs complex

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongyan; Zheng, Sibo [Department of Physics, Chongqing University,Chongqing 401331 (China)

    2017-03-27

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  9. SUSY searches at LHC and Dark Matter

    CERN Document Server

    Barberio, E; The ATLAS collaboration

    2009-01-01

    Supersymmetric models with R-parity conservation provide an excellent can- didate for Dark Matter, the Lightest Supersymmetric Particle, which will be searched for with the ATLAS detector at the Large Hadron Collider (LHC). Based on recent simulation studies, we present the discovery potential for Su- persymmetry (SUSY) with the first few fb−1 of ATLAS data, as well as studies of the techniques used to reconstruct decays of SUSY particles at the LHC. We further discuss how such measurements can be used to constrain the underly- ing Supersymmetric model and hence to extract information about the nature of Dark Matter.

  10. Asymmetric dark matter and the Sun

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir

    2010-01-01

    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure...... formation on galactic scales. A `dark baryon' of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the `solar composition problem'. The predicted small decrease in the low energy neutrino...

  11. Particle Dark Matter and DAMA/LIBRA

    International Nuclear Information System (INIS)

    Bernabei, R.; Nozzoli, F.; Belli, P.; Cappella, F.; D'Angelo, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Ma, X. H.; Sheng, X. D.; Wang, R. G.; Incicchitti, A.; Montecchia, F.; Ye, Z. P.

    2010-01-01

    The DAMA/LIBRA set-up (about 250 kg highly radiopure NaI(Tl) sensitive mass) is running at the Gran Sasso National Laboratory of the I.N.F.N.. The first DAMA/LIBRA results confirm the evidence for the presence of a Dark Matter particle component in the galactic halo, as pointed out by the former DAMA/NaI set-up; cumulatively the data support such evidence at 8.2 σ C.L. and satisfy all the many peculiarities of the Dark Matter annual modulation signature. The main aspects and prospects of this model independent experimental approach will be outlined.

  12. Universal properties of dark matter halos.

    Science.gov (United States)

    Boyarsky, A; Neronov, A; Ruchayskiy, O; Tkachev, I

    2010-05-14

    We discuss the universal relation between density and size of observed dark matter halos that was recently shown to hold on a wide range of scales, from dwarf galaxies to galaxy clusters. Predictions of cold dark matter (ΛCDM) N-body simulations are consistent with this relation. We demonstrate that this property of ΛCDM can be understood analytically in the secondary infall model. Qualitative understanding given by this model provides a new way to predict which deviations from ΛCDM or large-scale modifications of gravity can affect universal behavior and, therefore, to constrain them observationally.

  13. Might dark matter not be concentric with luminous matter

    International Nuclear Information System (INIS)

    Xu Chongming; Lu Tan.

    1986-12-01

    In this paper, an idea on dark matter nonconcentric with luminous matter is proposed. This case could influence the rotation curve of galaxy differently in its different direction. Recently, Rubin and Ford's observation on rotation curve of Hickson 88a has been explained by means of the idea. Some possible observational predictions have also been given. (author)

  14. Search for pseudoscalar cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  15. Dark Energy and Dark Matter from Emergent Gravity Picture

    Directory of Open Access Journals (Sweden)

    Seok Yang Hyun

    2018-01-01

    Full Text Available We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.

  16. Dark Energy and Dark Matter from Emergent Gravity Picture

    Science.gov (United States)

    Seok Yang, Hyun

    2018-01-01

    We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1)-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.

  17. GW170817 falsifies dark matter emulators

    Science.gov (United States)

    Boran, S.; Desai, S.; Kahya, E. O.; Woodard, R. P.

    2018-02-01

    On August 17, 2017 the LIGO interferometers detected the gravitational wave (GW) signal (GW170817) from the coalescence of binary neutron stars. This signal was also simultaneously seen throughout the electromagnetic (EM) spectrum from radio waves to gamma rays. We point out that this simultaneous detection of GW and EM signals rules out a class of modified gravity theories, termed "dark matter emulators," which dispense with the need for dark matter by making ordinary matter couple to a different metric from that of GW. We discuss other kinds of modified gravity theories which dispense with the need for dark matter and are still viable. This simultaneous observation also provides the first observational test of Einstein's weak equivalence principle (WEP) between gravitons and photons. We estimate the Shapiro time delay due to the gravitational potential of the total dark matter distribution along the line of sight (complementary to the calculation by Abbott et al. [Astrophys. J. Lett. 848, L13 (2017)], 10.3847/2041-8213/aa920c) to be about 400 days. Using this estimate for the Shapiro delay and from the time difference of 1.7 seconds between the GW signal and gamma rays, we can constrain violations of the WEP using the parametrized post-Newtonian parameter γ , and it is given by |γGW-γEM|<9.8 ×10-8.

  18. The dark matter distribution of NGC 5921

    Science.gov (United States)

    Ali, Israa Abdulqasim Mohammed; Hashim, Norsiah; Abidin, Zamri Zainal

    2018-04-01

    We used the neutral atomic hydrogen data of the Very Large Array for the spiral galaxy NGC 5921 with z = 0.0045 at the distance of 22.4 Mpc, to investigate the nature of dark matter. The investigation was based on two theories, namely, dark matter and Modified Newtonian Dynamics (MOND). We presented the kinematic analysis of the rotation curve with two models of dark matter, namely, the Burkert and NFW profiles. The results revealed that the NFW halo model can reproduce the observed rotation curve, with χ 2_{red}≈ 1, while the Burkert model is unable to fit the observation data. Therefore, the dark matter density profile of NGC 5921 can be presented as a cuspy halo. We also tried to investigate the observed rotation curve of NGC 5921 with MOND, along with the possible assumption on baryonic matter and distance. We note that MOND is still incapable of mimicking the rotation curve with the observed data of the galaxy.

  19. Distinguishing Dark Matter Characterization of Contact Dark Matter for the LHC

    CERN Document Server

    Claringbold, Tangereen

    2015-01-01

    This research investigated the possibility of characterizing and distinguishing properties of dark matter at the LHC at a center of mass energy $\\sqrt{s}=13$ TeV to be compared with coming experimental data. Six of these models are of scalar dark matter and six are of fermion dark matter. This was done within the framework of contact interactions. Simulations were done in the CalcHEP package and the associated High Energy Physics Model DataBase (HEPMDB). Dark matter is invisible to our detectors, but other particles produced in association with it are not, leading to monojet or monophoton signatures. These signatures point to missing transverse momentum in the system: that carried by the dark matter. Both monojet and monophoton signatures were studied and characterized in this research The transverse momentum and pseudo-rapidity the jet or photon and the cross section of the dark matter were characterizes for the twelve different models and for four different dark matter masses. It was found that, contrary to...

  20. Doppler effect on indirect detection of dark matter using dark matter only simulations

    Science.gov (United States)

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.; Abel, Tom

    2017-03-01

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy [E. G. Speckhard, K. C. Y. Ng, J. F. Beacom, and R. Laha, Phys. Rev. Lett. 116, 031301 (2016), 10.1103/PhysRevLett.116.031301]. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometer on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥3 σ . The halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.