Willden, Jeff
2001-01-01
"Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…
One Hundred Years of Bohr Model
Indian Academy of Sciences (India)
IAS Admin
In this article I shall present a brief review of the hundred-year young Bohr model of the atom. In particular, I will first introduce the Thomson and the Rutherford models of atoms, their shortcom- ings and then discuss in some detail the develop- ment of the atomic model by Niels Bohr. Fur- ther, I will mention its refinements at ...
One Hundred Years of Bohr Model
Indian Academy of Sciences (India)
IAS Admin
science at school and college level. In this article I shall present a brief review of the hundred-year young Bohr model of the atom. In particular, I will first introduce the Thomson and .... This model, despite being successful, had one major problem. ... This tempted several people to look for an empirical formula which would ...
The many relationships between the IBM and the Bohr model
International Nuclear Information System (INIS)
Rowe, D.J.; Thiamova, G.
2005-01-01
Relationships between the IBM-1 and the Bohr collective model are explored in which the states of the IBM in its various dynamical symmetry limits are identified with subsets of Bohr model states of corresponding dynamical symmetries. The maps of interest are ones which give the contractions of the IBM in the limit of large boson number. The known map from the IBM into the Bohr model gives a contraction appropriate for the U(5) dynamical symmetry limit. A new map is given consistent with a contraction of the O(6) dynamical symmetry of the IBM. This map gives an explicit identification of IBM states in an O(6)-bar O(5) basis with states of the Wilets-Jean model and makes it possible to benefit from the different but complementary perspectives of the two models. For example, it leads to explicit expressions for the matrix elements of an IBM O(6) irrep in terms of the known matrix elements of the corresponding Wilets-Jean model. The relationship also shows how to obtain the familiar rotor plus beta- and gamma-vibrational bands of the Bohr-Mottelson model, in the IBM, by the addition to an O(6) Hamiltonian of a scalar cubic in the quadrupole moment operators of the type considered recently by Van Isacker. The establishment of close relationships between the two models enables one to benefit from the different and complementary perspectives they afford. For example, recent developments of an algebraic version of the collective model has shown that the Bohr model has an SU(1,1)xO(5) dynamical group with representations ranging from those of a spherical vibrator to a beta-vibrational soft-gamma rotor of the Wilets-Jean limit and, with the addition of an interaction, to a rotor of the standard Bohr-Mottelson type with beta- and gamma-vibrational bands. A parallel range of results can now be obtained in the IBM, albeit with some differences, within the framework of an SU(1,1)xO(5) dynamical group
El modelo semicuántico de Bohr en los libros de texto The Bohr's quantum model in the textbook
Directory of Open Access Journals (Sweden)
Jorge Eliécer Moreno Ramírez
2010-01-01
Full Text Available La didáctica de las ciencias naturales está cuestionando la transposición de los modelos científicos en modelos didácticos. Otras investigaciones muestran que el conocimiento científico convertido en conocimiento escolar produce deformaciones de la actividad científica y la simplificación de modelos, contribuyendo con la actitud negativa de los estudiantes hacia las ciencias y al fracaso escolar reportado por algunos estudios. Se pregunta si el modelo atómico de Bohr que se muestra en los textos se corresponde histórica y epistemológicamente con las actividades científicas y cuáles son las posibles deformaciones que de ésta se hace cuando se muestra el modelo en los libros. Los resultados de la investigación muestran una clara diferencia entre la propuesta de Bohr (1913 y la transposición del modelo, lo que invita a una reflexión profunda acerca de la confiabilidad que pueden tener los textos utilizados para la enseñanza de la ciencia químicaNatural science teaching is questioning the transposition that is made of scientific models into didactic models, because research has shown that when scientific knowledge is transformed into scholarly knowledge in order to be taught it causes the deformation of the scientific activity and the simplification of the models. This contributes to the negative attitude of students towards science, and student failure shown in some studies. This research inquired if the transposition of Bohr's atomic model that is shown in textbooks corresponds historically and epistemologically to scientific activity and what the possible deformations are that, coming from this model, are made to the scientific activity that comes from the transposition. The research results show differences between what Bohr (1913 proposed and the transposition of the model in textbooks. This information will contribute to the analysis that is being done regarding the dependability of textbooks.
Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?
Niaz, Mansoor; Cardellini, Liberato
2011-12-01
Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.
Probing the (empirical quantum structure embedded in the periodic table with an effective Bohr model
Directory of Open Access Journals (Sweden)
Wellington Nardin Favaro
2013-01-01
Full Text Available The atomic shell structure can be observed by inspecting the experimental periodic properties of the Periodic Table. The (quantum shell structure emerges from these properties and in this way quantum mechanics can be explicitly shown considering the (semi-quantitative periodic properties. These periodic properties can be obtained with a simple effective Bohr model. An effective Bohr model with an effective quantum defect (u was considered as a probe in order to show the quantum structure embedded in the Periodic Table. u(Z shows a quasi-smoothed dependence of Z, i.e., u(Z ≈ Z2/5 - 1.
Bai, Tongdong; Stachel, John
In his response to EPR, Bohr introduces several ideal experimental arrangements that often are not understood correctly, and his discussion about them is given a positivist reading. Our analysis demonstrates the difference between such areading and Bohr's actual position, and also clarifies the meaning of several of Bohr's key physical and philosophical ideas: * The role of the quantum of action in the distinction between classical and quantum systems; * The criterion of measurability for theoretically defined concepts; * The freedom in placement of the "cut" between measuring instrument and measured system; * The non-visualizability of the quantum formalism; and Bohr's concepts of phenomenon and complementarity.
Bohr model description of the critical point for the first order shape phase transition
Budaca, R.; Buganu, P.; Budaca, A. I.
2018-01-01
The critical point of the shape phase transition between spherical and axially deformed nuclei is described by a collective Bohr Hamiltonian with a sextic potential having simultaneous spherical and deformed minima of the same depth. The particular choice of the potential as well as the scaled and decoupled nature of the total Hamiltonian leads to a model with a single free parameter connected to the height of the barrier which separates the two minima. The solutions are found through the diagonalization in a basis of Bessel functions. The basis is optimized for each value of the free parameter by means of a boundary deformation which assures the convergence of the solutions for a fixed basis dimension. Analyzing the spectral properties of the model, as a function of the barrier height, revealed instances with shape coexisting features which are considered for detailed numerical applications.
Bohr model description of the critical point for the first order shape phase transition
Directory of Open Access Journals (Sweden)
R. Budaca
2018-01-01
Full Text Available The critical point of the shape phase transition between spherical and axially deformed nuclei is described by a collective Bohr Hamiltonian with a sextic potential having simultaneous spherical and deformed minima of the same depth. The particular choice of the potential as well as the scaled and decoupled nature of the total Hamiltonian leads to a model with a single free parameter connected to the height of the barrier which separates the two minima. The solutions are found through the diagonalization in a basis of Bessel functions. The basis is optimized for each value of the free parameter by means of a boundary deformation which assures the convergence of the solutions for a fixed basis dimension. Analyzing the spectral properties of the model, as a function of the barrier height, revealed instances with shape coexisting features which are considered for detailed numerical applications.
Indian Academy of Sciences (India)
IAS Admin
of Bohr's birth, while Dirac passed away in October of the previous year. There was a gap of almost a gener- ation between them. ... the one hand, in order to produce in this model a length scale of the order of the atomic size, and also to en- sure stability of the electron orbits, it was essential to bring in Planck's constant.
Farina, William J., Jr.; Bodzin, Alec M.
2018-01-01
Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified…
Conference: STANDARD MODEL @ LHC
2012-01-01
HCØ institute Universitetsparken 5 DK-2100 Copenhagen Ø Denmark Room: Auditorium 2 STANDARD MODEL @ LHC Niels Bohr International Academy and Discovery Center 10-13 April 2012 This four day meeting will bring together both experimental and theoretical aspects of Standard Model phenomenology at the LHC. The very latest results from the LHC experiments will be under discussion. Topics covered will be split into the following categories: * QCD (Hard,Soft & PDFs) * Vector Boson production * Higgs searches * Top Quark Physics * Flavour physics
Bellac, Michel Le
2014-11-01
The final form of quantum physics, in the particular case of wave mechanics, was established in the years 1925-1927 by Heisenberg, Schrödinger, Born and others, but the synthesis was the work of Bohr who gave an epistemological interpretation of all the technicalities built up over those years; this interpretation will be examined briefly in Chapter 10. Although Einstein acknowledged the success of quantum mechanics in atomic, molecular and solid state physics, he disagreed deeply with Bohr's interpretation. For many years, he tried to find flaws in the formulation of quantum theory as it had been more or less accepted by a large majority of physicists, but his objections were brushed away by Bohr. However, in an article published in 1935 with Podolsky and Rosen, universally known under the acronym EPR, Einstein thought he had identified a difficulty in the by then standard interpretation. Bohr's obscure, and in part beyond the point, answer showed that Einstein had hit a sensitive target. Nevertheless, until 1964, the so-called Bohr-Einstein debate stayed uniquely on a philosophical level, and it was actually forgotten by most physicists, as the few of them aware of it thought it had no practical implication. In 1964, the Northern Irish physicist John Bell realized that the assumptions contained in the EPR article could be tested experimentally. These assumptions led to inequalities, the Bell inequalities, which were in contradiction with quantum mechanical predictions: as we shall see later on, it is extremely likely that the assumptions of the EPR article are not consistent with experiment, which, on the contrary, vindicates the predictions of quantum physics. In Section 3.2, the origin of Bell's inequalities will be explained with an intuitive example, then they will be compared with the predictions of quantum theory in Section 3.3, and finally their experimental status will be reviewed in Section 3.4. The debate between Bohr and Einstein goes much beyond a
The Bohr Correspondence Principle
Indian Academy of Sciences (India)
IAS Admin
corresponding to the two values of the electron spin), if it is known to have the mini- mum energy. But in Bohr's theory, the orientation of the plane of orbit is arbitrary, and hence the number of distinct states is infinite. In fact,“Bohr theory of hydrogen ...
Indian Academy of Sciences (India)
IAS Admin
We present an account of the work of Niels Bohr and Paul Dirac, their interactions and personal- ities. 1. Introduction. In this essay I would like to convey to my readers some- thing about the personalities and work of Niels Bohr and Paul Dirac, juxtaposed against one another. Let me hope that the portraits I will paint of these ...
Farina, William J.; Bodzin, Alec M.
2017-12-01
Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified metaprinciples of science learning: making science accessible, making thinking visible, and promoting autonomy. Students in an introductory chemistry course at a large east coast university completed either an online module or traditional classroom instruction. Data from 99 students were analyzed and results showed significant knowledge growth in both online and traditional formats. For the online learning group, findings revealed positive student perceptions of their learning experiences, highly positive feedback for online science learning, and an interest amongst students to learn chemistry within an online environment.
Bohr vs. Einstein: Fortolkning af kvantemekanikken
DEFF Research Database (Denmark)
Andersen, Christian Kraglund; Wade, Andrew Christopher James
2013-01-01
Siden 1913, da Bohr fremlagde sin kvantemekaniske model for atomet, har fysikere diskuteret, hvordan kvan- temekanikken skal fortolkes. Specielt aktive i denne diskussion var Bohr og Einstein, som havde modstridende opfattelser af, hvordan kvantemekanikken skulle forstås. Kan katte være både...... levende og døde på samme tid? Kan vi teleportere partikler mellem Månen og Jorden? Disse spørgsmål, og mange flere, forsøgte Bohr og Einstein at besvare, og det vil vi ligeledes i denne artikel....
Reading Bohr physics and philosophy
Plotnitsky, Arkady
2006-01-01
Reading Bohr: Physics and Philosophy offers a new perspective on Niels Bohr's interpretation of quantum mechanics as complementarity, and on the relationships between physics and philosophy in Bohr's work, which has had momentous significance for our understanding of quantum theory and of the nature of knowledge in general. Philosophically, the book reassesses Bohr's place in the Western philosophical tradition, from Kant and Hegel on. Physically, it reconsiders the main issues at stake in the Bohr-Einstein confrontation and in the ongoing debates concerning quantum physics. It also devotes greater attention than in most commentaries on Bohr to the key developments and transformations of his thinking concerning complementarity. Most significant among them were those that occurred, first, under the impact of Bohr's exchanges with Einstein and, second, under the impact of developments in quantum theory itself, both quantum mechanics and quantum field theory. The importance of quantum field theory for Bohr's thi...
International Nuclear Information System (INIS)
Latimer, C.J.
1983-01-01
It is shown that the old quantum theory in its simplest (Bohr) form can still make an important contribution to understanding atomic phenomena in the fields of hydrogenic spectra, non-hydrogenic spectra, and atoms in strong electric or magnetic fields. (U.K.)
The Bohr Correspondence Principle
Indian Academy of Sciences (India)
IAS Admin
quite straightforward, and easily understood even with. XII grade algebra. To recall, Bohr assumed that an elec- tron describes a circular orbit about the nucleus, and the angular momentum is quantized to be an integer multiple of h. Of course, in general, the orbit can be elliptical, but let us restrict ourselves to circular orbits.
Indian Academy of Sciences (India)
IAS Admin
This difficulty reinforced a suspicion developed earlier in his studies of electrons in metals, where he showed .... Bohr still sent his papers for Rutherford to communicate to the journals, and often to deal with, .... of those twenty years in which you and your family have shown us so much friendship, my wife and I send you and ...
International Nuclear Information System (INIS)
1985-01-01
This report is organized around the contribution of A. Pais, 'Niels Bohr and the development of physics', presented at CERN on the occasion of a special colloquium in the honour of Niels Bohr. It gives a broad survey of Bohr's life, the revolution in physics created by his quantum theory and his attempts to influence the peaceful development of nuclear energy. (orig.)
Bohr's Philosophy of Wave–Particle Complementarity
Indian Academy of Sciences (India)
IAS Admin
We begin by noting that as early as 1914, only a year after his celebrated work on the atomic model, Bohr wrote to his friend C W Oseen, “.... the possibility for an embracing picture should not be sought in the generality of viewpoints but perhaps rather in the strictest possible limitation of viewpoints” [1]. It is indeed striking ...
Vayenas, Constantinos G
2012-01-01
This book shows that the strong interaction forces, which keep hadrons and nuclei together, are relativistic gravitational forces exerted between very small particles in the mass range of neutrinos. First, this book considers the problematic motion of two charged particles under the influence of electrostatic and gravitational forces only, which shows that bound states are formed by following the same semi-classical methodology used by Bohr to describe the H atom. This approach is also coupled with Newton's gravitational law and with Einstein's special relativity. The results agree with experi
Niels Bohr and quantum physics
International Nuclear Information System (INIS)
Migdal, A.B.
1985-01-01
The way of thinking and scientific style of Niels Bohr are discussed in connection with developments of his emotional and spiritual life. As shows the analysis of the works by N. Bohr, by his predecessors in contemporaries, he has produced an incomparable influence upon the development of quantum mechanics as a philosopher of physics. His struggle against nuclear weapons is dwelt upon
Bohr Hamiltonian with different mass parameters applied to band ...
Indian Academy of Sciences (India)
, is investigated within the framework of a recently developed extended Bohr Hamiltonian model. The relative distance between spherical orbitals is taken into account by considering single-particle energies as a parameter which changes with ...
Genetics Home Reference: Bohring-Opitz syndrome
... Hopkins Medicine: Failure to Thrive KidsHealth from Nemours: Failure to Thrive MalaCards: bohring-opitz syndrome Oregon Health Sciences University: Metopic Synostosis Orphanet: Bohring-Opitz syndrome Patient Support ...
Brunori, Maurizio
2012-01-01
Before the outbreak of World War II, Jeffries Wyman postulated that the "Bohr effect" in hemoglobin demanded the oxygen linked dissociation of the imidazole of two histidines of the polypeptide. This proposal emerged from a rigorous analysis of the acid-base titration curves of oxy- and deoxy-hemoglobin, at a time when the information on the…
The coupling one quasi-particle to a Bohr core
International Nuclear Information System (INIS)
Lewenkopf, C.H.
1988-01-01
Odd nuclei are studied coupling one quasi-particle to a Bohr's core, solved by Kumar Baranger's method. Calculations are performed for energies and transition rates for the following isotopes: 133 Xe, 183 W, 99 Tc and 101 Rh. Limitations of the model are discussed. (author) [pt
Realization of Bohr-like circular wavepackets
Mestayer, Jeff; Wyker, B.; Dunning, F. B.; Reinhold, C.; Yoshida, S.; Burgdörfer, J.
2008-05-01
We demonstrate a protocol to create localized wavepackets in very-high n Rydberg states that travel in near-circular orbits around the nucleus. Although these wavepackets slowly dephase and eventually lose their localization, their motion can be followed for several orbital periods. These wavepackets represent the closest analog yet achieved to the original Bohr model of the atom, i.e., an electron in circular classical orbit around the nucleus. The time evolution of the momentum and position of the wavepackets is monitored using, respectively, short half-cycle pulses and sudden field steps, which are applied after a variable time delay and along different directions. The present technique is explained with the aid of CTMC simulations, and possible extension to creation of elusive ``planetary atoms'' in highly correlated stable multiply-excited states is discussed. Research supported by the NSF, the Robert A. Welch Foundation, the OBES, U.S. DoE to ORNL, and by the FWF (Austria).
Creation of nondispersive Bohr-like wave packets
Mestayer, J. J.; Wyker, B.; Dunning, F. B.; Yoshida, S.; Reinhold, C. O.; Burgdörfer, J.
2009-03-01
We demonstrate the use of a periodic train of half-cycle pulses to maintain strongly-localized wave packets in very-high- n (ñ300) Rydberg atoms that travel in near-circular orbits about the nucleus. This motion can be followed for hundreds of orbital periods and mimics the original Bohr model of the hydrogen atom which envisioned an electron in circular classical orbit about the nucleus.
Niels Bohr. Physicist and philospher of the atomic era
International Nuclear Information System (INIS)
Fischer, Ernst Peter
2012-01-01
The physicist and Nobel-prize carrier Niels Bohr (1885-1962) changed by his research our view to the world. By his atomic model for the first time the stability of matter could be explained, but simultaneously the atomic physics and nuclear technique based on this made our world so dangerous as never before. In an impressive portrait Ernst Peter Fischer describes the life and action of this fascinating man, his great physical finding, as well as his political engagement.
Creation of non-dispersive Bohr-like wave packets
Mestayer, Jeff; Wyker, B.; Dunning, F. B.; Reinhold, C. O.; Yoshida, S.; Burgdörfer, J.
2009-05-01
We demonstrate the use of a periodic train of half-cycle pulses to create strongly-localized non-dispersive wave packets in very-high-n (n ˜ 300) Rydberg atoms that travel in near-circular orbits about the nucleus. This motion can be maintained for hundreds of orbital periods mimicking the original Bohr model of the hydrogen atom which envisioned an electron in circular classical orbit about the nucleus. The conditions for formation of non-dispersive Bohr-like wave packets are discussed with the aid of Classical Trajectory Monte Carlo (CTMC) simulations and demonstrated through experiment. Research supported by the NSF, the Robert A. Welch Foundation, the OBES, U.S. DoE to ORNL, and by the FWF (Austria).
Atoms, metaphors and paradoxes Niels Bohr and the construction of a new physics
Petruccioli, Sandro
2006-01-01
This book gives a detailed study of the development and the interpretation given to Niels Bohr's Principle of Correspondence. It also describes the role that this principle played in guiding Bohr's research over the critical period from 1920 to 1927. Quantum mechanics, developed in the 1920s and 1930s by Bohr, Heisenberg, Born, Schrödinger and Dirac, represents one of the most profound turning points in science. This theory required a wholly new kind of physics in which many of the principles, concepts and models representing reality, that had formed the basis of classical physics since Galileo and Newton, had to be abandoned. This book re-examines the birth of quantum mechanics, in particular examining the development of crucial and original insights of Niels Bohr.
Niels Bohr on the wave function and the classical/quantum divide
Zinkernagel, Henrik
2016-02-01
It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on how Bohr's ideas make much sense also when modern developments in quantum gravity and early universe cosmology are taken into account.
International Nuclear Information System (INIS)
Wilczek, F.
1993-01-01
The standard model of particle physics is highly successful, although it is obviously not a complete or final theory. In this presentation the author argues that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Essentially, this presentation is a record of the author's own judgement of what the central clues for physics beyond the standard model are, and also it is an attempt at some pedagogy. 14 refs., 6 figs
Mangano, M.L.; Aguilar-Saavedra, Juan Antonio; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department
2017-06-22
This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.
CERN. Geneva HR-RFA
2006-01-01
Suggested Readings: Aspects of Quantum Chromodynamics/A Pich, arXiv:hep-ph/0001118. - The Standard Model of Electroweak Interactions/A Pich, arXiv:hep-ph/0502010. - The Standard Model of Particle Physics/A Pich The Standard Model of Elementary Particle Physics will be described. A detailed discussion of the particle content, structure and symmetries of the theory will be given, together with an overview of the most important experimental facts which have established this theoretical framework as the Standard Theory of particle interactions.
Camilleri, Kristian; Schlosshauer, Maximilian
2015-02-01
Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem of the quantum-classical transition that were pursued by several of Bohr's followers and culminated in the development of decoherence theory.
International Nuclear Information System (INIS)
Pleitez, V.
1994-01-01
The search for physics laws beyond the standard model is discussed in a general way, and also some topics on supersymmetry theories. An approach is made on recent possibilities rise in the leptonic sector. Finally, models with SU(3) c X SU(2) L X U(1) Y symmetry are considered as alternatives for the extensions of the elementary particles standard model. 36 refs., 1 fig., 4 tabs
International Nuclear Information System (INIS)
Gaillard, M.K.
1990-04-01
The unresolved issues of the standard model are reviewed, with emphasis on the gauge hierarchy problem. A possible mechanism for generating a hierarchy in the context of superstring theory is described. 24 refs
Bohr's Philosophy of Wave–Particle Complementarity
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 10. Bohr's Philosophy of Wave–Particle Complementarity. Dipankar Home. General Article Volume 18 Issue 10 October 2013 pp 905-916. Fulltext. Click here to view fulltext PDF. Permanent link:
Bohr's Philosophy of Wave–Particle Complementarity
Indian Academy of Sciences (India)
IAS Admin
Einstein's theory fixes the magnitude of the light-quantum” [2]. At that time, in view of his reluctance to accept the light-quantum or photon hypothesis, Bohr had even contemplated a formulation of quantum theory that would be able to describe the interaction between radiation and atomic systems without requiring the.
Niels Bohr and the Atomic Structure
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 10. Niels Bohr and the Atomic Structure. M Durga Prasad. General Article Volume 18 Issue 10 October 2013 pp 897-904. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/018/10/0897-0904 ...
Smiar, Karen; Mendez, J. D.
2016-01-01
Molecular model kits have been used in chemistry classrooms for decades but have seen very little recent innovation. Using 3D printing, three sets of physical models were created for a first semester, introductory chemistry course. Students manipulated these interactive models during class activities as a supplement to existing teaching tools for…
International Nuclear Information System (INIS)
Cuypers, F.
1997-05-01
These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs
Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem
Webb, William
2013-04-01
Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1997-05-01
These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.
International Nuclear Information System (INIS)
Peskin, M.E.
1997-05-01
These lectures constitute a short course in ''Beyond the Standard Model'' for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e + e - colliders
Burgess, Cliff; Moore, Guy
2012-04-01
List of illustrations; List of tables; Preface; Acknowledgments; Part I. Theoretical Framework: 1. Field theory review; 2. The standard model: general features; 3. Cross sections and lifetimes; Part II. Applications: Leptons: 4. Elementary boson decays; 5. Leptonic weak interactions: decays; 6. Leptonic weak interactions: collisions; 7. Effective Lagrangians; Part III. Applications: Hadrons: 8. Hadrons and QCD; 9. Hadronic interactions; Part IV. Beyond the Standard Model: 10. Neutrino masses; 11. Open questions, proposed solutions; Appendix A. Experimental values for the parameters; Appendix B. Symmetries and group theory review; Appendix C. Lorentz group and the Dirac algebra; Appendix D. ξ-gauge Feynman rules; Appendix E. Metric convention conversion table; Select bibliography; Index.
The Niels Bohr Archive is Placing Collections on its Website
DEFF Research Database (Denmark)
Aaserud, Finn
2010-01-01
-quality digital copies in TIFF format to be kept as a security backup of the collection itself. From these, we then made black-and-white PDF-files of significantly lower resolution with the intention of making them available to researchers as digital documents. The sound recordings and films were digitized out...... this supplement, the documents of which we hope to make available on our website by 2013, the centennial for Bohr's model of the nuclear atom. We have found the task of digitizing our collections generally complex, sometimes frustrating, and in the end satisfying. At this stage it is particularly important...
Realization of Localized Bohr-Like Wave Packets
Mestayer, J. J.; Wyker, B.; Lancaster, J. C.; Dunning, F. B.; Reinhold, C. O.; Yoshida, S.; Burgdörfer, J.
2008-06-01
We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create “planetary atoms” in highly correlated stable multiply excited states is discussed.
Csáki, Csaba
2015-01-01
We introduce aspects of physics beyond the Standard Model focusing on supersymmetry, extra dimensions, and a composite Higgs as solutions to the Hierarchy problem. Lectures given at the 2013 European School of High Energy Physics, Parádfürdo, Hungary, 5-18 June 2013.
CERN. Geneva
2005-01-01
The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future. Supersymmetry, grand unification, extra dimensions and string theory will be presented.
Complementarity beyond physics Niels Bohr's parallels
Bala, Arun
2017-01-01
In this study Arun Bala examines the implications that Niels Bohr’s principle of complementarity holds for fields beyond physics. Bohr, one of the founding figures of modern quantum physics, argued that the principle of complementarity he proposed for understanding atomic processes has parallels in psychology, biology, and social science, as well as in Buddhist and Taoist thought. But Bohr failed to offer any explanation for why complementarity might extend beyond physics, and his claims have been widely rejected by scientists as empty speculation. Scientific scepticism has only been reinforced by the naïve enthusiasm of postmodern relativists and New Age intuitionists, who seize upon Bohr’s ideas to justify anti-realist and mystical positions. Arun Bala offers a detailed defence of Bohr’s claim that complementarity has far-reaching implications for the biological and social sciences, as well as for comparative philosophies of science, by explaining Bohr’s parallels as responses to the omnipresence...
Energy Technology Data Exchange (ETDEWEB)
Lykken, Joseph D.; /Fermilab
2010-05-01
'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest
Riles, K
1998-01-01
The Large Electron Project (LEP) accelerator near Geneva, more than any other instrument, has rigorously tested the predictions of the Standard Model of elementary particles. LEP measurements have probed the theory from many different directions and, so far, the Standard Model has prevailed. The rigour of these tests has allowed LEP physicists to determine unequivocally the number of fundamental 'generations' of elementary particles. These tests also allowed physicists to ascertain the mass of the top quark in advance of its discovery. Recent increases in the accelerator's energy allow new measurements to be undertaken, measurements that may uncover directly or indirectly the long-sought Higgs particle, believed to impart mass to all other particles.
Altarelli, Guido
1999-01-01
Introduction structure of gauge theories. The QEDand QCD examples. Chiral theories. The electroweak theory. Spontaneous symmetry breaking. The Higgs mechanism Gauge boson and fermion masses. Yukawa coupling. Charges current couplings. The Cabibo-Kobayashi-Maskawa matrix and CP violation. Neutral current couplings. The Glasow-Iliopoulos-Maiani mechanism. Gauge boson and Higgs coupling. Radiative corrections and loops. Cancellation of the chiral anomaly. Limits on the Higgs comparaison. Problems of the Standard Model. Outlook.
International Nuclear Information System (INIS)
Quigg, C.
1984-09-01
The SU(3)/sub c/ circle crossSU(2)/sub L/circle crossU(1)/sub Y/ gauge theory of ineractions among quarks and leptons is briefly described, and some recent notable successes of the theory are mentioned. Some shortcomings in our ability to apply the theory are noted, and the incompleteness of the standard model is exhibited. Experimental hints that Nature may be richer in structure than the minimal theory are discussed. 23 references
Address at the opening session of the Niels Bohr Symposium
International Nuclear Information System (INIS)
Mayor, F.
1998-01-01
In his address at the opening session of the Niels Bohr Symposium organized jointly by UNESCO and the Niels Bohr Institute in Copenhagen in May 1998 in order to examine the latest developments in key fields of physics, the Director General of UNESCO presented the scientific work and the spirit of Niels Bohr, emphasizing the impact of his discoveries for new openings in science and in society in general
International Nuclear Information System (INIS)
Peccei, R.D.
1986-01-01
Possible small extensions of the standard model are considered, which are motivated by the strong CP problem and by the baryon asymmetry of the Universe. Phenomenological arguments are given which suggest that imposing a PQ symmetry to solve the strong CP problem is only tenable if the scale of the PQ breakdown is much above M W . Furthermore, an attempt is made to connect the scale of the PQ breakdown to that of the breakdown of lepton number. It is argued that in these theories the same intermediate scale may be responsible for the baryon number of the Universe, provided the Kuzmin Rubakov Shaposhnikov (B+L) erasing mechanism is operative. (orig.)
Donagi, Ron; Pantev, Tony; Waldram, Dan; Donagi, Ron; Ovrut, Burt; Pantev, Tony; Waldram, Dan
2002-01-01
We describe a family of genus one fibered Calabi-Yau threefolds with fundamental group ${\\mathbb Z}/2$. On each Calabi-Yau $Z$ in the family we exhibit a positive dimensional family of Mumford stable bundles whose symmetry group is the Standard Model group $SU(3)\\times SU(2)\\times U(1)$ and which have $c_{3} = 6$. We also show that for each bundle $V$ in our family, $c_{2}(Z) - c_{2}(V)$ is the class of an effective curve on $Z$. These conditions ensure that $Z$ and $V$ can be used for a phenomenologically relevant compactification of Heterotic M-theory.
International Nuclear Information System (INIS)
Marciano, W.J.
1994-03-01
In these lectures, my aim is to provide a survey of the standard model with emphasis on its renormalizability and electroweak radiative corrections. Since this is a school, I will try to be somewhat pedagogical by providing examples of loop calculations. In that way, I hope to illustrate some of the commonly employed tools of particle physics. With those goals in mind, I have organized my presentations as follows: In Section 2, renormalization is discussed from an applied perspective. The technique of dimensional regularization is described and used to define running couplings and masses. The utility of the renormalization group for computing leading logs is illustrated for the muon anomalous magnetic moment. In Section 3 electroweak radiative corrections are discussed. Standard model predictions are surveyed and used to constrain the top quark mass. The S, T, and U parameters are introduced and employed to probe for ''new physics''. The effect of Z' bosons on low energy phenomenology is described. In Section 4, a detailed illustration of electroweak radiative corrections is given for atomic parity violation. Finally, in Section 5, I conclude with an outlook for the future
Structure of the standard model
Energy Technology Data Exchange (ETDEWEB)
Langacker, Paul [Pennsylvania Univ., PA (United States). Dept. of Physics
1996-07-01
This lecture presents the structure of the standard model, approaching the following aspects: the standard model Lagrangian, spontaneous symmetry breaking, gauge interactions, covering charged currents, quantum electrodynamics, the neutral current and gauge self-interactions, and problems with the standard model, such as gauge, fermion, Higgs and hierarchy, strong C P and graviton problems.
Paul Ehrenfest, Niels Bohr, and Albert Einstein: Colleagues and Friends
Klein, Martin J.
2010-09-01
In May 1918 Paul Ehrenfest received a monograph from Niels Bohr in which Bohr had used Ehrenfest's adiabatic principle as an essential assumption for understanding atomic structure. Ehrenfest responded by inviting Bohr, whom he had never met, to give a talk at a meeting in Leiden in late April 1919, which Bohr accepted; he lived with Ehrenfest, his mathematician wife Tatyana, and their young family for two weeks. Albert Einstein was unable to attend this meeting, but in October 1919 he visited his old friend Ehrenfest and his family in Leiden, where Ehrenfest told him how much he had enjoyed and profited from Bohr's visit. Einstein first met Bohr when Bohr gave a lecture in Berlin at the end of April 1920, and the two immediately proclaimed unbounded admiration for each other as physicists and as human beings. Ehrenfest hoped that he and they would meet at the Third Solvay Conference in Brussels in early April 1921, but his hope was unfulfilled. Einstein, the only physicist from Germany who was invited to it in this bitter postwar atmosphere, decided instead to accompany Chaim Weizmann on a trip to the United States to help raise money for the new Hebrew University in Jerusalem. Bohr became so overworked with the planning and construction of his new Institute for Theoretical Physics in Copenhagen that he could only draft the first part of his Solvay report and ask Ehrenfest to present it, which Ehrenfest agreed to do following the presentation of his own report. After recovering his strength, Bohr invited Ehrenfest to give a lecture in Copenhagen that fall, and Ehrenfest, battling his deep-seated self-doubts, spent three weeks in Copenhagen in December 1921 accompanied by his daughter Tanya and her future husband, the two Ehrenfests staying with the Bohrs in their apartment in Bohr's new Institute for Theoretical Physics. Immediately after leaving Copenhagen, Ehrenfest wrote to Einstein, telling him once again that Bohr was a prodigious physicist, and again
International Nuclear Information System (INIS)
Sastry, M.D.
2013-01-01
This contribution reviews developments in the atomic spectroscopy subsequent to Bohr's model. This follows a brief description of Bohr's model of hydrogen atom that accounts for sharp line spectra of hydrogen atom. The developments include the effects of electron and nuclear spins, spectroscopy of multi electron atom which involve electron-electron repulsion and different angular momentum coupling schemes. More recently, Bohr's atom model has found application to processes at nano dimensions of semiconducting materials. It has now become possible to create a hydrogen-like atom, an exciton, with its size comparable or even more than that of the particle it self. This brings in extra quantization and has profound effects on the motion of the particles involved viz electron and hole. (author)
Energy Technology Data Exchange (ETDEWEB)
Bellantoni, L.
2009-11-01
There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.
Bohr's discussion of the fourth uncertainty relation revisited
Costa de Beauregard, O.
1986-09-01
Bohr's 1930 derivation of the uncertainty relation c 2 δm δt≥h bears a close relationship to Einstein's 1913 derivation of the “gravitational redshift” via the “equivalence principle.” A rewording of Bohr's argument is presented here, not taking the last step of acceleration as “equivalent” to a uniform gravity field, thus yielding a derivation of the formula c 2 δm δt≥h, avoiding Treder's 1971 objection.
On the Bohr radius relationship to spin-orbit interaction, spin magnitude, and Thomas precession
Lush, David C.
2007-01-01
The dynamics of the spin-orbit interaction in atomic hydrogen are studied in a classical electrodynamics-like setting. A Rutherfordian atomic model is used assuming a circular electron orbit, without the quantum principle as imposed arbitrarily in the Bohr model, but with an ad hoc incorporation in the electron of intrinsic spin and associated magnetic dipole moment. Analyzing the motions of the electron spin and orbital angular momenta, it is found that in the presence of Thomas precession, ...
Chapter 1: Standard Model processes
Becher, Thomas
2017-01-01
This chapter documents the production rates and typical distributions for a number of benchmark Standard Model processes, and discusses new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.
Creation and development of Bohr's theory (on the 90th anniversary of the Bohr theory of the atom)
International Nuclear Information System (INIS)
Milant'ev, Vladimir P
2004-01-01
The history of the creation and development of Bohr's atomic theory is discussed. Even now, with a consistent quantum theory available, Bohr's theory is not simply the property of history, of methodological interest only. To this day, the ideas of the theory not only provide an excellent introduction to atomic physics, but are also used successfully in treating atomic Rydberg states, exotic atoms, etc. (from the history of physics)
Can we close the Bohr-Einstein quantum debate?
Kupczynski, Marian
2017-11-13
Recent experiments allow one to conclude that Bell-type inequalities are indeed violated; thus, it is important to understand what this means and how we can explain the existence of strong correlations between outcomes of distant measurements. Do we have to announce that Einstein was wrong, Nature is non-local and non-local correlations are produced due to quantum magic and emerge, somehow, from outside space-time? Fortunately, such conclusions are unfounded because, if supplementary parameters describing measuring instruments are correctly incorporated in a theoretical model, then Bell-type inequalities may not be proved. We construct a simple probabilistic model allowing these correlations to be explained in a locally causal way. In our model, measurement outcomes are neither predetermined nor produced in an irreducibly random way. We explain why, contrary to the general belief, the introduction of setting-dependent parameters does not restrict experimenters' freedom of choice. Since the violation of Bell-type inequalities does not allow the conclusion that Nature is non-local and that quantum theory is complete, the Bohr-Einstein quantum debate may not be closed. The continuation of this debate is important not only for a better understanding of Nature but also for various practical applications of quantum phenomena.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Physics beyond the Standard Model
Valle, José W F
1991-01-01
We discuss some of the signatures associated with extensions of the Standard Model related to the neutrino and electroweak symmetry breaking sectors, with and without supersymmetry. The topics include a basic discussion of the theory of neutrino mass and the corresponding extensions of the Standard Model that incorporate massive neutrinos; an overview of the present observational status of neutrino mass searches, with emphasis on solar neutrinos, as well the as cosmological data on the amplitude of primordial density fluctuations; the implications of neutrino mass in cosmological nucleosynthesis, non-accelerator, as well as in high energy particle collider experiments. Turning to the electroweak breaking sector, we discuss the physics potential for Higgs boson searches at LEP200, including Majoron extensions of the Standard Model, and the physics of invisibly decaying Higgs bosons. We discuss the minimal supersymmetric Standard Model phenomenology, as well as some of the laboratory signatures that would be as...
Physics Beyond the Standard Model
Ellis, John
2009-01-01
The Standard Model is in good shape, apart possibly from g_\\mu - 2 and some niggling doubts about the electroweak data. Something like a Higgs boson is required to provide particle masses, but theorists are actively considering alternatives. The problems of flavour, unification and quantum gravity will require physics beyond the Standard Model, and astrophysics and cosmology also provide reasons to expect physics beyond the Standard Model, in particular to provide the dark matter and explain the origin of the matter in the Universe. Personally, I find supersymmetry to be the most attractive option for new physics at the TeV scale. The LHC should establish the origin of particle masses has good prospects for discovering dark matter, and might also cast light on unification and even quantum gravity. Important roles may also be played by lower-energy experiments, astrophysics and cosmology in the searches for new physics beyond the Standard Model.
Beyond the standard model; Au-dela du modele standard
Energy Technology Data Exchange (ETDEWEB)
Cuypers, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-05-01
These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs.
Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''
Seth, Suman
2013-04-01
``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?
About the standard solar model
International Nuclear Information System (INIS)
Cahen, S.
1986-07-01
A discussion of the still controversial solar helium content is presented, based on a comparison of recent standard solar models. Our last model yields an helium mass fraction ∼0.276, 6.4 SNU on 37 Cl and 126 SNU on 71 Ga
The standard model and colliders
International Nuclear Information System (INIS)
Hinchliffe, I.
1987-03-01
Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated
Dynamics of the standard model
Donoghue, John F; Holstein, Barry R
2014-01-01
Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.
Reconstructing Bohr's Reply to EPR in Algebraic Quantum Theory
Ozawa, Masanao; Kitajima, Yuichiro
2012-04-01
Halvorson and Clifton have given a mathematical reconstruction of Bohr's reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is dictated by the two requirements of classicality and objectivity for the description of experimental data, by proving consistency between their objectivity requirement and a contextualized version of the EPR reality criterion which had been introduced by Howard in his earlier analysis of Bohr's reply. In the present paper, we generalize the above consistency theorem, with a rather elementary proof, to a general formulation of EPR states applicable to both non-relativistic quantum mechanics and algebraic quantum field theory; and we clarify the elements of reality in EPR states in terms of Bohr's requirements of classicality and objectivity, in a general formulation of algebraic quantum theory.
Jocular Physics: A Tribute to Bohr in Humor
Halpern, Paul
2011-04-01
Copenhagen, starting in the 1920s and 1930s and continuing after the Second World War, was not just a center for extraordinary developments in quantum and nuclear physics; it also provided a perfect stage for physicists' abundant humor. We will examine the Journal of Jocular Physics, a humorou tribute to Bohr published on the occasions of his 50th , 60th and 70th birthdays. We will discuss how the articles in the journal reflected attempts by the contributors, such as Léon Rosenfeld, Victor Weisskopf and others, to interpret and explain aspects of Bohr's philosophy, such as complementarity and the abandonment of pure Laplacian determinism.
Langacker, Paul
2017-01-01
This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examin...
Standard model of knowledge representation
Yin, Wensheng
2016-09-01
Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.
Extensions of the Standard Model
Zwirner, Fabio
1996-01-01
Rapporteur talk at the International Europhysics Conference on High Energy Physics, Brussels (Belgium), July 27-August 2, 1995. This talk begins with a brief general introduction to the extensions of the Standard Model, reviewing the ideology of effective field theories and its practical implications. The central part deals with candidate extensions near the Fermi scale, focusing on some phenomenological aspects of the Minimal Supersymmetric Standard Model. The final part discusses some possible low-energy implications of further extensions near the Planck scale, namely superstring theories.
Physics beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Valle, J.W.F. [Valencia Univ. (Spain). Dept. de Fisica Teorica]. E-mail: valle@flamenco.uv.es
1996-07-01
We discuss some of the signatures associated with extensions of the Standard Model related to the neutrino and electroweak symmetry breaking sectors, with and without supersymmetry. The topics include a basic discussion of the theory of neutrino mass and the corresponding extensions of the Standard Model that incorporate massive neutrinos; an overview of the present observational status of neutrino mass searches, with emphasis on solar neutrinos, as well as cosmological data on the amplitude of primordial density fluctuations; the implications of neutrino mass in cosmological nucleosynthesis, non-accelerator, as well as in high energy particle collider experiments. Turning to the electroweak breaking sector, we discuss the physics potential for Higgs boson searches at LEP200, including Majorana extensions of the Standard Model, and the physics of invisibly decaying Higgs bosons. We discuss the minimal supersymmetric Standard Model phenomenology, as well as some of the laboratory signatures that would be associated to models with R parity violation, especially in Z and scalar boson decays. (author)
Custom v. Standardized Risk Models
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-05-01
Full Text Available We discuss when and why custom multi-factor risk models are warranted and give source code for computing some risk factors. Pension/mutual funds do not require customization but standardization. However, using standardized risk models in quant trading with much shorter holding horizons is suboptimal: (1 longer horizon risk factors (value, growth, etc. increase noise trades and trading costs; (2 arbitrary risk factors can neutralize alpha; (3 “standardized” industries are artificial and insufficiently granular; (4 normalization of style risk factors is lost for the trading universe; (5 diversifying risk models lowers P&L correlations, reduces turnover and market impact, and increases capacity. We discuss various aspects of custom risk model building.
2016-01-01
The meeting aims to bring together experimentalists and theorists to discuss the phenomenology, observational results and theoretical tools for Standard Model physics at the LHC. The agenda is divided into four working groups: Electroweak physics Higgs physics QCD (hard, soft & PDFs) Top & flavour physics
International Nuclear Information System (INIS)
Marciano, W.J.
1989-05-01
In these lectures, my aim is to present a status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows. I survey the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also commented on. In addition, I have included an appendix on dimensional regularization and a simple example which employs that technique. I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, extra Z' bosons, and compositeness are discussed. An overview of the physics of tau decays is also included. I discuss weak neutral current phenomenology and the extraction of sin 2 θW from experiment. The results presented there are based on a global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, implications for grand unified theories (GUTS), extra Z' gauge bosons, and atomic parity violation. The potential for further experimental progress is also commented on. Finally, I depart from the narrowest version of the standard model and discuss effects of neutrino masses, mixings, and electromagnetic moments. 32 refs., 3 figs., 5 tabs
Beyond the Standard Model course
CERN. Geneva HR-RFA
2006-01-01
The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future, at LHC and elsewhere. Supersymmetry, grand unification, extra dimensions and a glimpse of string theory will be presented.
The Bohr-Heisenberg correspondence principle viewed from phase space
DEFF Research Database (Denmark)
Dahl, Jens Peder
2002-01-01
Phase-space representations play an increasingly important role in several branches of physics. Here, we review the author's studies of the Bohr-Heisenberg correspondence principle within the Weyl-Wigner phase-space representation. The analysis leads to refined correspondence rules that can...
Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles
DEFF Research Database (Denmark)
Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the n...
Modular modelling with Physiome standards
Nickerson, David P.; Nielsen, Poul M. F.; Hunter, Peter J.
2016-01-01
Key points The complexity of computational models is increasing, supported by research in modelling tools and frameworks. But relatively little thought has gone into design principles for complex models.We propose a set of design principles for complex model construction with the Physiome standard modelling protocol CellML.By following the principles, models are generated that are extensible and are themselves suitable for reuse in larger models of increasing complexity.We illustrate these principles with examples including an architectural prototype linking, for the first time, electrophysiology, thermodynamically compliant metabolism, signal transduction, gene regulation and synthetic biology.The design principles complement other Physiome research projects, facilitating the application of virtual experiment protocols and model analysis techniques to assist the modelling community in creating libraries of composable, characterised and simulatable quantitative descriptions of physiology. Abstract The ability to produce and customise complex computational models has great potential to have a positive impact on human health. As the field develops towards whole‐cell models and linking such models in multi‐scale frameworks to encompass tissue, organ, or organism levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling group wishing to reuse existing computational models as modules for their own work faces many challenges in the context of construction, storage, retrieval, documentation and analysis of such modules. Physiome standards, frameworks and tools seek to address several of these challenges, especially for models expressed in the modular protocol CellML. Aside from providing a general ability to produce modules, there has been relatively little research work on architectural principles of CellML models that will enable reuse at larger scales. To complement and support the existing tools and frameworks, we develop a set
Antoniadis, Ignatios; Tomaras, T N
2001-01-01
The minimal embedding of the Standard Model in type I string theory is described. The SU(3) color and SU(2) weak interactions arise from two different collections of branes. The correct prediction of the weak angle is obtained for a string scale of 6-8 TeV. Two Higgs doublets are necessary and proton stability is guaranteed. It predicts two massive vector bosons with masses at the TeV scale, as well as a new superweak interaction.
International Nuclear Information System (INIS)
Gaillard, M.K.
1989-05-01
The field of elementary particle, or high energy, physics seeks to identify the most elementary constituents of nature and to study the forces that govern their interactions. Increasing the energy of a probe in a laboratory experiment increases its power as an effective microscope for discerning increasingly smaller structures of matter. Thus we have learned that matter is composed of molecules that are in turn composed of atoms, that the atom consists of a nucleus surrounded by a cloud of electrons, and that the atomic nucleus is a collection of protons and neutrons. The more powerful probes provided by high energy particle accelerators have taught us that a nucleon is itself made of objects called quarks. The forces among quarks and electrons are understood within a general theoretical framework called the ''standard model,'' that accounts for all interactions observed in high energy laboratory experiments to date. These are commonly categorized as the ''strong,'' ''weak'' and ''electromagnetic'' interactions. In this lecture I will describe the standard model, and point out some of its limitations. Probing for deeper structures in quarks and electrons defines the present frontier of particle physics. I will discuss some speculative ideas about extensions of the standard model and/or yet more fundamental forces that may underlie our present picture. 11 figs., 1 tab
Extensions of the standard model
International Nuclear Information System (INIS)
Ramond, P.
1983-01-01
In these lectures we focus on several issues that arise in theoretical extensions of the standard model. First we describe the kinds of fermions that can be added to the standard model without affecting known phenomenology. We focus in particular on three types: the vector-like completion of the existing fermions as would be predicted by a Kaluza-Klein type theory, which we find cannot be realistically achieved without some chiral symmetry; fermions which are vector-like by themselves, such as do appear in supersymmetric extensions, and finally anomaly-free chiral sets of fermions. We note that a chiral symmetry, such as the Peccei-Quinn symmetry can be used to produce a vector-like theory which, at scales less than M/sub W/, appears to be chiral. Next, we turn to the analysis of the second hierarchy problem which arises in Grand Unified extensions of the standard model, and plays a crucial role in proton decay of supersymmetric extensions. We review the known mechanisms for avoiding this problem and present a new one which seems to lead to the (family) triplication of the gauge group. Finally, this being a summer school, we present a list of homework problems. 44 references
Consistency Across Standards or Standards in a New Business Model
Russo, Dane M.
2010-01-01
Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.
Institutional model for supporting standardization
International Nuclear Information System (INIS)
Sanford, M.O.; Jackson, K.J.
1993-01-01
Restoring the nuclear option for utilities requires standardized designs. This premise is widely accepted by all parties involved in ALWR development activities. Achieving and maintaining standardization, however, demands new perspectives on the roles and responsibilities for the various commercial organizations involved in nuclear power. Some efforts are needed to define a workable model for a long-term support structure that will allow the benefits of standardization to be realized. The Nuclear Power Oversight Committee (NPOC) has developed a strategic plan that lays out the steps necessary to enable the nuclear industry to be in a position to order a new nuclear power plant by the mid 1990's. One of the key elements of the plan is the, ''industry commitment to standardization: through design certification, combined license, first-of-a-kind engineering, construction, operation, and maintenance of nuclear power plants.'' This commitment is a result of the recognition by utilities of the substantial advantages to standardization. Among these are economic benefits, licensing benefits from being treated as one of a family, sharing risks across a broader ownership group, sharing operating experiences, enhancing public safety, and a more coherent market force. Utilities controlled the construction of the past generation of nuclear units in a largely autonomous fashion procuring equipment and designs from a vendor, engineering services from an architect/engineer, and construction from a construction management firm. This, in addition to forcing the utility to assume virtually all of the risks associated with the project, typically resulted in highly customized designs based on preferences of the individual utility. However, the benefits of standardization can be realized only through cooperative choices and decision making by the utilities and through working as partners with reactor vendors, architect/engineers, and construction firms
Popper and Bohr on Realism in Quantum Mechanics
Directory of Open Access Journals (Sweden)
Don Howard
2012-11-01
Full Text Available Popper's program in the foundations of quantum mechanics defending objectivity and realism developed out of a profound dissatisfaction with the point of view associated with Bohr, which is usually designated the Copenhagen interpretation. Here I will argue that while Popper's aim is a noble one, his program does not succeed on two counts: he does not succeed in showing that Bohr's philosophy must be rejected as a variety of subjectivism, and his alternative interpretation of indeterminacy rests on a highly questionable assumption according to which simultaneously precise conjugate parameters are possible. Nevertheless I like Popper's propensity interpretation of probability and think that the propensity idea deserves further research. Quanta 2012; 1: 33–57.
Vergados, J D
2017-01-01
This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the first chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after SSB acquire a mass and get admixed. The various forms of charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, in a way undertandable by fir...
Niels Bohr and the philosophy of physics twenty-first century perspectives
Folse, Henry
2017-01-01
Niels Bohr and Philosophy of Physics: Twenty-First Century Perspectives examines the philosophical views, influences and legacy of the Nobel Prize physicist and philosophical spokesman of the quantum revolution, Niels Bohr. The sixteen contributions in this collection by some of the best contemporary philosophers and physicists writing on Bohr's philosophy today all carefully distinguish his subtle and unique interpretation of quantum mechanics from views often imputed to him under the banner of the “Copenhagen Interpretation.” With respect to philosophical influences on Bohr's outlook, the contributors analyse prominent similarities between his viewpoint and Kantian ways of thinking, the views of the Danish philosopher Harald Høffding, and themes characteristic of American pragmatism. In recognizing the importance of Bohr's epistemological naturalism they examine his defence of the indispensability of classical concepts from a variety of different perspectives. This collection shows us that Bohr's int...
Non-commutative standard model: model building
Chaichian, Masud; Presnajder, P
2003-01-01
A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)
De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome
DEFF Research Database (Denmark)
Hoischen, Alexander; van Bon, Bregje W M; Rodríguez-Santiago, Benjamín
2011-01-01
Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which...... is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous....
Establishing the isolated Standard Model
International Nuclear Information System (INIS)
Wells, James D.; Zhang, Zhengkang; Zhao, Yue
2017-02-01
The goal of this article is to initiate a discussion on what it takes to claim ''there is no new physics at the weak scale,'' namely that the Standard Model (SM) is ''isolated.'' The lack of discovery of beyond the SM (BSM) physics suggests that this may be the case. But to truly establish this statement requires proving all ''connected'' BSM theories are false, which presents a significant challenge. We propose a general approach to quantitatively assess the current status and future prospects of establishing the isolated SM (ISM), which we give a reasonable definition of. We consider broad elements of BSM theories, and show many examples where current experimental results are not sufficient to verify the ISM. In some cases, there is a clear roadmap for the future experimental program, which we outline, while in other cases, further efforts - both theoretical and experimental - are needed in order to robustly claim the establishment of the ISM in the absence of new physics discoveries.
Experiments beyond the standard model
International Nuclear Information System (INIS)
Perl, M.L.
1984-09-01
This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics at very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references
Vacuum Stability of Standard Model^{++}
Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian
2013-01-01
The latest results of the ATLAS and CMS experiments point to a preferred narrow Higgs mass range (m_h \\simeq 124 - 126 GeV) in which the effective potential of the Standard Model (SM) develops a vacuum instability at a scale 10^{9} -10^{11} GeV, with the precise scale depending on the precise value of the top quark mass and the strong coupling constant. Motivated by this experimental situation, we present here a detailed investigation about the stability of the SM^{++} vacuum, which is characterized by a simple extension of the SM obtained by adding to the scalar sector a complex SU(2) singlet that has the quantum numbers of the right-handed neutrino, H", and to the gauge sector an U(1) that is broken by the vacuum expectation value of H". We derive the complete set of renormalization group equations at one loop. We then pursue a numerical study of the system to determine the triviality and vacuum stability bounds, using a scan of 10^4 random set of points to fix the initial conditions. We show that, if there...
Establishing the isolated standard model
Wells, James D.; Zhang, Zhengkang; Zhao, Yue
2017-07-01
The goal of this article is to initiate a discussion on what it takes to claim "there is no new physics at the weak scale," namely that the Standard Model (SM) is "isolated." The lack of discovery of beyond the SM (BSM) physics suggests that this may be the case. But to truly establish this statement requires proving all "connected" BSM theories are false, which presents a significant challenge. We propose a general approach to quantitatively assess the current status and future prospects of establishing the isolated SM (ISM), which we give a reasonable definition of. We consider broad elements of BSM theories, and show many examples where current experimental results are not sufficient to verify the ISM. In some cases, there is a clear roadmap for the future experimental program, which we outline, while in other cases, further efforts—both theoretical and experimental—are needed in order to robustly claim the establishment of the ISM in the absence of new physics discoveries.
Traffic restrictions on Routes Bloch, Maxwell and Bohr
IT Department
2008-01-01
Excavation and pipework is being carried out in the framework of the transfer of the waste water treatment plant for the effluents from the surface treatment workshops from Building 254 to Building 676, currently under construction. This work may encroach onto Routes Bloch, Maxwell and Bohr and disrupt the flow of traffic. Users are requested to comply with the road signs that will be erected. The work is expected to last until the beginning of December 2008. Thank you for your understanding. TS/CE and TS/FM Groups Tel.7 4188 or 16 4314
Control system architecture: The standard and non-standard models
International Nuclear Information System (INIS)
Thuot, M.E.; Dalesio, L.R.
1993-01-01
Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature
An alternative to the standard model
International Nuclear Information System (INIS)
Baek, Seungwon; Ko, Pyungwon; Park, Wan-Il
2014-01-01
We present an extension of the standard model to dark sector with an unbroken local dark U(1) X symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1) X case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1) X is spontaneously broken, because of a mixing with a new neutral scalar boson in the models
De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome
DEFF Research Database (Denmark)
Hoischen, Alexander; van Bon, Bregje W M; Rodríguez-Santiago, Benjamín
2011-01-01
Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which...
Okonjo, Kehinde Onwochei
2017-09-01
As a prelude to separating tertiary from quaternary structure contributions to the Bohr effect, we employed the Wyman equation to analyze Bohr data for human hemoglobin to which 2,3-bisphosphoglycerate, 2,3-BPG, is bound. Changes in the pK a s of the histidine Bohr groups result in a net reduction of their contributions to the Bohr effect at pH 7.4 compared to their contributions in stripped hemoglobin. The non-histidine 2,3-BPG binding groups - the β-chain terminal amino group and Lys82β - make negative and positive contributions, respectively, to the Bohr effect. The final result is that the Bohr effect at physiological pH is higher for 2,3-BPG bound compared to stripped hemoglobin. Contributions linked to His2β, His77β and His143β enable us to separate tertiary from quaternary Bohr contributions in stripped and in 2,3-BPG bound hemoglobin. Both contributions serve to make the Bohr effect for 2,3-BPG bound hemoglobin higher than for stripped hemoglobin at physiological pH. Copyright © 2017 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Gjedde, Albert
2004-01-01
The author explores novel lessons emerging from the oxygen diffusion controversy between Christian Bohr on one side and August and Marie Krogh on the other. THe controversy found its emphatic expression in August and Marie Krogh's "Seven Little Devils", a series of papers published back-to-back i......The author explores novel lessons emerging from the oxygen diffusion controversy between Christian Bohr on one side and August and Marie Krogh on the other. THe controversy found its emphatic expression in August and Marie Krogh's "Seven Little Devils", a series of papers published back......-to-back in the 1910 volume of Skandinavisches Archiv für Physiologie. The Devils unjustifiably sealed the fate of Christian Bohr's theory of active cellular participation in the transport of oxygen from the lungs to the pulmonary circulation. The author's renewed examination of the original papers of Bohr...... and the Kroghs reveals that Bohr's concept of active cellular participation in diffusion is entirely compatible with the mechanism of capillary recruitment, for the discovery of which Krogh was later awarded Nobel's Prize, years after Bohr's untimely and unexpected death in 1911. Udgivelsesdato: 2004-null...
Quality model for semantic IS standards
Folmer, Erwin Johan Albert
2011-01-01
Semantic IS (Information Systems) standards are essential for achieving interoperability between organizations. However a recent survey suggests that not the full benefits of standards are achieved, due to the quality issues. This paper presents a quality model for semantic IS standards, that should
Cultural models of linguistic standardization
Directory of Open Access Journals (Sweden)
Dirk Geeraerts
2016-02-01
Full Text Available In line with well-known trends in cultural theory (see Burke et al., 2000, Cognitive Linguistics has stressed the idea that we think about social reality in terms of models – ‘cultural models’ or ‘folk theories’: from Holland & Quinn (1987 over Lakoff (1996 and Palmer (1996 to Dirven et al. (2001a, 2001b, Cognitive linguists have demonstrated how the technical apparatus of Cognitive Linguistics can be used to analyze how our conception of social reality is shaped by underlying patterns of thought. But if language is a social and cultural reality, what are the models that shape our conception of language? Specifically, what are the models that shape our thinking about language as a social phenomenon? What are the paradigms that we use to think about language, not primarily in terms of linguistic structure (as in Reddy 1979, but in terms of linguistic variation: models about the way in which language varieties are distributed over a language community and about the way in which such distribution should be evaluated?In this paper, I will argue that two basic models may be identified: a rationalist and a romantic one. I will chart the ways in which they interact, describe how they are transformed in the course of time, and explore how the models can be used in the analysis of actual linguistic variation.
The quest for reality Bohr and Wittgenstein : two complementary views
Stenholm, Stig
2015-01-01
In both science and philosophy, the twentieth century saw a radical breakdown of certainty in the human worldview, as quantum uncertainty and linguistic ambiguity destroyed the comfortable certitudes of the past. As these disciplines form the foundation for a human position in the world, a major epistemological reorganization had to take place. In this book, quantum theorist Stig Stenholm presents Bohr and Wittgenstein, in physics and in philosophy, as central figures representing this revision. Each of them took up the challenge of replacing apparent order and certainty with a provisional understanding based on limited concepts in constant flux. Stenholm concludes that the modern synthesis created by their heirs is far from satisfactory, and the story is so far an unfinished one. The book will appeal to any researcher in either discipline curious about the foundation of modern science, and works to provoke a renewal of discussion, and the eventual emergence of a reformed clarity and understanding.
Systematic measurements of the Bohr-Weisskopf effect at ISOLDE
Nojiri, Y; Matsuki, S; Ragnarsson, I; Neugart, R; Redi, O; Stroke, H H; Duong, H T; Marescaux, D; Pinard, J; Juncar, P; Ekstrom, C; Pellarin, M; Vialle, J-L; Inamura, T
2002-01-01
The " Bohr-Weisskopf " effect, or " hyperfine structure (hfs) anomaly ", which results from the effect of the distribution of nuclear magnetization on the electro-nuclear interaction, will be measured systematically at the PS Booster ISOLDE, first for a long chain of radioactive cesium isotopes, analogously to previous isotope shift and hfs studies. In addition to the direct measurement of magnetic moment values, the results are expected to provide independent data for testing nuclear wavefunctions, these will be of importance for interpreting systematic parity non-conservation experiments, complementary to the single isotope study which requires a high precision knowledge of the electron wavefunction. Substantial progress in these calculations has been achieved recently. Precision measurements of the hfs splittings and nuclear magnetic moments are required, with sensitivity adequate for the radioactive isotopes produced. A triple resonance atomic beam magnetic resonance apparatus with optical pumping state s...
The Niels Bohr Archive is Placing Collections on its Website
DEFF Research Database (Denmark)
Aaserud, Finn
2010-01-01
Papers, which is of a manageable size, which had just been released by the family for research use, and which we deemed of special interest. In addition, we applied to make a good part of our film and sound collections similarly available, both because some of this material was in a deteriorating...... physical state and because we wanted to try out several kinds of collections. The scanning of the documents could begin at once as an in-house project, which at the same time made it possible to continue paying salaries to our permanent staff. The scanning had two purposes. First, we made high...... our small staff was also occupied with other matters, such as completing the Niels Bohr Collected Works. In early 2007 my old friend Joe Anderson at the AIP Center for History of Physics alerted us to the existence of the archives software Archon, freely available from the University of Illinois...
Systematic Measurements of the Bohr-Weisskopf Effect at ISOLDE
2002-01-01
Nuclear electric and magnetic structure properties are measurable by high-resolution atomic spectroscopy through isotope shifts and the Bohr-Weisskopf effect (hyperfine structure anomalies). \\\\ \\\\ The greatest value of these measurements is when made systematically over a large number of isotopes. This has been done in the case of isotopes shifts most extensively by the experiment at ISOLDE. To date the magnetic distribution studies are few and isolated. Here we propose to intitiate a program at ISOLDE to measure hfs anomalies systematically. The experiments, requiring high-precision data on magnetic dipole constants as well as on nuclear g-factors, will be done by atomic-beam magnetic resonance with the use of laser excitation for polarization of the beam and a sixpole magnet acting as an analyser. \\\\ \\\\ The heavy alkali elements are the most promising candidates for hfs anomaly studies because of the large effect expected, the high production yields at ISOLDE and most importantly, the interesting variations...
Standard Model, Higgs Boson and What Next?
Indian Academy of Sciences (India)
IAS Admin
RESONANCE | October 2012. GENERAL | ARTICLE. Standard Model is now known to be the basis of almost ALL of known physics except gravity. It is the dynamical theory of electromagnetism and the strong and weak nuclear forces. Standard Model has been constructed by generalizing the century-old electrodynamics of.
Modeling in the Common Core State Standards
Tam, Kai Chung
2011-01-01
The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…
Beyond the Standard Model: Working group report
Indian Academy of Sciences (India)
tion within the 'Beyond the Standard Model' working group of WHEPP-6. These problems addressed various extensions of the Standard Model (SM) currently under consideration in the particle physics phenomenology community. Smaller subgroups were formed to focus on each of these problems. The progresstill the end ...
Competency model and standards for media education
Directory of Open Access Journals (Sweden)
Gerhard TULODZIECKI
2012-12-01
Full Text Available In Germany, educational standards for key school subjects have been developed as a consequence of the results of international comparative studies like PISA. Subsequently, supporters of interdisciplinary fields such as media education have also started calling for goals in the form of competency models and standards. In this context a competency standard model for media education will be developed with regard to the discussion about media competence and media education. In doing so the development of a competency model and the formulation of standards is described consequently as a decision making process. In this process decisions have to be made on competence areas and competence aspects to structure the model, on criteria to differentiate certain levels of competence, on the number of competence levels, on the abstraction level of standard formulations and on the tasks to test the standards. It is shown that the discussion on media education as well as on competencies and standards provides different possibilities of structuring, emphasizing and designing a competence standard model. Against this background we describe and give reasons for our decisions and our competency standards model. At the same time our contribution is meant to initiate further developments, testing and discussion.
A revisited standard solar model
International Nuclear Information System (INIS)
Casse, M.; Cahen, S.; Doom, C.
1985-09-01
Recent models of the Sun, including our own, based on canonical physics and featuring modern reaction rates and radiative opacities are presented. They lead to a presolar helium abundance of approximately 0.28 by mass, at variance with the value of 0.25 proposed by Bahcall et al. (1982, 1985), but in better agreement with the value found in the Orion nebula. Most models predict a neutrino counting rate greater than 6 SNU in the chlorine-argon detector, which is at least 3 times higher than the observed rate. The primordial helium abundance derived from the solar one, on the basis of recent models of helium production from the birth of the Galaxy to the birth of the sun, Ysub(P) approximately 0.26, is significantly higher than the value inferred from observations of extragalactic metal-poor nebulae (Y approximately 0.23). This indicates that the stellar production of helium is probably underestimated by the models considered
Beyond the supersymmetric standard model
International Nuclear Information System (INIS)
Hall, L.J.
1988-02-01
The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned
Beyond the supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Hall, L.J.
1988-02-01
The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned.
Control system architecture: The standard and non-standard models
International Nuclear Information System (INIS)
Thuot, M.E.; Dalesio, L.R.
1993-01-01
Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a open-quotes standard modelclose quotes. The open-quotes standard modelclose quotes consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the open-quotes standard modelclose quotes to determine if the requirements of open-quotes non-standardclose quotes architectures can be met. Several possible extensions to the open-quotes standard modelclose quotes are suggested including software as well as the hardware architectural features
Electroweak baryogenesis and the standard model
International Nuclear Information System (INIS)
Huet, P.
1994-01-01
Electroweak baryogenesis is addressed within the context of the standard model of particle physics. Although the minimal standard model has the means of fulfilling the three Sakharov's conditions, it falls short to explaining the making of the baryon asymmetry of the universe. In particular, it is demonstrated that the phase of the CKM mixing matrix is an, insufficient source of CP violation. The shortcomings of the standard model could be bypassed by enlarging the symmetry breaking sector and adding a new source of CP violation
Il danese tranquillo Niels Bohr, un fisico e il suo tempo, 1885-1962
Pais, Abraham
1993-01-01
Niels Bohr è una figura centrale nella fisica del Novecento, padre fondatore della teoria atomica e della meccanica quantistica. La storia della sua vita, ricca e piena anche sul piano affettivo e personale, non può dunque ridursi a un resoconto dei suoi successi scientifici e Pais, allievo e poi amico di Bohr, ne è perfettamente consapevole. Il libro si sviluppa su vari piani: capitoli strettamente biografici o storico-scientifici si alternano a discussioni sulle idee di Bohr in campo politico e filosofico, sui suoi rapporti con Einstein, sul suo ruolo nei drammatici anni della guerra e su molti altri aspetti della vicenda umana.
The making of the standard model
Hooft, G. 't
2007-01-01
The standard model of particle physics is more than a model. It is a detailed theory that encompasses nearly all that is known about the subatomic particles and forces in a concise set of principles and equations. The extensive research that culminated in this model includes numerous small and
Discrete symmetry breaking beyond the standard model
Dekens, Wouter Gerard
2015-01-01
The current knowledge of elementary particles and their interactions is summarized in the Standard Model of particle physics. Practically all the predictions of this model, that have been tested, were confirmed experimentally. Nonetheless, there are phenomena which the model cannot explain. For
Beyond the Standard Model for Montaneros
Bustamante, M; Ellis, John
2010-01-01
These notes cover (i) electroweak symmetry breaking in the Standard Model (SM) and the Higgs boson, (ii) alternatives to the SM Higgs boson} including an introduction to composite Higgs models and Higgsless models that invoke extra dimensions, (iii) the theory and phenomenology of supersymmetry, and (iv) various further beyond topics, including Grand Unification, proton decay and neutrino masses, supergravity, superstrings and extra dimensions.
Is the Standard Model about to crater?
Lane, Kenneth
2015-01-01
The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC's Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale.
The standard model in a nutshell
Goldberg, Dave
2017-01-01
For a theory as genuinely elegant as the Standard Model--the current framework describing elementary particles and their forces--it can sometimes appear to students to be little more than a complicated collection of particles and ranked list of interactions. The Standard Model in a Nutshell provides a comprehensive and uncommonly accessible introduction to one of the most important subjects in modern physics, revealing why, despite initial appearances, the entire framework really is as elegant as physicists say. Dave Goldberg uses a "just-in-time" approach to instruction that enables students to gradually develop a deep understanding of the Standard Model even if this is their first exposure to it. He covers everything from relativity, group theory, and relativistic quantum mechanics to the Higgs boson, unification schemes, and physics beyond the Standard Model. The book also looks at new avenues of research that could answer still-unresolved questions and features numerous worked examples, helpful illustrat...
Beyond the Standard Model (1/5)
CERN. Geneva
2000-01-01
After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.
Beyond the Standard Model (5/5)
CERN. Geneva
2000-01-01
After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.
Beyond the Standard Model (3/5)
CERN. Geneva
2000-01-01
After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.
Beyond the Standard Model (2/5)
CERN. Geneva
2000-01-01
After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.
Beyond the Standard Model (4/5)
CERN. Geneva
2000-01-01
After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.
From the standard model to dark matter
International Nuclear Information System (INIS)
Wilczek, F.
1995-01-01
The standard model of particle physics is marvelously successful. However, it is obviously not a complete or final theory. I shall argue here that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Taking these hints seriously, one is led to predict the existence of new types of very weakly interacting matter, stable on cosmological time scales and produced with cosmologically interesting densities--that is, ''dark matter''. copyright 1995 American Institute of Physics
Standard Model measurements with the ATLAS detector
Directory of Open Access Journals (Sweden)
Hassani Samira
2015-01-01
Full Text Available Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of √s = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions.
Katsumori, Makoto
2011-01-01
Through detailed textual and conceptual analysis, and with special attention to the potentially conflicting elements of Bohr's thought, this volume's fresh approach analyzes the relations between realism and antirealism through the prism of complementarity.
Bohr quantum theory of the magnetic monopoles and classical electron electromagnetic mass problem
Pankovic, Vladan
2010-01-01
In the first part of this work we apply Bohr (old or naive quantum atomic) theory for analysis of the remarkable electro-dynamical problem of magnetic monopoles. We reproduce formally exactly some basic elements of the Dirac magnetic monopoles theory, especially Dirac electric/magnetic charge quantization condition. It follows after application of Bohr theory at the system, simply called magnetic monopole "atom", consisting of the practically standing, massive magnetic monopole as the "nucleu...
Working group report: Beyond the standard model
Indian Academy of Sciences (India)
The working group on Beyond the Standard Model concentrated on identifying interesting physics issues in models ... In view of the range of current interest in the high energy physics community, this work- ing group was organised ... the computational tools currently relevant for particle phenomenology. Thus in this group,.
Standard Model Particles from Split Octonions
Directory of Open Access Journals (Sweden)
Gogberashvili M.
2016-01-01
Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.
Exploring the Standard Model of Particles
Johansson, K. E.; Watkins, P. M.
2013-01-01
With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…
Noncommutative geometry and the standard model vacuum
International Nuclear Information System (INIS)
Barrett, John W.; Dawe Martins, Rachel A.
2006-01-01
The space of Dirac operators for the Connes-Chamseddine spectral action for the standard model of particle physics coupled to gravity is studied. The model is extended by including right-handed neutrino states, and the S 0 -reality axiom is not assumed. The possibility of allowing more general fluctuations than the inner fluctuations of the vacuum is proposed. The maximal case of all possible fluctuations is studied by considering the equations of motion for the vacuum. While there are interesting nontrivial vacua with Majorana-type mass terms for the leptons, the conclusion is that the equations are too restrictive to allow solutions with the standard model mass matrix
The Standard Model and Higgs physics
Torassa, Ezio
2018-05-01
The Standard Model is a consistent and computable theory that successfully describes the elementary particle interactions. The strong, electromagnetic and weak interactions have been included in the theory exploiting the relation between group symmetries and group generators, in order to smartly introduce the force carriers. The group properties lead to constraints between boson masses and couplings. All the measurements performed at the LEP, Tevatron, LHC and other accelerators proved the consistency of the Standard Model. A key element of the theory is the Higgs field, which together with the spontaneous symmetry breaking, gives mass to the vector bosons and to the fermions. Unlike the case of vector bosons, the theory does not provide prediction for the Higgs boson mass. The LEP experiments, while providing very precise measurements of the Standard Model theory, searched for the evidence of the Higgs boson until the year 2000. The discovery of the top quark in 1994 by the Tevatron experiments and of the Higgs boson in 2012 by the LHC experiments were considered as the completion of the fundamental particles list of the Standard Model theory. Nevertheless the neutrino oscillations, the dark matter and the baryon asymmetry in the Universe evidence that we need a new extended model. In the Standard Model there are also some unattractive theoretical aspects like the divergent loop corrections to the Higgs boson mass and the very small Yukawa couplings needed to describe the neutrino masses. For all these reasons, the hunt of discrepancies between Standard Model and data is still going on with the aim to finally describe the new extended theory.
CERN. Geneva
2011-01-01
While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.
LHC Higgs physics beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Spannowsky, M.
2007-09-22
The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed
LHC Higgs physics beyond the Standard Model
International Nuclear Information System (INIS)
Spannowsky, M.
2007-01-01
The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan β in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed
CP Violation Beyond the Standard Model
Fleischer, Robert
1997-01-01
Recent developments concerning CP violation beyond the Standard Model are reviewed. The central target of this presentation is the $B$ system, as it plays an outstanding role in the extraction of CKM phases. Besides a general discussion of the appearance of new physics in the corresponding CP-violating asymmetries through $B^0_q$--$\\bar{B^0_q}$ mixing $(q\\in\\{d,s\\})$, it is emphasized that CP violation in non-leptonic penguin modes, e.g. in $B_d\\to\\phi K_{S}$, offers a powerful tool to probe physics beyond the Standard Model. In this respect $B\\to\\pi K$ modes, which have been observed recently by the CLEO collaboration, may also turn out to be very useful. Their combined branching ratios allow us to constrain the CKM angle $\\gamma$ and may indicate the presence of physics beyond the Standard Model.
Industrial diffusion models and technological standardization
International Nuclear Information System (INIS)
Carrillo-Hermosilla, J.
2007-01-01
Conventional models of technology diffusion have typically focused on the question of the rate of diffusion at which one new technology is fully adopted. The model described here provides a broader approach, from the perspective the extension of the diffusion of multiple technologies, and the related phenomenon of standardization. Moreover, most conventional research has characterized the diffusion process in terms of technology attributes or adopting firms attributes. Alternatively, we propose here a wide-ranging and consistent taxonomy of the relationships between the circumstances of an industry and the attributes of the technology standardization processes taking place within it. (Author) 100 refs
Standard Model mass spectrum in inflationary universe
Energy Technology Data Exchange (ETDEWEB)
Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)
2017-04-11
We work out the Standard Model (SM) mass spectrum during inflation with quantum corrections, and explore its observable consequences in the squeezed limit of non-Gaussianity. Both non-Higgs and Higgs inflation models are studied in detail. We also illustrate how some inflationary loop diagrams can be computed neatly by Wick-rotating the inflation background to Euclidean signature and by dimensional regularization.
Next to new minimal standard model
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan); Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Kaneta, Kunio [Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Takahashi, Ryo [Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan)
2014-06-27
We suggest a minimal extension of the standard model, which can explain current experimental data of the dark matter, small neutrino masses and baryon asymmetry of the universe, inflation, and dark energy, and achieve gauge coupling unification. The gauge coupling unification can explain the charge quantization, and be realized by introducing six new fields. We investigate the vacuum stability, coupling perturbativity, and correct dark matter abundance in this model by use of current experimental data.
Standard Model Effective Potential from Trace Anomalies
Directory of Open Access Journals (Sweden)
Renata Jora
2018-01-01
Full Text Available By analogy with the low energy QCD effective linear sigma model, we construct a standard model effective potential based entirely on the requirement that the tree level and quantum level trace anomalies must be satisfied. We discuss a particular realization of this potential in connection with the Higgs boson mass and Higgs boson effective couplings to two photons and two gluons. We find that this kind of potential may describe well the known phenomenology of the Higgs boson.
Prospects of experimentally reachable beyond Standard Model ...
Indian Academy of Sciences (India)
2016-01-06
Jan 6, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 2. Prospects of experimentally reachable beyond Standard Model physics in inverse see-saw motivated SO(10) GUT. Ram Lal Awasthi. Special: Supersymmetric Unified Theories and Higgs Physics Volume 86 Issue 2 February 2016 pp 223- ...
Why supersymmetry? Physics beyond the standard model
Indian Academy of Sciences (India)
The Naturalness Principle as a requirement that the heavy mass scales decouple from the physics of light mass scales is reviewed. In quantum field theories containing {\\em elementary} scalar fields, such as the StandardModel of electroweak interactions containing the Higgs particle, mass of the scalar field is not a natural ...
Beyond the Standard Model: Working group report
Indian Academy of Sciences (India)
55, Nos 1 & 2. — journal of. July & August 2000 physics pp. 307–313. Beyond the Standard Model: Working group report. GAUTAM BHATTACHARYYA. ½ .... action: ¯Consider the possibility that these neutrinos are of Majorana nature, i.e. r η И r , where η И. ¦½. Then the initial condition of degeneracy stated above.
Asymptotically Safe Standard Model via Vectorlike Fermions
DEFF Research Database (Denmark)
Mann, R. B.; Meffe, J. R.; Sannino, F.
2017-01-01
We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet...
The race to break the standard model
Brumfiel, Geoff
2008-01-01
The Large Hadron Collider is the latest attempt to move fundamental physics past the frustratingly successful "standard model". But it is not the only way to do it... The author surveys the contenders attempting to capture the prize before the collider gets up to speed.(4 pages)
Why supersymmetry? Physics beyond the standard model
Indian Academy of Sciences (India)
2016-08-23
Aug 23, 2016 ... Abstract. The Naturalness Principle as a requirement that the heavy mass scales decouple from the physics of light mass scales is reviewed. In quantum field theories containing elementary scalar fields, such as the Standard. Model of electroweak interactions containing the Higgs particle, mass of the ...
Complementarity and the Nature of Uncertainty Relations in Einstein–Bohr Recoiling Slit Experiment
Directory of Open Access Journals (Sweden)
Shogo Tanimura
2015-07-01
Full Text Available A model of the Einstein–Bohr recoiling slit experiment is formulated in a fully quantum theoretical setting. In this model, the state and dynamics of a movable wall that has two slits in it, as well as the state of a particle incoming to the two slits, are described by quantum mechanics. Using this model, we analyzed complementarity between exhibiting an interference pattern and distinguishing the particle path. Comparing the Kennard–Robertson type and the Ozawa-type uncertainty relations, we conclude that the uncertainty relation involved in the double-slit experiment is not the Ozawa-type uncertainty relation but the Kennard-type uncertainty relation of the position and the momentum of the double-slit wall. A possible experiment to test the complementarity relation is suggested. It is also argued that various phenomena which occur at the interface of a quantum system and a classical system, including distinguishability, interference, decoherence, quantum eraser, and weak value, can be understood as aspects of entanglement. Quanta 2015; 4: 1–9.
Primordial nucleosynthesis: Beyond the standard model
International Nuclear Information System (INIS)
Malaney, R.A.
1991-01-01
Non-standard primordial nucleosynthesis merits continued study for several reasons. First and foremost are the important implications determined from primordial nucleosynthesis regarding the composition of the matter in the universe. Second, the production and the subsequent observation of the primordial isotopes is the most direct experimental link with the early (t approx-lt 1 sec) universe. Third, studies of primordial nucleosynthesis allow for important, and otherwise unattainable, constraints on many aspects of particle physics. Finally, there is tentative evidence which suggests that the Standard Big Bang (SBB) model is incorrect in that it cannot reproduce the inferred primordial abundances for a single value of the baryon-to-photon ratio. Reviewed here are some aspects of non-standard primordial nucleosynthesis which mostly overlap with the authors own personal interest. He begins with a short discussion of the SBB nucleosynthesis theory, high-lighting some recent related developments. Next he discusses how recent observations of helium and lithium abundances may indicate looming problems for the SBB model. He then discusses how the QCD phase transition, neutrinos, and cosmic strings can influence primordial nucleosynthesis. He concludes with a short discussion of the multitude of other non-standard nucleosynthesis models found in the literature, and make some comments on possible progress in the future. 58 refs., 7 figs., 2 tabs
Study on Standard Fatigue Vehicle Load Model
Huang, H. Y.; Zhang, J. P.; Li, Y. H.
2018-02-01
Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.
Niels Bohr, Max Delbruck and the paradox of light and life
International Nuclear Information System (INIS)
Scott, G.P.
1983-01-01
This paper features a concise, interdisciplinary history of philosophical issues which were the basis of Delbruck's scientific career. The paradox in living behavior of freedom-to-adapt versus deterministic atomism required complete reassessment with the advent of quantum mechanics. Apparent contradictions implied, for example, by the wave-particle model led Bohr to a belief in the ''complementarity of nature,'' which in 1932 he applied to biology. His claim was that purely physicochemical explanations of purposeful life functions such as ''self-generation and freedom of the will'' were impossible since mutually exclusive situations were involved. Thus Delbruck was challenged to spend his career investigating these vital functions. Beginning with ''fruit-fly photochemistry'' he established the molecular nature of the gene and then collected a world-wide group for a research effort on phage virus, which culminated in discovery of the DNA double helix by Watson and Crick. The second phase of his career featured a study of the total stimulus-response system of the fungus Phycomuces, which is still in progress. The extreme light-sensitivity observed, approaching one-quantum response, has raised the question of the survival value of amplified quantum noise. In critical comments to the author, Delbruck opposed the ''Compton-switch model'' for mind-body interaction; and in his lecture, ''Mind from Matter?'' he revealed his ''a priori concept of truth,'' which embraces a neutral monism and rejects the language of emergent evolution. His views are contrasted with those expressed in Popper's First Darwin Lecture
Superconnections: an interpretation of the standard model
Directory of Open Access Journals (Sweden)
Gert Roepstorff
2000-07-01
Full Text Available The mathematical framework of superbundles as pioneered by D. Quillen suggests that one consider the Higgs field as a natural constituent of a superconnection. I propose to take as superbundle the exterior algebra obtained from a Hermitian vector bundle of rank n where n=2 for the electroweak theory and n=5 for the full Standard Model. The present setup is similar to but avoids the use of non-commutative geometry.
Status of the electroweak standard model
International Nuclear Information System (INIS)
Haidt, D.
1990-01-01
It is the aim of this report to confront the results extracted from the experiments in each sector with the electroweak standard model in its minimal form (QFD), to search for internal inconsistencies and, if not found, to obtain best values for the electroweak couplings together with constraints on the as yet unobserved top quark. The e + e - data of the three TRISTAN experiments, even though partly preliminary, are now systematically included in the fits. (orig./HSI)
Indoorgml - a Standard for Indoor Spatial Modeling
Li, Ki-Joune
2016-06-01
With recent progress of mobile devices and indoor positioning technologies, it becomes possible to provide location-based services in indoor space as well as outdoor space. It is in a seamless way between indoor and outdoor spaces or in an independent way only for indoor space. However, we cannot simply apply spatial models developed for outdoor space to indoor space due to their differences. For example, coordinate reference systems are employed to indicate a specific position in outdoor space, while the location in indoor space is rather specified by cell number such as room number. Unlike outdoor space, the distance between two points in indoor space is not determined by the length of the straight line but the constraints given by indoor components such as walls, stairs, and doors. For this reason, we need to establish a new framework for indoor space from fundamental theoretical basis, indoor spatial data models, and information systems to store, manage, and analyse indoor spatial data. In order to provide this framework, an international standard, called IndoorGML has been developed and published by OGC (Open Geospatial Consortium). This standard is based on a cellular notion of space, which considers an indoor space as a set of non-overlapping cells. It consists of two types of modules; core module and extension module. While core module consists of four basic conceptual and implementation modeling components (geometric model for cell, topology between cells, semantic model of cell, and multi-layered space model), extension modules may be defined on the top of the core module to support an application area. As the first version of the standard, we provide an extension for indoor navigation.
Beyond the standard model in many directions
Energy Technology Data Exchange (ETDEWEB)
Chris Quigg
2004-04-28
These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through SU(3){sub c} {direct_product} SU(2){sub L} {direct_product} U(1){sub Y} gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.
Standard Model backgrounds to supersymmetry searches
Mangano, Michelangelo L
2009-01-01
This work presents a review of the Standard Model sources of backgrounds to the search of supersymmetry signals. Depending on the specific model, typical signals may include jets, leptons, and missing transverse energy due to the escaping lightest supersymmetric particle. We focus on the simplest case of multijets and missing energy, since this allows us to expose most of the issues common to other more complex cases. The review is not exhaustive, and is aimed at collecting a series of general comments and observations, to serve as guideline for the process that will lead to a complete experimental determination of size and features of such SM processes.
Love, literature and the quantum atom Niels Bohr's 1913 trilogy revisited
Aaserud, Finn
2013-01-01
Niels Bohr ranks with Einstein among the physicists of the 20th century. He rose to this status through his invention of the quantum theory of the atom and his leadership in its defense and development. He also ranks with Einstein in his humanism and his sense of responsibility to his science and the society that enabled him to create it. Our book presents unpublished excerpts from extensive correspondence between Bohr and his immediate family, and uses it to describe and analyze the psychological and cultural background to his invention. The book also contains a reprinting of the three papers of 1913 - the "Trilogy" - in which Bohr worked out the provisional basis of a quantum theory of the atom.
Experimentally testing the standard cosmological model
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))
1990-11-01
The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.
The Bohr--Einstein ''weighing-of-energy'' debate and the principle of equivalence
International Nuclear Information System (INIS)
Hughes, R.J.
1990-01-01
The Bohr--Einstein debate over the ''weighing of energy'' and the validity of the time--energy uncertainty relation is reexamined in the context of gravitation theories that do not respect the equivalence principle. Bohr's use of the equivalence principle is shown to be sufficient, but not necessary, to establish the validity of this uncertainty relation in Einstein's ''weighing-of-energy'' gedanken experiment. The uncertainty relation is shown to hold in any energy-conserving theory of gravity, and so a failure of the equivalence principle does not engender a failure of quantum mechanics. The relationship between the gravitational redshift and the equivalence principle is reviewed
Skewness of the standard model possible implications
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1989-09-01
In this paper we consider combinations of gauge algebra and set of rules for quantization of gauge charges. We show that the combination of the algebra of the standard model and the rule satisfied by the electric charges of the quarks and leptons has an exceptional high degree of a kind of asymmetry which we call skewness. Assuming that skewness has physical significance and adding two other rather plausible assumptions, we may conclude that space time must have a non simply connected topology on very small distances. Such topology would allow a kind of symmetry breakdown leading to a more skew combination of gauge algebra and set of quantization rules. (orig.)
Non standard analysis, polymer models, quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1984-01-01
We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)
Search for the standard model Higgs boson
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miguel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Dennis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Manneli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Techini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1993-08-01
Using a data sample corresponding to about 1 233 000 hadronic Z decays collected by the ALEPH experiment at LEP, the reaction e+e- → HZ∗ has been used to search for the standard model Higgs boson, in association with missing energy when Z∗ → v v¯, or with a pair of energetic leptons when Z∗ → e+e-or μ +μ -. No signal was found and, at the 95% confidence level, mH exceeds 58.4 GeV/ c2.
B physics beyond the Standard Model
International Nuclear Information System (INIS)
Hewett, J.A.L.
1997-12-01
The ability of present and future experiments to test the Standard Model in the B meson sector is described. The authors examine the loop effects of new interactions in flavor changing neutral current B decays and in Z → b anti b, concentrating on supersymmetry and the left-right symmetric model as specific examples of new physics scenarios. The procedure for performing a global fit to the Wilson coefficients which describe b → s transitions is outlined, and the results of such a fit from Monte Carlo generated data is compared to the predictions of the two sample new physics scenarios. A fit to the Zb anti b couplings from present data is also given
Complex singlet extension of the standard model
International Nuclear Information System (INIS)
Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, M.; Shaughnessy, G.
2009-01-01
We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider
EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited
Nikolic, Hrvoje
2012-01-01
In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…
The language of Orthodox theology & quantum mechanics: St Gregory Palamas and Niels Bohr
DEFF Research Database (Denmark)
Tanev, Stoyan
2013-01-01
The objective of this chapter is to provide an analytical framework that would enable the comparison of the ways of using words and language in the cases of St. Gregory Palamas and Niels Bohr. The main motivation will be to explore Christos Yannaras’ point about the opportunity of using quantum m...
Quantum Explorers: Bohr, Jordan, and Delbrück Venturing into Biology
Joaquim, Leyla; Freire, Olival; El-Hani, Charbel N.
2015-09-01
This paper disentangles selected intertwined aspects of two great scientific developments: quantum mechanics and molecular biology. We look at the contributions of three physicists who in the 1930s were protagonists of the quantum revolution and explorers of the field of biology: Niels Bohr, Pascual Jordan, and Max Delbrück. Their common platform was the defense of the Copenhagen interpretation in physics and the adoption of the principle of complementarity as a way of looking at biology. Bohr addressed the problem of how far the results reached in physics might influence our views about life. Jordan and Delbrück were followers of Bohr's ideas in the context of quantum mechanics and also of his tendency to expand the implications of the Copenhagen interpretation to biology. We propose that Bohr's perspective on biology was related to his epistemological views, as Jordan's was to his political positions. Delbrück's propensity to migrate was related to his transformation into a key figure in the history of twentieth-century molecular biology.
Hundrede år efter Bohr: Nobelprisen for fysik under gennemsnittet
DEFF Research Database (Denmark)
Julsgaard, Brian; Mølmer, Klaus
2013-01-01
I 2012 blev nobelprisen i fysik givet for eksperimenter på enkelte atomer og fotoner. Eksperimenterne har bekræftet kvantemekanikkens helt basale forudsigelser om, hvad der sker, når man f.eks. måler på et kvantesystem. I denne artikel beskriver vi nogle af disse eksperimenter, som Niels Bohr og...
The Life and Work of Niels Bohr – A Brief Sketch
Indian Academy of Sciences (India)
IAS Admin
his family life, background, and education; the importance of his stay in England after PhD, and the crucial contact with. Rutherford; the period of the Old Quantum .... During the second World War, as Denmark was occupied by Nazi. Germany, Bohr had to be “smuggled out” to the USA under a false name – Nicholas Baker!
The Life and Work of Niels Bohr – A Brief Sketch
Indian Academy of Sciences (India)
IAS Admin
1962 at the University of Cologne. There are many statements of Bohr which are at the same time both profound and often subtly humorous. Here are a few: •. Strictly speaking, the conscious analysis of any concept stands in a relation of exclusion to its immediate application. •. Every sentence I say must be understood not ...
[Standardization and modeling of surgical processes].
Strauss, G; Schmitz, P
2016-12-01
Due to the technological developments around the operating room, surgery in the twenty-first century is undergoing a paradigm shift. Which technologies have already been integrated into the surgical routine? How can a favorable cost-benefit balance be achieved by the implementation of new software-based assistance systems? This article presents the state of the art technology as exemplified by a semi-automated operation system for otorhinolaryngology surgery. The main focus is on systems for implementation of digital handbooks and navigational functions in situ. On the basis of continuous development in digital imaging, decisions may by facilitated by individual patient models thus allowing procedures to be optimized. The ongoing digitization and linking of all relevant information enable a high level of standardization in terms of operating procedures. This may be used by assistance systems as a basis for complete documentation and high process reliability. Automation of processes in the operating room results in an increase in quality, precision and standardization so that the effectiveness and efficiency of treatment can be improved; however, care must be taken that detrimental consequences, such as loss of skills and placing too much faith in technology must be avoided by adapted training concepts.
Consistency test of the standard model
International Nuclear Information System (INIS)
Pawlowski, M.; Raczka, R.
1997-01-01
If the 'Higgs mass' is not the physical mass of a real particle but rather an effective ultraviolet cutoff then a process energy dependence of this cutoff must be admitted. Precision data from at least two energy scale experimental points are necessary to test this hypothesis. The first set of precision data is provided by the Z-boson peak experiments. We argue that the second set can be given by 10-20 GeV e + e - colliders. We pay attention to the special role of tau polarization experiments that can be sensitive to the 'Higgs mass' for a sample of ∼ 10 8 produced tau pairs. We argue that such a study may be regarded as a negative selfconsistency test of the Standard Model and of most of its extensions
Symmetry breaking: The standard model and superstrings
International Nuclear Information System (INIS)
Gaillard, M.K.
1988-01-01
The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs
Symmetry breaking: The standard model and superstrings
Energy Technology Data Exchange (ETDEWEB)
Gaillard, M.K.
1988-08-31
The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g/sup 2/ = (..sqrt..2G/sub F/)/sup /minus/1/ approx. = 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10/sup 3/)GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs.
Outstanding questions: physics beyond the Standard Model
Ellis, John
2012-01-01
The Standard Model of particle physics agrees very well with experiment, but many important questions remain unanswered, among them are the following. What is the origin of particle masses and are they due to a Higgs boson? How does one understand the number of species of matter particles and how do they mix? What is the origin of the difference between matter and antimatter, and is it related to the origin of the matter in the Universe? What is the nature of the astrophysical dark matter? How does one unify the fundamental interactions? How does one quantize gravity? In this article, I introduce these questions and discuss how they may be addressed by experiments at the Large Hadron Collider, with particular attention to the search for the Higgs boson and supersymmetry.
Standard model fermions and N=8 supergravity
Energy Technology Data Exchange (ETDEWEB)
Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)
2016-07-01
In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.
CMS standard model Higgs boson results
Directory of Open Access Journals (Sweden)
Garcia-Abia Pablo
2013-11-01
Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.
The standard model 30 years of glory
International Nuclear Information System (INIS)
Lefrancois, J.
2001-03-01
In these 3 lectures the author reviews the achievements of the past 30 years, which saw the birth and the detailed confirmation of the standard model. The first lecture is dedicated to quantum chromodynamics (QCD), deep inelastic scattering, neutrino scattering results, R(e + ,e - ), scaling violation, Drell-Yan reactions and the observation of jets. The second lecture deals with weak interactions and quark and lepton families, the discovery of W and Z bosons, of charm, of the tau lepton and B quarks are detailed. The third lecture focuses on the stunning progress that have been made in accuracy concerning detectors, the typical level of accuracy of previous e + e - experiments was about 5-10%, while the accuracy obtained at LEP/SLC is of order 0.1% to 0.5%. (A.C.)
Primordial lithium and the standard model(s)
International Nuclear Information System (INIS)
Deliyannis, C.P.; Demarque, P.; Kawaler, S.D.; Krauss, L.M.; Romanelli, P.
1989-01-01
We present the results of new theoretical work on surface 7 Li and 6 Li evolution in the oldest halo stars along with a new and refined analysis of the predicted primordial lithium abundance resulting from big-bang nucleosynthesis. This allows us to determine the constraints which can be imposed upon cosmology by a consideration of primordial lithium using both standard big-bang and standard stellar-evolution models. Such considerations lead to a constraint on the baryon density today of 0.0044 2 <0.025 (where the Hubble constant is 100h Km sec/sup -1/ Mpc /sup -1/), and impose limitations on alternative nucleosynthesis scenarios
Searches for Beyond Standard Model Physics with ATLAS and CMS
Rompotis, Nikolaos; The ATLAS collaboration
2017-01-01
The exploration of the high energy frontier with ATLAS and CMS experiments provides one of the best opportunities to look for physics beyond the Standard Model. In this talk, I review the motivation, the strategy and some recent results related to beyond Standard Model physics from these experiments. The review will cover beyond Standard Model Higgs boson searches, supersymmetry and searches for exotic particles.
Connected formulas for amplitudes in standard model
Energy Technology Data Exchange (ETDEWEB)
He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)
2017-03-17
Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.
Experimental tests of the standard model
International Nuclear Information System (INIS)
Nodulman, L.
1998-01-01
The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of α EM in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G F , most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered
Experimental tests of the standard model.
Energy Technology Data Exchange (ETDEWEB)
Nodulman, L.
1998-11-11
The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of {alpha}{sub EM} in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G{sub F}, most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered.
Darwinism in disguise? A comparison between Bohr's view on quantum mechanics and QBism.
Faye, Jan
2016-05-28
The Copenhagen interpretation is first and foremost associated with Niels Bohr's philosophy of quantum mechanics. In this paper, I attempt to lay out what I see as Bohr's pragmatic approach to science in general and to quantum physics in particular. A part of this approach is his claim that the classical concepts are indispensable for our understanding of all physical phenomena, and it seems as if the claim is grounded in his reflection upon how the evolution of language is adapted to experience. Another, recent interpretation, QBism, has also found support in Darwin's theory. It may therefore not be surprising that sometimes QBism is said to be of the same breed as the Copenhagen interpretation. By comparing the two interpretations, I conclude, nevertheless, that there are important differences. © 2016 The Author(s).
A new relation of parameters of Bohr-Mottelson rotational spectra formula
International Nuclear Information System (INIS)
Li Mingliang; Xu Fuxin
2003-01-01
With the first three terms of Harris formula included and Mottelson's method followed, a new relation of the parameters of Bohr-Mottelson rotational spectra formula is brought forward. Superdeformed bands of even-even nuclei and normal deformed bands of nuclei in actinide and rare-earth are fitted with four-parameter Bohr-Mottelson rotational spectra formula. The relations of the parameters A, B, C, D are studied. The result show, for normal deformed bands, the new relation approach the experiment value in the same degree as the relation deduced from ab formula, but for superdeformed bands, the new relation is closer to the experiment than the relation deduced from ab formula. Three-parameter Harris formula may have better convergence than two-parameter Harris formula
Quantum Humor: The Playful Side of Physics at Bohr's Institute for Theoretical Physics
Halpern, Paul
2012-09-01
From the 1930s to the 1950s, a period of pivotal developments in quantum, nuclear, and particle physics, physicists at Niels Bohr's Institute for Theoretical Physics in Copenhagen took time off from their research to write humorous articles, letters, and other works. Best known is the Blegdamsvej Faust, performed in April 1932 at the close of one of the Institute's annual conferences. I also focus on the Journal of Jocular Physics, a humorous tribute to Bohr published on the occasions of his 50th, 60th, and 70th birthdays in 1935, 1945, and 1955. Contributors included Léon Rosenfeld, Victor Weisskopf, George Gamow, Oskar Klein, and Hendrik Casimir. I examine their contributions along with letters and other writings to show that they offer a window into some issues in physics at the time, such as the interpretation of complementarity and the nature of the neutrino, as well as the politics of the period.
Multilevel fitting of 235U resonance data sensitive to Bohr-and Brosa-fission channels
International Nuclear Information System (INIS)
Moore, M.S.
1995-01-01
The recent determination of the K, J dependence of the neutron induced fission cross section of 235 U by the Dubna group has led to a renewed interest in the mechanism of fission from saddle to scission. The K quantum numbers designate the so-called Bohr fission channels, which describe the fission properties at the saddle point. Certain other fission properties, e.g., the fragment mass and kinetic-energy distribution, are related to the properties of the scission point. The neutron energy dependence of the fragment kinetic energies has been measured by Hambsch et al., who analyzed their data according to a channel description of Brosa et al. How these two channel descriptions, the saddle-point Bohr channels and the scission-point Brosa channels, relate to one another is an open question, and is the subject matter of the present paper. We use the correlation coefficient between various data sets, in which variations are reported from resonance to resonance, as a measure of both-the statistical reliability of the data and of the degree to which different scission variables relate to different Bohr channels. We have carried out an adjustment of the ENDF/B-VI multilevel evaluation of the fission cross section of 235 U, one that provides a reasonably good fit to the energy dependence of the fission, capture, and total cross sections below 100 eV, and to the Bohr-channel structure deduced from an earlier measurement by Pattenden and Postma. We have also further explored the possibility of describing the data of Hambsch et al. in the Brosa-channel framework with the same set of fission-width vectors, only in a different reference system. While this approach shows promise, it is clear that better data are also needed for the neutron energy variation of the scission-point variables
Selective experimental review of the Standard Model
International Nuclear Information System (INIS)
Bloom, E.D.
1985-02-01
Before disussing experimental comparisons with the Standard Model, (S-M) it is probably wise to define more completely what is commonly meant by this popular term. This model is a gauge theory of SU(3)/sub f/ x SU(2)/sub L/ x U(1) with 18 parameters. The parameters are α/sub s/, α/sub qed/, theta/sub W/, M/sub W/ (M/sub Z/ = M/sub W//cos theta/sub W/, and thus is not an independent parameter), M/sub Higgs/; the lepton masses, M/sub e/, Mμ, M/sub r/; the quark masses, M/sub d/, M/sub s/, M/sub b/, and M/sub u/, M/sub c/, M/sub t/; and finally, the quark mixing angles, theta 1 , theta 2 , theta 3 , and the CP violating phase delta. The latter four parameters appear in the quark mixing matrix for the Kobayashi-Maskawa and Maiani forms. Clearly, the present S-M covers an enormous range of physics topics, and the author can only lightly cover a few such topics in this report. The measurement of R/sub hadron/ is fundamental as a test of the running coupling constant α/sub s/ in QCD. The author will discuss a selection of recent precision measurements of R/sub hadron/, as well as some other techniques for measuring α/sub s/. QCD also requires the self interaction of gluons. The search for the three gluon vertex may be practically realized in the clear identification of gluonic mesons. The author will present a limited review of recent progress in the attempt to untangle such mesons from the plethora q anti q states of the same quantum numbers which exist in the same mass range. The electroweak interactions provide some of the strongest evidence supporting the S-M that exists. Given the recent progress in this subfield, and particularly with the discovery of the W and Z bosons at CERN, many recent reviews obviate the need for further discussion in this report. In attempting to validate a theory, one frequently searches for new phenomena which would clearly invalidate it. 49 references, 28 figures
Des images et des paraboles : Niels Bohr et le discours descriptif en physique quantique
Directory of Open Access Journals (Sweden)
Ilias Yocaris
2011-01-01
Full Text Available Cette étude porte sur l’importance accordée aux images verbales dans le discours descriptif utilisé en mécanique quantique, et plus précisément sur la conception de la langue scientifique qui est celle de Niels Bohr (1885-1962 : en raison d’une série de considérations techniques, méthodologiques et épistémologiques que nous nous proposons d’analyser in extenso, Bohr considère effectivement que les phénomènes subatomiques ne peuvent être évoqués directement (sans référence au contexte observationnel, par le biais d’un langage dénotatif non figural, mais uniquement de manière métaphorique, détournée, ce qui réduit à ses yeux le discours descriptif des physiciens à « des images et des paraboles ». En examinant les textes de Bohr à la lumière d’un certain nombre de travaux épistémologiques, de commentaires et d’expérimentations auxquels ils ont donné lieu ultérieurement, nous nous proposons de décrire les implications conceptuelles d’une telle prise de position, qui constitue une vraie révolution sur le plan philosophique.
Comparison of cosmological models using standard rulers and candles
Li, Xiaolei; Cao, Shuo; Zheng, Xiaogang; Li, Song; Biesiada, Marek
2015-01-01
In this paper, we used standard rulers and standard candles (separately and jointly) to explore five popular dark energy models under assumption of spatial flatness of the Universe. As standard rulers, we used a data set comprising 118 galactic-scale strong lensing systems (individual standard rulers if properly calibrated for the mass density profile) combined with BAO diagnostics (statistical standard ruler). Supernovae Ia served asstandard candles. Unlike in the most of previous statistica...
Neutrinos: in and out of the standard model
Energy Technology Data Exchange (ETDEWEB)
Parke, Stephen; /Fermilab
2006-07-01
The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.
Prospects of experimentally reachable beyond Standard Model ...
Indian Academy of Sciences (India)
2016-01-06
Jan 6, 2016 ... behaviour of the newly discovered particles and their strange interactions, during the first half of the 20th century, was culminated with the introduction of Standard ... various limitations. For a good summary on its excellencies and compulsions see [1], and for extensive details on SM and beyond, see [2].
Why supersymmetry? Physics beyond the standard model
Indian Academy of Sciences (India)
2016-08-23
Aug 23, 2016 ... This leads to an estimate of the naturalness breakdown scale for the electroweak theory as: N ∼ 1 TeV. 3. .... For supersymmetric model build- ing, see ref. [10]. Simplest supersymmetric model is ... gent restrictions for supersymmetry model building come from the requirement of sufficient suppression.
Heterogeneous information network model for equipment-standard system
Yin, Liang; Shi, Li-Chen; Zhao, Jun-Yan; Du, Song-Yang; Xie, Wen-Bo; Yuan, Fei; Chen, Duan-Bing
2018-01-01
Entity information network is used to describe structural relationships between entities. Taking advantage of its extension and heterogeneity, entity information network is more and more widely applied to relationship modeling. Recent years, lots of researches about entity information network modeling have been proposed, while seldom of them concentrate on equipment-standard system with properties of multi-layer, multi-dimension and multi-scale. In order to efficiently deal with some complex issues in equipment-standard system such as standard revising, standard controlling, and production designing, a heterogeneous information network model for equipment-standard system is proposed in this paper. Three types of entities and six types of relationships are considered in the proposed model. Correspondingly, several different similarity-measuring methods are used in the modeling process. The experiments show that the heterogeneous information network model established in this paper can reflect relationships between entities accurately. Meanwhile, the modeling process has a good performance on time consumption.
Working group report: Beyond the standard model
Indian Academy of Sciences (India)
Superstring-inspired phenomenology: This included. – models of low-scale quantum gravity with one or more extra dimensions,. – noncommutative geometry and gauge theories,. – string-inspired grand unification. • Models of supersymmetry-breaking: This included. – Supersymmetry-breaking in minimal supergravity ...
Towards a quality model for semantic IS standards
Folmer, Erwin Johan Albert; van Soest, J.
2012-01-01
This research focuses on developing a quality model for semantic information system (IS) standards. A lot of semantic IS standards are available in different industries. Often these standards are developed by a dedicated organisation. While these organisations have the goal of increasing
Towards a quality model for semantic IS standards
Folmer, Erwin Johan Albert; van Soest, Joris
2011-01-01
This research focuses on developing a quality model for semantic Information System (IS) standards. A lot of semantic IS standards are available in different industries. Often these standards are developed by a dedicated organization. While these organizations have the goal of increasing
Standardized training in nurse model travel clinics.
Sofarelli, Theresa A; Ricks, Jane H; Anand, Rahul; Hale, Devon C
2011-01-01
International travel plays a significant role in the emergence and redistribution of major human diseases. The importance of travel medicine clinics for preventing morbidity and mortality has been increasingly appreciated, although few studies have thus far examined the management and staff training strategies that result in successful travel-clinic operations. Here, we describe an example of travel-clinic operation and management coordinated through the University of Utah School of Medicine, Division of Infectious Diseases. This program, which involves eight separate clinics distributed statewide, functions both to provide patient consult and care services, as well as medical provider training and continuing medical education (CME). Initial training, the use of standardized forms and protocols, routine chart reviews and monthly continuing education meetings are the distinguishing attributes of this program. An Infectious Disease team consisting of one medical doctor (MD) and a physician assistant (PA) act as consultants to travel nurses who comprise the majority of clinic staff. Eight clinics distributed throughout the state of Utah serve approximately 6,000 travelers a year. Pre-travel medical services are provided by 11 nurses, including 10 registered nurses (RNs) and 1 licensed practical nurse (LPN). This trained nursing staff receives continuing travel medical education and participate in the training of new providers. All nurses have completed a full training program and 7 of the 11 (64%) of clinic nursing staff serve more than 10 patients a week. Quality assurance measures show that approximately 0.5% of charts reviewed contain a vaccine or prescription error which require patient notification for correction. Using an initial training program, standardized patient intake forms, vaccine and prescription protocols, preprinted prescriptions, and regular CME, highly trained nurses at travel clinics are able to provide standardized pre-travel care to
The thermal evolution of universe: standard model
International Nuclear Information System (INIS)
Nascimento, L.C.S. do.
1975-08-01
A description of the dynamical evolution of the Universe following a model based on the theory of General Relativity is made. The model admits the Cosmological principle,the principle of Equivalence and the Robertson-Walker metric (of which an original derivation is presented). In this model, the universe is considered as a perfect fluid, ideal and symmetric relatively to the number of particles and antiparticles. The thermodynamic relations deriving from these hypothesis are derived, and from them the several eras of the thermal evolution of the universe are established. Finally, the problems arising from certain specific predictions of the model are studied, and the predictions of the abundances of the elements according to nucleosynthesis and the actual behavior of the universe are analysed in detail. (author) [pt
Toward a Standard Model of Core Collapse Supernovae
Mezzacappa, A.
2000-01-01
In this paper, we discuss the current status of core collapse supernova models and the future developments needed to achieve significant advances in understanding the supernova mechanism and supernova phenomenology, i.e., in developing a supernova standard model.
Standard Model-like corrections to Dilatonic Dynamics
DEFF Research Database (Denmark)
Antipin, Oleg; Krog, Jens; Mølgaard, Esben
2013-01-01
We examine the effects of standard model-like interactions on the near-conformal dynamics of a theory featuring a dilatonic state identified with the standard model-like Higgs. As template for near-conformal dynamics we use a gauge theory with fermionic matter and elementary mesons possessing...... conformal dynamics could accommodate the observed Higgs-like properties....
Can An Amended Standard Model Account For Cold Dark Matter?
International Nuclear Information System (INIS)
Goldhaber, Maurice
2004-01-01
It is generally believed that one has to invoke theories beyond the Standard Model to account for cold dark matter particles. However, there may be undiscovered universal interactions that, if added to the Standard Model, would lead to new members of the three generations of elementary fermions that might be candidates for cold dark matter particles
The Standard Model from LHC to future colliders
Energy Technology Data Exchange (ETDEWEB)
Forte, S., E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy); Nisati, A. [INFN, Sezione di Roma, Piazzale Aldo Moro 2, 00185, Rome (Italy); Passarino, G. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Turin (Italy); INFN, Sezione di Torino, Via P. Giuria 1, 10125, Turin (Italy); Tenchini, R. [INFN, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa (Italy); Calame, C. M. Carloni [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100, Pavia (Italy); Chiesa, M. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Cobal, M. [Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Via delle Scienze, 206, 33100, Udine (Italy); INFN, Gruppo Collegato di Udine, Via delle Scienze, 206, 33100, Udine (Italy); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044, Frascati (Italy); Degrassi, G. [Dipartimento di Matematica e Fisica, Università’ Roma Tre, Via della Vasca Navale 84, 00146, Rome (Italy); INFN, Sezione di Roma Tre, Via della Vasca Navale 84, 00146, Rome (Italy); Ferrera, G. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy); Magnea, L. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Turin (Italy); INFN, Sezione di Torino, Via P. Giuria 1, 10125, Turin (Italy); Maltoni, F. [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Montagna, G. [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100, Pavia (Italy); INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Nason, P. [INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); Nicrosini, O. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Oleari, C. [Dipartimento di Fisica, Università di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); Piccinini, F. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Riva, F. [Institut de Théorie des Phénoménes Physiques, École Polytechnique Fédérale de Lausanne, 1015, Lausanne (Switzerland); Vicini, A. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy)
2015-11-25
This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the “What Next” Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.
Neutrinos and Physics Beyond Electroweak and Cosmological Standard Models
Kirilova, Daniela
2014-01-01
This is a short review of the established and the proposed by physics beyond Standard Electroweak Model and beyond Standard Cosmological Model neutrino characteristics. In particular, cosmological effects of and cosmological constraints on: extra neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino, are discussed.
El modelo atómico de Bohr: una aplicación
Directory of Open Access Journals (Sweden)
Raul Garcia Llamas
2013-06-01
Full Text Available Se aplica la teoría atómica de Bohr cuyo centenario se celebra este 2013, utilizando la aproximación electrostática y un algoritmo numérico para resolver las ecuaciones clásicas de movimiento del núcleo y de los electrones en átomos complejos, con el fin de estudiar su dinámica. Se presentan resultados numéricos para el caso del átomo de Hidrogeno y el átomo de Helio.
Wave-particle duality and Bohr's complementarity principle in quantum mechanics
International Nuclear Information System (INIS)
Sen, D.; Basu, A.N.; Sengupta, S.
1995-01-01
Interest on Bohr's complementarity principle has recently been revived particularly because of several thought experiments and some actually performed experiments to test the validity of mutual exclusiveness of wave and particle properties. A critical review of the situation is undertaken and it is pointed out that the problem with mutual exclusiveness arises because of some vagueness in the conventional formulation. An attempt is made to remove this vagueness by connecting the origin of mutual exclusiveness to some principles of quantum mechanics. Accordingly, it becomes obvious that to contradict complementarity principle without contradicting quantum mechanics would be impossible. Some of the recent experiments are critically analysed. (author). 31 refs., 3 ills
Prospects of experimentally reachable beyond Standard Model ...
Indian Academy of Sciences (India)
2016-01-06
Jan 6, 2016 ... Dirac mass MH = ±M + μS/2. As μS does not play much role in any other prediction, we assume that it fits the neutrino oscillation data and one can determine it by inverting the inverse see-saw formula and using experimental results of neutrino masses and mixings. The model achieves precision gauge ...
Standardization of A Physiologic Hypoparathyroidism Animal Model.
Jung, Soo Yeon; Kim, Ha Yeong; Park, Hae Sang; Yin, Xiang Yun; Chung, Sung Min; Kim, Han Su
2016-01-01
Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX) using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5) and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5), PTX-NC (n = 10), and PTX-HC (n = 10), respectively). Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.
Standardization of A Physiologic Hypoparathyroidism Animal Model.
Directory of Open Access Journals (Sweden)
Soo Yeon Jung
Full Text Available Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5 and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5, PTX-NC (n = 10, and PTX-HC (n = 10, respectively. Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.
Electroweak symmetry breaking beyond the Standard Model
Indian Academy of Sciences (India)
In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how ﬁne-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the ﬁne-tuning aspects of the MSSM, NMSSM, ...
Big bang nucleosynthesis - The standard model and alternatives
Schramm, David N.
1991-01-01
The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.
Standard State Space Models of Unawareness (Extended Abstract
Directory of Open Access Journals (Sweden)
Peter Fritz
2016-06-01
Full Text Available The impossibility theorem of Dekel, Lipman and Rustichini has been thought to demonstrate that standard state-space models cannot be used to represent unawareness. We first show that Dekel, Lipman and Rustichini do not establish this claim. We then distinguish three notions of awareness, and argue that although one of them may not be adequately modeled using standard state spaces, there is no reason to think that standard state spaces cannot provide models of the other two notions. In fact, standard space models of these forms of awareness are attractively simple. They allow us to prove completeness and decidability results with ease, to carry over standard techniques from decision theory, and to add propositional quantifiers straightforwardly.
Directory of Open Access Journals (Sweden)
Christian Corda
2018-01-01
Full Text Available In this paper we consider the metric entropies of the maps of an iterated function system deduced from a black hole which are known the Bekenstein–Hawking entropies and its subleading corrections. More precisely, we consider the recent model of a Bohr-like black hole that has been recently analysed in some papers in the literature, obtaining the intriguing result that the metric entropies of a black hole are created by the metric entropies of the functions, created by the black hole principal quantum numbers, i.e., by the black hole quantum levels. We present a new type of topological entropy for general iterated function systems based on a new kind of the inverse of covers. Then the notion of metric entropy for an Iterated Function System ( I F S is considered, and we prove that these definitions for topological entropy of IFS’s are equivalent. It is shown that this kind of topological entropy keeps some properties which are hold by the classic definition of topological entropy for a continuous map. We also consider average entropy as another type of topological entropy for an I F S which is based on the topological entropies of its elements and it is also an invariant object under topological conjugacy. The relation between Axiom A and the average entropy is investigated.
Physics Beyond the Standard Model: Supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Nojiri, M.M.; /KEK, Tsukuba /Tsukuba, Graduate U. Adv. Studies /Tokyo U.; Plehn, T.; /Edinburgh U.; Polesello, G.; /INFN, Pavia; Alexander, John M.; /Edinburgh U.; Allanach, B.C.; /Cambridge U.; Barr, Alan J.; /Oxford U.; Benakli, K.; /Paris U., VI-VII; Boudjema, F.; /Annecy, LAPTH; Freitas, A.; /Zurich U.; Gwenlan, C.; /University Coll. London; Jager, S.; /CERN /LPSC, Grenoble
2008-02-01
This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop 'Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitly performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.
ATLAS Searches for Beyond the Standard Model Higgs Bosons
Potter, C T
2013-01-01
The present status of ATLAS searches for Higgs bosons in extensions of the Standard Model (SM) is presented. This includes searches for the Higgs bosons of the Two-Higgs-Doublet Model (2HDM), the Minimal Supersymmetric Model (MSSM), the Next-to-Minimal Supersymmetric Model (NMSSM) and models with an invisibly decaying Higgs boson. A review of the phenomenology of the Higgs sectors of these models is given together with the search strategy and the resulting experimental constraints.
The Standard Model is Natural as Magnetic Gauge Theory
DEFF Research Database (Denmark)
Sannino, Francesco
2011-01-01
matter. The absence of scalars in the electric theory indicates that the associated magnetic theory is free from quadratic divergences. Our novel solution to the Standard Model hierarchy problem leads also to a new insight on the mystery of the observed number of fundamental fermion generations......We suggest that the Standard Model can be viewed as the magnetic dual of a gauge theory featuring only fermionic matter content. We show this by first introducing a Pati-Salam like extension of the Standard Model and then relating it to a possible dual electric theory featuring only fermionic...
Simulation and Modeling Capability for Standard Modular Hydropower Technology
Energy Technology Data Exchange (ETDEWEB)
Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)
2017-08-01
Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.
The Beyond the Standard Model Working Group: Summary Report
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Thomas G.
2002-08-08
Various theoretical aspects of physics beyond the Standard Model at hadron colliders are discussed. Our focus will be on those issues that most immediately impact the projects pursued as part of the BSM group at this meeting.
Workshop on What Comes Beyond the Standard Model?
Borstnik, N M; Nielsen, Holger Bech; Froggatt, Colin D; What Comes Beyond the Standard Model?
1999-01-01
The Proceedings collects the results of ten days of discussions on the open questions of the Standard electroweak model as well as the review of the introductory talks, connected with the discussions.
Modern elementary particle physics explaining and extending the standard model
Kane, Gordon
2017-01-01
This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.
Tests of the standard electroweak model in beta decay
Energy Technology Data Exchange (ETDEWEB)
Severijns, N.; Beck, M. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Naviliat-Cuncic, O. [Caen Univ., CNRS-ENSI, 14 (France). Lab. de Physique Corpusculaire
2006-05-15
We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C{sub A},/C{sub V} = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed. (author)
Standard model status (in search of ''new physics'')
International Nuclear Information System (INIS)
Marciano, W.J.
1993-03-01
A perspective on successes and shortcomings of the standard model is given. The complementarity between direct high energy probes of new physics and lower energy searches via precision measurements and rare reactions is described. Several illustrative examples are discussed
CP violation and electroweak baryogenesis in the Standard Model
Directory of Open Access Journals (Sweden)
Brauner Tomáš
2014-04-01
Full Text Available One of the major unresolved problems in current physics is understanding the origin of the observed asymmetry between matter and antimatter in the Universe. It has become a common lore to claim that the Standard Model of particle physics cannot produce sufficient asymmetry to explain the observation. Our results suggest that this conclusion can be alleviated in the so-called cold electroweak baryogenesis scenario. On the Standard Model side, we continue the program initiated by Smit eight years ago; one derives the effective CP-violating action for the Standard Model bosons and uses the resulting effective theory in numerical simulations. We address a disagreement between two previous computations performed effectively at zero temperature, and demonstrate that it is very important to include temperature effects properly. Our conclusion is that the cold electroweak baryogenesis scenario within the Standard Model is tightly constrained, yet producing enough baryon asymmetry using just known physics still seems possible.
Overview of the Higgs and Standard Model physics at ATLAS
Vazquez Schroeder, Tamara; The ATLAS collaboration
2018-01-01
This talk presents selected aspects of recent physics results from the ATLAS collaboration in the Standard Model and Higgs sectors, with a focus on the recent evidence for the associated production of the Higgs boson and a top quark pair.
Enhancements to ASHRAE Standard 90.1 Prototype Building Models
Energy Technology Data Exchange (ETDEWEB)
Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.
2014-04-16
This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.
Almost-commutative geometries beyond the standard model
International Nuclear Information System (INIS)
Stephan, Christoph A
2006-01-01
In Iochum et al (2004 J. Math. Phys. 45 5003), Jureit and Stephan (2005 J. Math. Phys. 46 043512), Schuecker T (2005 Preprint hep-th/0501181) and Jureit et al (2005 J. Math. Phys. 46 072303), a conjecture is presented that almost-commutative geometries, with respect to sensible physical constraints, allow only the standard model of particle physics and electro-strong models as Yang-Mills-Higgs theories. In this paper, a counter-example will be given. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model of particle physics and two new fermions of opposite electro-magnetic charge. This is the second Yang-Mills-Higgs model within noncommutative geometry, after the standard model, which could be compatible with experiments. Combined to a hydrogen-like composite particle, these new particles provide a novel dark matter candidate
Standard Model Higgs boson searches with the ATLAS detector at ...
Indian Academy of Sciences (India)
experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb. −1 of proton– ... expectations from Standard Model processes, and the production of a Higgs boson is excluded at 95% Confidence Level for the mass ... lνlν and H → Z Z. (∗) → 4l,llνν as they play important roles in setting the overall result.
NASA Standard for Models and Simulations: Philosophy and Requirements Overview
Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.
2013-01-01
Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.
Neutrinos from the Early Universe and physics beyond standard models
Directory of Open Access Journals (Sweden)
Kirilova Daniela
2015-01-01
Full Text Available Neutrino oscillations present the only robust example of experimentally detected physics beyond the standard model. This review discusses the established and several hypothetical beyond standard models neutrino characteristics and their cosmological effects and constraints. Particularly, the contemporary cosmological constraints on the number of neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino are briefly reviewed.
The Standard Model from LHC to future colliders
Energy Technology Data Exchange (ETDEWEB)
Forte, S.; Ferrera, G.; Vicini, A. [Universita di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano, Milan (Italy); Nisati, A. [INFN, Sezione di Roma, Rome (Italy); Passarino, G.; Magnea, L. [Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Tenchini, R. [INFN, Sezione di Pisa, Pisa (Italy); Calame, C.M.C. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); Chiesa, M.; Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia, Pavia (Italy); Cobal, M. [Universita di Udine, Dipartimento di Chimica, Fisica e Ambiente, Udine (Italy); INFN, Gruppo Collegato di Udine, Udine (Italy); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Degrassi, G. [Universita' Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); INFN, Sezione di Roma Tre, Rome (Italy); Maltoni, F. [Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Montagna, G. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); INFN, Sezione di Pavia, Pavia (Italy); Nason, P. [INFN, Sezione di Milano-Bicocca, Milan (Italy); Oleari, C. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca, Milan (Italy); Riva, F. [Ecole Polytechnique Federale de Lausanne, Institut de Theorie des Phenomenes Physiques, Lausanne (Switzerland)
2015-11-15
This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the ''What Next'' Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators. (orig.)
Gjedde, Albert
2010-01-01
The year 2010 is the centennial of the publication of the "Seven Little Devils" in the predecessor of "Acta Physiologica". In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rather facilitated by a specific cellular activity…
Energy Technology Data Exchange (ETDEWEB)
Fewster, Christopher J [Department of Mathematics, University of York, Heslington, York YO10 5DD (United Kingdom); Sahlmann, Hanno [Spinoza Institute, Universiteit Utrecht (Netherlands)
2008-11-21
We give a definition for the Wigner function for quantum mechanics on the Bohr compactification of the real line and prove a number of simple consequences of this definition. We then discuss how this formalism can be applied to loop quantum cosmology. As an example, we use the Wigner function to give a new quantization of an important building block of the Hamiltonian constraint.
DEFF Research Database (Denmark)
Hastings, Rob; Cobben, Jan-Maarten; Gillessen-Kaesbach, Gabriele
2011-01-01
Bohring-Opitz syndrome (BOS) is a rare congenital disorder of unknown etiology diagnosed on the basis of distinctive clinical features. We suggest diagnostic criteria for this condition, describe ten previously unreported patients, and update the natural history of four previously reported patients...
Precision tests of the standard model at LEP
International Nuclear Information System (INIS)
Mele, Barbara; Universita La Sapienza, Rome
1994-01-01
Recent LEP results on electroweak precision measurements are reviewed. Line-shape and asymmetries analysis on the Z 0 peak is described. Then, the consistency of the Standard Model predictions with experimental data and consequent limits on the top mass are discussed. Finally, the possibility of extracting information and constrains on new theoretical models from present data is examined. (author). 20 refs., 5 tabs
Higher Education Quality Assessment Model: Towards Achieving Educational Quality Standard
Noaman, Amin Y.; Ragab, Abdul Hamid M.; Madbouly, Ayman I.; Khedra, Ahmed M.; Fayoumi, Ayman G.
2017-01-01
This paper presents a developed higher education quality assessment model (HEQAM) that can be applied for enhancement of university services. This is because there is no universal unified quality standard model that can be used to assess the quality criteria of higher education institutes. The analytical hierarchy process is used to identify the…
Open standard CMO for parametric modelling based on semantic web
Bonsma, P.; Bonsma, I.; Zayakova, T.; Van Delft, A.; Sebastian, R.; Böhms, M.
2015-01-01
The Open Standard Concept Modelling Ontology (CMO) with Extensions makes it possible to store parametric modelling semantics and parametric geometry in a Semantic Web environment. The parametric and geometrical part of CMO with Extensions is developed within the EU project Proficient. The nature of
Standard model for safety analysis report of fuel reprocessing plants
International Nuclear Information System (INIS)
1979-12-01
A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt
Standard model for safety analysis report of fuel fabrication plants
International Nuclear Information System (INIS)
1980-09-01
A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt
Informatics in radiology: an information model of the DICOM standard.
Kahn, Charles E; Langlotz, Curtis P; Channin, David S; Rubin, Daniel L
2011-01-01
The Digital Imaging and Communications in Medicine (DICOM) Standard is a key foundational technology for radiology. However, its complexity creates challenges for information system developers because the current DICOM specification requires human interpretation and is subject to nonstandard implementation. To address this problem, a formally sound and computationally accessible information model of the DICOM Standard was created. The DICOM Standard was modeled as an ontology, a machine-accessible and human-interpretable representation that may be viewed and manipulated by information-modeling tools. The DICOM Ontology includes a real-world model and a DICOM entity model. The real-world model describes patients, studies, images, and other features of medical imaging. The DICOM entity model describes connections between real-world entities and the classes that model the corresponding DICOM information entities. The DICOM Ontology was created to support the Cancer Biomedical Informatics Grid (caBIG) initiative, and it may be extended to encompass the entire DICOM Standard and serve as a foundation of medical imaging systems for research and patient care. RSNA, 2010
Physics beyond the standard model and cosmological connections ...
Indian Academy of Sciences (India)
tween collider physics and cosmology and how collider searches for dark matter candidates in supersymmetry and other models can lead us to a determination of dark matter parameters and how this precision information may influence cos- mology. This paper presents a summary of the work on beyond standard model.
Conformal Extensions of the Standard Model with Veltman Conditions
DEFF Research Database (Denmark)
Antipin, Oleg; Mojaza, Matin; Sannino, Francesco
2014-01-01
the Higgs is predicted to have the experimental value of the mass equal to 126 GeV. This model also predicts the existence of one more standard model singlet scalar boson with a mass of 541 GeV and the Higgs self-coupling to emerge radiatively. We study several other PNC examples that generally predict...... a somewhat smaller mass of the Higgs to the perturbative order we have investigated them. Our results can be a useful guide when building extensions of the standard model featuring fundamental scalars....
ATLAS Z Excess in Minimal Supersymmetric Standard Model
International Nuclear Information System (INIS)
Lu, Xiaochuan; Terada, Takahiro
2015-06-01
Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.
Search for Higgs Bosons Beyond the Standard Model
Mankel, Rainer
2015-01-01
While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Besides the standard model interpretation, various possibilities for extended Higgs sectors are being considered. Such options include the minimal and next-to-minimal supersymmetric extensions (MSSM and NMSSM) of the standard model, more generic Two-Higgs Doublet models (2HDM), as well as truly exotic Higgs bosons decaying e.g. into totally invisible final states are considered. The talk presents recent results from the CMS experiment.
Standard Model Vacuum Stability and Weyl Consistency Conditions
DEFF Research Database (Denmark)
Antipin, Oleg; Gillioz, Marc; Krog, Jens
2013-01-01
At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....
Search for Higgs bosons beyond the Standard Model
Directory of Open Access Journals (Sweden)
Mankel Rainer
2015-01-01
Full Text Available While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Beyond the standard model interpretation, various scenarios for extended Higgs sectors are being considered. Such options include the minimal and next-to-minimal supersymmetric extensions (MSSM and NMSSM of the standard model, more generic Two-Higgs Doublet models (2HDM, as well as truly exotic Higgs bosons decaying e.g. into totally invisible final states. This article presents recent results from the CMS experiment.
Excited collective states of nuclei within Bohr Hamiltonian with Tietz-Hua potential
Chabab, M.; El Batoul, A.; Hamzavi, M.; Lahbas, A.; Oulne, M.
2017-07-01
In this paper, we present new analytical solutions of the Bohr Hamiltonian problem that we derived with the Tietz-Hua potential, here used for describing the β -part of the nuclear collective potential plus that of the harmonic oscillator for the γ -part. Also, we proceed to a systematic comparison of the numerical results obtained with this kind of β -potential with others which are widely used in such a framework as well as with the experiment. The calculations are carried out for energy spectra and electromagnetic transition probabilities for γ -unstable and axially symmetric deformed nuclei. In the same frame, we show the effect of the shape flatness of the β -potential beyond its minimum on transition rates calculations.
Excited collective states of nuclei within Bohr Hamiltonian with Tietz-Hua potential
Energy Technology Data Exchange (ETDEWEB)
Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Sciences Semlalia, Marrakesh (Morocco); Hamzavi, M. [University of Zanjan, Department of Physics, Zanjan (Iran, Islamic Republic of)
2017-07-15
In this paper, we present new analytical solutions of the Bohr Hamiltonian problem that we derived with the Tietz-Hua potential, here used for describing the β-part of the nuclear collective potential plus that of the harmonic oscillator for the γ-part. Also, we proceed to a systematic comparison of the numerical results obtained with this kind of β-potential with others which are widely used in such a framework as well as with the experiment. The calculations are carried out for energy spectra and electromagnetic transition probabilities for γ-unstable and axially symmetric deformed nuclei. In the same frame, we show the effect of the shape flatness of the β-potential beyond its minimum on transition rates calculations. (orig.)
Precision calculations in supersymmetric extensions of the Standard Model
International Nuclear Information System (INIS)
Slavich, P.
2013-01-01
This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)
The Effective Standard Model after LHC Run I
Ellis, John; You, Tevong
2015-01-01
We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard $S,T$ formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run~1. We illustrate the combined constraints with the example of the two-Higgs doublet model.
The effective Standard Model after LHC Run I
International Nuclear Information System (INIS)
Ellis, John; Sanz, Verónica; You, Tevong
2015-01-01
We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard S,T formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run 1. We illustrate the combined constraints with the example of the two-Higgs doublet model.
When standards become business models: Reinterpreting "failure" in the standardization paradigm
Hawkins, R.; Ballon, P.
2007-01-01
Purpose - This paper aims to explore the question: 'What is the relationship between standards and business models?' and illustrate the conceptual linkage with reference to developments in the mobile communications industry. Design/methodology/approach - A succinct overview of literature on
Development of BMD-1 model standard pulse current generator
International Nuclear Information System (INIS)
Lai Bingquan
1998-12-01
The BMD-1 Model Standard Pulse Current Generator is a pulse current calibration instrument. It is used to calibrate current probe, amplifier of current probe and other current measurement instruments. The standard pulse current generator uses a perfect current switch to transfer the standard direct current into the standard pulse current. It provides a variable output current ranges from 1 mA to 1 A, current accuracy is +-(0.25% + 2μA). The standard pulse generator provides three work modes of output current: DC, signal pulse and variable frequencies from 10 Hz to 1 MHz, and provides a variable pulse current widths from 0.5 to 50 μs
Higgs Phenomenology in the Standard Model and Beyond
Field, Bryan Jonathan; Dawson, Sally
2005-01-01
The way in which the electroweak symmetry is broken in nature is currently unknown. The electroweak symmetry is theoretically broken in the Standard Model by the Higgs mechanism which generates masses for the particle content and introduces a single scalar to the particle spectrum, the Higgs boson. This particle has not yet been observed and the value of it mass is a free parameter in the Standard Model. The observation of one (or more) Higgs bosons would confirm our understanding of the Standard Model. In this thesis, we study the phenomenology of the Standard Model Higgs boson and compare its production observables to those of the Pseudoscalar Higgs boson and the lightest scalar Higgs boson of the Minimally Supersymmetric Standard Model. We study the production at both the Fermilab Tevatron and the future CERN Large Hadron Collider (LHC). In the first part of the thesis, we present the results of our calculations in the framework of perturbative QCD. In the second part, we present our resummed calculations.
Physics beyond the Standard Model and Collider Phenomenology
Burikham, P
2005-01-01
We briefly review the Standard Model of the particle physics focussing on the gauge hierachy problem and the naturalness problem regarding the stabilization of the light Higgs mass. We list the alternative models which address the hierachy problem in addition to conventional Supersymmetric models and Composite models. They include extra dimensional models and Little Higgs models. We investigate the production of heavy $W_{H}$ at the linear $e^{+}e^{-}$ collider at high centre-of-mass energies at 3 and 5 TeV using the Littlest Higgs model where the global group is $SU(5)/SO(5)$. In certain region of the parameter space, the heavy boson induced signals could be distinguishable from the Standard Model background. Based on tree-level open-string scattering amplitudes in the low string-scale scenario, we derive the massless fermion scattering amplitudes. The amplitudes are required to reproduce those of the Standard Model at tree level in the low energy limit. We then obtain four-fermion contact interactions by ex...
Genetic Programming and Standardization in Water Temperature Modelling
Directory of Open Access Journals (Sweden)
Maritza Arganis
2009-01-01
Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.
Beyond the Standard Model Higgs searches at the LHC
Meridiani, P
2015-01-01
The Run I at the LHC marks the birth of the "Higgs physics", a path which will be followed at its full extent in the future runs of the LHC. Indeed there are two complementary paths to be followed to new physics in the Higgs sector: precision measurements of the Higgs properties (couplings, mass, spin and parity), where new physics can manifest as deviation from the Standard Model, or direct search for processes not foreseen in the Standard Model (Higgs decays not foreseen in the Standard Model, additional scalars which would indicate an extended Higgs sector). The current status of these studies at the LHC is presented, focussing in particular on the direct searches for rare or invisible Higgs decays or for an extended Higgs sector. The results are based on the analysis of the proton-proton collisions at 7 and 8 TeV center-of-mass energy at the LHC by the ATLAS and CMS collaborations.
CP violation in the standard model and beyond
International Nuclear Information System (INIS)
Buras, A.J.
1984-01-01
The present status of CP violation in the standard six quark model is reviewed and a combined analysis with B-meson decays is presented. The theoretical uncertainties in the analysis are discussed and the resulting KM weak mixing angles, the phase delta and the ratio epsilon'/epsilon are given as functions of Tsub(B), GAMMA(b -> u)/GAMMA(b -> c), msub(t) and the B parameter. For certain ranges of the values of these parameters the standard model is not capable in reproducing the experimental values for epsilon' and epsilon parameters. Anticipating possible difficulties we discuss various alternatives to the standard explanation of CP violation such as horizontal interactions, left-right symmetric models and supersymmetry. CP violation outside the kaon system is also briefly discussed. (orig.)
Search for the Standard Model Higgs Boson at LEP
CERN. Geneva
2002-01-01
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected 2465 pb-1 of e+e- collision data at energies between 189 and 209 GeV, of which 542 pb-1 were collected above 206 GeV. Searches for the Standard Model Higgs boson have been performed by each of the LEP collaborations. Their data have been combined and examined for their consistency with the Standard Model background and various Standard Model Higgs boson mass hypotheses. A lower bound of 114.1 GeV has been obtained at the 95% confidence level for the mass of the Higgs boson. The likelihood analysis shows a preference for a Higgs boson with a mass of 115.6 GeV. At this mass, the probability for the background to generate the observed effect is 3.5%.
Lattice Gauge Theories Within and Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Gelzer, Zechariah John [Iowa U.
2017-01-01
The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \
Applying OGC Standards to Develop a Land Surveying Measurement Model
Directory of Open Access Journals (Sweden)
Ioannis Sofos
2017-02-01
Full Text Available The Open Geospatial Consortium (OGC is committed to developing quality open standards for the global geospatial community, thus enhancing the interoperability of geographic information. In the domain of sensor networks, the Sensor Web Enablement (SWE initiative has been developed to define the necessary context by introducing modeling standards, like ‘Observation & Measurement’ (O&M and services to provide interaction like ‘Sensor Observation Service’ (SOS. Land surveying measurements on the other hand comprise a domain where observation information structures and services have not been aligned to the OGC observation model. In this paper, an OGC-compatible, aligned to the ‘Observation and Measurements’ standard, model for land surveying observations has been developed and discussed. Furthermore, a case study instantiates the above model, and an SOS implementation has been developed based on the 52° North SOS platform. Finally, a visualization schema is used to produce ‘Web Map Service (WMS’ observation maps. Even though there are elements that differentiate this work from classic ‘O&M’ modeling cases, the proposed model and flows are developed in order to provide the benefits of standardizing land surveying measurement data (cost reducing by reusability, higher precision level, data fusion of multiple sources, raw observation spatiotemporal repository access, development of Measurement-Based GIS (MBGIS to the geoinformation community.
Constraining new physics with collider measurements of Standard Model signatures
Energy Technology Data Exchange (ETDEWEB)
Butterworth, Jonathan M. [Department of Physics and Astronomy, University College London,Gower St., London, WC1E 6BT (United Kingdom); Grellscheid, David [IPPP, Department of Physics, Durham University,Durham, DH1 3LE (United Kingdom); Krämer, Michael; Sarrazin, Björn [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,Sommerfeldstr. 16, 52056 Aachen (Germany); Yallup, David [Department of Physics and Astronomy, University College London,Gower St., London, WC1E 6BT (United Kingdom)
2017-03-14
A new method providing general consistency constraints for Beyond-the-Standard-Model (BSM) theories, using measurements at particle colliders, is presented. The method, ‘Constraints On New Theories Using Rivet’, CONTUR, exploits the fact that particle-level differential measurements made in fiducial regions of phase-space have a high degree of model-independence. These measurements can therefore be compared to BSM physics implemented in Monte Carlo generators in a very generic way, allowing a wider array of final states to be considered than is typically the case. The CONTUR approach should be seen as complementary to the discovery potential of direct searches, being designed to eliminate inconsistent BSM proposals in a context where many (but perhaps not all) measurements are consistent with the Standard Model. We demonstrate, using a competitive simplified dark matter model, the power of this approach. The CONTUR method is highly scaleable to other models and future measurements.
Primordial alchemy: a test of the standard model
International Nuclear Information System (INIS)
Steigman, G.
1987-01-01
Big Bang Nucleosynthesis provides the only probe of the early evolution of the Universe constrained by observational data. The standard, hot, big bang model predicts the synthesis of the light elements (D, 3 He, 4 He, 7 Li) in astrophysically interesting abundances during the first few minutes in the evolution of the Universe. A quantitative comparison of the predicted abundances with those observed astronomically confirms the consistency of the standard model and yields valuable constraints on the parameters of cosmology and elementary particle physics. The current status of the comparison between theory and observation will be reviewed and the opportunities for future advances outlined
Joe H. Scott; Robert E. Burgan
2005-01-01
This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.
A CDO option market model on standardized CDS index tranches
DEFF Research Database (Denmark)
Dorn, Jochen
We provide a market model which implies a dynamic for standardized CDS index tranche spreads. This model is useful for pricing options on tranches with future Issue Dates as well as for modeling emerging options on struc- tured credit derivatives. With the upcoming regulation of the CDS market...... in perspective, the model presented here is also an attempt to face the e ects on pricing approaches provoked by an eventual Clearing Chamber . It becomes also possible to calibrate Index Tranche Options with bespoke tenors/tranche subordination to market data obtained by more liquid Index Tranche Options...
Search for the standard model Higgs boson in $l\
Energy Technology Data Exchange (ETDEWEB)
Li, Dikai [Pierre and Marie Curie Univ., Paris (France)
2013-01-01
Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3)_{c} ⓍSU(2)_{L} Ⓧ U(1)_{Y} , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of these three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.
Numerical Models of Sewage Dispersion and Statistica Bathing Water Standards
DEFF Research Database (Denmark)
Petersen, Ole; Larsen, Torben
1991-01-01
As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented. ....... It is demonstrated for a specific outfall how the method can be used to estimate the bathing water quality. The ambition with the paper has been to demonstrate how stochastic variations in a simple manner can be included in the analysis of water quality.......As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented...
Supersymmetric standard model from the heterotic string (II)
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics; Lebedev, O.; Ratz, M. [Bonn Univ. (Germany). Physikalisches Inst.
2006-06-15
We describe in detail a Z{sub 6} orbifold compactification of the heterotic E{sub 8} x E{sub 8} string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)
Non-perturbative effective interactions in the standard model
Arbuzov, Boris A
2014-01-01
This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...
Astrophysical neutrinos flavored with beyond the Standard Model physics
International Nuclear Information System (INIS)
Rasmussen, Rasmus W.; Ackermann, Markus; Winter, Walter; Lechner, Lukas; Kowalski, Marek; Humboldt-Universitaet, Berlin
2017-07-01
We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or non-standard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow to efficiently test and discriminate models. More detailed information can be obtained from additional observables such as the energy-dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.
ATLAS Standard Model Measurements Using Jet Grooming and Substructure
Ucchielli, Giulia; The ATLAS collaboration
2017-01-01
Boosted topologies allow to explore Standard Model processes in kinematical regimes never tested before. In such LHC challenging environments, standard reconstruction techniques quickly hit the wall. Targeting hadronic final states means to properly reconstruct energy and multiplicity of the jets in the event. In order to be able to identify the decay product of boosted objects, i.e. W bosons, $t\\bar{t}$ pairs or Higgs produced in association with $t\\bar{t}$ pairs, ATLAS experiment is currently exploiting several algorithms using jet grooming and jet substructure. This contribution will mainly cover the following ATLAS measurements: $t\\bar{t}$ differential cross section production and jet mass using the soft drop procedure. Standard Model measurements offer the perfect field to test the performances of new jet tagging techniques which will become even more important in the search for new physics in highly boosted topologies.”
Search for Higgs boson in beyond standard model scenarios at ...
Indian Academy of Sciences (India)
The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations.
Searches for phenomena beyond the Standard Model at the Large ...
Indian Academy of Sciences (India)
Keywords. LHC; ATLAS; CMS; BSM; supersymmetry; exotic. Abstract. The LHC has delivered several fb-1 of data in spring and summer 2011, opening new windows of opportunity for discovering phenomena beyond the Standard Model. A summary of the searches conducted by the ATLAS and CMS experiments based on ...
15th International Workshop "What Comes Beyond the Standard Models"
Nielsen, Holger Bech; Lukman, Dragan
2013-01-01
The contribution contains the preface to the Proceedings to the 15 th Workshop What Comes Beyond the Standard Models, Bled, July 9 - 19, 2012, published in Bled workshops in physics, Vol.13, No. 2, DMFA-Zaloznistvo, Ljubljana, Dec. 2012, and links to the published contributions.
14th Workshop on What Comes Beyond the Standard Models
Nielsen, Holger Bech; Lukman, Dragan; 14th Bled Workshop 2011
2013-01-01
The contribution contains the preface to the Proceedings to the 14th Workshop What Comes Beyond the Standard Models, Bled, July 11 - 21, 2011, published in Bled workshops in physics, Vol.12, No. 2, DMFA-Zaloznistvo, Ljubljana, Dec. 2011, and links to the published contributions.
Charged and neutral minimal supersymmetric standard model Higgs ...
Indian Academy of Sciences (India)
physics pp. 759–763. Charged and neutral minimal supersymmetric standard model Higgs boson decays and measurement of tan β at the compact linear collider. E CONIAVITIS and A FERRARI∗. Department of Nuclear and Particle Physics, Uppsala University, 75121 Uppsala, Sweden. ∗E-mail: ferrari@tsl.uu.se. Abstract.
Land administration domain model is an ISO standard now
Lemmen, C.H.J.; Van Oosterom, P.J.M.; Uitermark, H.T.; De Zeeuw, K.
2013-01-01
A group of land administration professionals initiated the development of a data model that facilitates the quick and efficient set-up of land registrations. Just like social issues benefit from proper land administration, land administration systems themselves benefit from proper data standards. In
The Dawn of physics beyond the standard model
Kane, Gordon
2003-01-01
"The Standard Model of particle physics is at a pivotal moment in its history: it is both at the height of its success and on the verge of being surpassed [...] A new era in particle physics could soon be heralded by the detection of supersymmetric particles at the Tevatron collider at Fermi National Accelerator Laboratory in Batavia, Ill." (8 pages)
Real gauge singlet scalar extension of the Standard Model: A ...
Indian Academy of Sciences (India)
2013-03-05
Mar 5, 2013 ... Abstract. The simplest extension of Standard Model (SM) is considered in which a real SM gauge singlet scalar with an additional discrete symmetry Z2 is introduced to SM. This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of S is achieved by the application of Z2 ...
The hierarchy problem and Physics Beyond the Standard Model
Indian Academy of Sciences (India)
f . Fine-tuning has to be done order by order in perturbation theory. Hierarchy problem. What guarantees the stability of v against quantum fluctuations? ⇒ Physics Beyond the Standard Model. Experimental side: Dark matter, neutrino mass, matter-antimatter asymmetry, ... Gautam Bhattacharyya. IASc Annual Meeting, IISER, ...
B decays in the standard model and beyond
International Nuclear Information System (INIS)
London, D.
1993-01-01
This paper is a brief review of a set of B decays in and beyond the standard model. The author discusses only right-handed B decays, certain rare B decays, B c decays, B s 0 B s 0 mixing, and T violation
2006: Particle Physics in the Standard Model and beyond
Indian Academy of Sciences (India)
journal of. October 2006 physics pp. 561–577. 2006: Particle Physics in the Standard Model and beyond. GUIDO ALTARELLI. Department of Physics, Theory Division, ..... that the gauge symmetry is unbroken in the vertices of the theory: all currents and charges ... Here, when talking of divergences, we are not worried of ac-.
Standard Model Higgs boson searches with the ATLAS detector at ...
Indian Academy of Sciences (India)
The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ...
Challenging the Standard Model with the muon g− 2
Indian Academy of Sciences (India)
Abstract. The discrepancy between experiment and the Standard Model prediction of the muon −2 is reviewed. The possibility to bridge it by hypothetical increases in the hadronic cross-section used to determine the leading hadronic contribution to the latter is analysed.
Searches for phenomena beyond the Standard Model at the Large
Indian Academy of Sciences (India)
The LHC has delivered several fb-1 of data in spring and summer 2011, opening new windows of opportunity for discovering phenomena beyond the Standard Model. A summary of the searches conducted by the ATLAS and CMS experiments based on about 1 fb-1 of data is presented.
Search for Higgs boson in beyond standard model scenarios
Indian Academy of Sciences (India)
The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations.
Standard Model Higgs boson searches with the ATLAS detector
Indian Academy of Sciences (India)
The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ...
Mathematical Modeling, Sense Making, and the Common Core State Standards
Schoenfeld, Alan H.
2013-01-01
On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…
Model food standards regulation. S3. Irradiation of food
International Nuclear Information System (INIS)
1987-01-01
This revised Model Food Standards Regulation S3 for the irradiation of food replaces the regulation adopted in June 1982. It specifies the types of ionizing radiations which may be used, lists the foods which may be processed and describes the requirements for an approved facility. It lists the records which are required to be kept and requirements for labelling of irradiated food
Challenging the Standard Model with the muon g − 2
Indian Academy of Sciences (India)
the muon g−2 is reviewed. The possibility to bridge it by hypothetical increases in the hadronic cross-section used to determine the leading hadronic contribution to the latter is analysed. Keywords. Muon anomalous magnetic moment; Standard Model Higgs boson. PACS Nos 13.40.Em; 14.60.Ef; 12.15.Lk; 14.80.Bn. 1.
Standardized binomial models for risk or prevalence ratios and differences.
Richardson, David B; Kinlaw, Alan C; MacLehose, Richard F; Cole, Stephen R
2015-10-01
Epidemiologists often analyse binary outcomes in cohort and cross-sectional studies using multivariable logistic regression models, yielding estimates of adjusted odds ratios. It is widely known that the odds ratio closely approximates the risk or prevalence ratio when the outcome is rare, and it does not do so when the outcome is common. Consequently, investigators may decide to directly estimate the risk or prevalence ratio using a log binomial regression model. We describe the use of a marginal structural binomial regression model to estimate standardized risk or prevalence ratios and differences. We illustrate the proposed approach using data from a cohort study of coronary heart disease status in Evans County, Georgia, USA. The approach reduces problems with model convergence typical of log binomial regression by shifting all explanatory variables except the exposures of primary interest from the linear predictor of the outcome regression model to a model for the standardization weights. The approach also facilitates evaluation of departures from additivity in the joint effects of two exposures. Epidemiologists should consider reporting standardized risk or prevalence ratios and differences in cohort and cross-sectional studies. These are readily-obtained using the SAS, Stata and R statistical software packages. The proposed approach estimates the exposure effect in the total population. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Innovation Process Planning Model in the Bpmn Standard
Directory of Open Access Journals (Sweden)
Jurczyk-Bunkowska Magdalena
2013-12-01
Full Text Available The aim of the article is to show the relations in the innovation process planning model. The relations argued here guarantee the stable and reliable way to achieve the result in the form of an increased competitiveness by a professionally directed development of the company. The manager needs to specify the effect while initiating the realisation of the process, has to be achieved this by the system of indirect goals. The original model proposed here shows the standard of dependence between the plans of the fragments of the innovation process which make up for achieving its final goal. The relation in the present article was shown by using the standard Business Process Model and Notation. This enabled the specification of interrelations between the decision levels at which subsequent fragments of the innovation process are planned. This gives the possibility of a better coordination of the process, reducing the time needed for the achievement of its effect. The model has been compiled on the basis of the practises followed in Polish companies. It is not, however, the reflection of these practises, but rather an idealised standard of proceedings which aims at improving the effectiveness of the management of innovations on the operational level. The model shown could be the basis of the creation of systems supporting the decision making, supporting the knowledge management or those supporting the communication in the innovation processes.
Overview of the Standard Model Measurements with the ATLAS Detector
Liu, Yanwen; The ATLAS collaboration
2017-01-01
The ATLAS Collaboration is engaged in precision measurement of fundamental Standard Model parameters, such as the W boson mass, the weak-mixing angle or the strong coupling constant. In addition, the production cross-sections of a large variety of final states involving high energetic jets, photons as well as single and multi vector bosons are measured multi differentially at several center of mass energies. This allows to test perturbative QCD calculations to highest precision. In addition, these measurements allow also to test models beyond the SM, e.g. those leading to anomalous gauge couplings. In this talk, we give a broad overview of the Standard Model measurement campaign of the ATLAS collaboration, where selected topics will be discussed in more detail.
Neutron electric dipole moment and extension of the standard model
International Nuclear Information System (INIS)
Oshimo, Noriyuki
2001-01-01
A nonvanishing value for the electric dipole moment (EDM) of the neutron is a prominent signature for CP violation. The EDM induced by the Kobayashi-Maskawa mechanism of the standard model (SM) has a small magnitude and its detection will be very difficult. However, since baryon asymmetry of the universe cannot be accounted for by the SM, there should exist some other source of CP violation, which may generate a large magnitude for the EDM. One of the most hopeful candidates for physics beyond the SM is the supersymmetric standard model, which contains such sources of CP violation. This model suggests that the EDM has a magnitude not much smaller than the present experimental bounds. Progress in measuring the EDM provides very interesting information about extension of the SM. (author)
Tests of the standard model and searches for new physics
Energy Technology Data Exchange (ETDEWEB)
Langacker, Paul [Pennsylvania Univ., PA (United States). Dept. of Physics
1996-07-01
Earlier chapters of this volume have detailed described the standard model and its renormalization, the various types of precision experiments, and their implications. This chapter is devoted to global analysis of the Z-pole, M{sub W}, and neutral current data, which contains more information that any one class of experiments. The subsequent sections will summarize some of the relevant data and theoretical formulas, the status of the standard model tests and parameter determinations, the possible classes of new physics, and the implications of the precision experiments. In particular, the model independent analysis of neutral current couplings, which establishes the standard model to first approximation; the implication of supersymmetry; supersymmetric grand unification; and a number if specific types of new physics, including heavy Z{sup '} bosons, new sources of SU{sub 2} breaking, new contributions to the gauge boson self-energies, Zb b-bar vertex corrections, certain types of new 4-Fermi operators and leptoquarks, and the exotic fermions are described.
Standard guide for use of modeling for passive gamma measurements
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 This guide addresses the use of models with passive gamma-ray measurement systems. Mathematical models based on physical principles can be used to assist in calibration of gamma-ray measurement systems and in analysis of measurement data. Some nondestructive assay (NDA) measurement programs involve the assay of a wide variety of item geometries and matrix combinations for which the development of physical standards are not practical. In these situations, modeling may provide a cost-effective means of meeting user’s data quality objectives. 1.2 A scientific knowledge of radiation sources and detectors, calibration procedures, geometry and error analysis is needed for users of this standard. This guide assumes that the user has, at a minimum, a basic understanding of these principles and good NDA practices (see Guide C1592), as defined for an NDA professional in Guide C1490. The user of this standard must have at least a basic understanding of the software used for modeling. Instructions or further train...
E-health stakeholders experiences with clinical modelling and standardizations.
Gøeg, Kirstine Rosenbeck; Elberg, Pia Britt; Højen, Anne Randorff
2015-01-01
Stakeholders in e-health such as governance officials, health IT-implementers and vendors have to co-operate to achieve the goal of a future-proof interoperable e-health infrastructure. Co-operation requires knowledge on the responsibility and competences of stakeholder groups. To increase awareness on clinical modeling and standardization we conducted a workshop for Danish and a few Norwegian e-health stakeholders' and made them discuss their views on different aspects of clinical modeling using a theoretical model as a point of departure. Based on the model, we traced stakeholders' experiences. Our results showed there was a tendency that stakeholders were more familiar with e-health requirements than with design methods, clinical information models and clinical terminology as they are described in the scientific literature. The workshop made it possible for stakeholders to discuss their roles and expectations to each other.
Bohr-Weisskopf effect influence of the distributed nuclear magnetization on hfs
Stroke, Hinko Henry; Pinard, J
2000-01-01
Nuclear magnetic moments provide a sensitive test of nuclear wave functions, in particular those of neutrons, which are not readily obtainable from other nuclear data. These are taking added importance by recent proposals to study parity non-conservation (PNC) effects in alkali atoms in isotopic series. By taking ratios of the PNC effects in pairs of isotopes, uncertainties in the atomic wave functions are largely cancelled out at the cost of knowledge of the change in the neutron wave function, the Bohr-Weisskopf effect (1950) in the hyperfine structure interaction of atoms measures the influence of the spatial distribution of the nuclear magnetization, and thereby provides an additional constraint on the determination of the neutron wave function. The added great importance of B-W in the determination of QED effects from the hfs in hydrogen-like ions of heavy elements, as measured recently at GSI, is noted, the B-W experiments require precision measurements of the hfs interactions and, independently, of the...
What is complementarity?: Niels Bohr and the architecture of quantum theory
International Nuclear Information System (INIS)
Plotnitsky, Arkady
2014-01-01
This article explores Bohr’s argument, advanced under the heading of ‘complementarity,’ concerning quantum phenomena and quantum mechanics, and its physical and philosophical implications. In Bohr, the term complementarity designates both a particular concept and an overall interpretation of quantum phenomena and quantum mechanics, in part grounded in this concept. While the argument of this article is primarily philosophical, it will also address, historically, the development and transformations of Bohr’s thinking, under the impact of the development of quantum theory and Bohr’s confrontation with Einstein, especially their exchange concerning the EPR experiment, proposed by Einstein, Podolsky and Rosen in 1935. Bohr’s interpretation was progressively characterized by a more radical epistemology, in its ultimate form, which was developed in the 1930s and with which I shall be especially concerned here, defined by his new concepts of phenomenon and atomicity. According to this epistemology, quantum objects are seen as indescribable and possibly even as inconceivable, and as manifesting their existence only in the effects of their interactions with measuring instruments upon those instruments, effects that define phenomena in Bohr’s sense. The absence of causality is an automatic consequence of this epistemology. I shall also consider how probability and statistics work under these epistemological conditions. (paper)
Astrophysical neutrinos flavored with beyond the Standard Model physics
Rasmussen, Rasmus W.; Lechner, Lukas; Ackermann, Markus; Kowalski, Marek; Winter, Walter
2017-10-01
We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or nonstandard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow us to efficiently test and discriminate between models. More detailed information can be obtained from additional observables such as the energy dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.
Challenges to the standard model of Big Bang nucleosynthesis
International Nuclear Information System (INIS)
Steigman, G.
1993-01-01
Big Bang nucleosynthesis provides a unique probe of the early evolution of the Universe and a crucial test of the consistency of the standard hot Big Bang cosmological model. Although the primordial abundances of 2 H, 3 He, 4 He, and 7 Li inferred from current observational data are in agreement with those predicted by Big Bang nucleosynthesis, recent analysis has severely restricted the consistent range for the nucleon-to-photon ratio: 3.7 ≤ η 10 ≤ 4.0. Increased accuracy in the estimate of primordial 4 he and observations of Be and B in Pop II stars are offering new challenges to the standard model and suggest that no new light particles may be allowed (N ν BBN ≤ 3.0, where N ν is the number of equivalent light neutrinos). 23 refs
The search for the Standard Model Higgs boson at ALEPH
McNamara, P A
2002-01-01
The standard model of elementary particles is a remarkably successful theory. The Higgs boson, the particle responsible for giving masses to those particles with mass, is the only particle in the standard model which has not been experimentally observed. In data collected in 2000 at the Large Electron-Positron Collider, at center of mass energies up to 209 GeV, an excess of Higgs-like events was observed. This excess is consistent with the production of a Higgs boson with invariant mass 115.6 ± 0.8 GeV/c 2. The effect is dominated by an excess in the four-jet channels in ALEPH caused by three high purity signal candidates.
Search for the Standard Model Higgs Boson at LEP
Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Heister, A.; Schael, S.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Quyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Maley, P.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Smith, D.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Coles, J.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; DHondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baarmand, M.; Bagnaia, P.; Bajox, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casau, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; de Asmundis, R.; Deglont, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; De Notaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofiev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lee, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija; Heinemeyer, S.; Weiglein, G.
2003-01-01
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected a total of 2461 pb-1 of e+e- collision data at centre-of-mass energies between 189 and 209 GeV. The data are used to search for the Standard Model Higgs boson. The search results of the four collaborations are combined and examined in a likelihood test for their consistency with two hypotheses: the background hypothesis and the signal plus background hypothesis. The corresponding confidences have been computed as functions of the hypothetical Higgs boson mass. A lower bound of 114.4 GeV/c2 is established, at the 95% confidence level, on the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ coupling for various assumptions concerning the decay of the Higgs boson.
Direct search for the standard model Higgs boson
Janot, Patrick
2002-01-01
For twelve years, LEP revolutionized the knowledge of electroweak symmetry breaking within the standard model, and the direct discovery of the Higgs boson would have been the crowning achievement. Searches at the Z resonance and above the W/sup +/W/sup -/ threshold allowed an unambiguous lower limit on the mass of the standard model Higgs boson to set be at 114.1 GeV.c/sup -2/. After years of efforts to push the LEP performance far beyond the design limits, hints of what could be the first signs of the existence of a 115 GeV-c/sup -2/ Higgs boson appeared in June 2000, were confirmed in September, and were then confirmed again in November. An additional six-month period of LEP operation was enough to provide a definite answer, with an opportunity to make a fundamental discovery of prime importance. (37 refs).
Standards for Documenting Finite‐Fault Earthquake Rupture Models
Mai, Paul Martin
2016-04-06
In this article, we propose standards for documenting and disseminating finite‐fault earthquake rupture models, and related data and metadata. A comprehensive documentation of the rupture models, a detailed description of the data processing steps, and facilitating the access to the actual data that went into the earthquake source inversion are required to promote follow‐up research and to ensure interoperability, transparency, and reproducibility of the published slip‐inversion solutions. We suggest a formatting scheme that describes the kinematic rupture process in an unambiguous way to support subsequent research. We also provide guidelines on how to document the data, metadata, and data processing. The proposed standards and formats represent a first step to establishing best practices for comprehensively documenting input and output of finite‐fault earthquake source studies.
Aspects of Particle Physics Beyond the Standard Model
Lu, Xiaochuan
This dissertation describes a few aspects of particles beyond the Standard Model, with a focus on the remaining questions after the discovery of a Standard Model-like Higgs boson. In specific, three topics are discussed in sequence: neutrino mass and baryon asymmetry, naturalness problem of Higgs mass, and placing constraints on theoretical models from precision measurements. First, the consequence of the neutrino mass anarchy on cosmology is studied. Attentions are paid in particular to the total mass of neutrinos and baryon asymmetry through leptogenesis. With the assumption of independence among mass matrix entries in addition to the basis independence, Gaussian measure is the only choice. On top of Gaussian measure, a simple approximate U(1) flavor symmetry makes leptogenesis highly successful. Correlations between the baryon asymmetry and the light-neutrino quantities are investigated. Also discussed are possible implications of recently suggested large total mass of neutrinos by the SDSS/BOSS data. Second, the Higgs mass implies fine-tuning for minimal theories of weak-scale supersymmetry (SUSY). Non-decoupling effects can boost the Higgs mass when new states interact with the Higgs, but new sources of SUSY breaking that accompany such extensions threaten naturalness. I will show that two singlets with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. The modified Higgs phenomenology of this scenario, termed "Dirac NMSSM", is also studied. Finally, the sensitivities of future precision measurements in probing physics beyond the Standard Model are studied. A practical three-step procedure is presented for using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on the UV model concerned. A detailed explanation is
Gold-standard performance for 2D hydrodynamic modeling
Pasternack, G. B.; MacVicar, B. J.
2013-12-01
Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity
Standard model physics with the ATLAS early data
Bruckman de Renstrom, Pawel
2006-01-01
The Standard Model, despite its open questions, has proved its consistency and predictive power to very high accuracy within the currently available energy reach. LHC, with its high CM energy and luminosity, will give us insight into new processes, possibly showing evidence of “new physics”. Excellent understanding of the SM processes will also be a key to discriminate against any new phenomena. Prospects of selected SM measurements with the ATLAS detector using early LHC luminosity are presented.
Signatures of baryogenesis in the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Murayama, Hitoshi; Pierce, Aaron
2003-01-01
We reexamine the electroweak baryogenesis within the context of the minimal supersymmetric standard model, studying its potential collider signatures. We find that this mechanism of baryogenesis does not give a new CP violating signal at the B factories. The first circumstantial evidence may come from enhanced B s or B d mixing. If a light right-handed scalar top quark and Higgs boson are found as required, a linear collider represents the best possibility for confirming the scenario
Physics beyond the standard model and cosmological connections ...
Indian Academy of Sciences (India)
E-mail: Sridhar@theory.tifr.res.in. Abstract. The international linear collider (ILC) is .... ILC operates at its highest planned centre-of-mass energy of 2 TeV. The alternative is to do a combined LHC/ILC .... A paper which studied the modification of the standard Einstein–Hilbert action in models of TeV-scale gravity through the ...
The Standard Model and the neutron beta-decay
Abele, H
2000-01-01
This article reviews the relationship between the observables in neutron beta-decay and the accepted modern theory of particle physics known as the Standard Model. Recent neutron-decay measurements of various mixed American-British-French-German-Russian collaborations try to shed light on the following topics: the coupling strength of charged weak currents, the universality of the electroweak interaction and the origin of parity violation.
Standard model parameters and the search for new physics
International Nuclear Information System (INIS)
Marciano, W.J.
1988-04-01
In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs
Exploring and testing the Standard Model and beyond
International Nuclear Information System (INIS)
West, G.; Cooper, F.; Ginsparg, P.; Habib, S.; Gupta, R.; Mottola, E.; Nieto, M.; Mattis, M.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project was to extend and develop the predictions of the Standard Model of particle physics in several different directions. This includes various aspects of the strong nuclear interactions in quantum chromodynamics (QCD), electroweak interactions and the origin of baryon asymmetry in the universe, as well as gravitational physics
LEP asymmetries and fits of the standard model
International Nuclear Information System (INIS)
Pietrzyk, B.
1994-01-01
The lepton and quark asymmetries measured at LEP are presented. The results of the Standard Model fits to the electroweak data presented at this conference are given. The top mass obtained from the fit to the LEP data is 172 -14-20 +13+18 GeV; it is 177 -11-19 +11+18 when also the collider, ν and A LR data are included. (author). 10 refs., 3 figs., 2 tabs
Asymptotically Safe Standard Model Extensions arXiv
Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro
We consider theories with a large number NF of charged fermions and compute the renormalisation group equations for the gauge, Yukawa and quartic couplings resummed at leading order in NF. We construct extensions of the Standard Model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.
Observations in particle physics: from two neutrinos to standard model
International Nuclear Information System (INIS)
Lederman, L.M.
1990-01-01
Experiments, which have made their contribution to creation of the standard model, are discussed. Results of observations on the following concepts: long-lived neutral V-particles, violation of preservation of parity and charge invariance in meson decays, reaction with high-energy neutrino and existence of neutrino of two types, partons and dynamic quarks, dimuon resonance at 9.5 GeV in 400 GeV-proton-nucleus collisions, are considered
Framework for an asymptotically safe standard model via dynamical breaking
DEFF Research Database (Denmark)
Abel, Steven; Sannino, Francesco
2017-01-01
We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....
No Evidence for Extensions to the Standard Cosmological Model
Heavens, Alan; Fantaye, Yabebal; Sellentin, Elena; Eggers, Hans; Hosenie, Zafiirah; Kroon, Steve; Mootoovaloo, Arrykrishna
2017-09-01
We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space, we reuse the Monte Carlo Markov chains already produced for parameter inference to compute Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold dark matter model with a cosmological constant (Λ CDM ) is favored over all other models considered, with curvature being mildly favored only when cosmic microwave background lensing is not included. Many alternative models are strongly disfavored by the data, including primordial correlated isocurvature models (ln B =-7.8 ), nonzero scalar-to-tensor ratio (ln B =-4.3 ), running of the spectral index (ln B =-4.7 ), curvature (ln B =-3.6 ), nonstandard numbers of neutrinos (ln B =-3.1 ), nonstandard neutrino masses (ln B =-3.2 ), nonstandard lensing potential (ln B =-4.6 ), evolving dark energy (ln B =-3.2 ), sterile neutrinos (ln B =-6.9 ), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (ln B =-10.8 ). Other models are less strongly disfavored with respect to flat Λ CDM . As with all analyses based on Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer Hubble constant measurements are included does Λ CDM become disfavored, and only mildly, compared with a dynamical dark energy model (ln B ˜+2 ).
In Search Of The Standard Model Higgs Boson
http://inspirehep.net/record/666184/files/fermilab-thesis-2004-35.PDF, R
2002-01-01
A search for the Standard Model Higgs boson is conducted using data from the L3 detector at CERN's LEP collider during the year 2000. The integrated luminosity collected was 217.4 pb−1 of electron-positron collisions at center-of-mass energies from 200 to 209 GeV. Presented here is a search for e+ e− → hZ, where the Higgs decays into b quarks and the Z boson decays into undetected neutrinos. Also presented are combined results from the other L3 channels. The L3 combined results are consistent with the Standard Model background. Preliminary results from the LEP-wide combination are also shown. The lower limit on the Standard Model Higgs mass is found to be mh>114.1GeV at95%C.L. In the LEP combination, an excess of data events is observed near mh ∼ 115.6 GeV. Whether this is due to a statistical fluctuation or to Higgs production cannot be determined from the available set of data.
Stress-testing the Standard Model at the LHC
2016-01-01
With the high-energy run of the LHC now underway, and clear manifestations of beyond-Standard-Model physics not yet seen in data from the previous run, the search for new physics at the LHC may be a quest for small deviations with big consequences. If clear signals are present, precise predictions and measurements will again be crucial for extracting the maximum information from the data, as in the case of the Higgs boson. Precision will therefore remain a key theme for particle physics research in the coming years. The conference will provide a forum for experimentalists and theorists to identify the challenges and refine the tools for high-precision tests of the Standard Model and searches for signals of new physics at Run II of the LHC. Topics to be discussed include: pinning down Standard Model corrections to key LHC processes; combining fixed-order QCD calculations with all-order resummations and parton showers; new developments in jet physics concerning jet substructure, associated jets and boosted je...
Supersymmetry and String Theory: Beyond the Standard Model
International Nuclear Information System (INIS)
Rocek, Martin
2007-01-01
When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang-Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg-Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically. (book review)
Review of Current Standard Model Results in ATLAS
Brandt, Gerhard; The ATLAS collaboration
2018-01-01
This talk highlights results selected from the Standard Model research programme of the ATLAS Collaboration at the Large Hadron Collider. Results using data from $p-p$ collisions at $\\sqrt{s}=7,8$~TeV in LHC Run-1 as well as results using data at $\\sqrt{s}=13$~TeV in LHC Run-2 are covered. The status of cross section measurements from soft QCD processes and jet production as well as photon production are presented. The presentation extends to vector boson production with associated jets. Precision measurements of the production of $W$ and $Z$ bosons, including a first measurement of the mass of the $W$ bosons, $m_W$, are discussed. The programme to measure electroweak processes with di-boson and tri-boson final states is outlined. All presented measurements are compatible with Standard Model descriptions and allow to further constrain it. In addition they allow to probe new physics which would manifest through extra gauge couplings, or Standard Model gauge couplings deviating from their predicted value.
Impersonating the Standard Model Higgs boson: alignment without decoupling
International Nuclear Information System (INIS)
Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E.M.
2014-01-01
In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the m A −tan β parameter space
Efficient Lattice-Based Signcryption in Standard Model
Directory of Open Access Journals (Sweden)
Jianhua Yan
2013-01-01
Full Text Available Signcryption is a cryptographic primitive that can perform digital signature and public encryption simultaneously at a significantly reduced cost. This advantage makes it highly useful in many applications. However, most existing signcryption schemes are seriously challenged by the booming of quantum computations. As an interesting stepping stone in the post-quantum cryptographic community, two lattice-based signcryption schemes were proposed recently. But both of them were merely proved to be secure in the random oracle models. Therefore, the main contribution of this paper is to propose a new lattice-based signcryption scheme that can be proved to be secure in the standard model.
Secure Certificateless Signature with Revocation in the Standard Model
Directory of Open Access Journals (Sweden)
Tung-Tso Tsai
2014-01-01
previously proposed certificateless signature schemes were insecure under a considerably strong security model in the sense that they suffered from outsiders’ key replacement attacks or the attacks from the key generation center (KGC. In this paper, we propose a certificateless signature scheme without random oracles. Moreover, our scheme is secure under the strong security model and provides a public revocation mechanism, called revocable certificateless signature (RCLS. Under the standard computational Diffie-Hellman assumption, we formally demonstrate that our scheme possesses existential unforgeability against adaptive chosen-message attacks.
Non-generic couplings in supersymmetric standard models
Directory of Open Access Journals (Sweden)
Evgeny I. Buchbinder
2015-09-01
Full Text Available We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the E8×E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first phase we have a standard model gauge group, an MSSM spectrum, four additional U(1 symmetries and singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, three of the additional U(1 symmetries are spontaneously broken and the remaining one is a B–L symmetry. In this second phase, dimension five operators inducing proton decay are consistent with all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, these operators are forbidden due to the additional U(1 symmetries present in the first phase of the model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect the model from fast proton decay.
BiGG Models: A platform for integrating, standardizing and sharing genome-scale models
DEFF Research Database (Denmark)
King, Zachary A.; Lu, Justin; Dräger, Andreas
2016-01-01
Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized....... Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource...... for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data....
Flavour alignment in physics beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Braeuninger, Carolin Barbara
2012-11-21
There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple
Selected topics in phenomenology of the standard model
International Nuclear Information System (INIS)
Roberts, R.G.
1992-01-01
We begin with the structure of the proton which is revealed through deep inelastic scattering of nucleons by electron/muon or neutrino scattering off nucleons. The quark parton model is described which leads on to the interaction of quarks and gluons - quantum chromodynamics (QCD). From this parton distributions can be extracted and then fed into the quark parton description of hadron-hadron collisions. In this way we analyse large p T jet production, prompt photon production and dilepton, W and Z production (Drell-Yan mechanism), ending with a study of heavy quark production. W and Z physics is then discussed. The various definitions at the tree level of sin 2 θ w are listed and then the radiative corrections to these are briefly considered. The data from European Large Electron-Positron storage rings (LEP) then allow limits to be set on the mass of the top quark and the Higgs via these corrections. Standard model predictions for the various Z widths are compared with the latest LEP data. Electroweak effects in e + e - scattering are discussed together with the extraction of the various vector and axial-vector couplings involved. We return to QCD when the production of jets in e + e - is studied. Both the LEP and lower energy data are able to give quantitative estimates of the strong coupling α s and the consistency of the various estimates and those from other QCD processes are discussed. The value of α s (M z ) actually plays an important role in setting the scale of the possible supersymmetry (SUSY) physics beyond the standard model. Finally the subject of quark mixing is addressed. How the the values of the various CKM matrix elements are derived is discussed together with a very brief look at the charge-parity (CP) violation and how the standard model is standing up to the latest measurements of ε'/ε. (Author)
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Energy Technology Data Exchange (ETDEWEB)
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Toward Standardizing a Lexicon of Infectious Disease Modeling Terms.
Milwid, Rachael; Steriu, Andreea; Arino, Julien; Heffernan, Jane; Hyder, Ayaz; Schanzer, Dena; Gardner, Emma; Haworth-Brockman, Margaret; Isfeld-Kiely, Harpa; Langley, Joanne M; Moghadas, Seyed M
2016-01-01
Disease modeling is increasingly being used to evaluate the effect of health intervention strategies, particularly for infectious diseases. However, the utility and application of such models are hampered by the inconsistent use of infectious disease modeling terms between and within disciplines. We sought to standardize the lexicon of infectious disease modeling terms and develop a glossary of terms commonly used in describing models' assumptions, parameters, variables, and outcomes. We combined a comprehensive literature review of relevant terms with an online forum discussion in a virtual community of practice, mod4PH (Modeling for Public Health). Using a convergent discussion process and consensus amongst the members of mod4PH, a glossary of terms was developed as an online resource. We anticipate that the glossary will improve inter- and intradisciplinary communication and will result in a greater uptake and understanding of disease modeling outcomes in heath policy decision-making. We highlight the role of the mod4PH community of practice and the methodologies used in this endeavor to link theory, policy, and practice in the public health domain.
Modeling RHIC Using the Standard Machine Format Accelerator Description
Pilat, F.; Trahern, C. G.; Wei, J.; Satogata, T.; Tepikian, S.
1997-05-01
The Standard Machine Format (SMF)(N. Malitsky, R. Talman, et. al., A Proposed Flat Yet Hierarchical Accelerator Lattice Object Model), Particle Accel. 55, 313(1996). is a structured description of accelerator lattices which supports both the hierarchy of beam lines and generic lattice objects as well as the deviations (field errors, misalignments, etc.) associated with each distinct component which are necessary for accurate modeling of beam dynamics. In this paper we discuss the use of SMF to describe the Relativistic Heavy Ion Collider (RHIC) as well as the ancillary data structures (such as field quality measurements) that are necessarily incorporated into the RHIC SMF model. Future applications of SMF are outlined, including its use in the RHIC operational environment.
The Beyond the standard model working group: Summary report
Energy Technology Data Exchange (ETDEWEB)
G. Azuelos et al.
2004-03-18
In this working group we have investigated a number of aspects of searches for new physics beyond the Standard Model (SM) at the running or planned TeV-scale colliders. For the most part, we have considered hadron colliders, as they will define particle physics at the energy frontier for the next ten years at least. The variety of models for Beyond the Standard Model (BSM) physics has grown immensely. It is clear that only future experiments can provide the needed direction to clarify the correct theory. Thus, our focus has been on exploring the extent to which hadron colliders can discover and study BSM physics in various models. We have placed special emphasis on scenarios in which the new signal might be difficult to find or of a very unexpected nature. For example, in the context of supersymmetry (SUSY), we have considered: how to make fully precise predictions for the Higgs bosons as well as the superparticles of the Minimal Supersymmetric Standard Model (MSSM) (parts III and IV); MSSM scenarios in which most or all SUSY particles have rather large masses (parts V and VI); the ability to sort out the many parameters of the MSSM using a variety of signals and study channels (part VII); whether the no-lose theorem for MSSM Higgs discovery can be extended to the next-to-minimal Supersymmetric Standard Model (NMSSM) in which an additional singlet superfield is added to the minimal collection of superfields, potentially providing a natural explanation of the electroweak value of the parameter {micro} (part VIII); sorting out the effects of CP violation using Higgs plus squark associate production (part IX); the impact of lepton flavor violation of various kinds (part X); experimental possibilities for the gravitino and its sgoldstino partner (part XI); what the implications for SUSY would be if the NuTeV signal for di-muon events were interpreted as a sign of R-parity violation (part XII). Our other main focus was on the phenomenological implications of extra
Early universe cosmology. In supersymmetric extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Baumann, Jochen Peter
2012-03-19
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss
El pabellón Niels Bohr. Tradición Danesa y Modernidad
Directory of Open Access Journals (Sweden)
Carmen García Sánchez
2015-12-01
Full Text Available La casa de invitados de Niels Bohr fue el primer edificio del arquitecto danés Vilhelm Wohlert (1920-2007. Arraigado a la tradición danesa, representa una renovación basada en la absorción de influencias extranjeras: la arquitectura americana y la tradición japonesa. La caja de madera tiene el carácter sensible de un organismo vivo, siempre cambiante según las variaciones de luz del día o temperatura. Puertas plegables y contraventanas generan extensiones de las habitaciones. Cuando se abren, crean una prolongación del espacio interior, que se extiende a la naturaleza circundante, y se expande hacia el espacio exterior, permitiendo su movilización. Se establece una arquitectura de flujos. Protagoniza un ejemplo de la modernidad como refinamiento en la técnica de los límites y la idea de que la arquitectura no es un objeto material, sino el espacio generado en su interior. Podría ser visto como un ikebana; “el arte del espacio”, donde se produce una circulación de aire entre sus componentes; algo vivo que expresa la tercera dimensión, el equilibrio asimétrico, un interés por la materia, su textura y efecto emocional que emana. Hay armonía y equilibrio, que transmiten serenidad y belleza; un encuentro con la naturaleza; un mundo de relaciones amable al ser humano.
Detecting physics beyond the Standard Model with the REDTOP experiment
González, D.; León, D.; Fabela, B.; Pedraza, M. I.
2017-10-01
REDTOP is an experiment at its proposal stage. It belongs to the High Intensity class of experiments. REDTOP will use a 1.8 GeV continuous proton beam impinging on a fixed target. It is expected to produce about 1013 η mesons per year. The main goal of REDTOP is to look for physics beyond the Standard Model by detecting rare η decays. The detector is designed with innovative technologies based on the detection of prompt Cherenkov light, such that interesting events can be observed and the background events are efficiently rejected. The experimental design, the physics program and the running plan of the experiment is presented.
CP asymmetry in Bd→φKS: Standard model pollution
International Nuclear Information System (INIS)
Grossman, Y.; Isidori, G.; Worah, M.P.
1998-01-01
The difference in the time dependent CP asymmetries between the modes B→ψK S and B→φK S is a clean signal for physics beyond the standard model. This interpretation could fail if there is a large enhancement of the matrix element of the b→u bar us operator between the B d initial state and the φK S final state. We argue against this possibility and propose some experimental tests that could shed light on the situation. copyright 1998 The American Physical Society
What is special about the group of the standard model?
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1989-03-01
The standard model is based on the algebra of U 1 xSU 2 xSU 3 . The systematics of charges of the fundamental fermions seems to suggest the importance of a particular group having this algebra, viz. S(U 2 xU 3 ). This group is distinguished from all other connected compact non semisimple groups with dimensionality up to 12 by a characteristic property: it is very 'skew'. By this we mean that the group has relatively few 'generalised outer automorphisms'. One may speculate about physical reasons for this fact. (orig.)
Baryon number dissipation at finite temperature in the standard model
International Nuclear Information System (INIS)
Mottola, E.; Raby, S.; Starkman, G.
1990-01-01
We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, γ is given in terms of real time correlation functions of the operator E·B, and is directly proportional to the sphaleron transition rate, Γ: γ preceq n f Γ/T 3 . Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs
Dark Matter and Color Octets Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Krnjaic, Gordan Zdenko [Johns Hopkins Univ., Baltimore, MD (United States)
2012-07-01
Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that address each of these issues.
B_{s,d} -> l+ l- in the Standard Model
Bobeth, Christoph; Hermann, Thomas; Misiak, Mikolaj; Stamou, Emmanuel; Steinhauser, Matthias
2014-01-01
We combine our new results for the O(alpha_em) and O(alpha_s^2) corrections to B_{s,d} -> l^+ l^-, and present updated branching ratio predictions for these decays in the standard model. Inclusion of the new corrections removes major theoretical uncertainties of perturbative origin that have just begun to dominate over the parametric ones. For the recently observed muonic decay of the B_s meson, our calculation gives BR(B_s -> mu^+ mu^-) = (3.65 +_ 0.23) * 10^(-9).
Future high precision experiments and new physics beyond Standard Model
International Nuclear Information System (INIS)
Luo, Mingxing.
1993-01-01
High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here
The strong interactions beyond the standard model of particle physics
Energy Technology Data Exchange (ETDEWEB)
Bergner, Georg [Muenster Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
SuperMUC is one of the most convenient high performance machines for our project since it offers a high performance and flexibility regarding different applications. This is of particular importance for investigations of new theories, where on the one hand the parameters and systematic uncertainties have to be estimated in smaller simulations and on the other hand a large computational performance is needed for the estimations of the scale at zero temperature. Our project is just the first investigation of the new physics beyond the standard model of particle physics and we hope to proceed with our studies towards more involved Technicolour candidates, supersymmetric QCD, and extended supersymmetry.
High Mass Standard Model Higgs searches at the Tevatron
Directory of Open Access Journals (Sweden)
Petridis Konstantinos A.
2012-06-01
Full Text Available We present the results of searches for the Standard Model Higgs boson decaying predominantly to W+W− pairs, at a center-of-mass energy of √s = 1.96 TeV, using up to 8.2 fb−1 of data collected with the CDF and D0 detectors at the Fermilab Tevatron collider. The analysis techniques and the various channels considered are discussed. These searches result in exclusions across the Higgs mass range of 156.5< mH <173.7 GeV for CDF and 161< mH <170 GeV for D0.
Coset Space Dimensional Reduction approach to the Standard Model
International Nuclear Information System (INIS)
Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.
1988-01-01
We present a unified theory in ten dimensions based on the gauge group E 8 , which is dimensionally reduced to the Standard Mode SU 3c xSU 2 -LxU 1 , which breaks further spontaneously to SU 3L xU 1em . The model gives similar predictions for sin 2 θ w and proton decay as the minimal SU 5 G.U.T., while a natural choice of the coset space radii predicts light Higgs masses a la Coleman-Weinberg
Modeling RHIC using the standard machine formal accelerator description
International Nuclear Information System (INIS)
Pilat, F.; Trahern, C.G.; Wei, J.
1997-01-01
The Standard Machine Format (SMF) is a structured description of accelerator lattices which supports both the hierarchy of beam lines and generic lattice objects as well as those deviations (field errors, alignment efforts, etc.) associated with each component of the as-installed machine. In this paper we discuss the use of SMF to describe the Relativistic Heavy Ion Collider (RHIC) as well as the ancillary data structures (such as field quality measurements) that are necessarily incorporated into the RHIC SMF model. Future applications of SMF are outlined, including its use in the RHIC operational environment
Physics beyond the standard model in the non-perturbative unification scheme
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1990-01-01
The non-perturbative unification scenario predicts reasonably well the low energy gauge couplings of the standard model. Agreement with the measured low energy couplings is obtained by assuming certain kind of physics beyond the standard model. A number of possibilities for physics beyond the standard model is examined. The best candidates so far are the standard model with eight fermionic families and a similar number of Higgs doublets, and the supersymmetric standard model with five families. (author)
Big bang nucleosynthesis: The standard model and alternatives
Schramm, David N.
1991-01-01
Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).
Big bang nucleosynthesis: The standard model and alternatives
International Nuclear Information System (INIS)
Schramm, D.N.
1991-01-01
Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from 4 He at 24% by mass through 2 H and 3 He at parts in 10 5 down to 7 Li at parts in 10 10 . Furthermore, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, Ω b , remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that Ω b ≅0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming Ω total =1) and the need for dark baryonic matter, since Ω visible b . (orig.)
Standard Model CP-violation and baryon asymmetry
Gavela, M.B.; Orloff, J.; Pene, O.
1994-01-01
Simply based on CP arguments, we argue against a Standard Model explanation of the baryon asymmetry of the universe in the presence of a first order phase transition. A CP-asymmetry is found in the reflection coefficients of quarks hitting the phase boundary created during the electroweak transition. The problem is analyzed both in an academic zero temperature case and in the realistic finite temperature one. The building blocks are similar in both cases: Kobayashi-Maskawa CP-violation, CP-even phases in the reflection coefficients of quarks, and physical transitions due to fermion self-energies. In both cases an effect is present at order $\\alpha_W^2$ in rate. A standard GIM behaviour is found as intuitively expected. In the finite temperature case, a crucial role is played by the damping rate of quasi-particles in a hot plasma, which is a relevant scale together with $M_W$ and the temperature. The effect is many orders of magnitude below what observation requires, and indicates that non standard physics is ...
How to use the Standard Model effective field theory
Energy Technology Data Exchange (ETDEWEB)
Henning, Brian; Lu, Xiaochuan [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Murayama, Hitoshi [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),Todai Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan)
2016-01-05
We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.
How to use the Standard Model effective field theory
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
2016-01-01
We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.
Electroweak baryogenesis in extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Fromme, L.
2006-07-07
We investigate the generation of the baryon asymmetry in two extensions of the Standard Model; these are the {phi}{sup 6} and the two-Higgs-doublet model. Analyzing the thermal potential in the presence of CP violation, we find a strong first order phase transition for a wide range of parameters in both models. We compute the relevant bubble wall properties which then enter the transport equations. In non-supersymmetric models electroweak baryogenesis is dominated by top transport, which we treat in the WKB approximation. We calculate the CP-violating source terms starting from the Dirac equation. We show how to resolve discrepancies between this treatment and the computation in the Schwinger-Keldysh formalism. Furthermore, we keep inelastic scatterings of quarks and W bosons at a finite rate, which considerably affects the amount of the generated baryon asymmetry depending on the bubble wall velocity. In addition, we improve the transport equations by novel source terms which are generated by CP-conserving perturbations in the plasma. It turns out that their effect is relatively small. Both models under consideration predict a baryon to entropy ratio close to the observed value for a large part of the parameter space without being in conflict with constraints on electric dipole moments. (orig.)
Decay of the standard model Higgs field after inflation
Figueroa, Daniel G; Torrenti, Francisco
2015-01-01
We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its ...
CP Violating B Decays in the Standard Model and Supersymmetry
International Nuclear Information System (INIS)
Ciuchini, M.; Franco, E.; Martinelli, G.; Masiero, A.; Silvestrini, L.
1997-01-01
We study the uncertainties of the standard model (SM) predictions for CP violating B decays and investigate where and how supersymmetric (SUSY) contributions may be disentangled. The first task is accomplished by letting the relevant matrix elements of the effective Hamiltonian vary within certain ranges. The SUSY analysis makes use of a formalism which allows one to obtain model-independent results. We show that in some cases it is possible (a) to measure the CP B endash BB mixing phase and (b) to discriminate the SM and SUSY contributions to the CP decay phases. The gold-plated decays in this respect are the B→φK S and B→K S π 0 channels. copyright 1997 The American Physical Society
Electro symmetry breaking and beyond the standard model
International Nuclear Information System (INIS)
Barklow, T.; Dawson, S.; Haber, H.E.
1995-05-01
The development of the Standard Model of particle physics is a remarkable success story. Its many facets have been tested at present day accelerators; no significant unambiguous deviations have yet been found. In some cases, the model has been verified at an accuracy of better than one part in a thousand. This state of affairs presents our field with a challenge. Where do we go from here? What is our vision for future developments in particle physics? Are particle physicists' recent successes a signal of the field's impending demise, or do real long-term prospects exist for further progress? We assert that the long-term health and intellectual vitality of particle physics depends crucially on the development of a new generation of particle colliders that push the energy frontier by an order of magnitude beyond present capabilities. In this report, we address the scientific issues underlying this assertion
Modeling the wet bulb globe temperature using standard meteorological measurements.
Liljegren, James C; Carhart, Richard A; Lawday, Philip; Tschopp, Stephen; Sharp, Robert
2008-10-01
The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 degree C based on comparisons with wet bulb globe temperature measurements at all depots.
Electro symmetry breaking and beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Barklow, T. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Dawson, S. [Brookhaven National Lab., Upton, NY (United States); Haber, H.E. [California Univ., Santa Cruz, CA (United States). Inst. for Particle Physics; Siegrist, J. [Lawrence Berkeley Lab., CA (United States)
1995-05-01
The development of the Standard Model of particle physics is a remarkable success story. Its many facets have been tested at present day accelerators; no significant unambiguous deviations have yet been found. In some cases, the model has been verified at an accuracy of better than one part in a thousand. This state of affairs presents our field with a challenge. Where do we go from here? What is our vision for future developments in particle physics? Are particle physicists` recent successes a signal of the field`s impending demise, or do real long-term prospects exist for further progress? We assert that the long-term health and intellectual vitality of particle physics depends crucially on the development of a new generation of particle colliders that push the energy frontier by an order of magnitude beyond present capabilities. In this report, we address the scientific issues underlying this assertion.
Neutron electric dipole moment in the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.
1995-01-01
The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)
Potential growing model for the standard carnation cv. Delphi
Directory of Open Access Journals (Sweden)
Miguel Ángel López M.
2014-08-01
Full Text Available The cut flower business requires exact synchronicity between product offer and demand in consumer countries. Having tools that help to improve this synchronicity through predictions or crop growth monitoring could provide an important advantage to program standards and corrective agronomic practices. At the Centro de Biotecnología Agropecuaria, SENA (SENA's Biotechnology, Agricultural and Livestock Center, located in Mosquera, Cundinamarca, a trial with standard carnation cv. Delphi grown under greenhouse conditions was carried out. The objective of this study was to build a simple model of dry matter (DM production and partition of on-carnation flower stems. The model was based on the photosynthetically active radiation (PAR MJ m-2 d-1 and temperature as exogenous variables and assumed no water or nutrient limitations or damage caused by pests, disease or weeds. In this model, the daily DM increase depended on the PAR, the light fraction intercepted by the foliage (F LINT and the light use efficiency (LUE g MJ-1. The LUE in the vegetative and reproductive stages reached values of 1.31 and 0.74 g MJ-1, respectively. The estimated extinction coefficient (k value corresponded to 0.53 and the maximum F LINT was between 0.79 and 0.82. Partitioning between the plant vegetative and reproductive stages was modeled based on the hypothesis that the partition is regulated by the source sink relationship. The estimated partition coefficient for the vegetative stage of the leaves was 0.63 and 0.37 for the stems. During the reproductive stage, the partitioning coefficients of leaves, stems and flower buds were 0.05, 0.74, and 0.21, respectively.
Collider physics within the standard model a primer
Altarelli, Guido
2017-01-01
With this graduate-level primer, the principles of the standard model of particle physics receive a particular skillful, personal and enduring exposition by one of the great contributors to the field. In 2013 the late Prof. Altarelli wrote: The discovery of the Higgs boson and the non-observation of new particles or exotic phenomena have made a big step towards completing the experimental confirmation of the standard model of fundamental particle interactions. It is thus a good moment for me to collect, update and improve my graduate lecture notes on quantum chromodynamics and the theory of electroweak interactions, with main focus on collider physics. I hope that these lectures can provide an introduction to the subject for the interested reader, assumed to be already familiar with quantum field theory and some basic facts in elementary particle physics as taught in undergraduate courses. “These lecture notes are a beautiful example of Guido’s unique pedagogical abilities and scientific vision”. From...
From the CERN web: Standard Model, SESAME and more
2015-01-01
This section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing... Left: ATLAS non-leptonic MWZ data. Right: ATLAS σ × B exclusion for W’ → WZ. Is the Standard Model about to crater? 28 October – CERN Courier The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC’s Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale. Continue to read… Students and teachers participate in lectures about CERN science at the first ever SESAME teacher and students school. New CERN programme to develop network between SESAME schools 22 October - by Harriet Jarlett In September CERN welcomed 28 visitors from the Middle East for the first ever student and teacher school f...
Standard Model in multiscale theories and observational constraints
Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David
2016-08-01
We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*35 MeV . For α0=1 /2 , the Lamb shift alone yields t*450 GeV .
Large boson number IBM calculations and their relationship to the Bohr model
Czech Academy of Sciences Publication Activity Database
Thiamová, Gabriela; Rowe, D. J.
2009-01-01
Roč. 41, č. 2 (2009), s. 189-195 ISSN 1434-6001 Institutional research plan: CEZ:AV0Z10480505 Keywords : COLLECTIVE NUCLEAR-STATES * O(6) DESCRIPTION * LIMIT Subject RIV: BE - Theoretical Physics Impact factor: 1.968, year: 2009
Directory of Open Access Journals (Sweden)
Yoshitada Sakai
Full Text Available BACKGROUND: Carbon dioxide (CO(2 therapy refers to the transcutaneous administration of CO(2 for therapeutic purposes. This effect has been explained by an increase in the pressure of O(2 in tissues known as the Bohr effect. However, there have been no reports investigating the oxygen dissociation of haemoglobin (Hb during transcutaneous application of CO(2in vivo. In this study, we investigate whether the Bohr effect is caused by transcutaneous application of CO2 in human living body. METHODS: We used a novel system for transcutaneous application of CO(2 using pure CO(2 gas, hydrogel, and a plastic adaptor. The validity of the CO(2 hydrogel was confirmed in vitro using a measuring device for transcutaneous CO(2 absorption using rat skin. Next, we measured the pH change in the human triceps surae muscle during transcutaneous application of CO(2 using phosphorus-31 magnetic resonance spectroscopy ((31P-MRS in vivo. In addition, oxy- and deoxy-Hb concentrations were measured with near-infrared spectroscopy in the human arm with occulted blood flow to investigate O2 dissociation from Hb caused by transcutaneous application of CO(2. RESULTS: The rat skin experiment showed that CO(2 hydrogel enhanced CO(2 gas permeation through the rat skin. The intracellular pH of the triceps surae muscle decreased significantly 10 min. after transcutaneous application of CO(2. The NIRS data show the oxy-Hb concentration decreased significantly 4 min. after CO(2 application, and deoxy-Hb concentration increased significantly 2 min. after CO(2 application in the CO(2-applied group compared to the control group. Oxy-Hb concentration significantly decreased while deoxy-Hb concentration significantly increased after transcutaneous CO(2 application. CONCLUSIONS: Our novel transcutaneous CO(2 application facilitated an O(2 dissociation from Hb in the human body, thus providing evidence of the Bohr effect in vivo.
Experimental validation of Swy-2 clay standard's PHREEQC model
Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György
2017-04-01
One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast
New extended standard model, dark matters and relativity theory
Hwang, Jae-Kwang
2016-03-01
Three-dimensional quantized space model is newly introduced as the extended standard model. Four three-dimensional quantized spaces with total 12 dimensions are used to explain the universes including ours. Electric (EC), lepton (LC) and color (CC) charges are defined to be the charges of the x1x2x3, x4x5x6 and x7x8x9 warped spaces, respectively. Then, the lepton is the xi(EC) - xj(LC) correlated state which makes 3x3 = 9 leptons and the quark is the xi(EC) - xj(LC) - xk(CC) correlated state which makes 3x3x3 = 27 quarks. The new three bastons with the xi(EC) state are proposed as the dark matters seen in the x1x2x3 space, too. The matter universe question, three generations of the leptons and quarks, dark matter and dark energy, hadronization, the big bang, quantum entanglement, quantum mechanics and general relativity are briefly discussed in terms of this new model. The details can be found in the article titled as ``journey into the universe; three-dimensional quantized spaces, elementary particles and quantum mechanics at https://www.researchgate.net/profile/J_Hwang2''.
Rediscovering standard model physics with the ATLAS detector
Flowerdew, M J
2009-01-01
With its 14 TeV proton-proton center of mass energy, the LHC is a factory of standard model (SM) particles produced at previously inaccessible energy scales. The ATLAS experiment needs to perform a thorough analysis of these particles before exploring more exotic possibilities that the LHC may open doors to. W and Z bosons will initially be used as calibration samples to improve the understanding of the detector. Top quarks will also be copiously produced and will for the first time be calibration particles, whilst also yielding an important background to beyond the SM searches. Top quarks may also be produced with high transverse momenta, requiring novel methods to perform efficient top quark identification in the ATLAS detector. I will give an overview of the current status of the heavy gauge boson and top quark physics at ATLAS, in terms of both detector and expected precision measurements performance.
Dark Matter in the Standard Model? arXiv
Gross, Christian; Strumia, Alessandro; Urbano, Alfredo; Xue, Wei
We critically reexamine two possible Dark Matter candidate within the Standard Model. First, we consider the $uuddss$ exa-quark. Its QCD binding energy could be large enough to make it (quasi) stable. We show that the cosmological Dark Matter abundance is reproduced thermally if its mass is 1.2 GeV. However, we also find that such mass is excluded by the stability of Oxygen nuclei. Second, we consider the possibility that the instability in the Higgs potential leads to the formation of primordial black holes while avoiding vacuum decay during inflation. We show that the non-minimal Higgs coupling to gravity must be as small as allowed by quantum corrections, $|\\xi_H| < 0.01$. Even so, one must assume that the Universe survived in $e^{120}$ independent regions to fluctuations that lead to vacuum decay with probability 1/2 each.
A Constrained Standard Model: Effects of Fayet-Iliopoulos Terms
International Nuclear Information System (INIS)
Barbieri, Riccardo; Hall, Lawrence J.; Nomura, Yasunori
2001-01-01
In (1)the one Higgs doublet standard model was obtained by an orbifold projection of a 5D supersymmetric theory in an essentially unique way, resulting in a prediction for the Higgs mass m H = 127 +- 8 GeV and for the compactification scale 1/R = 370 +- 70 GeV. The dominant one loop contribution to the Higgs potential was found to be finite, while the above uncertainties arose from quadratically divergent brane Z factors and from other higher loop contributions. In (3), a quadratically divergent Fayet-Iliopoulos term was found at one loop in this theory. We show that the resulting uncertainties in the predictions for the Higgs boson mass and the compactification scale are small, about 25percent of the uncertainties quoted above, and hence do not affect the original predictions. However, a tree level brane Fayet-Iliopoulos term could, if large enough, modify these predictions, especially for 1/R.
Status of standard model predictions and uncertainties for electroweak observables
International Nuclear Information System (INIS)
Kniehl, B.A.
1993-11-01
Recent progress in theoretical predictions of electroweak parameters beyond one loop in the standard model is reviewed. The topics include universal corrections of O(G F 2 M H 2 M W 2 ), O(G F 2 m t 4 ), O(α s G F M W 2 ), and those due to virtual t anti t threshold effects, as well as specific corrections to Γ(Z → b anti b) of O(G F 2 m t 4 ), O(α s G F m t 2 ), and O(α s 2 m b 2 /M Z 2 ). An update of the hadronic contributions to Δα is presented. Theoretical uncertainties, other than those due to the lack of knowledge of M H and m t , are estimated. (orig.)
On the metastability of the Standard Model vacuum
International Nuclear Information System (INIS)
Isidori, Gino; Ridolfi, Giovanni; Strumia, Alessandro
2001-01-01
If the Higgs mass m H is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. We present a detailed analysis of the lower bounds on m H imposed by the requirement that the electroweak vacuum be sufficiently long-lived. We perform a complete one-loop calculation of the tunnelling probability at zero temperature, and we improve it by means of two-loop renormalization-group equations. We find that, for m H =115 GeV, the Higgs potential develops an instability below the Planck scale for m t >(166±2) GeV, but the electroweak vacuum is sufficiently long-lived for m t <(175±2) GeV
On the metastability of the Standard Model vacuum
Isidori, Gino; Strumia, A; Isidori, Gino; Ridolfi, Giovanni; Strumia, Alessandro
2001-01-01
If the Higgs mass $m_H$ is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. We present a detailed analysis of the lower bounds on $m_H$ imposed by the requirement that the electroweak vacuum be sufficiently long-lived. We perform a complete one-loop calculation of the tunnelling probability at zero temperature, and we improve it by means of two-loop renormalization-group equations. We find that, for $m_H=115$ GeV, the Higgs potential develops an instability below the Planck scale for $m_t>(166\\pm 2) \\GeV$, but the electroweak vacuum is sufficiently long-lived for $m_t > (175\\pm 2) \\GeV$.
Through precision straits to next standard model heights
David, André
2016-01-01
After the LHC Run 1, the standard model (SM) of particle physics has been completed. Yet, despite its successes, the SM has shortcomings vis-\\`{a}-vis cosmological and other observations. At the same time, while the LHC restarts for Run 2 at 13 TeV, there is presently a lack of direct evidence for new physics phenomena at the accelerator energy frontier. From this state of affairs arises the need for a consistent theoretical framework in which deviations from the SM predictions can be calculated and compared to precision measurements. Such a framework should be able to comprehensively make use of all measurements in all sectors of particle physics, including LHC Higgs measurements, past electroweak precision data, electric dipole moment, $g-2$, penguins and flavor physics, neutrino scattering, deep inelastic scattering, low-energy $e^{+}e^{-}$ scattering, mass measurements, and any search for physics beyond the SM. By simultaneously describing all existing measurements, this framework then becomes an intermed...
Error modelling of quantum Hall array resistance standards
Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa
2018-04-01
Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.
The Standard-Model Extension and Gravitational Tests
Directory of Open Access Journals (Sweden)
Jay D. Tasson
2016-10-01
Full Text Available The Standard-Model Extension (SME provides a comprehensive effective field-theory framework for the study of CPT and Lorentz symmetry. This work reviews the structure and philosophy of the SME and provides some intuitive examples of symmetry violation. The results of recent gravitational tests performed within the SME are summarized including analysis of results from the Laser Interferometer Gravitational-Wave Observatory (LIGO, sensitivities achieved in short-range gravity experiments, constraints from cosmic-ray data, and results achieved by studying planetary ephemerids. Some proposals and ongoing efforts will also be considered including gravimeter tests, tests of the Weak Equivalence Principle, and antimatter experiments. Our review of the above topics is augmented by several original extensions of the relevant work. We present new examples of symmetry violation in the SME and use the cosmic-ray analysis to place first-ever constraints on 81 additional operators.
The hierarchy problem of the electroweak standard model revisited
Energy Technology Data Exchange (ETDEWEB)
Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-05-15
A careful renormalization group analysis of the electroweak Standard Model reveals that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means that the scalar Higgs needs not be protected by any extra symmetry, specifically super symmetry, in order not to be much heavier than the other SM particles which are protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects in the SM cannot motivate the need for a super symmetric extensions of the SM, but in contrast plays an important role in triggering the electroweak phase transition and in shaping the Higgs potential in the early universe to drive inflation as supported by observation.
Experimental limits from ATLAS on Standard Model Higgs production.
ATLAS, collaboration
2012-01-01
Experimental limits from ATLAS on Standard Model Higgs production in the mass range 110-600 GeV. The solid curve reflects the observed experimental limits for the production of a Higgs of each possible mass value (horizontal axis). The region for which the solid curve dips below the horizontal line at the value of 1 is excluded with a 95% confidence level (CL). The dashed curve shows the expected limit in the absence of the Higgs boson, based on simulations. The green and yellow bands correspond (respectively) to 68%, and 95% confidence level regions from the expected limits. Higgs masses in the narrow range 123-130 GeV are the only masses not excluded at 95% CL
CP violation outside the standard model phenomenology for pedestrians
International Nuclear Information System (INIS)
Lipkin, H.J.
1993-01-01
So far the only experimental evidence for CP violation is the 1964 discovery of K L →2π where the two mass eigenstates produced by neutral meson mixing both decay into the same CP eigenstate. This result is described by two parameters ε and ε'. Today ε ∼ its 1964 value, ε' data are still inconclusive and there is no new evidence for CP violation. One might expect to observe similar phenomena in other systems and also direct CP violation as charge asymmetries between decays of charge conjugate hadrons H ± → f ± . Why is it so hard to find CP violation? How can B Physics help? Does CP lead beyond the standard model? The author presents a pedestrian symmetry approach which exhibits the difficulties and future possibilities of these two types of CP-violation experiments, neutral meson mixing and direct charge asymmetry: what may work, what doesn't work and why
Beyond the Standard Model new physics at the electroweak scale
Masiero, Antonio
1997-01-01
A critical reappraisal of the Standard Model (SM) will force us to new physics beyond it. I will argue that we have good reasons to believe that the latter is likely to lie close to the electroweak scale. After discussing the possibility that such new physics may be linked to a dynamical breaking of SU(2)xU(1) (technicolour), I will come to the core of the course: low energy supersymmetry. I will focus on the main phenomenological features, while emphasizing the relevant differences for various options of supersymmetrization of the SM. In particular the economical (but very particular) minimal SUSY SM (MSSM)will be discussed in detail. Some touchy issues for SUSY like the flavour problem or matter stability will be adressed. I will conclude with the prospects for SUSY searches in high-energy accelerators, B-factories and non-accelerator physics.
Ruling out a strongly interacting standard Higgs model
International Nuclear Information System (INIS)
Riesselmann, K.; Willenbrock, S.
1997-01-01
Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs-boson mass, for relatively small values of the Higgs quartic coupling λ(μ). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly interacting standard Higgs model at energies above the Higgs-boson mass, complementing earlier studies which excluded strong interactions at energies near the Higgs-boson mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=√(s)/e∼√(s)/2.7, so it can be incorporated easily in renormalization-group-improved tree-level amplitudes as well as higher-order calculations. copyright 1996 The American Physical Society
Consistent constraints on the Standard Model Effective Field Theory
Energy Technology Data Exchange (ETDEWEB)
Berthier, Laure; Trott, Michael [Niels Bohr International Academy, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen (Denmark)
2016-02-10
We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.
DsixTools: the standard model effective field theory toolkit
Energy Technology Data Exchange (ETDEWEB)
Celis, Alejandro [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Arnold Sommerfeld Center for Theoretical Physics, Munich (Germany); Fuentes-Martin, Javier; Vicente, Avelino [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Virto, Javier [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland)
2017-06-15
We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the ΔB = ΔS = 1, 2 and ΔB = ΔC = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale. (orig.)
Image contrast enhancement based on a local standard deviation model
International Nuclear Information System (INIS)
Chang, Dah-Chung; Wu, Wen-Rong
1996-01-01
The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt's Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm
The hadronic standard model for strong and electroweak interactions
Energy Technology Data Exchange (ETDEWEB)
Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)
1993-12-31
We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.
Selected topics in phenomenology of the standard model
International Nuclear Information System (INIS)
Roberts, R.G.
1991-01-01
These lectures cover some aspects of phenomenology of topics in high energy physics which advertise the success of the standard model in dealing with a wide variety of experimental data. First we begin with a look at deep inelastic scattering. This tells us about the structure of the nucleon, which is understood in terms of the SU(3) gauge theory of QCD, which then allows the information on quark and gluon distributions to be carried over to other 'hard' processes such as hadronic production of jets. Recent data on electroweak processes can estimate the value of Sin 2 θw to a precision where the inclusion of radiative corrections allow bounds to be made on the mass of the top quark. Electroweak effects arise in e + e - collisions, but we first present a review of the recent history of this topic within the context of QCD. We bring the subject up to date with a look at the physics at (or near) the Z pole where the measurement of asymmetries can give more information. We look at the conventional description of quark mixing by the CKM matrix and see how the mixing parameters are systematically being extracted from a variety of reactions and decays. In turn, the values can be used to set bounds on the top quark mass. The matter of CP violation in weak interactions is addressed within the context of the standard model, recent data on ε'/ε being the source of current excitement. Finally, we at the theoretical description and experimental efforts to search for the top quark. (author)
Semileptonic B decays in the Standard Model and beyond
Energy Technology Data Exchange (ETDEWEB)
Wick, Michael
2010-09-15
In this thesis we study several aspects of decays based on the quark level transitions b{yields}s{nu}anti {nu} and b{yields}s{mu}{sup +}{mu}{sup -} as well as transition form factors for radiative and rare semileptonic B meson decays. The quark level transition b{yields}s{nu}anti {nu} offers a transparent study of Z penguin and other electroweak penguin effects in New Physics (NP) scenarios in the absence of dipole operator contributions and Higgs penguin contributions. We present an analysis of B{yields}K*{nu}anti {nu} with improved form factors and of the decays B{yields}K{nu}anti {nu} and B{yields}X{sub s}{nu}anti {nu} in the Standard Model (SM) and in a number of NP scenarios like the general Minimal Supersymmetric Standard Model (MSSM), general scenarios with modified Z/Z{sup '} penguins and in a singlet scalar extension of the SM. The results for the SM and NP scenarios can be transparently visualized in a ({epsilon};{eta}) plane. The rare decay B{yields}K*({yields}K{pi}){mu}{sup +}{mu}{sup -} is regarded as one of the crucial channels for B physics as it gives rise to a multitude of observables. We investigate systematically the often correlated effects in these observables in the context of the SM and various NP models, in particular the Littlest Higgs model with T-parity and various MSSM scenarios and identify those observables with small to moderate dependence on hadronic quantities and large impact of NP. Furthermore, we study transition form factors for radiative and rare semi-leptonic B-meson decays into light pseudoscalar or vector mesons, combining theoretical and phenomenological constraints from Lattice QCD, light-cone sum rules, and dispersive bounds. We pay particular attention to form factor parameterizations which are based on the so-called series expansion, and study the related systematic uncertainties on a quantitative level. In this analysis as well as in the analysis of the b{yields}s transitions, we use consistently a convenient form
Zhang, Peng; Xing, Caihong; Rhodes, Steven D; He, Yongzheng; Deng, Kai; Li, Zhaomin; He, Fuhong; Zhu, Caiying; Nguyen, Lihn; Zhou, Yuan; Chen, Shi; Mohammad, Khalid S; Guise, Theresa A; Abdel-Wahab, Omar; Xu, Mingjiang; Wang, Qian-Fei; Yang, Feng-Chun
2016-06-14
De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
2003-07-01
among Human Behavior Modeling (HEM) -related models in the Department of Defense (DoD), Industry, Academia, and other Government simulations by...establishing a Laboratory for the Study of Human Behavior Representation Interchange Standard. With experience, expertise, and technologies of the
13th Workshop on What Comes Beyond the Standard Models
Nielsen, Holger Bech; Lukman, Dragan; What Comes Beyond the Standard Models
2010-01-01
1. Noncommutativity and Topology within Lattice Field Theories 2. The Construction of Quantum Field Operators 3. The Bargmann-Wigner Formalism for Spin 2 Fields 4. New Light on Dark Matter from the LHC 5. Extra Dimensional Metric Reversal Symmetry and its Prospect... 6. Masses and Mixing Matrices of Families within SU(3) Flavor Symmetry ... 7. Dark Atoms of the Universe: OHe Nuclear Physics, 8. Can the Matter-Antimatter Asymmetry be Easier to Understand Within the "Spin-charge-family-theory", .. 9. Mass Matrices of Twice Four Families of Quarks and Leptons, ...in the "Spin-charge-family-theory" 10. Bohmian Quantum Mechanics or What Comes Before the Standard Model 11. Backward Causation in Complex Action Model ... 12. Is the Prediction of the "Spin-charge-family-theory" in Disagreement with the XENON100..? 13. Masses and Mixing Matrices of Families of Quarks and Leptons Within the "Spin-charge-family-theory" 14. Can the Stable Fifth Family of the "Spin-charge-family-theory" ...Form the Fifth Antibaryon Cluster...
Standard model baryogenesis through four-fermion operators in braneworlds
International Nuclear Information System (INIS)
Chung, Daniel J.H.; Dent, Thomas
2002-01-01
We study a new baryogenesis scenario in a class of braneworld models with low fundamental scale, which typically have difficulty with baryogenesis. The scenario is characterized by its minimal nature: the field content is that of the standard model and all interactions consistent with the gauge symmetry are admitted. Baryon number is violated via a dimension-6 proton decay operator, suppressed today by the mechanism of quark-lepton separation in extra dimensions; we assume that this operator was unsuppressed in the early Universe due to a time-dependent quark-lepton separation. The source of CP violation is the CKM matrix, in combination with the dimension-6 operators. We find that almost independently of cosmology, sufficient baryogenesis is nearly impossible in such a scenario if the fundamental scale is above 100 TeV, as required by an unsuppressed neutron-antineutron oscillation operator. The only exception producing sufficient baryon asymmetry is a scenario involving out-of-equilibrium c quarks interacting with equilibrium b quarks
Probing physics beyond the standard model in diatomic molecules
International Nuclear Information System (INIS)
Denis, M.
2017-01-01
Nowadays, the incompleteness of the Standard Model of particles (SM) is largely acknowledged. One of its most obvious shortcomings is the lack of explanation for the huge surplus of matter over antimatter in the universe, the so-called baryon asymmetry of the universe. New CP (charge conjugation and spatial parity) violations absent in the SM are assumed to be responsible for this asymmetry. Such a violation could be observed, in ordinary matter through a set of interactions violating both parity and time-reversal symmetries (P, T -odd) among which the preponderant ones are the electron Electric Dipole Moment (eEDM), the electron-nucleon scalar-pseudoscalar (enSPS) and the nuclear magnetic quadrupole moment (nMQM) interactions. Hence, an experimental evidence of a non-zero P, T -odd interaction constant would be a probe of this New Physics beyond the Standard Model. The calculation of the corresponding molecular parameters is performed by making use of an elaborate four-component relativistic configuration interaction approach in polar diatomic molecules containing an actinide, that are particularly adequate systems for eEDM experiments, such as ThO that allowed for assigning the most constraining upper bound on the eEDM and ThF + that will be used in a forthcoming experiment. Those results will be of crucial importance in the interpretation of the measurements since the fundamental constants can only be evaluated if one combines both experimental energy shift measurements and theoretical molecular parameters. This manuscript proceeds as follows, after an introduction to the general background of the search of CP-violations and its consequences for the understanding of the Universe (Chapter 1), a presentation of the underlying theory of the evidence of such violation in ordinary matter, namely the P, T -odd sources of the Electric Dipole Moment of a many-electron system, as well as the relevant molecular parameters is given in Chapter 2. A similar introduction to
Lavignac, Stephan; Dalibard, Jean
2006-01-01
The Standard Model of elementary particles and interactions is one of the tested theories in physics. This book presents a collection of lectures given in August 2005 at the Les Houches Summer School on Particle Physics beyond the Standard Model. It provides a pedagogical introduction to the aspects of particle physics beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard
2016-11-01
The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.
Flavor democracy in standard models at high energies
Energy Technology Data Exchange (ETDEWEB)
Cvetic, G. (Dortmund Univ. (Germany). Inst. fuer Physik); Kim, C.S. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics)
1993-10-18
It is possible that the standard model (SM) is replaced around some transition energy [Lambda] by a new, possibly Higgsless, 'flavor gauge theory' such that the Yukawa (running) parameters of SM at E[approx][Lambda] show up an (approximate) flavor democracy (FD). We investigate the latter possibility by studying the renormalization group equations for the Yukawa couplings of SM with one and two Higgs doublets, by evolving them from given physical values at low energies (E[approx equal]1 GeV) to [Lambda] ([approx][Lambda][sub pole]) and comparing the resulting fermion masses and CKM matrix elements at E[approx equal][Lambda] for various m[sub t][sup phy] and ratios y[sub u]/y[sub d] of vacuum expectation values. We find that the minimal SM and the closely related SM with two Higgs doublets (type I) show increasing deviation from FD when energy is increased, but that SM with two Higgs doublets (type II) clearly tends to FD with increasing energy - in both the quark and the leptonic sector (q-q and l-l FD). Furthermore, we find within the type-II model that, for [Lambda][sub pole]<<[Lambda][sub Planck], m[sub t][sup phy] can be less than 200 GeV in most cases of chosen y[sub u]/y[sub d]. Under the assumption that also the corresponding Yukawa couplings in the quark and the leptonic sector at E[approx equal][Lambda] are equal (l-q FD), we derive estimates of bounds on masses of top quark and tau-neutrino, which are compatible with experimental bounds. (orig.)
LHCb is trying to crack the Standard Model
2011-01-01
LHCb will reveal new results tomorrow that will shed more light on the possible CP-violation measurement reported recently by the Tevatron experiments, different from Standard Model predictions. Quantum Diaries blogger for CERN, Pauline Gagnon, explains how. LHCb, one of the Large Hadron Collider (LHC) experiments, was designed specifically to study charge-parity or CP violation. In simple words, its goal is to explain why more matter than antimatter was produced when the Universe slowly cooled down after the Big Bang, leading to a world predominantly composed of matter. This is quite puzzling since in laboratory experiments we do not measure a preference for the creation of matter over antimatter. Hence the CP-conservation law in physics that states that Nature should not have a preference for matter over antimatter. So why did the Universe evolve this way? One of the best ways to study this phenomenon is with b quarks. Since they are heavy, they can decay (i.e break down into smaller parts) ...
Electroweak Precision Observables in the Minimal Supersymmetric Standard Model
Heinemeyer, S; Weiglein, Georg
2006-01-01
The current status of electroweak precision observables in the Minimal Supersymmetric Standard Model (MSSM) is reviewed. We focus in particular on the $W$ boson mass, M_W, the effective leptonic weak mixing angle, sin^2 theta_eff, the anomalous magnetic moment of the muon, (g-2)_\\mu, and the lightest CP-even MSSM Higgs boson mass, m_h. We summarize the current experimental situation and the status of the theoretical evaluations. An estimate of the current theoretical uncertainties from unknown higher-order corrections and from the experimental errors of the input parameters is given. We discuss future prospects for both the experimental accuracies and the precision of the theoretical predictions. Confronting the precision data with the theory predictions within the unconstrained MSSM and within specific SUSY-breaking scenarios, we analyse how well the data are described by the theory. The mSUGRA scenario with cosmological constraints yields a very good fit to the data, showing a clear preference for a relativ...
On the fate of the Standard Model at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Rose, Luigi Delle; Marzo, Carlo [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di Lecce,via Arnesano, 73100 Lecce (Italy); Urbano, Alfredo [SISSA - International School for Advanced Studies,via Bonomea 256, 34136 Trieste (Italy)
2016-05-10
In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 10{sup 18} GeV, we find that the instability bound excludes values of the top mass M{sub t}≳173.6 GeV, with M{sub h}≃125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.
Baryon asymmetry of the Universe in the standard model
International Nuclear Information System (INIS)
Farrar, G.R.; Shaposhnikov, M.E.
1994-01-01
We study the interactions of quarks and antiquarks with the changing Higgs field during the electroweak phase transition, including quantum mechanical and some thermal effects, with the only source of CP violation being the known CKM phase. We show that the GIM cancellation, which has been commonly thought to imply a prediction which is at least 10 orders of magnitude too small, can be evaded in certain kinematic regimes, for instance, when the strange quark is totally reflected but the down quark is not. We report on a quantitative calculation of the asymmetry in a one-dimensional approximation based on the present understanding of the physics of the high-temperature environment, but with some aspects of the problem oversimplified. The resulting prediction for the magnitude and sign of the present baryonic asymmetry of the Universe agrees with the observed value, with moderately optimistic assumptions about the dynamics of the phase transition. Both magnitude and sign of the asymmetry have an intricate dependence on quark masses and mixings, so that quantitative agreement between prediction and observation would be highly nontrivial. At present uncertainties related to the dynamics of the EW phase transition and the oversimplifications of our treatment are too great to decide whether or not this is the correct explanation for the presence of remnant matter in our Universe; however, the present work makes it clear that the minimal standard model cannot be discounted as a contender for explaining this phenomenon
Environmental standards as strategic outcomes: A simple model
International Nuclear Information System (INIS)
Bhattacharya, Rabindra N.; Pal, Rupayan
2010-01-01
This paper analyses the strategic nature of choice of environmental standards considering both local and global pollution under alternative regimes of international trade. It also compares and contrasts the strategic equilibrium environmental standards and levels of pollution, local and global, with the world optimum levels. It shows that, in case of open economies, environmental standards can be either strategic substitutes or strategic complements. On the contrary, in case of closed economies, environmental standards are always strategic substitutes. It also shows that the strategic equilibrium environmental standards in case of open economies are higher than the world optimum in certain situations. Whereas, in absence of international trade, countries set, in equilibrium, lower environmental standards than the world optimum. (author)
Use and Abuse of the Model Waveform Accuracy Standards
Lindblom, Lee
2010-02-01
Accuracy standards have been developed to ensure that the waveforms used for gravitational-wave data analysis are good enough to serve their intended purposes. These standards place constraints on certain norms of the frequency-domain representations of the waveform errors. Examples will be presented of possible misinterpretations and misapplications of these standards, whose effect could be to vitiate the quality control they were intended to enforce. Suggestions will be given for ways to avoid these problems. )
The Standard Model with one universal extra dimension
Indian Academy of Sciences (India)
Yang–Mills, Currents, Higgs, and Yukawa sectors is presented. The one-loop renormalizability of the standard Green's functions, which implies that the Standard ..... The quantization of this theory was discussed in [14]. 2.2 The Higgs sector. The Higgs sector is constituted by the kinetic term and the potential: LH = ∫ 2πR. 0.
A Visual Model for the Variance and Standard Deviation
Orris, J. B.
2011-01-01
This paper shows how the variance and standard deviation can be represented graphically by looking at each squared deviation as a graphical object--in particular, as a square. A series of displays show how the standard deviation is the size of the average square.
The pion: an enigma within the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Horn, Tanja; Roberts, Craig D.
2016-05-27
Almost 50 years after the discovery of gluons & quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons, protons, and the pions that bind them. QCD is characterised by two emergent phenomena: confinement & dynamical chiral symmetry breaking (DCSB). They are expressed with great force in the character of the pion. In turn, pion properties suggest that confinement & DCSB are closely connected. As both a Nambu-Goldstone boson and a quark-antiquark bound-state, the pion is unique in Nature. Developing an understanding of its properties is thus critical to revealing basic features of the Standard Model. We describe experimental progress in this direction, made using electromagnetic probes, highlighting both improvements in the precision of charged-pion form factor data, achieved in the past decade, and new results on the neutral-pion transition form factor. Both challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, first explaining how DCSB works to guarantee that the pion is unnaturally light; but also, nevertheless, ensures the pion is key to revealing the mechanisms that generate nearly all the mass of hadrons. Our discussion unifies the charged-pion elastic and neutral-pion transition form factors, and the pion's twist-2 parton distribution amplitude. It also indicates how studies of the charged-kaon form factor can provide significant contributions. Importantly, recent predictions for the large-$Q^2$ behaviour of the pion form factor can be tested by experiments planned at JLab 12. Those experiments will extend precise charged-pion form factor data to momenta that can potentially serve in validating factorisation theorems in QCD, exposing the transition between the nonperturbative and perturbative domains, and thereby reaching a goal that has long driven hadro-particle physics.
Higgs particles in the standard model and supersymmetric theories
International Nuclear Information System (INIS)
Muehlleitner, M.M.
2000-08-01
This thesis presents a theoretical analysis of the properties of the Higgs bosons in the standard model (SM) and the minimal supersymmetric extension (MSSM), which can be investigated at the LHC and e + e - linear colliders. The final goal is the reconstruction of the Higgs potential and thus the verification of the Higgs mechanism. MSSM Higgs boson production processes at future γγ colliders are calculated in several decay channels. Heavy scalar and pseudoscalar Higgs bosons can be discovered in the bb final state in the investigated mass range 200 to 800 GeV for moderate and large values of tanβ. The τ + τ - channel provides a heavy Higgs boson discovery potential for large values of tanβ. Several mechanisms that can be exploited at e + e - linear colliders for the measurement of the lifetime of a SM Higgs boson in the intermediate mass range are analysed. In the WW mode, the lifetime of Higgs scalars with masses below ∝160 GeV can be determined with an error less than 10%. The reconstruction of the Higgs potential requires the measurement of the Higgs self-couplings. The SM and MSSM trilinear Higgs self-couplings are accessible in double and triple Higgs production. A theoretical analysis is presented in the relevant channels at the LHC and e + e - linear colliders. For high luminosities, the SM trilinear Higgs self-coupling can be measured with an accuracy of 20% at a 500 GeV e + e - linear collider. The MSSM coupling among three light Higgs bosons has to be extracted from continuum production. The other trilinear Higgs couplings are measurable in a restricted range of the MSSM parameter space. At the LHC, the Hhh coupling can be probed in resonant decays. (orig.)
Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong; Kim, Ju Han
2014-01-01
Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models.
Prototyping an online wetland ecosystem services model using open model sharing standards
Feng, M.; Liu, S.; Euliss, N.H.; Young, Caitlin; Mushet, D.M.
2011-01-01
Great interest currently exists for developing ecosystem models to forecast how ecosystem services may change under alternative land use and climate futures. Ecosystem services are diverse and include supporting services or functions (e.g., primary production, nutrient cycling), provisioning services (e.g., wildlife, groundwater), regulating services (e.g., water purification, floodwater retention), and even cultural services (e.g., ecotourism, cultural heritage). Hence, the knowledge base necessary to quantify ecosystem services is broad and derived from many diverse scientific disciplines. Building the required interdisciplinary models is especially challenging as modelers from different locations and times may develop the disciplinary models needed for ecosystem simulations, and these models must be identified and made accessible to the interdisciplinary simulation. Additional difficulties include inconsistent data structures, formats, and metadata required by geospatial models as well as limitations on computing, storage, and connectivity. Traditional standalone and closed network systems cannot fully support sharing and integrating interdisciplinary geospatial models from variant sources. To address this need, we developed an approach to openly share and access geospatial computational models using distributed Geographic Information System (GIS) techniques and open geospatial standards. We included a means to share computational models compliant with Open Geospatial Consortium (OGC) Web Processing Services (WPS) standard to ensure modelers have an efficient and simplified means to publish new models. To demonstrate our approach, we developed five disciplinary models that can be integrated and shared to simulate a few of the ecosystem services (e.g., water storage, waterfowl breeding) that are provided by wetlands in the Prairie Pothole Region (PPR) of North America.
Folmer, E.J.A.; Bekkum, M.A. van; Oude Luttighuis, P.; Hillegersberg, J. van
2011-01-01
eGovernment interoperability should be dealt with using high-quality standards. A quality model for standards is presented based on knowledge from the software engineering domain. In the tradition of action research the model is used on the SETU standard, a standard that is mandatory in the public
Folmer, Erwin; van Bekkum, Michael; Oude Luttighuis, Paul; van Hillegersberg, Jos
2011-01-01
eGovernment interoperability should be dealt with using high-quality standards. A quality model for standards is presented based on knowledge from the software engineering domain. In the tradition of action research the model is used on the SETU standard, a standard that is mandatory in the public
Implementation of IEC Standard Models for Power System Stability Studies
DEFF Research Database (Denmark)
Margaris, Ioannis; Hansen, Anca Daniela; Bech, John
2012-01-01
, namely a model for a variable speed wind turbine with full scale power converter WTG including a 2- mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system...
Implementing the Standards: Incorporating Mathematical Modeling into the Curriculum.
Swetz, Frank
1991-01-01
Following a brief historical review of the mechanism of mathematical modeling, examples are included that associate a mathematical model with given data (changes in sea level) and that model a real-life situation (process of parallel parking). Also provided is the rationale for the curricular implementation of mathematical modeling. (JJK)
A Journey in Standard Development: The Core Manufacturing Simulation Data (CMSD) Information Model.
Lee, Yung-Tsun Tina
2015-01-01
This report documents a journey "from research to an approved standard" of a NIST-led standard development activity. That standard, Core Manufacturing Simulation Data (CMSD) information model, provides neutral structures for the efficient exchange of manufacturing data in a simulation environment. The model was standardized under the auspices of the international Simulation Interoperability Standards Organization (SISO). NIST started the research in 2001 and initiated the standardization effort in 2004. The CMSD standard was published in two SISO Products. In the first Product, the information model was defined in the Unified Modeling Language (UML) and published in 2010 as SISO-STD-008-2010. In the second Product, the information model was defined in Extensible Markup Language (XML) and published in 2013 as SISO-STD-008-01-2012. Both SISO-STD-008-2010 and SISO-STD-008-01-2012 are intended to be used together.
Physics beyond Standard Model: Working group 3 report
Indian Academy of Sciences (India)
Supersymmetry still ranks as one of the most preferred physics beyond Standard ... Flavour processes are still one of the major indirect search strategies for new physics. However, new physics can contribute to flavour physics even if it does not ..... L Calibbi (SISSA, Italy), E J Chun (KIAS, South Korea) and S K Vempati.
Moreno Llacer, Maria; The ATLAS collaboration
2016-01-01
Production of top quark pairs in association with heavy Standard Model bosons or with heavy flavour quark-pairs is important both as a signal and a background in several ATLAS analyses. Strong constraints on such processes cannot at present be obtained from data, and therefore their modeling by Monte Carlo simulation as well as the associated uncertainties are important. This poster documents the Monte Carlo samples currently being used in ATLAS for the ttH and ttV (V=W,Z vector bosons) and tt+bottom and charm quark pairs processes for sqrt(s)=13 TeV proton-proton collisions.
Relating electrophotographic printing model and ISO13660 standard attributes
Barney Smith, Elisa H.
2010-01-01
A mathematical model of the electrophotographic printing process has been developed. This model can be used for analysis. From this a print simulation process has been developed to simulate the effects of the model components on toner particle placement. A wide variety of simulated prints are produced from the model's three main inputs, laser spread, charge to toner proportionality factor and toner particle size. While the exact placement of toner particles is a random process, the total effect is not. The effect of each model parameter on the ISO 13660 print quality attributes line width, fill, raggedness and blurriness is described.
Physics at a 100 TeV pp Collider: Standard Model Processes
Energy Technology Data Exchange (ETDEWEB)
Mangano, M. L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zanderighi, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Aguilar Saavedra, J. A. [Univ. of Granada (Spain); Alekhin, S. [Univ. of Hamburg (Germany). Inst. for Theoretical Physics; Inst. for High Energy Physics (IHEP), Moscow (Russian Federation); Badger, S. [Univ. of Edinburgh, Scotland (United Kingdom); Bauer, C. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Becher, T. [Univ. Bern (Switzerland); Bertone, V. [Univ. of Oxford (United Kingdom); Bonvini, M. [Univ. of Oxford (United Kingdom); Boselli, S. [Univ. of Pavia (Italy); Bothmann, E. [Gottingen Univ. (Germany); Boughezal, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Cacciari, M. [Univ. Paris Diderot (France); Sorbonne Univ., Paris (France); Carloni Calame, C M. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Caola, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Campbell, J. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Carrazza, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chiesa, M. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Cieri, L. [Univ. of Zurich (Switzerland); Cimaglia, F. [Univ. degli Studi di Milano (Italy); Febres Cordero, F. [Physikalisches Inst., Freiburg (Germany); Ferrarese, P. [Gottingen Univ. (Germany); D' Enterria, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ferrera, G. [Univ. degli Studi di Milano (Italy); Garcia i Tormo, X. [Univ. Bern (Switzerland); Garzelli, M. V. [Univ. of Hamburg (Germany); Germann, E. [Monash Univ., Melbourne, VIC (Australia); Hirschi, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Han, T. [Univ. of Pittsburgh, PA (United States); Ita, H. [Physikalisches Inst., Freiburg (Germany); Jager, B. [Univ. of Tubingen (Germany); Kallweit, S. [Johannes Gutenberg Univ., Mainz (Germany); Karlberg, A. [Univ. of Oxford (United Kingdom); Kuttimalai, S. [Durham Univ. (United Kingdom); Krauss, F. [Durham Univ. (United Kingdom); Larkoski, A. J. [Harvard Univ., Cambridge, MA (United States); Lindert, J. [Univ. of Zurich (Switzerland); Luisoni, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Maierhofer, P. [Univ. of Freiburg (Germany); Mattelaer, O. [Durham Univ. (United Kingdom); Martinez, H. [Univ. of Pavia (Italy); Moch, S. [Univ. of Hamburg (Germany); Montagna, G. [Univ. of Pavia (Italy); Moretti, M. [Univ. of Ferrara (Italy); Nason, P. [Univ. of Milano (Italy); Nicrosini, O. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Oleari, C. [Univ. of Milano (Italy); Pagani, D. [Univ. Catholique de Louvain (Belgium); Papaefstathiou, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Petriello, F. [Northwestern Univ., Evanston, IL (United States); Piccinini, F. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Pierini, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pierog, T. [Karlsruhe Inst. of Technology (KIT) (Germany); Pozzorini, S. [Univ. of Zurich (Switzerland); Re, E. [National Centre for Scientific Research (CNRS), Annecy-le-Vieux (France). Lab. of Annecy-le-Vieux for Theoretical Physics (LAPTh); Robens, T. [Technische Universitat Dresden (Germany); Rojo, J. [Univ. of Oxford (United Kingdom); Ruiz, R. [Durham Univ. (United Kingdom); Sakurai, K. [Durham Univ. (United Kingdom); Salam, G. P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salfelder, L. [Univ. of Tubingen (Germany); Schonherr, M. [Univ. of Ferrara (Italy); Schulze, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schumann, S. [Univ. Gottingen (Germany); Selvaggi, M. [Univ. Catholique de Louvain (Belgium); Shivaji, A. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Siodmok, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Polish Academy of Sciences (PAS), Krakow (Poland); Skands, P. [Monash Univ., Melbourne, VIC (Australia); Torrielli, P. [Univ. of Torino (Italy); Tramontano, F. [Univ. of Napoli (Italy); Tsinikos, I. [Univ. Catholique de Louvain (Belgium); Tweedie, B. [Univ. of Pittsburgh, PA (United States); Vicini, A. [Univ. degli Studi di Milano (Italy); Westhoff, S. [Heidelberg Univ. (Germany); Zaro, M. [Sorbonne Univ., Paris (France); Zeppenfeld, D. [Forschungszentrum Karlsruhe (Germany)
2017-06-22
This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.
TECHNICAL PRODUCT RISK ASSESSMENT: STANDARDS, INTEGRATION IN THE ERM MODEL AND UNCERTAINTY MODELING
Directory of Open Access Journals (Sweden)
Mirko Djapic
2016-03-01
Full Text Available European Union has accomplished, through introducing New Approach to technical harmonization and standardization, a breakthrough in the field of technical products safety and in assessing their conformity, in such a manner that it integrated products safety requirements into the process of products development. This is achieved by quantifying risk levels with the aim of determining the scope of the required safety measures and systems. The theory of probability is used as a tool for modeling uncertainties in the assessment of that risk. In the last forty years are developed new mathematical theories have proven to be better at modeling uncertainty when we have not enough data about uncertainty events which is usually the case in product development. Bayesian networks based on modeling of subjective probability and Evidence networks based on Dempster-Shafer theory of belief functions proved to be an excellent tool for modeling uncertainty when we do not have enough information about all events aspect.
Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization
Energy Technology Data Exchange (ETDEWEB)
Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc
2015-12-01
Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.
New framework for standardized notation in wastewater treatment modelling
DEFF Research Database (Denmark)
Corominas, L.; Rieger, L.; Takacs, I.
2010-01-01
Many unit process models are available in the field of wastewater treatment. All of these models use their own notation, causing problems for documentation, implementation and connection of different models (using different sets of state variables). The main goal of this paper is to propose a new...... is a framework that can be used in whole plant modelling, which consists of different fields such as activated sludge, anaerobic digestion, sidestream treatment, membrane bioreactors, metabolic approaches, fate of micropollutants and biofilm processes. The main objective of this consensus building paper...... is to establish a consistent set of rules that can be applied to existing and most importantly, future models. Applying the proposed notation should make it easier for everyone active in the wastewater treatment field to read, write and review documents describing modelling projects....
A Statistical Model for Natural Gas Standardized Load Profiles
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Konár, Ondřej; Malý, Marek; Pelikán, Emil; Vondráček, Jiří
2009-01-01
Roč. 58, č. 1 (2009), s. 123-139 ISSN 0035-9254 R&D Projects: GA AV ČR 1ET400300513 Institutional research plan: CEZ:AV0Z10300504 Keywords : disaggregation * generalized additive models * multiplicative model * non-linear effects * segmentation * semiparametric regression model Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 1.060, year: 2009
No evidence for extensions to the standard cosmological model
CSIR Research Space (South Africa)
Heavens, A
2017-09-01
Full Text Available is not included. Many alternative models are strongly disfavoured by the data, including primordial correlated isocurvature models (lnB=-7.8), non-zero scalar-to-tensor ratio (lnB=-4.3), running of the spectral index (lnB=-4.7), curvature (lnB=-3.6), non...
Anisotropic models are unitary: A rejuvenation of standard quantum cosmology
Pal, Sridip; Banerjee, Narayan
2016-12-01
The present work proves that the folklore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed as a symmetric operator. It is indicated that the self-adjoint extension, however, is not unique and this non-uniqueness is suspected not to be a feature of anisotropic models only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension. For isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian, i.e., a Friedrich's extension. Details of calculations are carried out for a Bianchi III model as an example.
Discerning dark energy models with high redshift standard candles
Andersen, P.; Hjorth, J.
2017-12-01
Following the success of type Ia supernovae in constraining cosmologies at lower redshift (z ≲ 2), effort has been spent determining if a similarly useful standardizable candle can be found at higher redshift. In this work, we determine the largest possible magnitude discrepancy between a constant dark energy ΛCDM cosmology and a cosmology in which the equation of state w(z) of dark energy is a function of redshift for high redshift standard candles (z ≳ 2). We discuss a number of popular parametrizations of w(z) with two free parameters, wzCDM cosmologies, including the Chevallier-Polarski-Linder and generalization thereof, nCPL, as well as the Jassal-Bagla-Padmanabhan parametrization. For each of these parametrizations, we calculate and find the extrema of Δμ, the difference between the distance modulus of a wzCDM cosmology and a fiducial ΛCDM cosmology as a function of redshift, given 68 per cent likelihood constraints on the parameters P = (Ωm, 0, w0, wa). The parameters are constrained using cosmic microwave background, baryon acoustic oscillations and type Ia supernovae data using CosmoMC. We find that none of the tested cosmologies can deviate more than 0.05 mag from the fiducial ΛCDM cosmology at high redshift, implying that high redshift standard candles will not aid in discerning between the wzCDM cosmology and the fiducial ΛCDM cosmology. Conversely, this implies that if high redshift standard candles are found to be in disagreement with ΛCDM at high redshift, then this is a problem not only for ΛCDM but for the entire family of wzCDM cosmologies.
Early twentieth century atomic models: from classical physics to the introduction of quantum theory
Lopes, Cesar Valmor Machado; PUC/SP
2010-01-01
The present research examines the history of atomic models in the early twentieth century approaching the contributions of Joseph John Thomson, Hantaro Nagaoka, Ernest Rutherford, John William Nicholson and Niels Bohr and his contemporaries.
Symmetry Breaking, Unification, and Theories Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Nomura, Yasunori
2009-07-31
A model was constructed in which the supersymmetric fine-tuning problem is solved without extending the Higgs sector at the weak scale. We have demonstrated that the model can avoid all the phenomenological constraints, while avoiding excessive fine-tuning. We have also studied implications of the model on dark matter physics and collider physics. I have proposed in an extremely simple construction for models of gauge mediation. We found that the {mu} problem can be simply and elegantly solved in a class of models where the Higgs fields couple directly to the supersymmetry breaking sector. We proposed a new way of addressing the flavor problem of supersymmetric theories. We have proposed a new framework of constructing theories of grand unification. We constructed a simple and elegant model of dark matter which explains excess flux of electrons/positrons. We constructed a model of dark energy in which evolving quintessence-type dark energy is naturally obtained. We studied if we can find evidence of the multiverse.
Airside HVAC BESTEST: HVAC Air-Distribution System Model Test Cases for ASHRAE Standard 140
Energy Technology Data Exchange (ETDEWEB)
Judkoff, Ronald [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neymark, Joel [J. Neymark & Associates; Kennedy, Mike D. [Mike D. Kennedy, Inc.; Gall, J. [AAON, Inc.; Henninger, R. [GARD Analytics, Inc.; Hong, T. [Lawrence Berkeley National Laboratory; Knebel, D. [AAON, Inc.; McDowell, T. [Thermal Energy System Specialists, LLC; Witte, M. [GARD Analytics, Inc.; Yan, D. [Tsinghua University; Zhou, X. [Tsinghua University
2017-08-07
This paper summarizes recent work to develop new airside HVAC equipment model analytical verification test cases for ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. The analytical verification test method allows comparison of simulation results from a wide variety of building energy simulation programs with quasi-analytical solutions, further described below. Standard 140 is widely cited for evaluating software for use with performance-path energy efficiency analysis, in conjunction with well-known energy-efficiency standards including ASHRAE Standard 90.1, the International Energy Conservation Code, and other international standards. Airside HVAC Equipment is a common area of modelling not previously explicitly tested by Standard 140. Integration of the completed test suite into Standard 140 is in progress.
de Maturana, Evangelina López; de los Campos, Gustavo; Wu, Xiao-Lin; Gianola, Daniel; Weigel, Kent A; Rosa, Guilherme J M
2010-01-25
The use of structural equation models for the analysis of recursive and simultaneous relationships between phenotypes has become more popular recently. The aim of this paper is to illustrate how these models can be applied in animal breeding to achieve parameterizations of different levels of complexity and, more specifically, to model phenotypic recursion between three calving traits: gestation length (GL), calving difficulty (CD) and stillbirth (SB). All recursive models considered here postulate heterogeneous recursive relationships between GL and liabilities to CD and SB, and between liability to CD and liability to SB, depending on categories of GL phenotype. Four models were compared in terms of goodness of fit and predictive ability: 1) standard mixed model (SMM), a model with unstructured (co)variance matrices; 2) recursive mixed model 1 (RMM1), assuming that residual correlations are due to the recursive relationships between phenotypes; 3) RMM2, assuming that correlations between residuals and contemporary groups are due to recursive relationships between phenotypes; and 4) RMM3, postulating that the correlations between genetic effects, contemporary groups and residuals are due to recursive relationships between phenotypes. For all the RMM considered, the estimates of the structural coefficients were similar. Results revealed a nonlinear relationship between GL and the liabilities both to CD and to SB, and a linear relationship between the liabilities to CD and SB.Differences in terms of goodness of fit and predictive ability of the models considered were negligible, suggesting that RMM3 is plausible. The applications examined in this study suggest the plausibility of a nonlinear recursive effect from GL onto CD and SB. Also, the fact that the most restrictive model RMM3, which assumes that the only cause of correlation is phenotypic recursion, performs as well as the others indicates that the phenotypic recursion may be an important cause of the
Z2 monopoles in the standard SU(2) lattice gauge theory model
International Nuclear Information System (INIS)
Mack, G.; Petkova, V.B.
1979-04-01
The standard SU(2) lattice gauge theory model without fermions may be considered as a Z 2 model with monopoles and fluctuating coupling constants. At low temperatures β -1 (= small bare coupling constant) the monopoles are confined. (orig.) [de
Testing the Standard Model with the Primordial Inflation Explorer
Kogut, Alan J.
2011-01-01
The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10A{-3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.
The Model Standards Project: Creating Inclusive Systems for LGBT Youth in Out-of-Home Care
Wilber, Shannan; Reyes, Carolyn; Marksamer, Jody
2006-01-01
This article describes the Model Standards Project (MSP), a collaboration of Legal Services for Children and the National Center for Lesbian Rights. The MSP developed a set of model professional standards governing the care of lesbian, gay, bisexual and transgender (LGBT) youth in out-of-home care. This article provides an overview of the…
Lectures on perturbative QCD, jets and the standard model: collider phenomenology
International Nuclear Information System (INIS)
Ellis, S.D.
1988-01-01
Applications of the Standard Model to the description of physics at hadron colliders are discussed. Particular attention is paid to the use of jets to characterize this physics. The issue of identifying physics beyond the Standard Model is also discussed. 59 refs., 6 figs., 4 tabs
Delta-tilde interpretation of standard linear mixed model results
DEFF Research Database (Denmark)
Brockhoff, Per Bruun; Amorim, Isabel de Sousa; Kuznetsova, Alexandra
2016-01-01
data set and compared to actual d-prime calculations based on Thurstonian regression modeling through the ordinal package. For more challenging cases we offer a generic "plug-in" implementation of a version of the method as part of the R-package SensMixed. We discuss and clarify the bias mechanisms...
Searches for phenomena beyond the Standard Model at the Large ...
Indian Academy of Sciences (India)
metry searches at the LHC is thus the channel with large missing transverse momentum and jets of high transverse momentum. No excess above the expected SM background is observed and limits are set on supersymmetric models. Figures 1 and 2 show the limits from ATLAS [11] and CMS [12]. In addition to setting limits ...
searches for physics beyond the standard model in production at ...
Indian Academy of Sciences (India)
CERN, CH-1211 Geneva, Switzerland. Abstract. Preliminary combinations of measurements of the 4 LEP Collaborations of the process e+e- ff at LEP II are presented. The combined results are interpreted in terms of contact interactions and the exchange of Ζ' bosons and within models of low-scale gravity in large extra ...
Simple Brownian diffusion an introduction to the standard theoretical models
Gillespie, Daniel T
2013-01-01
Brownian diffusion, the motion of large molecules in a sea of very many much smaller molecules, is topical because it is one of the ways in which biologically important molecules move about inside living cells. This book presents the mathematical physics that underlies the four simplest models of Brownian diffusion.
LEP Higgs boson searches beyond the standard model and ...
Indian Academy of Sciences (India)
These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for 'fermiophobic' Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and ...
Energy Technology Data Exchange (ETDEWEB)
Le Diberder, F.; Cohen-Tannoudji, G.; Davier, M. [and others
2002-01-01
This article gathers the 15 contributions to this seminar. The purpose of this seminar was to define up to which extend the standard model is challenged by massive neutrinos. A non-zero mass for neutrinos, even a few eV, would solve the problem of the missing mass of the universe, and it would mean no more need for supersymmetry and its neutralinos. A massless neutrino theoretically implies a symmetry and an interaction that are not described by the standard model. In some aspects, it appears that a non-zero mass is natural within the framework of the standard model, and for some scientists the smallness of this value could be the hint of the need for a new physics.
How Wood Fuels’ Quality Relates to the Standards: A Class-Modelling Approach
Directory of Open Access Journals (Sweden)
Michela Zanetti
2017-09-01
Full Text Available The quality requirements of wood biofuels are regulated by a series of harmonized international standards. These standards define the technical parameter limits that influence the quality of solid biomass as a fuel. In 2014 the European reference standard for solid biofuel was replaced by the International ISO standard. In the case of wood chips, the main difference between the European and International standards is the definition of particle size distribution classes. In this context, this study analyses the quality of wood chips and its variation over the years according to the “former” (EN 14691-4 and “in force” (ISO 17225-4 standards. A Soft Independent Modelling of Class Analogy (SIMCA model was built to predict the best quality of wood chips and to clarify the relationship between quality and standard parameters, time and changes in the standard regulations. The results show that, compared to the EN standards, classification with the ISO standards increases the samples belonging to the best quality classes and decreases the not classified samples. Furthermore, all the SIMCA models have a high sensitivity (>90%, reflect the differences introduced to the quality standards and are therefore suitable for monitoring the quality of wood chips and their changes.
4th Workshop "What Comes Beyond the Standard Model"
Nielsen, Holger Bech; Froggatt, Colin D; Lukman, D; What Comes Beyond the Standard Model; volume 1: Festschrift dedicated to the 60th birthday of Holger Bech Nielsen
2002-01-01
Contents (Part 1): 1.Derivation of Lorentz Invariance and Three Space Dimensions in Generic Field Theory (C D. Froggatt and H. B. Nielsen) 2.Unitary Representations, Noncompact Groups SO(q; d - q)...(N. Mankoc Borstnik, H. B. Nielsen and D. Lukman) 3.Weyl Spinor of SO(1; 13), Families of Spinors ...(A. Borstnik Bracic and N. Mankoc Borstnik) 4.A Tight Packing Problem (A. Kleppe) 5.Why so Few Particle Species? ... (D.L. Bennett and A. Kleppe) 6.About Number of Families (D. Lukman, A. Kleppe and N.S. Mankoc Borstnik) 7.Coupling Constant Unification in Spin-Charge Unifying Model ....(N. Mankoc Borstnik and H. B. Nielsen) (Contents of Part 2 not included in Part I: 8.Renormalization of Coupling Constants in the Minimal SUSY Models (R. B. Nevzorov, K. A. Ter-Martirosyan and M. A. Trusov) 9.Multiple Point Model and Phase Transition Couplings ...(L.V. Laperashvili, D.A. Ryzhikh and H.B. Nielsen) 10.Family Replicated Fit of All Quark and Lepton Masses and Mixings (H. B. Nielsen and Y. Takanishi) 11.Family Replicated ...
Top quark and Higgs physics in standard model extensions
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Patrick Jose
2012-05-25
In this thesis we have studied several extensions of the SM and their implications on the strength and structure of the tbW vertex, on the production and decays of pseudoscalar and heavy Higgs scalars at the LHC, and the effects that models with a fourth generation have on electroweak precision observables. Apart from the SM with a fourth generation of chiral fermions, the extensions we studied all feature an extended electroweak symmetry breaking (EWSB) sector. In the case of the type-II 2HDM and the MSSM, the extended EWSB sector consists of elementary Higgs fields. In the case of Topcolor assisted Technicolor (TC2), which is a model of dynamical EWSB, the scalar and pseudoscalar fields are composite. By scanning over the phenomenologically and theoretically allowed regions of the respective parameters spaces, we determined the largest possible cross sections σ(pp→φ→VV{sup '}) where VV{sup p}rime element of {W"+W"-, ZZγγ, Zγ} for both the heavy scalar and pseudoscalar states in the above models. We found that non-SUSY models with an extended Higgs sector and only three generations, namely the type-II 2HDM and the TC2, still allow for observable pseudoscalar cross sections σ(pp → A → VV') at the LHC. In particular for the final states W{sup +}W{sup -} and γγ. In the MSSM, the discovery of the pseudoscalar A through its decays into electroweak gauge bosons is very unlikely. However, scalar cross sections σ(pp→H→W{sup +}W{sup -}) can still be of observable size at the LHC in large parts of the MSSM parameter space. SM extensions with an extended EWSB sector and four chiral generations are strongly disfavoured; direct Higgs boson searches exclude large parts of the parameter space and it is challenging to bring such an extension into accordance with electroweak precision data. On the other hand, models with additional vector-like quarks and an extended Higgs sector are still viable. The SM with four chiral generations is (still) not
Neutrino mass and physics beyond the Standard Model
International Nuclear Information System (INIS)
Hosteins, P.
2007-09-01
The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states
A supersymmetric standard model from a local E6 GUT
International Nuclear Information System (INIS)
Braam, Felix Klaus
2012-02-01
In this thesis we have investigated to what extent the exceptional Lie-group E 6 can serve as unified gauge group. In the presence of the full E 6 matter content, unifcation can be realized by increasing the degree of gauge symmetry above some intermediate scale. We found that a full E 6 gauge invariant theory is disfavoured by phenomenological observations like proton stability and the smallness of flavour changing neutral currents. An appropriate framework to embed E 6 into a model for particle physics are higher dimensional orbifold constructions, where E 6 is the gauge group in the bulk and the intermediate symmetry group is the common subset of E 6 subgroups residing at the fixed-points of the orbifold. In this way the degree of symmetry in four space-time dimensions is reduced, such that the operators leading to the aforementioned dsastrous phenomenological consequences can be forbidden independently. In order to derive the implications of the model for the current experiments at the Large Hadron Collider (LHC), we developed an automated spectrum generator. It uses Monte-Carlo Markov-Chain techniques to cope with the high dimensionality of the space of input parameters and the complex interdependencies in the evolution of the Lagrangian parameters from the orbifold compactification scale to the TeV scale. For the spectra obtained with this program, we performed Monte-Carlo simulations of the production and decay of the Z ' boson stemming from the additional U(1) ' , using our own implementation of the model into the event generator WHIZARD.
New perspectives in physics beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Weiner, Neal Jonathan [Univ. of California, Berkeley, CA (United States)
2000-09-01
In 1934 Fermi postulated a theory for weak interactions containing a dimensionful coupling with a size of roughly 250 GeV. Only now are we finally exploring this energy regime. What arises is an open question: supersymmetry and large extra dimensions are two possible scenarios. Meanwhile, other experiments will begin providing definitive information into the nature of neutrino masses and CP violation. In this paper, we explore features of possible theoretical scenarios, and study the phenomenological implications of various models addressing the open questions surrounding these issues.
Stationary configurations of the Standard Model Higgs potential
DEFF Research Database (Denmark)
Iacobellis, Giuseppe; Masina, Isabella
2016-01-01
the stability of the SM electroweak minimum and ii) the value of the Higgs potential at a rising inflection point. We examine in detail and reappraise the experimental and theoretical uncertainties which plague their determination, finding that i) the stability of the SM is compatible with the present data...... at the 1.5σ level and ii) despite the large theoretical error plaguing the value of the Higgs potential at a rising inflection point, the application of such a configuration to models of primordial inflation displays a 3σ tension with the recent bounds on the tensor-to-scalar ratio of cosmological...
New perspectives in physics beyond the standard model
International Nuclear Information System (INIS)
Weiner, Neal Jonathan
2000-01-01
In 1934 Fermi postulated a theory for weak interactions containing a dimensionful coupling with a size of roughly 250 GeV. Only now are we finally exploring this energy regime. What arises is an open question: supersymmetry and large extra dimensions are two possible scenarios. Meanwhile, other experiments will begin providing definitive information into the nature of neutrino masses and CP violation. In this paper, we explore features of possible theoretical scenarios, and study the phenomenological implications of various models addressing the open questions surrounding these issues
12th Workshop on What Comes Beyond the Standard Models
Nielsen, Holger Bech; Lukman, Dragan; What Comes Beyond the Standard Models
2009-01-01
Contents: 1. Likelihood Analysis of the Next-to-minimal Supergravity Motivated Model (C. Balazs and D. Carter) 2. The Multiple Point Principle: Characterization of the Possible Phases for the SMG (D.L. Bennett) 3. Does Dark Matter Consist of Baryons of New Stable Family Quarks? (G. Bregar and N.S. Mankoc Borstnik) 4. P, C and T for Truly Neutral Particles (V.V. Dvoeglazov) 5. Relativistic Equations for Spin Particles: What Can We Learn From Noncommutativity? (V.V. Dvoeglazov) 6. Radiative Charged Fermion Masses and Quark Mixing (VCKM)4x4 in a SU(3) Gauged Flavor Symmetry Model (A. Hernandez-Galeana) 7. Low Energy Binding of Composite Dark Matter with Nuclei as a Solution for the Puzzles of Dark Matter Searches (M.Yu. Khlopov, A.G. Mayorov and E.Yu. Soldatov) 8. On the Possibilities and Impossibilities of Random Dynamics (A. Kleppe) 9. Spin Connection Makes Massless Spinor Chirally Coupled to Kaluza-Klein Gauge Field After Compactification of $M^{1+5}$ to $M^{1+3}$ x Infinite Disc Curved on $S^2$ (D. Lukman, N...
Solving the Standard Model Problems in Softened Gravity
Salvio, Alberto
2016-11-16
The Higgs naturalness problem is solved if the growth of Einstein's gravitational interaction is softened at an energy $ \\lesssim 10^{11}\\,$GeV (softened gravity). We work here within an explicit realization where the Einstein-Hilbert Lagrangian is extended to include terms quadratic in the curvature and a non-minimal coupling with the Higgs. We show that this solution is preserved by adding three right-handed neutrinos with masses below the electroweak scale, accounting for neutrino oscillations, dark matter and the baryon asymmetry. The smallness of the right-handed neutrino masses (compared to the Planck scale) and the QCD $\\theta$-term are also shown to be natural. We prove that a possible gravitational source of CP violation cannot spoil the model, thanks to the presence of right-handed neutrinos. Starobinsky inflation can occur in this context, even if we live in a metastable vacuum.
e+e- interactions at very high energy: searching beyond the standard model
International Nuclear Information System (INIS)
Dorfan, J.
1983-04-01
These lectures discuss e + e - interactions at very high energies with a particular emphasis on searching the standard model which we take to be SU(3)/sub color/Λ SU(2) Λ U(1). The highest e + e - collision energy exploited to date is at PETRA where data have been taken at 38 GeV. We will consider energies above this to be the very high energy frontier. The lectures will begin with a review of the collision energies which will be available in the upgraded machines of today and the machines planned for tomorrow. Without going into great detail, we will define the essential elements of the standard model. We will remind ourselves that some of these essential elements have not yet been verified and that part of the task of searching beyond the standard model will involve experiments aimed at this verification. For if we find the standard model lacking, then clearly we are forced to find an alternative. So we will investigate how the higher energy e + e - collisions can be used to search for the top quark, the neutral Higgs scalar, provide true verification of the non-Abelian nature of QCD, etc. Having done this we will look at tests of models involving simple extensions of the standard model. Models considered are those without a top quark, those with charged Higgs scalars, with multiple and/or composite vector bosons, with additional generations and possible alternative explanations for the PETRA three jet events which don't require gluon bremsstrahlung. From the simple extensions of the standard model we will move to more radical alternatives, alternatives which have arisen from the unhappiness with the gauge hierarchy problem of the standard model. Technicolor, Supersymmetry and composite models will be discussed. In the final section we will summarize what the future holds in terms of the search beyond the standard model
e/sup +/e/sup -/ interactions at very high energy: searching beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Dorfan, J.
1983-04-01
These lectures discuss e/sup +/e/sup -/ interactions at very high energies with a particular emphasis on searching the standard model which we take to be SU(3)/sub color/..lambda.. SU(2) ..lambda.. U(1). The highest e/sup +/e/sup -/ collision energy exploited to date is at PETRA where data have been taken at 38 GeV. We will consider energies above this to be the very high energy frontier. The lectures will begin with a review of the collision energies which will be available in the upgraded machines of today and the machines planned for tomorrow. Without going into great detail, we will define the essential elements of the standard model. We will remind ourselves that some of these essential elements have not yet been verified and that part of the task of searching beyond the standard model will involve experiments aimed at this verification. For if we find the standard model lacking, then clearly we are forced to find an alternative. So we will investigate how the higher energy e/sup +/e/sup -/ collisions can be used to search for the top quark, the neutral Higgs scalar, provide true verification of the non-Abelian nature of QCD, etc. Having done this we will look at tests of models involving simple extensions of the standard model. Models considered are those without a top quark, those with charged Higgs scalars, with multiple and/or composite vector bosons, with additional generations and possible alternative explanations for the PETRA three jet events which don't require gluon bremsstrahlung. From the simple extensions of the standard model we will move to more radical alternatives, alternatives which have arisen from the unhappiness with the gauge hierarchy problem of the standard model. Technicolor, Supersymmetry and composite models will be discussed. In the final section we will summarize what the future holds in terms of the search beyond the standard model.
7th Workshop on What Comes Beyond the Standard Models
Nielsen, Holger Bech; Froggatt, Colin D; Lukman, Dragan; What Comes Beyond the Standard Models
2004-01-01
1. Predictions for Four Generations of Quarks Suggested by the Approach Unifying Spins and Charges (M. Breskvar, J. Mravlje, N.Mankoc Borstnik), 2. No-scale Supergravity and the Multiple Point Principle (C.Froggatt, L.Laperashvili, R.Nevzorov, H.B.Nielsen), 3. The Two-Higgs Doublet Model and the Multiple Point Principle (C.Froggatt, L.Laperashvili, R.Nevzorov, H.B.Nielsen, M.Sher), 4. New Physics From a Dynamical Volume Element (E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva), 5. Randomness in Random Dynamics (A. Kleppe), 6. An Example of Kaluza-Klein-like Theories Leading After Compactification to Massless Spinors Coupled to a Gauge Field-Derivations and Proofs (N. Mankoc Borstnik, H. B. Nielsen and D. Lukman), 7. Geometry Decides Gravity, Demanding General Relativity-it is Thus the Quantum Theory of Gravity (R. Mirman), 8. Physics Would Be Impossible in Any Dimension But 3+1 - There Could Be Only Empty Universes (R. Mirman),9. Conservation of Energy Prohibits Proton Decay (R. Mirman), 10. Approxim...
Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence
Jenkins, Elizabeth E; Trott, Michael
2014-01-01
We calculate the complete order y^2 and y^4 terms of the 59 x 59 one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory, where y is a generic Yukawa coupling. These terms, together with the terms of order lambda, lambda^2 and lambda y^2 depending on the Standard Model Higgs self-coupling lambda which were calculated in a previous work, yield the complete one-loop anomalous dimension matrix in the limit of vanishing gauge couplings. The Yukawa contributions result in non-trivial flavor mixing in the various operator sectors of the Standard Model effective theory.
Non-standard charged Higgs decay at the LHC in Next-to-Minimal Supersymmetric Standard Model
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, Priyotosh [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); Huitu, Katri [Department of Physics, and Helsinki Institute of Physics,P.O.B 64 (Gustaf Hällströmin katu 2), FI-00014 University of Helsinki (Finland); Niyogi, Saurabh [The Institute of Mathematical Sciences,CIT Campus, Chennai (India)
2016-07-04
We consider next-to-minimal supersymmetric standard model (NMSSM) which has a gauge singlet superfield. In the scale invariant superpotential we do not have the mass terms and the whole Lagrangian has an additional Z{sub 3} symmetry. This model can have light scalar and/or pseudoscalar allowed by the recent data from LHC and the old data from LEP. We investigate the situation where a relatively light charged Higgs can decay to such a singlet-like pseudoscalar and a W{sup ±} boson giving rise to a final state containing τ and/or b-jets and lepton(s). Such decays evade the recent bounds on charged Higgs from the LHC, and according to our PYTHIA-FastJet based simulation can be probed with 10 fb{sup −1} at the LHC center of mass energy of 13 and 14 TeV.
Energy Technology Data Exchange (ETDEWEB)
Hosteins, P
2007-09-15
The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states.
Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields
International Nuclear Information System (INIS)
Roemkens, P.F.A.M.; Brus, D.J.; Guo, H.Y.; Chu, C.L.; Chiang, C.M.; Koopmans, G.F.
2011-01-01
At present, soil quality standards used for agriculture do not consider the influence of pH and CEC on the uptake of pollutants by crops. A database with 750 selected paired samples of cadmium (Cd) in soil and paddy rice was used to calibrate soil to plant transfer models using the soil metal content, pH, and CEC or soil Cd and Zn extracted by 0.01 M CaCl 2 as explanatory variables. The models were validated against a set of 2300 data points not used in the calibration. These models were then used inversely to derive soil quality standards for Japonica and Indica rice cultivars based on the food quality standards for rice. To account for model uncertainty, strict soil quality standards were derived considering a maximum probability that rice exceeds the food quality standard equal to 10 or 5%. Model derived soil standards based on Aqua Regia ranged from less than 0.3 mg kg -1 for Indica at pH 4.5 to more than 6 mg kg -1 for Japonica-type cultivars in clay soils at pH 7. Based on the CaCl 2 extract, standards ranged from 0.03 mg kg -1 Cd for Indica cultivars to 0.1 mg kg -1 Cd for Japonica cultivars. For both Japonica and Indica-type cultivars, the soil quality standards must be reduced by a factor of 2 to 3 to obtain the strict standards. The strong impact of pH and CEC on soil quality standards implies that it is essential to correct for soil type when deriving national or local standards. Validation on the remaining 2300 samples indicated that both types of models were able to accurately predict (> 92%) whether rice grown on a specific soil will meet the food quality standard used in Taiwan. - Research highlights: → Cadmium uptake by Japonica and Indica rice varieties depends on soil pH and CEC. → Food safety based soil standards range from 0.3 (Indica) to 6 mg kg -1 (Japonica). → Model uncertainty leads to strict soil standards of less than 0.1 mg kg -1 for Indica. → Soil pH and CEC should be considered to obtain meaningful standards for agriculture.
International Nuclear Information System (INIS)
Schaap, L.E.J.J.; Bosmans, G.; Van der Graaf, E.R.; Hendriks, Ch.F.
1998-01-01
By means of the so-called radiation performance standard (SPN, abbreviated in Dutch) the total radioactivity from building constructions which contributes to the indoor radiation dose can be calculated. The SPN is implemented with related boundary values and is part of the Building Decree ('Bouwbesluit') in the Netherlands. The model, presented in this book, forms the basis of a new Dutch radiation protection standard, to be published by the Dutch Institute for Standardization NEN (formerly NNI). 14 refs
Study on Modelling Standardization of Double-fed Wind Turbine and Its Application
Directory of Open Access Journals (Sweden)
Li Xiang
2016-01-01
Full Text Available Based on the standardized modelling of the International Modelling Team, study on double-fed induction generator (DFIG wind turbine is processed in this paper, aiming at capability of universally and reasonably reflecting key performance related to large scale system analysis. The standardized model proposed is of high degree of structural modularity, easy functional extension and universalization of control strategy and signal. Moreover, it is applicable for wind turbines produced by different manufacturers through model parameter adjustment. The complexity of the model can meet both needs of grid-connected characteristic simulation of wind turbine and large scale power system simulation.
The road to a standard land administration domain model, and beyond ...
Lemmen, C.H.J.; Uitermark, H.T.; Van Oosterom, P.J.M.; Zevenbergen, J.A.; Greenway, I.
2011-01-01
The Land Administration Domain Model (LADM) is a Draft International Standard (ISO DIS 19152) and in January 2011 was distributed by the ISO central secretariat for a five month voting and commenting time interval. If everything goes as planned, ISO 19152 will be an International Standard (IS) by
Extracting the properties of dark matter particles in minimal extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Santos, Maira Dutra Vasconcelos dos; Santos, Antonio Carlos Oliveira; Silva, Paulo Sergio Rodrigues da; Pires, Carlos Antonio de Sousa; Siqueira, Clarissa [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Queiroz, Farinaldo da Silva [University of California (United States)
2013-07-01
Full text: Nature has provided a striking evidence for physics beyond the Standard Model, namely dark matter. Observations coming from a variety of sources point to the existence of a non-baryonic matter that accounts for roughly 27% of the total abundance of the universe and is composed of neutral, massive, stable and weakly interacting particles. Once the Standard Model has no candidate that fulfills all these properties we must extend it. There are many interesting proposals in the literature that have a good dark matter candidate. Essentially, all of them invoke an extended scalar or gauge sector. Here we aim to extract information about the underlying beyond Standard Model theory able to address the dark matter and many other theoretical puzzles through minimal extensions of the standard model. The minimality perspective it is a worthwhile approach because we can focus on the dark side of many particle physics models. We will carry on our investigation in a pedagogic way Firstly, we will add a neutral fermion, which is our dark matter candidate, and one neutral scalar, both being singlet under the Standard Model gauge group. In this model we compute the abundance of our dark matter candidate and the scattering cross sections off nuclei in order to face our results with the current direct detection experiments data. Secondly, we add a charged scalar field, which is predicted in many standard model extensions, to the first model and investigate the role of this scalar in our results. Lastly, we add a Z' boson to the latter model, and study how our results are affected, with the purpose of, further on, exploring the complementarity between direct detection and collider physics regarding the search of this boson. Thus, we will be able to extract precise information about the beyond Standard Model theory and the properties of the dark matter particles. (author)
A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series
Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.
2011-01-01
Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…
A CVAR scenario for a standard monetary model using theory-consistent expectations
DEFF Research Database (Denmark)
Juselius, Katarina
2017-01-01
A theory-consistent CVAR scenario describes a set of testable regularities capturing basic assumptions of the theoretical model. Using this concept, the paper considers a standard model for exchange rate determination and shows that all assumptions about the model's shock structure and steady...
First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model
DEFF Research Database (Denmark)
Sannino, Francesco; Virkajärvi, Jussi
2015-01-01
We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled co...... the associated models are testable at the upcoming Large Hadron Collider run two experiments....
Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.
Shao, Lijing
2014-03-21
The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.
Model Standards and Techniques for Control of Radon in New Residential Buildings
This document is intended to serve as a model for use to develop and adopt building codes, appendices to codes, or standards specifically applicable to unique local or regional radon control requirements.
An introduction to the standard model of particle physics for the non-specialist
Marsh, Gerald E
2018-01-01
This book takes the reader from some elementary ideas about groups to the essence of the Standard Model of particle physics along a relatively straight and intuitive path. Groups alone are first used to arrive at a classical analog of the Dirac equation. Using elementary quantum mechanics, this analog can be turned into the actual Dirac equation, which governs the motion of the quarks and leptons of the Standard Model. After an introduction to the gauge principle, the groups introduced in the beginning of the book are used to give an introduction to the Standard Model. The idea is to give an Olympian view of this evolution, one that is often missing when absorbing the detailed subject matter of the Standard Model as presented in an historical approach to the subject.
Computing the temperature dependence of effective CP violation in the standard model
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš; Taanila, O.; Tranberg, A.; Vuorinen, A.
2012-01-01
Roč. 2012, č. 11 (2012), 076 ISSN 1126-6708 Institutional support: RVO:61389005 Keywords : CP violation * Thermal Field Theory * Standard Model Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012
Evaluation model applied to TRANSPETRO's Marine Terminals Standardization Program
Energy Technology Data Exchange (ETDEWEB)
Almeida, Maria Fatima Ludovico de; Mueller, Gabriela [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Instituto Tecnologico; Garcia, Luciano Maldonado [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)
2009-07-01
This paper describes an innovative evaluation model applied to TRANSPETRO's 'Marine Terminals Standardization Program' based on updating approaches of programs evaluation and organizational learning. Since the program was launched in 2004, the need for having an evaluation model able to evaluate its implementation progress, to measure the degree of standards compliance and its potential economic, social and environmental impacts has become evident. Within a vision of safe and environmentally responsible operations of marine terminals, this evaluation model was jointly designed by TRANSPETRO and PUC-Rio to promote continuous improvement and learning in operational practices and in the standardization process itself. TRANSPETRO believes that standardization supports its services and management innovation capability by creating objective and internationally recognized parameters, targets and metrology for its business activities. The conceptual model and application guidelines for this important tool are presented in this paper, as well as the next steps towards its implementation. (author)
Directory of Open Access Journals (Sweden)
M. Syamsudin
2017-03-01
Full Text Available This research aims to form an effective supervision model of a standard clause to protect consumer’s rights and interests. This study answers the questions the effectiveness of a standard clause supervision carried out by Otoritas Jasa Keuangan [Financial Services Authority (OJK] and Badan Penyelesaian Sengketa Konsumen [Consumer Dispute Settlement Agency (BPSK]; effective supervision model of a standard clause which can protect the rights and interest of the consumer. The object of this study are OJK and BPSK as a supervision of a standard clause. The result of this research shows that the supervision of standard clause done by those institutions has not been effective yet, this caused by several factors to wit the weakness of implementing regulation in terms of supervision, unclear supervision mechanism, the weakness of socialization related to the rules of standard clause towards business actors, and other weakness and obstacles faced by both institutions. The effective supervision model of standard clause is being formed that based on five points, namely: (1 the needs of institution/agency reformation who authorize to do supervision of standard clause; (2 the needs to determine the scope of duty and authority of standard clause supervision institution; (3 the needs of determination of material range about standard clause subjected to supervision which comprises: the content, the form, the position and the expression; (4 the needs of precise mechanism of standard clause supervision conducted by supervision institution; (5 the needs of following up the supervision results, especially to the business actors who break the standard clause rules.
Beyond the Standard Model Lectures for the 2016 European School of High-Energy Physics
Allanach, B C
2017-01-01
We cover some current topics in Beyond the Standard Model phenomenology, with an emphasis on collider (particularly Large Hadron Collider) phenomenology. We begin with a review of the Standard Model and some unresolved mysteries that it leaves. Then, we shall heuristically introduce supersymmetry, grand unified theories and extra dimensions as paradigms for expanding the Standard Model. The collider phenomenology of such models is too rich and complex to review, but we give some key examples of how the new states associated with the models might be inferred in Large Hadron Collider events. Before concluding, we finish with a brief description of a quantum field theory approximation that can be used in some cases to reduce model dependence: effective field theory.
CP violation for electroweak baryogenesis from mixing of standard model and heavy vector quarks
International Nuclear Information System (INIS)
McDonald, J.
1996-01-01
It is known that the CP violation in the minimal standard model is insufficient to explain the observed baryon asymmetry of the Universe in the context electroweak baryogenesis. In this paper we consider the possibility that the additional CP violation required could originate in the mixing of the standard model quarks and heavy vector quark pairs. We consider the baryon asymmetry in the context of the spontaneous baryogenesis scenario. It is shown that, in general, the CP-violating phase entering the mass matrix of the standard model and heavy vector quarks must be space dependent in order to produce a baryon asymmetry, suggesting that the additional CP violation must be spontaneous in nature. This is true for the case of the simplest models which mix the standard model and heavy vector quarks. We derive a charge potential term for the model by diagonalizing the quark mass matrix in the presence of the electroweak bubble wall, which turns out to be quite different from the fermionic hypercharge potentials usually considered in spontaneous baryogenesis models, and obtain the rate of baryon number generation within the wall. We find, for the particular example where the standard model quarks mix with weak-isodoublet heavy vector quarks via the expectation value of a gauge singlet scalar, that we can account for the observed baryon asymmetry with conservative estimates for the uncertain parameters of electroweak baryogenesis, provided that the heavy vector quarks are not heavier than a few hundred GeV and that the coupling of the standard model quarks to the heavy vector quarks and gauge singlet scalars is not much smaller than order of 1, corresponding to a mixing angle of the heavy vector quarks and standard model quarks not much smaller than order of 10 -1 . copyright 1996 The American Physical Society
Espinosa, J R; Racco, D; Riotto, A
2018-03-23
For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11} GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.
From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Venugopalan, R.
2010-07-22
We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.
Testing the minimal supersymmetric standard model with the mass of the W boson
International Nuclear Information System (INIS)
Heinemeyer, S.; Hollik, W.; Weber, A.M.; Stoeckinger, D.; Weiglein, G.
2007-01-01
We review the currently most accurate evaluation of the W boson mass, Mw, in the minimal supersymmetric standard model (MSSM). It consists of a full one-loop calculation, including the complex phase dependence, all available MSSM two-loop corrections as well as the full standard model result. We analyse the impact of the phases in the scalar quark sector on Mw and compare the prediction for Mw based on all known higher-order contributions with the experimental results. (author)
Espinosa, J. R.; Racco, D.; Riotto, A.
2018-03-01
For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.
12th Rencontres du Vietnam : High Sensitivity Experiments Beyond the Standard Model
2016-01-01
The goal of this workshop is to gather researchers, theoreticians, experimentalists and young scientists searching for physics beyond the Standard Model of particle physics using high sensitivity experiments. The standard model has been very successful in describing the particle physics world; the Higgs-Englert-Brout boson discovery is its last major discovery. Complementary to the high energy frontier explored at colliders, real opportunities for discovery exist at the precision frontier, testing fundamental symmetries and tracking small SM deviations.
Implementation of Electrical Simulation Model for IEC Standard Type-3A Generator
DEFF Research Database (Denmark)
Subramanian, Chandrasekaran; Casadei, Domenico; Tani, Angelo
2013-01-01
turbine with partial scale power converter WEG including a two mass mechanical model. The generic models for fixed and variable speed WEGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system such as voltage dips. The wind power......This paper describes the implementation of electrical simulation model for IEC 61400-27-1 standard Type-3A generator. A general overview of the different wind electric generators(WEG) types are given and the main focused on Type-3A WEG standard models, namely a model for a variable speed wind...... penetration level continue to increase and the dynamic performance of WEG is more important with power system. The general configuration of the Type-3A model is presented and discussed, model implementation and results are provided in order to illustrate the range of applicability of the generic models....
Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment
Dev, P S Bhupal
2014-01-01
We study the Higgs mass spectrum as predicted by a Maximally Symmetric Two Higgs Doublet Model (MS-2HDM) potential based on the SO(5) group, softly broken by bilinear Higgs mass terms. We show that the lightest Higgs sector resulting from this MS-2HDM becomes naturally aligned with that of the Standard Model (SM), independently of the charged Higgs boson mass and $\\tan \\beta$. In the context of Type-II 2HDM, SO(5) is the simplest of the three possible symmetry realizations of the scalar potential that can naturally lead to the SM alignment. Nevertheless, renormalization group effects due to the hypercharge gauge coupling $g'$ and third-generation Yukawa couplings may break sizeably this SM alignment, along with the custodial symmetry inherited by the SO(5) group. Using the current Higgs signal strength data from the LHC, which disfavour large deviations from the SM alignment limit, we derive lower mass bounds on the heavy Higgs sector as a function of $\\tan\\beta$, which can be stronger than the existing limit...
Dominguez, Daniel
2015-01-01
All matter around us is made of elementary particles, the building blocks of matter. These particles occur in two basic types called quarks and leptons. Each group consists of six particles, which are related in pairs, or “generations”. The lightest and most stable particles make up the first generation, whereas the heavier and less stable particles belong to the second and third generations. All stable matter in the universe is made from particles that belong to the first generation; any heavier particles quickly decay to the next most stable level. The six quarks are paired in the three generations – the “up quark” and the “down quark” form the first generation, followed by the “charm quark” and “strange quark”, then the “top quark” and “bottom (or beauty) quark”. Quarks also come in three different “colours” and only mix in such ways as to form colourless objects. The six leptons are similarly arranged in three generations – the “electron” and the “electron neutrin...
Flavour physics beyond the standard model in top and bottom quarks
International Nuclear Information System (INIS)
Stamou, Emmanuel
2013-01-01
The Large Hadron Collider is currently exploring dynamics at high energies where we expect physics beyond the standard model to emerge as an answer to at least some of the questions the standard model cannot address. We consider the low-energy flavour signatures of a model with a dynamical explanation of quark masses and mixings, construct a model with new strong interactions that account for the anomalously large measurement of an asymmetry in top antitop production at Tevatron, and compute next-to-leading-order electroweak corrections to the recently observed rare decay B s →μ + μ - .
He, Li; Xu, Zongda; Fan, Xing; Li, Jing; Lu, Hongwei
2017-05-01
This study develops a meta-modeling based mathematical programming approach with flexibility in environmental standards. It integrates numerical simulation, meta-modeling analysis, and fuzzy programming within a general framework. A set of models between remediation strategies and remediation performance can well guarantee the mitigation in computational efforts in the simulation and optimization process. In order to prevent the occurrence of over-optimistic and pessimistic optimization strategies, a high satisfaction level resulting from the implementation of a flexible standard can indicate the degree to which the environmental standard is satisfied. The proposed approach is applied to a naphthalene-contaminated site in China. Results show that a longer remediation period corresponds to a lower total pumping rate and a stringent risk standard implies a high total pumping rate. The wells located near or in the down-gradient direction to the contaminant sources have the most significant efficiency among all of remediation schemes.
Directory of Open Access Journals (Sweden)
Ana Rusmerg Giménez Ledesma
2013-05-01
Full Text Available The main objective of this paper is to propose an analytical-prospective model as a tool to support decision-making processes concerning metrology, standardization and regulation of nanomaterials in Brazil, based on international references and ongoing initiatives in the world. In the context of nanotechnology development in Brazil, the motivation for carrying out this research was to identify potential benefits of metrology, standardization and regulation of nanomaterials production, from the perspective of future adoption of the model by the main stakeholders of development of these areas in Brazil. The main results can be summarized as follows: (i an overview of international studies on metrology, standardization and regulation of nanomaterials, and nanoparticles, in special; (ii the analytical-prospective model; and (iii the survey questionnaire and the roadmapping tool for metrology, standardization and regulation of nanomaterials in Brazil, based on international references and ongoing initiatives in the world.
Blaha, Stephen
2011-01-01
This book is the second volume exploring the properties of faster than light particles (tachyons). The existence of tachyons has not been proved yet. But the instantaneous nature of Quantum Mechanics and the behavior of particles in Black Holes prove faster than light motion occurs in nature. In volume 1 the author showed that one can derive the form of The Standard Model of elementary particles if neutrinos and down-type quarks are tachyons. In this volume the author shows that these tachyons cause Parity, CP and CPT violation. Also the General Theory of Relativity is extended to Complex General Relativity and its vierbein version. The theory's complex coordinates are mapped to real-valued coordinates (that we observe) using a transformation composed of SU(3) and two SU(2)xU(1) groups - the very groups that appear in The Standard Model. Volume 1 showed that these same groups play a similar role in The Standard Model by mapping complex, faster than light coordinates to real-valued coordinates. Thus the same g...
Neutral Higgs bosons in the standard model and in the minimal ...
Indian Academy of Sciences (India)
assumed to be CP invariant. Finally, we discuss an alternative MSSM scenario including. CP violation in the Higgs sector. Keywords. Higgs bosons; standard model; minimal supersymmetric model; searches at LEP. 1. Introduction. One of the challenges in high-energy particle physics is the discovery of Higgs bosons.
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Product modeling standards for the building and construction industry : Past, present and future
Tolman, F.P.
1999-01-01
For the past ten years most sectors of industry have been developing standards for the electronic sharing and exchange of product model data. While several related industries, such as automotive and shipbuilding manufacturing have been relatively successful in integrating electronic product models
The standard model of particle physics: an introduction to the theory
Fawzi, B
2002-01-01
The key concepts of gauge invariance and spontaneous symmetry breaking that helped build the Standard Model of particle physics are introduced. A short description of radiative corrections that have made the model pass all precision tests, in particular those from LEP, is presented. (authors)
Higgs Boson Properties in the Standard Model and its Supersymmetric Extensions
Ellis, Jonathan Richard; Zwirner, F; Ellis, John; Ridolfi, Giovanni; Zwirner, Fabio
2007-01-01
We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its five physical Higgs bosons. Finally, we discuss some non-minimal models.