Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.
2015-01-01
Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.
An Inquiry-Based Linear Algebra Class
Wang, Haohao; Posey, Lisa
2011-01-01
Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…
On PR group classes and PR algebra membership
International Nuclear Information System (INIS)
Lebedenko, V.M.
1978-01-01
The necessary and sufficient conditions are found for the membership of Lee algebras to PR algebra class, to algebras with commutation relations of [Hsub(i), Hsub(j)]=rsub(ij)Hsub(i) (i< j) type. Due to this, a criterion is obtained for the membership of the Lee froups to PR group classes, connected and simply connected Lee groups, which Lee algebras are PR algebras
Construction and decoding of a class of algebraic geometry codes
DEFF Research Database (Denmark)
Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd
1989-01-01
A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result is a decod...... is a decoding algorithm which turns out to be a generalization of the Peterson algorithm for decoding BCH decoder codes......A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...
Subgroups of class groups of algebraic quadratic function fields
International Nuclear Information System (INIS)
Wang Kunpeng; Zhang Xianke
2001-09-01
Ideal class groups H(K) of algebraic quadratic function fields K are studied, by using mainly the theory of continued fractions of algebraic functions. Properties of such continued fractions are discussed first. Then a necessary and sufficient condition is given for the class group H(K) to contain a cyclic subgroup of any order n, this criterion condition holds true for both real and imaginary fields K. Furthermore, several series of function fields K, including real, inertia imaginary, as well as ramified imaginary quadratic function fields, are given, and their class groups H(K) are proved to contain cyclic subgroups of order n. (author)
Maiorana-McFarland class: Degree optimization and algebraic properties
DEFF Research Database (Denmark)
Pasalic, Enes
2006-01-01
degree of functions in the extended Maiorana-McFarland (MM) class (nonlinear resilient functions F : GF (2)(n) -> GF (2)(m) derived from linear codes). We also show that in the Boolean case, the same subclass seems not to have an optimized algebraic immunity, hence not providing a maximum resistance......In this paper, we consider a subclass of the Maiorana-McFarland class used in the design of resilient nonlinear Boolean functions. We show that these functions allow a simple modification so that resilient Boolean functions of maximum algebraic degree may be generated instead of suboptimized degree...... in the original class. Preserving a high-nonlinearity value immanent to the original construction method, together with the degree optimization gives in many cases functions with cryptographic properties superior to all previously known construction methods. This approach is then used to increase the algebraic...
Unipotent and nilpotent classes in simple algebraic groups and lie algebras
Liebeck, Martin W
2012-01-01
This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of...
Implementing the Standards: Teaching Informal Algebra.
Schultz, James E.
1991-01-01
Presents suggestions for developing algebraic concepts beginning in the early grades to develop a gradual building from informal to formal algebraic concepts that progresses over the K-12 curriculum. Includes suggestions for representing relationships, solving equations, employing meaningful applications of algebra, and using of technology. (MDH)
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
On a certain class of operator algebras and their derivations
International Nuclear Information System (INIS)
Ayupov, S. A.; Abdullaev, R.Z.; Kudaybergenov, K.K.
2009-08-01
Given a von Neumann algebra M with a faithful normal finite trace, we introduce the so-called finite tracial algebra M f as the intersection of L p -spaces L p (M, μ) over all p ≥ and over all faithful normal finite traces μ on M. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner. (author)
Some new classes of division algebras and potential applications to space-time block coding
Steele, Andrew
2014-01-01
In this thesis we study some new classes of nonassociative division algebras. First we introduce a generalisation of both associative cyclic algebras and of Waterhouse's nonassociative quaternions. An important aspect of these algebras is the simplicity of their construction, which is a modification of the classical definition of associative cyclic algebras. By taking the parameter used in the classical definition from a larger field, we lose the property of associativity but gain many new ex...
Enacted Types of Algebraic Activity in Different Classes Taught by the Same Teacher
Eisenmann, Tammy; Even, Ruhama
2011-01-01
The aim of this study was to examine how teachers enact the same written algebra curriculum materials in different classes. The study addresses this issue by comparing the types of algebraic activity (Kieran, 2004) enacted in two 7th grade classes taught by the same teacher, using the same textbook. Data sources include lesson observations and an…
On Dimension Theory for a Certain Class of Simple AH Algebras
International Nuclear Information System (INIS)
Ho, Toan M.
2010-06-01
A class of unital diagonal AH algebras will be studied in this paper. The density property of the set of all elements which are nilpotent up to (left and right multiple) unitaries is presented. As a consequence, these algebras have stable rank one. Section 3 also shows that an algebra in this class has the property LP (i.e., the linear span of projections is dense) provided a certain condition. Finally, restricting our attention to a special subclass which includes Villadsen algebras of the first type, we give the necessary and sufficient condition of real rank zero. (author)
Responsibility for proving and defining in abstract algebra class
Fukawa-Connelly, Timothy
2016-07-01
There is considerable variety in inquiry-oriented instruction, but what is common is that students assume roles in mathematical activity that in a traditional, lecture-based class are either assumed by the teacher (or text) or are not visible at all in traditional math classrooms. This paper is a case study of the teaching of an inquiry-based undergraduate abstract algebra course. In particular, gives a theoretical account of the defining and proving processes. The study examines the intellectual responsibility for the processes of defining and proving that the professor devolved to the students. While the professor wanted the students to engage in all aspects of defining and proving, he was only successful at devolving responsibility for certain aspects and much more successful at devolving responsibility for proving than conjecturing or defining. This study suggests that even a well-intentioned instructor may not be able to devolve responsibility to students for some aspects of mathematical practice without using a research-based curriculum or further professional development.
Building Students' Reasoning Skills by Promoting Student-Led Discussions in an Algebra II Class
DeJarnette, Anna F.; González, Gloriana
2013-01-01
Current research and professional organizations call for greater emphasis on reasoning and sense making in algebra (Chazan, 2000; Cuoco, Goldenberg, & Mark, 1996; Harel & Sowder, 2005; National Council of Teachers of Mathematics [NCTM], 2009, 2010). This paper illustrates how students in an Algebra II class had opportunities to develop…
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Bicycles, Birds, Bats and Balloons: New Applications for Algebra Classes.
Yoshiwara, Bruce; Yoshiwara, Kathy
This collection of activities is intended to enhance the teaching of college algebra through the use of modeling. The problems use real data and involve the representation and interpretation of the data. The concepts addressed include rates of change, linear and quadratic regression, and functions. The collection consists of eight problems, four…
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Numerical Methods for a Class of Differential Algebraic Equations
Directory of Open Access Journals (Sweden)
Lei Ren
2017-01-01
Full Text Available This paper is devoted to the study of some efficient numerical methods for the differential algebraic equations (DAEs. At first, we propose a finite algorithm to compute the Drazin inverse of the time varying DAEs. Numerical experiments are presented by Drazin inverse and Radau IIA method, which illustrate that the precision of the Drazin inverse method is higher than the Radau IIA method. Then, Drazin inverse, Radau IIA, and Padé approximation are applied to the constant coefficient DAEs, respectively. Numerical results demonstrate that the Padé approximation is powerful for solving constant coefficient DAEs.
Real zeros of classes of random algebraic polynomials
Directory of Open Access Journals (Sweden)
K. Farahmand
2003-01-01
Full Text Available There are many known asymptotic estimates for the expected number of real zeros of an algebraic polynomial a0+a1x+a2x2+⋯+an−1xn−1 with identically distributed random coefficients. Under different assumptions for the distribution of the coefficients {aj}j=0n−1 it is shown that the above expected number is asymptotic to O(logn. This order for the expected number of zeros remains valid for the case when the coefficients are grouped into two, each group with a different variance. However, it was recently shown that if the coefficients are non-identically distributed such that the variance of the jth term is (nj the expected number of zeros of the polynomial increases to O(n. The present paper provides the value for this asymptotic formula for the polynomials with the latter variances when they are grouped into three with different patterns for their variances.
Description of a class of superstring compactifications related to semi-simple Lie algebras
International Nuclear Information System (INIS)
Markushevich, D.I.; Ol'shanetskij, M.A.; Perelomov, A.M.
1986-01-01
A class of vacuum configurations in the superstring theory obtained by compactification of physical dimensions from ten to four is constructed. The compactification scheme involves taking quotients of tori of semisimple Lie algebras by finite symmetry group actions. The complete list of such configurations arising from actions by a Coxeter transformation is given. Some topological invariants having physical interpretations are calculated
Mathematics Achievement with Digital Game-Based Learning in High School Algebra 1 Classes
Ferguson, Terri Lynn Kurley
2014-01-01
This study examined the impact of digital game-based learning (DGBL) on mathematics achievement in a rural high school setting in North Carolina. A causal comparative research design was used in this study to collect data to determine the effectiveness of DGBL in high school Algebra 1 classes. Data were collected from the North Carolina…
Peterson, Euguenia; Siadat, M. Vali
2009-01-01
The purpose of this study is to examine the effects of the implementation of formative assessment on student achievement in elementary algebra classes at Richard J. Daley College in Chicago, IL. The formative assessment is defined in this case as frequent, cumulative, time-restricted, multiple-choice quizzes with immediate constructive feedback.…
The Effect of Using Microsoft Excel in a High School Algebra Class
Neurath, Rachel A.; Stephens, Larry J.
2006-01-01
The purpose of this study was to investigate the effect of integrating Microsoft Excel into a high school algebra class. The results indicate a slight increase in student achievement when Excel was used. A teacher-created final exam and two Criterion Referenced Tests measured success. One of the Criterion Referenced Tests indicated that the…
On a class of smooth Frechet subalgebras of C-algebras
Indian Academy of Sciences (India)
Keywords. Smooth subalgebra of a *-algebra; spectral invariance; closure under functional calculus; Arens–Michael decomposition of a Frechet algebra; Banach ( D p ∗ ) -algebra; Frechet ( D ∞ ∗ ) -algebra.
Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Liu, Da-Yan
2015-04-30
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Standard integral table algebras generated by non-real element of small degree
Muzychuk, Mikhail
2002-01-01
This book is addressed to the researchers working in the theory of table algebras and association schemes. This area of algebraic combinatorics has been rapidly developed during the last decade. The volume contains further developments in the theory of table algebras. It collects several papers which deal with a classification problem for standard integral table algebras (SITA). More precisely, we consider SITA with a faithful non-real element of small degree. It turns out that such SITA with some extra conditions may be classified. This leads to new infinite series of SITA which has interesting properties. The last section of the book uses a part of obtained results in the classification of association schemes. This volume summarizes the research which was done at Bar-Ilan University in the academic year 1998/99.
Combinatorics of transformations from standard to non-standard bases in Brauer algebras
International Nuclear Information System (INIS)
Chilla, Vincenzo
2007-01-01
Transformation coefficients between standard bases for irreducible representations of the Brauer centralizer algebra B f (x) and split bases adapted to the B f 1 (x) x B f 2 (x) subset of B f (x) subalgebra (f 1 + f 2 = f) are considered. After providing the suitable combinatorial background, based on the definition of the i-coupling relation on nodes of the subduction grid, we introduce a generalized version of the subduction graph which extends the one given in Chilla (2006 J. Phys. A: Math. Gen. 39 7657) for symmetric groups. Thus, we can describe the structure of the subduction system arising from the linear method and give an outline of the form of the solution space. An ordering relation on the grid is also given and then, as in the case of symmetric groups, the choices of the phases and of the free factors governing the multiplicity separations are discussed
Directory of Open Access Journals (Sweden)
Xiaohui Mo
2017-01-01
Full Text Available In this paper, finite-time stabilization problem for a class of nonlinear differential-algebraic systems (NDASs subject to external disturbance is investigated via a composite control manner. A composite finite-time controller (CFTC is proposed with a three-stage design procedure. Firstly, based on the adding a power integrator technique, a finite-time control (FTC law is explicitly designed for the nominal NDAS by only using differential variables. Then, by using homogeneous system theory, a continuous finite-time disturbance observer (CFTDO is constructed to estimate the disturbance generated by an exogenous system. Finally, a composite controller which consists of a feedforward compensation part based on CFTDO and the obtained FTC law is proposed. Rigorous analysis demonstrates that not only the proposed composite controller can stabilize the NDAS in finite time, but also the proposed control scheme exhibits nominal performance recovery property. Simulation examples are provided to illustrate the effectiveness of the proposed control approach.
Amenable crossed product Banach algebras associated with a class of C*-dynamical systems
Jeu, de M.F.E.; Elharti, R.; Pinto, P.R.
2017-01-01
We prove that the crossed product Banach algebra ℓ1(G,A;α) that is associated with a C∗-dynamical system (A,G,α) is amenable if G is a discrete amenable group and A is a commutative or finite dimensional C∗-algebra. Perspectives for further developments are indicated.
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
Structure of Lie point and variational symmetry algebras for a class of odes
Ndogmo, J. C.
2018-04-01
It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.
Conceptual Explanation for the Algebra in the Noncommutative Approach to the Standard Model
International Nuclear Information System (INIS)
Chamseddine, Ali H.; Connes, Alain
2007-01-01
The purpose of this Letter is to remove the arbitrariness of the ad hoc choice of the algebra and its representation in the noncommutative approach to the standard model, which was begging for a conceptual explanation. We assume as before that space-time is the product of a four-dimensional manifold by a finite noncommmutative space F. The spectral action is the pure gravitational action for the product space. To remove the above arbitrariness, we classify the irreducible geometries F consistent with imposing reality and chiral conditions on spinors, to avoid the fermion doubling problem, which amounts to have total dimension 10 (in the K-theoretic sense). It gives, almost uniquely, the standard model with all its details, predicting the number of fermions per generation to be 16, their representations and the Higgs breaking mechanism, with very little input
New insights in the standard model of quantum physics in Clifford algebra
Daviau, Claude
2013-01-01
Why Clifford algebra is the true mathematical frame of the standard model of quantum physics. Why the time is everywhere oriented and why the left side shall never become the right side. Why positrons have also a positive proper energy. Why there is a Planck constant. Why a mass is not a charge. Why a system of particles implies the existence of the inverse of the individual wave function. Why a fourth neutrino should be a good candidate for black matter. Why concepts as “parity” and “reverse” are essential. Why the electron of a H atom is in only one bound state. Plus 2 very remarkable identities, and the invariant wave equations that they imply. Plus 3 generations and 4 neutrinos. Plus 5 dimensions in the space and 6 dimensions in space-time…
Algebra II textbook for students of mathematics
Gorodentsev, Alexey L
2017-01-01
This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Algebra I textbook for students of mathematics
Gorodentsev, Alexey L
2016-01-01
This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Standardization of transportation classes for object-oriented deployment simulations.
Energy Technology Data Exchange (ETDEWEB)
Burke, J. F., Jr.; Howard, D. L.; Jackson, J.; Macal, C. M.; Nevins, M. R.; Van Groningen, C. N.
1999-07-30
Many recent efforts to integrate transportation and deployment simulations, although beneficial, have lacked a feature vital for seamless integration: a common data class representation. It is an objective of the Department of Defense (DoD) to standardize all classes used in object-oriented deployment simulations by developing a standard class attribute representation and behavior for all deployment simulations that rely on an underlying class representation. The Extensive Hierarchy and Object Representation for Transportation Simulations (EXHORT) is a collection of three hierarchies that together will constitute a standard and consistent class attribute representation and behavior that could be used directly by a large set of deployment simulations. The first hierarchy is the Transportation Class Hierarchy (TCH), which describes a significant portion of the defense transportation system; the other two deal with infrastructure and resource classes. EXHORT will allow deployment simulations to use the same set of underlying class data, ensure transparent exchanges, reduce the effort needed to integrate simulations, and permit a detailed analysis of the defense transportation system. This paper describes EXHORT's first hierarchy, the TCH, and provides a rationale for why it is a helpful tool for modeling major portions of the defense transportation system.
International Nuclear Information System (INIS)
Fradkin, E.S.; Linetsky, V.Ya.
1990-06-01
With any semisimple Lie algebra g we associate an infinite-dimensional Lie algebra AC(g) which is an analytic continuation of g from its root system to its root lattice. The manifest expressions for the structure constants of analytic continuations of the symplectic Lie algebras sp2 n are obtained by Poisson-bracket realizations method and AC(g) for g=sl n and so n are discussed. The representations, central extension, supersymmetric and higher spin generalizations are considered. The Virasoro theory is a particular case when g=sp 2 . (author). 9 refs
Jensen, Jennifer
2014-01-01
This study sought to determine if there is a relationship between students' scores on the eighth-grade Indiana State Test of Education Progress Plus (ISTEP+) exam and success on Indiana's Algebra End-of-Course Assessment (ECA). Additionally, it sought to determine if algebra success could be significantly predicted by the achievement in one or…
Zolkower, Betina; Shreyar, Sam; Pérez, Silvia
2015-01-01
How does teacher-guided whole-class interaction contribute to expanding students' potential for making and exchanging mathematical meanings? We address this question through an interpretative analysis of a whole-group conversation in a sixth grade class taught by an experienced teacher in a school in Southern Argentina. The extended interaction…
Representations of quantum bicrossproduct algebras
International Nuclear Information System (INIS)
Arratia, Oscar; Olmo, Mariano A del
2002-01-01
We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Food Standards are Good– for Middle-class Farmers
DEFF Research Database (Denmark)
Hansen, Henrik; Trifkovic, Neda
results indicate that large returns can be accrued from food standards, but only for the upper middle-class farmers, i.e., those between the 50% and 85% quantiles of the expenditure distribution. Overall, our result points to an exclusionary impact of standards for the poorest farmers while the richest do......We estimate the causal effect of food standards on Vietnamese pangasius farmers’ wellbeing measured by per capita consumption expenditure. We estimate both the average effects and the local average treatment effects on poorer and richer farmers by instrumental variable quantile regression. Our...
Food Standards are Good – for Middle-Class Farmers
DEFF Research Database (Denmark)
Hansen, Henrik; Trifkovic, Neda
2014-01-01
We estimate the causal effect of food standards on Vietnamese pangasius farmers’ wellbeing measured by per capita consumption expenditure. We estimate both the average effects and the local average treatment effects on poorer and richer farmers by instrumental variable quantile regression. Our...... results indicate that large returns can be accrued from food standards, but only for the upper middle-class farmers, i.e., those between the 50% and 85% quantiles of the expenditure distribution. Overall, our result points to an exclusionary impact of standards for the poorest farmers while the richest do...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Pseudo-Riemannian Novikov algebras
Energy Technology Data Exchange (ETDEWEB)
Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn
2008-08-08
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.
International Nuclear Information System (INIS)
Lebedenko, V.M.
1978-01-01
The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
The theory of algebraic numbers
Pollard, Harry
1998-01-01
An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.
Algebraic partial Boolean algebras
International Nuclear Information System (INIS)
Smith, Derek
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Regularity of C*-algebras and central sequence algebras
DEFF Research Database (Denmark)
Christensen, Martin S.
The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...
José, Marco V; Morgado, Eberto R; Govezensky, Tzipe
2011-07-01
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
The Unitality of Quantum B-algebras
Han, Shengwei; Xu, Xiaoting; Qin, Feng
2018-02-01
Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.
Real division algebras and other algebras motivated by physics
International Nuclear Information System (INIS)
Benkart, G.; Osborn, J.M.
1981-01-01
In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations
Davidson, Kenneth R
1996-01-01
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea
Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
Emig, Christa
2009-01-01
The study sought to test the hypotheses that effective, guided discussions that facilitate meaningful dialogue about math anxiety would reduce levels of math anxiety in college algebra students, and would enhance course performance and course retention at a large community college in South Texas. The study was quantitative with a qualitative…
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
The algebraic criteria for the stability of control systems
Cremer, H.; Effertz, F. H.
1986-01-01
This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.
Graded associative conformal algebras of finite type
Kolesnikov, Pavel
2011-01-01
In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...
Strongly \\'etale difference algebras and Babbitt's decomposition
Tomašić, Ivan; Wibmer, Michael
2015-01-01
We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Vertex algebras and algebraic curves
Frenkel, Edward
2004-01-01
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...
African Journals Online (AJOL)
Tadesse
In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
Learning abstract algebra with ISETL
Dubinsky, Ed
1994-01-01
Most students in abstract algebra classes have great difficulty making sense of what the instructor is saying. Moreover, this seems to remain true almost independently of the quality of the lecture. This book is based on the constructivist belief that, before students can make sense of any presentation of abstract mathematics, they need to be engaged in mental activities which will establish an experiential base for any future verbal explanation. No less, they need to have the opportunity to reflect on their activities. This approach is based on extensive theoretical and empirical studies as well as on the substantial experience of the authors in teaching astract algebra. The main source of activities in this course is computer constructions, specifically, small programs written in the mathlike programming language ISETL; the main tool for reflections is work in teams of 2-4 students, where the activities are discussed and debated. Because of the similarity of ISETL expressions to standard written mathematics...
Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras
International Nuclear Information System (INIS)
Gebert, R.W.
1993-09-01
The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)
Polishchuk, Alexander
2005-01-01
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
Diamond lemma for the group graded quasi-algebras
Indian Academy of Sciences (India)
Introduction. The term quasi-algebra was introduced in [2] as an algebra in a monoidal category. Since the associativity constraints in these categories are allowed to be nontrivial, the class of quasi-algebras contains various important examples of non-associative algebras like the octonions and other Cayley algebras [2].
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Quantized Matrix Algebras and Quantum Seeds
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Pagani, Chiara
2015-01-01
We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
Varilly, Joseph C.
2001-10-01
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
Chudnovsky, D V
1978-09-01
For systems of nonlinear equations having the form [L(n) - ( partial differential/ partial differentialt), L(m) - ( partial differential/ partial differentialy)] = 0 the class of meromorphic solutions obtained from the linear equations [Formula: see text] is presented.
Survey Helps Class to See, Understand Local Standards.
Pasternack, Steve
1986-01-01
Presents an exercise in which students interview various groups of citizens--church leaders, school officials, government and business leaders--in order to give students a broader understanding of the definitions of obscenity and community standards. (HTH)
Jordan algebras versus C*- algebras
International Nuclear Information System (INIS)
Stormer, E.
1976-01-01
The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)
Galilean contractions of W-algebras
Directory of Open Access Journals (Sweden)
Jørgen Rasmussen
2017-09-01
Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.
Integrated Data Analysis (IDCA) Program - PETN Class 4 Standard
Energy Technology Data Exchange (ETDEWEB)
Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Phillips, Jason J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-08-01
The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of PETN Class 4. The PETN was found to have: 1) an impact sensitivity (DH_{50}) range of 6 to 12 cm, 2) a BAM friction sensitivity (F_{50}) range 7 to 11 kg, TIL (0/10) of 3.7 to 7.2 kg, 3) a ABL friction sensitivity threshold of 5 or less psig at 8 fps, 4) an ABL ESD sensitivity threshold of 0.031 to 0.326 j/g, and 5) a thermal sensitivity of an endothermic feature with T_{min} = ~ 141 °C, and a exothermic feature with a T_{max} = ~205°C.
Logarithmic residues in Banach algebras
H. Bart (Harm); T. Ehrhardt; B. Silbermann
1994-01-01
textabstractLet f be an analytic Banach algebra valued function and suppose that the contour integral of the logarithmic derivative f′f-1 around a Cauchy domain D vanishes. Does it follow that f takes invertible values on all of D? For important classes of Banach algebras, the answer is positive. In
Double-partition Quantum Cluster Algebras
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Zhang, Hechun
2012-01-01
A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....
Cartooning in Algebra and Calculus
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
Towards a structure theory for Lie-admissible algebras
International Nuclear Information System (INIS)
Wene, G.P.
1981-01-01
The concepts of radical and decomposition of algebras are presented. Following a discussion of the theory for associative algebras, examples are presented that illuminate the difficulties encountered in choosing a structure theory for nonassociative algebras. Suitable restrictions, based upon observed phenomenon, are given that reduce the class of Lie-admissible algebras to a manageable size. The concepts developed in the first part of the paper are then reexamined in the context of this smaller class of Lie-admissible algebras
International Nuclear Information System (INIS)
Anon.
1979-01-01
IEEE Std 323-1974, Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, was developed to provide guidance for demonstrating and documenting the adequacy of electrical equipment used in all Class 1E and interface systems. This standard, IEEE Std 535-1979, was developed to provide specific methods and type test procedures for lead storage batteries in reference to IEEE Std 323-1974
IEEE standard for qualifying class IE equipment for nuclear power generating stations
International Nuclear Information System (INIS)
Anon.
1974-01-01
The Institute of Electrical and Electrical Engineers, Inc. (IEEE) standards for electrical equipment (Class IE) for nuclear power generating stations are given. The standards are to provide guidance for demonstrating and documenting the adequacy of electric equipment used in all Class IE and interface systems. Representative in containment design basis event conditions for the principal reactor types are included in the appendixes for guidance in enviromental simulation
Algebra of pseudo-differential operators over C*-algebra
International Nuclear Information System (INIS)
Mohammad, N.
1982-08-01
Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2010-01-01
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
κ-Minkowski Spacetimes and DSR Algebras: Fresh Look and Old Problems
Directory of Open Access Journals (Sweden)
Andrzej Borowiec
2010-10-01
Full Text Available Some classes of Deformed Special Relativity (DSR theories are reconsidered within the Hopf algebraic formulation. For this purpose we shall explore a minimal framework of deformed Weyl-Heisenberg algebras provided by a smash product construction of DSR algebra. It is proved that this DSR algebra, which uniquely unifies κ-Minkowski spacetime coordinates with Poincaré generators, can be obtained by nonlinear change of generators from undeformed one. Its various realizations in terms of the standard (undeformed Weyl-Heisenberg algebra opens the way for quantum mechanical interpretation of DSR theories in terms of relativistic (Stückelberg version Quantum Mechanics. On this basis we review some recent results concerning twist realization of κ-Minkowski spacetime described as a quantum covariant algebra determining a deformation quantization of the corresponding linear Poisson structure. Formal and conceptual issues concerning quantum κ-Poincaré and κ-Minkowski algebras as well as DSR theories are discussed. Particularly, the so-called ''q-analog'' version of DSR algebra is introduced. Is deformed special relativity quantization of doubly special relativity remains an open question. Finally, possible physical applications of DSR algebra to description of some aspects of Planck scale physics are shortly recalled.
On n-weak amenability of Rees semigroup algebras
Indian Academy of Sciences (India)
semigroups. In this work, we shall consider this class of Banach algebras. We examine the n-weak amenability of some semigroup algebras, and give an easier example of a Banach algebra which is n-weakly amenable if n is odd. Let L1(G) be the group algebra of a locally compact group G (§3.3 of [3]). Then Johnson.
More on the linearization of W-algebras
International Nuclear Information System (INIS)
Krivonos, S.; Sorin, A.
1995-01-01
We show that a wide class of W-(super)algebras, including W N (N-1) , U(N)-superconformal as well as W N nonlinear algebras, can be linearized by embedding them as subalgebras into some linear (super)conformal algebras with finite sets of currents. The general construction is illustrated by the example of W 4 algebra. 16 refs
Infinite dimension algebra and conformal symmetry
International Nuclear Information System (INIS)
Ragoucy-Aubezon, E.
1991-04-01
A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras
Integrable N dimensional systems on the Hopf algebra and q deformations
International Nuclear Information System (INIS)
Lisitsyn, Ya.V.; Shapovalov, A.V.
2000-01-01
The class of integrable classic and quantum systems on the Hopf algebra, describing the n of interacting particles, is plotted. The general structure of the integrable Hamiltonian system for the Hopf algebra A(g) of the Lee simple algebra g is obtained, wherefrom it follows, that motion integrals depend on the linear combinations k of the phase space coordinates. The q-deformation standard procedure is carried out and the corresponding integrable system is obtained. The general scheme is illustrated by the examples of the sl(2), sl(3) and o(3, 1) algebras. The exact solution is achieved for the N-dimensional Hamiltonian system quantum analog on the Hopf algebra A (sl(2)) through the method of noncommutative integration of linear differential equations [ru
Tang, Xiaomin
2016-01-01
In this paper, we characterize the biderivations of W-algebra $W(2,2)$ and Virasoro algebra $Vir$ without skewsymmetric condition. We get two classes of non-inner biderivations. As applications, we also get the forms of linear commuting maps on W-algebra $W(2,2)$ and Virasoro algebra $Vir$.
A division algebra classification of generalized supersymmetries
International Nuclear Information System (INIS)
Toppan, Francesco
2004-10-01
Generalized supersymmetries admitting bosonic tensor central charges are classified in accordance with their division algebra properties. Division algebra consistent constraints lead (in the complex and quaternionic cases) to the classes of hermitian and holomorphic generalized supersymmetries. Applications to the analytic continuation of the M-algebra to the Euclidean and the systematic investigation of certain classes of models in generic space-times are briefly mentioned. (author)
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Einstein algebras and general relativity
International Nuclear Information System (INIS)
Heller, M.
1992-01-01
A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs
World-Class Ambitions, Weak Standards: An Excerpt from "The State of State Science Standards 2012"
American Educator, 2012
2012-01-01
A solid science education program begins by clearly establishing what well-educated youngsters need to learn about this multifaceted domain of human knowledge. The first crucial step is setting clear academic standards for the schools--standards that not only articulate the critical science content students need to learn, but that also properly…
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Yang, Guang; Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Jin, Yan; Zheng, Yu-Guang; Wang, Yong-Yan
2014-05-01
Standards of commodity classes of Chinese materia medica is an important way to solve the "Lemons Problem" of traditional Chinese medicine market. Standards of commodity classes are also helpful to rebuild market mechanisms for "high price for good quality". The previous edition of commodity classes standards of Chinese materia medica was made 30 years ago. It is no longer adapted to the market demand. This article researched progress on standards of commodity classes of Chinese materia medica. It considered that biological activity is a better choice than chemical constituents for standards of commodity classes of Chinese materia medica. It is also considered that the key point to set standards of commodity classes is finding the influencing factors between "good quality" and "bad quality". The article also discussed the range of commodity classes of Chinese materia medica, and how to coordinate standards of pharmacopoeia and commodity classes. According to different demands, diversiform standards can be used in commodity classes of Chinese materia medica, but efficacy is considered the most important index of commodity standard. Decoction pieces can be included in standards of commodity classes of Chinese materia medica. The authors also formulated the standards of commodity classes of Notoginseng Radix as an example, and hope this study can make a positive and promotion effect on traditional Chinese medicine market related research.
The C*-algebra of a vector bundle and fields of Cuntz algebras
Vasselli, Ezio
2004-01-01
We study the Pimsner algebra associated with the module of continuous sections of a Hilbert bundle, and prove that it is a continuous bundle of Cuntz algebras. We discuss the role of such Pimsner algebras w.r.t. the notion of inner endomorphism. Furthermore, we study bundles of Cuntz algebras carrying a global circle action, and assign to them a class in the representable KK-group of the zero-grade bundle. We compute such class for the Pimsner algebra of a vector bundle.
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
International Nuclear Information System (INIS)
Ivanov, V.P.
1980-01-01
Necessary and sufficient conditions for existence of the exact symmetric representation of algebras with involution called sometimes regular of the fields of real and complex numbers are formulated in the paper
Spin-zero mesons and current algebras
International Nuclear Information System (INIS)
Wellner, M.
1977-01-01
Large chiral algebras, using the f and d coefficients of SU(3) can be constructed with spin-1/2 baryons. Such algebras have been found useful in some previous investigations. This article examines under what conditions similar or identical current algebras may be realized with spin-0 mesons. A curious lack of analogy emerges between meson and baryon currents. Second-class currents, made of mesons, are required in some algebras. If meson and baryon currents are to satisfy the same extended SU(3) algebra, four meson nonets are needed, in terms of which we give an explicit construction for the currents
On the classification of quantum W-algebras
International Nuclear Information System (INIS)
Bowcock, P.; Watts, G.T.M.
1992-01-01
In this paper we consider the structure of general quantum W-algebras. We introduce the notions of deformability, positive-definiteness, and reductivity of a W-algebra. We show that one can associate a reductive finite Lie algebra to each reductive W-algebra. The finite Lie algebra is also endowed with a preferred sl(2) subalgebra, which gives the conformal weights of the W-algebra. We extend this to cover W-algebras containing both bosonic and fermionic fields, and illustrate our ideas with the Poisson bracket algebras of generalised Drinfeld-Sokolov hamiltonian systems. We then discuss the possibilities of classifying deformable W-algebras which fall outside this class in the context of automorphisms of Lie algebras. In conclusion we list the cases in which the W-algebra has no weight-one fields, and further, those in which it has only one weight-two field. (orig.)
The structure of relation algebras generated by relativizations
Givant, Steven R
1994-01-01
The foundation for an algebraic theory of binary relations was laid by De Morgan, Peirce, and Schröder during the second half of the nineteenth century. Modern development of the subject as a theory of abstract algebras, called "relation algebras", was undertaken by Tarski and his students. This book aims to analyze the structure of relation algebras that are generated by relativized subalgebras. As examples of their potential for applications, the main results are used to establish representation theorems for classes of relation algebras and to prove existence and uniqueness theorems for simple closures (i.e., for minimal simple algebras containing a given family of relation algebras as relativized subalgebras). This book is well written and accessible to those who are not specialists in this area. In particular, it contains two introductory chapters on the arithmetic and the algebraic theory of relation algebras. This book is suitable for use in graduate courses on algebras of binary relations or algebraic...
Fir Filters Compliant with the IEEE Standard for M Class PMU
Directory of Open Access Journals (Sweden)
Duda Krzysztof
2016-12-01
Full Text Available In this paper it is shown that M class PMU (Phasor Measurement Unit reference model for phasor estimation recommended by the IEEE Standard C37.118.1 with the Amendment 1 is not compliant with the Standard. The reference filter preserves only the limits for TVE (total vector error, and exceeds FE (frequency error and RFE (rate of frequency error limits. As a remedy we propose new filters for phasor estimation for M class PMU that are fully compliant with the Standard requirements. The proposed filters are designed: 1 by the window method; 2 as flat-top windows; or as 3 optimal min-max filters. The results for all Standard compliance tests are presented, confirming good performance of the proposed filters. The proposed filters are fixed at the nominal frequency, i.e. frequency tracking and adaptive filter tuning are not required, therefore they are well suited for application in lowcost popular PMUs.
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Computational triadic algebras of signs
Energy Technology Data Exchange (ETDEWEB)
Zadrozny, W. [T.J. Watson Research Center, Yorktown Heights, NY (United States)
1996-12-31
We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.
Algebraic entropy for algebraic maps
International Nuclear Information System (INIS)
Hone, A N W; Ragnisco, Orlando; Zullo, Federico
2016-01-01
We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)
On the Structure of С*-Algebras Generated by Representations of the Elementary Inverse Semigroup
Directory of Open Access Journals (Sweden)
S.A. Grigoryan
2016-06-01
Full Text Available The class of С*-algebras generated by the elementary inverse semigroup and being deformations of the Toeplitz algebra has been introduced and studied. The properties of these algebras have been investigated. All their irreducible representations and automorphism groups have been described. These algebras have been proved to be Z-graded С*-algebras. For a certain class of algebras in the family under consideration the compact quantum semigroup structure has been constructed.
International Nuclear Information System (INIS)
Anon.
1980-01-01
This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1979 and IEEE Std 308-1978, can be demonstrated by using the procedures provided in this Standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other types batteries are beyond the scope of this Standard
Adventures in Flipping College Algebra
Van Sickle, Jenna
2015-01-01
This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…
Directory of Open Access Journals (Sweden)
Mohd Ayaz
2016-01-01
Full Text Available This case report deals with the successful orthodontic treatment of a 14-year-old female patient having Class II malocclusion with bidental protrusion using standard edgewise prescription. She reported with forwardly placed upper front teeth and difficulty in closing lips. She had prognathic maxilla, retrognathic mandible, and full cusp Class II molar and canine relation bilaterally with overjet of 7 mm. She was in cervical vertebrae maturation indicator Stage IV. The case was treated by fixed extraction mechanotherapy. Interarch Class II mechanics was used to retract the upper incisor and to mesialize the lower molars. Simultaneously, Class I mechanics was used to upright lower incisors. Tip back bend, curve of Spee, and extra palatal root torque were incorporated in upper archwire to maintain molars in upright position and prevent extrusion and deepening of bite, respectively. There was satisfactory improvement in facial profile at the end of 24 months. After a follow-up of 6 months, occlusion was stable.
75 FR 55269 - Minimum Internal Control Standards for Class II Gaming
2010-09-10
... DEPARTMENT OF THE INTERIOR National Indian Gaming Commission 25 CFR Parts 542 and 543 RIN 3141-AA-37 Minimum Internal Control Standards for Class II Gaming AGENCY: National Indian Gaming Commission. ACTION: Delay of effective date of final rule; request for comments. SUMMARY: The National Indian Gaming...
76 FR 53817 - Minimum Internal Control Standards for Class II Gaming
2011-08-30
... DEPARTMENT OF THE INTERIOR National Indian Gaming Commission 25 CFR Parts 542 and 543 Minimum Internal Control Standards for Class II Gaming AGENCY: National Indian Gaming Commission, Interior. ACTION: Final rule; delay of effective date and request for comments. SUMMARY: The National Indian Gaming...
77 FR 60625 - Minimum Internal Control Standards for Class II Gaming
2012-10-04
... DEPARTMENT OF THE INTERIOR National Indian Gaming Commission 25 CFR Parts 542 and 543 RIN 3141-AA-37 Minimum Internal Control Standards for Class II Gaming AGENCY: National Indian Gaming Commission. ACTION: Final rule; delay of effective date; suspension. SUMMARY: The National Indian Gaming Commission...
The BRST complex and the cohomology of compact lie algebras
International Nuclear Information System (INIS)
Holten, J.W. van
1990-02-01
The authors construct the BRST and anti-BRST operator for a compact Lie algebra which is a direct sum of abelian and simple ideals. Two different inner products are defined on the ghost space and the hermiticity propeties of the ghost and BRST operators with respect to these inner products are discussed. A decomposition theorem for ghost states is derived and the cohomology of the BRST complex is shown to reduce to the standard Lie-algebra cohomology. The authors show that the cohomology classes of the Lie algebra are given by all invariant anti-symmetric tensors and explain how thse can be obtained as zero-modes of an invariant operator in the representation space of the ghosts. Explicit examples are given. (author) 24 refs
International Nuclear Information System (INIS)
MacCallum, M.A.H.
1990-01-01
The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Normed algebras and the geometric series test
Directory of Open Access Journals (Sweden)
Robert Kantrowitz
2017-11-01
Full Text Available The purpose of this article is to survey a class of normed algebras that share many central features of Banach algebras, save for completeness. The likeness of these algebras to Banach algebras derives from the fact that the geometric series test is valid, whereas the lack of completeness points to the failure of the absolute convergence test for series in the algebra. Our main result is a compendium of conditions that are all equivalent to the validity of the geometric series test for commutative unital normed algebras. Several examples in the final section showcase some incomplete normed algebras for which the geometric series test is valid, and still others for which it is not.
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Lawrence, Lettie Carol
1997-08-01
The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between
(Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras
Directory of Open Access Journals (Sweden)
Dusko Pavlovic
2017-01-01
Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
Indian Academy of Sciences (India)
Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.
Regular algebra and finite machines
Conway, John Horton
2012-01-01
World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg
Stellar binary black holes in the LISA band: a new class of standard sirens
Del Pozzo, Walter; Sesana, Alberto; Klein, Antoine
2018-04-01
The recent Advanced LIGO detections of coalescing black hole binaries (BHBs) imply a large population of such systems emitting at milli-Hz frequencies, accessible to the Laser Interferometer Space Antenna (LISA). We show that these systems provide a new class of cosmological standard sirens. Direct LISA luminosity distance - Dl - measurements, combined with the inhomogeneous redshift - z - distribution of possible host galaxies provide an effective way to populate the Dl-z diagram at z arm-length, respectively.
Thawinkarn, Dawruwan
2018-01-01
This research aims to analyze factors of science teacher leadership in the Thailand World-Class Standard Schools. The research instrument was a five scale rating questionnaire with reliability 0.986. The sample group included 500 science teachers from World-Class Standard Schools who had been selected by using the stratified random sampling technique. Factor analysis of science teacher leadership in the Thailand World-Class Standard Schools was conducted by using M plus for Windows. The results are as follows: The results of confirmatory factor analysis on science teacher leadership in the Thailand World-Class Standard Schools revealed that the model significantly correlated with the empirical data. The consistency index value was x2 = 105.655, df = 88, P-Value = 0.086, TLI = 0.997, CFI = 0.999, RMSEA = 0.022, and SRMR = 0.019. The value of factor loading of science teacher leadership was positive, with statistical significance at the level of 0.01. The value of six factors was between 0.880-0.996. The highest factor loading was the professional learning community, followed by child-centered instruction, participation in development, the role model in teaching, transformational leaders, and self-development with factor loading at 0.996, 0.928, 0.911, 0.907, 0.901, and 0.871, respectively. The reliability of each factor was 99.1%, 86.0%, 83.0%, 82.2%, 81.0%, and 75.8%, respectively.
2010-04-01
... and enabling Class II gaming system components? 547.6 Section 547.6 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM TECHNICAL STANDARDS FOR GAMING EQUIPMENT USED... enabling Class II gaming system components? (a) General requirements. Class II gaming systems shall provide...
2011-03-31
... POSTAL SERVICE 39 CFR Part 111 Market Dominant Negotiated Service Agreement (NSA) for First- Class....1, to establish a new Negotiated Service Agreement (NSA) Market Dominant product for First-Class... Gifford at 202-268-8082. SUPPLEMENTARY INFORMATION: This new NSA for First-Class Mail and Standard Mail is...
On uniqueness of characteristic classes
DEFF Research Database (Denmark)
Feliu, Elisenda
2011-01-01
We give an axiomatic characterization of maps from algebraic K-theory. The results apply to a large class of maps from algebraic K-theory to any suitable cohomology theory or to algebraic K-theory. In particular, we obtain comparison theorems for the Chern character and Chern classes and for the ...
Classical algebraic chromodynamics
International Nuclear Information System (INIS)
Adler, S.L.
1978-01-01
I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
Kolman, Bernard; Levitan, Michael L
1985-01-01
Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.
Quantum W-algebras and elliptic algebras
International Nuclear Information System (INIS)
Feigin, B.; Kyoto Univ.; Frenkel, E.
1996-01-01
We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)
2010-04-01
... on a Class II gaming system? 547.12 Section 547.12 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM TECHNICAL STANDARDS FOR GAMING EQUIPMENT USED WITH THE PLAY... gaming system? This section provides standards for downloading on a Class II gaming system. (a) Downloads...
International Nuclear Information System (INIS)
Mohammad, N.; Siddiqui, A.H.
1987-11-01
The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs
Highly Undecidable Questions for Process Algebras
DEFF Research Database (Denmark)
Srba, Jiri; Jancar, Petr
2004-01-01
We show Sigma^1_1-completeness of weak bisimilarity for PA (process algebra), and of wek simulation preorder/equivalence for PDA (pushdown automata), PA and PN (Petri nets). We also show Pi^1_1-hardness of weak omega-trace equivalence for the sub(classes) of BPA (basic process algebra) and BPP...
Coherent states for polynomial su(2) algebra
International Nuclear Information System (INIS)
Sadiq, Muhammad; Inomata, Akira
2007-01-01
A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
The algebraic collective model
International Nuclear Information System (INIS)
Rowe, D.J.; Turner, P.S.
2005-01-01
A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei
International Nuclear Information System (INIS)
Jacob, M.
1967-01-01
The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr
Automorphism modular invariants of current algebras
International Nuclear Information System (INIS)
Gannon, T.; Walton, M.A.
1996-01-01
We consider those two-dimensional rational conformal field theories (RCFTs) whose chiral algebras, when maximally extended, are isomorphic to the current algebra formed from some untwisted affine Lie algebra at fixed level. In this case the partition function is specified by an automorphism of the fusion ring and corresponding symmetry of the Kac-Peterson modular matrices. We classify all such partition functions when the underlying finite-dimensional Lie algebra is simple. This gives all possible spectra for this class of RCFTs. While accomplishing this, we also find the primary fields with second smallest quantum dimension. (orig.). With 3 tabs
Kleyn, Aleks
2007-01-01
The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.
DEFF Research Database (Denmark)
Schmidt, Thomas Lundsgaard
such a map, generalising the transformation groupoid of a local homeomorphism first introduced by Renault in \\cite{re}. We conduct a detailed study of the relationship between the dynamics of $\\phi$, the properties of these groupoids, the structure of their corresponding reduced groupoid $C^*$-algebras, and......, for certain classes of maps, the K-theory of these algebras. When the map $\\phi$ is transitive, we show that the algebras $C^*_r(\\Gamma_\\phi)$ and $C^*_r(\\Gamma_\\phi^+)$ are purely infinite and satisfy the Universal Coefficient Theorem. Furthermore, we find necessary and sufficient conditions for simplicity...... of these algebras in terms of dynamical properties of $\\phi$. We proceed to consider the situation when the algebras are non-simple, and describe the primitive ideal spectrum in this case. We prove that any irreducible representation factors through the $C^*$-algebra of the reduction of the groupoid to the orbit...
Casimir elements of epsilon Lie algebras
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)
Usage of Latent Class Analysis in Diagnostic Microbiology in the Absence of Gold Standard Test
Directory of Open Access Journals (Sweden)
Gul Bayram Abiha
2016-12-01
Full Text Available The evaluation of performance of various tests diagnostic tests in the absence of gold standard is an important problem. Latent class analysis (LCA is a statistical analysis method known for many years, especially in the absence of a gold standard for evaluation of diagnostic tests so that LCA has found its wide application area. During the last decade, LCA method has widely used in for determining sensivity and specifity of different microbiological tests. It has investigated in the diagnosis of mycobacterium tuberculosis, mycobacterium bovis, human papilloma virus, bordetella pertussis, influenza viruses, hepatitis E virus (HEV, hepatitis C virus (HCV and other various viral infections. Researchers have compared several diagnostic tests for the diagnosis of different pathogens with LCA. We aimed to evaluate performance of latent class analysis method used microbiological diagnosis in various diseases in several researches. When we took into account all of these tests' results, we suppose that LCA is a good statistical analysis method to assess different test performances in the absence of gold standard. [Archives Medical Review Journal 2016; 25(4.000: 467-488
The algebras of large N matrix mechanics
Energy Technology Data Exchange (ETDEWEB)
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
The central extensions of Kac-Moody-Malcev algebras
International Nuclear Information System (INIS)
Osipov, E.P.
1989-01-01
The authors introduce a class of infinite-dimensional Kac-Moody-Malcev algebras. The Kac-Moody-Malcev algebras are the generalization of Lie algebras of Kac-Moody type to the Malcev algebras. They demonstrate that the central extensions of Kac-Moody-Malcev algebras are given by the same cocycles as in the case of Lie algebras. It is given a construction of Virasoro algebra in terms of bilinear combinations of currents satisfying the Kac-Moody-Malcev commutation relations. Thus, it is given the generalization of the Sugawara Construction to the case of Kac-Moody-Malcev algebras. Analogues of Kac-Moody-Malcev algebras may be also introduced in the case of arbitrary Riemann surface
Murray, Gregory V.; Moyer-Packenham, Patricia S.
2014-01-01
One option for length of individual mathematics class periods is the schedule type selected for Algebra I classes. This study examined the relationship between student achievement, as indicated by Algebra I Criterion-Referenced Test scores, and the schedule type for Algebra I classes. Data obtained from the Utah State Office of Education included…
Krichever-Novikov type algebras theory and applications
Schlichenmaier, Martin
2014-01-01
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are
Boolean Operations with Prism Algebraic Patches
Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi
2009-01-01
In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262
Biderivations of finite dimensional complex simple Lie algebras
Tang, Xiaomin
2016-01-01
In this paper, we prove that a biderivation of a finite dimensional complex simple Lie algebra without the restriction of skewsymmetric is inner. As an application, the biderivation of a general linear Lie algebra is presented. In particular, we find a class of a non-inner and non-skewsymmetric biderivations. Furthermore, we also get the forms of linear commuting maps on the finite dimensional complex simple Lie algebra or general linear Lie algebra.
A note on p-semisimple BCI-algebras
International Nuclear Information System (INIS)
Aslam, M.; Thaheem, A.B.
1989-07-01
In this note we prove some equivalent conditions for p-semisimple BCI-algebras. We also show that if X is a p-semisimple BCI-algebra then Hom(X), the set of all homomorphisms of X is a (p-semisimple) BCI-algebra, thus extending the class of BCI-algebras with this property as proposed. We also study some duality conditions. (author). 11 refs
International Nuclear Information System (INIS)
Dragon, N.
1979-01-01
The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)
Bliss, Gilbert Ames
1933-01-01
This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t
Error-Detecting Identification Codes for Algebra Students.
Sutherland, David C.
1990-01-01
Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)
Iterated Leavitt Path Algebras
International Nuclear Information System (INIS)
Hazrat, R.
2009-11-01
Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)
Discrete event systems in dioid algebra and conventional algebra
Declerck, Philippe
2013-01-01
This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i
Experts Question California's Algebra Edict
Cavanagh, Sean
2008-01-01
Business leaders from important sectors of the American economy have been urging schools to set higher standards in math and science--and California officials, in mandating that 8th graders be tested in introductory algebra, have responded with one of the highest such standards in the land. Still, many California educators and school…
A space standards application to university-class microsatellites: The UNISAT experience
Graziani, Filippo; Piergentili, Fabrizio; Santoni, Fabio
2010-05-01
Hands-on education is recognized as an invaluable tool to improve students' skills, to stimulate their enthusiasm and to educate them to teamwork. University class satellite programs should be developed keeping in mind that education is the main goal and that university satellites are a unique opportunity to make involved students familiar with all the phases of space missions. Moreover university budgets for education programs are much lower than for industrial satellites programs. Therefore two main constraints must be respected: a time schedule fitting with the student course duration and a low economic budget. These have an impact on the standard which can be followed in university class satellite programs. In this paper university-class satellite standardization is discussed on the basis of UNISAT program experience, reporting successful project achievements and lessons learned through unsuccessful experiences. The UNISAT program was established at the Scuola di Ingegneria Aerospaziale by the Group of Astrodynamics of the University of Rome "La Sapienza" (GAUSS) as a research and education program in which Ph.D. and graduate students have the opportunity to gain hands-on experience on small space missions. Four university satellites (UNISAT, UNISAT-2, UNISAT-3, UNISAT-4), weighing about 10 kg, have been designed, manufactured, tested and launched every two years since 2000 in the framework of this program In the paper, after a brief overview of new GAUSS programs, an analysis of the UNISAT satellites ground test campaign is carried out, identifying the most critical procedures and requirements to be fulfilled. Moreover a device for low earth orbit low-cost satellite end-of-life disposal is presented; this system (SIRDARIA) complies with the international guidelines on space debris.
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
2013-08-22
... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service [AMS-CN-13-0044] Cotton Classing, Testing... through www.regulations.gov . All comments should reference the AMS-CN- 13-0044. All comments received... INFORMATION: Title: Cotton Classing, Testing, and Standards. OMB Number: 0581-0008. Expiration Date of...
2010-04-01
... applicable to Class II gaming systems? 547.7 Section 547.7 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM TECHNICAL STANDARDS FOR GAMING EQUIPMENT USED WITH THE PLAY... gaming systems? (a) General requirements. (1) The Class II gaming system shall operate in compliance with...
International Nuclear Information System (INIS)
Anon.
1992-01-01
This standard describes the basic principles, requirements, and methods for qualifying Class 1E motor control centers for outside containment applications in nuclear power generating stations. Qualification of motor control centers located inside containment in a nuclear power generating station is beyond the scope of this standard. The purpose of this standard is (1) to define specific qualification requirements for Class 1E motor control centers in accordance with the more general qualification requirements of IEEE Std 323-1974, IEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations; (2) to provide guidance in establishing a qualification program for demonstrating the design adequacy of Class 1E motor control centers in nuclear power generating station applications
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
DEFF Research Database (Denmark)
Kostoulas, Polychronis; Nielsen, Søren S.; Branscum, Adam J.
2017-01-01
The Standards for the Reporting of Diagnostic Accuracy (STARD) statement, which was recently updated to the STARD2015 statement, was developed to encourage complete and transparent reporting of test accuracy studies. Although STARD principles apply broadly, the checklist is limited to studies......-BLCM (Standards for Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models), will facilitate improved quality of reporting on the design, conduct and results of diagnostic accuracy studies that use Bayesian latent class models....
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Homotopy Theory of C*-Algebras
Ostvaer, Paul Arne
2010-01-01
Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It
Quantum algebras in nuclear structure
International Nuclear Information System (INIS)
Bonatsos, D.; Daskaloyannis, C.
1995-01-01
Quantum algebras is a mathematical tool which provides us with a class of symmetries wider than that of Lie algebras, which are contained in the former as a special case. After a self-contained introduction through the necessary mathematical tools (q-numbers, q-analysis, q-oscillators, q-algebras), the su q (2) rotator model and its extensions, the construction of deformed exactly soluble models (Interacting Boson Model, Moszkowski model), the use of deformed bosons in the description of pairing correlations, and the symmetries of the anisotropic quantum harmonic oscillator with rational ratios of frequencies, which underline the structure of superdeformed and hyperdeformed nuclei are discussed in some details. A brief description of similar applications to molecular structure and an outlook are also given. (author) 2 Tabs., 324 Refs
Algebraic geometry and effective lagrangians
International Nuclear Information System (INIS)
Martinec, E.J.; Chicago Univ., IL
1989-01-01
N=2 supersymmetric Landau-Ginsburg fixed points describe nonlinear models whose target spaces are algebraic varieties in certain generalized projective spaces; the defining equation is precisely the zero set of the superpotential, considered as a condition in the projective space. The ADE classification of modular invariants arises as the classification of projective descriptions of P 1 ; in general, the hierarchy of fixed points is conjectured to be isomorphic to the classification of quasihomogeneous singularities. The condition of vanishing first Chern class is an integrality condition on the Virasoro central charge; the central charge is determined by the superpotential. The operator algebra is given by the algebra of Wick contractions of perturbations of the superpotential. (orig.)
Dynamical systems of algebraic origin
Schmidt, Klaus
1995-01-01
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...
The Yoneda algebra of a K2 algebra need not be another K2 algebra
Cassidy, T.; Phan, C.; Shelton, B.
2010-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Just Say Yes to Early Algebra!
Stephens, Ana; Blanton, Maria; Knuth, Eric; Isler, Isil; Gardiner, Angela Murphy
2015-01-01
Mathematics educators have argued for some time that elementary school students are capable of engaging in algebraic thinking and should be provided with rich opportunities to do so. Recent initiatives like the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) have taken up this call by reiterating the place of early algebra in…
Planar Algebra of the Subgroup-Subfactor
Indian Academy of Sciences (India)
The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant of R ⋊ H ⊂ R ⋊ G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra subfactor R G ⊂ R H and the -invariant planar subalgebra ...
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Foulis, David J.; Pulmannov, Sylvia
2018-04-01
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
G-identities of non-associative algebras
International Nuclear Information System (INIS)
Bakhturin, Yu A; Zaitsev, M V; Sehgal, S K
1999-01-01
The main class of algebras considered in this paper is the class of algebras of Lie type. This class includes, in particular, associative algebras, Lie algebras and superalgebras, Leibniz algebras, quantum Lie algebras, and many others. We prove that if a finite group G acts on such an algebra A by automorphisms and anti-automorphisms and A satisfies an essential G-identity, then A satisfies an ordinary identity of degree bounded by a function that depends on the degree of the original identity and the order of G. We show in the case of ordinary Lie algebras that if L is a Lie algebra, a finite group G acts on L by automorphisms and anti-automorphisms, and the order of G is coprime to the characteristic of the field, then the existence of an identity on skew-symmetric elements implies the existence of an identity on the whole of L, with the same kind of dependence between the degrees of the identities. Finally, we generalize Amitsur's theorem on polynomial identities in associative algebras with involution to the case of alternative algebras with involution
Iwahori-Hecke algebras and Schur algebras of the symmetric group
Mathas, Andrew
1999-01-01
This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the q-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and q-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in Chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the q-Schur algebras. T...
Classification of simple flexible Lie-admissible algebras
International Nuclear Information System (INIS)
Okubo, S.; Myung, H.C.
1979-01-01
Let A be a finite-dimensional flexible Lie-admissible algebra over the complex field such that A - is a simple Lie algebra. It is shown that either A is itself a Lie algebra isomorphic to A - or A - is a Lie algebra of type A/sub n/ (n greater than or equal to 2). In the latter case, A is isomorphic to the algebra defined on the space of (n + 1) x (n + 1) traceless matrices with multiplication given by x * y = μxy + (1 - μ)yx - (1/(n + 100 Tr (xy) E where μ is a fixed scalar, xy denotes the matrix operators in Lie algebras which has been studied in theoretical physics. We also discuss a broader class of Lie algebras over arbitrary field of characteristic not equal to 2, called quasi-classical, which includes semisimple as well as reductive Lie algebras. For this class of Lie algebras, we can introduce a multiplication which makes the adjoint operator space into an associative algebra. When L is a Lie algebra with nondegenerate killing form, it is shown that the adjoint operator algebra of L in the adjoint representation becomes a commutative associative algebra with unit element and its dimension is 1 or 2 if L is simple over the complex field. This is related to the known result that a Lie algebra of type A/sub n/ (n greater than or equal to 2) alone has a nonzero completely symmetric adjoint operator in the adjoint representation while all other algebras have none. Finally, Lie-admissible algebras associated with bilinear form are investigated
Supersymmetry algebra cohomology. I. Definition and general structure
International Nuclear Information System (INIS)
Brandt, Friedemann
2010-01-01
This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.
International Nuclear Information System (INIS)
Anon.
1992-01-01
This standard describes the basic requirements for qualifying Class 1E equipment with interfaces that are to be used in nuclear power generating stations. The requirements presented include the principles, procedures, and methods of qualification. These qualification requirements, when met, will confirm the adequacy of the equipment design under normal, abnormal, design basis event, post design basis event, and in-service test conditions for the performance of safety function(s). The purpose of this standard is to identify requirements for the qualification of Class 1E equipment, including those interfaces whose failure could adversely affect the performance of Class 1E equipment and systems. The methods described shall be used for qualifying equipment, extending qualification, and updating qualification if the equipment is modified. Other issued IEEE standards which present qualification methods for specific equipment or components, or both, and those that deal with parts of the qualification program, may be used to supplement this standard, as applicable
BRST operator for superconformal algebras with quadratic nonlinearity
International Nuclear Information System (INIS)
Khviengia, Z.; Sezgin, E.
1993-07-01
We construct the quantum BRST operators for a large class of superconformal and quasi-superconformal algebras with quadratic nonlinearity. The only free parameter in these algebras is the level of the (super) Kac-Moody sector. The nilpotency of the quantum BRST operator imposes a condition on the level. We find this condition for (quasi) superconformal algebras with a Kac-Moody sector based on a simple Lie algebra and for the Z 2 x Z 2 -graded superconformal algebras with a Kac-Moody sector based on the superalgebra osp(N modul 2M) or sl (N + 2 modul N). (author). 22 refs, 3 tabs
A cohomological characterization of Leibniz central extensions of Lie algebras
International Nuclear Information System (INIS)
Hu Naihong; Pei Yufeng; Liu Dong
2006-12-01
Motivated by Pirashvili's spectral sequences on a Leibniz algebra, some notions such as invariant symmetric bilinear forms, dual space derivations and the Cartan-Koszul homomorphism are connected together to give a description of the second Leibniz cohomology groups with trivial coefficients of Lie algebras (as Leibniz objects), which leads to a concise approach to determining one-dimensional Leibniz central extensions of Lie algebras. As applications, we contain the discussions for some interesting classes of infinite-dimensional Lie algebras. In particular, our results include the cohomological version of Gao's main Theorem for Kac-Moody algebras and answer a question. (author)
Centrally extended symmetry algebra of asymptotically Goedel spacetimes
International Nuclear Information System (INIS)
Compere, Geoffrey; Detournay, Stephane
2007-01-01
We define an asymptotic symmetry algebra for three-dimensional Goedel spacetimes supported by a gauge field which turns out to be the semi-direct sum of the diffeomorphisms on the circle with two loop algebras. A class of fields admitting this asymptotic symmetry algebra and leading to well-defined conserved charges is found. The covariant Poisson bracket of the conserved charges is then shown to be centrally extended to the semi-direct sum of a Virasoro algebra and two affine algebras. The subsequent analysis of three-dimensional Goedel black holes indicates that the Virasoro central charge is negative
Spencer, Bruce D
2012-06-01
Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model. © 2011, The International Biometric Society.
Up to code: does your company's conduct meet world-class standards?
Paine, Lynn; Deshpandé, Rohit; Margolis, Joshua D; Bettcher, Kim Eric
2005-12-01
Codes of conduct have long been a feature of corporate life. Today, they are arguably a legal necessity--at least for public companies with a presence in the United States. But the issue goes beyond U.S. legal and regulatory requirements. Sparked by corruption and excess of various types, dozens of industry, government, investor, and multisector groups worldwide have proposed codes and guidelines to govern corporate behavior. These initiatives reflect an increasingly global debate on the nature of corporate legitimacy. Given the legal, organizational, reputational, and strategic considerations, few companies will want to be without a code. But what should it say? Apart from a handful of essentials spelled out in Sarbanes-Oxley regulations and NYSE rules, authoritative guidance is sorely lacking. In search of some reference points for managers, the authors undertook a systematic analysis of a select group of codes. In this article, they present their findings in the form of a "codex," a reference source on code content. The Global Business Standards Codex contains a set of overarching principles as well as a set of conduct standards for putting those principles into practice. The GBS Codex is not intended to be adopted as is, but is meant to be used as a benchmark by those wishing to create their own world-class code. The provisions of the codex must be customized to a company's specific business and situation; individual companies' codes will include their own distinctive elements as well. What the codex provides is a starting point grounded in ethical fundamentals and aligned with an emerging global consensus on basic standards of corporate behavior.
Schwarz maps of algebraic linear ordinary differential equations
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Integrated Data Collection Analysis (IDCA) Program - RDX Type II Class 5 Standard, Data Set 1
Energy Technology Data Exchange (ETDEWEB)
Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorenson, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Moran, Jesse S. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Reyes, Jose A. [Applied Research Associates, Inc., Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whipple, Richard E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-04-11
This document describes the results of the first reference sample material—RDX Type II Class 5—examined in the proficiency study for small-scale safety and thermal (SSST) testing of explosive materials for the Integrated Data Collection Analysis (IDCA) Program. The IDCA program is conducting proficiency testing on homemade explosives (HMEs). The reference sample materials are being studied to establish the accuracy of traditional explosives safety testing for each performing laboratory. These results will be used for comparison to results from testing HMEs. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of these materials in perspective with standard military explosives. The results of the study will add SSST testing results for a broad suite of different HMEs to the literature, potentially suggest new guidelines and methods for HME testing, and possibly establish what are the needed accuracies in SSST testing to develop safe handling practices. Described here are the results for impact, friction, electrostatic discharge, and scanning calorimetry analysis of a reference sample of RDX Type II Class 5. The results from each participating testing laboratory are compared using identical test material and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. These results are then compared to historical data from various sources. The performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Air Force Research Laboratory/ RXQL (AFRL), Indian Head Division, Naval Surface Warfare Center, (IHD-NSWC), and Sandia National Laboratories (SNL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to understand how to compare results when test protocols are not identical.
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
A type of loop algebra and the associated loop algebras
International Nuclear Information System (INIS)
Tam Honwah; Zhang Yufeng
2008-01-01
A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out
Modeling Software Evolution using Algebraic Graph Rewriting
Ciraci, Selim; van den Broek, Pim
We show how evolution requests can be formalized using algebraic graph rewriting. In particular, we present a way to convert the UML class diagrams to colored graphs. Since changes in software may effect the relation between the methods of classes, our colored graph representation also employs the
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Introduction to quantum algebras
International Nuclear Information System (INIS)
Kibler, M.R.
1992-09-01
The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs
International Nuclear Information System (INIS)
Anon.
1993-01-01
The basic principles, requirements, and methods for qualifying Class 1E motor control centers for both harsh and mild environment applications in nuclear power generating stations are described. In addition to defining specific qualification requirements for Class 1E motor control centers and their components in accordance with the more general qualification requirements of IEEE Std 323-1983, this standard is intended to provide guidance in establishing a qualification program for demonstrating the adequacy of Class 1E motor control centers in nuclear power generating station applications
CASL, the Common Algebraic Specification Language
DEFF Research Database (Denmark)
Mossakowski, Till; Haxthausen, Anne Elisabeth; Sannella, Donald
2008-01-01
CASL is an expressive specification language that has been designed to supersede many existing algebraic specification languages and provide a standard. CASL consists of several layers, including basic (unstructured) specifications, structured specifications and architectural specifications...
Causal structure and algebraic classification of non-dissipative linear optical media
International Nuclear Information System (INIS)
Schuller, Frederic P.; Witte, Christof; Wohlfarth, Mattias N.R.
2010-01-01
In crystal optics and quantum electrodynamics in gravitational vacua, the propagation of light is not described by a metric, but an area metric geometry. In this article, this prompts us to study conditions for linear electrodynamics on area metric manifolds to be well-posed. This includes an identification of the timelike future cones and their duals associated to an area metric geometry, and thus paves the ground for a discussion of the related local and global causal structures in standard fashion. In order to provide simple algebraic criteria for an area metric manifold to present a consistent spacetime structure, we develop a complete algebraic classification of area metric tensors up to general transformations of frame. This classification, valuable in its own right, is then employed to prove a theorem excluding the majority of algebraic classes of area metrics as viable spacetimes. Physically, these results classify and drastically restrict the viable constitutive tensors of non-dissipative linear optical media.
Statistical algebraic approach to quantum mechanics
International Nuclear Information System (INIS)
Slavnov, D.A.
2001-01-01
The scheme for plotting the quantum theory with application of the statistical algebraic approach is proposed. The noncommutative algebra elements (observed ones) and nonlinear functionals on this algebra (physical state) are used as the primary constituents. The latter ones are associated with the single-unit measurement results. Certain physical state groups are proposed to consider as quantum states of the standard quantum mechanics. It is shown that the mathematical apparatus of the standard quantum mechanics may be reproduced in such a scheme in full volume [ru
Coherent states and classical limit of algebraic quantum models
International Nuclear Information System (INIS)
Scutaru, H.
1983-01-01
The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines
Non-freely generated W-algebras and construction of N=2 super W-algebras
International Nuclear Information System (INIS)
Blumenhagen, R.
1994-07-01
Firstly, we investigate the origin of the bosonic W-algebras W(2, 3, 4, 5), W(2, 4, 6) and W(2, 4, 6) found earlier by direct construction. We present a coset construction for all three examples leading to a new type of finitely, non-freely generated quantum W-algebras, which we call unifying W-algebras. Secondly, we develop a manifest covariant formalism to construct N = 2 super W-algebras explicitly on a computer. Applying this algorithm enables us to construct the first four examples of N = 2 super W-algebras with two generators and the N = 2 super W 4 algebra involving three generators. The representation theory of the former ones shows that all examples could be divided into four classes, the largest one containing the N = 2 special type of spectral flow algebras. Besides the W-algebra of the CP(3) Kazama-Suzuki coset model, the latter example with three generators discloses a second solution which could also be explained as a unifying W-algebra for the CP(n) models. (orig.)
Generalized EMV-Effect Algebras
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
International Nuclear Information System (INIS)
Hart, D.; Garisto, N.; Parker, R.; Kovacs, R.; Thompson, B.
2012-01-01
The Canadian Standards Association (CSA) is preparing a draft Standard on environmental risk assessments (ERAs) at Class I nuclear facilities and uranium mines and mills (CSA N288.6). It is being prepared by a technical subcommittee of the CSA N288 Technical Committee, including experts from across the nuclear industry, government and regulatory authorities, and environmental service providers, among others. It addresses the design, implementation, and management of environmental risk assessment programs, and is intended to standardize practice across the industry. This paper outlines the scope of the draft Standard and highlights key features. It is under development and subject to change. (author)
Asveld, P.R.J.
1976-01-01
Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Passow, M. J.; Assumpcao, C. M.; Baggio, F. D.; Hemming, S. R.; Goodwillie, A. M.; Brenner, C.
2014-12-01
Professional development for teachers involved in the implementation of the Next Generation Science Standards (NGSS) will require a multifaceted approach combining curriculum development, understanding the nature of science, applications of engineering and technology, integrating reading and writing, and other pedagogical components. The Earth2Class Workshops (E2C) at the Lamont-Doherty Earth Observatory of Columbia University (LDEO) provides one model for creating effective training to meet the NGSS challenges. E2C has provided more than 135 workshops since 1998 that have brought together LDEO research scientists with classroom teachers and students from the New York metropolitan area and elsewhere. Each session provides teachers with the chance to learn first-hand about the wide range of investigations conducted at LDEO. This approach aligns strongly with the NGSS goals: mastery of the disciplinary core ideas, science and engineering practices, understanding the nature of science, and cross-cutting relationships. During workshops, participating teachers interact with scientists to gain understanding of what stimulated research questions, how scientists put together all the components of investigations, and ways in which results are disseminated. Networking among teachers often leads to developing lesson plans based on the science, as well as support for professional growth not always possible within the school setting. Through the E2C website www.earth2class.org, teachers and students not able to attend the live workshops can access archival versions of the sessions. The website also provides a wide variety of educational resources. These have proved to be valuable on a national basis, as evidenced by an average of more than 300,000 hits per month from thousands of site visitors. Participating researchers have found E2C to be an effective approach to provide broader outreach of their results. During the next couple of years, the E2C program will expand to provide
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
Rationality problem for algebraic tori
Hoshi, Akinari
2017-01-01
The authors give the complete stably rational classification of algebraic tori of dimensions 4 and 5 over a field k. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank 4 and 5 is given. The authors show that there exist exactly 487 (resp. 7, resp. 216) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 4, and there exist exactly 3051 (resp. 25, resp. 3003) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 5. The authors make a procedure to compute a flabby resolution of a G-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a G-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby G-lattices of rank up to 6 and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for G-...
Escudero, Antonio
2017-01-01
This paper reviews the old debate about the standard of living of the British working class during the Industrial Revolution. It starts by analyzing the measurement problem and then explains the reasons for the old and long permanence of the controversy. The article summarizes the results of the latest contributions about the monetary and non-monetary elements of the workers’ standard of living as well as the conclusions aroused by anthropometry.
Abstract algebra for physicists
International Nuclear Information System (INIS)
Zeman, J.
1975-06-01
Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)
Combinatorial commutative algebra
Miller, Ezra
2005-01-01
Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.
2010-04-01
... gaming system accounting functions? 547.9 Section 547.9 Indians NATIONAL INDIAN GAMING COMMISSION... accounting functions? This section provides standards for accounting functions used in Class II gaming systems. (a) Required accounting data.The following minimum accounting data, however named, shall be...
25 CFR 547.10 - What are the minimum standards for Class II gaming system critical events?
2010-04-01
...: Event Definition and action to be taken (i) Player interface power off during play This condition is reported by the affected component(s) to indicate power has been lost during game play. (ii) Player... INTERIOR HUMAN SERVICES MINIMUM TECHNICAL STANDARDS FOR GAMING EQUIPMENT USED WITH THE PLAY OF CLASS II...
Practical algebraic renormalization
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias
2001-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ
CH Stands for Cheese, Right? A Swiss Culture Class and the National Standards
Seidlitz, Lisa
2012-01-01
Culture has always been a part of foreign language learning. However, in recent years, more and more language professors advocate placing culture at the center of our classes. The question of just how to teach culture remains a topic of debate. This paper describes the reworking of a traditional German grammar and reading course into a class that…
77 FR 58473 - Minimum Technical Standards for Class II Gaming Systems and Equipment
2012-09-21
... to all equipment, including computer, electronic, or other technologic aids used with Class II games..., computer, or other technologic aids in connection with the play of Class II games. This part establishes... gaming system, causes a discontinuance of game play or other component functions. Financial instrument...
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
International Nuclear Information System (INIS)
Hudetz, T.
1989-01-01
As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
From racks to pointed Hopf algebras
Andruskiewitsch, Nicolás; Graña, Matı́as
2003-01-01
A fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (CX, c^q), where C is the field of complex numbers, X is a rack and q is a 2-cocycle on X with values in C^*. Racks and cohomology of racks appeared also in the work of topologists. This...
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
International Nuclear Information System (INIS)
Feigin, B.L.; Semikhatov, A.M.
2004-01-01
We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras
JB*-Algebras of Topological Stable Rank 1
Directory of Open Access Journals (Sweden)
Akhlaq A. Siddiqui
2007-01-01
Full Text Available In 1976, Kaplansky introduced the class JB*-algebras which includes all C*-algebras as a proper subclass. The notion of topological stable rank 1 for C*-algebras was originally introduced by M. A. Rieffel and was extensively studied by various authors. In this paper, we extend this notion to general JB*-algebras. We show that the complex spin factors are of tsr 1 providing an example of special JBW*-algebras for which the enveloping von Neumann algebras may not be of tsr 1. In the sequel, we prove that every invertible element of a JB*-algebra is positive in certain isotope of ; if the algebra is finite-dimensional, then it is of tsr 1 and every element of is positive in some unitary isotope of . Further, it is established that extreme points of the unit ball sufficiently close to invertible elements in a JB*-algebra must be unitaries and that in any JB*-algebras of tsr 1, all extreme points of the unit ball are unitaries. In the end, we prove the coincidence between the λ-function and λu-function on invertibles in a JB*-algebra.
Orbifold Riemann surfaces: Teichmueller spaces and algebras of geodesic functions
Energy Technology Data Exchange (ETDEWEB)
Mazzocco, Marta [Loughborough University, Loughborough (United Kingdom); Chekhov, Leonid O [Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow (Russian Federation)
2009-12-31
A fat graph description is given for Teichmueller spaces of Riemann surfaces with holes and with Z{sub 2}- and Z{sub 3}-orbifold points (conical singularities) in the Poincare uniformization. The corresponding mapping class group transformations are presented, geodesic functions are constructed, and the Poisson structure is introduced. The resulting Poisson algebras are then quantized. In the particular cases of surfaces with n Z{sub 2}-orbifold points and with one and two holes, the respective algebras A{sub n} and D{sub n} of geodesic functions (classical and quantum) are obtained. The infinite-dimensional Poisson algebra D{sub n}, which is the semiclassical limit of the twisted q-Yangian algebra Y'{sub q}(o{sub n}) for the orthogonal Lie algebra o{sub n}, is associated with the algebra of geodesic functions on an annulus with n Z{sub 2}-orbifold points, and the braid group action on this algebra is found. From this result the braid group actions are constructed on the finite-dimensional reductions of this algebra: the p-level reduction and the algebra D{sub n}. The central elements for these reductions are found. Also, the algebra D{sub n} is interpreted as the Poisson algebra of monodromy data of a Frobenius manifold in the vicinity of a non-semisimple point. Bibliography: 36 titles.
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
27 CFR 24.210 - Classes of wine other than standard wine.
2010-04-01
... fermentation wine, produced as provided in § 24.212; (b) Heavy bodied blending wine, produced as provided in...; (f) Vinegar stock, produced as provided in § 24.217; and (g) Wines other than those in classes listed...
Current algebra and differential geometry
International Nuclear Information System (INIS)
Alekseev, Anton; Strobl, Thomas
2005-01-01
We show that symmetries and gauge symmetries of a large class of 2-dimensional sigma models are described by a new type of a current algebra. The currents are labeled by pairs of a vector field and a 1-form on the target space of the sigma model. We compute the current-current commutator and analyse the anomaly cancellation condition, which can be interpreted geometrically in terms of Dirac structures, previously studied in the mathematical literature. Generalized complex structures correspond to decompositions of the current algebra into pairs of anomaly free subalgebras. Sigma models that we can treat with our method include both physical and topological examples, with and without Wess-Zumino type terms. (author)
Nonflexible Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1978-01-01
We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type
Fredholm Modules over Graph C^{∗}-Algebras
DEFF Research Database (Denmark)
Crisp, Tyrone
2015-01-01
We present two applications of explicit formulas, due to Cuntz and Krieger, for computations in K-homology of graph C∗-algebras. We prove that every K-homology class for such an algebra is represented by a Fredholm module having finite-rank commutators, and we exhibit generating Fredholm modules...
Elementary Algebra + Student-Written Web Illustrations = Math Mastery.
Veteto, Bette R.
This project focuses on the construction and use of a student-made elementary algebra tutorial World Wide Web page at the University of Memphis (Tennessee), how this helps students further explore the topics studied in elementary algebra, and how students can publish their work on the class Web page for use by other students. Practical,…
Theory of pseudo-differential operators over C*-Algebras
International Nuclear Information System (INIS)
Mohammad, N.
1987-06-01
In this article the behaviour of adjoints and composition of pseudo-differential operators in the framework of a C*-algebra is studied. It results that the class of pseudo-differential operators of order zero is a C*-algebra. 8 refs
On Graph C*-Algebras with a Linear Ideal Lattice
DEFF Research Database (Denmark)
Eilers, Søren; Restorff, Gunnar; Ruiz, Efren
2010-01-01
At the cost of restricting the nature of the involved K-groups, we prove a classication result for a hitherto unexplored class of graph C-algebras, allowing us to classify all graph C-algebras on nitely many vertices with a nite linear ideal lattice if all pair of vertices are connected by innitely...
Campbell-Hausdorff Formula and Algebras with Operator
International Nuclear Information System (INIS)
Khudaverdyan, O.M.
1994-01-01
Some new classes of algebras are introduced and in these algebras Campbell-Hausdorff like formula is established. The application of these constructions to the problem of the connectivity of the Feynman graphs corresponding to the Green functions in Quantum Field Theory is described. 9 refs
Nonlinear super-W algebras at fixed central charge
Bergshoeff, E.
1991-01-01
We discuss how a class of nonlinear higher-spin superalgebras, containing a Virasoro subalgebra at fixed central charge, can be obtained from a realisation of the super-Wâˆž(Î») algebra in terms of a supersymmetric BC system. We explicitly work out the example of the nonlinear super-W2 algebra.
On alphabetic presentations of Clifford algebras and their possible applications
Toppan, F.; Verbeek, P.W.
2009-01-01
In this paper, we address the problem of constructing a class of representations of Clifford algebras that can be named “alphabetic (re)presentations.” The Clifford algebra generators are expressed as m-letter words written with a three-character or a four-character alphabet. We formulate the
Commutator identities on associative algebras and integrability of nonlinear pde's
Pogrebkov, A. K.
2007-01-01
It is shown that commutator identities on associative algebras generate solutions of linearized integrable equations. Next, a special kind of the dressing procedure is suggested that in a special class of integral operators enables to associate to such commutator identity both nonlinear equation and its Lax pair. Thus problem of construction of new integrable pde's reduces to construction of commutator identities on associative algebras.
2011-09-21
... sharp revenue declines associated with falling volumes, as well as other statutorily mandated costs, the... and to bring operating costs in line with revenues, will for the most part be unachievable without a... effectively managed on the workroom floors of a complex logistical network.'' Modern Service Standards for...
Recoupling Lie algebra and universal ω-algebra
International Nuclear Information System (INIS)
Joyce, William P.
2004-01-01
We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure
Hurwitz Algebras and the Octonion Algebra
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
BRST-operator for quantum Lie algebra and differential calculus on quantum groups
International Nuclear Information System (INIS)
Isaev, A.P.; Ogievetskij, O.V.
2001-01-01
For A Hopf algebra one determined structure of differential complex in two dual external Hopf algebras: A external expansion and in A* dual algebra external expansion. The Heisenberg double of these two Hopf algebras governs the differential algebra for the Cartan differential calculus on A algebra. The forst differential complex is the analog of the de Rame complex. The second complex coincide with the standard complex. Differential is realized as (anti)commutator with Q BRST-operator. Paper contains recursion relation that determines unequivocally Q operator. For U q (gl(N)) Lie quantum algebra one constructed BRST- and anti-BRST-operators and formulated the theorem of the Hodge expansion [ru
Extended Virasoro algebra and algebra of area preserving diffeomorphisms
International Nuclear Information System (INIS)
Arakelyan, T.A.
1990-01-01
The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
On Orders of Observables on Effect Algebras
Dvurečenskij, Anatolij
2017-12-01
On the set of bounded observables on an effect algebra, the Olson order defined by spectral resolutions and the standard order defined by a system of σ-additive states are introduced. We show that sharp bounded observables form a Dedekind σ-complete sublattice of a Dedekind complete lattice under the Olson order. In addition, we compare both orders, and we illustrate them on different effect algebras.
IEEE standard criteria for type tests of class 1E modules used in nuclear power generating stations
International Nuclear Information System (INIS)
Anon.
1977-01-01
The Institute of Electrical and Electronics Engineers has generated this document to provide direction for type testing Class 1E modules and obtaining specific type test data. It supplements IEEE Std 323-1974, Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, which describes the basic requirements for Class 1E equipment qualification. Adherence to this document alone may not suffice for assuring public health and safety because it is the integrated performance of the structures, the fluid systems, the electrical systems, the instrumentation systems of the station, and in particular, the plant protection system of which these modules are a part that prevents accidents or limits the consequences of accidents. Each applicant to the Nuclear Regulatory Commission for a license to operate a nuclear power generating station has the responsibility to assure himself and others that this document, if used, is pertinent to his application and that the integrated performance of his station is adequate
Park, K-H; Sandor, G K; Kim, Y-D
2016-01-01
The purpose of this study was to compare the postoperative stability following bimaxillary surgery performed either with or without preoperative orthodontic treatment, in class III malocclusion patients. These patients were enrolled using standardized inclusion criteria. Forty patients with a class III malocclusion were included in this retrospective study. Inclusion criteria were class III malocclusion with and without premolar extraction, stability. With respect to postsurgical changes, significant differences were observed in the changes for the vertical reference plane to the posterior nasal spine, horizontal reference plane to B-point, and occlusal plane angle in both groups. No statistically significant differences in the relapse rates were observed between the two groups. No significant differences were observed between the two groups in terms of the postoperative stability. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Quasi-superconformal algebras in two dimensions and hamiltonian reduction
International Nuclear Information System (INIS)
Romans, L.J.
1991-01-01
In the standard quantum hamiltonian reduction, constraining the SL(3, R) WZNW model leads to a model of Zamolodchikov's W 3 -symmetry. In recent work, Polyakov and Bershadsky have considered an alternative reduction which leads to a new algebra, W 3 2 , a nonlinear extension of the Virasoro algebra by a spin-1 current and two bosonic spin-3/2 currents. Motivated by this result, we display two new infinite series of nonlinear extended conformal algebras, containing 2N bosonic spin-3/2 currents and spin-1 Kac-Moody currents for either U(N) or Sp(2 N); the W 3 2 algebra appears as the N = 1 member of the U(N) series. We discuss the relationship between these algebras and the Knizhnik-Bershadsky superconformal algebras, and provide realisations in terms of free fields coupled to Kac-Moody currents. We propose a specific procedure for obtaining the algebras for general N through hamiltonian reduction. (orig.)
Classification of hypergeometric identities for pi and other logarithms of algebraic numbers.
Chudnovsky, D V; Chudnovsky, G V
1998-03-17
This paper provides transcendental and algebraic framework for the classification of identities expressing pi and other logarithms of algebraic numbers as rapidly convergent generalized hypergeometric series in rational parameters. Algebraic and arithmetic relations between values of p+1Fp hypergeometric functions and their values are analyzed. The existing identities are explained, and new exhaustive classes of new ones are presented.
International Nuclear Information System (INIS)
Takao, Masaru
1989-01-01
We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
2010-01-01
..., paragraphs (a) through (e) of this section apply in the case of a class 103 license for a facility for the... electric energy, if otherwise qualified, from obtaining a construction permit or operating license under... over a sufficient range of normal operating conditions, transient conditions, and specified accident...
9 CFR 381.170 - Standards for kinds and classes, and for cuts of raw poultry.
2010-01-01
... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY... poultry, and the requirements for each class: (1) Chickens—(i) Rock Cornish game hen or Cornish game hen. A Rock Cornish game hen or Cornish game hen is a young immature chicken (usually 5 to 6 weeks of age...
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
International Nuclear Information System (INIS)
Anguelova, Iana I.
2013-01-01
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras
Hilbert schemes of points and infinite dimensional Lie algebras
Qin, Zhenbo
2018-01-01
Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes X^{[n]} of collections of n points (zero-dimensional subschemes) in a smooth algebraic surface X. Schemes X^{[n]} turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others. This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of X^{[n]}, including the construction of the action of infinite dimensional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of X^{[n]} a...
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Shafarevich, Igor Rostislavovich
2005-01-01
This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Kimura, Taro; Pestun, Vasily
2018-06-01
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
Energy Technology Data Exchange (ETDEWEB)
Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)
2017-03-16
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.
Quasi-algebras and general Weyl quantization
International Nuclear Information System (INIS)
Lassner, G.A.; Lassner, G.
1984-01-01
In this paper we show how the systematic use of the topological properties of the quasi-sup(*)-algebra L(S,S') leads to a systematization of the quantization procedure. With that as background, the multiplication of certain classes of pairs of operators of L(S,S') and the corresponding twisted product of their sybmols are defined. (orig./HSI)
Regular Gleason Measures and Generalized Effect Algebras
Dvurečenskij, Anatolij; Janda, Jiří
2015-12-01
We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
Algebraic entropy for differential-delay equations
Viallet, Claude M.
2014-01-01
We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.
Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
N.W. van den Hijligenberg; R. Martini
1995-01-01
textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra
Uniqueness of closure of the constraint algebra for quantum gravity
International Nuclear Information System (INIS)
Christodoulakis, T.; Korfiatis, E.
1989-08-01
We investigate the closure of the quantum algebra for the constraints of pure gravity considering a wide class of regularisation assumptions. We thus establish that the only regularisation assumption, within this class, that closes the algebra is the one introduced by one of the authors (T.C. with Jorge Zanelli) in earlier publications and that the closure is a result of both the regularisation and the introduction of a tensor distribution. (author). 15 refs
Uniqueness of closure of the constraint algebra for quantum gravity
International Nuclear Information System (INIS)
Christodoulakis, T.; Korfiatis, E.
1991-01-01
Considering a wide class of regularization assumptions, the closure of the quantum algebra is investigated for the constraints of pure gravity. It is thus established that the only regularization assumption, within this class, that closes the algebra is the one introduced by one of the authors (TC with J. Zanelli) in earlier publications and that the closure is a result of both the regularization and the introduction of a tensor distribution
Cubic forms algebra, geometry, arithmetic
Manin, Yu I
1986-01-01
Since this book was first published in English, there has been important progress in a number of related topics. The class of algebraic varieties close to the rational ones has crystallized as a natural domain for the methods developed and expounded in this volume. For this revised edition, the original text has been left intact (except for a few corrections) and has been brought up to date by the addition of an Appendix and recent references.The Appendix sketches some of the most essential new results, constructions and ideas, including the solutions of the Luroth and Zariski problems, the th
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yao, Yuan; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Teaching Quantitative Reasoning: A Better Context for Algebra
Eric Gaze
2014-01-01
This editorial questions the preeminence of algebra in our mathematics curriculum. The GATC (Geometry, Algebra, Trigonometry, Calculus) sequence abandons the fundamental middle school math topics necessary for quantitative literacy, while the standard super-abundance of algebra taught in the abstract fosters math phobia and supports a culturally acceptable stance that math is not relevant to everyday life. Although GATC is seen as a pipeline to STEM (Science, Technology, Engineering, Mathemat...
Djordjevic, G. S.; Pavlovic-Babic, D.
2010-01-01
The "High school class for students with special abilities in physics" was founded in Nis, Serbia (www.pmf.ni.ac.yu/f_odeljenje) in 2003. The basic aim of this project has been introducing a broadened curriculum of physics, mathematics, computer science, as well as chemistry and biology. Now, six years after establishing of this specialized class, and 3 years after the previous report, we present analyses of the pupils' skills in solving rather problem oriented test, as PISA test, and compare their results with the results of pupils who study under standard curricula. More precisely results are compared to the progress results of the pupils in a standard Grammar School and the corresponding classes of the Mathematical Gymnasiums in Nis. Analysis of achievement data should clarify what are benefits of introducing in school system track for gifted students. Additionally, item analysis helps in understanding and improvement of learning strategies' efficacy. We make some conclusions and remarks that may be useful for the future work that aims to increase pupils' intrinsic and instrumental motivation for physics and sciences, as well as to increase the efficacy of teaching physics and science.
Energy Technology Data Exchange (ETDEWEB)
Zollinger, W D; Boslego, J W [Walter Reed Army Inst. of Research, Washington, DC (USA)
1981-10-30
The feasibility of using an anti-human immunoglobulin/human immunoglobulin/(/sup 125/I)anti-human immunoglobulin 'sandwich' in a solid-phase radioimmunoassay to produce a standard curve which could be used to quantitate antigen-specific antibody of a particular immunoglobulin class was investigated. The amount of secondary antibody (SAb) bound was determined as a function of whether the primary antibody (PAb) was bound to its specific solid-phase antigen or by a solid-phase anti-human immunoglobulin. No significant difference between the two values was observed. Quantitation of anti-tetanus toxoid antibody by this method was in a good agreement with quantitative precipitin tests. Comparison of SAb binding as a function of the way the PAb is bound was extended to class-specific PAb by use of murine monoclonal antibodies to meningococcal antigens. In most cases somewhat greater binding of SAb occurred when PAb was bound to antigen, but in several cases where low avidity antibody and/or poor quality antigens were used, greater SAb binding occurred when PAb was bound by anti-mouse immunoglobulin. The results indicate that this approach may be useful as a general method for standardizing the SPRIA and other solid-phase immunoassays such as the ELISA to measure class-specific antibody.
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
Learning Activity Package, Algebra.
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
Seo, Young Joo; Kim, Young Hee
2016-01-01
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Algebra task sheets : grades pk-2
Reed, Nat
2009-01-01
For grades PK-2, our Common Core State Standards-based resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to learn and review the concepts in unique ways. Each task sheet is organized around a central problem taken from real-life experiences of the students.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
ASYS: a computer algebra package for analysis of nonlinear algebraic equations systems
International Nuclear Information System (INIS)
Gerdt, V.P.; Khutornoj, N.V.
1992-01-01
A program package ASYS for analysis of nonlinear algebraic equations based on the Groebner basis technique is described. The package is written in REDUCE computer algebra language. It has special facilities to treat polynomial ideals of positive dimension, corresponding to algebraic systems with infinitely many solutions. Such systems can be transformed to an equivalent set of subsystems with reduced number of variables in completely automatic way. It often allows to construct the explicit form of a solution set in many problems of practical importance. Some examples and results of comparison with the standard Reduce package GROEBNER and special-purpose systems FELIX and A1PI are given. 21 refs.; 2 tabs
Connections between quantized affine algebras and superalgebras
International Nuclear Information System (INIS)
Zhang, R.B.
1992-08-01
Every affine superalgebra with a symmetrizable Cartan matrix is closely related to an ordinary affine algebra with the same Cartan matrix. It is shown that the quantum supergroup associated with the former is essentially isomorphic to the quantum group associated with the latter in an appropriate class of representations. At the classical level, each integrable irreducible highest weight representation of the affine superalgebra has a corresponding irreducible representation of the affine algebra, which has the same weight space decomposition. (author). 5 refs, 3 tabs
Jacobi algebra and potentials generated by it
International Nuclear Information System (INIS)
Lutsenko, I.M.
1993-01-01
It is shown that the Jacobi algebra QJ(3) generates potentials that admit exact solution in relativistic and nonrelativistic quantum mechanics. Being a spectrum-generating dynamic symmetry algebra and possessing the ladder property, QJ(3) makes it possible to find the wave functions in the coordinate representation. The exactly solvable potentials specified in explicit form are regarded as a special case of a larger class of exactly solvable potentials specified implicitly. The connection between classical and quantum problems possessing exact solutions is obtained by means of QJ(3). 13 refs
Hilbert schemes of points and Heisenberg algebras
International Nuclear Information System (INIS)
Ellingsrud, G.; Goettsche, L.
2000-01-01
Let X [n] be the Hilbert scheme of n points on a smooth projective surface X over the complex numbers. In these lectures we describe the action of the Heisenberg algebra on the direct sum of the cohomologies of all the X [n] , which has been constructed by Nakajima. In the second half of the lectures we study the relation of the Heisenberg algebra action and the ring structures of the cohomologies of the X [n] , following recent work of Lehn. In particular we study the Chern and Segre classes of tautological vector bundles on the Hilbert schemes X [n] . (author)
The Casimir Effect from the Point of View of Algebraic Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio, E-mail: claudio.dappiaggi@unipv.it; Nosari, Gabriele [Università degli Studi di Pavia, Dipartimento di Fisica (Italy); Pinamonti, Nicola [Università di Genova, Dipartimento di Matematica (Italy)
2016-06-15
We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
Algebraic K-theory and algebraic topology
Energy Technology Data Exchange (ETDEWEB)
Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)
2003-09-15
This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.
An introduction to algebraic geometry and algebraic groups
Geck, Meinolf
2003-01-01
An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups
International Nuclear Information System (INIS)
Deaton, K.
1995-01-01
This paper describes qualification of new equipment for safety related service in the nuclear power industry in accordance with current industry standards. This topic is presented from the perspective of an original equipment manufacturer J(OEM). Equipment qualification is first discussed in a general way then an example is provided of an electric motor qualification. A review of alternative qualification methods including commercial dedication is included. Potential difficulties with alternative/expedited qualification methods are also discussed
Algebra Survival Guide A Conversational Handbook for the Thoroughly Befuddled
Rappaport, Josh
2011-01-01
If you think algebra has to be boring, confusing and unrelated to anything in the real world, think again! Written in a humorous, conversational style, this book gently nudges students toward success in pre-algebra and Algebra I. With its engaging question/answer format and helpful practice problems, glossary and index, it is ideal for homeschoolers, tutors and students striving for classroom excellence. It features funky icons and lively cartoons by award-winning Santa Fe artist Sally BlakemoreThe Algebra Survival Guide is the winner of a Paretns' Choice award, and it meets the Standards 2000
A program for constructing finitely presented Lie algebras and superalgebras
International Nuclear Information System (INIS)
Gerdt, V.P.; Kornyak, V.V.
1997-01-01
The purpose of this paper is to describe a C program FPLSA for investigating finitely presented Lie algebras and superalgebras. The underlying algorithm is based on constructing the complete set of relations called also standard basis or Groebner basis of ideal of free Lie (super) algebra generated by the input set of relations. The program may be used, in particular, to compute the Lie (super)algebra basis elements and its structure constants, to classify the finitely presented algebras depending on the values of parameters in the relations, and to construct the Hilbert series. These problems are illustrated by examples. (orig.)
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
Thompson, Frances McBroom
2010-01-01
Fun-filled math problems that put the emphasis on problem-solving strategies and reasoning. The Algebra Teacher's Activity-a-Day offers activities for test prep, warm-ups, down time, homework, or just for fun. These unique activities are correlated with national math education standards and emphasize problem-solving strategies and logical reasoning skills. In many of the activities, students are encouraged to communicate their different approaches to other students in the class.: Filled with dozens of quick and fun algebra activities that can be used inside and outside the classroom; Designed
Vectors and Rotations in 3-Dimensions: Vector Algebra for the C++ Programmer
2016-12-01
release; distribution is unlimited. 1. Introduction This report describes 2 C++ classes: a Vector class for performing vector algebra in 3-dimensional...ARL-TR-7894•DEC 2016 US Army Research Laboratory Vectors and Rotations in 3-Dimensions:Vector Algebra for the C++ Programmer by Richard Saucier...Army Research Laboratory Vectors and Rotations in 3-Dimensions:Vector Algebra for the C++ Programmer by Richard Saucier Survivability/Lethality
BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
Traditional vectors as an introduction to geometric algebra
International Nuclear Information System (INIS)
Carroll, J E
2003-01-01
The 2002 Oersted Medal Lecture by David Hestenes concerns the many advantages for education in physics if geometric algebra were to replace standard vector algebra. However, such a change has difficulties for those who have been taught traditionally. A new way of introducing geometric algebra is presented here using a four-element array composed of traditional vector and scalar products. This leads to an explicit 4 x 4 matrix representation which contains key requirements for three-dimensional geometric algebra. The work can be extended to include Maxwell's equations where it is found that curl and divergence appear naturally together. However, to obtain an explicit representation of space-time algebra with the correct behaviour under Lorentz transformations, an 8 x 8 matrix representation has to be formed. This leads to a Dirac representation of Maxwell's equations showing that space-time algebra has hidden within its formalism the symmetry of 'parity, charge conjugation and time reversal'
Non-unique factorizations algebraic, combinatorial and analytic theory
Geroldinger, Alfred
2006-01-01
From its origins in algebraic number theory, the theory of non-unique factorizations has emerged as an independent branch of algebra and number theory. Focused efforts over the past few decades have wrought a great number and variety of results. However, these remain dispersed throughout the vast literature. For the first time, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory offers a look at the present state of the theory in a single, unified resource.Taking a broad look at the algebraic, combinatorial, and analytic fundamentals, this book derives factorization results and applies them in concrete arithmetical situations using appropriate transfer principles. It begins with a basic introduction that can be understood with knowledge of standard basic algebra. The authors then move to the algebraic theory of monoids, arithmetic theory of monoids, the structure of sets of lengths, additive group theory, arithmetical invariants, and the arithmetic of Krull monoids. They also provide a s...
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have ﬁnitary and continuous versions. The four cases are: Hausdorﬀ metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Adaptive algebraic reconstruction technique
International Nuclear Information System (INIS)
Lu Wenkai; Yin Fangfang
2004-01-01
Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency
Introduction to Algebra Curriculum Guide, Grade 8, 1987. Bulletin 1802.
Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.
Because of the high incidence of failure in algebra I among ninth-grade students, the Louisiana State Board of Elementary and Secondary Education requested the development of this guide with the intention of providing a good pre-algebra foundation. The purposes of the guide are to recognize standards that involve the application of mathematical…
Questions Arise about Algebra 2 for All Students
Robelen, Erik W.
2013-01-01
Should all students take Algebra 2? Florida seemed to say "no" this spring with the passage of a law striking it from graduation requirements. Texas said much the same in legislation Republican Gov. Rick Perry signed this week that also backs away from Algebra 2 for all. Those steps come as the Common Core State Standards for math set…
On algebraic time-derivative estimation and deadbeat state reconstruction
DEFF Research Database (Denmark)
Reger, Johann; Jouffroy, Jerome
2009-01-01
This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen...
Cohen, A.M.; Liu, S.
2011-01-01
For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular
From groups to categorial algebra introduction to protomodular and mal’tsev categories
Bourn, Dominique
2017-01-01
This book gives a thorough and entirely self-contained, in-depth introduction to a specific approach to group theory, in a large sense of that word. The focus lie on the relationships which a group may have with other groups, via “universal properties”, a view on that group “from the outside”. This method of categorical algebra, is actually not limited to the study of groups alone, but applies equally well to other similar categories of algebraic objects. By introducing protomodular categories and Mal’tsev categories, which form a larger class, the structural properties of the category Gp of groups, show how they emerge from four very basic observations about the algebraic litteral calculus and how, studied for themselves at the conceptual categorical level, they lead to the main striking features of the category Gp of groups. Hardly any previous knowledge of category theory is assumed, and just a little experience with standard algebraic structures such as groups and monoids. Examples and exercises...
Three-dimensional quantum algebras: a Cartan-like point of view
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2004-01-01
A perturbative quantization procedure for Lie bialgebras is introduced. The relevance of the choice of a completely symmetrized basis of the quantum universal enveloping algebra is stressed. Sets of elements of the quantum algebra that play a role similar to generators in the case of Lie algebras are considered and a Cartan-like procedure applied to find a representative for each class of quantum algebras. The method is used to construct and classify all three-dimensional complex quantum algebras that are compatible with a given type of coproduct. The quantization of all Lie algebras that, in the classical limit, belong to the most relevant sector in the classification for three-dimensional Lie bialgebras is thus performed. New quantizations of solvable algebras, whose simplicity makes them suitable for possible physical applications, are obtained and already known related quantum algebras recovered
A concrete introduction to higher algebra
Childs, Lindsay N
1995-01-01
This book is written as an introduction to higher algebra for students with a background of a year of calculus. The first edition of this book emerged from a set of notes written in the 1970sfor a sophomore-junior level course at the University at Albany entitled "Classical Algebra." The objective of the course, and the book, is to give students enough experience in the algebraic theory of the integers and polynomials to appre ciate the basic concepts of abstract algebra. The main theoretical thread is to develop algebraic properties of the ring of integers: unique factorization into primes, congruences and congruence classes, Fermat's theorem, the Chinese remainder theorem; and then again for the ring of polynomials. Doing so leads to the study of simple field extensions, and, in particular, to an exposition of finite fields. Elementary properties of rings, fields, groups, and homomorphisms of these objects are introduced and used as needed in the development. Concurrently with the theoretical development,...
Profinite algebras and affine boundedness
Schneider, Friedrich Martin; Zumbrägel, Jens
2015-01-01
We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...
Indian Academy of Sciences (India)
algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Algebraic Semantics for Narrative
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).
Semi-infinite Weil complex and the Virasoro algebra
International Nuclear Information System (INIS)
Feigin, B.; Frenkel, E.
1991-01-01
We define a semi-infinite analogue of the Weil algebra associated with an infinite-dimensional Lie algebra. It can be used for the definition of semi-infinite characteristic classes by analogy with the Chern-Weil construction. The second term of a spectral sequence of this Weil complex consists of the semi-infinite cohomology of the Lie algebra with coefficients in its 'adjoint semi-infinite symmetric powers'. We compute this cohomology for the Virasoro algebra. This is just the BRST cohomology of the bosonic βγ-system with the central charge 26. We give a complete description of the Fock representations of this bosonic system as modules over the Virasoro algebra, using Friedan-Martinec-Shenker bosonization. We derive a combinatorial identity from this result. (orig.)
Riemann surfaces, Clifford algebras and infinite dimensional groups
International Nuclear Information System (INIS)
Carey, A.L.; Eastwood, M.G.; Hannabuss, K.C.
1990-01-01
We introduce of class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a 'gauge' group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces. (orig.)
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Currents on Grassmann algebras
International Nuclear Information System (INIS)
Coquereaux, R.; Ragoucy, E.
1993-09-01
Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs
Introduction to abstract algebra
Nicholson, W Keith
2012-01-01
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be
Kac-Moody algebra is not hidden symmetry of chiral models
International Nuclear Information System (INIS)
Devchand, C.; Schiff, J.
1997-01-01
A detailed examination of the infinite dimensional loop algebra of hidden symmetry transformations of the Principal Chiral Model reveals it to have a structure differing from a standard centreless Kac-Moody algebra. A new infinite dimensional Abelian symmetry algebra is shown to preserve a symplectic form on the space of solutions. (author). 15 refs
The Boolean algebra of Galois algebras
Directory of Open Access Journals (Sweden)
Lianyong Xue
2003-02-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.
On the connection between quantum fields and von Neumann algebras of local operators
International Nuclear Information System (INIS)
Driessler, W.; Summers, S.J.; Wichmann, E.H.
1986-01-01
The relationship between a standard local quantum field and a net of local von Neumann algebras is discussed. Two natural possibilities for such an association are identified, and conditions for these to obtain are found. It is shown that the local net can naturally be so chosen that it satisfies the Special Condition of Duality. The notion of an intrinsically local field operator is introduced, and it is shown that such an operator defines a local net with which the field is locally associated. A regularity condition on the field is formulated, and it is shown that if this condition holds, then there exists a unique local net with which the field is locally associated if and only if the field algebra contains at least one intrinsically local operator. Conditions under which a field and other fields in its Borchers class are associated with the same local net are found, in terms of the regularity condition mentioned. (orig.)
Riemann surfaces and algebraic curves a first course in Hurwitz theory
Cavalieri, Renzo
2016-01-01
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
Representations of the q-deformed algebras Uq (so2,1) and Uq (so3,1)
International Nuclear Information System (INIS)
Gavrilik, O.M.; Klimyk, A.U.
1993-01-01
Representations of algebra U q (so 2 ,1) are studied. This algebra is a q-deformation of the universal enveloping algebra U(so 2 ,1) of the Lie algebra of the group SO 0 (2,1) and differs from the quantum algebra U q (SU 1 ,1). Classifications of irreducible representations and of infinitesimally irreducible representations of U q (SU 1 ,1). The sets of irreducible representations and of infinitesimally unitary irreducible representations of the algebra U q (so 3 ,1) are given. We also consider representations of U q (so n ,1) which are of class 1 with respect to subalgebra U q (so n ). (author). 22 refs
Axis Problem of Rough 3-Valued Algebras
Institute of Scientific and Technical Information of China (English)
Jianhua Dai; Weidong Chen; Yunhe Pan
2006-01-01
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
International Nuclear Information System (INIS)
Anon.
1974-01-01
The Institute of Electrical and Electronics Engineers has generated this document to provide guidance for developing a program to type test cables, field splices, and connections and obtain specific type test data. It supplements IEEE Std 323-1974 Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations, which describes basic requirements for equipment qualification. It is the integrated performance of the structures, fluid systems, the electrical systems, the instrumentation systems of the station, and in particular, the plant protection system, that limits the consequences of accidents. Seismic effects on installed cable systems are not within the scope of this document. Section 2 of this guide is an example of type tests. It is the purpose of this guide to deal with cable and connections; however, at the time of issue, detailed examples of tests for connections were not available
International Nuclear Information System (INIS)
Aldana, Maximino; Larralde, Hernan
2004-01-01
We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family of neural network models with noise. These models are closely related to the majority voter model, where a ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the network topology, which is determined by the probability distribution of the number of incoming links. We show that for homogeneous random topologies, the phase transition belongs to the standard mean-field universality class, characterized by the order parameter exponent β=1/2. However, for scale-free networks we obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase transition even for values of the scale-free exponent in the interval (1.5,2], where the average network connectivity diverges
Non commutative geometry methods for group C*-algebras
International Nuclear Information System (INIS)
Do Ngoc Diep.
1996-09-01
This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C * -algebras: started in the elementary part, with one example of description of the structure of C * -algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C * -algebras were created and developed. (author). Refs
Creating Discussions with Classroom Voting in Linear Algebra
Cline, Kelly; Zullo, Holly; Duncan, Jonathan; Stewart, Ann; Snipes, Marie
2013-01-01
We present a study of classroom voting in linear algebra, in which the instructors posed multiple-choice questions to the class and then allowed a few minutes for consideration and small-group discussion. After each student in the class voted on the correct answer using a classroom response system, a set of clickers, the instructor then guided a…
Linear Algebra and the Experiences of a "Flipper"
Wright, Sarah E.
2015-01-01
This paper describes the linear algebra class I taught during Spring 2014 semester at Adelphi University. I discuss the details of how I flipped the class and incorporated elements of inquiry-based learning as well as the reasoning behind specific decisions I made. I give feedback from the students on the success of the course and provide my own…
AIR Tools - A MATLAB Package of Algebraic Iterative Reconstruction Techniques
DEFF Research Database (Denmark)
Hansen, Per Christian; Saxild-Hansen, Maria
This collection of MATLAB software contains implementations of several Algebraic Iterative Reconstruction methods for discretizations of inverse problems. These so-called row action methods rely on semi-convergence for achieving the necessary regularization of the problem. Two classes of methods...... are implemented: Algebraic Reconstruction Techniques (ART) and Simultaneous Iterative Reconstruction Techniques (SIRT). In addition we provide a few simplified test problems from medical and seismic tomography. For each iterative method, a number of strategies are available for choosing the relaxation parameter...
Radial multipliers on reduced free products of operator algebras
DEFF Research Database (Denmark)
Haagerup, Uffe; Møller, Søren
2012-01-01
Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier...
Coherent states for a polynomial su(1, 1) algebra and a conditionally solvable system
International Nuclear Information System (INIS)
Sadiq, Muhammad; Inomata, Akira; Junker, Georg
2009-01-01
In a previous paper (2007 J. Phys. A: Math. Theor. 40 11105), we constructed a class of coherent states for a polynomially deformed su(2) algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed su(1, 1) algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1, 1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1, 1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.
Srinivas, V
1996-01-01
Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
n-ary algebras: a review with applications
International Nuclear Information System (INIS)
De Azcarraga, J A; Izquierdo, J M
2010-01-01
This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two-entry Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the role of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity, and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity. 3-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. As a result, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations (it turns out that Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the Lie or n-Lie algebra bracket is relaxed, one is led to a more general type of n-algebras, the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose generalized Jacobi identity reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the Filippov identity and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A 4 model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization. (topical
Jing, Ting Jing; Tarmizi, Rohani Ahmad; Bakar, Kamariah Abu; Aralas, Dalia
2017-01-01
This study investigates the effect of utilizing Variation Theory Based Strategy on students' algebraic achievement and motivation in learning algebra. The study used quasi-experimental non-equivalent control group research design and involved 56 Form Two (Secondary Two) students in two classes (28 in experimental group, 28 in control group) in Malaysia The first class of students went through algebra class taught with Variation Theory Based Strategy (VTBS) while the second class of students experienced conventional teaching strategy. The instruments used for the study were a 24-item Algebra Test and 36-item Instructional Materials Motivation Survey. Result from analysis of Covariance indicated that experimental group students achieved significantly better test scores than control group. Result of Multivariate Analysis of Variance also shows evidences of significant effect of VTBS on experimental students' overall motivation in all the five subscales; attention, relevance, confidence, and satisfaction. These results suggested the utilization of VTBS would improve students' learning in algebra.
Identities and derivations for Jacobian algebras
International Nuclear Information System (INIS)
Dzhumadil'daev, A.S.
2001-09-01
Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Launey, Warwick De
2011-01-01
Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...
Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf
1992-01-01
The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...
Wadsworth, A R
2017-01-01
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
The relation between quantum W algebras and Lie algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1994-01-01
By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)
Converting nested algebra expressions into flat algebra expressions
Paredaens, J.; Van Gucht, D.
1992-01-01
Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its
Directory of Open Access Journals (Sweden)
V.A. Kreknin
2008-06-01
Full Text Available The Programming software “The Library of Electronic Visual Aids “Algebra 7-9” for secondary institutions was developed for the computer support of algebra classes in 7-9 forms of secondary school. The present article describes the data about its basic characteristics features and possibilities.
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Gradings on simple Lie algebras
Elduque, Alberto
2013-01-01
Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.
Tensor spaces and exterior algebra
Yokonuma, Takeo
1992-01-01
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Projector bases and algebraic spinors
International Nuclear Information System (INIS)
Bergdolt, G.
1988-01-01
In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors
Contractions of quantum algebraic structures
International Nuclear Information System (INIS)
Doikou, A.; Sfetsos, K.
2010-01-01
A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Partially ordered algebraic systems
Fuchs, Laszlo
2011-01-01
Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Principles of algebraic geometry
Griffiths, Phillip A
1994-01-01
A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Kac-Moody algebras and string theory
International Nuclear Information System (INIS)
Cleaver, G.B.
1993-01-01
The focus of this thesis is on (1) the role of Kac-Moody algebras in string theory and the development of techniques for systematically building string theory models based on a higher level (K ≥ 2) KM algebras and (2) fractional superstrings, a new class of solutions based on SU(2) K /U(1) conformal field theories. The content of this thesis is as follows. In chapter two they review KM algebras and their role in string theory. In the next chapter they present two results concerning the construction of modular invariant partition functions for conformal field theories build by tensoring together other conformal field theories. First they show how the possible modular invariants for the tensor product theory are constrained if the allowed modular invariants of the individuals conformal field theory factors have been classified. They illustrate the use of these constraints for theories of the type SU(2) KA direct-product SU(2) KB , finding all consistent theories for K A and K B odd. Second they show how known diagonal modular invariants can be used to construct inherently asymmetric invariants where the holomorphic and anti-holomorphic theories do not share the same chiral algebra. Explicit examples are given. Next, in chapter four they investigate some issues relating to recently proposed fractional superstring theories with D critical K/4 K/4 , as source of spacetime fermions, is demonstrated
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Thomys, Janus; Zhang, Xiaohong
2013-01-01
We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Process Algebra and Markov Chains
Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Process algebra and Markov chains
Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.
2001-01-01
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Algebraic Methods to Design Signals
2015-08-27
to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory
International Nuclear Information System (INIS)
Anon.
1992-01-01
Methods for qualifying static battery chargers and inverters for Class 1E installations in a mild environment outside containment in nuclear power generating stations are described. The qualification methods set forth employ a combination of type testing and analysis, the latter including a justification of methods, theories, and assumptions used. These procedures meet the requirements of IEEE Std 323-1983, IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations
Bergstra, J.A.; Middelburg, C.A.
2015-01-01
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution
Indian Academy of Sciences (India)
BOOK REVIEW ... To the Indian reader, the word discourse, evokes a respected ... I dug a bit deeper with Google trans- late, and ... published in a journal of mathematics educa- tion. ... The article on Shafarevich's work elsewhere ... goal then, is to develop the basics of algebra in ... ometric Greeks, and works like a magician.
Thinking Visually about Algebra
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
Benjamin, Carl; And Others
Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…
Swan, R G
1968-01-01
From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."
Bergstra, J.A.; Baeten, J.C.M.
1993-01-01
The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Energy Technology Data Exchange (ETDEWEB)
DeWilde, J., E-mail: john_dewilde@golder.com [Golder Associates Ltd., Whitby, ON (Canada); Klukas, M.; Audet, M., E-mail: marc.audet@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)
2015-07-01
The DRAFT CSA Standard N288.7 entitled Groundwater Protection at Class I Nuclear Facilities and Uranium Mines and Mills is currently under development and is anticipated to publish in June of 2015. This draft standard identifies a process for the protection and monitoring of groundwater at nuclear facilities but may also be used at any facility (i.e. nuclear facilities that are not Class I or non-nuclear facilities). The paper discusses the background to the draft standard, the formalized methodology described in the draft standard and provides some input on implementation. The paper is intended for people that have responsibilities related to groundwater protection at facilities that may need to comply with the draft standard or any site/facility that has some form of groundwater monitoring program. (author)
Operator algebras and topology
International Nuclear Information System (INIS)
Schick, T.
2002-01-01
These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)
Advanced modern algebra part 2
Rotman, Joseph J
2017-01-01
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
International Nuclear Information System (INIS)
Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA
1992-01-01
The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)
International Nuclear Information System (INIS)
Anon.
1992-01-01
This standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class IE Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices. This guide does not cover cables for service within the reactor vessel
On Dunkl angular momenta algebra
Energy Technology Data Exchange (ETDEWEB)
Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2015-11-17
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Multicore Performance of Block Algebraic Iterative Reconstruction Methods
DEFF Research Database (Denmark)
Sørensen, Hans Henrik B.; Hansen, Per Christian
2014-01-01
Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely on semiconv......Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely...... on semiconvergence. Block versions of these methods, based on a partitioning of the linear system, are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT. These block methods separate into two classes: those that, in each iteration, access the blocks in a sequential manner...... a fixed relaxation parameter in each method, namely, the one that leads to the fastest semiconvergence. Computational results show that for multicore computers, the sequential approach is preferable....
Nevanlinna theory, normal families, and algebraic differential equations
Steinmetz, Norbert
2017-01-01
This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers wor...
The three-dimensional origin of the classifying algebra
International Nuclear Information System (INIS)
Fuchs, Juergen; Schweigert, Christoph; Stigner, Carl
2010-01-01
It is known that reflection coefficients for bulk fields of a rational conformal field theory in the presence of an elementary boundary condition can be obtained as representation matrices of irreducible representations of the classifying algebra, a semisimple commutative associative complex algebra. We show how this algebra arises naturally from the three-dimensional geometry of factorization of correlators of bulk fields on the disk. This allows us to derive explicit expressions for the structure constants of the classifying algebra as invariants of ribbon graphs in the three-manifold S 2 xS 1 . Our result unravels a precise relation between intertwiners of the action of the mapping class group on spaces of conformal blocks and boundary conditions in rational conformal field theories.
Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers
Neshveyev, Sergey; Tuset, Lars
2012-05-01
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).
Basic math and pre-algebra for dummies
Zegarelli, Mark
2014-01-01
Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that
A conversational introduction to algebraic number theory
Pollack, Paul
2017-01-01
Gauss famously referred to mathematics as the "queen of the sciences" and to number theory as the "queen of mathematics". This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field \\mathbb{Q}. Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three "fundamental theorems": unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise w...
Mobile Learning: Integrating Text Messaging into a Community College Pre-Algebra Course
Bull, Prince; McCormick, Carlos
2012-01-01
This study investigated the use of text messaging as an educational tool in a pre-algebra course at a community college in the central region of North Carolina. The research was conducted in two pre-algebra classes with thirty-three students and one instructor. Data were gathered using qualitative and quantitative methods. A mixed method design…
Higher-spin extended conformal algebras and W-gravities
International Nuclear Information System (INIS)
Hull, C.M.
1991-01-01
The construction of classical W 3 gravity is reviewed. It is suggested that the hidden symmetry for quantum W 3 gravity in the chiral gauge is not SL(3, R) but a group contraction of this, ISL(2, R). This is extended to W N gravity, and the case of W 4 gravity is presented in detail. The gauge transformations are realized on D free bosons, with the spin-n conserved current (2 ≤ n ≤ N) taking the form d sub(i i ...i n ) δ + Φ sup(i 1 ) δ + Φ sup(i n ) for some constant tensor d sub(i i ...i n ). The d-tensors must satisfy N-2 non-linear algebraic constraints and these constraints are shown to be satisfied if the d-tensors are taken to be the structure-tensors of an Nth degree Jordan algebra. The relation with Jordan algebras is used to give solutions of the d-tensor constraints for any value of D, N. The free-boson construction of the W N algebras is generalized to give a Sugaware-type construction of a large class of classical extended conformal algebras. The chiral gauging of any classical extended conformal algebra is shown to require only a linear Noether coupling to world-sheet gauge-fields, while gauging a non-chiral algebra in general leads to a non-polynomial action. A number of examples are examined, including W ∞ W-supergravity, Knizhnik-Berschadsky supergravity and 'W N/M ' algebras. Theories of higher-spin W-gravity of the type described are only possible in one and two space-time dimensions, and the one-dimensional cases is briefly discussed. The covariant formulation of W-gravity is briefly discussed and the relation between classical and quantum extended conformal algebras is analyzed. (orig.)
International Nuclear Information System (INIS)
Asili Firouzabadi, N; Tavassoly, M K; Faghihi, M J
2015-01-01
Recently, nonlinear displaced number states (NDNSs) have been manually introduced, in which the deformation function f(n) has been artificially added to the previously well-known displaced number states (DNSs). Indeed, just a simple comparison has been performed between the standard coherent state and nonlinear coherent state for the formation of NDNSs. In the present paper, after expressing enough physical motivation of our procedure, four distinct classes of NDNSs are presented by applying algebraic and group treatments. To achieve this purpose, by considering the DNSs and recalling the nonlinear coherent states formalism, the NDNSs are logically defined through an algebraic consideration. In addition, by using a particular class of Gilmore–Perelomov-type of SU(1, 1) and a class of SU(2) coherent states, the NDNSs are introduced via group-theoretical approach. Then, in order to examine the nonclassical behavior of these states, sub-Poissonian statistics by evaluating Mandel parameter and Wigner quasi-probability distribution function associated with the obtained NDNSs are discussed, in detail. (paper)
International Nuclear Information System (INIS)
Marquette, Ian
2013-01-01
We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently
International Nuclear Information System (INIS)
Anon.
1992-01-01
This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1971 and IEE Std 308-1978, can be demonstrated by using the procedures provided in this standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other type batteries are beyond the scope of this standard
International Nuclear Information System (INIS)
Anon.
1992-01-01
This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 308-1980 can be demonstrated by using the procedures provided in this standard in accordance with ANSI/IEEE Std 323-1983. Battery sizing, maintenance, capacity testing, installation, charging equipment, and consideration of other type batteries are beyond the scope of this standard
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Directory of Open Access Journals (Sweden)
María Carolina Spinel G.
1990-01-01
Con esta base, en posteriores artículos de divulgación, presentaremos algunas aplicaciones que muestren la ventaja de su empleo en la descripción de sistema físico. Dado el amplio conocimiento que se tiene de los espacios vectoriales. La estructura y propiedades del algebra de Clifford suele presentarse con base en los elementos de un espacio vectorial. En esta dirección, en la sección 2 se define la notación y se describe la estructura de un algebra de Clifford Gn, introduciendo con detalle las operaciones básicas entre los elementos del álgebra. La sección 3 se dedica a describir una base tensorial de Gn.
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Algebras of Information States
Czech Academy of Sciences Publication Activity Database
Punčochář, Vít
2017-01-01
Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016
International Nuclear Information System (INIS)
Todorov, Ivan
2010-12-01
Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
van Smeden, M.; Oberski, D.L.; Reitsma, J.B.; Vermunt, J.K.; Moons, K.G.M.; de Groot, J.A.H.
2016-01-01
Objectives The objective of this study was to evaluate the performance of goodness-of-fit testing to detect relevant violations of the assumptions underlying the criticized “standard” two-class latent class model. Often used to obtain sensitivity and specificity estimates for diagnostic tests in the
An introduction to central simple algebras and their applications to wireless communication
Berhuy, Gre�gory
2013-01-01
Central simple algebras arise naturally in many areas of mathematics. They are closely connected with ring theory, but are also important in representation theory, algebraic geometry and number theory. Recently, surprising applications of the theory of central simple algebras have arisen in the context of coding for wireless communication. The exposition in the book takes advantage of this serendipity, presenting an introduction to the theory of central simple algebras intertwined with its applications to coding theory. Many results or constructions from the standard theory are presented in classical form, but with a focus on explicit techniques and examples, often from coding theory. Topics covered include quaternion algebras, splitting fields, the Skolem-Noether Theorem, the Brauer group, crossed products, cyclic algebras and algebras with a unitary involution. Code constructions give the opportunity for many examples and explicit computations. This book provides an introduction to the theory of central alg...
Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions
International Nuclear Information System (INIS)
Summers, S.J.; Werner, R.
1988-01-01
We continue our study of Bell's inequalities and quantum field theory. It is shown in considerably broader generality than in our previous work that algebras of local observables corresponding to complementary wedge regions maximally violate Bell's inequality in all normal states. Pairs of commuting von Neumann algebras that maximally violate Bell's inequalities in all normal states are characterized. Algebras of local observables corresponding to tangent double cones are shown to maximally violate Bell's inequalities in all normal states in dilatation-invariant theories, in free quantum field models, and in a class of interacting models. Further, it is proven that such algebras are not split in any theory with an ultraviolet scaling limit
An Algebraic Specification of the Semantic Web
Ksystra, Katerina; Triantafyllou, Nikolaos; Stefaneas, Petros; Frangos, Panayiotis
2011-01-01
We present a formal specification of the Semantic Web, as an extension of the World Wide Web using the well known algebraic specification language CafeOBJ. Our approach allows the description of the key elements of the Semantic Web technologies, in order to give a better understanding of the system, without getting involved with their implementation details that might not yet be standardized. This specification is part of our work in progress concerning the modeling the Social Semantic Web.
AIR Tools - A MATLAB package of algebraic iterative reconstruction methods
DEFF Research Database (Denmark)
Hansen, Per Christian; Saxild-Hansen, Maria
2012-01-01
We present a MATLAB package with implementations of several algebraic iterative reconstruction methods for discretizations of inverse problems. These so-called row action methods rely on semi-convergence for achieving the necessary regularization of the problem. Two classes of methods are impleme......We present a MATLAB package with implementations of several algebraic iterative reconstruction methods for discretizations of inverse problems. These so-called row action methods rely on semi-convergence for achieving the necessary regularization of the problem. Two classes of methods...... are implemented: Algebraic Reconstruction Techniques (ART) and Simultaneous Iterative Reconstruction Techniques (SIRT). In addition we provide a few simplified test problems from medical and seismic tomography. For each iterative method, a number of strategies are available for choosing the relaxation parameter...
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
A new (in)finite-dimensional algebra for quantum integrable models
International Nuclear Information System (INIS)
Baseilhac, Pascal; Koizumi, Kozo
2005-01-01
A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models
Applications of Computer Algebra Conference
Martínez-Moro, Edgar
2017-01-01
The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Computational aspects of algebraic curves
Shaska, Tanush
2005-01-01
The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove
Punctures for theories of class S{sub Γ}
Energy Technology Data Exchange (ETDEWEB)
Heckman, Jonathan J. [Department of Physics, University of North Carolina,Chapel Hill, NC 27599 (United States); Jefferson, Patrick; Rudelius, Tom; Vafa, Cumrun [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)
2017-03-31
With the aim of understanding compactifications of 6D superconformal field theories to four dimensions, we study punctures for theories of class S{sub Γ}. The class S{sub Γ} theories arise from M5-branes probing ℂ{sup 2}/Γ, an ADE singularity. The resulting 4D theories descend from compactification on Riemann surfaces decorated with punctures. We show that for class S{sub Γ} theories, a puncture is specified by singular boundary conditions for fields in the 5D quiver gauge theory obtained from compactification of the 6D theory on a cylinder geometry. We determine general boundary conditions and study in detail solutions with first order poles. This yields a generalization of the Nahm pole data present for 1/2 BPS punctures for theories of class S. Focusing on specific algebraic structures, we show how the standard discussion of nilpotent orbits and its connection to representations of su(2) generalizes in this broader context.
On the homotopy equivalence of simple AI-algebras
International Nuclear Information System (INIS)
Aristov, O Yu
1999-01-01
Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus i k C([0,1],M N i ). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K 0 A→K 0 B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, which is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h
Geometric algebra with applications in science and engineering
Sobczyk, Garret
2001-01-01
The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling ...
Partially Flipped Linear Algebra: A Team-Based Approach
Carney, Debra; Ormes, Nicholas; Swanson, Rebecca
2015-01-01
In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…
Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving
Engerman, Jason; Rusek, Matthew; Clariana, Roy
2014-01-01
This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…
Flipping College Algebra: Effects on Student Engagement and Achievement
Ichinose, Cherie; Clinkenbeard, Jennifer
2016-01-01
This study compared student engagement and achievement levels between students enrolled in a traditional college algebra lecture course and students enrolled in a "flipped" course. Results showed that students in the flipped class had consistently higher levels of achievement throughout the course than did students in the traditional…
KK -theory and spectral flow in von Neumann algebras
DEFF Research Database (Denmark)
Kaad, Jens; Nest, Ryszard; Rennie, Adam
2012-01-01
We present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko (J). Given a semifinite spectral triple (A, H, D) relative to (N, t) with A separable...
Divergence of Scientific Heuristic Method and Direct Algebraic Instruction
Calucag, Lina S.
2016-01-01
This is an experimental study, made used of the non-randomized experimental and control groups, pretest-posttest designs. The experimental and control groups were two separate intact classes in Algebra. For a period of twelve sessions, the experimental group was subjected to the scientific heuristic method, but the control group instead was given…
Highest weight representations of the quantum algebra Uh(gl∞)
International Nuclear Information System (INIS)
Palev, T.D.; Stoilova, N.I.
1997-04-01
A class of highest weight irreducible representations of the quantum algebra U h (gl-∞) is constructed. Within each module a basis is introduced and the transformation relations of the basis under the action of the Chevalley generators are explicitly written. (author). 16 refs
Generalized algebra-valued models of set theory
Löwe, B.; Tarafder, S.
2015-01-01
We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.
Killing vectors in empty space algebraically special metrics. II
International Nuclear Information System (INIS)
Held, A.
1976-01-01
Empty space algebraically special metrics possessing an expanding degenerate principal null vector and Killing vectors are investigated. Attention is centered on that class of Killing vector (called nonpreferred) which is necessarily spacelike in the asymptotic region. A detailed analysis of the relationship between the Petrov--Penrose classification and these Killing vectors is carried out
2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras
International Nuclear Information System (INIS)
Ayupov, Shavkat; Kudaybergenov, Karimbergen
2016-01-01
The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Quantum deformations of conformal algebras with mass-like deformation parameters
International Nuclear Information System (INIS)
Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek; Minnaert, Pierre
1998-01-01
We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2)≅su(2,2) reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices
Actuarial Foundation, 2013
2013-01-01
"Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…
On algebraically special perturbations of black holes
International Nuclear Information System (INIS)
Chandrasekhar, S.
1984-01-01
Algebraically special perturbations of black holes excite gravitational waves that are either purely ingoing or purely outgoing. Solutions, appropriate to such perturbations of the Kerr, the Schwarzschild, and the Reissner-Nordstroem black-holes, are obtained in explicit forms by different methods. The different methods illustrate the remarkable inner relations among different facets of the mathematical theory. In the context of the Kerr black-hole they derive from the different ways in which the explicit value of the Starobinsky constant emerges, and in the context of the Schwarzschild and the Reissner-Nordstroem black-holes they derive from the potential barriers surrounding them belonging to a special class. (author)
Eisenstein Hecke algebras and Iwasawa theory
Wake, Preston
We show that if an Eisenstein component of the p-adic Hecke algebra associated to modular forms is Gorenstein, then it is necessary that the plus-part of a certain ideal class group is trivial. We also show that this condition is sufficient whenever a conjecture of Sharifi holds. We also formulate a weaker Gorenstein property, and show that this weak Gorenstein property holds if and only if a weak form of Sharifi's conjecture and a weak form of Greenberg's conjecture hold.
Performance assessment in algebra learning process
Lestariani, Ida; Sujadi, Imam; Pramudya, Ikrar
2017-12-01
The purpose of research to describe the implementation of performance assessment on algebra learning process. The subject in this research is math educator of SMAN 1 Ngawi class X. This research includes descriptive qualitative research type. Techniques of data collecting are done by observation method, interview, and documentation. Data analysis technique is done by data reduction, data presentation, and conclusion. The results showed any indication that the steps taken by the educator in applying the performance assessment are 1) preparing individual worksheets and group worksheets, 2) preparing rubric assessments for independent worksheets and groups and 3) making performance assessments rubric to learners’ performance results with individual or groups task.
Dynamical entropy of C* algebras and Von Neumann algebras
International Nuclear Information System (INIS)
Connes, A.; Narnhofer, H.; Thirring, W.
1986-01-01
The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)
Abstract Algebra to Secondary School Algebra: Building Bridges
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
Topological أ-algebras with Cأ-enveloping algebras II
Indian Academy of Sciences (India)
necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.
A modal characterization of Peirce algebras
M. de Rijke (Maarten)
1995-01-01
textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.
Quantum deformation of the affine transformation algebra
International Nuclear Information System (INIS)
Aizawa, N.; Sato, Haru-Tada
1994-01-01
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)
DEFF Research Database (Denmark)
Høyrup, Jens
with basic Assyriology but otherwise philological details are avoided. All of these texts are from the second half of the Old Babylonian period, that is, 1800–1600 BCE. It is indeed during this period that the “algebraic” discipline, and Babylonian mathematics in general, culminates. Even though a few texts...... particular culture. Finally, it describes the origin of the discipline and its impact in later mathematics, not least Euclid’s geometry and genuine algebra as created in medieval Islam and taken over in European medieval and Renaissance mathematics....
Algebraic topology and concurrency
DEFF Research Database (Denmark)
Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric
2006-01-01
We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...
Clark, Allan
1984-01-01
This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to
Hazewinkel, M
2008-01-01
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i
Energy Technology Data Exchange (ETDEWEB)
Lopez, V.; Giraud, F.; Pisano, P.; Guillet, B. [CHU Nord, Marseille, Service de radiopharmacie, 13 (France); CHU Timone, service de radiopharmacie, 13 - Marseille (France)
2010-07-01
Purpose: The pole of Pharmacy of 'Assistance Publique des Hopitaux de Marseille' initiated a process of evaluation of professional practice. The two functional units of radiopharmacy are involved by comparing the surface contamination of gloves of a class A cell and a standard shielded cell, both in class D premises. Conclusions: In a shielded Class A cell placed in class D premises, there is microbial contamination of gloves probably due to the introduction of not disinfected equipment. In a standard shielded cell where contamination is most important, gloves cleaning should be performed several times during the workday, at least every four hours with a surface bactericidal and fungicidal agent. (N.C.)
Fractional supersymmetry and infinite dimensional lie algebras
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
2001-01-01
In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
Lie-deformed quantum Minkowski spaces from twists: Hopf-algebraic versus Hopf-algebroid approach
Lukierski, Jerzy; Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel; Woronowicz, Mariusz
2018-02-01
We consider new Abelian twists of Poincare algebra describing nonsymmetric generalization of the ones given in [1], which lead to the class of Lie-deformed quantum Minkowski spaces. We apply corresponding twist quantization in two ways: as generating quantum Poincare-Hopf algebra providing quantum Poincare symmetries, and by considering the quantization which provides Hopf algebroid describing class of quantum relativistic phase spaces with built-in quantum Poincare covariance. If we assume that Lorentz generators are orbital i.e. do not describe spin degrees of freedom, one can embed the considered generalized phase spaces into the ones describing the quantum-deformed Heisenberg algebras.
On Derivations of Operator Algebras with Involution
Directory of Open Access Journals (Sweden)
Širovnik Nejc
2014-12-01
Full Text Available The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let L(X be an algebra of all bounded linear operators on X and let A(X ⊂ L(X be a standard operator algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping D : A(X → L(X satisfying the relation 2D(AA*A = D(AA*A + AA*D(A + D(AA*A + AD(A*A for all A ∈ A(X. In this case, D is of the form D(A = [A,B] for all A ∈ A(X and some fixed B ∈ L(X, which means that D is a derivation.
Linear Algebra and Image Processing
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Differential Equation over Banach Algebra
Kleyn, Aleks
2018-01-01
In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.
Ahadpanah, A.; Borumand Saeid, A.
2011-01-01
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.
General distributions in process algebra
Katoen, Joost P.; d' Argenio, P.R.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
2001-01-01
This paper is an informal tutorial on stochastic process algebras, i.e., process calculi where action occurrences may be subject to a delay that is governed by a (mostly continuous) random variable. Whereas most stochastic process algebras consider delays determined by negative exponential
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
2012-06-14
Jun 14, 2012 ... They form a group G which acts on the (affine) space of ... The curvature F of A is defined by (notice that in this paper the bracket is defined ... This purely algebraic formulation easily extends to the consideration of the Lie algebra of vector .... namely the case of perturbatively renormalizable theories in four ...