Inviscid double wake model for stalled airfoils
International Nuclear Information System (INIS)
Marion, L; Ramos-García, N; Sørensen, J N
2014-01-01
An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge and at the separation point. A calibration of the code through comparison with experiments has been performed using one set of airfoils. A second set of airfoils has been used for the validation of the calibrated model. Predicted aerodynamic forces for a wide range of angles of attack (0 to 90 deg) are in overall good agreement with wind tunnel measurements
Simulation model of an active stall wind turbine controller
Energy Technology Data Exchange (ETDEWEB)
Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)
2004-07-01
This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)
A numerical strategy for modelling rotating stall in core compressors
Vahdati, M.
2007-03-01
The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary
A Comparative Study of Three Methodologies for Modeling Dynamic Stall
Sankar, L.; Rhee, M.; Tung, C.; ZibiBailly, J.; LeBalleur, J. C.; Blaise, D.; Rouzaud, O.
2002-01-01
During the past two decades, there has been an increased reliance on the use of computational fluid dynamics methods for modeling rotors in high speed forward flight. Computational methods are being developed for modeling the shock induced loads on the advancing side, first-principles based modeling of the trailing wake evolution, and for retreating blade stall. The retreating blade dynamic stall problem has received particular attention, because the large variations in lift and pitching moments encountered in dynamic stall can lead to blade vibrations and pitch link fatigue. Restricting to aerodynamics, the numerical prediction of dynamic stall is still a complex and challenging CFD problem, that, even in two dimensions at low speed, gathers the major difficulties of aerodynamics, such as the grid resolution requirements for the viscous phenomena at leading-edge bubbles or in mixing-layers, the bias of the numerical viscosity, and the major difficulties of the physical modeling, such as the turbulence models, the transition models, whose both determinant influences, already present in static maximal-lift or stall computations, are emphasized by the dynamic aspect of the phenomena.
A dynamic stall model for airfoils with deformable trailing edges
DEFF Research Database (Denmark)
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian
2007-01-01
on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...
A dynamic stall model for airfoils with deformable trailing edges
DEFF Research Database (Denmark)
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian
2009-01-01
, lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa......The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in heave...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....
A Dynamic Stall Model for Airfoils with Deformable Trailing Edges
International Nuclear Information System (INIS)
Andersen, Peter Bjoern; Gaunaa, Mac; Bak, Christian; Hansen, Morten Hartvig
2007-01-01
The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa for the attached flow region and Hansen et al. The model will be compared to wind tunnel measurements from Velux described by Bak et al
DYNSTALL: Subroutine package with a dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, Anders [Aeronautical Research Inst. of Sweden, Bromma (Sweden)
2001-03-01
A subroutine package, called DYNSTALL, for the calculation of 2D unsteady airfoil aerodynamics is described. The subroutines are written in FORTRAN. DYNSTALL is basically an implementation of the Beddoes-Leishman dynamic stall model. This model is a semi-empirical model for dynamic stall. It includes, however, also models for attached flow unsteady aerodynamics. It is complete in the sense that it treats attached flow as well as separated flow. Semi-empirical means that the model relies on empirically determined constants. Semi because the constants are constants in equations with some physical interpretation. It requires the input of 2D airfoil aerodynamic data via tables as function of angle of attack. The method is intended for use in an aeroelastic code with the aerodynamics solved by blade/element method. DYNSTALL was written to work for any 2D angles of attack relative to the airfoil, e.g. flow from the rear of an airfoil.
Simulation model of an active-stall fixed-speed wind turbine controller
Energy Technology Data Exchange (ETDEWEB)
Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.
2004-07-01
This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)
Modified bond model for shear in slabs under concentrated loads
Lantsoght, E.O.L.; Van der Veen, C.; De Boer, A.
2015-01-01
Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, are less studied than beams in shear or slab-column connections in punching. To predict the shear capacity for this case, the Bond Model for concentric punching shear was studied initially.
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden)
1997-08-01
For calculations of the dynamics of wind turbines the inclusion of a dynamic stall model is necessary in order to obtain reliable results at high winds. For blade vibrations in the lead-lag motion the velocity relative to the blade will vary in time. In the present paper modifications to the Beddoes-Leishman model is presented in order to improve the model for calculations of cases with a varying relative velocity. Comparisons with measurement are also shown and the influence on the calculated aerodynamic damping by the modifications are investigated. (au)
Radiative transfer model for contaminated rough slabs.
Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard
2015-11-01
We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis.
Enhancing BEM simulations of a stalled wind turbine using a 3D correction model
Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi
2018-03-01
Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.
Optimal parameters for the FFA-Beddoes dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A; Mert, M [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H A [Risoe National Lab., Roskilde (Denmark)
1999-03-01
Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)
Untangling Slab Dynamics Using 3-D Numerical and Analytical Models
Holt, A. F.; Royden, L.; Becker, T. W.
2016-12-01
Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
DEFF Research Database (Denmark)
Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott
2016-01-01
a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two-dimensional flow to be investigated. Results indicated a good qualitative...
Slab2 - Updated Subduction Zone Geometries and Modeling Tools
Moore, G.; Hayes, G. P.; Portner, D. E.; Furtney, M.; Flamme, H. E.; Hearne, M. G.
2017-12-01
The U.S. Geological Survey database of global subduction zone geometries (Slab1.0), is a highly utilized dataset that has been applied to a wide range of geophysical problems. In 2017, these models have been improved and expanded upon as part of the Slab2 modeling effort. With a new data driven approach that can be applied to a broader range of tectonic settings and geophysical data sets, we have generated a model set that will serve as a more comprehensive, reliable, and reproducible resource for three-dimensional slab geometries at all of the world's convergent margins. The newly developed framework of Slab2 is guided by: (1) a large integrated dataset, consisting of a variety of geophysical sources (e.g., earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow slab, tomography models, receiver functions, bathymetry, trench ages, and sediment thickness information); (2) a dynamic filtering scheme aimed at constraining incorporated seismicity to only slab related events; (3) a 3-D data interpolation approach which captures both high resolution shallow geometries and instances of slab rollback and overlap at depth; and (4) an algorithm which incorporates uncertainties of contributing datasets to identify the most probable surface depth over the extent of each subduction zone. Further layers will also be added to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling. Along with access to several queryable data formats, all components have been wrapped into an open source library in Python, such that suites of updated models can be released as further data becomes available. This presentation will discuss the extent of Slab2 development, as well as the current availability of the model and modeling tools.
Directory of Open Access Journals (Sweden)
Eduard Dyachuk
2015-02-01
Full Text Available The complex unsteady aerodynamics of vertical axis wind turbines (VAWT poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman–Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman–Beddoes model outperforms the Gormont model for all tested conditions.
Development and application of a dynamic stall model for rotating wind turbine blades
International Nuclear Information System (INIS)
Xu, B F; Yuan, Y; Wang, T G
2014-01-01
In unsteady conditions of wind turbines, both the dynamic stall phenomenon and the three-dimensional (3D) rotational effect affect the rotor aerodynamics. The dynamic stall mechanism for rotating wind turbine blades is first investigated. Through the comparison of the aerodynamic data between the rotating blade and the two-dimensional (2D) airfoil, the normal force slope in the attached flow and the separation point expression in the separated flow are modified in the Beddoes-Leishman (B-L) dynamic stall model for rotating NREL wind turbine blades. The modified model is validated by the comparison between the calculation results and the experimental results of the lift and drag coefficients at different radial positions. Both the hysteresis loop shapes and the calculation values are closer to the experiment than the 2D dynamic stall model. The present dynamic stall model is then coupled to a free vortex wake model. The coupled model is used to calculate the unsteady blade aerodynamic loads and the low speed shaft torque of the NREL wind turbine in a yawed condition. The accuracy is greatly improved by the corrections presented in the paper
A time-varying subjective quality model for mobile streaming videos with stalling events
Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.
2015-09-01
Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.
Modeling radon entry into Florida slab-on-grade houses
International Nuclear Information System (INIS)
Revzan, K.L.; Fisk, W.J.; Sextro, R.G.
1993-01-01
Radon entry into a Florida house whose concrete slab is supported by a permeable concrete-block stem wall and a concrete footer is modeled. The slab rests on backfill material; the same material is used to fill the footer trench. A region of undisturbed soil is assumed to extend 10 m beyond and below the footer. The soil is assumed homogeneous and isotropic except for certain simulations in which soil layers of high permeability or radium content are introduced. Depressurization of the house induces a pressure field in the soil and backfill. The Laplace equation, resulting from Darcy's law and the continuity equation, is solved using a steady-state finite-difference model to determine this field. The mass-transport equation is then solved to obtain the diffusive and advective radon entry rates through the slab; the permeable stem wall; gaps at the intersections of the slab, stem wall, and footer; and gaps in the slab. These rates are determined for variable soil, backfill, and stem-wall permeability and radium content, slab-opening width and position, slab and stem-wall diffusivity, and water table depth. The variations in soil permeability and radium content include cases of horizontally stratified soil. We also consider the effect of a gap between the edge of the slab and the stem wall that restricts the passage of soil gas from the stem wall into the house. Calculations indicate that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. Variations in most of the factors, other than the soil permeability and radium content, have only a small effect on the total radon entry rate. However, for a fixed soil permeability, the total radon entry rate may be reduced by a factor of 2 or more by decreasing the backfill permeability, by making the stem wall impermeable and gap-free, (possibly by constructing a one-piece slab/stem-wall/footer), or by increasing the pressure in the interior of the stem wall
Stall Recovery in a Centrifuge-Based Flight Simulator With an Extended Aerodynamic Model
Ledegang, W.D.; Groen, E.L.
2015-01-01
We investigated the performance of 12 airline pilots in recovering from an asymmetrical stall in a flight simulator featuring an extended aerodynamic model of a transport-category aircraft, and a centrifuge-based motion platform capable of generating enhanced buffet motion and g-cueing. All pilots
Energy Technology Data Exchange (ETDEWEB)
Bergami, L.; Gaunaa, M.
2012-02-15
The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)
High-resolution LES of the rotating stall in a reduced scale model pump-turbine
International Nuclear Information System (INIS)
Pacot, Olivier; Avellan, François; Kato, Chisachi
2014-01-01
Extending the operating range of modern pump-turbines becomes increasingly important in the course of the integration of renewable energy sources in the existing power grid. However, at partial load condition in pumping mode, the occurrence of rotating stall is critical to the operational safety of the machine and on the grid stability. The understanding of the mechanisms behind this flow phenomenon yet remains vague and incomplete. Past numerical simulations using a RANS approach often led to inconclusive results concerning the physical background. For the first time, the rotating stall is investigated by performing a large scale LES calculation on the HYDRODYNA pump-turbine scale model featuring approximately 100 million elements. The computations were performed on the PRIMEHPC FX10 of the University of Tokyo using the overset Finite Element open source code FrontFlow/blue with the dynamic Smagorinsky turbulence model and the no-slip wall condition. The internal flow computed is the one when operating the pump-turbine at 76% of the best efficiency point in pumping mode, as previous experimental research showed the presence of four rotating cells. The rotating stall phenomenon is accurately reproduced for a reduced Reynolds number using the LES approach with acceptable computing resources. The results show an excellent agreement with available experimental data from the reduced scale model testing at the EPFL Laboratory for Hydraulic Machines. The number of stall cells as well as the propagation speed corroborates the experiment
High-resolution LES of the rotating stall in a reduced scale model pump-turbine
Pacot, Olivier; Kato, Chisachi; Avellan, François
2014-03-01
Extending the operating range of modern pump-turbines becomes increasingly important in the course of the integration of renewable energy sources in the existing power grid. However, at partial load condition in pumping mode, the occurrence of rotating stall is critical to the operational safety of the machine and on the grid stability. The understanding of the mechanisms behind this flow phenomenon yet remains vague and incomplete. Past numerical simulations using a RANS approach often led to inconclusive results concerning the physical background. For the first time, the rotating stall is investigated by performing a large scale LES calculation on the HYDRODYNA pump-turbine scale model featuring approximately 100 million elements. The computations were performed on the PRIMEHPC FX10 of the University of Tokyo using the overset Finite Element open source code FrontFlow/blue with the dynamic Smagorinsky turbulence model and the no-slip wall condition. The internal flow computed is the one when operating the pump-turbine at 76% of the best efficiency point in pumping mode, as previous experimental research showed the presence of four rotating cells. The rotating stall phenomenon is accurately reproduced for a reduced Reynolds number using the LES approach with acceptable computing resources. The results show an excellent agreement with available experimental data from the reduced scale model testing at the EPFL Laboratory for Hydraulic Machines. The number of stall cells as well as the propagation speed corroborates the experiment.
DIGA/NSL new calculational model in slab geometry
International Nuclear Information System (INIS)
Makai, M.; Gado, J.; Kereszturi, A.
1987-04-01
A new calculational model is presented based on a modified finite-difference algorithm, in which the coefficients are determined by means of the so-called gamma matrices. The DIGA program determines the gamma matrices and the NSL program realizes the modified finite difference model. Both programs assume slab cell geometry, DIGA assumes 2 energy groups and 3 diffusive regions. The DIGA/NSL programs serve to study the new calculational model. (author)
A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations
DEFF Research Database (Denmark)
Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge
2004-01-01
This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
Energy Technology Data Exchange (ETDEWEB)
Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)
2015-04-22
It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be
Analytical theory of Doppler reflectometry in slab plasma model
Energy Technology Data Exchange (ETDEWEB)
Gusakov, E.Z.; Surkov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg (Russian Federation)
2004-07-01
Doppler reflectometry is considered in slab plasma model in the frameworks of analytical theory. The diagnostics locality is analyzed for both regimes: linear and nonlinear in turbulence amplitude. The toroidal antenna focusing of probing beam to the cut-off is proposed and discussed as a method to increase diagnostics spatial resolution. It is shown that even in the case of nonlinear regime of multiple scattering, the diagnostics can be used for an estimation (with certain accuracy) of plasma poloidal rotation profile. (authors)
Simulation model of a transient fault controller for an active-stall wind turbine
Energy Technology Data Exchange (ETDEWEB)
Jauch, C.; Soerensen, P.; Bak Jensen, B.
2005-01-01
This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed. (author)
Unsteady Double Wake Model for the Simulation of Stalled Airfoils
DEFF Research Database (Denmark)
Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær
2015-01-01
In the present work, the recent developed Unsteady Double Wake Model, USDWM, is used to simulate separated flows past a wind turbine airfoil at high angles of attack. The solver is basically an unsteady two-dimensional panel method which uses the unsteady double wake technique to model flow separ...
Blanchard, W. S., Jr.
1981-01-01
Ultradeep stall descent and spin recovery characteristics of a 1/6 scale radio controlled model of the Piper PA38 Tomahawk aircraft was investigated. It was shown that the full scale PA38 is a suitable aircraft for conducting ultradeep stall research. Spin recovery was accomplished satisfactorily by entry to the ultradeep stall mode, followed by the exit from the ultradeep stall mode. It is concluded that since the PA38 has excellent spin recovery characteristics using normal recovery techniques (opposite rudder and forward control colum pressure), recovery using ultradeep stall would be beneficial only if the pilot suffered from disorientation.
A stochastic model for the simulation of wind turbine blades in static stall
DEFF Research Database (Denmark)
Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.
2010-01-01
The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...... a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine...
MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB
Directory of Open Access Journals (Sweden)
MD AZREE OTHUMAN MYDIN
2013-06-01
Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.
Analytical model for shear strength of end slabs of prestressed concrete nuclear reactor vessels
International Nuclear Information System (INIS)
Abdulrahman, H.O.; Sozen, M.A.; Schnobrich, W.C.
1979-04-01
The results are presented of an investigation of the behavior and strength of flat end slabs of cylindrical prestressed concrete nuclear reactor vessels. The investigation included tests of ten small-scale pressure vessels and development of a nonlinear finite-element model to simulate the deformation response and strength of the end slabs. Because earlier experimental studies had shown that the flexural strength of the end slab could be calculated using intelligible procedures, the emphasis of this investigation was on shear strength
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A simple model for the stability zones of a low speed centrifugal compressor is developed, with the goal of understanding the driving mechanism for the changes in stalling behavior predicted for, and observed in, the Purdue Low Speed Centrifugal Research Compressor Facility. To this end, earlier analyses of rotating stall suppression in centrifugal compressors are presented in a reduced form that preserves the essential parameters of the model that affect the stalling behavior of the compressor. The model is then used to illuminate the relationship between compressor geometry, expected mode shape, and regions of amplification for weak waves which are indicative of the susceptibility of the system to rotating stall. The results demonstrate that increasing the stagger angle of the diffuser vanes, and consequently the diffusion path length, results in the compressor moving towards a condition where higher-order spatial modes are excited during stall initiation. Similarly, flow acceleration in the diffuser section caused by an increase in the number of diffuser vanes also results in the excitation of higher modes.
International Nuclear Information System (INIS)
Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.
2008-01-01
Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs
Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow
Narsipur, Shreyas
Unsteady aerodynamics has been a topic of research since the late 1930's and has increased in popularity among researchers studying dynamic stall in helicopters, insect/bird flight, micro air vehicles, wind-turbine aerodynamics, and ow-energy harvesting devices. Several experimental and computational studies have helped researchers gain a good understanding of the unsteady ow phenomena, but have proved to be expensive and time-intensive for rapid design and analysis purposes. Since the early 1970's, the push to develop low-order models to solve unsteady ow problems has resulted in several semi-empirical models capable of effectively analyzing unsteady aerodynamics in a fraction of the time required by high-order methods. However, due to the various complexities associated with time-dependent flows, several empirical constants and curve fits derived from existing experimental and computational results are required by the semi-empirical models to be an effective analysis tool. The aim of the current work is to develop a low-order model capable of simulating incompressible dynamic-stall type ow problems with a focus on accurately modeling the unsteady ow physics with the aim of reducing empirical dependencies. The lumped-vortex-element (LVE) algorithm is used as the baseline unsteady inviscid model to which augmentations are applied to model unsteady viscous effects. The current research is divided into two phases. The first phase focused on augmentations aimed at modeling pure unsteady trailing-edge boundary-layer separation and stall without leading-edge vortex (LEV) formation. The second phase is targeted at including LEV shedding capabilities to the LVE algorithm and combining with the trailing-edge separation model from phase one to realize a holistic, optimized, and robust low-order dynamic stall model. In phase one, initial augmentations to theory were focused on modeling the effects of steady trailing-edge separation by implementing a non-linear decambering
International Nuclear Information System (INIS)
Mendoza, Victor; Goude, Anders; Bachant, Peter; Wosnik, Martin
2016-01-01
Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion. (paper)
Mendoza, Victor; Bachant, Peter; Wosnik, Martin; Goude, Anders
2016-09-01
Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion.
Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade
DEFF Research Database (Denmark)
Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes
2017-01-01
Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...
Computer modeling of the stalled flow of a rotating cylinder and the reverse magnus effect
Belotserkovskii, S. M.; Kotovskii, V. N.; Nisht, M. I.; Fedorov, R. M.
1985-02-01
Unsteady stalled flow around a rotating cylinder is investigated in a numerical experiment. Attention is mostly given to the reverse Magnus effect which was discovered in tube experiments at some critical rotational speed of the cylinder.
Gholamhoseini, Alireza
2016-03-01
Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.
Using thermal and compositional modeling to assess the role of water in Alaskan flat slab subduction
Robinson, S. E.; Porter, R. C.; Hoisch, T. D.
2017-12-01
Although plate tectonic theory is well established in the geosciences, the mechanisms and details of various plate-tectonics related phenomena are not always well understood. In some ( 10%) convergent plate boundaries, subduction of downgoing oceanic plates is characterized by low angle geometries and is termed "flat slab subduction." The mechanism(s) driving this form of subduction are not well understood. The goal of this study is to explore the role that water plays in these flat slab subduction settings. This is important for a better understanding of the behavior of these systems and for assessing volcanic hazards associated with subduction and slab rollback. In southern Alaska, the Pacific Plate is subducting beneath the North American plate at a shallow angle. This low-angle subduction within the region is often attributed to the subduction of the Yakutat block, a terrane accreting to the south-central coast of Alaska. This flat slab region is bounded by the Aleution arc to the west and the strike-slip Queen Charlotte fault to the east. Temperature and compositional models for a 500-km transect across this subduction zone in Alaska were run for ten million years (the length of time that flat slab subduction has been ongoing in Alaska) and allow for interpretation of present-day conditions at depth. This allows for an evaluation of two hypotheses regarding the role of water in flat-slab regions: (1) slab hydration and dehydration help control slab buoyancy which influences whether flat slab subduction will be maintained or ended. (2) slab hydration/dehydration of the overlying lithosphere impacts deformation within the upper plate as water encourages plate deformation. Preliminary results from thermal modeling using Thermod8 show that cooling of the mantle to 500 °C is predicted down to 100 km depth at 10 million years after the onset of low-angle subduction (representing present-day). Results from compositional modeling in Perple_X show the maximum amount
Visualizing Three-dimensional Slab Geometries with ShowEarthModel
Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.
2017-12-01
Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.
Energy Technology Data Exchange (ETDEWEB)
Dai, J.C. [College of Mechanical and Electrical Engineering, Central South University, Changsha (China); School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Hu, Y.P.; Liu, D.S. [School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Long, X. [Hara XEMC Windpower Co., Ltd., Xiangtan (China)
2011-03-15
The aerodynamic loads for MW scale horizontal-axis wind turbines are calculated and analyzed in the established coordinate systems which are used to describe the wind turbine. In this paper, the blade element momentum (BEM) theory is employed and some corrections, such as Prandtl and Buhl models, are carried out. Based on the B-L semi-empirical dynamic stall (DS) model, a new modified DS model for NACA63-4xx airfoil is adopted. Then, by combing BEM modified theory with DS model, a set of calculation method of aerodynamic loads for large scale wind turbines is proposed, in which some influence factors such as wind shear, tower, tower and blade vibration are considered. The research results show that the presented dynamic stall model is good enough for engineering purpose; the aerodynamic loads are influenced by many factors such as tower shadow, wind shear, dynamic stall, tower and blade vibration, etc, with different degree; the single blade endures periodical changing loads but the variations of the rotor shaft power caused by the total aerodynamic torque in edgewise direction are very small. The presented study approach of aerodynamic loads calculation and analysis is of the university, and helpful for thorough research of loads reduction on large scale wind turbines. (author)
The Relevance of the Dynamic Stall Effect for Transient
DEFF Research Database (Denmark)
Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte
2005-01-01
This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...
Assessing the role of slab rheology in coupled plate-mantle convection models
Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John
2015-11-01
Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.
Semi-analytical model for a slab one-dimensional photonic crystal
Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.
2018-02-01
In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.
Study of slab fuel cell models for reactor core neutronic calculation
International Nuclear Information System (INIS)
Claro, Luiz H.; Ono, Shizuca; Nascimento, Jamil A.; Vieira, Wilson J.; Caldeira, Alexandre D.; Dias, Artur Flavio
2005-01-01
In this work some models for a slab cell of a nuclear reactor are studied. Two methodologies are used: the deterministic through WIMS code, and the probabilistic one through MCNP code. The objective is to define the best geometric model for a fuel cell to be applied in a cell calculation to be carried through the WIMS code and to use the MCNP code as reference. The results had indicated that for the one-dimensional model the slab fuel cell with only three regions is the best option with a fuel region, a cladding region and a moderator region. (author)
Prediction of qualitative parameters of slab steel ingot using numerical modelling
Directory of Open Access Journals (Sweden)
M. Tkadlečková
2016-07-01
Full Text Available The paper describes the verification of casting and solidification of heavy slab ingot weighing 40 t from tool steel by means of numerical modelling with use of a finite element method. The pre-processing, processing and post-processing phases of numerical modelling are outlined. Also, the problems with determination of the thermodynamic properties of materials and with determination of the heat transfer between the individual parts of the casting system are discussed. The final porosity, macrosegregation and the risk of cracks were predicted. The results allowed us to use the slab ingot instead of the conventional heavy steel ingot and to improve the ratio, the chamfer and the external shape of the wall of the new design of the slab ingot.
Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails
Mlilo, Nhlanganiso; Kaewunruen, Sakdirat
2017-12-01
Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure
Role of rheology in reconstructing slab morphology in global mantle models
Bello, Léa; Coltice, Nicolas; Tackley, Paul; Müller, Dietmar
2015-04-01
Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 years. Although numerical models and computational capabilities have incredibly progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of the lithosphere. Previous studies have employed diverse viscosity laws, most of them being temperature and depth dependent with relatively small viscosity contrasts. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. We also investigate the importance of pseudo-plasticity in such models. We show that strong temperature dependence of viscosity combined with pseudo-plasticity produce laterally and vertically continuous slabs, and flat subduction where trench retreat is fast (North, Central and South America). Moreover, pseudo-plasticity allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity only. However, even our most sophisticated model is not able to reproduce unambiguously stagnant slabs probably because of the simplicity of material properties we use here. The differences between models employing different viscosity laws are very large, larger than the differences between two models with the same rheology but using two different plate reconstructions or initial conditions.
Slab1.0: A three-dimensional model of global subduction zone geometries
Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.
2012-01-01
We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of ‘average’ active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.
A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations[Wind turbines
Energy Technology Data Exchange (ETDEWEB)
Hansen, M.H.; Gaunaa, M.; Aagaard Madsen, H.
2004-06-01
This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The m odel predicts the unsteady aerodynamic foreces and moment on an airfoil section undergoing arbitrary motion in heavy, lead-lag, and pitch. The model includes the effects of shed vorticity from the trailing edge (Theodorsen Theory), and the effects of an instationary trailing edge separation point. The governing equations of the model are nonlinear, and they are linearized about a steady state for application in stability analyzes. A validation is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. The proposed dyanmic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identical results to the full model for small amplitude oscillations. furthermore, it is shown that the response of finite thickness airfoils can be reproduced to a high accuracy by the use of specific inviscid response functions. (au)
A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity
Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.
2011-01-01
We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.
The effect of a realistic thermal diffusivity on numerical model of a subducting slab
Maierova, P.; Steinle-Neumann, G.; Cadek, O.
2010-12-01
A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the
Slab detachment in laterally varying subduction zones: 3-D numerical modeling
Duretz, T.; Gerya, T.V.; Spakman, W.|info:eu-repo/dai/nl/074103164
Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models,
Energy Technology Data Exchange (ETDEWEB)
Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak
2005-06-15
This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)
International Nuclear Information System (INIS)
An Chen; Su Jian
2011-01-01
Improved lumped parameter models were developed for the transient heat conduction in multi-layer composite slabs subjected to combined convective and radiative cooling. The improved lumped models were obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of three-layer composite slabs was analyzed to illustrate the applicability of the proposed lumped models, with respect to different values of the Biot numbers, the radiation-conduction parameter, the dimensionless thermal contact resistances, the dimensionless thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H 1,1 /H 0,0 approximation) yielded significant improvement of average temperature prediction over the classical lumped model. In addition, the higher order (H 1,1 /H 0,0 ) model was applied to analyze the transient heat conduction problem of steel-concrete-steel sandwich plates. - Highlights: → Improved lumped models for convective-radiative cooling of multi-layer slabs were developed. → Two-point Hermite approximations for integrals were employed. → Significant improvement over classical lumped model was achieved. → The model can be applied to high Biot number and high radiation-conduction parameter. → Transient heat conduction in steel-concrete-steel sandwich pipes was analyzed as an example.
Shields, Matt
The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the
Modeling of Combined Impact and Blast Loading on Reinforced Concrete Slabs
Directory of Open Access Journals (Sweden)
P. Del Linz
Full Text Available Abstract Explosive devices represent a significant threat to military and civilian structures. Specific design procedures have to be followed to account for this and ensure buildings will have the capacity to resist the imposed pressures. Shrapnel can also be produced during explosions and the resulting impacts can weaken the structure, reducing its capacity to resist the blast pressure wave and potentially causing failures to occur. Experiments were performed by the Defence Science and Technology Agency (DSTA of Singapore to study this combined loading phenomenon. Slabs were placed on the ground and loaded with approximately 9 kg TNT charges at a standoff distance of 2.1 m. Spherical steel ball bearings were used to reproduce the shrapnel loading. Loading and damage characteristics were recorded from the experiments. A finite element analysis (FEA model was then created which could simulate the effect of combined shrapnel impacts and blast pressure waves in reinforced concrete slabs, so that its results could be compared to experimental data from the blast tests. Quarter models of the experimental concrete slabs were built using LS-Dyna. Material models available in the software were employed to represent all the main components, taking into account projectile deformations. The penetration depth and damage areas measured were then compared to the experimental data and an analytical solution to validate the models.
International Nuclear Information System (INIS)
Hoffmann, A.; Millard, A.; Nahas, G.
1983-08-01
In order to predict the behaviour of composite beams and shells loaded up to failure, a global method has been developped. This method is based on a generalized stress approach, formulated in terms of moment-curvature relations. The case of a reinforced concrete slab subjected to uniform pressure has been considered. It is shown that numerical results compare fairly well with experimental data. Some improvements to the model are also suggested
A dynamic model for slab development associated with the 2015 Mw 7.9 Bonin Islands deep earthquak
Zhan, Z.; Yang, T.; Gurnis, M.
2016-12-01
The 680 km deep May 30, 2015 Mw 7.9 Bonin Islands earthquake is isolated from the nearest earthquakes by more than 150 km. The geodynamic context leading to this isolated deep event is unclear. Tomographic models and seismicity indicate that the morphology of the west-dipping Pacific slab changes rapidly along the strike of the Izu-Bonin-Mariana trench. To the north, the Izu-Bonin section of the Pacific slab lies horizontally above the 660 km discontinuity and extends more than 500 km westward. Several degrees south, the Mariana section dips vertically and penetrates directly into the lower mantle. The observed slab morphology is consistent with plate reconstructions suggesting that the northern section of the IBM trench retreated rapidly since the late Eocene while the southern section of the IBM trench was relatively stable during the same period. We suggest that the location of the isolated 2015 Bonin Islands deep earthquake can be explained by the buckling of the Pacific slab beneath the Bonin Islands. We use geodynamic models to investigate the slab morphology, temperature and stress regimes under different trench motion histories. Models confirm previous results that the slab often lies horizontally within the transition zone when the trench retreats, but buckles when the trench position becomes fixed with respect to the lower mantle. We show that a slab-buckling model is consistent with the observed deep earthquake P-axis directions (assumed to be the axis of principal compressional stress) regionally. The influences of various physical parameters on slab morphology, temperature and stress regime are investigated. In the models investigated, the horizontal width of the buckled slab is no more than 400 km.
International Nuclear Information System (INIS)
Mansur, Ralph S.; Barros, Ricardo C.
2011-01-01
We describe a method to determine the neutron scalar flux in a slab using monoenergetic diffusion model. To achieve this goal we used three ingredients in the computational code that we developed on the Scilab platform: a spectral nodal method that generates numerical solution for the one-speed slab-geometry fixed source diffusion problem with no spatial truncation errors; a spatial reconstruction scheme to yield detailed profile of the coarse-mesh solution; and an angular reconstruction scheme to yield approximately the neutron angular flux profile at a given location of the slab migrating in a given direction. Numerical results are given to illustrate the efficiency of the offered code. (author)
Soft projectile impacts analysis on thin reinforced concrete slabs: Tests, modelling and simulations
International Nuclear Information System (INIS)
Pontiroli, C.; Rouquand, A.; Daudeville, L.; Baroth, J.
2012-01-01
Numerical simulations of reinforced concrete structures subjected to high velocity impacts and explosions remain a difficult task today. For 10 years and more now, the CEA-Gramat has maintained a continuous research effort with the help of different French universities in order to overcome encountered difficulties in modelling the behaviour of concrete structures under severe loading. To get more data on aircraft impact problems and then validate numerical models, soft projectile impacts tests at small scale on thin reinforced concrete slabs has been carried out at CEA-Gramat. Numerical simulations of these tests have been carried out and compared with experimental results to validate our numerical approach. (authors)
Scaling up spike-and-slab models for unsupervised feature learning.
Goodfellow, Ian J; Courville, Aaron; Bengio, Yoshua
2013-08-01
We describe the use of two spike-and-slab models for modeling real-valued data, with an emphasis on their applications to object recognition. The first model, which we call spike-and-slab sparse coding (S3C), is a preexisting model for which we introduce a faster approximate inference algorithm. We introduce a deep variant of S3C, which we call the partially directed deep Boltzmann machine (PD-DBM) and extend our S3C inference algorithm for use on this model. We describe learning procedures for each. We demonstrate that our inference procedure for S3C enables scaling the model to unprecedented large problem sizes, and demonstrate that using S3C as a feature extractor results in very good object recognition performance, particularly when the number of labeled examples is low. We show that the PD-DBM generates better samples than its shallow counterpart, and that unlike DBMs or DBNs, the PD-DBM may be trained successfully without greedy layerwise training.
Volkán-Kacsó, S.
2017-06-01
The recent experimental, theoretical and computational advances in the field of F1-ATPase single-molecule microscopy are briefly surveyed. The role of theory is revealed in the statistical analysis, interpretation and prediction of single-molecule experimental trajectories, and in linking them with atomistic simulations. In particular, a theoretical model of elastically coupled molecular group transfer is reviewed and a detailed method for its application in stalling and controlled rotation experiments is provided. It is shown how the model can predict, using previous experiments, the rates of ligand binding/release processes (steps) and their exponential dependence on rotor angle in these experiments. The concept of Brønsted slopes is reviewed in the context of the single-molecule experiments, and the rate versus rotor angle relations are explained using the elastic model. These experimental data are treated in terms of the effect of thermodynamic driving forces on the rates assuming that the rotor shaft is elastically coupled to stator ring subunits in which the steps occur. In the application of the group transfer model on an extended angular range processes leading up to the transfer are discussed. Implications for large-scale atomistic simulation are suggested for the treatment of torque-generating steps.
The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.
Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan; Yi, Nengjun
2017-01-01
Large-scale "omics" data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, there are considerable challenges in analyzing high-dimensional molecular data, including the large number of potential molecular predictors, limited number of samples, and small effect of each predictor. We propose new Bayesian hierarchical generalized linear models, called spike-and-slab lasso GLMs, for prognostic prediction and detection of associated genes using large-scale molecular data. The proposed model employs a spike-and-slab mixture double-exponential prior for coefficients that can induce weak shrinkage on large coefficients, and strong shrinkage on irrelevant coefficients. We have developed a fast and stable algorithm to fit large-scale hierarchal GLMs by incorporating expectation-maximization (EM) steps into the fast cyclic coordinate descent algorithm. The proposed approach integrates nice features of two popular methods, i.e., penalized lasso and Bayesian spike-and-slab variable selection. The performance of the proposed method is assessed via extensive simulation studies. The results show that the proposed approach can provide not only more accurate estimates of the parameters, but also better prediction. We demonstrate the proposed procedure on two cancer data sets: a well-known breast cancer data set consisting of 295 tumors, and expression data of 4919 genes; and the ovarian cancer data set from TCGA with 362 tumors, and expression data of 5336 genes. Our analyses show that the proposed procedure can generate powerful models for predicting outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). Copyright © 2017 by the Genetics Society of America.
International Nuclear Information System (INIS)
Ferreira, C J Simao; Bijl, H; Bussel, G van; Kuik, G van
2007-01-01
The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: .comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-ε) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) .verifying the sensitivity of the model to its grid refinement (space and time), .evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simao Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement
The Raetrad model of radon generation and transport from soils into slab-on-grade houses
International Nuclear Information System (INIS)
Nielson, K.K.; Rogers, V.C.; Rogers, V.; Holt, R.B.
1994-01-01
Remediation planning and 222 Rn-related construction zoning require knowledge of how close and strong 226 Ra sources can be in different foundation soils under different groundwater conditions without excessively elevating indoor 222 Rn levels. A two-dimensional numerical-analytical model was developed to simulate (a) 222 Rn emanation, decay, and movement by diffusion and advection in soils around houses and in their understructures; and (b) 222 Rn accumulation in a single-zone house. The model represents foundation soils and a house in elliptical-cylindrical geometry. 222 Rn may diffuse through its floor slab or may enter via idealized cracks and openings. The model was validated with analytical calculations of two-dimensional air pressure fields and with one-dimensional calculations of 222 Rn generation with diffusion and diffusion combined with advection. Agreement generally was within 222 Rn measurements in two test-cell structures under passive and depressurized conditions averaged within 11% of measured values, well within measurement uncertainty. The corresponding average bias was only 3%. Larger variations were observed when applying the model to 50 houses. In this application, a negative bias of nearly 50% was observed due to data gaps and to poorly-characterized floor slabs and crack distributions. 41 refs., 11 fig., 3 tabs
Jadamec, M. A.; MacDougall, J.; Fischer, K. M.
2017-12-01
The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear
International Nuclear Information System (INIS)
Gonzalez, Alvaro; Munduate, Xabier
2007-01-01
An implementation of the Beddoes-Leishman dynamic stall model has been developed at CENER, for modelling the unsteady aerodynamics on oscillating blade sections. The parameters of the model were adjusted for the S809 aerofoil, using an optimization based on genetic algorithms, and taking into account the values found in the literature and the physics of the aerodynamic process. Once the parameters were fixed to a unique set, oscillating cases of the 2D S809 aerofoil were computed, and compared with experimental data. Thus, the accuracy of the model was evaluated. On the other hand, oscillating cases of different span stations of the NREL phase VI parked blade were computed and compared with experimental data, to analyze the three-dimensionality of the dynamic stall on the blade sections. For the unsteady computations on the blade, the model was fed with the steady data of the blade section, to directly consider the geometry influence. In general, the results of the computations for the 2D aerofoil and 3D blade sections were very encouraging
Stalled-Flow and Head-Loss Model for Diffuser Pumps
Meng, S. Y.
1984-01-01
Modeling procedure approximates inlet transition zone (blade leading edge to blade throat) of diffuser pump as two-dimensional cascade, properties of which are well known. Model applied to stators as well as rotors. Procedure much faster than previous methods.
The complex modelling of various effects of the sub-slab ventilation systems
International Nuclear Information System (INIS)
Svoboda, Z.
2004-01-01
Sub-slab ventilation systems and, in particular, sub-slab depressurization (SSD) systems are among the most efficient radon protective and remedial measures. Numerical modelling can serve as a very powerful tool in the design stage of such systems. The calculations include estimation of the pressure field in the ground under the house with an SSD system and estimation of the radon concentration field. The SSD system also affects the temperature and relative humidity distribution, and therefore those fields should be calculated as well. All the analyses can be carried out applying the simplification of a non-transient steady-state behavior. The numerical solution can be obtained by using the finite difference method or the finite element method. The results of numerical calculation comprise the air pressure field under the building with SSD system, radon concentration field, and temperature and relative humidity fields. The reliability of the numerical models has been verified on six houses with different SSD systems. The results obtained from one house are presented to demonstrate the complete process of verification. The remedial action consisted in the installation of an SSD system in combination with rebuilding of the floors. Soil air temperature, relative humidity, pressure difference and soil air radon concentration were measured continuously. All measurements were carried out for the two modes, i.e. with the SSD system operational or disabled. The first numerical analysis was the calculation of the three-dimensional air pressure field in the whole sub-slab space of the experimental house. The correlation between the calculated and observed values was very good (agreement better than 10%). The calculation of the two-dimensional steady-state temperature and relative humidity field also exhibited a good agreement with the observed values, with differences below 15%. The two-dimensional steady-state field of radon concentrations in the soil under the experimental
Energy Technology Data Exchange (ETDEWEB)
Kim, Man Young [School of Mechanical and Aerospace Systems Engineering, Research Center of Industrial Technology, Chonbuk National University, 664-14 Duckjin-Dong, Duckjin-Gu, Jeonju, Chonbuk 561-756 (Korea)
2007-09-15
A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace chamber and transient heat conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The steel slabs are moved on the next fixed beam by the walking beam after being heated up through the non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is introduced as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work show that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. (author)
Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models
DEFF Research Database (Denmark)
Castelein, D.; Ragni, D.; Tescione, G.
2015-01-01
An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord...
The importance of dynamic stall in aerodynamic modeling of the Darrieus rotor
Fraunie, P.; Beguier, C.; Paraschivoiu, I.
The CAARDEX program is defined for analyzing the behavior of Darrieus wind turbines in terms of the Reynolds number, the geometrical characteristics of the wind turbine and the spreading of the stream tubes traversing the rotor volume. It is demonstrated that the maximum power conversion efficiency of the Darrieus rotor is 0.4, with the energy capture being divided at a 4:1 ratio upstream to downstream rotor. The model shows that the velocity induced on the rotor is a function of the specific velocity and solidity, and that previous stream tube theories are valid only at low values of these parameters. CARDAAX treats the rotor disk in terms of horizontal slices of stream tubes modeled separately for the upstream and downstream segments. Account is taken of the velocity profile in the atmospheric boundary layer, which can vary significantly in the case of large wind turbines, i.e., several hundred feet high. When applied to predicting the performance of a 1 kW, 2.6 m diam prototype Darrieus wind turbine in a 10 mps flow, fair agreement is obtained for power capture/wind velocity and cyclic aerodynamic forces. Additional flow visualization data is provided to illustrate the production of turbulence in the form of vortices shed between the blades.
Konrath, Robert; Geisler, Reinhard; Otter, Dirk; Philipp, Florian; Ehlers, Hauke; Agocs, Janos; Quest, Jürgen
2015-01-01
Within the framework of the EU project ESWIRP the Particle Image Velocimetry (PIV) using high-speed camera and laser has been used to measure the turbulent flow in the wake of a stalled aircraft wing. The measurements took place on the Common Research Model (CRM) provided by NASA in the pressurized cryogenic European Transonic Wind tunnel (ETW). A specific cryo-PIV system has been used and adapted for using high-speed PIV components under the cryogenic conditions of the wind tunnel faci...
Gonzalez, C. M.; Gorczyk, W.; Connolly, J. A.; Gerya, T.; Hobbs, B. E.; Ord, A.
2013-12-01
Subduction zones offer one of the most geologically active and complex systems to investigate. They initiate a process in which crustal sediments are recycled, mantle heterogeneities arise, and mantle wedge refertilization occurs via slab derived volatiles and magma generation. Slab derived volatiles, consisting primarily of H2O - CO2 fluids, are especially critical in subduction evolution as they rheologically weaken the mantle wedge, decrease solidus temperatures, and rock-fluid interactions result in metasomatism. While the effects of H2O in these processes have been well studied in the past decades, CO2's role remains open for much scientific study. This is partly attributed to the sensitivity of decarbonation to the thermal gradient of the subduction zone, bulk compositions (sediments, basalts, peridotites) and redox state of the mantle. Here we show benchmarking results of a subduction scenario that implements carbonation-decarbonation reactions into a fully coupled petrological-thermomechanical numerical modeling code. We resolve stable mineralogy and extract rock properties via Perple_X at a resolution of 5°C and 25 MPa. The numerical technique employed is a characteristics-based marker-in-cell technique with conservative finite-differences that includes visco-elastic-plastic rheologies (I2ELVIS). The devolatilized fluids are tracked via markers that are either generated or consumed based on P-T conditions. The fluids are also allowed to freely advect within the velocity field. The hosts for CO2 in this system are computed via GLOSS average sediments (H2O: 7.29 wt% & CO2: 3.01 wt%), metabasalts ( H2O: 2.63 & CO2: 2.90 wt%), and ophicarbonates (H2O: 1.98 wt% & CO2: 5.00 wt%). Our results demonstrate the feasibility of applying this decarbonation-carbonation numerical method to a range of geodynamic scenarios that simulate the removal of CO2 from the subducting slab. Such applicable scenarios include sediment diapirism into the convecting wedge and better
Energy Technology Data Exchange (ETDEWEB)
Gharali, K.; Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering, Wind Energy Group
2010-07-01
Natural wind can sometimes have a strong wind shear that causes the Dynamic Stall (DS) phenomena which may result in dynamic loads and varying lift coefficients. The DS phenomena cannot be prevented in horizontal axis wind turbines (HAWTs). Therefore, it is necessary to study the unsteady aerodynamics in order to modify common wind turbine rotor designs. This paper reported on a study that investigated the dynamic flow fields around an oscillating 2D S809 airfoil, representing the aerodynamic characteristics of HAWT airfoils for dynamic stall conditions. A computational fluid dynamic (CFD) flow solver package with Fluent was used with different turbulence models, notably the Spalart-Allmaras and Detached Eddy Simulation (DES) methods. A sliding mesh is commonly used in numerical methods for simulating an oscillating foil, but sliding meshes suffer from mesh generation complexity and increased computational time. In this study, instead of a sinusoidally pitching airfoil, the direction of the far-field flow was changed according to a user-defined function in the software to simulate a proper angle of attack for the boundary conditions in each time step. This strategy helped to decrease processing time. The simulation results were in good agreement with experimental data and the Beddoes-Leishman model results. The DES method for unsteady 2D flow was not recommended. It was concluded that the Fluent package is time efficient, reliable and economic for the wind turbine industry. 17 refs., 3 figs.
About a global model of the equivalent slab thickness of the ionosphere
Maltseva, Olga; Mozhaeva, Natalya
2016-07-01
Use of a median of an equivalent slab thickness of the ionosphere τ(med) is the simplest case of assimilation of the total electron content TEC. To use τ(med) on a global scale it is necessary to have its model. Some variants are possible: (1) construction of superficial function of kriging type using values of τ(med) in several points, (2) the NGM model which can be constructed on the basis of two empirical Neustrelitz models for TEC and NmF2, (3) the IRI-Plas model. Construction of a model with use of τ(med) values is difficult because of the large variability of values (in particular, a strong pre-sunrise peak at some latitudes). Testing of models NGM and IRI-Plas shows that they not always provide satisfactory results in that or another region of globe. Besides, they are not pure empirical models. In the present work, an attempt is done to use two-parameter model on a basis of hyperbolic dependence of τ(med) from NmF2 (τ(hyp) =b0+b1/NmF2) and approximation of coefficient K(τ) = τ(med)/τ(IRI) in a latitudinal course. On an example of March 2015 when there was a great number of ionosonde data, coefficients b0 and b1 were modeled. Results are presented for two regions Lat1 and Lat2. Area Lat1 contains 13 stations, basically, on the American continent of northern and southern hemispheres. Area Lat2 contains 20 stations of the European, Siberian and Southeast regions. Certain advantage of use of coefficients K(τ) can be that in its numerator there is a magnitude of τ(IRI), having a global character, and a small variation of K(τ) in zones with close longitudes. Difference is a model construction at each hour. Degree of coincidence is better to illustrate on circular diagrams. Models were tested by elimination of one of stations and definition of deviations of calculated foF2 from experimental values. Authors thank Southern Federal University for support by grant #213.01-11/2014-22.
Directory of Open Access Journals (Sweden)
Ahmed Gouda
2015-10-01
Full Text Available A finite element model (FEM was constructed using specialized three-dimensional (3D software to investigate the punching shear behavior of interior slab-column connections subjected to a moment-to-shear ratio of 0.15 m. The FEM was then verified against the experimental results of full-scale interior slab-column connections reinforced with glass fiber reinforcement polymer (GFRP bars previously tested by the authors. The FEM results showed that the constructed model was able to predict the behavior of the slabs with reasonable accuracy. Afterward, the verified model was used to conduct a parametric study to investigate the effects of reinforcement ratio, perimeter-to-depth ratio, and column aspect ratio on the punching shear behavior of such connections. The test results showed that increasing the tested parameters enhanced the overall behavior of the connections in terms of decreasing deflections and reinforcement strain and increasing the ultimate capacity. In addition, the obtained punching shear stresses of the connections were compared to the predictions of the Canadian standard and the American guideline for FRP-reinforced concrete structures.
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)
1996-12-01
The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs
Load prediction of stall regulated wind turbines
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)
1996-12-01
Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs
Clark, Stuart R.
2010-05-01
In the Western Pacific, two competing kinematic reconstructions exist: one with wholly westward subduction of the Pacific plate at what is now the Tonga-Kermadec trench and one combining a degree of eastward subduction under what has been termed the New Caledonia trench. New seismological observations indicate that eastward subduction could explain the existence of a fast anomaly, the hyothesised South Loyalty Basin slab, below the 660km transition zone distinct from the fast anomaly aligned with the Tonga-Kermadec slab. A plate reconstruction dated from the suggested initiation of New Caledonia subduction in the Eocene has been developed. This reconstruction is then used to predict the thermal history of the region and together provide kinematic and thermal boundary conditions for a regional mantle convection model. The model-predicted location of the South Loyalty Basin slab's location will be presented along with the location's dependence on the mantle rheological parameters and the hotspot reference frame. The implications for the topography of the region will also be discussed.
Analytic models for beam propagation and far-field patterns in slab and bow-tie x-ray lasers
International Nuclear Information System (INIS)
Chandler, E.A.
1994-06-01
Simplified analytic models for beam propagation in slab and bow-tie x-ray lasers yield convenient expressions that provide both a framework for guidance in computer modeling and useful approximates for experimenters. In unrefracted bow-tie lasers, the laser shape in conjunction with the nearly-exponential weighting of rays according to their length produces a small effective aperture for the signal. We develop an analytic expression for the aperture and the properties of the far-field signal. Similarly, we develop the view that the far-field pattern of refractive slab lasers is the result of effective apertures that are created by the interplay of refraction and exponential amplification. We present expressions for the size of this aperture as a function of laser parameters as well as for the intensity and position of the far-field lineout. This analysis also yields conditions for the refraction limit in slab lasers and an estimate for the signal loss due to refraction
Stability of a two-volume MRxMHD model in slab geometry
Tuen, Li Huey
background and perturbed magnetic fields to existing cylindrical working. An expression is formulated for the stability eigenvalues by creating a model for the slab geometry system. The eigenvalues for system stability at a minimum energy state are found to depend upon the rationality of the magnetic field pitch at resonant surfaces. Various system parameter scans are conducted to determine their affect upon system stability and their implications. While tearing instabilities exist at low order rational resonances, investigating the instability of high-order rationals requires study of pressure-driven instabilities.
The dynamics of double slab subduction
Holt, A. F.; Royden, L. H.; Becker, T. W.
2017-04-01
We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.
Directory of Open Access Journals (Sweden)
Sri Widiyantoro
2011-10-01
Full Text Available Seismic tomography with a non-linear approach has been successfully applied to image the P-wave velocity structure beneath the Banda arc in detail. Nearly one million compressional phases including the surfacereflected depth phases pP and pwP from events within the Indonesian region have been used. The depth phases have been incorporated in order to improve the sampling of the uppermantle structure, particularly below the Banda Sea in the back-arc regions. For the model parameterization, we have combined a highresolution regional inversion with a low-resolution global inversion to allow detailed images of slab structures within the study region and to minimize the mapping of distant aspherical mantle structure into the volume under study. In this paper, we focus our discussion on the upper mantle and transition zone structure beneath the curved Banda arc. The tomographic images confirm previous observations of the twisting of the slab in the upper mantle, forming a spoon-shaped structure beneath the Banda arc. A slab lying flat on the 660 km discontinuity beneath the Banda Sea is also well imaged. Further interpretations of the resulting tomograms and seismicity data support the scenario of the Banda arc subduction rollback.
Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang
2018-04-01
The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning
Airfoil stall interpreted through linear stability analysis
Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis
2017-11-01
Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.
Directory of Open Access Journals (Sweden)
Bin Xu
2014-01-01
Full Text Available After the Wenchuan earthquake in 2008, the Zipingpu concrete faced rockfill dam (CFRD was found slabs dislocation between different stages slabs and the maximum value reached 17 cm. This is a new damage pattern and did not occur in previous seismic damage investigation. Slabs dislocation will affect the seepage control system of the CFRD gravely and even the safety of the dam. Therefore, investigations of the slabs dislocation’s mechanism and development might be meaningful to the engineering design of the CFRD. In this study, based on the previous studies by the authors, the slabs dislocation phenomenon of the Zipingpu CFRD was investigated. The procedure and constitutive model of materials used for finite element analysis are consistent. The water elevation, the angel, and the strength of the construction joints were among major variables of investigation. The results indicated that the finite element procedure based on a modified generalized plasticity model and a perfect elastoplastic interface model can be used to evaluate the dislocation damage of face slabs of concrete faced rockfill dam during earthquake. The effects of the water elevation, the angel, and the strength of the construction joints are issues of major design concern under seismic loading.
A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack
Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.
2013-01-01
This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.
Modeling of slab-on-grade heat transfer in EnergyPlus simulation program
Directory of Open Access Journals (Sweden)
Vanessa Aparecida Caieiro da Costa
Full Text Available Resumo O fluxo de calor entre o piso e o solo de uma edificação térrea é um dos aspectos mais influentes em seu desempenho térmico e energético. No entanto, há ainda um grande número de incertezas e poucos estudos nessa área. Neste trabalho comparam-se diferentes alternativas de modelagem nos programas EnergyPlus (8.5.0 e Slab (.75 dos parâmetros relacionados à transferência de calor entre o piso e o solo, e sua influência no desempenho térmico de uma edificação térrea naturalmente ventilada, localizada em São Carlos, Brasil. A comparação das alternativas de modelagem indicou grande variação nos resultados. Quando comparado ao Slab, o método KusudaAchenbach do objeto Ground Domain apresentou a maior variação, com diferença de 55,2 % no número de horas de desconforto. Observou-se que mesmo a forma de uso do Slab pode causar diferenças significativas nos resultados; por exemplo, a adoção ou não do procedimento de convergência. A condutividade térmica do solo foi um parâmetro de grande impacto, que implicou diferenças de até 57,5 % no desconforto. Tais resultados fornecem indicações da variabilidade e do impacto de uso das diferentes opções de modelagem desse fluxo de calor no EnergyPlus.
Using quasi-guided modes for modeling the transfer behavior of bent dielectric slab waveguides
Directory of Open Access Journals (Sweden)
M. Stallein
2010-09-01
Full Text Available The connection of two straight dielectric multimode slab waveguides by a circular bent waveguide is analyzed by means of quasi-guided modes. These modes correspond to the well known leaky modes, but own real eigenvalues, thus the mathematical description is simpler. Furthermore they are derived as approximate solutions of the exact theory. This work will first give a brief introduction to the basic theory, followed by a discussion of the properties of quasi-guided modes. After a validation by comparison with a numerical simulation using the Finite Integration Technique, results for the bending loss of multimode waveguides are presented.
Yang, Yong; Chai, Xueguang
2018-05-01
When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.
Mark, Chris; Chew, David; Gupta, Sanjeev
2017-11-01
Complete subduction of an oceanic plate results in slab-window opening. A key uncertainty in this process is whether the higher heat flux and asthenospheric upwelling conventionally associated with slab-window opening generate a detectable topographic signature in the overriding plate. We focus on the Baja California Peninsula, which incorporates the western margin of the Gulf of California rift. The topography and tectonics of the rift flank along the peninsula are strongly bimodal. North of the Puertecitos accommodation zone, the primary drainage divide attains a mean elevation of ca. 1600 m above sea level (asl), above an asthenospheric slab-window opened by Pacific-Farallon spreading ridge subduction along this section of the trench at ca. 17-15 Ma. To the south, mean topography decreases abruptly to ca. 800 m asl (excluding the structurally distinct Los Cabos block at the southern tip of the peninsula), above fragments of the oceanic Farallon slab which stalled following slab tear-off at ca. 15-14 Ma. Along the peninsula, a low-relief surface established atop Miocene subduction-related volcaniclastic units has been incised by a west-draining canyon network in response to uplift. These canyons exhibit cut-and-fill relationships with widespread post-subduction lavas. Here, we utilise LANDSAT and digital elevation model (DEM) data, integrated with previously published K-Ar and 40Ar/39Ar lava crystallisation ages, to constrain the onset of rift flank uplift to ca. 9-5 Ma later than slab-window formation in the north and ca. 11-10 Ma later in the south. These greatly exceed response time estimates of ca. 2 Ma or less for uplift triggered by slab-window opening. Instead, uplift timing of the high-elevation northern region is consistent with lower-lithospheric erosion driven by rift-related convective upwelling. To the south, stalled slab fragments likely inhibited convective return flow, preventing lithospheric erosion and limiting uplift to the isostatic response
Computational Modelling of Thermal Stability in a Reactive Slab with Reactant Consumption
Directory of Open Access Journals (Sweden)
O. D. Makinde
2012-01-01
Full Text Available This paper investigates both the transient and the steady state of a one-step nth-order oxidation exothermic reaction in a slab of combustible material with an insulated lower surface and an isothermal upper surface, taking into consideration reactant consumption. The nonlinear partial differential equation governing the transient reaction-diffusion problem is solved numerically using a semidiscretization finite difference technique. The steady-state problem is solved using a perturbation technique together with a special type of the Hermite-Padé approximants. Graphical results are presented and discussed quantitatively with respect to various embedded parameters controlling the systems. The crucial roles played by the boundary conditions in determining the thermal ignition criticality are demonstrated.
International Nuclear Information System (INIS)
Satapathy, A.K.; Singh, K.C.
1996-01-01
The process of re-establishment of wetting of hot surface is of practical importance in chemical, metallurgical and nuclear industries. Rewetting is considered in emergency core cooling in nuclear reactors in the event of postulated loss of coolant accident (LOCA). This paper deals with numerical solution of the two-dimensional quasi-static conduction controlled rewetting of an infinite parallel sided composite slab assuming perfect contact is maintained at the interface. On the wetted side upstream of the quench front, a constant heat transfer coefficient is assumed. The downstream of quench front and unwetted side of slab are supposed to be adiabatic. The solution gives the quench front temperature as a function of various model parameters such as Peclet number, wet side Blot number, dimensionless thickness of slab and cladding to fuel ratio of thermal conductivities. The results show that for large values of rewetting velocities, the dimensionless rewetting temperature is unaffected by fuel properties for all values of Blot numbers. (author). 7 refs., 2 tabs., 1 fig
Preface: Deep Slab and Mantle Dynamics
Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.
2010-11-01
We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.
Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors
1999-01-01
modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero
Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann
2009-09-01
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.
Tang, Zaixiang; Shen, Yueping; Li, Yan; Zhang, Xinyan; Wen, Jia; Qian, Chen'ao; Zhuang, Wenzhuo; Shi, Xinghua; Yi, Nengjun
2018-03-15
Large-scale molecular data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, standard approaches for omics data analysis ignore the group structure among genes encoded in functional relationships or pathway information. We propose new Bayesian hierarchical generalized linear models, called group spike-and-slab lasso GLMs, for predicting disease outcomes and detecting associated genes by incorporating large-scale molecular data and group structures. The proposed model employs a mixture double-exponential prior for coefficients that induces self-adaptive shrinkage amount on different coefficients. The group information is incorporated into the model by setting group-specific parameters. We have developed a fast and stable deterministic algorithm to fit the proposed hierarchal GLMs, which can perform variable selection within groups. We assess the performance of the proposed method on several simulated scenarios, by varying the overlap among groups, group size, number of non-null groups, and the correlation within group. Compared with existing methods, the proposed method provides not only more accurate estimates of the parameters but also better prediction. We further demonstrate the application of the proposed procedure on three cancer datasets by utilizing pathway structures of genes. Our results show that the proposed method generates powerful models for predicting disease outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). nyi@uab.edu. Supplementary data are available at Bioinformatics online.
Precautions against axial fan stall in reactor building to Tianwan NPP
International Nuclear Information System (INIS)
Liu Chunlong; Pei Junmin
2011-01-01
The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)
14 CFR 25.203 - Stall characteristics.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall characteristics. 25.203 Section 25.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.203 Stall characteristics. (a) It must...
Simulator Studies of the Deep Stall
White, Maurice D.; Cooper, George E.
1965-01-01
Simulator studies of the deep-stall problem encountered with modern airplanes are discussed. The results indicate that the basic deep-stall tendencies produced by aerodynamic characteristics are augmented by operational considerations. Because of control difficulties to be anticipated in the deep stall, it is desirable that adequate safeguards be provided against inadvertent penetrations.
Contribution to the study of slab thickness
International Nuclear Information System (INIS)
Moraitis, G.A.; Rorris, G.P.
1978-01-01
A method is proposed for calculating the time-independent values of the equivalent slab thickness of the ionosphere, defined as the ratio of the total electron content to the corresponding maximum electron density of the F region. Periodic variations of slab thickness are studied and are correlated to relative changes in exospheric temperature, deduced from the OGO-6 model
Directory of Open Access Journals (Sweden)
Qing-yuan Xu
Full Text Available A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1 In general, the acceleration of each component of the coupled system decreases with the increase of slab length under the perfectly smooth track condition; (2 Slab length has different influence laws on acceleration of each component of subway train-steel spring floating slab track-tunnel coupled system under random irregularity of track condition. The lower the dominant frequency distribution of vibration acceleration is, the higher influence slab length has; (3 With the increase of slab length, the force of rail, fastener and steel spring also decreases significantly, which helps to lengthen the service life of these components; (4 With the increase of slab length, the longitudinal bending moment of slab increases sharply at first, then it begins to drop slightly. When slab length exceeds the distance between two bogies of a vehicle, the longitudinal bending moment of slab changes little; (5 Slab length has significant influence on the dynamic force and displacement of the coupled system when train speed is higher.
Active Suppression of Rotating Stall Inception with Distributed Jet Actuation
Directory of Open Access Journals (Sweden)
Huu Duc Vo
2007-01-01
Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.
The onset of dynamic stall revisited
Energy Technology Data Exchange (ETDEWEB)
Mulleners, Karen; Raffel, Markus [German Aerospace Center (DLR), Goettingen (Germany)
2012-03-15
Dynamic stall on a helicopter rotor blade comprises a series of complex aerodynamic phenomena in response to the unsteady change of the blade's angle of attack. It is accompanied by a lift overshoot and delayed massive flow separation with respect to static stall. The classical hallmark of the dynamic stall phenomenon is the dynamic stall vortex. The flow over an oscillating OA209 airfoil under dynamic stall conditions was investigated by means of unsteady surface pressure measurements and time-resolved particle image velocimetry. The characteristic features of the unsteady flow field were identified and analysed utilising different coherent structure identification methods. An Eulerian and a Lagrangian procedure were adopted to locate the axes of vortices and the edges of Lagrangian coherent structures, respectively; a proper orthogonal decomposition of the velocity field revealed the energetically dominant coherent flow patterns and their temporal evolution. Based on the complementary information obtained by these methods the dynamics and interaction of vortical structures were analysed within a single dynamic stall life cycle leading to a classification of the unsteady flow development into five successive stages: the attached flow stage; the stall development stage; stall onset; the stalled stage; and flow reattachment. The onset of dynamic stall was specified here based on a characteristic mode of the proper orthogonal decomposition of the velocity field. Variations in the flow field topology that accompany the stall onset were verified by the Lagrangian coherent structure analysis. The instantaneous effective unsteadiness was defined as a single representative parameter to describe the influence of the motion parameters. Dynamic stall onset was found to be promoted by increasing unsteadiness. The mechanism that results in the detachment of the dynamic stall vortex from the airfoil was identified as vortex-induced separation caused by strong viscous
FBH1 Catalyzes Regression of Stalled Replication Forks
Directory of Open Access Journals (Sweden)
Kasper Fugger
2015-03-01
Full Text Available DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.
Topological Susceptibility from Slabs
Bietenholz, Wolfgang; Gerber, Urs
2015-01-01
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.
Topological susceptibility from slabs
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)
2015-12-14
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.
Soft projectile impacts on thin reinforced concrete slabs: tests, modelling and simulations
International Nuclear Information System (INIS)
Pontiroli, C.; Rouquand, A.
2011-01-01
Numerical simulations of reinforced concrete structures subjected to high velocity impacts and explosions remain a difficult task today. Since ten years and more now, the CEA-Gramat has maintained a continuous research effort with the help of different French universities in order to overcome encountered difficulties in modelling the behaviour of concrete structures under severe loading. These difficulties are related to numerical aspects (convergence difficulties of the non linear stress strain relation in 3D configuration, efficiency of the numerical procedure and robustness), but also due to the ability of the material model to simulate the accurately behaviour of a very complex and heterogeneous material like concrete. A new concrete model, named PRM model, has been developed at CEA-Gramat (Pontiroli, Rouquand and Mazars) to predict the concrete response under a large range of dynamic loadings. Works presented in this paper have been performed in the framework of the French VULCAIN PGCU 2007 research project (founded by the French National Research Agency). This project aims at defining a theoretical and probabilistic methodology in order to assess the structural safety of industrial structures that might be submitted to transient loadings such as blasts or impacts generated by various projectiles. A complementary objective is to improve diagnosis, prevention or protection actions. This scientific program gathers well-known and complementary scientific institutes, firms and universities in France. (authors)
Liu, Ke; Wang, Chang; Liu, Guo-liang; Ding, Ning; Sun, Qi-song; Tian, Zhi-hong
2017-04-01
To investigate the formation of one kind of typical inter-dendritic crack around triple point region in continuous casting(CC) slab during the operation of soft reduction, fully coupled 3D thermo-mechanical finite element models was developed, also plant trials were carried out in a domestic continuous casting machine. Three possible types of soft reduction amount distribution (SRAD) in the soft reduction region were analyzed. The relationship between the typical inter-dendritic cracks and soft reduction conditions is presented and demonstrated in production practice. Considering the critical strain of internal crack formation, a critical tolerance for the soft reduction amount distribution and related casing parameters have been proposed for better contribution of soft reduction to the internal quality of slabs. The typical inter-dendritic crack around the triple point region had been eliminated effectively through the application of proposed suggestions for continuous casting of X70 pipeline steel in industrial practice.
Hrubesova, E.; Lahuta, H.; Mohyla, M.; Quang, T. B.; Phi, N. D.
2018-04-01
The paper is focused on the sensitivity analysis of behaviour of the subsoil – foundation system as regards the variant properties of fibre-concrete slab resulting into different relative stiffness of the whole cooperating system. The character of slab and its properties are very important for the character of external load transfer, but the character of subsoil cannot be neglected either because it determines the stress-strain behaviour of the all system and consequently the bearing capacity of structure. The sensitivity analysis was carried out based on experimental results, which include both the stress values in soil below the foundation structure and settlements of structure, characterized by different quantity of fibres in it. Flat dynamometers GEOKON were used for the stress measurements below the observed slab, the strains inside slab were registered by tensometers, the settlements were monitored geodetically. The paper is focused on the comparison of soil stresses below the slab for different quantity of fibres in structure. The results obtained from the experimental stand can contribute to more objective knowledge of soil – slab interaction, to the evaluation of real carrying capacity of the slab, to the calibration of corresponding numerical models, to the optimization of quantity of fibres in the slab, and finally, to higher safety and more economical design of slab.
International Nuclear Information System (INIS)
Bakos, G.C.
2001-01-01
This paper deals with the application of Monte Carlo method for the calculation of dose build up factor of, mixed 1.37 and 2.75 MeV, a-rays penetration through stratified shielding slabs. Six double layer shielding slabs namely, 12 A l+Fe, 12 A l+Pb, 6 F e+Al, 6 F e+Pb, 4 P b+Al, 4 P b+Fe were examined. Furthermore, experimental and theoretical results are also presented. The experimental results were taken from the experimental facility installed at the Universities Research reactor Center (Risley, UK). Activated Na2SO3 solution provided a uniform Na-24 disc source of a-rays at both energies (1.37 and 2.75 MeV) with equal intensity. The theoretical results were calculated using the Bowman and Trubey formula. This formula takes into account an exponentially decaying function of the shield thickness (in mfp) to the end point of the multi-layer slab. The experimental and theoretical results were used to evaluate the simulation results produced from a Monte Carlo program (DUTMONCA code) which was developed in Democritus University of Thrace (Xanthi, Greece). The DUTMONCA code was written in Pascal language and run on an Intel PIII-800 microprocessor. The developed code (which is an improved version of an existing Monte Carlo program) has the ability to produce good results for thick shielding slabs overcoming the problems encountered in older version program. The simulation results are compared with experimental and theoretical results. Good agreement can be observed, even for thick layer shielding slabs, although there are some wayward experimental values which are due to sources of error associated with the experimental procedure
Prediction of active control of subsonic centrifugal compressor rotating stall
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.
Estimation of the Reliability of Plastic Slabs
DEFF Research Database (Denmark)
Pirzada, G. B. : Ph.D.
In this thesis, work related to fundamental conditions has been extended to non-fundamental or the general case of probabilistic analysis. Finally, using the ss-unzipping technique a door has been opened to system reliability analysis of plastic slabs. An attempt has been made in this thesis...... to give a probabilistic treatment of plastic slabs which is parallel to the deterministic and systematic treatment of plastic slabs by Nielsen (3). The fundamental reason is that in Nielsen (3) the treatment is based on a deterministic modelling of the basic material properties for the reinforced...
Directory of Open Access Journals (Sweden)
Nobumichi Fujisawa
2017-01-01
Full Text Available The transition process from a diffuser rotating stall to a stage stall in a centrifugal compressor with a vaned diffuser was investigated by experimental and numerical analyses. From the velocity measurements, it was found that the rotating stall existed on the shroud side of the diffuser passage in the off-design flow condition. The numerical results revealed the typical vortical structure of the diffuser stall. The diffuser stall cell was caused by the systematic vortical structure which consisted of the tornado-type vortex, the longitudinal vortex at the shroud/suction surface corner (i.e., leading edge vortex (LEV, and the vortex in the throat area of the diffuser passages. Furthermore, the stage stall, which rotated within both the impeller and diffuser passages, occurred instead of the diffuser stall as the mass flow rate was decreased. According to the velocity measurements at the diffuser inlet, the diffuser stall which rotated on the shroud side was shifted to the hub side. Then, the diffuser stall moved into the impeller passages and formed the stage stall. Therefore, the stage stall was caused by the development of the diffuser stall, which transferred from the shroud side to the hub side in the vaneless space and expanded to the impeller passages.
Simulation of Broadband Noise Sources of an Axial Fan under Rotating Stall Conditions
Directory of Open Access Journals (Sweden)
Lei Zhang
2014-11-01
Full Text Available Study on the influence of rotating stall on the aerodynamic noise of axial fan has important value to warn of the occurrence of stall through monitoring the noise variations. The present work is to analyze the aerodynamic noise before and after the phenomenon of rotating stall by solving Navier-Stokes equations, coupled with the throttle condition and the broadband noise sources model. The impeller exit rotational Mach number and rotational Reynolds number are separately 0.407 and 8.332 × 106. The results show that the aerodynamic noise source of the fan is mainly the rotation noise under the design condition. The vortex noise accounts for the major part of fan noise after the occurrence of stall, and the maximum acoustic power level of the fan appears in the rotor domains. In the evolution process from the stall inception to the stall cell, the high noise regions of the rotor develop along the radial, circumferential, and axial directions, and the area occupied by high noise regions increases from 33% to 46% impeller channels area. On rotating stall condition, the high noise regions occupying about 46% impeller channels area propagate with the stall cell along the circumferential direction at a half of rotor speed.
Associations between cow hygiene, hock injuries, and free stall usage on US dairy farms.
Lombard, J E; Tucker, C B; von Keyserlingk, M A G; Kopral, C A; Weary, D M
2010-10-01
This cross-sectional study evaluated cow comfort measures in free stall dairies across the United States as part of the National Animal Health Monitoring System's Dairy 2007 study. The study was conducted in 17 states and evaluations were completed between March 5 and September 5, 2007. Assessors recorded hygiene and hock scores, number of cows housed in the pen, the number of cows standing with only the front feet in a stall, standing fully in a stall, and lying in a stall. Facility design measures included bedding type, bedding quantity, stall length and width, presence of a neck rail or brisket locator, and relevant distances from the rear and bed of the stall. Of the 491 operations that completed the cow comfort assessment, 297 had Holstein cows housed in free stalls and were included in this analysis. Negative binomial models were constructed to evaluate the following outcomes: the number of cows that were very dirty, had severe hock injuries, stood with front feet in the stall, stood with all feet in the stall, and were lying in the stall. Hygiene was better on farms that did not tail dock cows compared with those that did (5.7 vs. 8.8% were dirty) and on farms located in the study's west region compared with those located in the east region (5.2 vs. 9.7% were dirty). Severe hock injuries were less common on farms in the west than those in the east (0.5 vs. 4.1%). In addition, severe hock injuries were less common on farms that used dirt as a stall base or sand as bedding compared with farms that did not. A higher percentage of cows was standing with front feet in the stall at higher ambient temperatures (incidence rate ratio=1.016) and as time since feeding increased (incidence rate ratio=1.030). A lower percentage of cows were standing with front feet in the stall when the stalls were shorter and when there were fewer cows per stall. Standing fully in a stall was performed by a higher percentage of cows during the summer than during the spring (13.6 vs. 8
Slab replacement maturity guidelines.
2014-04-01
This study investigated the use of maturity method to determine early age strength of concrete in slab : replacement application. Specific objectives were (1) to evaluate effects of various factors on the compressive : maturity-strength relationship ...
Analysis of Double Skin Composite Slabs
Directory of Open Access Journals (Sweden)
Husain M. Husain
2018-03-01
Full Text Available This paper deals with finite element modeling of the ultimate load behavior of double skin composite (DSC slabs. In a DSC slab, shear connectors in the form of nut bolt technique studs are used to transfer shear between the outer skin made of steel plates and the concrete core. The current study is based on finite element analysis using ANSYS Version 11 APDL release computer program. Experimental programmes were carried out by the others, two simply supported DSC beams were tested until failure under a concentrated load applied at the center. These test specimens were analyzed by the finite element method and the analyses have shown that these slabs displayed a high degree of flexural characteristics, ultimate strength, and ductility. The close agreement has been observed between the finite element and experimental results for ultimate loads and load–deflection responses. The finite element model was thus found to be capable of predicting the behavior of DSC slabs accurately.
The analysis on centrifugal compressor rotating stall
International Nuclear Information System (INIS)
Kim, Ji Hwan; Kim, Kwang Ho; Shin, You Hwan
2003-01-01
In the present study, the performance characteristics and the number of stall cell during rotating stall of a centrifugal air compressor were experimentally investigated. Rotating stall in the vaneless diffuser were investigated by measuring unsteady pressure fluctuations at several different diffuser radius using a high frequency pressure transducer. The number of stall cell and their rotational speeds are distinctive features of the rotating stall phenomenon. The present study is mainly forced on the analysis for the stall cell number and its propagation speed unstable operating region of the compressor. The interpretation method of visualization is based on the pressure distribution in the circumference pressure fields while plotting the pressure and its harmonics variations in time in polar coordinates. To obtain the visualize the existence rotating stall, auto-correlation function and the frequency spectra of the pressure fluctuations were measured at r/r2=1.52. When the flow coefficient is lower than 0.150, the static pressure at impeller inlet is higher than that at inlet duct of the compressor. And the flow coefficient is lower than 0.086, several stall cell groups of discrete frequencies are observed
Effects of laminar separation bubbles and turbulent separation on airfoil stall
Energy Technology Data Exchange (ETDEWEB)
Dini, P. [Carleton College, Northfield, MN (United States); Coiro, D.P. [Universita di Napoli (Italy)
1997-12-31
An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.
Stein, H. J.; Hannah, J. L.
2017-12-01
The application of Re-Os isotope geochemistry to dating single oils is a nascent field [1,2]. Challenges include dissection of oils into asphaltene-maltene (ASPH-MALT) components in a way that preserves meaningful chronologic and source information. Significantly, oil-water mixing rapidly transfers Os to the oil, while Re exchange is sluggish [3]. The Os initial ratio of the oil is shifted in the direction of Os carried in the aqueous fluid, whereas the Re-Os isotopic age is preserved. We show that this phenomenon is operative in natural systems. Further, we show that deserpentinization of old oceanic slabs [4], may be linked to expulsion of Os-enriched waters into overlying sedimentary sections - a process that may be of fundamental importance for oil generation. This conclusion does not diminish the role of traditional organic-rich shales as source rocks for the hydrocarbon, but shows that external fluids are essential to petroleum generation. Moreover, the external fluids may be an important driver for expulsion and migration of oils. We have taken apart several petroleum systems from source rock, to residual oil, to tar mat development, to in situ live oil, through to produced oil. In many cases, a fluid with low 187Os/188Os - unlike that of normal basinal brines - provides a critical component to the oil-water mixture. Funding - CHRONOS project supported by Norwegian petroleum industry (Eni-Norge, Lundin, Aker BP) Acknowledgement - Christine Fichler [4], who first queried us on old slabs and oil, and stimulated ideas. [1] Georgiev, S.V., Stein, H.J., Hannah, J.L., Galimberti, R., Nali, M., Yang, G., and Zimmerman, A. (2016) Re-Os dating of maltenes and asphaltenes within single samples of crude oil: Geochim. Cosmochim. Acta 179: 53-75. [doi.org/10.1016/j.gca.2016.01.016] [2] DiMarzio, J., Georgiev, S.V., Stein, H.J., and Hannah, J.L. (in press) Residency of rhenium and osmium in a heavy crude oil: Geochim. Cosmochim. Acta. [3] Hurtig, N.C., Georgiev, S
Ammirati, J. B.; Alvarado, P. M.; Beck, S. L.
2014-12-01
Receiver Function (RF) analyses using teleseismic P waveforms is a technique to isolate P to S conversions from seismic discontinuities in the lithosphere. Using earthquakes with a good azimuthal distribution, RFs recorded at a three-component seismic station can be inverted to obtain detailed lithospheric velocity structures. The technique, however presents a velocity-depth trade-off, which results in a non-unique model because RFs do not depend on the absolute seismic velocities but rather on relative velocity contrasts. Unlike RF, surface wave dispersion is sensitive to the average shear-wave velocity which makes it well suited for studying long period variations of the lithospheric seismic velocities. We performed a joint inversion of RF and Rayleigh-wave phase velocity dispersion to investigate the structure beneath the SIEMBRA network, a 43-broadband-seismic-station array deployed in the Pampean flat slab region of Argentina. Our results indicate: 1) The presence of several mid-crustal discontinuities probably related with terrane accretion; 2) A high seismic velocity in the lower crust suggesting partial eclogitization; 3) A thicker crust (> 50 km) beneath the western Sierras Pampeanas with an abrupt change in the relative timing of the Moho signal indicating a thinner crust to the east; 4) The presence of the subducting oceanic crust lying at ~100 km depth. We then built a 1D regional velocity model for the flat slab region of Argentina and used it for regional moment tensor inversions for local earthquakes. This technique is notably dependent on small-scale variations of Earth structure when modeling higher frequency seismic waveforms. Eighteen regional focal mechanisms have been determined. Our solutions are in good agreement with GCMT source estimations although our solutions for deep earthquakes systematically resulted in shallower focal depths suggesting that the slab seismicity could be concentrated at the top of the subducting Nazca plate. Solutions
International Nuclear Information System (INIS)
Yanagisawa, Hiroshi
1995-05-01
For the purpose of the nuclear material accountancy and control for NUCEF: the Nuclear Fuel Cycle Safety Engineering Research Facility, the vessel calibration data analysis program: VESCAL is revised, and a new model for non-linear parts of annular and slab tanks is added to the program. The new model has three unknown parameters, and liquid level is expressed as a square root function with respect to liquid volume. Using the new model, an accurate calibration function on the level and volume data for non-linear parts of annular and slab tanks can be obtained with the smaller number of unknown parameters, compared with a polynomial function model. As a result of benchmark tests for this revision, it was proved that numerical results computed with VESCAL well agreed with those by a statistical analysis program package which is widely used. In addition, the new model would be useful for carrying out data analyses on the vessel calibration at the other bulk handling facilities as well as at NUCEF. This paper describes summary of the program, computational methods and results of benchmark tests concerning this revision. (author)
Mantle wedge serpentinization effects on slab dips
Directory of Open Access Journals (Sweden)
Eh Tan
2017-01-01
Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.
Why do Cross-Flow Turbines Stall?
Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian
2015-11-01
Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.
Comfort zone-design free stalls: do they influence the stall use behavior of lame cows?
Cook, N B; Marin, M J; Mentink, R L; Bennett, T B; Schaefer, M J
2008-12-01
The behavior of 59 cows in 4 herds, each with Comfort Zone-design free stalls with dimensions suitable for 700-kg, mature Holstein dairy cows, was filmed for a 48-h period. Comparison was made between nonlame, slightly lame, and moderately lame cows on either rubber-crumb-filled mattress stall surfaces bedded with a small amount of sawdust (2 herds) or a Pack Mat design, which consisted of a rubber-crumb-filled mattress pad installed 5 cm below a raised rear curb, bedded with 5 to 8 cm of sand bedding (2 herds). All other stall design components were similar. Despite adequate resting space and freedom to perform normal rising and lying movements, lame cows on mattresses stood in the stall for >2 h longer than nonlame cows. Although a significant increase in stall standing behavior was observed in lame cows on Pack Mat stalls, the mean (95% confidence interval) standing time in the stall was only 0.7 (0 to 3.0) h/d for nonlame cows and 1.6 (0 to 4.2) h/d for moderately lame cows, which was less than the 2.1 (0 to 4.4), 4.3 (1.6 to 6.9), and 4.9 (2.5 to 7.3) h/d spent standing in the stall for nonlame, slightly lame, and moderately lame cows on mattresses, respectively. This observation supports the hypothesis that it is the nature of the stall surface that dictates changes in stall standing behavior observed in lame cows, rather than other components of stall design. The finding that only 5 to 8 cm of sand over a mattress pad provides most of the benefits of deep sand-bedded stalls, along with other advantages related to stall maintenance and manure handling, gives farmers another useful housing alternative with which to improve cow comfort and well-being.
Directory of Open Access Journals (Sweden)
Conrad Markus
2015-01-01
Full Text Available Numerical simulations have been performed with a commercial distributed explicit FE-solver and the results have been compared with experiments. High explosive was placed in front of different concrete slabs with the dimension 100 × 100 × 16 cm. Some of the results of the simulations, in particular the profile of the craters, are not in agreement with the test results. Therefore the key characteristics of the constitutive equation based on Mohr-Coulomb yield surfaces and a damage evolution linked to the plastic strain has been reviewed.
Energy Technology Data Exchange (ETDEWEB)
Brymora, Katarzyna; Calvayrac, Florent, E-mail: Florent.Calvayrac@univ-lemans.fr
2017-07-15
Highlights: • A new method is given to extract surface anisotropies from ab initio calculations. • Heisenberg model for magnetic clusters and surfaces is validated in simple cases. • Ligands, metallic clusters, or coatings degrade the validity of the Heisenberg model. • Values for surface anisotropies, volume anisotropies, exchange constants are computed. • Results are in agreement with experimental data, previous theoretical findings. - Abstract: We performed ab initio computations of the magnetic properties of simple iron oxide clusters and slabs. We considered an iron oxide cluster functionalized by a molecule or glued to a gold cluster of the same size. We also considered a magnetite slab coated by cobalt oxide or a mixture of iron oxide and cobalt oxide. The changes in magnetic behavior were explored using constrained magnetic calculations. A possible value for the surface anisotropy was estimated from the fit of a classical Heisenberg model on ab initio results. The value was found to be compatible with estimations obtained by other means, or inferred from experimental results. The addition of a ligand, coating, or of a metallic nanoparticle to the systems degraded the quality of the description by the Heisenberg Hamiltonian. Proposing a change in the anisotropies allowing for the proportion of each transition atom we could get a much better description of the magnetism of series of hybrid cobalt and iron oxide systems.
Slabs and plumes crossing a broad density/viscosity discontinuity in the mid lower mantle (Invited)
Morra, G.; Yuen, D. A.; Cammarano, F.
2010-12-01
The depth-dependence of the viscosity is not well constrained by observations alone. Non-monotonic viscosity profiles have been often proposed in the past and are in the range of possible solutions. Such viscosity structures find new vigor on the light of recent discoveries of iron-spin transition in mantle minerals and their consequences on seismic interpretation [1] and dynamical evolution of the mantle. Using the recently introduced Multipole-Accelerated Boundary Element Method, we study the entire space of possible models of plumes and slabs crossing a broad region where mantle viscosity and/or density are non-monotonic [2]. The viscosity peak considered are 1, to 100 times then the rest of the mantle, while the density step considered is 0 to 2% different from the adiabatic profile. We identify the critical viscosity and density profiles that produce stalling or penetration of slabs and the continuous or intermittent penetration of plumes through the mid lower mantle. Based on our results, we envisage possible dynamic scenarios that would separate the mantle in two regions,suggesting a long term bifurcation originating, probably, from the spin transition itself. References: [1] Cammarano, F.; Marquardt, H.; Speziale, S.; Tackley, P. J., 2010, Role of iron-spin transition in ferropericlase on seismic interpretation: A broad thermochemical transition in the mid mantle? Geophysical Research Letters, Volume 37, Issue 3, CiteID L03308 [2] G. Morra, D. A. Yuen, L. Boschi, P. Chatelain, P. Koumoutzakos and P. Tackley, 2010, The fate of the slabs interacting with a smooth viscosity discontinuity in the mid lower mantle, Physics of the Earth and Planetary Interiors, Volume 180, Issues 3-4, 271-282, doi:10.1016/j.pepi.2010.04.001
International Nuclear Information System (INIS)
Siddiqui, A.R.; Khan, M.M.A.; Ismail, B.M.
1999-01-01
Oxygen is blown in Converter process to oxidize hot metal. This introduces dissolved oxygen in the metal, which may cause embrittlement, voids, inclusion and other undesirable properties in steel. The steel bath at the time of tapping contains 400 to 800 ppm oxygen. Deoxidation is carried out during tapping by adding into the tap ladle appropriate amounts of ferromanganese, ferrosilicon and/or aluminum or other special deoxidizers. In the research aluminum killed grade steel which are casted at the slab caster of Pakistan Steel were investigated. Amount of aluminum added is very critical because if we add lesser amount of aluminum then the required quantity then there will be an incomplete killing of oxygen which results uncleanness in steel. Addition of larger amount of aluminum not only increases the cost of the production but also results as higher amount of alumina, which results in nozzle clogging and increase, loses. The purpose of the research is to develop a statistical model which would predict correct amount of aluminum addition for complete deoxidation of aluminum killed grade casted at slab continuous caster of Pakistan Steel. In the model aluminum added is taken as dependent variable while tapping temperature, turn down carbon composition, turndown manganese composition and oxygen content in steel would be the independent variable. This work is based on operational practice on 130 tons Basic Oxygen furnace. (author)
Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall
Stamhuis, Eize Jan
2017-01-01
A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
1989-01-01
In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....
Prediction of induced vibrations in stall
Energy Technology Data Exchange (ETDEWEB)
Thirstrup Petersen, J; Thomsen, K; Aagaard Madsen, H [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1999-03-01
The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)
Stalling Tropical Cyclones over the Atlantic Basin
Nielsen-Gammon, J. W.; Emanuel, K.
2017-12-01
Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.
Selb, Juliette; Ogden, Tyler M; Dubb, Jay; Fang, Qianqian; Boas, David A
2014-01-01
Near-infrared spectroscopy (NIRS) estimations of the adult brain baseline optical properties based on a homogeneous model of the head are known to introduce significant contamination from extracerebral layers. More complex models have been proposed and occasionally applied to in vivo data, but their performances have never been characterized on realistic head structures. Here we implement a flexible fitting routine of time-domain NIRS data using graphics processing unit based Monte Carlo simulations. We compare the results for two different geometries: a two-layer slab with variable thickness of the first layer and a template atlas head registered to the subject's head surface. We characterize the performance of the Monte Carlo approaches for fitting the optical properties from simulated time-resolved data of the adult head. We show that both geometries provide better results than the commonly used homogeneous model, and we quantify the improvement in terms of accuracy, linearity, and cross-talk from extracerebral layers.
Observations of the Growth and Decay of Stall Cells during Stall and Surge in an Axial Compressor
Directory of Open Access Journals (Sweden)
Adam R. Hickman
2017-01-01
Full Text Available This research investigated unsteady events such as stall inception, stall-cell development, and surge. Stall is characterized by a decrease in overall pressure rise and nonaxisymmetric throughflow. Compressor stall can lead to surge which is characterized by quasi-axisymmetric fluctuations in mass flow and pressure. Unsteady measurements of the flow field around the compressor rotor are examined. During the stall inception process, initial disturbances were found within the rotor passage near the tip region. As the stall cell develops, blade lift and pressure ratio decrease within the stall cell and increase ahead of the stall cell. The stall inception event, stall-cell development, and stall recovery event were found to be nearly identical for stable rotating stall and surge cases. As the stall cell grows, the leading edge of the cell will rotate at a higher rate than the trailing edge in the rotor frame. The opposite occurs during stall recovery. The trailing edge of the stall cell will rotate at the approximate speed as the fully developed stall cell, while the leading edge decreases in rotational speed in the rotor frame.
Simulasi Numerik Dynamic Stall Pada Airfoil Yang Berosilasi
Directory of Open Access Journals (Sweden)
Galih S.T.A. Bangga
2012-09-01
Full Text Available Kebutuhan analisa pada sudu helikopter, kompresor, kincir angin dan struktur streamline lainya yang beroperasi pada angle of attack yang tinggi dan melibatkan instationary effects yang disebut dynamic stall menjadi semakin penting. Fenomena ini ditandai dengan naiknya dynamic lift melewati static lift maksimum pada critical static stall angle, vortex yang terbentuk pada leading edge mengakibatkan naiknya suction contribution yang kemudian terkonveksi sepanjang permukaan hingga mencapai trailling edge diikuti terbentuknya trailling edge vortex yang menunjukkan terjadinya lift stall. Fenomena ini sangat berbahaya terhadap struktur airfoil itu sendiri. Secara umum, beban fatique yang ditimbulkan oleh adanya efek histerisis karena fluktuasi gaya lift akibat induksi vibrasi lebih besar dibandingkan kondisi statis. Simulasi numerik dilakukan secara 2D dengan menggunakan profil Boeing-Vertol V23010-1.58 pada α0 = 14.92°. Standard-kω dan SST-kω digunakan sebagai URANS turbulence modelling. Model osilasi dari airfoil disusun dalam suatu user defined function (UDF. Gerakan meshing beserta airfoil diakomodasi dengan menggunakan dynamic mesh approach. Simulasi numerik menunjukkan bahwa, model SST-kω menunjukkan performa yang lebih baik dibandingkan dengan Standard-kω. Fenomena travelling vortex yang terjadi mampu ditangkap dengan baik, meski pada angle of attack yang tinggi URANS turbulence model gagal memprediksikan fenomena yang terjadi karena dominasi efek 3D.
DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang
2018-01-01
One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud
Directory of Open Access Journals (Sweden)
S. DeSouza-Machado
2018-01-01
Full Text Available One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR satellite sounders use cloud-cleared radiances (CCRs as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA. The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds. From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS and NWP
On Early Age Crack Formation in FRC Slabs
DEFF Research Database (Denmark)
Olesen, John Forbes; Stang, Henrik
1997-01-01
The problem of early age crack formation in FRC slabs due to restrained temperature and shrinkage deformations, is given an analytical treatment. A model taking into account the ageing properties of the tensile softening curve and the continued development in the temperature and shrinkage...... deformations after crack initiation, is presented. Based on this model a design strategy for FRC slabs is outlined....
International Nuclear Information System (INIS)
Xuan Dung Vu
2013-01-01
Concrete is a material whose behavior is complex, especially in cases of extreme loads. The objective of this thesis is to carry out an experimental characterization of the behavior of concrete under impact-generated stresses (confined compression and dynamic traction) and to develop a robust numerical tool to reliably model this behavior. In the experimental part, we have studied concrete samples from the VTT center (Technical Research Center of Finland). At first, quasi-static triaxial compressions with the confinement varies from 0 MPa (unconfined compression test) to 600 MPa were realized. The stiffness of the concrete increases with confinement pressure because of the reduction of porosity. Therefore, the maximum shear strength of the concrete is increased. The presence of water plays an important role when the degree of saturation is high and the concrete is subjected to high confinement pressure. Beyond a certain level of confinement pressure, the maximum shear strength of concrete decreases with increasing water content. The effect of water also influences the volumetric behavior of concrete. When all free pores are closed as a result of compaction, the low compressibility of the water prevents the deformation of the concrete, whereby the wet concrete is less deformed than the dry concrete for the same mean stress. The second part of the experimental program concerns dynamic tensile tests at different loading velocities, and different moisture conditions of concrete. The results show that the tensile strength of concrete C50 may increase up to 5 times compared to its static strength for a strain rate of about 100 s -1 . In the numerical part, we are interested in improving an existing constitutive coupled model of concrete behavior called PRM (Pontiroli-Rouquand-Mazars) to predict the concrete behavior under impact. This model is based on a coupling between a damage model which is able to describe the degradation mechanisms and cracking of the concrete at
Behaviour of a stiffened circular slab
International Nuclear Information System (INIS)
Kulkarni, M.G.; Subramanian, K.V.
1975-01-01
Configuration of intake structure for cooling water system for Madras Atomic Power Project was studied on a hydraulic model and it was recommended to provide a circular slab in the structure to give directional property to the inflow and reduce air entrainment. This slab, as indicated by hydraulic model tests was required to withstand hydrodynamic pressures of the order of 10T/m 2 due to breaking waves of about 6 m height. Analysis of this circular cover slab, Stiffened by radial and circumferential beams, carried with the help of an analysis based on grid idealisation is presented. Results of approximate design analysis to assess behaviour of radial stiffener have been compared. Actual design is based on judgement of actual degree of fixity possessed by the supports or restraints. (author)
Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.
2018-04-01
The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.
International Nuclear Information System (INIS)
Kokhanovsky, A.A.
2002-01-01
This paper is devoted to an alternative derivation of the asymptotic equations for the reflection and transmission functions of turbid slabs. The derivation is based on the reciprocity principle and the law of conservation of energy. Thus it is very general. This allows us to apply the obtained equations even in cases where the foundations of the radiative transfer theory are in question (e.g. for highly concentrated suspensions and pastes). (author)
Structural Test and Analysis of RC Slab After Fire Loading
International Nuclear Information System (INIS)
Chung, Chulhun; Im, Cho Rong; Park, Jaegyun
2013-01-01
In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber
Structural Test and Analysis of RC Slab After Fire Loading
Energy Technology Data Exchange (ETDEWEB)
Chung, Chulhun; Im, Cho Rong; Park, Jaegyun [Dankook Univ., Yongin (Korea, Republic of)
2013-04-15
In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.
International Nuclear Information System (INIS)
Persliden, J.; Carlsson, G.A.
1984-01-01
In diagnostic examinations of the trunk and head, the energy imparted to the patient is related to the radiation risk. In this work, the energy imparted to laterally infinite, 10-300 mm thick water slabs by 5-300 keV photons is calculated using a Monte Carlo photon transport model. The energy imparted is also derived for energy spectra of primary photons relevant to diagnostic radiology. In addition to values of energy imparted, values of backscattered and transmitted energies, quantities primarily obtained in the transport calculations, are reported. Assumptions about coherent scattering are shown to be important for values of backscattered and transmitted energies but unimportant with respect to values of energy imparted. Comparisons are made with other Monte Carlo results from the literature. Discrepancies of 10-20% in some calculated quantities can be traced back to the use of different tabulations of interaction cross-sections by various authors. (author)
International Nuclear Information System (INIS)
McCoy, D.R.
1981-01-01
S/sub N/ computational benchmark solutions are generated for a onegroup and multigroup fuel-void slab lattice cell which is a rough model of a gas-cooled fast reactor (GCFR) lattice cell. The reactivity induced by the extrusion of the fuel material into the voided region is determined for a series of partially extruded lattice cell configurations. A special modified Gauss S/sub N/ ordinate array design is developed in order to obtain eigenvalues with errors less than 0.03% in all of the configurations that are considered. The modified Gauss S/sub N/ ordinate array design has a substantially improved eigenvalue angular convergence behavior when compared to existing S/sub N/ ordinate array designs used in neutron streaming applications. The angular refinement computations are performed in some cases by using a perturbation theory method which enables one to obtain high order S/sub N/ eigenvalue estimates for greatly reduced computational costs
Dynamic Stall Control Using Plasma Actuators
Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo
2017-11-01
Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste <0.5) results in oscillatory aerodynamic loads in the stalled stage of dynamic stall; (b) All excitation resulted in earlier flow reattachment; and (c) Excitation at progressively higher Ste weakened and eventually eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.
Study and Control of a Radial Vaned Diffuser Stall
Directory of Open Access Journals (Sweden)
Aurélien Marsan
2012-01-01
Full Text Available The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads—from a steady-state calculations point of view—to an increase by 40% of the compressor operating range extent.
Moisture transfer in a concrete slab
International Nuclear Information System (INIS)
Huang, C.L.D.; Siang, H.H.; Kirmser, P.G.
1979-01-01
A diffusion theory with a linear or a nonlinear coefficient of diffusivity is insufficient for the characterization of the drying behaviour of hydrated concrete slabs. A general mathematical model, based on nonequilibrium, irreversible flows of heat and mass, yields a set of nonlinear partial differential equations of parabolic type. Implicit finite difference calculations for a concrete slab yield moisture, temperature, and pressure histories as well as global average drying rates. Graphs show that during the pendular state of dessication, diffusion, capillary, and evaporation-condensation processes are the governing mechanisms in drying. (orig.)
Yeung, Chung-Hei (Simon)
The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are
Education stalls and subsequent stalls in African fertility: A descriptive overview
Directory of Open Access Journals (Sweden)
Anne Goujon
2015-12-01
Full Text Available Background: Recent stalls in fertility decline have been observed in a few countries in sub-Saharan Africa, and so far no plausible common reason has been identified in the literature. This paper develops the hypothesis that these fertility stalls could be associated with stalls in the progress of education among the women of the relevant cohorts, possibly resulting partly from the Structural Adjustment Programs (SAPs of the 1980s. Methods: We descriptively link the change in the education composition of successive cohorts of young women in sub-Saharan Africa and the recent fertility stalls. We use reconstructed data on population by age, gender, and level of education from www.wittgenstein centre.org/dataexplorer, and fertility rates from the United Nations. Results: In most sub-Saharan African countries, we observe that the same countries that had fertility stalls had a stall in the progress of education, particularly for young women who were of primary school age during the 1980s, when most of the countries were under structural adjustment. Conversely, stalls in fertility are less common in countries that did not have an education stall, possibly in relation to SAPs. Conclusions: The results point to the possibility of a link between the recent fertility stalls and discontinuities in the improvement of the education of the relevant cohorts, which in turn could be related to the SAPs in the 1980s. This descriptive finding now needs to be corroborated through more detailed cohort-specific fertility analysis. If the education-fertility link can be further established, it will have important implications for the projections of population growth in affected countries.
Slab cooling system design using computer simulation
Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.
2007-01-01
For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for
An airloads theory for morphing airfoils in dynamic stall with experimental correlation
Ahaus, Loren A.
Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.
Prediction of dynamic loads and induced vibrations in stall
Energy Technology Data Exchange (ETDEWEB)
Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)
1998-05-01
Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final
16 CFR 1505.50 - Stalled motor testing.
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...
Economic evaluation of stall stocking density of lactating dairy cows
Vries, De Albert; Dechassa, Hailegziabher; Hogeveen, Henk
2016-01-01
An increase in stall stocking density (SSD), as measured by the number of lactating cows per stall in a freestall barn, reduces cow performance, such as milk yield and fertility, but may increase farm profitability. Our objectives were to calculate effects of varying SSD on profit per stall for a
Factors affecting stall use for different freestall bases.
Wagner-Storch, A M; Palmer, R W; Kammel, D W
2003-06-01
The objective of this study was to compare stall use (stall occupancy and cow position) by barn side for factors affecting stall use. A closed circuit television system recorded stall use four times per day for a 9-mo period starting May 9, 2001. Six factors were analyzed: stall base, distance to water, stall location within stall base section, stall location within barn, inside barn temperature, and length of time cows were exposed to stall bases. Two barn sides with different stocking densities were analyzed: low (66%), with cows milked by robotic milker; and high (100%), with cows milked 2X in parlor. Six stall base types were tested: two mattresses, a waterbed, a rubber mat, concrete, and sand (high side only). The base types were grouped 3 to 7 stalls/section and randomly placed in each row. Cows spent more time in mattress-based stalls, but the highest percentage lying was in sand-based stalls. The following significant stall occupancy percentages were found: sand had the highest percentage of cows lying on the high stocking density side (69%), followed by mattress type 1 (65%) > mattress type 2 (57%) > waterbed (45%) > rubber mat (33%) > concrete (23%). Mattress type 1 had the highest percentage stalls occupied (88%), followed by mattress type 2 (84%) > sand (79%) > soft rubber mat (65%) > waterbed (62%) > concrete (39%). On the low stocking rate side, mattress type 1 had the highest percentage cows lying (45%) and occupied (59.6%), followed by mattress type 2 > waterbed > soft rubber mat > concrete. Cow lying and stalls occupied percentages were highest for stalls 1) not at the end of a section, and 2) on the outside row, and varied by base type for time cows exposed to stalls and inside barn temperature. Lying and occupied percentages were different for different mattress types. The percentage of stalls with cows standing was higher for mat and mattress-based stalls. Results show mattress type 1 and sand to be superior and rubber mats and concrete inferior
Is Social Licence A Licence To Stall?
Directory of Open Access Journals (Sweden)
Mark Lowey
2016-03-01
Full Text Available The School of Public Policy at the University of Calgary organized a one-day symposium on Oct. 8, 2014 in Calgary, as part of the School’s TransCanada Corporation Energy Policy and Regulatory Frameworks Program. The symposium was titled “Is Social License a License to Stall?” Held at the Hotel Arts, the event attracted a full-capacity audience of about 110 people, including representatives from industry, government and environmental non-government organizations. The symposium included four moderated panel sessions and a keynote speaker at lunch. The School of Public Policy set the framework for discussion at the Calgary symposium with the following description: Canada’s regulators act in the public interest to review energy and infrastructure project applications. Regulators are guided by procedural fairness and follow a transparent application, review and hearing process with data filings and sworn testimony. But that’s changing. “Social license” is a relatively new term, which some interests are using to create a different standard for the approval of projects — especially energy projects. According to social license advocates, projects must meet often ill-defined requirements set up by non-governmental organizations, local residents or other interests — a new hurdle for project approval, but without the rigour and rule of law of a regulator. Is social license a meaningful addition to the regulatory process, or is it being used as a constantly moving goal-post designed to slow down regulatory processes, delay project implementation, frustrate energy infrastructure expansion and even enrich those advocates who promote it as a new model? This paper summarises the discussion and the themes that emerged throughout the day. Most notably, panellists concluded that “social licence” is a real and significant issue that presents both an opportunity and a problem, not only for regulators but for all parties involved in the
Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator
Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.
2011-12-01
Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not
Long-life slab replacement concrete.
2015-03-01
This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...
An archival analysis of stall warning system effectiveness during airborne icing encounters
Maris, John Michael
An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance
Rotating stall simulation for axial and centrifugal compressors
Halawa, Taher; Gadala, Mohamed S.
2017-05-01
This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.
Alleviation of spike stall in axial compressors utilizing grooved casing treatment
Directory of Open Access Journals (Sweden)
Reza Taghavi-Zenouz
2015-06-01
Full Text Available This article deals with application of grooved type casing treatment for suppression of spike stall in an isolated axial compressor rotor blade row. The continuous grooved casing treatment covering the whole compressor circumference is of 1.8 mm in depth and located between 90% and 108% chord of the blade tip as measured from leading edge. The method of investigation is based on time-accurate three-dimensional full annulus numerical simulations for cases with and without casing treatment. Discretization of the Navier–Stokes equations has been carried out based on an upwind second-order scheme and k-ω-SST (Shear Stress Transport turbulence modeling has been used for estimation of eddy viscosity. Time-dependent flow structure results for the smooth casing reveal that there are two criteria for spike stall inception known as leading edge spillage and trailing edge backflow, which occur at specific mass flow rates in near-stall conditions. In this case, two dominant stall cells of different sizes could be observed. The larger one is caused by the spike stall covering roughly two blade passages in the circumferential direction and about 25% span in the radial direction. Spike stall disturbances are accompanied by lower frequencies and higher amplitudes of the pressure signals. Casing treatment causes flow blockages to reduce due to alleviation of backflow regions, which in turn reduces the total pressure loss and increases the axial velocity in the blade tip gap region, as well as tip leakage flow fluctuation at higher frequencies and lower amplitudes. Eventually, it can be concluded that the casing treatment of the stepped tip gap type could increase the stall margin of the compressor. This fact is basically due to retarding the movement of the interface region between incoming and tip leakage flows towards the rotor leading edge plane and suppressing the reversed flow around the blade trailing edge.
Experimental study of dynamic stall on Darrieus wind turbine blades
Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I.
1985-12-01
An experimental study of periodic vortex phenomena was performed on a model of a two straight-bladed Darrieus wind turbine under controlled-rotation conditions in the IMST water tunnel. The main focus of interest was the tip-speed ratios at which dynamic stall appears. Observations of this phenomenon from dye emission and the formation of hydrogen bubbles were made in the form of photographs, film and video recordings. Velocity measurements were obtained using the Laser-Doppler Velocimeter and components of velocity fluctuations could be determined quantitatively.
Observations of dynamic stall on Darrieus wind turbine blades
Energy Technology Data Exchange (ETDEWEB)
Fujisawa, N.; Shibuya, S. [Department of Mechanical and Production Engineering, Niigata University, 8050 Ikarashi 2, 950-2181 Niigata (Japan)
2001-02-01
Flow field around a Darrieus wind turbine blade in dynamic stall is studied by flow visualization and particle image velocimetry (PIV) measurement in stationary and rotating frames of reference. The experiment is carried out using the small-scale Darrieus wind turbine in a water tunnel. The unsteady nature of the dynamic stall observed by the flow visualization is quantitatively reproduced in the instantaneous velocity distributions by PIV measurement, which describes the successive shedding of two pairs of stall vortices from the blade moving upstream. The mechanism of dynamic stall is due to the successive generation of separation on the inner surface of the blade followed by the formation of roll-up vortices from the outer surface. Although the qualitative nature of the dynamic stall is independent of the tip-speed ratios, the blade angle for stall appearance and the growth rate of the stall vortices are influenced by the change in tip-speed ratios.
Numerical Investigation of Slab-Column Connection by Finite Element Method
International Nuclear Information System (INIS)
Akram, T.; Shaikh, M.A.; Memon, A.A.
2007-01-01
The flat slab-on-column construction subjected to high transverse stresses concentrated at the slab-column connection can lead to a non-ductile, sudden and brittle punching failure and results in the accidental collapse of flat slab buildings. The major parameters affecting the slab-column connection are the concrete strength, slab thickness, slab reinforcement and aspect ratio of column. The application of numerical methods based on the finite element theory for solving practical tasks allow to perform virtual testing of structures and explore their behavior under load and other effects in different conditions taking into account the elastic and plastic behavior of materials, appearance and development of cracks and other damages (disintegrations), and finally to simulate the failure mechanism and its consequences. In this study, the models are developed to carry out the finite element analysis of slab- column connection using ADINA (Automatic Dynamic Incremental Nonlinear Analysis) by varying the slab thickness and slab confining reinforcement and to investigate their effect on the deflection and load carrying capacity. Test results indicate that by increasing the slab thickness, the deflection and the load carrying capacity of slab-column connection increases, more over, by increasing the slab confining reinforcement, the deflection decreases where as the load carrying capacity increases. (author)
Tamai, Toshiyuki; Teramoto, Shuntarou; Kimura, Makoto
Steel pipe piles with wings installed in soil cement column is a composite foundation of pile consisting of soil improvement with cement and steel pipe with wings. This type of pile shows higher vertical bearing capacity when compared to steel pipe piles that are installed without soil cement. It is thought the wings contribute to higher bearing capacity of this type of piles. The wings are also thought to play the role of structural unification of pile foundations and load transfer. In this study, model test and 3D elastic finite element analysis was carried out in order to elucidate the effect of wings on the structural unification of pile foundation and the load transfer mechanism. Firstly, the model test was carried out in order to grasp the influence of pile with and without wings, the shape of wings of the pile and the unconfined compression strength of the soil cement on the structural unification of the pile foundation. The numerical analysis of the model test was then carried out on the intermediate part of the pile foundation with wings and mathematical model developed. Finally load tran sfer mechanism was checked for the entire length of the pile through this mathematical model and the load sharing ratio of the wings and stress distribution occurring in the soil cement clarified. In addition, the effect of the wing interval on the structural unification of the pile foundation and load transfer was also checked and clarified.
Numerical Investigations of Dynamic Stall Control
Directory of Open Access Journals (Sweden)
Florin FRUNZULICA
2014-04-01
Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.
Bertagnolio, Franck; Madsen, Helge Aa.; Fischer, Andreas; Bak, Christian
2018-06-01
In the above-mentioned paper, two model formulae were tuned to fit experimental data of surface pressure spectra measured in various wind tunnels. They correspond to high and low Reynolds number flow scalings, respectively. It turns out that there exist typographical errors in both formulae numbered (9) and (10) in the original paper. There, these formulae read:
Diagnosis of voltage collapse due to induction motor stalling using static analysis
International Nuclear Information System (INIS)
Karbalaei, F.; Kalantar, M.; Kazemi, A.
2008-01-01
Induction motor stalling is one of the important reasons for voltage collapse. This paper presents that, for induction motor stalling diagnosis, it is not necessary to use a third or first order dynamic model of induction motors. Instead, a method is presented based on algebraic calculations for which the steady state model of the induction motor considering different kinds of mechanical loads (constant and variable torque) is added to the power flow equations. Simulation results for a simple system confirm the correctness of the proposed method as compared to dynamic simulation results
Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis
Energy Technology Data Exchange (ETDEWEB)
Kai, Mihoko; Wang, Teresa S.-F
2003-11-27
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.
Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis
International Nuclear Information System (INIS)
Kai, Mihoko; Wang, Teresa S.-F.
2003-01-01
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polκ). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development
Dynamic Eigenvalue Problem of Concrete Slab Road Surface
Pawlak, Urszula; Szczecina, Michał
2017-10-01
The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.
Comparison of driven and simulated "free" stall flutter in a wind tunnel
Culler, Ethan; Farnsworth, John; Fagley, Casey; Seidel, Jurgen
2016-11-01
Stall flutter and dynamic stall have received a significant amount of attention over the years. To experimentally study this problem, the body undergoing stall flutter is typically driven at a characteristic, single frequency sinusoid with a prescribed pitching amplitude and mean angle of attack offset. This approach allows for testing with repeatable kinematics, however it effectively decouples the structural motion from the aerodynamic forcing. Recent results suggest that this driven approach could misrepresent the forcing observed in a "free" stall flutter scenario. Specifically, a dynamically pitched rigid NACA 0018 wing section was tested in the wind tunnel under two modes of operation: (1) Cyber-Physical where "free" stall flutter was physically simulated through a custom motor-control system modeling a torsional spring and (2) Direct Motor-Driven Dynamic Pitch at a single frequency sinusoid representative of the cyber-physical motion. The time-resolved pitch angle and moment were directly measured and compared for each case. It was found that small deviations in the pitch angle trajectory between these two operational cases generate significantly different aerodynamic pitching moments on the wing section, with the pitching moments nearly 180o out of phase in some cases. This work is supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program and by the National Defense Science and Engineering Graduate Fellowship Program.
Bacillus cereus in free-stall bedding.
Magnusson, M; Svensson, B; Kolstrup, C; Christiansson, A
2007-12-01
To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log(10) B. cereus spores, 5.5 log(10) B. cereus, and 6.7 log(10) coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows' udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the
The quest for stall-free dynamic lift
Tung, C.; Mcalister, K. W.; Carr, Lawrence W.; Duque, E.; Zinner, R.
1992-01-01
During the past decade, numerous major effects have addressed the question of how to control or alleviate dynamic stall effects on helicopter rotors, but little concrete evidence of any significant reduction of the adverse characteristics of the dynamic stall phenomenon has been demonstrated. Nevertheless, it is important to remember that the control of dynamic stall is an achievable goal. Experiments performed at the US Army Aeroflight-dynamics Directorate more than a decade ago demonstrated that dynamic stall is not an unavoidable penalty of high amplitude motion, and that airfoils can indeed operate dynamically at angles far above the static-stall angle without necessarily forming a stall vortex. These experiments, one of them featuring a slat that was designed from static airfoil considerations, showed that unsteadiness can be a very beneficial factor in the development of high-lift devices for helicopter rotors. The experience drawn from these early experiments is now being focused on a program for the alleviation of dynamic-stall effects on helicopter rotors. The purpose of this effort is to demonstrate that rotor stall can be controlled through an improved understanding of the unsteady effects on airfoil stall and to document the role of specific means that lead to stall alleviation in the three dimensional unsteady environment of helicopter rotors in forward flight. The first concept to be addressed in this program will be a slatted airfoil. A two dimensional unsteady Navier-Stokes code has been modified to compute the flow around a two-element airfoil.
Slab replacement maturity guidelines : [summary].
2014-04-01
Concrete sets in hours at moderate temperatures, : but the bonds that make concrete strong continue : to mature over days to years. However, for : replacement concrete slabs on highways, it is : crucial that concrete develop enough strength : within ...
New Packaging for Amplifier Slabs
Energy Technology Data Exchange (ETDEWEB)
Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-03-18
The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.
Upstand Finite Element Analysis of Slab Bridges
O'Brien, Eugene J.; Keogh, D.L.
1998-01-01
For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...
The computation of the post-stall behavior of a circulation controlled airfoil
Linton, Samuel W.
1993-01-01
The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.
Robots are stalling in Fukushima
International Nuclear Information System (INIS)
Anon.
2012-01-01
Whereas robots were expected to be the heroes of the cleaning up of radioactive zones of the Fukushima power station, they fall, lack of autonomy, or stay prisoners of debris. After having briefly described how these robots look like (the characteristics of four models are given, two Japanese and two American robots), this article outlines that they resist quite well to radioactivity, but are rather slow and are not used all at the same time: some are being maintained, some are trapped in debris. Thus, they perform a mission once a week, with finally less than hundred hours of operation for each of them. They are often trapped by debris, their movements are often difficult (notably in front of stairs or of debris), their battery lacks autonomy, and they did not significantly reduce the exposure of humans to radioactivity, but they open perspectives for new devices
Seth, Ratanesh Kumar; Kimono, Diana; Alhasson, Firas; Sarkar, Sutapa; Albadrani, Muayad; Lasley, Stephen K; Horner, Ronnie; Janulewicz, Patricia; Nagarkatti, Mitzi; Nagarkatti, Prakash; Sullivan, Kimberly; Chatterjee, Saurabh
2018-07-01
Most of the associated pathologies in Gulf War Illness (GWI) have been ascribed to chemical and pharmaceutical exposures during the war. Since an increased number of veterans complain of gastrointestinal (GI), neuroinflammatory and metabolic complications as they age and there are limited options for a cure, the present study was focused to assess the role of butyrate, a short chain fatty acid for attenuating GWI-associated GI and metabolic complications. Results in a GWI-mouse model of permethrin and pyridostigmine bromide (PB) exposure showed that oral butyrate restored gut homeostasis and increased GPR109A receptor copies in the small intestine (SI). Claudin-2, a protein shown to be upregulated in conditions of leaky gut was significantly decreased following butyrate administration. Butyrate decreased TLR4 and TLR5 expressions in the liver concomitant to a decrease in TLR4 activation. GW-chemical exposure showed no clinical signs of liver disease but a significant alteration of metabolic markers such as SREBP1c, PPAR-α, and PFK was evident. Liver markers for lipogenesis and carbohydrate metabolism that were significantly upregulated following GW chemical exposure were attenuated by butyrate priming in vivo and in human primary hepatocytes. Further, Glucose transporter Glut-4 that was shown to be elevated following liver complications were significantly decreased in these mice after butyrate administration. Finally, use of TLR4 KO mice completely attenuated the liver metabolic changes suggesting the central role of these receptors in the GWI pathology. In conclusion, we report a butyrate specific mechanistic approach to identify and treat increased metabolic abnormalities in GWI veterans with systemic inflammation, chronic fatigue, GI disturbances, metabolic complications and weight gain. Copyright © 2018 Elsevier Inc. All rights reserved.
Analysis of compressible light dynamic stall flow at transitional Reynolds numbers
DEFF Research Database (Denmark)
Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.
1996-01-01
Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...
Convection in Slab and Spheroidal Geometries
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
Close-loop Dynamic Stall Control on a Pitching Airfoil
Giles, Ian; Corke, Thomas
2017-11-01
A closed-loop control scheme utilizing a plasma actuator to control dynamic stall is presented. The plasma actuator is located at the leading-edge of a pitching airfoil. It initially pulses at an unsteady frequency that perturbs the boundary layer flow over the suction surface of the airfoil. As the airfoil approaches and enters stall, the amplification of the unsteady disturbance is detected by an onboard pressure sensor also located near the leading edge. Once detected, the actuator is switched to a higher voltage control state that in static airfoil experiments would reattach the flow. The threshold level of the detection is a parameter in the control scheme. Three stall regimes were examined: light, medium, and deep stall, that were defined by their stall penetration angles. The results showed that in general, the closed-loop control scheme was effective at controlling dynamic stall. The cycle-integrated lift improved in all cases, and increased by as much as 15% at the lowest stall penetration angle. As important, the cycle-integrated aerodynamic damping coefficient also increased in all cases, and was made to be positive at the light stall regime where it traditionally is negative. The latter is important in applications where negative damping can lead to stall flutter.
J. Y. Jang; Y. W. Lee; C. N. Lin; C. H. Wang
2015-01-01
The reheating furnace is used to reheat the steel slabs before the hot-rolling process. The supported system includes the stationary/moving beams, and the skid buttons which block some thermal radiation transmitted to the bottom of the slabs. Therefore, it is important to analyze the steel slab temperature distribution during the heating period. A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab ha...
Strengthening of RC bridge slabs using CFRP sheets
Directory of Open Access Journals (Sweden)
Fahmy A. Fathelbab
2014-12-01
Full Text Available Many old structures became structurally insufficient to carry the new loading conditions requirements. Moreover, they suffer from structural degradation, reinforcement steel bars corrosion, bad weather conditions…etc. Many official authorities in several countries had recognized many old bridges and buildings as structurally deficient by today’s standards. Due to these reasons, structural strengthening became an essential requirement and different strengthening techniques appeared in market. Fiber Reinforced Polymer (FRP strengthening techniques established a good position among all other techniques, giving excellent structural results, low time required and moderate cost compared with the other techniques. The main purpose of this research is to study analytically the strengthening of a reinforced concrete bridge slabs due to excessive loads, using externally bonded FRP sheets technique. A commercial finite element program ANSYS was used to perform a structural linear and non-linear analysis for strengthened slab models using several schemes of FRP sheets. A parametric study was performed to evaluate analytically the effect of changing both FRP stiffness and FRP schemes in strengthening RC slabs. Comparing the results with control slab (reinforced concrete slab without strengthening it is obvious that attaching FRP sheets to the RC slab increases its capacity and enhances the ductility/toughness.
Seismic Evidence for Possible Slab Melting from Strong Scattering Waves
Directory of Open Access Journals (Sweden)
Cheng-Horng Lin
2011-01-01
Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.
MODOS GUIADOS EM SLABS METAMATERIAIS GUIDED MODES IN METAMATERIAL SLABS
Directory of Open Access Journals (Sweden)
Leonardo André Ambrosio
2006-12-01
Full Text Available Este trabalho apresenta um estudo de revisão de modos propagantes em um guia-de-onda slab constituído de materiais com índices de refração negativo, os chamados metamateriais, Mostra-se que os modos guiados em um slab metamaterial possuem algumas propriedades particulares, tais como a propagação de ondas lentas simétricas ou anti-simétricas, a ausência de modos fundamentais para ondas rápidas e a possibilidade de propagação de ondas guiadas em um meio menos denso. A análise é baseada em expansões de campo no guia e nos espaços superior e inferior ao mesmo.This paper presents a review of the propagation modes in a slab waveguide consisting of negative refraction index materials, known as metamaterials. Some particular properties of guided modes in a metamaterial slab, such as slow symmetric or antisymmetric slow wave propagation, the absence of fundamental modes for fast waves and the possibility of guided waves in a less dense medium. The analysis is based on field expansions in the guide and the upper and lower spaces of it.
14 CFR 33.65 - Surge and stall characteristics.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... stall characteristics. When the engine is operated in accordance with operating instructions required by...
Long-life slab replacement concrete : [summary].
2015-04-01
Concrete slab replacement projects in Florida have demonstrated a high incidence of : replacement slab cracking. Causes of cracking have not been reliably determined. University of South Florida researchers : sought to identify the factors or : param...
Effects of three types of free-stall surfaces on preferences and stall usage by dairy cows.
Tucker, C B; Weary, D M; Fraser, D
2003-02-01
One important criterion in choosing appropriate housing systems for dairy cattle is that the freestall provides a comfortable surface for the cow. This paper describes two experiments testing the effects of commonly used lying surfaces on stall preference and stall usage by Holstein cows. In both experiments, 12 cows were housed individually in separate pens. Each pen contained three free stalls with a different surface: deep-bedded sawdust, deep-bedded sand, and a geotextile mattress covered with 2 to 3 cm of sawdust. The animals were restricted to each surface in turn, in a random order for either 2 (Experiment 1) or 3 d (Experiment 2). Both before and after this restriction phase, the animals were allowed access to all three surfaces, and preference was determined, based on lying times. Of the 12 cows used in Experiment 1, 10 preferred sawdust before and nine after the restriction phase. During the restriction phase, average lying times and number of lying events during the restriction phase were significantly lower for the sand-bedded stalls (P sand bedded stalls. In this experiment, about half the cows preferred sand and half sawdust, after the restriction phase. During the restriction phase of experiment, lying times and number of lying events were lower, and standing times were higher when the animals were restricted to the mattresses compared to either sand or sawdust (P < or = 0.05). These results indicate that (1) free stall surface can affect both stall preferences and stall usage, and (2) mattresses are less preferred.
Generating Atomistic Slab Surfaces with Adsorbates
2017-12-01
slabs of various thickness and with various vacuum spacing need be calculated. This can occur in serial or simultaneously . If performed in serial, the...the user. Although the optimization of the slab thickness and vacuum padding can be done simultaneously , it is more computationally conservative to...monolayer is a slab (True if slab), the type of mesh desired (adsorbates.py was written for “Gamma”), how detailed the mesh should be (in units of inverse
Directory of Open Access Journals (Sweden)
Wang Qing
2015-04-01
Full Text Available In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation (CST method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes (RANS equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel (LU-SGS is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart–Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the optimized airfoil under unsteady conditions are obviously weakened, and the dynamic stall characteristics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil.
Spread prestressed concrete slab beam bridges.
2015-04-01
TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...
Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet
Directory of Open Access Journals (Sweden)
Qijun ZHAO
2017-12-01
Full Text Available The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes (URANS solver coupled with k-Ï Shear Stress Transport (SST turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters (jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jetâs angles and momentum coefficients on control effects are similar to those of the unique jet. Finally, unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and asÂ a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor. Keywords: Airfoil, Dynamic stall characteristics, Flow control, Moving-embedded grid methodology, Navier-Stokes equations, Parametric
Transport of radon through cracks in a concrete slab
Energy Technology Data Exchange (ETDEWEB)
Landman, K A; Cohen, D S
1983-03-01
A model involving the use of line sources is developed to describe the transport of radon through the cracks or gaps which appear in concrete slabs used in building foundations. The strength of these sources is determined from the results of the diffusion model proposed by Landman in a previous work. Once the strength of the source is known, additional transport mechanisms can be treated in a simple manner. Pressure differences across the slab and in the underlying soil are discussed. The rate of exhalation through a portion of the cracked slab is determined and compared to the rate of exhalation from the same surface area of bare soil. In typical cases, their ratios vary from 0.25 to 0.50. Therefore, these transport mechanisms account for a larger portion of the levels of radon found in many houses than do previous models.
Wilson, Tanya R; LeBlanc, Stephen J; DeVries, Trevor J; Haley, Derek B
2018-06-01
Automatic milk feeders (AMF) for young dairy calves are widely used in the dairy industry. These feeders are thought to have benefits for calf health and welfare and may reduce labor required for feeding; however, little is known about how calves adapt to feeding with AMF. The objective of this study was to observe the effects of feeding stall design on calves learning to use the AMF. The hypothesis was that solid side stalls, compared with steel bar stalls, would result in a longer latency to approach and feed from the AMF without assistance. A total of 147 Holstein calves (80 male and 67 female) were enrolled at 4 d of age, introduced to a group pen, and, at the same time, trained on an AMF. For training, calves were allowed to suck on the trainer's fingers and guided to the teat. Calves were allocated to 1 of 2 stall designs at the pen level, depending on which treatment cohort they were born into, either with steel bar stall walls (n = 46 male, 34 female calves) or with solid side stall walls (n = 34 male, 33 female calves). For 72 h after introductory training on the AMF, data from the feeders were collected and calf behavior was monitored by video. Outcomes measured included latency to first voluntary visit to the feeder and to first feeding, time spent in the feeder, amount of milk consumed over 72 h, number of retraining sessions required (retrained if linear regression models or a Poisson model for the outcome of retraining. For certain outcomes the effects of stall design interacted with difficulty of training (willingness to enter feeder and drink); for the 38% of calves that were scored as moderately difficult to train on a scale of easy, moderate, or difficult, treatment (stall design) differences were detected. These calves took 2× longer to lick or bite toward the nipple, 2× longer to first voluntarily feeding, and consumed less milk over 72 h following training when trained on the steel bar stall design. These results suggest simple features of a
CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS
Directory of Open Access Journals (Sweden)
Malakhova Anna Nikolaevna
2016-06-01
Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.
Method for Bubbledeck Concrete Slab with Gaps
Directory of Open Access Journals (Sweden)
Sergiu Călin
2009-01-01
Full Text Available The composite slabs are made of BubbleDeck type slab elements with spherical gaps, poured in place on transversal and longitudinal directions. By introducing the gaps leads to a 30...50\\% lighter slab which reduces the loads on the columns, walls and foundations, and of course of the entire building. BubbleDeck slab elements are plates with ribs on two directions made of reinforced concrete or precast concrete with spherical shaped bubbles. These slab elements have a bottom and an upper concrete part connected with vertical ribs that go around the gaps.
Microinstabilities in a radially contracting inhomogeneous cylindrical plasma slab
International Nuclear Information System (INIS)
Deutsch, R.; Kaeppeler, H.J.
1980-07-01
In order to study the development of microinstabilities in a collapsing cylindrical plasma sheath, corresponding to the situations in a z-pinch or a plasma focus, the dispersion relation for electromagnetic perturbations is derived with the aid of a newly established slab-model for an inhomogeneous, radially contracting plasma. In contrast to previously used slab-models, the orientation of the electric field is in direction of the cylinder axis and the azimuthal magnetic field is induced by the current flowing through the cylindrical plasma slab. The Vlasov equation is used together with the Krook collision term in order to include the influence of collisions. The results of this theory presented in this report will be used to calculate the growth of drift instabilities in the compression phase of a plasma focus, and shall serve as a basis for further development of a more general dispersion relation including runaway-effects. (orig.)
Eberhart-Phillips, D. M.; Reyners, M.; Bannister, S. C.
2017-12-01
Seismicity distribution and 3-D models of P- and S-attenuation (1/Q) in the Hikurangi subduction zone, in the North Island of New Zealand, show large variation along-arc in the fluid properties of the subducting slab. Volcanism is also non-uniform, with extremely productive rhyolitic volcanism localized to the central Taupo Volcanic zone, and subduction without volcanism in the southern North Island. Plate coupling varies with heterogeneous slip deficit in the northern section, low slip deficit in the central section, and high slip deficit (strong coupling) in the south. Heterogeneous initial hydration and varied dehydration history both are inferred to play roles. The Hikurangi Plateau (large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates along the Hikurangi subduction zone. It has an uneven downdip edge which has produced spatially and temporally localized stalls in subduction rate. The mantle wedge under the rhyolitic section has a very low Q feature centred at 50-125 km depth, which directly overlies a 150-km long zone of dense seismicity. This seismicity occurs below a sharp transition in the downdip extent of the Hikurangi Plateau, where difficulty subducting the buoyant plateau would have created a zone of increased faulting and hydration that spent a longer time in the outer-rise yielding zone, compared with areas to the north and south. At shallow depths this section has unusually high fracture permeability from the two episodes of bending, but it did not experience dehydration during Gondwana subduction. This central section at plate interface depths less than 50-km has low Q in the slab crust, showing that it is extremely fluid rich, and it exhibits weak plate coupling with both deep and shallow slow-slip events. In contrast in the southern section, where there is a large deficit in
Investigation on the performance of bridge approach slab
Directory of Open Access Journals (Sweden)
Abdelrahman Amr
2018-01-01
Full Text Available In Egypt, where highway bridges are to be constructed on soft cohesive soils, the bridge abutments are usually founded on rigid piles, whereas the earth embankments for the bridge approaches are directly founded on the natural soft ground. Consequently, excessive differential settlement frequently occurs between the bridge deck and the bridge approaches resulting in a “bump” at both ends of the bridge deck. Such a bump not only creates a rough and uncomfortable ride but also represents a hazardous condition to traffic. One effective technique to cope with the bump problem is to use a reinforced concrete approach slab to provide a smooth grade transition between the bridge deck and the approach pavement. Investigating the geotechnical and structural performance of approach slabs and revealing the fundamental affecting factors have become mandatory. In this paper, a 2-D finite element model is employed to investigate the performance of approach slabs. Moreover, an extensive parametric study is carried out to appraise the relatively optimum geometries of approach slab, i.e. slab length, thickness, embedded depth and slope, that can yield permissible bumps. Different geo-mechanical conditions of the cohesive foundation soil and the fill material of the bridge embankment are examined.
Analysis and design of composite slab by varying different parameters
Lambe, Kedar; Siddh, Sharda
2018-03-01
Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.
IMPROVEMENT OF SLAB REHEATING PROCESS AT USIMINAS THROUGH MATHEMATICAL SIMULATION
Directory of Open Access Journals (Sweden)
Antônio Adel dos Santos
2012-09-01
Full Text Available Basic characteristics and application examples of the mathematical simulator for reheating process in walking-beam type furnaces, that has been developed and applied to Usiminas plate mill line at Ipatinga, are shown in this paper. This is a bi-dimensional mathematical model solved by the finite volume method, validated by temperature measurements inside the slab during heating and coded as a visual tool. Among these applications, the following can be highlighted: (i determination of suitable furnace zone temperatures and residence times for processing steels by accelerated cooling technology; (ii determination of slab average temperature at discharging as well as at each zone exit, supplying data to be fed to the automation system at the comissioning stage; (iii analyses of slab thermal distribution through the reheating process, enabling operational optimization
2013-01-01
Background Prophylactic measures are key components of dairy herd mastitis control programs, but some are only relevant in specific housing systems. To assess the association between management practices and mastitis incidence, data collected in 2011 by a survey among 979 randomly selected Swiss dairy farms, and information from the regular test day recordings from 680 of these farms was analyzed. Results The median incidence of farmer-reported clinical mastitis (ICM) was 11.6 (mean 14.7) cases per 100 cows per year. The median annual proportion of milk samples with a composite somatic cell count (PSCC) above 200,000 cells/ml was 16.1 (mean 17.3) %. A multivariable negative binomial regression model was fitted for each of the mastitis indicators for farms with tie-stall and free-stall housing systems separately to study the effect of other (than housing system) management practices on the ICM and PSCC events (above 200,000 cells/ml). The results differed substantially by housing system and outcome. In tie-stall systems, clinical mastitis incidence was mainly affected by region (mountainous production zone; incidence rate ratio (IRR) = 0.73), the dairy herd replacement system (1.27) and farmers age (0.81). The proportion of high SCC was mainly associated with dry cow udder controls (IRR = 0.67), clean bedding material at calving (IRR = 1.72), using total merit values to select bulls (IRR = 1.57) and body condition scoring (IRR = 0.74). In free-stall systems, the IRR for clinical mastitis was mainly associated with stall climate/temperature (IRR = 1.65), comfort mats as resting surface (IRR = 0.75) and when no feed analysis was carried out (IRR = 1.18). The proportion of high SSC was only associated with hand and arm cleaning after calving (IRR = 0.81) and beef producing value to select bulls (IRR = 0.66). Conclusions There were substantial differences in identified risk factors in the four models. Some of the factors were in agreement with the reported literature
Seismic Behaviour of Masonry Vault-Slab Structures
International Nuclear Information System (INIS)
Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco
2008-01-01
Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presented and the structural role resulting for the spandrels is discussed
A Detailed Study of the Rotational Augmentation and Dynamic Stall Phenomena for Wind Turbines
DEFF Research Database (Denmark)
Guntur, Srinivas
This thesis presents investigations into the aerodynamics of wind turbine rotors, with a focus on the in-board sections of the rotor. Two important aerodynamic phenomena that have challenged scientists over nearly the last half a century are the so-called rotational augmentation and dynamic stall....... This thesis presents an investigation into these two phenomena, using data from the MEXICO and the NREL UAE Phase VI experiments, as well as data obtained from full rotor CFD computations carried out using the in-house flow solver Ellipsys3D. The experimental data, CFD data and that from some of the existing...... on wind turbine blades using the N-sequence data of the NREL UAE Phase VI experiment. The experimental data is compared with the results from unsteady Delayed Detached Eddy Simulations (DDES). The same conditions are also modelled using a Beddoes-Leishman type dynamic stall model by Hansen et al. (2004...
Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity
McCrory, Patricia A.; Blair, J. Luke; Waldhause, Felix; Oppenheimer, David H.
2012-01-01
A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.
World Bank Group
2017-01-01
The “Stallings Classroom Snapshot” instrument, technically called the “Stanford Research Institute Classroom Observation System”, was developed by Professor Jane Stallings for research on the efficiency and quality of basic education teachers in the United States in the 1970s. (Stallings, 1977; Stallings and Mohlman, 1988). The Stallings instrument generates robust quantitative data on the interaction of teachers and students in the classroom, with a high degree of inter-rater rel...
Analysis of instability of tall buildings with prestressed and waffle slabs
Directory of Open Access Journals (Sweden)
V. M. Passos
Full Text Available ABSTRACT The construction system of prestressed flat slabs has been gaining market in Brazil, since it eliminates the use of beams, allows you to perform structures under coluns by area and reduces the cycle of concrete slabs. Thus the analysis of global stability of buildings, takes into account the effects of 2nd order, and these additional effects to the structure obtained from the deformation thereof, calculated by the iterative method P-Delta. The Brazilian ABNT NBR 6118: 2014 [2] assesses the overall stability of reinforced concrete structures through practical parameters, which are the parameter a (Alpha and gz (Gamma z coefficient. In this research we seek to study the global stability of slender buildings consist of flat slabs, with slenderness (ratio of the smaller width with the height of the building approximately one to six, from the modeling of a building with prestressed slabs nonadherent and waffle slabs. To model will use the commercial software CAD / TQS.
The exact solution of a three-dimensional lattice polymer confined in a slab with sticky walls
Energy Technology Data Exchange (ETDEWEB)
Brak, R; Iliev, G K; Owczarek, A L [Department of Mathematics and Statistics, University of Melbourne, Parkville, Vic 3010 (Australia); Whittington, S G [Department of Chemistry, University of Toronto, Toronto M5S 3H6 (Canada)
2010-04-02
We present the exact solution of a three-dimensional lattice model of a polymer confined between two sticky walls, that is within a slab. We demonstrate that the model behaves in a similar way to its two-dimensional analogues and agrees with Monte Carlo evidence based upon simulations of self-avoiding walks in slabs. The model on which we focus is a variant of the partially directed walk model on the cubic lattice. We consider both the phase diagram of relatively long polymers in a macroscopic slab and the effective force of the polymer on the walls of the slab.
Tensor-guided fitting of subduction slab depths
Bazargani, Farhad; Hayes, Gavin P.
2013-01-01
Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.
Hock lesions and free-stall design.
Weary, D M; Taszkun, I
2000-04-01
We compared the prevalence and severity of skin lesions on the hocks of lactating dairy cows in southern British Columbia, comparing 20 farms using three common bedding surfaces: sawdust, sand, and geotextile mattresses. Skin lesions were scored at five positions on the hock. For each position we noted if the lesion showed inflammatory attributes, and then assigned a severity score. Of the 1752 lactating cows scored, 1267 cows (73%) had at least one hock lesion. Of those cows with lesions, 87% had lesions on both legs, 76% had lesions on more than one location on the hock, and 78% had a lesion of at least moderate severity (i.e., evidence of skin breakage or an area of hair loss >10 cm2). Lesions were most prevalent on farms that used geotextile mattresses (91% of cows) and least common on farms that used sand (24% of cows). Moreover, lesions on cows from farms using mattresses were more numerous and more severe than those on cows from sand-bedded farms. The prevalence and severity of lesions on farms using sawdust was intermediate. Lesions also varied in relation to location on the hock. For farms using geotextile mattresses, lesions were more common and more severe on the lateral surfaces of both the tuber calcis and the tarsal joint. On farms using sawdust, lesions were common on the dorsal surface of the tuber calcis and the lateral surfaces of both the tuber calcis and the tarsal joint. Lesions were rare on all five positions for cows from sand-bedded farms. Among the 10 farms sampled using sawdust, we found a significant negative relationship between the length of the stall and severity of lesions. For cows with lesions, the number and severity of lesions increased with age.
Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data
DEFF Research Database (Denmark)
Chen, Yun; Jørgensen, Mette; Kolde, Raivo
2011-01-01
of RNAPII stalling. CONCLUSIONS: In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data....... strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. RESULTS: Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII...... of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive...
Initial design of a stall-controlled wind turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)
1997-08-01
A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)
Dynamic Stall Characteristics of Drooped Leading Edge Airfoils
Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen
2000-01-01
Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.
An insight into the separate flow and stall delay for HAWT
Energy Technology Data Exchange (ETDEWEB)
Yu, Guohua; Shen, Xin; Zhu, Xiaocheng; Du, Zhaohui [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)
2011-01-15
The flow characteristics and the stall delay phenomenon of wind turbine rotor due to blade rotation in the steady state non-yawed conditions are investigated. An incompressible Reynolds-averaged Navier-Stokes solver is applied to carry out all the cases at different wind speeds from 5 m/s to 10 m/s with an interval of 1 m/s. CFD results turn out to agree well with experimental ones at incoming wind speeds below 10 m/s, though at 10 m/s some deviations exist due to the relative large flow separation and 3D spanwise flow over the suction surface of the blade. In the meanwhile, a lifting surface code with and without Du-Selig stall delay model is used to predict the power. A MATLAB code is developed to extract aerodynamic force coefficients from 3D CFD computations which are compared with the 2D airfoil wind tunnel experiment to demonstrate the stall delay and augmented lift phenomenon particularly at inboard span locations of the blade. The computational results are compared with the corrected value by the Du-Selig model and a lifting surface method derived data based on the measurements of the Unsteady Aerodynamic Experiment at the NASA Ames wind tunnel. (author)
Robust post-stall perching with a simple fixed-wing glider using LQR-Trees
International Nuclear Information System (INIS)
Moore, Joseph; Cory, Rick; Tedrake, Russ
2014-01-01
Birds routinely execute post-stall maneuvers with a speed and precision far beyond the capabilities of our best aircraft control systems. One remarkable example is a bird exploiting post-stall pressure drag in order to rapidly decelerate to land on a perch. Stall is typically associated with a loss of control authority, and it is tempting to attribute this agility of birds to the intricate morphology of the wings and tail, to their precision sensing apparatus, or their ability to perform thrust vectoring. Here we ask whether an extremely simple fixed-wing glider (no propeller) with only a single actuator in the tail is capable of landing precisely on a perch from a large range of initial conditions. To answer this question, we focus on the design of the flight control system; building upon previous work which used linear feedback control design based on quadratic regulators (LQR), we develop nonlinear feedback control based on nonlinear model-predictive control and ‘LQR-Trees’. Through simulation using a flat-plate model of the glider, we find that both nonlinear methods are capable of achieving an accurate bird-like perching maneuver from a large range of initial conditions; the ‘LQR-Trees’ algorithm is particularly useful due to its low computational burden at runtime and its inherent performance guarantees. With this in mind, we then implement the ‘LQR-Trees’ algorithm on real hardware and demonstrate a 95 percent perching success rate over 147 flights for a wide range of initial speeds. These results suggest that, at least in the absence of significant disturbances like wind gusts, complex wing morphology and sensing are not strictly required to achieve accurate and robust perching even in the post-stall flow regime. (papers)
2013-05-01
Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et : al. 2010) has recommended three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace : slab with sleeper slab (C...
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
The study of carrying capacity of timber slabs with use the finite elements method
Directory of Open Access Journals (Sweden)
Demeshok Vitalii
2017-01-01
Full Text Available In the article, the results of the study of behavior of timber slab under influence of fire with the standard “time-temperature” curve are presented. The finite element method was used for it. For the calculation we constructed a grid models of timber slabs. As a result of solution of the thermal problem was obtained temperature distribution and the graphs of maximum deflection of timber slabs and its slew rate depending on the time of the test. The obtained graphs allow to obtain data on the occurrence of the limit state of loss of bearing capacity by comparing current values of displacements and velocities with the maximum allowable. Analysis of the graphs shows that the criteria limit state of loss of bearing capacity does not occur. Calculation method of evaluating the fire resistance of timber slabs was developed. For it use database about strain-stress state of this slabs in conditions of influence of the fire.
Kuznetsova, T. A.
2018-05-01
The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.
Compressible dynamic stall control using high momentum microjets
Beahan, James J.; Shih, Chiang; Krothapalli, Anjaneyulu; Kumar, Rajan; Chandrasekhara, Muguru S.
2014-09-01
Control of the dynamic stall process of a NACA 0015 airfoil undergoing periodic pitching motion is investigated experimentally at the NASA Ames compressible dynamic stall facility. Multiple microjet nozzles distributed uniformly in the first 12 % chord from the airfoil's leading edge are used for the dynamic stall control. Point diffraction interferometry technique is used to characterize the control effectiveness, both qualitatively and quantitatively. The microjet control has been found to be very effective in suppressing both the emergence of the dynamic stall vortex and the associated massive flow separation at the entire operating range of angles of attack. At the high Mach number ( M = 0.4), the use of microjets appears to eliminate the shock structures that are responsible for triggering the shock-induced separation, establishing the fact that the use of microjets is effective in controlling dynamic stall with a strong compressibility effect. In general, microjet control has an overall positive effect in terms of maintaining leading edge suction pressure and preventing flow separation.
The Dynamics of SecM-Induced Translational Stalling
Directory of Open Access Journals (Sweden)
Albert Tsai
2014-06-01
Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.
National Research Council Canada - National Science Library
Hathaway, Michael D; Herrick, Greg; Chen, Jenping; Webster, Robert
2004-01-01
.... Improved understanding of the stall inception process and how stall control technologies mitigate such will provide compressors with increased tolerance to stall, thereby expanding the operational...
Schellart, W. P.
2007-01-01
A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for
Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts
Newman, Timothy J.; Mamun, Mohammed A.; Nieduszynski, Conrad A.; Blow, J. Julian
2013-01-01
During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts—Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe—also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10−8, which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms. PMID:23963700
Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance
Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter
2018-01-01
In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.
Photon transport in thin disordered slabs
Indian Academy of Sciences (India)
We examine using Monte Carlo simulations, photon transport in optically `thin' slabs whose thickness is only a few times the transport mean free path *, with particles of different scattering anisotropies. The conﬁned geometry causes an auto-selection of only photons with looping paths to remain within the slab.
Repairing reinforced concrete slabs using composite layers
International Nuclear Information System (INIS)
Naghibdehi, M. Ghasemi; Sharbatdar, M.K.; Mastali, M.
2014-01-01
There are several strengthening methods for rehabilitation of RC structural elements. The efficiency of these methods has been demonstrated by many researchers. Due to their mechanical properties, using fibrous materials in rehabilitation applications is growing fast. Therefore, this study presents rehabilitation of slabs in such a way that plain concrete layers on top, on bottom, on the entire cross section are replaced by reinforced concrete layers. In order to reinforce the concrete, Polypropylene (PP) and steel fibers were used by 0.5%, 1% and 2% fiber volume fractions. Nineteen slabs were studied under flexural loadings and fibrous material effects on the initial crack force, the maximum loading carrying capacity, absorbed energy and ductility were investigated. The obtained results demonstrated that increasing the fiber volume fraction or using reinforced concrete layer on top, bottom, or at the entire cross section of the slabs not only always leads to improvement in the slab performance, but also sometimes debilitates the slab performance. Hence, this study will propose the best positioning of reinforced concrete layer, fiber volume fraction and fiber type to achieve the best flexural performance of slabs. - Highlights: • Using PP fibers at the bottom layer led to the best slab performance in bending. • Using steel fiber at the top layer and entire cross-section led to the best slab performance. • Maximum increase in the initial crack force and loading were obtained at 2% steel fiber. • Maximum increase in the initial crack force and loading were obtained at 1% PP fiber
0-6722 : spread prestressed concrete slab beam bridges.
2014-08-01
The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...
Stall Recovery Guidance Algorithms Based on Constrained Control Approaches
Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana
2016-01-01
Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.
Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence
Feroskhan, Mir Alikhan Bin Mohammad
Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and
Study of global stability of tall buildings with prestressed slabs
Directory of Open Access Journals (Sweden)
L. A. Feitosa
Full Text Available The use of prestressed concrete flat slabs in buildings has been increasing in recent years in the Brazilian market. Since the implementation of tall and slender buildings a trend in civil engineering and architecture fields, arises from the use of prestressed slabs a difficulty in ensuring the overall stability of a building without beams. In order to evaluate the efficiency of the main bracing systems used in this type of building, namely pillars in formed "U" in elevator shafts and stairs, and pillars in which the lengths are significantly larger than their widths, was elaborated a computational models of fictional buildings, which were processed and analyzed using the software CAD/TQS. From the variation of parameters such as: geometry of the pillars, thick slabs, characteristic strength of the concrete, reduceofthe coefficient of inertia for consideration of non-linearities of the physical elements, stiffness of the connections between slabs and pillars, among others, to analyze the influence of these variables on the overall stability of the building from the facing of instability parameter Gama Z, under Brazilian standard NBR 6118, in addition to performing the processing of building using the P-Delta iterative calculation method for the same purpose.
Experimental and numerical investigation of slabs on ground subjected to concentrated loads
Øverli, Jan
2014-09-01
An experimental program is presented where a slab on ground is subjected to concentrated loading at the centre, the edges and at the corners. Analytical solutions for the ultimate load capacity fit well with the results obtained in the tests. The non-linear behaviour of the slab is captured by performing nonlinear finite element analyses. The soil is modelled as a no-tension bedding and a smeared crack approach is employed for the concrete. Through a parametric study, the finite element model has been used to assess the influence of subgrade stiffness and shrinkage. The results indicate that drying shrinkage can cause severe cracking in slabs on grade.
International Nuclear Information System (INIS)
Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V
2009-01-01
A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ∼12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ∼14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ∼ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour. (lasers)
Negotiating Multicollinearity with Spike-and-Slab Priors.
Ročková, Veronika; George, Edward I
2014-08-01
In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout.
Prediction of H.A.W.T. blade stall and performance
Energy Technology Data Exchange (ETDEWEB)
Giannakidis, G.; Graham, J.M.R. [Imperial College, Dept. of Aeronautics, London (United Kingdom)
1996-09-01
A model is being developed for the prediction of Horizontal Axis Wind Turbine blade stall and performance coupled with a simple aeroelastic analysis model. For the aerodynamic calculation a two dimensional unsteady Navier-Stokes solver on a sectional basis on the blade is coupled with a three dimensional vortex lattice wake. Pressure coefficient distributions are calculated from the two dimensional viscous flow in each blade section. The aerodynamic computations are coupled with a vibrating beam model in order to incorporate flapwise deformations of the blade. (au) 17 refs.
Slab melting and magma formation beneath the southern Cascade arc
Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.
2016-01-01
The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the
Closure behavior of spherical void in slab during hot rolling process
Cheng, Rong; Zhang, Jiongming; Wang, Bo
2018-04-01
The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..
Prediction of punching shear capacities of two-way concrete slabs reinforced with FRP bars
Directory of Open Access Journals (Sweden)
Ibrahim M. Metwally
2013-08-01
Full Text Available Where corrosion of steel reinforcement is a concern, fiber-reinforced polymer (FRP reinforcing bar or grid reinforcement provides an alternative reinforcement for concrete flat slabs. The existing provisions for punching of slabs in most international design standards for reinforced concrete are based on tests of steel reinforced slabs. The elastic stiffness and bonding characteristics of FRP reinforcement are sufficiently different from those of steel to affect punching strength [1]. This paper evaluates the punching shear strength of concrete flat slabs reinforced with different types of fiber-reinforced polymer (FRP. A total of 59 full-size slabs were constructed and tested collected from the literature of FRP bars reinforced concrete slabs. The test parameters were the amount of FRP reinforcing bars, Young’s modulus of FRP bars, slab thickness, loaded areas and concrete compressive strength. The experimental punching shear strengths were compared with the available theoretical predictions, including the ACI 318 Code, BS 8110 Code, ACI 440 design guidelines, and a number of models proposed by some researchers in the literature. Two approaches for predicting the punching strength of FRP-reinforced slabs are examined. The first is an empirical new model which is considered as a modification of El-Gamal et al. [2] model. The second is a Neural Networks Technique; which has been developed to predict the punching shear capacity of FRP reinforced concrete slabs. The accuracies of both methods were evaluated against the experimental test data. They attained excellent agreement with available test results compared to the existing design formulas.
Seismicity Structure of the Downgoing Nazca Slab in Northern Chile
Sippl, C.; Schurr, B.
2017-12-01
We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.
International Nuclear Information System (INIS)
Jang, Jiin-Yuh; Huang, Jun-Bo
2015-01-01
A two-dimensional mathematical heat transfer model for the prediction of the temperature history of steel slabs was performed in order to obtain the optimal heating pattern of these slabs with minimum energy consumption in a walking-beam type reheating furnace. An algorithm developed with a simplified conjugated-gradient method combined with a shooting method, was used as an optimizer to design the furnace temperature distribution, including the preheating zone, heating zone and soaking zone temperatures. Comparison with the in-situ experimental data indicated that the present heat transfer model works well for the prediction of the thermal behavior of a slab in the reheating furnace. The effect of the furnace temperature distribution on the design requirements, such as energy required for heating a slab, slab temperature uniformity at the furnace exit and slab discharging temperature, were investigated. The parametric study results indicated that energy consumption significantly decreases with reductions in the preheating zone temperature. The optimal design also resulted in lower energy consumption for heating a slab as compared to the original operational conditions in the steel plant. - Highlights: • The heating process of steel slabs in a reheating furnace is numerically simulated. • An algorithm is developed to search for the optimal heating pattern of a slab. • Energy consumption decreases with reductions in the preheating zone temperature
Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace
Man Young Kim
2013-01-01
In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribut...
DNA replication: stalling a fork for imprinting and switching
DEFF Research Database (Denmark)
Egel, Richard
2004-01-01
Mating-type switching in fission yeast has long been known to be directed by a DNA 'imprint'. This imprint has now been firmly characterized as a protected site-specific and strand-specific nick. New work also links the widely conserved Swi1-Swi3 complex to the protection of stalled replication...
Compressible dynamic stall vorticity flux control using a dynamic ...
Indian Academy of Sciences (India)
systems, such as a wind turbine, are prevented from ever entering dynamic stall, essentially disregarding potential ... future generations of such systems, an overwhelming need has developed to avail this benefit safely. ... approach must diffuse the vorticity prior to its coalescence, but keep the vorticity over the airfoil up to ...
Dynamic Characteristics of Rotating Stall in Mixed Flow Pump
Directory of Open Access Journals (Sweden)
Xiaojun Li
2013-01-01
Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.
Causes of the fissure formation with shrinkage of metal on low carbon steel slabs
International Nuclear Information System (INIS)
Ksenzuk, F.A.; Khudas, A.L.; Zelenskaya, D.P.
1977-01-01
The causes have been investigated underlying the formation of fissures with spread of metal on low-carbon steel slabs during hot rolling. Metallographic investigations of templates from various sections of work pieces from 15-ton ingots of 08 ps (kp) steels have indicated that the fissures on the slabs are formed after the metal spreads along the small plane and the work piece thins out in the course of rolling because of the opening of large thin-walled honeycomb bubbles. The phenomenon was confirmed schematically on a model in the form of a slab-shaped lead specimen with longitudinal hole of a variable diameter close to one of the edges
Estimation of RC slab-column joints effective strength using neural networks
Directory of Open Access Journals (Sweden)
A. A. Shah
Full Text Available The nominal strength of slab-column joints made of highstrength concrete (HSC columns and normal strength concrete (NSC slabs is of great importance in structural design and construction of concrete buildings. This topic has been intensively studied during the last decades. Different types of column-slab joints have been investigated experimentally providing a basis for developing design provisions. However, available data does not cover all classes of concretes, reinforcements, and possible loading cases for the proper calculation of joint stresses necessary for design purposes. New numerical methods based on modern software seem to be effective and may allow reliable prediction of column-slab joint strength. The current research is focused on analysis of available experimental data on different slab-to-column joints with the aim of predicting the nominal strength of slabcolumn joint. Neural networks technique is proposed herein using MATLAB routines developed to analyze available experimental data. The obtained results allow prediction of the effective strength of column-slab joints with accuracy and good correlation coefficients when compared to regression based models. The proposed method enables the user to predict the effective design of column-slab joints without the need for conservative safety coefficients generally promoted and used by most construction codes.
Nonlocal microscopic theory of quantum friction between parallel metallic slabs
International Nuclear Information System (INIS)
Despoja, Vito; Echenique, Pedro M.; Sunjic, Marijan
2011-01-01
We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.
Calculating seismic of slabs ITA NNP Garona
International Nuclear Information System (INIS)
Ezeberry, J. I.; Guerrero, A.; Gamarra, J.; Beltran, F.
2014-01-01
This article describes the methodology that Idom has employed to perform the seismic evaluation of slabs within the ITA project of the NPP Santa Maria de Garona. Seismic calculations that have been conducted include consideration of the effects of the interaction of soil structure as well as the possible take-off containers with respect to slab during the earthquake. Therefore, the main contribution of the work is the study of the coupling of rolling containers with the flexibility of the whole ground-slab For calculations has been used ABAQUS/Explicit program, allowing to solve effectively the nonlinearities listed above using explicit integration algorithms over time. The results of the calculations reflect the importance of jointly analyse the seismic responses of slab and containers. (Author)
Investigation on reinforced concrete slabs subjeted to impact loading
International Nuclear Information System (INIS)
Freiman, M.; Krutzik, N.J.; Tropp, R.; Zorn, N.F.
1984-01-01
A comparison of experimental and computational results for tests of reinforced concrete slabs subjected to soft missile impact is presented. Numerical simulation techniques were employed to predict the target response. The objective of the calculations was to validate the material model for reinforced concrete implemented in a finite difference code. The computational results regarding displacements or strains in the reinforcement conform satisfactorily with the experimental values. (Author) [pt
Influence of slab connection in case of expanded concrete pavements
Deluka-Tibljaš, Aleksandra; Prager, Andrija; Rukavina, Tatjana
2002-01-01
Load transfer from the stressed slab to the neighboring unstressed slab is analyzed in order to establish possibilities for stress reduction in concrete. The contact between slabs is established by means of reinforcing steel shear studs while the influence of friction in the concrete to concrete contact is neglected. The influence of slab thickness, slab cross-section and spacing of shear studs is analyzed, and the expansion joint movement due to change in temperature is studied. Conditions e...
Rotational flow in tapered slab rocket motors
Saad, Tony; Sams, Oliver C.; Majdalani, Joseph
2006-10-01
Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.
Visualization and PIV measurement of unsteady flow around a darrieus wind turbine in dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Shibuya, Satoshi; Fujisawa, Nobuyuki; Takano, Tsuyoshi [Dept. of Mechanical and Production Engineering, Niigata Univ., Niigata (Japan)
1999-07-01
Flow around a Darrieus wind turbine in dynamic stall is studied by flow visualization and PIV (particle image velocimeter) measurement in a rotating frame of reference, which allows the successive observation of the dynamic stall over the blade. The qualitative features of the flow field in dynamic stall observed by the flow visualization, such as the formation and shedding of the stall vortices, are quantitatively reproduced in the instantaneous velocity distributions near the blade by using PIV. These results indicate that two pairs of stall vortices are generated from the blade during one rotation of the blade and that the size and the generating blade angle of the stall vortices are enlarged as the tip-speed ratio decreases. These stall vortices are produced by the in-flow motion from the outer surface to the inner surface through the trailing edge of the blade and the flow separation over the inner surface of the blade. (author)
Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions
Directory of Open Access Journals (Sweden)
Lei Zhang
2014-01-01
Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.
International Nuclear Information System (INIS)
Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.
2017-01-01
The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O 2 : He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.
Energy Technology Data Exchange (ETDEWEB)
Vagin, N. P.; Ionin, A. A., E-mail: aion@sci.lebedev.ru; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V., E-mail: dsinit@sci.lebedev.ru; Yuryshev, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O{sub 2}: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.
Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor
Paraschivoiu, I.; Desy, P.; Masson, C.
1988-02-01
The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.
Lawless, Patrick B.; Fleeter, Sanford
1991-01-01
A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.
Experimental research of slab cast over precast joists with prestressed reinforcement
Directory of Open Access Journals (Sweden)
Koyankin Aleksandr Aleksandrovich
2016-03-01
Full Text Available At the present time reinforced concrete is the main construction material in civil and industrial construction. Cast-in-place and precast construction is gradually becoming a more widespread type of house-building, but still there is a lack of data, including experimental data, which allows evaluating the stress and strain state of a construction of a slab cast over precast joists. Experimental research of stress and strain state of slab cast over precast joists with prestressed reinforcement was carried out. An experimental model of a fragment of a hybrid precast/cast-in-place building was produced and tested (reduction scale 1:6. The experimental investigations of slab cast over precast joists with prestressed reinforcement proved that the construction solution of the framework offered in the previous works of the authors possess good stiffness, crack-resistance and bearing capacity. It well fits for constructing the slabs of long spans in residential and public buildings.
International Nuclear Information System (INIS)
Xu, Xinhua; Yu, Jinghua; Wang, Shengwei; Wang, Jinbo
2014-01-01
Highlights: • A review on the development and modeling of active hollow core slab is presented. • The applications and performance evaluation of the slab in building are reviewed. • Finite element or finite difference method is often used in multidimensional model. • Performance evaluations of building using active slabs for ventilation are limited. • More works on the active hollow core slab are worthwhile. - Abstract: The society and the building professionals have paid much concern in recent years on building energy efficiency and the development and applications of low energy technologies for buildings/green buildings allowing the elimination, or at least reduction of dependence on electricity or fossil fuel while maintaining acceptable indoor environment. Utilizations of favorable diurnal temperature difference and ground thermal source for air conditioning are among these low energy technologies. Utilization of the hollow cores in the prefabricated slab for ventilation and the mass of the slab for thermal storage is widely used in building systems in Europe by exploiting the low energy source of the ambient air. These hollow core slabs aim at enlarging the heat transfer surface between the slab mass and the air in the core, which permits substantial heat flows even for relatively small temperature differences. This, in turn, allows the use of low energy cooling or heating sources, such as the ground, outside air or recovered process heat. In this paper, we present a comprehensive review of the research and application of active hollow core slabs in building systems for utilizing low energy sources. The principle and development of active hollow core slabs in building systems for leveling the indoor temperature fluctuation by ventilation air passing the cores are described. Calculation models of the active hollow core concrete slab as well as the practical applications and performance evaluation of the slab applied in building systems for air
Dynamic stall - The case of the vertical axis wind turbine
Laneville, A.; Vittecoq, P.
1986-05-01
This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.
Development of tooling suitable for stall regulated blades
Energy Technology Data Exchange (ETDEWEB)
Hancock, M.
2001-07-01
The objectives of the project were to make significant improvements in the production of stall regulated blades in the areas of (a) the tip box, its housing, its mechanism and small GRP parts; (b) mould technology; (c) resins and glues and (d) root tooling. Although wood composite had been identified as a competitive technology for blades, compared with GRP blades, production volumes had been lower; reasons are given. The way in which the four areas identified for investigation were tackled are discussed. The study showed that the mould cycle time can be reduced to two days for a stall regulated blade and the blade quality can be improved by using the composite tip box and new resins. The time required for replication of moulds can be reduced by 40%.
Stalled replication forks generate a distinct mutational signature in yeast
DEFF Research Database (Denmark)
Larsen, Nicolai B.; Liberti, Sascha E.; Vogel, Ivan
2017-01-01
Proliferating cells acquire genome alterations during the act of DNA replication. This leads to mutation accumulation and somatic cell mosaicism in multicellular organisms, and is also implicated as an underlying cause of aging and tumorigenesis. The molecular mechanisms of DNA replication...... Escherichia coli Tus/Ter complex) engineered into the yeast genome. We demonstrate that transient stalling at this barrier induces a distinct pattern of genome rearrangements in the newly replicated region behind the stalled fork, which primarily consist of localized losses and duplications of DNA sequences....... These genetic alterations arise through the aberrant repair of a single-stranded DNA gap, in a process that is dependent on Exo1- and Shu1-dependent homologous recombination repair (HRR). Furthermore, aberrant processing of HRR intermediates, and elevated HRR-associated mutagenesis, is detectable in a yeast...
Broucek, Jan; Uhrincat, Michal; Mihina, Stefan; Soch, Miloslav; Mrekajova, Andrea; Hanus, Anton
2017-01-01
Simple Summary The purpose of this study was to evaluate the influence of moving cows from the barn with stanchion-stall housing to free-stall housing on their behaviour and production. Cows lay down up to ten hours after removing. The cows in their second lactation and open cows tended to lie sooner after removing than cows in their first lactation and pregnant cows. The times of total lying and rumination were increasing from the first day to the tenth day after removing. Cows produced 23.3% less milk at the first day following the transfer than at the last day prior to moving (23.76 ± 7.20 kg vs. 30.97 ± 7.26 kg, p cows achieved maximum production. The difference was found in milk losses due to the shift between cows in first and second lactation. Abstract Transfer of cattle to an unknown barn may result in a reduction in its welfare. Housing and management practices can result in signs of stress that include a long-term suppression of milk efficiency. The purpose of this study was to evaluate the influence of moving cows from the stanchion-stall housing to free-stall housing on their behaviour and production. The Holstein cows were moved into the new facility with free-stall housing from the old barn with stanchion-stall housing. Cows lay down up to ten hours (596.3 ± 282.7 min) after removing. The cows in their second lactation and open cows tended to lie sooner after removing than cows in their first lactation and pregnant cows. The times of total lying and rumination were increasing from the first day to the tenth day after removing (23.76 ± 7.20 kg vs. 30.97 ± 7.26 kg, p Cows produced 23.3% less milk at the first day following the transfer than at the last day prior to moving (p cows on the first and second lactation (p cows’ milk production. However, when the cows are moved to a better environment, they rapidly adapt to the change. PMID:28273810
A kinesthetic-tactual display for stall deterrence
Gilson, R. D.; Ventola, R. W.; Fenton, R. E.
1975-01-01
A kinesthetic tactual display may be effectively used as a control aid per previous flight tests. Angle of attack information would be continuously presented to a pilot, via this display, during critical operational phases where stalls are probable. A two phase plan for evaluating this concept is presented. A first development phase would encompass: (1) display fabrication for a conventional control yoke; (2) its installation, together with other necessary instrumentation, in an experimental aircraft; and (3) preliminary flight testing by experienced pilots.
International Nuclear Information System (INIS)
Orbovic, Nebojsa; Sagals, Genadijs; Blahoianu, Andrei
2015-01-01
better performance of slabs with transverse reinforcement in form of T-headed bars compared to the slabs with conventional stirrups with hooks with regards to perforation capacity under hard missile impact. Non-linear dynamic behavior of reinforced concrete slabs under impact loading by rigid missile was analyzed using the commercial Finite Element (FE) code LS-DYNA. FE blind predictions based on Winfrith concrete material model were compared to the tests on slabs with and without transverse reinforcement. The FE predictions obtained were in general agreement with tests. Two different types of transverse reinforcement were examined (stirrups and T-headed bars) using simplified models. Similar to the tests, the FE predictions show that transverse reinforcement localizes damage induced by missile impact but does not increase the perforation resistance of the concrete slab. FE predictions also showed that T-headed bars perform better than stirrups, providing approximately the same perforation resistance and smaller damaged area comparing with a slab with longitudinal reinforcement only. Additionally, FE modeling was conducted for two different slab thicknesses to assess the effect of the thickness.
1979-01-01
Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.
Accidents due to falls from roof slabs.
Rudelli, Bruno Alves; Silva, Marcelo Valerio Alabarce da; Akkari, Miguel; Santili, Claudio
2013-01-01
CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%). Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%), and flying a kite was the most prevalent game (37.9%). In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.
Accidents due to falls from roof slabs
Directory of Open Access Journals (Sweden)
Bruno Alves Rudelli
Full Text Available CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%. Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%, and flying a kite was the most prevalent game (37.9%. In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
High Performance Slab-on-Grade Foundation Insulation Retrofits
Energy Technology Data Exchange (ETDEWEB)
Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)
2015-09-01
?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.
The Green's function method for critical heterogeneous slabs
International Nuclear Information System (INIS)
Kornreich, D.E.
1996-01-01
Recently, the Green's Function Method (GFM) has been employed to obtain benchmark-quality results for nuclear engineering and radiative transfer calculations. This was possible because of fast and accurate calculations of the Green's function and the associated Fourier and Laplace transform inversions. Calculations have been provided in one-dimensional slab geometries for both homogeneous and heterogeneous media. A heterogeneous medium is analyzed as a series of homogeneous slabs, and Placzek's lemma is used to extend each slab to infinity. This allows use of the infinite medium Green's function (the anisotropic plane source in an infinite homogeneous medium) in the solution. To this point, a drawback of the GFM has been the limitation to media with c 1; however, mathematical solutions exist which result in oscillating Green's functions. Such calculations are briefly discussing. The limitation to media with c < 1 has been relaxed so that the Green's function may also be calculated for media with c ≥ 1. Thus, materials that contain fissionable isotopes may be modeled
Design of energy efficient building with radiant slab cooling
Tian, Zhen
2007-12-01
Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The
Wider stall space affects behavior, lesion scores, and productivity of gestating sows.
Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M
2015-10-01
Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( pregnancy progressed, lesion scores increased among sows in CTL ( postural behaviors and sham chew behavior were affected by TRT ( changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.
Slab tears and intermediate-depth seismicity
Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay
2013-01-01
Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.
Fire resistance of prefabricated monolithic slab
Directory of Open Access Journals (Sweden)
Gravit Marina
2017-01-01
Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.
Conjecture with water and rheological control for subducting slab in the mantle transition zone
Directory of Open Access Journals (Sweden)
Fumiko Tajima
2015-01-01
Full Text Available Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs, flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the “660 km” discontinuity depths and low viscosity layers (LVLs beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20–30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ∼660 km. The variation of the discontinuity depths and highly localized low seismic speed anomaly (LSSA zones observed from seismic P waveforms in a relatively high frequency band (∼1 Hz support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+ diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not
Retrieving the characteristics of slab ice covering snow by remote sensing
Directory of Open Access Journals (Sweden)
F. Andrieu
2016-09-01
Full Text Available We present an effort to validate a previously developed radiative transfer model, and an innovative Bayesian inversion method designed to retrieve the properties of slab-ice-covered surfaces. This retrieval method is adapted to satellite data, and is able to provide uncertainties on the results of the inversions. We focused on surfaces composed of a pure slab of water ice covering an optically thick layer of snow in this study. We sought to retrieve the roughness of the ice–air interface, the thickness of the slab layer and the mean grain diameter of the underlying snow. Numerical validations have been conducted on the method, and showed that if the thickness of the slab layer is above 5 mm and the noise on the signal is above 3 %, then it is not possible to invert the grain diameter of the snow. In contrast, the roughness and the thickness of the slab can be determined, even with high levels of noise up to 20 %. Experimental validations have been conducted on spectra collected from laboratory samples of water ice on snow using a spectro-radiogoniometer. The results are in agreement with the numerical validations, and show that a grain diameter can be correctly retrieved for low slab thicknesses, but not for bigger ones, and that the roughness and thickness are correctly inverted in every case.
Calculation of spin and orbital magnetizations in Fe slab systems at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Garibay-Alonso, R [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Coahuila, Conjunto Universitario Camporredondo, Edificio ' D' , 25000 Saltillo (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis PotosI, Alvaro Obregon 64, San Luis PotosI (Mexico); Urrutia-Banuelos, EfraIn [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis PotosI (Mexico)
2010-02-10
The temperature dependence of spin and orbital local magnetizations is theoretically determined for the non-bulk atomic region of (001) and (110) Fe slab systems. A d band Hamiltonian, including spin-orbit coupling terms, was used to model the slabs, which were emulated by using Fe films of sufficient thickness to reach a bulk behavior at their most inner atomic layers. The temperature effects were considered within the static approximation and a simple mean field theory was used to integrate the local magnetic moment and charge thermal fluctuations. The results reflect a clear interplay between electronic itinerancy and the local atomic environment and they can be physically interpreted from the local small charge transfers occurring in the superficial region of the slabs. For recovering the experimental behavior on the results for the (001) slab system, the geometrical relaxations at its non-bulk atomic layers and a d band filling variation are required. A study on the magnetic anisotropy aspects in the superficial region of the slabs is additionally performed by analyzing the results for the orbital local magnetization calculated along two different magnetization directions in both slab systems.
International Nuclear Information System (INIS)
Hong, Ser Gi; Lee, Young Ouk; Song, Jae Seung
2009-01-01
This paper analyzes the convergence of the rebalance iteration methods for the discrete ordinates transport equation in the multiplying finite slab problem. The finite slab is assumed to be homogeneous and it has the periodic boundary conditions. A general formulation is used to include three well-known rebalance methods of the linearized form in a unified way. The rebalance iteration methods considered in this paper are the CMR (Coarse-Mesh Rebalance), the CMFD (Coarse-Mesh Finite Difference), and p-CMFD (Partial Current-Based Coarse Mesh Finite Difference) methods which have been popularly used in the reactor physics. The convergence analysis is performed with the well-known Fourier analysis through a linearization. The analyses are applied for one-group problems. The theoretical analysis shows that there are one fundamental mode and N-1 Eigen-modes which determine the convergence if the finite slab is divided into N uniform meshes. The numerical tests show that the Fourier convergence analysis provides the reasonable estimate of the numerical spectral radii for the model problems and the spectral radius for the finite slab approaches the one for the infinite slab as the thickness of the slab increases. (author)
Seismic evidence for hydration of the Central American slab: Guatemala through Costa Rica
Syracuse, E. M.; Thurber, C. H.
2011-12-01
The Central American subduction zone exhibits a wide variability in along-arc slab hydration as indicated by geochemical studies. These studies generally show maximum slab contributions to magma beneath Nicaragua and minimum contributions beneath Costa Rica, while intermediate slab fluid contributions are found beneath El Salvador and Guatemala. Geophysical studies suggest strong slab serpentinization and fluid release beneath Nicaragua, and little serpentinization beneath Costa Rica, but the remainder of the subduction zone is poorly characterized seismically. To obtain an integrated seismic model for the Central American subduction zone, we combine 250,000 local seismic arrivals and 1,000,000 differential arrivals for 6,500 shallow and intermediate-depth earthquakes from the International Seismic Centre, the Central American Seismic Center, and the temporary PASSCAL TUCAN array. Using this dataset, we invert for Vp, Vs, and hypocenters using a variable-mesh double-difference tomography algorithm. By observing low-Vp areas within the normally high-Vp slab, we identify portions of the slab that are likely to contain serpentinized mantle, and thus contribute to higher degrees of melting and higher volatile components observable in arc lavas.
Vertical slab sinking and westward subduction offshore of Mesozoic North America
Sigloch, Karin; Mihalynuk, Mitchell G.
2013-04-01
hotspot reference frame, with elongate slab walls predicts where and when the intra-oceanic trenches would have been overridden by the westward-moving continent. Land geology plays the role of a validating data set: trench override is predicted to coincide with accretion of buoyant arc terranes, deformation of the continental margin and slab window volcanism. We find excellent agreement between predicted and observed accretion episodes, validating both vertical sinking (within observational uncertainties of a few hundred kilometers laterally), and westward subduction beneath an archipelago of island arcs west of Jura-Cretaceous North America. Amalgamation of the arcs with North America occurred as the intervening ocean crust was consumed. Implied slab sinking rates are of 10±2 mm/a, uniformly for three different slab walls. We conclude that the hypothesis of essentially vertical slab sinking produces a self-consistent model that explains first-order observations of 200 Ma - 50 Ma Cordilleran geology. By contrast, the standard scenario of a continental Farallon trench requires massive amounts of slab to be laterally displaced by 1000+ km after subduction, and offers no explanation for a long series of Cretaceous terrane accretions.
Active isotropic slabs: conditions for amplified reflection
Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste
2012-12-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.
Active isotropic slabs: conditions for amplified reflection
International Nuclear Information System (INIS)
Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier
2012-01-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)
Energy Technology Data Exchange (ETDEWEB)
Belkheir, N. [Khemis Miliana Univ., Ain Defla (Algeria); Dizene, R. [Univ. des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Laboratoire de Mecanique Avancee; Khelladi, S.; Massouh, F.; Dobrev, I. [Arts et Metiers Paris Tech., Paris (France)
2010-07-01
The shape of an airfoil is designed to achieve the best aerodynamic performance. An aerofoil section undergoes dynamic stall when subjected to any form of unsteady angle of pitch. The study of a horizontal-axis wind turbine (HAWT) under wind operating conditions is complex because it is subject to instantaneous speed and wind direction variation. When turbine blades are driven into a dynamic stall, the lift coefficient drops suddenly resulting in a degradation in aerodynamic performance. This study presented steady and unsteady wind load predictions over an oscillating S809 airfoil tested in a subsonic wind tunnel. A model of sinusoidal pitch oscillations was used. The values for the angles of attack in steady state ranged from -20 to +40 degrees. The model considered 3 frequencies and 2 amplitudes. The two-dimensional numerical model simulated the instantaneous change of wind direction with respect to the turbine blade. Results were compared with data measurements of S809 aerofoil. Reasonable deviations were obtained between the predicted and experimental results for pitch oscillations. The URANS approach was used to predict the stall while the software FLUENT was used for the numerical solution. It was concluded that the behaviour of the unsteady flow in the wind farm must be considered in order to obtain an accurate estimate of the wind turbine aerodynamic load. 12 refs., 5 figs.
Behaviour of reinforced concrete slabs with steel fibers
Baarimah, A. O.; Syed Mohsin, S. M.
2017-11-01
This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.
Wet plume atop of the flattening slab: Insight into intraplate volcanism in East Asia
He, Lijuan
2017-08-01
Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of slab downgoing, flattening and stagnation. Equation of water transfer is included, and water effects on density and viscosity are considered. Model results indicate the warming of slab by surrounding mantle is rather slow. Water could be successfully dragged into the transition zone if the reference viscosity of the hydrous layer (with initial water of 2 wt%) is higher than 1017 Pa s and that of mantle is 1021 Pa s. Wet plumes could then originate in the flat-lying part of the slab, relatively far from the trench. Generally, the viscosity of the hydrous layer governs the initiation of wet plume, whereas the viscosity of the overlying mantle wedge controls the activity of the ascending wet plumes - they are more active in the weaker wedge. The complex fluid flow superposed by corner flow and free thermal convection influences greatly the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab under some specific thermo-rheological conditions, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of the flattening slab warmed by surrounding mantle, and 3) water spreads over the big mantle wedge. Wet plume from the flattening Pacific Plate arrives at the lithospheric base and induces melting, which can explain the intraplate Cenozoic volcanoes in East Asia.
Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions
Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong
2018-02-01
In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.
Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions
Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong
2018-06-01
In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.
The Slab Method to Measure the Topological Susceptibility
Bietenholz, Wolfgang; de Forcrand, Philippe; Dromard, Arthur; Gerber, Urs
2016-10-11
In simulations of a model with topological sectors, algorithms which proceed in small update steps tend to get stuck in one sector, especially on fine lattices. This distorts the numerical results, in particular it is not straightforward to measure the topological susceptibility chi_t. We test a method to measure chi_t even if configurations from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as "slabs". This enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models and for 2-flavour QCD.
Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil
Mcalister, K. W.; Tung, C.
1993-01-01
The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.
Numerical study on a single bladed vertical axis wind turbine under dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)
2017-01-15
The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.
Active flow control of the laminar separation bubble on a plunging airfoil near stall
Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann
2017-11-01
The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.
Preferences of dairy cows for three stall surface materials with small amounts of bedding.
Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Saloniemi, H
2010-01-01
Farmers' concerns about the economy, cost of labor, and hygiene have resulted in reduced use of organic bedding in stalls for dairy cows; however, the reduced use of organic bedding possibly impairs cow comfort. The effects of different stall surface materials were evaluated in an unheated building in which only a small amount of bedding was used. The lying time and preferences of 18 cows using 3 stall surface materials (concrete, soft rubber mat, and sand) were compared. All materials were lightly bedded with a small amount of straw, and the amount of straw added to each stall was measured. The cows only had access to stalls of one surface type while their lying time was observed. Lying times were longest on the rubber mats compared with other surfaces (rubber mat 768; concrete 727; sand 707+/-16 min/d). In a preference test, cows had access to 2 of the 3 types of stalls for 10 d and their stall preference was measured. Cows preferred stalls with rubber mats to stalls with a concrete floor (median 73 vs. 18 from a total of 160 observations per day; interquartile range was 27 and 12, respectively), but showed no preference for sand stalls compared with stalls with a concrete floor or with rubber mats. More straw was needed on sand stalls compared with concrete or mat (638+/-13 g/d on sand, 468+/-10 g/d on concrete, and 464+/-8 g/d on rubber mats). Lying times on bedded mats indicated that mats were comfortable for the cows. If availability or cost of bedding material requires limiting the amount of bedding used, rubber mats may help maintain cow comfort. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients
Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.
2017-12-01
Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.
Lifetime Reliability Assessment of Concrete Slab Bridges
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed....... Finally the produce is illustrated on 6 existing UK bridges....
All-polymer photonic crystal slab sensor
DEFF Research Database (Denmark)
Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph
2015-01-01
An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured...
Reinforcement of the concrete base slab of the ATLAS cavern
Maximilien Brice
2002-01-01
Photo 02: UX15 cavern, preparation for concreting of base slab first lift. Photo 05: UX15 cavern, placing of reinforcement for base slab first lift. Photo 07: UX15 cavern, preparation for concreting of base slab first lift. Photo 09: UX15 cavern, placing of reinforcement for base slab first lift. Photo 10: UX15 cavern, view into PX14 shaft above. Photo 12: UX15 cavern, temporary access platform of RB16 tunnel. Photo 15: UJ17 chamber, invert excavation.
Cost analysis of reinforced concrete slabs and columns
Spuś, Piotr
2013-01-01
The construction industry is increasingly looking for solutions that are both simple and effective and that provide cost savings, speed and flexibility of execution. Two-way slabs are a form of construction unique to reinforced concrete comparing with the other major structural materials. It is an efficient, economical, and widely used structural system. The present dissertation aims to analyze and compare costs between four types of slabs: waffle slab with recuperate molds, flat slabs wit...
Monitoring indices of cow comfort in free-stall-housed dairy herds.
Cook, N B; Bennett, T B; Nordlund, K V
2005-11-01
Indices of cow comfort are used widely by consultants in the dairy industry, with a general understanding that they are representative of lying behavior. This study examines the influence of stall base type (sand or a geotextile mattress filled with rubber crumbs) and time of measurement on 4 indices of comfort collected at hourly intervals in 12 herds, aligned by morning and afternoon milking. Stall base type significantly influenced all indices of comfort. For example, the least squares mean (SE) cow comfort index (proportion of cows touching a stall that are lying down) was 0.76 (0.015) in herds with mattresses compared with 0.86 (0.015) in herds with sand stalls. Significant hourly variation was also identified suggesting that timing of measurement is important. None of the indices of cow comfort derived from the high-yielding group pen was associated with the mean 24-h lying time of 10 sentinel cows whose time budgets were known in each herd. However, the cow comfort index was associated with the herd mean 24-h stall standing time, with the strongest relationships occurring 2 h before the morning and afternoon milking, when stall base type did not significantly influence the association. When measured at these times, we recommend use of the stall standing index (proportion of cows touching a stall that are standing), with values greater than 0.20 being associated with abnormally long herd mean stall standing times greater than 2 h/d.
Inception mechanism and suppression of rotating stall in an axial-flow fan
International Nuclear Information System (INIS)
Nishioka, T
2013-01-01
Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan
Development Length for Headed Bars in Slab-Column Joints of RC Slab Bridges
2015-12-04
In accordance with the Caltrans Seismic Design Criteria, the superstructure in a slab bridge should remain essentially elastic and only the pile extensions/columns are permitted to develop inelastic deformations during a seismic event. Hence, the lon...
Numerical simulation of the RISOe1-airfoil dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1997-12-31
In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)
MICROBIOLOGICAL STUDY ON ICE FROM A FISH STALL
Directory of Open Access Journals (Sweden)
E. Tirloni
2012-08-01
Full Text Available The ice used for exposure of fish products could be a source of secondary contamination due to ice machine, due to not respected good manufacturing practices, particularly when ice is left on the fish stall and the next day the new layer is deposited over the old one. Aim of this study was the verification of the hygienic risk of this procedure through analyses of the liquid produced by the zones “thawed cephalopods” and “fresh whole fish”. Almost the microorganisms found were Gram negative (in particular Pseudomonadaceae.
Nonimaging concentrators for diode-pumped slab lasers
Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland
1991-10-01
Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.
Control of exceptional points in photonic crystal slabs
DEFF Research Database (Denmark)
Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav
2017-01-01
Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems, such as a pho...
The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes
Directory of Open Access Journals (Sweden)
Mickey R. Miller
2014-09-01
Full Text Available In bacteria, transfer-messenger RNA (tmRNA and SmpB comprise the most common and effective system for rescuing stalled ribosomes. Ribosomes stall on mRNA transcripts lacking stop codons and are rescued as the defective mRNA is swapped for the tmRNA template in a process known as trans-translation. The tmRNA–SmpB complex is recruited to the ribosome independent of a codon–anticodon interaction. Given that the ribosome uses robust discriminatory mechanisms to select against non-cognate tRNAs during canonical decoding, it has been hard to explain how this can happen. Recent structural and biochemical studies show that SmpB licenses tmRNA entry through its interactions with the decoding center and mRNA channel. In particular, the C-terminal tail of SmpB promotes both EFTu activation and accommodation of tmRNA, the former through interactions with 16S rRNA nucleotide G530 and the latter through interactions with the mRNA channel downstream of the A site. Here we present a detailed model of the earliest steps in trans-translation, and in light of these mechanistic considerations, revisit the question of how tmRNA preferentially reacts with stalled, non-translating ribosomes.
DEFF Research Database (Denmark)
Hansen, Anders Dohn; Clausen, Jens
2008-01-01
In this paper, we present The Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem...... considered here, is concerned with the generation of schedules for these. The problem is decomposed and modeled in two parts, namely a planning problem and a scheduling problem. In the planning problem a set of crane operations is created to take the yard from its current state to a desired goal state...... schedule for the cranes is generated, where each operation is assigned to a crane and is given a specific time of initiation. For both models, a thorough description of the modeling details is given along with a specification of objective criteria. Variants of the models are presented as well. Preliminary...
Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.
2016-05-01
A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.
Effect of Rotation in an Orthotropic Elastic Slab
Directory of Open Access Journals (Sweden)
Santra S.
2017-02-01
Full Text Available The fundamental equations of the two dimensional generalized thermoelasticity (L-S model with one relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue approach. The field variables in the space time domain are obtained numerically. The results corresponding to the cases of conventional thermoelasticity CTE, extended thermoelasticity (ETE and temperature rate dependent thermoelasticity (TRDTE are compared by means of graphs.
Ruud, L E; Bøe, K E; Osterås, O
2010-04-01
The objective was to test if there was an association between free-stall base softness and milk yield, incidence of clinical mastitis (CM), teat lesions, and removal of cows. In a questionnaire sent to 1,923 dairy farms presumed to be using free-stall housing, farmers were asked for information regarding housing and stall base; for example, the year of installation and the product name or brand of their mats or mattresses. This information was merged with data for milk yield, CM, teat lesions, and removal of cows extracted from the Norwegian Dairy Herd Recording System for the years after installation of mats or mattresses. After exclusion of invalid contributions, the data set consisted of 29,326 lactations for milk yield distributed over 363 free-stalled herds in Norway. The farms were stratified into 5 categories according to the softness of the stall surface measured as millimeter impact of a sphere with a diameter of 120 mm at 2-kN load: 1=concrete, softness of 0mm; 2=rubber, softness of 1 to 8mm; 3=soft mats, softness of 9 to 16 mm; 4=multilayer mats, softness of 17 to 24 mm; and 5=mattresses, softness over 24 mm. Lactation curves were estimated as modified Wood's lactation curves using test-day data and mixed models with repeated measurements, adjusting for days in milk, parity, and softness of free-stall flooring. Herds on concrete free-stall bases yielded 6,727+/-146 kg of milk from 5 to 305 days in milk. In comparison, herds showed a decrease of 0.3% on rubber, an increase of 2.4% on soft mats, an increase of 4.5% on multilayer mats, and an increase of 3.9% on mattresses. Compared with concrete, the hazard ratio (HR) of CM was less on rubber, multilayer mats, and mattresses [HR=0.89 (0.79-0.99), 0.85 (0.73-0.996), and 0.80 (0.73-0.88), respectively]. Compared with concrete, the HR of teat lesions was less on rubber, soft mats, multilayer mats, and mattresses [HR=0.41 (0.26-0.65), 0.33 (0.24-0.44), 0.12 (0.04-0.38), and 0.47 (0.33-0.67), respectively]. The
Design of advanced airfoil for stall-regulated wind turbines
Directory of Open Access Journals (Sweden)
F. Grasso
2017-07-01
Full Text Available Nowadays, all the modern megawatt-class wind turbines make use of pitch control to optimise the rotor performance and control the turbine. However, for kilowatt-range machines, stall-regulated solutions are still attractive and largely used for their simplicity and robustness. In the design phase, the aerodynamics plays a crucial role, especially concerning the selection/design of the necessary airfoils. This is because the airfoil performance is supposed to guarantee high wind turbine performance but also the necessary machine control capabilities. In the present work, the design of a new airfoil dedicated to stall machines is discussed. The design strategy makes use of a numerical optimisation scheme, where a gradient-based algorithm is coupled with the RFOIL code and an original Bezier-curves-based parameterisation to describe the airfoil shape. The performances of the new airfoil are compared in free- and fixed-transition conditions. In addition, the performance of the rotor is analysed, comparing the impact of the new geometry with alternative candidates. The results show that the new airfoil offers better performance and control than existing candidates do.
Ingestive behavior of lambs confined in individual and group stalls.
Filho, A Eustáquio; Carvalho, G G P; Pires, A J V; Silva, R R; Santos, P E F; Murta, R M; Pereira, F M
2014-02-01
The experiment was conducted to evaluate the ingestive behavior of lambs confined in individual and group stalls. We used thirty-four lambs in their growing phase, aged an average of three months, with mean initial live weight of 17.8±5.2 kg. They were allotted in a completely randomized design with 24 animals kept in individual stalls and 10 animals confined as a group. The experiment lasted for a total of 74 days, and the first 14 days were dedicated to the animals' adaption to the management, facilities and diets. The data collection period lasted 60 days, divided into three 20-d periods for the behavior evaluation. The animals were subjected to five days of visual observation during the experiment period, by the quantification of 24 h a day, with evaluations on the 15th day of each period and an interim evaluation consisting of two consecutive days on the 30th and 31st day of the experiment. The animals confined as a group consumed less (pbehavior.
Ziegler, Ronny; Brendel, Bernhard; Rinneberg, Herbert; Nielsen, Tim
2009-01-21
Using a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.
Flowing Air-Water Cooled Slab Nd: Glass Laser
Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.
1989-03-01
A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.
Double seismic zone in downgoing slabs and the viscosity of the mesosphere
International Nuclear Information System (INIS)
Sleep, N.H.
1979-01-01
The seismic zone beneath several island arcs between about 100 and 200 km depth consists of an upper zone having down-dip compression and a lower zone having down-dip tension. Several numerical models of the Aleutina arc were computed to test the hypothesis that these double seismic zones are due to sagging of the slab under its own weight. This sagging occurs because the asthenosphere (between about 100 and 200 km) provides little support or resistance to the slab, which is supported from below by the more viscous mesosphere and from above by the lithosphere. The viscosity of the mesosphere was constrained to the interval between 0.25 x 10 22 and 0.5 x 10 22 P by noting that the slab would have mainly down-dip compression at higher viscosities and mainly down-dip tension at lower viscosities. The deviatoric stress in the slab and the fault plane between the slab and the island arc is about 200--300 bars (expressed as shear stress). The models were calibrated to the observed depth and gravity anomalies in the trench
Zhao, Yan; Belov, Pavel A.; Hao, Yang
2006-06-01
In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.
Research and Development of the Solidification of Slab Ingots from Special Tool Steels
Directory of Open Access Journals (Sweden)
Tkadlečková M.
2017-09-01
Full Text Available The paper describes the research and development of casting and solidification of slab ingots from special tool steels by means of numerical modelling using the finite element method. The pre-processing, processing and post-processing phases of numerical modelling are outlined. Also, problems with determining the thermophysical properties of materials and heat transfer between the individual parts of the casting system are discussed. Based on the type of grade of tool steel, the risk of final porosity is predicted. The results allowed to improve the production technology of slab ingots, and also to verify the ratio, the chamfer and the external/ internal shape of the wall of the new designed slab ingots.
Theoretical Investigations on the Structural Behavior of Biaxial Hollow Concrete Slabs
Directory of Open Access Journals (Sweden)
Nazar Kamel Ali Oukaili
2015-06-01
Full Text Available This paper presents a numerical analysis using ANSYS finite element program to simulate the reinforced concrete slabs with spherical voids. Six full-scale one way bubbled slabs of (3000mm length with rectangular cross-sectional area of (460mm width and (150mm depth are tested as simply supported under two-concentrated load. The results of the finite element model are presented and compared with the experimental data of the tested slabs. Material nonlinearities due to cracking and crushing of concrete and yielding of reinforcement are considered. The general behavior of the finite element models represented by the load-deflection curves at midspan, crack pattern, ultimate load, load-concrete strain curves and failure modes shows good agreement with the experimental data.
Detonation Propagation in Slabs and Axisymmetric Rate Sticks
Romick, Christopher; Aslam, Tariq
Insensitive high explosives (IHE) have many benefits; however, these IHEs exhibit longer reaction zones than more conventional high explosives (HE). This makes IHEs less ideal explosives and more susceptible to edge effects as well as other performance degradation issues. Thus, there is a resulting reduction in the detonation speed within the explosive. Many HE computational models, e. g. WSD, SURF, CREST, have shock-dependent reaction rates. This dependency places a high value on having an accurate shock speed. In the common practice of shock-capturing, there is ambiguity in the shock-state due to smoothing of the shock-front. Moreover, obtaining an accurate shock speed with shock-capturing becomes prohibitively computationally expensive in multiple dimensions. The use of shock-fitting removes the ambiguity of the shock-state as it is one of the boundaries. As such, the required resolution for a given error in the detonation speed is less than with shock-capturing. This allows for further insight into performance degradation. A two-dimensional shock-fitting scheme has been developed for unconfined slabs and rate sticks of HE. The HE modeling is accomplished by Euler equations utilizing several models with single-step irreversible kinetics in slab and rate stick geometries. Department of Energy - LANL.
Evidence of fire resistance of hollow-core slabs
DEFF Research Database (Denmark)
Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa
is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...
CONCRETE PROPERTIES IMPROVEMENT OF SLAB TRACKS USING CHEMICAL ADDITIVES
Directory of Open Access Journals (Sweden)
V. V. Pristinskaya
2015-11-01
Full Text Available Purpose. On the Railways of Ukraine a very large number of slab tracks are operated with cracks. Many scientific works of previous years are dedicated to improving the design of slab tracks. The main causes of defects are: poor exploitation of the track; insufficient physic-mechanical characteristics of concrete; poor quality of initial materials. It is therefore necessary to develop an optimum concrete mix for the manufacture of these concrete products. Methodology. To assess the impact of individual factors and effects of their interactions on properties of concrete mix and concrete method of experimental and statistical modeling was used. At this, methodological fundamentals of mathematical experiment planning in concrete technology and modern methods of optimization of composite materials were taking into account. Based on the obtained data during the planned experiment conducting, including15 studies and using the computer program MathCad, were obtained the regression equations, which describe the relevant physical and mechanical properties of concrete. On the basis of the equations with the help of computer program MATLAB R2012b the graphs were drawn, illustrating the dependences of system response from the changes of two factors at a fixed value of the third factor. Findings. Firstly was the analysis of cracks that occur in the process of operation in the constructions of slab tracks. Further reasons of possible occurrence of these cracks were presented. In the process of the conducted research the author has concluded that for rational concrete mix development it is necessary to conduct the planned experiment with the use of quality materials. It was established that to increase the strength, chemical additives should be added in to concrete mix, it will let reduce cement amount. Originality. Experiments proved the usage of modern chemical additives in order to improve the properties of concrete. Models were developed, reflecting
Evaluating Classroom Interaction with the iPad®: An Updated Stalling's Tool
MacKinnon, Gregory; Schep, Lourens; Borden, Lisa Lunney; Murray-Orr, Anne; Orr, Jeff; MacKinnon, Paula
2016-01-01
A large study of classrooms in the Caribbean context necessitated the use of a validated classroom observation tool. In practice, the paper-version Stalling's instrument (Stallings & Kaskowitz 1974) presented specific challenges with respect to (a) facile data collection and (b) qualitative observations of classrooms. In response to these…
Simulation of Entropy Generation under Stall Conditions in a Centrifugal Fan
Directory of Open Access Journals (Sweden)
Lei Zhang
2014-06-01
Full Text Available Rotating stalls are generally the first instability met in turbomachinery, before surges. This 3D phenomenon is characterized by one or more stalled flow cells which rotate at a fraction of the impeller speed. The goal of the present work is to shed some light on the entropy generation in a centrifugal fan under rotating stall conditions. A numerical simulation of entropy generation is carried out with the ANSYS Fluent software which solves the Navier-Stokes equations and user defined function (UDF. The entropy generation characteristics in the centrifugal fan for five typical conditions are presented and discussed, involving the design condition, conditions on occurrence and development of stall inception, the rotating stall conditions with two throttle coefficients. The results show that the entropy generation increases after the occurrence of stall inception. The high entropy generation areas move along the circumferential and axial directions, and finally merge into one stall cell. The entropy generation rate during circumferential propagation of the stall cell is also discussed, showing that the entropy generation history is similar to sine curves in impeller and volute, and the volute tongue has a great influence on entropy generation in the centrifugal fan.
Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently
Yu, Chuanhe; Gan, Haiyun
2017-01-01
ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal. PMID:28784720
Novel Radon Sub-Slab Suctioning System
DEFF Research Database (Denmark)
Rasmussen, Torben Valdbjørn
2013-01-01
A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses....... For the system to be effective, the pressure within the ducts must be lower than the pressure inside the house. The new principle was shown to be effective in preventing radon from polluting the indoor air by introducing low pressure in the horizontal grid of air ducts. A lower pressure than the pressure inside...
Imaging subducted slabs using seismic arrays in the Western Pacific
Bentham, H. L.; Rost, S.
2010-12-01
In recent years array seismology has been used extensively to image the small scale structure of the Earth. Such structure likely represents chemical heterogeneity and is therefore essential in our understanding of mantle convection and the composition of the Earth’s deep interior. As subduction is the main source of (re)introducing slab material into the Earth, it is of particular interest to track these heterogeneities. Resolving details of the composition and deformation of subducted lithosphere can help provide constraints on the subduction process, the composition of the mantle and mantle convection. This study uses seismic array techniques to map seismic heterogeneities associated with western Pacfic subduction zones, where a variety of slab geometries have been previously observed. Seismic energy arriving prior to the PP arrival was analysed at Eielson Array (ILAR), Alaska. More than 200 earthquakes were selected with Mw ≥ 6 and with epicentral distances of 90-110deg, giving a good coverage of the PP precursor (P*P) wavefield. Initial findings indicate that the observed P*P arrive out of plane and are likely a result of scattering. These scatterers are linked to the subduction of the Pacific Plate under the Philippine Sea in the Izu-Bonin and Mariana subduction zones. To enable efficient processing of large datasets, a robust automatic coherent (but unpredicted) arrival detector algorithm has been developed to select suitable precursors. Slowness and backazimuth were calculated for each precursor and were used in conjunction with P*P arrival times to back-raytrace the energy from the array to the scatterer location. Processing of the full dataset will help refine models regarding slab deformation as they descend into the mantle as well as unveiling the depth of their descent.
RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.
Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J
2015-10-15
We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Roshchina, Svetlana; Ezzi, Hisham; Shishov, Ivan; Lukin, Mikhail; Sergeev, Michael
2017-10-01
In single-story industrial buildings, the cost of roof covering comprises 40-55% of the total cost of the buildings. Therefore, research, development and application of new structural forms of reinforced concrete rafter structures, that allow to reduce material consumption and reduce the sub-assembly weight of structures, are the main tasks in the field of improving the existing generic solutions. The article suggests a method for estimating the relieving effect in the rafter structure as the result of combined deformation of the roof slabs with the end arrises. Calculated and experimental method for determining the stress and strain state of the rafter structure upper belt and the roof slabs with regard to their rigid connection has been proposed. A model of a highly effective roof structure providing a significant reduction in the construction height of the roofing and the cubic content of the building at the same time allowing to include the end arrises and a part of the slabs shelves with the help of the monolithic concrete has been proposed. The proposed prefabricated monolithic concrete rafter structure and its rigid connection with ribbed slabs allows to reduce the consumption of the prestressed slabs reinforcement by 50%.
Effect of CFRP and TRM Strengthening of RC Slabs on Punching Shear Strength
Directory of Open Access Journals (Sweden)
Husain Abbas
Full Text Available Abstract The paper presents experiments involving punching of RC slabs strengthened using externally bonded carbon fiber reinforced polymer (CFRP sheet and textile reinforced mortar (TRM. Twelve RC slab specimens of two concrete grades (39.9 and 63.2 MPa and employing two strengthening schemes (CFRP and TRM were tested. Specimens were supported on two opposite edges. Experimental load-displacement variations show two peak loads in strengthened slabs and one peak followed by a plateau in control. Second peak or the plateau corresponds to the combined action of aggregate interlock and the dowel action of back face rebars and strengthening layers. The dowel action of back face rebars and strengthening layers had no role in ultimate punching load (i.e. first peak. Strengthened slabs showed 9-18% increase in ultimate punching load (i.e. first peak whereas there was significant increase in the second peak load (190-276% for CFRP; 55-136% for TRM and energy absorption (~66% for CFRP and 22-56% for TRM. An analytical model was also developed for predicting the punching shear strength (first and second peaks of strengthened slabs showing good comparison with experiments.
Self-induced vibrations of a DU96-W-180 airfoil in stall
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.
2014-01-01
This work presents an analysis of two-dimensional (2D) and three-dimensional (3D) non-moving, prescribed motion and elastically mounted airfoil computational fluid dynamics (CFD) computations. The elastically mounted airfoil computations were performed by means of a 2D structural model with two...... degrees of freedom. The computations aimed at investigating the mechanisms of both vortex-induced and stall-induced vibrations related to a wind turbine blade at standstill conditions. In this work, a DU96-W-180 airfoil was used in the angle-of-attack region potentially corresponding to stallinduced...... vibrations. The analysis showed significant differences between the aerodynamic stability limits predicted by 2D and 3D CFD computations. A general agreement was reached between the prescribed motion and elastically mounted airfoil computations. 3D computations indicated that vortex-induced vibrations...
Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoid
Tosi, Nicola; Čadek, Ondřej; Martinec, Zdeněk
2009-11-01
The characteristic broad local maxima exhibited by the long-wavelength geoid over subduction zones are investigated with a numerical model of mantle flow. In a spherical axisymmetric geometry, a synthetic model of buoyancy driven subduction is used to test the effects on the geoid caused by the depth of penetration of the lithosphere into the mantle, by the viscosity stratification and by lateral viscosity variations (LVV) in the lithosphere, upper and lower mantle. The presence of anomalous slab density in the lower mantle guarantees geoid amplitudes comparable with the observations, favouring the picture of slabs that penetrate the transition zone and sink into the deep mantle. The viscosity of the lower mantle controls the long-wavelength geoid to the first order, ensuring a clear positive signal when it is at least 30-times greater than the upper-mantle viscosity. The presence of LVV in the lithosphere, in the form of weak plate margins, helps to increase the contribution of the surface topography, causing a pronounced reduction of the geoid. Localized LVV associated with the cold slab play a secondary role if they are in the upper mantle. On the other hand, highly viscous slabs in the lower mantle exert a large influence on the geoid. They cause its amplitude to increase dramatically, way beyond the values typically observed over subduction zones. Long-wavelength flow becomes less vigorous as the slab viscosity increases. Deformation in the upper mantle becomes more localized and power is transferred to short wavelengths, causing the long-wavelength surface topography to diminish and the total geoid to increase. Slabs may be then weakened in the lower mantle or retain their high viscosity while other mechanisms act to lower the geoid. It is shown that a phase change from perovskite to post-perovskite above the core-mantle boundary can cause the geoid to reduce significantly, thereby helping to reconcile models and observations.
Dynamic stall study of a multi-element airfoil
Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.
1992-01-01
Unsteady flow behavior and load characteristics of a VR-7 airfoil with and without a slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 degrees at a Reynolds number of 200,000 to obtain the unsteady lift, drag and pitching moment data. A fluorescing dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flow field and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.
Proposed Chevron Tengiz venture stalls amid Soviet political squabble
International Nuclear Information System (INIS)
Anon.
1991-01-01
This paper reports on the status of foreign investment in Soviet oil and gas joint ventures which has reached a critical juncture. Just as the U.S. is considering granting most favored nation trade status to the U.S.S.R., the joint venture petroleum deal seen as the litmus test for such deals-Chevron Corp.'s proposed addition of supergiant Tengiz oil field to its Caspian Sea joint venture-has stalled amid controversy. Unconfirmed reports from Soviet officials and other foreign joint venture participants in the U.S.S.R. have Chevron pulling out of the long negotiated, multibillion dollar project after the Soviets rejected the company's terms. Chevron, however, insists the project is still alive
Analysis of Vaneless Diffuser Stall Instability in a Centrifugal Compressor
Directory of Open Access Journals (Sweden)
Elias Sundström
2017-11-01
Full Text Available Numerical simulations based on the large eddy simulation approach were conducted with the aim to explore vaneless diffuser rotating stall instability in a centrifugal compressor. The effect of the impeller blade passage was included as an inlet boundary condition with sufficiently low flow angle relative to the tangent to provoke the instability and cause circulation in the diffuser core flow. Flow quantities, velocity and pressure, were extracted to accumulate statistics for calculating mean velocity and mean Reynolds stresses in the wall-to-wall direction. The paper focuses on the assessment of the complex response of the system to the velocity perturbations imposed, the resulting pressure gradient and flow curvature effects.
SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA
International Nuclear Information System (INIS)
Zapiór, M.; Heinzel, P.; Oliver, R.; Ballester, J. L.
2016-01-01
We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.
Suspended HfO2 photonic crystal slab on III-nitride/Si platform
International Nuclear Information System (INIS)
Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo
2014-01-01
We present here the fabrication of suspended hafnium oxide (HfO 2 ) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO 2 photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO 2 film, and suspended HfO 2 photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO 2 nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)
DEFF Research Database (Denmark)
Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd
2015-01-01
We explore the effects of variable material properties, phase transformations, and metamorphic devolatilization reactions on the thermal structure of a subducting slab using thermodynamic phase equilibrium calculations combined with a thermal evolution model. The subducting slab is divided...... into three layers consisting of oceanic sediments, altered oceanic crust, and partially serpentinized or anhydrous harzburgite. Solid-fluid equilibria and material properties are computed for each layer individually to illustrate distinct thermal consequences when chemical and mechanical homogenization...... indicate that subducting sediments and oceanic crust warm by 40 and 70°C, respectively, before the effect of wedge convection and heating is encountered at 1.7 GPa. Retention of fluid in the slab pore space plays a negligible role in oceanic crust and serpentinized peridotites. By contrast, the large...
SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA
Energy Technology Data Exchange (ETDEWEB)
Zapiór, M.; Heinzel, P. [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov, The Czech Republic (Czech Republic); Oliver, R.; Ballester, J. L. [Universitat de les Illes Balears. Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)
2016-08-20
We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.
Experimental and theoretical investigation of column - flat slab joint ductility
International Nuclear Information System (INIS)
Iskhakov, I.; Ribakov, Y.; Shah, A.
2009-01-01
Most modern seismic codes use ductility as one of the basic design parameters. Actually, ductility defines the ability of a structure or its elements to absorb energy by plastic deformations. Until the end of the previous century ductility was defined qualitatively. Most research works related to ductility are focused on structural elements' sections. This study was aimed at complex experimental and theoretical investigation of flat slab-column joints ductility. It is one of the first attempts to obtain quantitative values of joint's ductility for the case of high strength concrete columns and normal strength concrete slabs. It was shown that the flat slab-column joint is a three-dimension (3D) element and its ductility in horizontal and vertical directions are different. This is the main difference between ductility of elements and joint ductility. In case of flat slab-column joints, essential contribution to joint's ductility can be obtained due to the slab's confining effect. Based on experimental data, the authors demonstrate that flat slab-column joint's ductility depends on the joint's confining effect in two horizontal and vertical directions. Furthermore, the influence of slab load intensity and slab reinforcement ratio on the joint's ductility is performed in this study. It is also demonstrated that the effect of the ratio between the slab thickness and the column's section dimension on the ductility parameter is significant. Equations for obtaining a quantitative value of a flat slab-column joint's ductility parameter were developed.
Direct numerical simulation of a NACA0012 in full stall
International Nuclear Information System (INIS)
Rodríguez, I.; Lehmkuhl, O.; Borrell, R.; Oliva, A.
2013-01-01
Highlights: • Coherent structures at transitional and supercritical wake modes are presented. • Vortex shedding is detected in both wake modes. • KH instabilities and vortex shedding frequencies are identified. • Low-frequency flapping of the shear-layer is also detected after stall. • Local pressure distribution at both AOA is coherent with experimental observations. -- Abstract: This work aims at investigating the mechanisms of separation and the transition to turbulence in the separated shear-layer of aerodynamic profiles, while at the same time to gain insight into coherent structures formed in the separated zone at low-to-moderate Reynolds numbers. To do this, direct numerical simulations of the flow past a NACA0012 airfoil at Reynolds numbers Re = 50,000 (based on the free-stream velocity and the airfoil chord) and angles of attack AOA = 9.25° and AOA = 12° have been carried out. At low-to-moderate Reynolds numbers, NACA0012 exhibits a combination of leading-edge/trailing-edge stall which causes the massive separation of the flow on the suction side of the airfoil. The initially laminar shear layer undergoes transition to turbulence and vortices formed are shed forming a von Kármán like vortex street in the airfoil wake. The main characteristics of this flow together with its main features, including power spectra of a set of selected monitoring probes at different positions on the suction side and in the wake of the airfoil are provided and discussed in detail
Cook, Nigel B
2003-11-01
To determine the prevalence of lameness as a function of season (summer vs winter), housing type (free stalls vs tie stalls), and stall surface (sand vs any other surface) among lactating dairy cows in Wisconsin. Epidemiologic survey. 3,621 lactating dairy cows in 30 herds. Herds were visited once during the summer and once during the winter, and a locomotion score ranging from 1 (no gait abnormality) to 4 (severe lameness) was assigned to all lactating cows. Cows with a score of 3 or 4 were considered to be clinically lame. Mean +/- SD herd lameness prevalence was 21.1 +/- 10.5% during the summer and 23.9 +/- 10.7% during the winter; these values were significantly different. During the winter, mean prevalence of lameness in free-stall herds with non-sand stall surfaces (33.7%) was significantly higher than prevalences in free-stall herds with sand stall surfaces (21.2%), tie-stall herds with non-sand stall surfaces (21.7%), and tie-stall herds with sand stall surfaces (12.1%). Results suggest that the prevalence of lameness among dairy cattle in Wisconsin is higher than previously thought and that lameness prevalence is associated with season, housing type, and stall surface.
Anderson, Seth B.; Cooper, George E.
1947-01-01
This report contains the flight-test results of the stalling characteristics measured during the flying-qualities investigation of the Lockheed P-8OA airplane (Army No. 44-85099). The tests were conducted in straight and turning flight with and without wing-tip tanks. These tests showed satisfactory stalling characteristics and adequate stall warning for all configurations and conditions tested.
Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.
2017-10-01
The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.
Yang, Ting; Gurnis, Michael; Zhan, Zhongwen
2017-07-01
The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu-Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu-Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated 680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well-defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat.
Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália
2017-09-01
This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.
Directory of Open Access Journals (Sweden)
Bilčík Juraj
2017-09-01
Full Text Available This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.
Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Directory of Open Access Journals (Sweden)
Le Wang
2015-11-01
Full Text Available Based on phase space reconstruction and fractal dynamics in nonlinear dynamics, a method is proposed to extract and analyze the dynamics of the rotating stall in the impeller of centrifugal compressor, and some numerical examples are given to verify the results as well. First, the rotating stall of an existing low speed centrifugal compressor (LSCC is numerically simulated, and the time series of pressure in the rotating stall is obtained at various locations near the impeller outlet. Then, the phase space reconstruction is applied to these pressure time series, and a low-dimensional dynamical system, which the dynamics properties are included in, is reconstructed. In phase space reconstruction, C–C method is used to obtain the key parameters, such as time delay and the embedding dimension of the reconstructed phase space. Further, the fractal characteristics of the rotating stall are analyzed in detail, and the fractal dimensions are given for some examples to measure the complexity of the flow in the post-rotating stall. The results show that the fractal structures could reveal the intrinsic dynamics of the rotating stall flow and could be considered as a characteristic to identify the rotating stall.
Bayesian inference for spatio-temporal spike-and-slab priors
DEFF Research Database (Denmark)
Andersen, Michael Riis; Vehtari, Aki; Winther, Ole
2017-01-01
a transformed Gaussian process on the spike-and-slab probabilities. An expectation propagation (EP) algorithm for posterior inference under the proposed model is derived. For large scale problems, the standard EP algorithm can be prohibitively slow. We therefore introduce three different approximation schemes...
A comparison of free-stall barns used by modernized Wisconsin dairies.
Bewley, J; Palmer, R W; Jackson-Smith, D B
2001-02-01
A primary objective of the Wisconsin Dairy Modernization Survey was to compare features of free-stall barns available to dairy producers. This study used data from a large random sample of expanding dairy farms to determine whether the theoretical benefits of particular free-stall configurations bear out under on-farm conditions. Comparisons were made among herds using free-stall barns as their primary housing for new versus remodeled facilities, barn design, bedding used, feed-delivery design, manure removal strategies, animal restraint, maternity areas, overcrowding, and cooling methods. Producers who made the transition from tie-stall housing to free-stall housing were satisfied with this decision. New free-stall barns provided a more desirable environment for the herds than remodeled free-stall barns, although initial investments were higher. When new free-stall barns were compared, herds with four-row barns had higher production, lower somatic cell count, and higher stocking rates than herds with six-row barns. Respondents were more satisfied with four- and six-row barns than with two- and three-row barns. Respondents felt sand provided some advantages for cow comfort, while satisfaction with bedding cost and manure handling was higher with mattresses. Dairy Herd Improvement data showed no difference in milk production or somatic cell count for producers who chose sand or mattress-based free stalls. Respondents were more satisfied with the use of drive-through feeding than other feed-delivery designs. Most producers chose to use tractor scrapers to remove manure; however, producers who used automated systems were more satisfied with manure management. Few differences were observed when comparing self-locking head gates to palpation rails. Overcrowding did not have any adverse affect on production or user satisfaction with feed intake or cow comfort. Using supplemental cooling appeared to facilitate higher production.
Heintz, Kyle C.
An experimental study of a cambered airfoil undergoing non-cyclical, transient pitch trajectories and the resulting effects on the dynamic stall phenomenon is presented. Surface pressure measurements and airfoil incidence angle are acquired simultaneously to resolve instantaneous aerodynamic load coefficients at Mach numbers ranging from 0.2 to 0.4. Derived from these coefficients are various formulations of the aerodynamic damping factor, referred to copiously throughout. Using a two-motor mechanism, each providing independent frequency and amplitude input to the airfoil, unique pitch motions can be implemented by actively controlling the phase between inputs. This work primarily focuses on three pitch motion schemas, the first of which is a "chirp" style trajectory featuring concurrent exponential frequency growth and amplitude decay. Second, these parameters are tested separately to determine their individual contributions. Lastly, a novel dual harmonic pitch motion is devised which rapidly traverses dynamic stall regimes on an inter-cycle basis by modulating the static-stall penetration angle. Throughout all results presented, there is evidence that for consecutive pitch-cycles, the process of dynamic stall is affected when prior oscillations prior have undergone deeper stall-penetration angles. In other words when stall-penetration is descending, retreating from a regime of light or deep stall, statistics of load coefficients, such as damping coefficient, maximum lift, minimum quarter-chord moment, and their phase relationships, do not match the values seen when stall-penetration was growing. The outcomes herein suggest that the airfoil retains some memory of previous flow separation which has the potential to change the influence of the dynamic stall vortex.
Imaging performance of an isotropic negative dielectric constant slab.
Shivanand; Liu, Huikan; Webb, Kevin J
2008-11-01
The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.
Kraus, Beth M; Ross, Michael W; Boston, Raymond C
2005-03-15
To compare results (ie, return to racing and earnings per race start) of surgical versus nonsurgical management of sagittal slab fractures of the third carpal bone in racehorses. Retrospective study. 32 racehorses (19 Thoroughbreds, 11 Standardbreds, and 2 Arabians). Medical records and radiographs were reviewed to obtain information regarding signalment and treatment. Follow-up information was obtained from race records. Robust regression analysis was performed to evaluate earnings per start in horses that raced at least once before and after injury. 22 (69%) horses raced at least once after treatment of the fracture. All 7 horses treated by means of interfragmentary compression raced after treatment, and horses that underwent interfragmentary compression had significantly higher earnings per start after the injury than did horses treated without surgery. Eight of 9 horses treated by means of arthroscopic debridement of the damaged cartilage and bone raced after treatment, but only 7 of 16 horses treated without surgery (ie, stall rest) were able to return to racing after treatment. Results suggest that racehorses with sagittal slab fractures of the third carpal bone have a favorable prognosis for return to racing after treatment. Horses treated surgically were more likely to race after treatment than were horses treated without surgery.
Unstable drift eigenmode in slab geometry
International Nuclear Information System (INIS)
Tsotsonis, S.; Hirose, A.
1986-01-01
The unstable Pearlstein-Berk mode of drift waves in plane, sheared slab geometry has later been shown to be stable when electron Landau resonance is rigorously treated. Based on the variational method previously developed the authors have found that in addition to the absolutely stable Pearlstein-Berk mode, there exists an absolutely unstable eigenfunction characterized by ω ≤ ω/sub chemical bonde/, and weak ''radial'' dependence. Also, the growth rate, only weakly depends on the magnetic shear and ion/electron temperature ratio
Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+
Bui, Trong
2016-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.
Injury scores and locomotor disorders of Holstein cows in a free-stall facility with different beds
Cecchin, Daiane; Universidade Federal de Lavras - UFLA Lavras - MG; Campos, Alessandro Torres; Universidade Federal de Lavras - UFLA Lavras - MG; Pires, Maria de Fátima Ávila; Sousa, Francine Aparecida; Universidade Federal de Lavras - UFLA Lavras - MG; Amaral, Pedro Ivo Sodré; Universidade Federal de Lavras - UFLA Lavras - MG; Yanagi Junior, Tadayuki; Universidade Federal de Lavras - UFLA Lavras - MG; Ferreira, Suane Alves; Médica Veterinária – UNIPAC Juiz de Fora, MG.; Souza, Myriam Cristiane Morais; Graduanda em Medicina Veterinária – UNIPAC Juiz de Fora, MG.; Cecchin, Diego; Especialista em Gestão – UPF, Passo Fundo, RS
2015-01-01
The aim of the present study was to evaluate hock and knee injuries and locomotor disorders in 36 multiparous Holstein cows confined in a free-stall model system with two types of beds at Embrapa Dairy Cattle in the city of Coronel Pacheco / MG. Rubber composite beds and sand beds were compared and the hock and knee injuries and locomotor disorders were assessed for severity scores. There was no difference between the scores or hock lesions observed at the beginning and end of the trial perio...
International Nuclear Information System (INIS)
Couch, Sean M.; Ott, Christian D.
2013-01-01
Multi-dimensional simulations of advanced nuclear burning stages of massive stars suggest that the Si/O layers of presupernova stars harbor large deviations from the spherical symmetry typically assumed for presupernova stellar structure. We carry out three-dimensional core-collapse supernova simulations with and without aspherical velocity perturbations to assess their potential impact on the supernova hydrodynamics in the stalled-shock phase. Our results show that realistic perturbations can qualitatively alter the postbounce evolution, triggering an explosion in a model that fails to explode without them. This finding underlines the need for a multi-dimensional treatment of the presupernova stage of stellar evolution
Energy Technology Data Exchange (ETDEWEB)
Couch, Sean M. [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Ott, Christian D., E-mail: smc@flash.uchichago.edu, E-mail: cott@tapir.caltech.edu [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)
2013-11-20
Multi-dimensional simulations of advanced nuclear burning stages of massive stars suggest that the Si/O layers of presupernova stars harbor large deviations from the spherical symmetry typically assumed for presupernova stellar structure. We carry out three-dimensional core-collapse supernova simulations with and without aspherical velocity perturbations to assess their potential impact on the supernova hydrodynamics in the stalled-shock phase. Our results show that realistic perturbations can qualitatively alter the postbounce evolution, triggering an explosion in a model that fails to explode without them. This finding underlines the need for a multi-dimensional treatment of the presupernova stage of stellar evolution.
One-group transport theory calculation for three slabs cells
International Nuclear Information System (INIS)
Maia, C.R.M.
1979-01-01
As an idealized model of plate type fuel assemblies for nuclear reactors, three-slab cells are analysed numerically based on the exact solution of the transport equation in the one-group isotropic scattering model. From the equations describing the interface conditions, a set of regular integral equations for the coefficients of the singular eigenfunctions expansions is derived using the half-range orthogonality relations of the eigenfunctions and the recently developed method of regularization. Numerical solutions are obtained by solving this set of equations iteratively. The thermal utilization factor and thermal disadvantage factors as well as flux and current distributions are reported for the first time for various sets of parameters. The accuracy of the P sub(N) approximations is also analysed compared to the exact results. (Author) [pt
Markov chain solution of photon multiple scattering through turbid slabs.
Lin, Ying; Northrop, William F; Li, Xuesong
2016-11-14
This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.
Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate
Energy Technology Data Exchange (ETDEWEB)
Mittereder, N.; Poerschke, A.
2013-11-01
This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.
Coffered slabs as a perspective type of the reinforced concrete structures
Kibkalo Anton; Volkov Mikhail; Vodolagina Anna; Murgul Vera
2016-01-01
The article discusses coffered slabs. In this paper considered the technology of arrangement of this slabs. Cast-in-place and precast ways of construction of coffered slab are reviewed. Сast-in-place and precast coffered slabs has been analysed in this article. Among other things construction of coffered slabs has an economical and technical advantages.
Coffered slabs as a perspective type of the reinforced concrete structures
Directory of Open Access Journals (Sweden)
Kibkalo Anton
2016-01-01
Full Text Available The article discusses coffered slabs. In this paper considered the technology of arrangement of this slabs. Cast-in-place and precast ways of construction of coffered slab are reviewed. Сast-in-place and precast coffered slabs has been analysed in this article. Among other things construction of coffered slabs has an economical and technical advantages.
International Nuclear Information System (INIS)
Lim, Byeung Jun; Kwon, Se Jin; Park, Tae Choon
2014-01-01
Characteristic changes in the stall inception in a single-stage transonic axial compressor with an axial skewed slot casing treatment were investigated experimentally. A rotating stall occurred intermittently in a compressor with an axial skewed slot, whereas spike-type rotating stalls occurred in the case of smooth casing. The axial skewed slot suppressed stall cell growth and increased the operating range. A mild surge, the frequency of which is the Helmholtz frequency of the compressor system, occurred with the rotating stall. The irregularity in the pressure signals at the slot bottom increased decreasing flow rate. An autocorrelation-based stall warning method was applied to the measured pressure signals. Results estimate and warn against the stall margin in a compressor with an axial skewed slot.
A close-form solution to predict the total melting time of an ablating slab in contact with a plasma
International Nuclear Information System (INIS)
Yeh, F.-B.
2007-01-01
An exact melt-through time is derived for a one-dimensional heated slab in contact with a plasma when the melted material is immediately removed. The plasma is composed of a collisionless presheath and sheath on a slab, which partially reflects and secondarily emits ions and electrons. The energy transport from plasma to the surface accounting for the presheath and sheath is determined from the kinetic analysis. This work proposes a semi-analytical model to calculate the total melting time of a slab based on a direct integration of the unsteady heat conduction equation, and provides quantitative results applicable to control the total melting time of the slab. The total melting time as a function of plasma parameters and thermophysical properties of the slab are obtained. The predicted energy transmission factor as a function of dimensionless wall potential agrees well with the experimental data. The effects of reflectivities of the ions and electrons on the wall, electron-to-ion source temperature ratio at the presheath edge, charge number, ion-to-electron mass ratio, ionization energy, plasma flow work-to-heat conduction ratios, Stefan number, melting temperature, Biot number and bias voltage on the total melting time of the slab are quantitatively provided in this work
Numerical study of the static and pitching RISOe-B1-18 airfoil[STALL
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.
2004-01-01
The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISOe-B1-18 airfoil which was equipped and measured in an open jet wind tunnel is studied. Two and three dimensional Navier-Stokes calculations using the k-w SST and Detached Eddy Simulation turbulence models are conducted. An engineering semi-empirical dynamic stall model is also used for performing calculations. Computational results are compared to the experimental results that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the main characteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can then be used to improve the performance of the engineering model. (au)
A theory of post-stall transients in axial compression systems. I - Development of equations
Moore, F. K.; Greitzer, E. M.
1985-01-01
An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.
Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite
Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.
2015-01-01
Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.
MEMBRANE ACTION IN PROFILED STEEL SHEETING DRY BOARD (PSSDB FLOOR SLAB SYSTEM
Directory of Open Access Journals (Sweden)
MAHMOOD SERAJI
2013-02-01
Full Text Available Profiled steel sheeting dry board (PSSDB system is a lightweight composite structural system that made of the profiled steel sheeting (PSS connected to the dry board (DB by self-drilling and self-tapping screws. The objective of this paper is to study the effect of membrane action in improving the flexural capacities of the PSSDB system. According to the literatures, common failure of the PSSDB floor is due to local buckling in the top flanges of steel sheeting at the centre of a simply supported slab. Restraining the horizontal movement at supports may develop the membrane action (MA in the slab that can remarkably enhance the flexural rigidities of the floor. Experimental tests were conducted along with developing nonlinear finite element model to explore the effect of MA in the PSSDB floor. Experimental results of the PSSDB panel with simply end support were exploited to verify the nonlinear finite element results. The developed finite element model was then modified by restraining the horizontal movement of the slab at the supports. The obtained results disclosed that the developed compressive membrane action enhanced the stiffness of the slab at serviceability load by about 240%.
Stalling HIV through social marketing: prospects in Pakistan.
Husain, Sara; Shaikh, Babar T
2005-07-01
Over the last two decades HIV/AIDS has evolved from a series of interesting case-reports to a growing epidemic that threatens the entire world. It is feared to cause devastation among large pockets of populations and may roll back more than thirty years of public health achievements. This killer disease has been more amenable to behavioral change than by provision of curative services and attempts are being made to educate the public about this threat. Various techniques of promotion have been tried through out the world including television dramas/soaps, mass media and school curricula. Social marketing is an evolving strategy used to influence human behavior and choices. By using the principles of marketing and promoting behavior as a product, social marketers attempt to understand the dynamics of human behaviour and devise messages and products to change, modify, accept or reject unsafe behaviors or practices. Thus, social marketers provide an effective force to combat the spread of HIV and may serve to be invaluable allies in health promotion efforts. In a complex and diversified cultural milieu of Pakistan, social marketing can have a significant impact on health determinants and the conditions that will facilitate the adoption of health-oriented behaviors and practices. This paper gives an account of the elements needed for the success of a health promotion strategy adopted in a developing country and makes a case for social marketing to be adopted as the lead strategy for stalling HIV/AIDS in Pakistan.
Cow comfort in tie-stalls: increased depth of shavings or straw bedding increases lying time.
Tucker, C B; Weary, D M; von Keyserlingk, M A G; Beauchemin, K A
2009-06-01
Over half of US dairy operations use tie-stalls, but these farming systems have received relatively little research attention in terms of stall design and management. The current study tested the effects of the amount of 2 bedding materials, straw and shavings, on dairy cattle lying behavior. The effects of 4 levels of shavings, 3, 9, 15, and 24 kg/stall (experiment 1, n = 12), and high and low levels of straw in 2 separate experiments: 1, 3, 5, and 7 kg/stall (experiment 2, n = 12) and 0.5, 1, 2, and 3 kg/stall (experiment 3, n = 12) were assessed. Treatments were compared using a crossover design with lactating cows housed in tie-stalls fitted with mattresses. Treatments were applied for 1 wk. Total lying time, number of lying bouts, and the length of each lying bout was recorded with data loggers. In experiment 1, cows spent 3 min more lying down for each additional kilogram of shavings (11.0, 11.7, 11.6, and 12.1 +/- 0.24 h/d for 3, 9, 15, and 24 kg/stall shavings, respectively). In experiment 2, cows increased lying time by 12 min for every additional kilogram of straw (11.2, 12.0, 11.8, and 12.4 +/- 0.24 h/d for 1, 3, 5, and 7 kg/stall of straw, respectively). There were no differences in lying behavior among the lower levels of straw tested in experiment 3 (11.7 +/- 0.32 h/d). These results indicated that additional bedding above a scant amount improves cow comfort, as measured by lying time, likely because a well-bedded surface is more compressible.
Hybrid SN Laplace Transform Method For Slab Lattice Calculations
International Nuclear Information System (INIS)
Segatto, Cynthia F.; Vilhena, Marco T.; Zani, Jose H.; Barros, Ricardo C.
2008-01-01
In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this paper we describe a hybrid discrete ordinates (S N ) method for slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. We use special fuel-moderator interface conditions based on an approximate angular flux interpolation analytical method and the Laplace transform (LTS N ) numerical method to calculate the neutron flux distribution and the thermal disadvantage factor. We present numerical results for a range of typical model problems. (authors)
High-Performance Slab-on-Grade Foundation Insulation Retrofits
Energy Technology Data Exchange (ETDEWEB)
Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)
2015-09-01
A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).
New Transition Wedge Design Composed by Prefabricated Reinforced Concrete Slabs
Directory of Open Access Journals (Sweden)
Julia Real-Herráiz
Full Text Available Abstract Important track degradation occurs in structure-embankment transitions, in which an abrupt change in track vertical stiffness arises, leading to a reduction in passengers comfort and safety. Although granular wedges are suggested by different railroad administrations as a solution to avoid these problems, they present some disadvantages which may affect track long-term performance. In this paper, a new solution designed with prefabricated reinforced concrete slabs is proposed. The aim of this solution is to guarantee a continuous and gradual track vertical stiffness transition in the vicinity of structures, overcoming granular wedges disadvantages. The aim of this study is to assess the performance of the novel wedge design by means of a 3-D FEM model and to compare it with the current solution.
Environmental Impact Optimization of Reinforced Concrete Slab Frame Bridges
DEFF Research Database (Denmark)
Yavari, Majid Solat; Du, Guangli; Pacoste, Costin
2017-01-01
The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environmental-friendly design. The case study bridge used in this work was also investigated in a previous paper...... focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both of these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive Life Cycle Assessment (LCA......) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements...
Radon Sub-slab Suctioning System Integrated in Insulating Layer
DEFF Research Database (Denmark)
Rasmussen, Torben Valdbjørn
2013-01-01
This poster presents a new radon sub-slab suctioning system. This system makes use of a grid of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground floor slab. For this purpose a new system of prefabricated lightweight elements is introduced...
Ultimate deformation capacity of reinforced concrete slabs underblast load
Doormaal, J.C.A.M. van; Weerheijm, J.
1996-01-01
In this paper a test method to determine the deformation capacity and the resistance-deformation curve of blast-loaded slabs is described. This method was developed at TNO-PML. The method has been used to determine the ultimate deformation capacity of some simply supported reinforced concrete slabs
Surface Waves Propagating on Grounded Anisotropic Dielectric Slab
Directory of Open Access Journals (Sweden)
Zhuozhu Chen
2018-01-01
Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.
Evolution and diversity of subduction zones controlled by slab width
Schellart, W. P.; Freeman, J.A.; Stegman, D. R.; Moresi, L.; May, D.
2007-01-01
Subducting slabs provide the main driving force for plate motion and flow in the Earth's mantle, and geodynamic, seismic and geochemical studies offer insight into slab dynamics and subduction-induced flow. Most previous geodynamic studies treat subduction zones as either infinite in trench-parallel
Dynamic stall characterization using modal analysis of phase-averaged pressure distributions
Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan
2017-11-01
Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.
Maydagán, Laura; Franchini, Marta; Chiaradia, Massimo; Pons, Josefina; Impiccini, Agnes; Toohey, Jeff; Rey, Roger
2011-07-01
The Altar porphyry Cu-(Au-Mo) deposit (31° 29' S, 70° 28' W) is located in the Andean Main Cordillera of San Juan Province (Argentina), in the southern portion of the flat-slab segment (28-33°S), 25 km north of the world-class porphyry Cu-Mo deposits of Los Pelambres and El Pachón. Igneous rocks in the area have been grouped into the Early Miocene Lower Volcanic Complex -composed of intercalations of lava flows and thin volcaniclastic units that grade upwards to a thick massive tuff- and the Middle-Late Miocene Upper Subvolcanic Suite that consists of a series of porphyritic stocks and dikes and magmatic and hydrothermal breccias. The Lower Volcanic Complex represents an Early Miocene arc (20.8 Ma ± 0.3 Ma; U-Pb age) erupted over a steep subduction zone. Their magmas equilibrated with an assemblage consisting of plagioclase- and pyroxene-dominated mineral residues, and experienced fractional crystallization and crustal contamination procesess. Their radiogenic signatures are interpreted to indicate conditions of relatively thickened continental crust in Altar during the Early Miocene, compared to the south and west. The Upper Subvolcanic Suite represents the development of a Middle-Late Miocene arc (11.75 ± 0.24 Ma, 10.35 ± 0.32 Ma; U-Pb ages) emplaced over a shallow subduction zone. A magmatic gap in Altar area betwen the Lower Volcanic Complex and Upper Subvolcanic Suite correlates with documented higher rates of compression in this period, that may have favored the storage of the USS magmas in cameras within the crust. Magmas of the Upper Subvolcanic Suite require a hornblende-bearing residual mineral assemblage that is interpreted to reflect their higher water contents. The relatively uniform radiogenic isotope compositions of the Upper Subvolcanic Suite magmas suggest a homogeneously mixed crust-mantle contribution in the source region. They have similar REE signatures as other fertile intrusives of the flat-slab. The differences observed in their
Directory of Open Access Journals (Sweden)
Asım Balbay
2013-10-01
Full Text Available Temperature distribution which occurs in pavement and bridge slabs heated for de-icing and snow melting during cold periods is determined by using vertical ground-source heat pump (GSHP systems with U-tube ground heat exchanger (GHE. The bridge and pavement models (slabs for de-icing and snow melting were constructed. A three-dimensional finite element model (FEM was developed to simulate temperature distribution of bridge slab (BS and pavement slab (PS. The temperature distribution simulations of PS and BS were conducted numerically by computational fluid dynamics (CFD program named ‘Fluent’. Congruence between the simulations and experimental data was determined.
Storm-time slab thickness at low latitudes
International Nuclear Information System (INIS)
Chauhan, N.S.; Gurm, H.S.
1981-01-01
The ATS-6 data for a period of 1975-76 is used for the study of slab thickness during two moderate storms (Ksub(p) - ) around the crest of the anomaly, Ahmedabad and a very great (Ksub(p) + ) outside the equatorial anomaly region, Delhi. While at Ahmedabad, on the average, the slab thickness is found to be above the frequency. Comparison of slab thickness with foF2 and the equatorial magnetic record (for Ahmedabad only) shows that the foF2 changes alone cannot be held responsible for the slab thickness variation and thus entry of the plasma flux from the plasmasphere cannot be ruled out. The pressure variation effect of storm-time heating on the slab thickness at Ahmedabad is that even for Ksub(p)=8, the thermal expansion and the contraction effects are unable to explain complete quantitative and qualitative features of the observations
Shear strength of end slabs of prestressed concrete reactor vessels
International Nuclear Information System (INIS)
Cheung, K.C.; Gotschall, H.L.; Liu, T.C.
1975-01-01
Prestressed concrete reactor vessels (PCRV's) have been adopted for primary containments in most large high-temperature gas-cooled reactor installations. The most common configuration for PCRVs is a right-vertical cylinder with thick end slabs. In order to assess the integrity of a PCRV it is necessary to predict the ultimate strength of the end slabs. The complexity of the basic mechanism of shear failure in the PCRV end slabs has thus far prohibited the development of a completely analytical solution. However, many experimental investigations of PCRV end slabs have been conducted over the past decade. This information makes it possible to establish empirical formulae for the ultimate strength of PCRV end slabs. The basis and development of an empirical shear-flexure interaction expression is presented. (Auth.)
International Nuclear Information System (INIS)
Kotulla, B.; Hansson, V.
1977-01-01
In this paper different types of idealization for a dynamic analysis of underground concrete ducts with protective slab are discussed and compared. Ducts between reactor and control building of a nuclear power plant are to be designed for loadings produced by an aircraft crash. These ducts have a height of about three to four meters and are two to eight meters wide. They are designed with a protective slab about 1.5 m in thickness at ground level and with an intermediate layer of earth of about one meter in thickness. An analysis has to take into account the combined effects of a protective slab with a relatively thin intermediate layer of earth and the underlaying duct and layer of soil with the nonlinear behavior of concrete due to cracking. For describing this behavior two types of idealization were made. One type is a continuum type calculation which describes the slab, the soil and the duct by finite elements. In the other type of idealization a model consisting of springs and lumped masses is used. The protective slab and the intermediate layer of earth may be described as a plate on elastic foundation. The behavior of the cracked part of the plate and the part of earth layer beneath and loads transferred to the uncracked part of the slab and the surrounding soil may be described by parallel springs. Spring and mass of this part of the model have to take into account the cracking of the upper slab which leads to a nonlinear characteristic of the spring. In addition the location of the loading in relation to the duct has to be considered. The duct may be described by a beam on elastic foundation which is loaded locally. From this model representative mass and spring have to be determined
Portner, D. E.; Kiraly, A.; Makushkina, A.; Parks, B. H.; Ghosh, T.; Haynie, K. L.; Metcalf, K.; Manga, M.; O'Farrell, K. A.; Moresi, L. N.; Jadamec, M. A.; Stern, R. J.
2017-12-01
Large-scale detachment of subducting slabs can have a significant geologic footprint by altering the slab-driven mantle flow field as hot subslab mantle can flow upward through the newly developed opening in the slab. The resulting increase in heat and vertical motion in the mantle wedge may contribute to volcanism and broad surface uplift. Recent geodynamic modeling results show that smaller tears and holes are similarly likely to form in many settings, such as where oceanic ridges or continental fragments subduct. High-resolution seismic tomography models are imaging an increasing number of these gaps and tears ranging in size from tens to hundreds of km in size, many of which occur proximal to alkali volcanism. Here we investigate the role of such gaps on the subduction-induced mantle flow field and related surface response. In particular, we address the relationships between slab hole size, depth, and distance from the slab edge and the magnitude of dynamic response of the mantle using analog experiments and numerical simulations. In the laboratory models, the subduction system is simplified to a two-layered Newtonian viscous sheet model. Our setup consists of a tank filled with glucose syrup and a plate made from silicon putty to model the upper mantle and subducting lithosphere, respectively. In each experiment, we pre-cut a rectangular hole with variable width into the silicon putty plate. Additionally, we perform a series of complementary numerical models using the Underworld geophysical modeling code to calculate the more detailed instantaneous mantle flow perturbation induced by the slab hole. Together, these results imply a strong effect of hole size on mantle flow. Similarly, the depth of the slab hole influences near-surface flow, with significant surface flow alteration when the hole is near the trench and diminishing surface deformation as the hole is dragged deeper into the mantle. The inferred consequence of the dependence of vertical mantle flux
Effect of reflecting modes on combined heat transfer within an anisotropic scattering slab
International Nuclear Information System (INIS)
Yi Hongliang; Tan Heping; Lu Yiping
2005-01-01
Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index
Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.
Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo
2013-06-11
Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.
Cross-field flow and electric potential in a plasma slab
Directory of Open Access Journals (Sweden)
J. De Keyser
2013-08-01
Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.
Infinite slab-shield dose calculations
International Nuclear Information System (INIS)
Russell, G.J.
1989-01-01
I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab
Evaluation of the Impact of Slab Foundation Heat Transfer on Heating and Cooling in Florida
Energy Technology Data Exchange (ETDEWEB)
Parker, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Vieira, R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Gu, L. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)
2016-09-01
During the last three decades of energy-efficiency research, there has been limited study of heat transfer to slab-on-grade foundations in cooling-dominated climates. Most experimental research has focused on the impact of slab-on-grade foundations and insulation schemes on heat losses in heating-dominated climates. This is surprising because the floor area in single-family homes is generally equal to wall area, window area, or attic area, all of which have been extensively evaluated for heat-transfer properties. Moreover, slab foundations are the most common foundation type in cooling-dominated climates. Slab-on-grade construction is very popular in southern states, accounting for 77% of new home floors according to 2014 U.S. Census data. There is a widespread perception that tile flooring, as opposed to carpet, provides a cooler home interior in warm climates. Empirical research is needed because building energy simulation software programs running DOE-2 and EnergyPlus engines often rely on simplified models to evaluate the influence of flooring on interior temperature, even though in some cases more detailed models exist. The U.S. Department of Energy Building America Partnership for Improved Residential Construction (BA-PIRC) performed experiments in the Florida Solar Energy Center’s Flexible Residential Test Facility intended to assess for the first time (1) how slab-on-grade construction influences interior cooling in a cooling-dominated climate and (2) how the difference in a carpeted versus uncarpeted building might influence heating and cooling energy use. Two nominally identical side-by-side residential buildings were evaluated during the course of 1 year, from 2014 to 2015: the east building with a pad and carpet floor and the west building with a bare slab floor. A detailed grid shows temperature measurements taken on the slab surface at various locations as well as at depths of 1.0 ft, 2 ft, 5.0 ft, 10.0 ft, and 20.0 ft below the surface. Temperature
LASERS: A cryogenic slab CO laser
Ionin, Andrei A.; Kozlov, A. Yu; Seleznev, L. V.; Sinitsyn, D. V.
2009-03-01
A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ~12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ~14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ~ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour.
Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment
Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.
2012-12-01
Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).
Directory of Open Access Journals (Sweden)
Hadush Muuz
2017-01-01
Full Text Available Adoption of stall feeding (SF of livestock was assessed in northern Ethiopia based on a household survey conducted in 2015. The study covered 21 communities in Tigrai to account for differences in agroecology. The purpose of this study was to understand the driving factors of full or seasonal SF adoption and its intensity. A Heckman selection model was used to estimate adoption and extent of adoption based on a model of technology adoption within an agricultural household framework, and Poisson Model for explaining the number of SF adopting seasons. The descriptive results indicate that 36% of the farmers were actually practicing SF in a full year whereas 55.6% were seasonal adopters in the study area. Empirical results of this study showed that our result is in favor of the Boserupian hypothesis indicating that small grazing land and large exclosure are associated with a higher probability of use of SF and with a higher number of SF adopting seasons. In a similar vein, small average village farm size stimulated SF adoption and adopting seasons, Availability of labor and a number of breed cows significantly increased the probability of using SF by 0.01% and 66% respectively. While animal shock had a marginal effect of 14%, factors such as access to information and early exposure increased SF adoption by about 18% and 6%. Similarly, the positive marginal effect of real milk price is 15%. However, SF appears to be less attractive to those farmers with more herd size and less crop residue.
Optimized surface-slab excited-state muffin-tin potential and surface core level shifts
International Nuclear Information System (INIS)
Rundgren, J.
2003-01-01
An optimized muffin-tin (MT) potential for surface slabs with preassigned surface core-level shifts (SCLS's) is presented. By using the MT radii as adjustable parameters the model is able to conserve the definition of the SCLS with respect to the bulk and concurrently to generate a potential that is continuous at the MT radii. The model is conceived for elastic electron scattering in a surface slab with exchange-correlation interaction described by the local density approximation. The model employs two data bases for the self-energy of the signal electron (after Hedin and Lundqvist or Sernelius). The potential model is discussed in detail with two surface structures Be(101-bar0), for which SCLS's are available, and Cu(111)p(2x2)Cs, in which the close-packed radii of the atoms are extremely different. It is considered plausible that tensor LEED based on an optimized MT potential can be used for determining SCLS's
Directory of Open Access Journals (Sweden)
Hadała B.
2016-12-01
Full Text Available The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners.
Parametric analyses for synthetic jet control on separation and stall over rotor airfoil
Directory of Open Access Journals (Sweden)
Zhao Guoqing
2014-10-01
Full Text Available Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k − ω shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally, a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters (forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies (the best lift-drag ratio at F+ = 2.0 and jet angles (40° or 75° when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by 26.5% in comparison with the single point control case.
Shallow and deep dynamic stall for flapping low Reynolds number airfoils
Energy Technology Data Exchange (ETDEWEB)
Ol, Michael V. [Wright-Patterson AFB, Air Force Research Lab., Dayton, OH (United States); Bernal, Luis; Kang, Chang-Kwon; Shyy, Wei [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States)
2009-05-15
We consider a combined experimental (based on flow visualization, direct force measurement and phase-averaged 2D particle image velocimetry in a water tunnel), computational (2D Reynolds-averaged Navier-Stokes) and theoretical (Theodorsen's formula) approach to study the fluid physics of rigid-airfoil pitch-plunge in nominally two-dimensional conditions. Shallow-stall (combined pitch-plunge) and deep-stall (pure-plunge) are compared at a reduced frequency commensurate with flapping-flight in cruise in nature. Objectives include assessment of how well attached-flow theory can predict lift coefficient even in the presence of significant separation, and how well 2D velocimetry and 2D computation can mutually validate one another. The shallow-stall case shows promising agreement between computation and experiment, while in the deep-stall case, the computation's prediction of flow separation lags that of the experiment, but eventually evinces qualitatively similar leading edge vortex size. Dye injection was found to give good qualitative match with particle image velocimetry in describing leading edge vortex formation and return to flow reattachment, and also gave evidence of strong spanwise growth of flow separation after leading-edge vortex formation. Reynolds number effects, in the range of 10,000-60,000, were found to influence the size of laminar separation in those phases of motion where instantaneous angle of attack was well below stall, but have limited effect on post-stall flowfield behavior. Discrepancy in lift coefficient time history between experiment, theory and computation was mutually comparable, with no clear failure of Theodorsen's formula. This is surprising and encouraging, especially for the deep-stall case, because the theory's assumptions are clearly violated, while its prediction of lift coefficient remains useful for capturing general trends. (orig.)
Effect of kenaf fiber in reinforced concrete slab
Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.
2018-04-01
The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.
Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.
2014-12-01
Our new results from teleseismic, finite-frequency, body-wave tomography analysis reveal a relatively steep east-dipping fast velocity anomaly beneath the Southeastern US. The resolving power of our dataset is good enough to retrieve major mantle anomalies, such as this fast velocity body, owing to the dense receiver coverage provided by US Transportable Array (TA) and the SouthEastern Suture of the Appalachian Margin Experiment (SESAME). Various resolution and recovery tests demonstrate the robustness of this anomaly in our tomographic model between the depths of 60 and 660 km. Our images reveal that the dip of this structure decreases significantly in the mantle transition zone where it terminates. We also observe major gaps in the lateral continuity of this structure. Based on the amplitude, location and geometry of the velocity perturbation, we interpret this anomaly as remnant subducted lithosphere, suspended in the upper mantle after a subduction phase as young as 100-110 Ma or as old as 1Ga. Basic calculations and evaluations on the geometry and location of this anomaly help us to narrow down the origin of this slab to the Farallon flat-slab subduction in the west and Grenville Subduction during assembly of supercontinent Rodinia. Our images reveal possible mechanisms that would allow this slab to remain in the upper mantle without sinking into deeper mantle for such extended periods of time. We believe the flat geometry of the slab near the transition zone and the fragmented nature provide important clues about processes that could delay/resist the sinking while providing necessary time for it to transform into a more neutrally buoyant state. In this respect, we believe our results have broad implications for subduction processes and piece-meal slab failure, as well as tectonic implications for characteristics of former subduction zones that help shape North American Plate.
Bounds for the minimum step number of knots confined to slabs in the simple cubic lattice
International Nuclear Information System (INIS)
Ishihara, K; Shimokawa, K; Scharein, R; Arsuaga, J; Vazquez, M; Diao, Y
2012-01-01
Volume confinement is a key determinant of the topology and geometry of a polymer. However, the direct relationship between the two is not fully understood. For instance, recent experimental studies have constructed P4 cosmids, i.e. P4 bacteriophages whose genome sequence and length have been artificially engineered and have shown that upon extraction their DNA knot distribution differs from that of wild-type bacteriophage P4. In particular, it was observed that the complexity of the knots decreases sharply with the length of the packed genome. This problem is the motivation of this paper. Here, a polymer is modeled as a self-avoiding polygon on the simple cubic lattice and the confining condition is such that the polygon is bounded between two parallel planes (i.e. bounded within a slab). We estimate the minimum length required for such a polygon to realize a knot type. Our numerical simulations show that in order to realize a prime knot (with up to ten crossings) in a 1-slab (i.e. a slab of height 1), one needs a polygon of length strictly longer than the minimum length needed to realize the same knot when there is no confining condition. In the case of the trefoil knot, we can in fact establish this result analytically by proving that the minimum length required to tie a trefoil in the 1-slab is 26, which is greater than 24, the known minimum length required to tie a trefoil without a confinement condition. Additionally, we find that in the 1-slab not all geometrical realizations of a given knot type are equivalent under BFACF moves. This suggests that in certain confined volumes, knowing the topology of a polymer is not enough to describe all its states. (paper)
Requalification analysis of a circular composite slab for seismic load
International Nuclear Information System (INIS)
Srinivasan, M.G.; Kot, C.A.
1993-01-01
The circular roof slab of an existing facility was analyzed to requalify the structure for supporting a significant seismic load that it was not originally designed for. The slab has a clear span of 66 ft and consists of a 48 in. thick reinforced concrete member and a steel liner plate. Besides a number of smaller penetrations, the slab contains two significant cutouts. The dominant load for the slab came from seismic excitation. It was characterized by a response spectrum with a peak spectral acceleration of 0.72 g in the vertical direction. The first part of the analysis showed that the nature of attachment between the liner plate and the reinforced concrete (RC) slab would justify assuming composite action between the two. A finite clement analysis, with the ANSYS code, was made to investigate the region surrounding the openings. As the reinforcement in the slab was quite inhomogeneous, it was necessary to determine the stresses in other areas of the slab also. These were obtained with closed form expressions. Finally it is shown that the strength design provisions of the Code Requirements for Nuclear Safety Related Concrete Structures were met by the reinforced concrete slab and the allowable stress provisions of the American National Standard for safety related steel structures in nuclear facilities were met by the liner plate. The composite action between the RC slab and the liner plate provides for the additional strength required to support the enhanced seismic load. The issues that complicated the analysis of this nontypical structure, i.e., composite action and nonlinear stiffness of RC sections, are discussed. It was possible to circumvent the difficulties by making conservative and simplifying assumptions. If design codes incorporate guidelines on practical methods for dynamic analysis of RC structures, some of the unneeded conservatism could be eliminated in future designs
Rayleigh-Taylor instability in accelerated elastic-solid slabs
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2017-12-01
We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .
Interaction of an ion bunch with a plasma slab
Energy Technology Data Exchange (ETDEWEB)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)
2016-11-15
Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.
Light-assisted templated self assembly using photonic crystal slabs.
Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L
2011-06-06
We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.
Novel biometric flow slab design for improvement of PEMFC performance
Energy Technology Data Exchange (ETDEWEB)
Wang, Chin-Tsan; Hu, Yuh-Chung; Zheng, Pei-Lun [Department of Mechanical and Electro-Mechanical Engineering, Center of Green Technology, National I Lan University, I Lan 26047 (China)
2010-04-15
Designing a better flow slab is important to cell performance because of its significant influence on the total pressure drop and flow uniformity. Two novel biometric flow slabs, BFF1 and BFF2, which are addressed in this study, are believed to enhance the capability of oxygen transportation and promote the liquid water removal. Hence, its possession of a higher flow uniformity and lower pressure drop would produce a better power performance than the serpentine and parallel flow. These findings with respect to the design of biometric flow slab could be useful to promote the cell performance of PEMFC, and could even be expanded to other cell types. (author)
Effect of artificial UV irradiation on spore content of stall air and fattening pig breeding
International Nuclear Information System (INIS)
Kalich, J.; Blendl, H.M.
1978-01-01
The influence of a continuous UV irradiation (emitter NN 33/89 original Hanau) during the fattening periods primarily in the bactericide region of 253.7 nm of various intensities on the spore content of air, on the state of health and on the fattening breeding of pigs was tested in two fattening procedures. The high spore number per m 3 air of over 700 000 upon occupying the stall in the first fattening procedure was reduced by 90.5% to about 70 000 after 1 week of UV irradiation, and in the second procedure, from 111 500 to 16 000, i.e. a reduction of 85.5%. The spore content of the stall air then exhibited large deviations reducing and increasing. The same deviations were recorded for dust content. There was no absolute correlation between dust and spore content of the air until the 11th week after starting UV irradiation in either test. The spore content sank in the reference stalls also without UV irradiation, by 29.9% in the first fattening procedure 1 week after occupying the stall and even by 75% in the second procedure. The spore content of the air in the reference stalls also then exhibited deviations sinking and rising as in the test stalls with UV irradiation. Here too, there was no correlation between dust and spore content of the air. The spore content in the air was 2 to 7 times higher in the reference stalls than in the test stalls. One may conclude from the tests that the promoting irradiation strength is between 15 and 20 μW/cm 2 and that short-term stool production in danish stalling, 60 μW/cm 2 are not harmful. Air disinfection with UV irradiation, can only be part of the total hygiene measures taken in veterinary medicine and may only be considered as an important link in the chain of the health promoting and increased efficient hygiene measures in the intensification of aggriculturally useful animals. (orig./AJ) [de
Revision 2 of the NPP Krsko Decommissioning Program Is Stalled
International Nuclear Information System (INIS)
Levanat, I.; Lokner, V.; Rapic, A.; Zeleznik, N.; Kralj, M.
2012-01-01
Revision 2 of the joint Slovenian-Croatian Program of NPP Krsko Decommissioning and SF andLILW Disposal was scheduled to be finished and formally approved by the end of 2009, in accordance with the bilateral Agreement on the NPP. Slightly behind the schedule, the Project team completed the entire document during spring of 2010, and in June 2010 drafted a proposal for a peer review of the Program by a dedicated IAEA expert mission. This procedure was agreed upon at the last session (May 2010) of the Intergovernmental Commission for implementation of the Agreement, when the Commission was acquainted with the five scenarios of the Revision 2 and with the estimates of their costs/financing. It was expected that the peer review would be performed soon, and that formal adoption of the Revision 2 would follow. Although in this process of approval some decisions remained to be made by the stakeholders, the Project team did select and recommend one scenario to be used for costing purposes, in order to ensure that most necessary corrections in Program financing would be timely adopted. However, the planned IAEA review was cancelled by the Advisory board, the body nominated by the Commission ''to supervise the activities and resolve the issues raised by the Project team''. By this cancellation, the process of Program revision was effectively stalled, because the Advisory board could not clearly define further course of action: differing views between the Slovenian and the Croatian part of the Advisory board appeared, in particular regarding the set of Program scenarios and regarding the appropriateness of the Revision 2 document for the IAEA review; nonetheless, the Advisory board sent to the Project team a compilation of requests to modify Revision 2 document. The Project team determined that some minor requests were easy to fulfill, but other modifications could only be carried out after changes in the boundary conditions (approved by the Commission), or changes in national
An experimental description of the flow in a centrifugal compressor from alternate stall to surge
Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.
2017-08-01
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.
Stall Margin Improvement in a Centrifugal Compressor through Inducer Casing Treatment
Directory of Open Access Journals (Sweden)
V. V. N. K. Satish Koyyalamudi
2016-01-01
Full Text Available The increasing trend of high stage pressure ratio with increased aerodynamic loading has led to reduction in stable operating range of centrifugal compressors with stall and surge initiating at relatively higher mass flow rates. The casing treatment technique of stall control is found to be effective in axial compressors, but very limited research work is published on the application of this technique in centrifugal compressors. Present research was aimed to investigate the effect of casing treatment on the performance and stall margin of a high speed, 4 : 1 pressure ratio centrifugal compressor through numerical simulations using ANSYS CFX software. Three casing treatment configurations were developed and incorporated in the shroud over the inducer of the impeller. The predicted performance of baseline compressor (without casing treatment was in good agreement with published experimental data. The compressor with different inducer casing treatment geometries showed varying levels of stall margin improvement, up to a maximum of 18%. While the peak efficiency of the compressor with casing treatment dropped by 0.8%–1% compared to the baseline compressor, the choke mass flow rate was improved by 9.5%, thus enhancing the total stable operating range. The inlet configuration of the casing treatment was found to play an important role in stall margin improvement.
International Nuclear Information System (INIS)
Abreu, Marcos Pimenta de
1998-01-01
We describe a numerical method applied to the first-order form of one-speed slab-geometry discrete ordinates equations modelling time-independent neutron transport problems with anisotropic scattering, with no interior source and defined in a nonmultiplying homogeneous host medium. Our numerical method is concerned with the generation of the spectrum and of a vector basis for the null space of the one-speed slab-geometry discrete ordinates operator. Moreover, it allows us to overcome the difficulties introduced in previous methods by anisotropic scattering and by angular quadrature sets of high order. To illustrate the positive features of our numerical method, we present numerical results for one-speed slab-geometry neutron transport model problems with anisotropic scattering
Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W
2014-02-01
This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.
Photonic slab heterostructures based on opals
Palacios-Lidon, Elisa; Galisteo-Lopez, Juan F.; Juarez, Beatriz H.; Lopez, Cefe
2004-09-01
In this paper the fabrication of photonic slab heterostructures based on artificial opals is presented. The innovated method combines high-quality thin-films growing of opals and silica infiltration by Chemical Vapor Deposition through a multi-step process. By varying structure parameters, such as lattice constant, sample thickness or refractive index, different heterostructures have been obtained. The optical study of these systems, carried out by reflectance and transmittance measurements, shows that the prepared samples are of high quality further confirmed by Scanning Electron Microscopy micrographs. The proposed novel method for sample preparation allows a high control of the involved structure parameters, giving the possibility of tunning their photonic behavior. Special attention in the optical response of these materials has been addressed to the study of planar defects embedded in opals, due to their importance in different photonic fields and future technological applications. Reflectance and transmission measurements show a sharp resonance due to localized states associated with the presence of planar defects. A detailed study of the defect mode position and its dependance on defect thickness and on the surrounding photonic crystal is presented as well as evidence showing the scalability of the problem. Finally, it is also concluded that the proposed method is cheap and versatile allowing the preparation of opal-based complex structures.
The heterogeneous response method in slab geometry
International Nuclear Information System (INIS)
Villarino, E.A.; Stamm'ler, R.J.J.
1984-01-01
The heterogeneous response method (HRM) has been developed to calculate the multigroup flux in a heterogeneous system, e.g. a fuel assembly, without having to resort to dubious homogenization recipes. Here, the method is described in slab geometry in a manner that facilitates its computerization. By dividing the system into subsystems or nodes, say pin cells, two levels of calculation are created, which define a set of local problems and a global problem, respectively. In the local problem, collision probabilities are used to obtain for a node in vacuum, its response fluxes caused by sources and in-currents. They preserve the heterogeneous character of the node. In the global problem, the nodes are coupled by cosine currents. A suitable transformation reduces the number of two unknown currents per interface to one unknown per node, its total transmitted in-current. The global equation system thus becomes a set of three-point relations, which can be solved efficiently. In cases typical of fuel-assembly situations, the HRM produces fluxes that compare very well with the direct solution of the entire system by collision probabilities, though at a fraction of the computer cost. Extension of the method to 2- and 3-D systems is discussed. (author)
Hybrid Heat Capacity - Moving Slab Laser Concept
International Nuclear Information System (INIS)
Stappaerts, E A
2002-01-01
A hybrid configuration of a heat capacity laser (HCL) and a moving slab laser (MSL) has been studied. Multiple volumes of solid-state laser material are sequentially diode-pumped and their energy extracted. When a volume reaches a maximum temperature after a ''sub-magazine depth'', it is moved out of the pumping region into a cooling region, and a new volume is introduced. The total magazine depth equals the submagazine depth times the number of volumes. The design parameters are chosen to provide high duty factor operation, resulting in effective use of the diode arrays. The concept significantly reduces diode array cost over conventional heat capacity lasers, and it is considered enabling for many potential applications. A conceptual design study of the hybrid configuration has been carried out. Three concepts were evaluated using CAD tools. The concepts are described and their relative merits discussed. Because of reduced disk size and diode cost, the hybrid concept may allow scaling to average powers on the order of 0.5 MW/module
Energy Technology Data Exchange (ETDEWEB)
Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece)
1997-08-01
The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are `fed` with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded `Dynamic Stall and 3-D Effects` JOU2-CT93-0345 and the ongoing `VISCWIND` JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG)
Directory of Open Access Journals (Sweden)
Hanbing Liu
2016-01-01
Full Text Available Changes of modal frequencies induced by temperature variation can be more obvious than those caused by structural damage, which will lead to the false damage identification results. Therefore, quantifying the temperature effect on modal frequencies is a critical step to eliminate its interference in damage detection. Due to the nonuniform and time-dependent characteristics of temperature distribution, it is insufficient to obtain the reliable relationships between temperatures and modal frequencies using temperatures in air or at surface. In this paper, correlations between measured temperatures (air temperature, surface temperature, mean temperature, etc. and modal frequencies for the slab and beam are comparatively analyzed. And the quantitative models are constructed considering nonuniform temperature distribution. Firstly, the reinforced concrete slab and beam were constructed and placed outside the laboratory to be monitored. Secondly, the correlation coefficients between modal frequencies and three kinds of temperatures are calculated, respectively. Thirdly, simple linear regression models between mean temperature and modal frequencies are established for the slab and beam. Finally, five temperature variables are selected to construct the multiple linear regression models. Prediction results reveal that the proposed multiple linear regression models possess favorable accuracy to quantify the temperature effect on modal frequencies considering nonuniform temperature distribution.
Evaluation of precast concrete slabs using a heavy vehicle simulator
CSIR Research Space (South Africa)
Kohler, E
2008-10-01
Full Text Available Precast slabs are considered an attractive pavement option for rehabilitation or reconstruction cases where traffic closures of less than eight hours are required. Benefits include long life expectancy of concrete cast in factory...
Novel variational approach for analysis of photonic crystal slabs
International Nuclear Information System (INIS)
Aram, Mohammad Hasan; Khorasani, Sina
2015-01-01
We propose a new method, based on variational principle, for the analysis of photonic crystal (PC) slabs. Most of the methods used today treat PC slabs as three-dimensional (3D) crystal, and this makes these methods very time and/or memory consuming. In our proposed method, we use the Bloch theorem to expand the field on infinite plane waves, whose amplitudes depend on the component perpendicular to the slab surface. By approximating these amplitudes with appropriate functions, we can find modes of PC slabs almost as fast as we can find modes of two-dimensional crystals. In addition to this advantage, we can also calculate radiation modes with this method, which is not feasible with the 3D plane wave expansion method. (paper)
Fire resistance of extruded hollow-core slabs
DEFF Research Database (Denmark)
Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa
2017-01-01
to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...
General analysis of slab lasers using geometrical optics.
Chung, Te-yuan; Bass, Michael
2007-02-01
A thorough and general geometrical optics analysis of a slab-shaped laser gain medium is presented. The length and thickness ratio is critical if one is to achieve the maximum utilization of absorbed pump power by the laser light in such a medium; e.g., the fill factor inside the slab is to be maximized. We point out that the conditions for a fill factor equal to 1, laser light entering and exiting parallel to the length of the slab, and Brewster angle incidence on the entrance and exit faces cannot all be satisfied at the same time. Deformed slabs are also studied. Deformation along the width direction of the largest surfaces is shown to significantly reduce the fill factor that is possible.
Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash
International Nuclear Information System (INIS)
Sharma, Nisha; Singh, Jaspal
2012-01-01
Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)
Calculation of shear strength of prestressed hollow core slabs by use of plastic theory
DEFF Research Database (Denmark)
Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter
2014-01-01
Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...
Optimising the Slab Yard Planning and Crane Scheduling Problem using a two-stage heuristic
DEFF Research Database (Denmark)
Hansen, Anders Dohn; Clausen, Jens
2010-01-01
In this paper, we present the Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem...
Bend Faulting at the Edge of a Flat Slab: The 2017 Mw7.1 Puebla-Morelos, Mexico Earthquake
Melgar, Diego; Pérez-Campos, Xyoli; Ramirez-Guzman, Leonardo; Spica, Zack; Espíndola, Victor Hugo; Hammond, William C.; Cabral-Cano, Enrique
2018-03-01
We present results of a slip model from joint inversion of strong motion and static Global Positioning System data for the Mw7.1 Puebla-Morelos earthquake. We find that the earthquake nucleates at the bottom of the oceanic crust or within the oceanic mantle with most of the moment release occurring within the oceanic mantle. Given its location at the edge of the flat slab, the earthquake is likely the result of bending stresses occurring at the transition from flat slab subduction to steeply dipping subduction. The event strikes obliquely to the slab, we find a good agreement between the seafloor fabric offshore the source region and the strike of the earthquake. We argue that the event likely reactivated a fault first created during seafloor formation. We hypothesize that large bending-related events at the edge of the flat slab are more likely in areas of low misalignment between the seafloor fabric and the slab strike where reactivation of preexisting structures is favored. This hypothesis predicts decreased likelihood of bending-related events northwest of the 2017 source region but also suggests that they should be more likely southeast of the 2017 source region.
International Nuclear Information System (INIS)
Li, Yanhao; Wang, Guangjun; Chen, Hong
2015-01-01
The predictive control theory is utilized for the research of a simultaneous estimation of heat fluxes through the upper, side and lower surface of a steel slab in a walking beam type rolling steel reheating furnace. An inverse algorithm based on dynamic matrix control (DMC) is established. That is, each surface heat flux of a slab is simultaneously estimated through rolling optimization on the basis of temperature measurements in selected points of its interior by utilizing step response function as predictive model of a slab's temperature. The reliability of the DMC results is enhanced without prior assuming specific functions of heat fluxes over a period of future time. The inverse algorithm proposed a respective regularization to effectively improve the stability of the estimated results by considering obvious strength differences between the upper as well as lower and side surface heat fluxes of the slab. - Highlights: • The predictive control theory is adopted. • An inversion scheme based on DMC is established. • Upper, side and lower surface heat fluxes of slab are estimated based DMC. • A respective regularization is proposed to improve the stability of results
Performance and damages of R.C. slabs in fire
DEFF Research Database (Denmark)
Giuliani, Luisa; Gentili, Filippo
2015-01-01
Contrary to a common misconception, concrete structures are particularly vulnerable to fire, as witnesses by several cases of fire-induced collapses of buildings with a primary concrete structural system. Even when no collapse occurs, concrete elements are permanently damaged by the fire and may...... on the vulnerability of the slab to the fire action and can be used for optimizing the design on the basis of the required class of resistance or for choosing between different slab alternatives....
International Nuclear Information System (INIS)
Torabi, Mohsen; Zhang, Kaili
2014-01-01
This article investigates the classical entropy generation in cooled slabs. Two types of materials are assumed for the slab: homogeneous material and FGM (functionally graded material). For the homogeneous material, the thermal conductivity is assumed to be a linear function of temperature, while for the FGM slab the thermal conductivity is modeled to vary in accordance with the rule of mixtures. The boundary conditions are assumed to be convective and radiative concurrently, and the internal heat generation of the slab is a linear function of temperature. Using the DTM (differential transformation method) and resultant temperature fields from the DTM, the local and total entropy generation rates within slabs are derived. The effects of physically applicable parameters such as the thermal conductivity parameter for the homogenous slab, β, the thermal conductivity parameter for the FGM slab, γ, gradient index, j, internal heat generation parameter, Q, Biot number at the right side, Nc 2 , conduction–radiation parameter, Nr 2 , dimensionless convection sink temperature, δ, and dimensionless radiation sink temperature, η, on the local and total entropy generation rates are illustrated and explained. The results demonstrate that considering temperature- or coordinate-dependent thermal conductivity and radiation heat transfer at both sides of the slab have great effects on the entropy generation. - Highlights: • The paper investigates entropy generation in a slab due to heat generation and convective–radiative boundary conditions. • Both homogeneous material and FGM (functionally graded material) were considered. • The calculations are carried out using the differential transformation method which is a well-tested analytical technique
Recent progress in high-power slab lasers in Japan
International Nuclear Information System (INIS)
Fujii, Y.
1988-01-01
Recently, many solid-state lasers have been widely employed in Japanese industries, especially in the electronics industries for precise and reliable processing. To expand the use of solid-state lasers and to achieve higher processing speed, the authors are developing slab lasers of high power, high repetition rate, and high beam quality. Metal processing systems with optical fibers for large and complex 3-D work, multiwork station systems linked to only one laser with optical fibers, and compact x-ray sources for lithography are promising areas for such lasers. Surnitomo Metal Mining is growing Nd:GGG and Nd:YAG crystals 60 mm in diameter and 200 mm long. From 2 at.% Nd-doped GGG crystals without central core regions. The authors obtained two slab materials with dimensions of 35 X 9 X 192 and 55 X 15 X 213 mm/sup 3/. By using the smaller slab, they constructed a slab laser and obtained 370-W laser output power at 24-kW lamp input power and 10-pps repetition rate. Now they are constructing a 1-kW slab laser using the other larger size slab
Directory of Open Access Journals (Sweden)
K. Venkatesh
2011-09-01
Full Text Available The ionospheric equivalent slab-thickness is an important parameter which measures the skewness of the electron density profile of the ionosphere. In this paper, the diurnal, seasonal, day-to-day and latitudinal variations of ionospheric parameters namely total electron content (TEC, the peak ionization density of F-layer (NmF2, equivalent slab-thickness (τ and neutral temperature (Tn are presented. The simultaneous data of GPS-TEC and NmF2 from Trivandrum (8.47° N, 76.91° E, Waltair (17.7° N, 83.3° E and Delhi (28.58° N, 77.21° E are used to compute the slab-thickness (τ = TEC/NmF2 of the low sunspot period, 2004–2005. The day-time TEC values at Waltair are found to be greater than those at Trivandrum, while at Delhi the day-time TEC values are much lower compared to those at Trivandrum and Waltair. The trends of variation in the monthly mean diurnal variation of TEC and NmF2 are similar at Delhi, while they are different at Trivandrum and Waltair during the day-time. The slab-thickness (τ has shown a pre-sunrise peak around 05:00 LT at all the three stations, except during the summer months over Delhi. A consistent secondary peak in slab-thickness around noon hours has also been observed at Trivandrum and Waltair. During equinox and winter months a large night-time enhancement in the slab-thickness (comparable to the early morning peak in slab-thickness is observed at Delhi. The latitudinal variation of slab-thickness has shown a decrease from the equatorial station, Trivandrum to the low-mid latitude station, Delhi. The neutral temperatures (Tn computed from the slab-thickness (τ has shown a sharp increase around 05:00 LT over Trivandrum and Waltair. Whereas at Delhi, a double peaking around 05:00 and 23:00 LT is observed during winter and equinoctial months. The neutral temperatures computed are compare well with those of the MSIS-90 model derived temperatures.
Effect of summer grazing on welfare of dairy cows reared in mountain tie-stall barns
Directory of Open Access Journals (Sweden)
Simonetta Dovier
2010-09-01
Full Text Available Traditional mountain farms have an important economic, social and environmental role. The Alps management system for dairy cows consists of animals kept indoors from autumn to spring, mostly in tie-stalls, and moved to mountain pasture in summer. The aim of our study was to assess the effect of mountain summer grazing on the welfare of dairy cows housed in tie-stall barns. Twenty-four farms were considered. In twelve of them, animals were reared in tie-stalls and moved to mountain pasture for three months in summer; they were visited three times: (i four weeks before grazing during the indoor period in the stall; (ii about three weeks after the start of grazing; and (iii in the stall, in autumn, at least three weeks after returning from grazing. The other twelve farms kept the animals in tie-stalls all year; they were visited once in autumn. Data were collected following a protocol that considers animal-based measures and structure information on the basis of Quality Welfare Consortium® indications. Data allowed the calculation of both the Animal Needs Index score (ANI 35L and an overall assessment of the cows’ welfare obtained from three general aspects: housing, animal’s physical condition, and animal’s behaviour. Summer grazing had a significant positive effect on injuries, lameness and animal’s rising duration but a negative effect on faeces consistency. Moreover, a reduction of tongue playing was observed. The ANI 35L and the overall assessment did not show significant differences linked to summer grazing, which tended to have a positive but temporary effect on animal behaviour.
Chen, M.; Kiser, E.; Niu, F.
2016-12-01
The nature of deep-focus earthquakes with depths greater than 300 km has long been controversial. Mechanisms that may promote brittle deformation at such depths include dehydration embrittlement, phase transformational faulting, and thermal runaway instabilities. Of these, the most commonly referenced mechanism—phase transformational faulting—involves the breakdown of metastable olivine within the core of a cold subducting slab. Seismic observations of the metastable olivine wedge, as well as its spatial relationship to deep-focus seismicity, are limited. Classical 1-D ray-theory based tomography images indicate that deep-focus hypocenters coincide with the highest wave speed anomalies within the slab, traditionally viewed as the slab's cold core. However, our latest full waveform tomography images of the Kuril, Japan, and Izu-Bonin slabs show systematically deep-focus earthquakes located near the top of high wave speed regions, with hypocentral or centroid locations determined by EHB, global CMT, or JMA. In order to reduce location bias in global CMT solutions due to unmodeled 3-D structure, we relocate tens of deep-focus earthquakes within the new 3-D structural model based on a full wavefield modeling code SPECFEM3D_GLOBE, with seismic waves simulated to the shortest period of 9 seconds. We also determine the centroid locations of high-frequency energy (0.8 Hz-2 Hz) from back-projection results of several large earthquakes to understand how rupture propagates within the slab. The spatial correlations between the 3-D wave speed model and high-precision centroid locations from both long period and high frequency seismic waves further indicate that the deep-focus earthquakes occur and propagate near the top of the subducting slab. We will discuss the constraints that these relationships place on the mechanism of deep-focus earthquakes.
GEOMETRIC AND MATERIAL NONLINEAR ANALYSIS OF REINFORCED CONCRETE SLABS AT FIRE ENVIRONMENT
Directory of Open Access Journals (Sweden)
Ayad A. Abdul -Razzak
2013-05-01
Full Text Available In the present study a nonlinear finite element analysis is presented to predict the fire resistance of reinforced concrete slabs at fire environment. An eight node layered degenerated shell element utilizing Mindlin/Reissner thick plate theory is employed. The proposed model considered cracking, crushing and yielding of concrete and steel at elevated temperatures. The layered approach is used to represent the steel reinforcement and discretize the concrete slab through the thickness. The reinforcement steel is represented as a smeared layer of equivalent thickness with uniaxial strength and rigidity properties.Geometric nonlinear analysis may play an important role in the behavior of reinforced concrete slabs at high temperature. Geometrical nonlinearity in the layered approach is considered in the mathematical model, which is based on the total Lagrangian approach taking into account Von Karman assumptions.Finally two examples for which experimental results are available are analyzed, using the proposed model .The comparison showed good agreement with experimental results.
Dynamic Stall Vortex Formation of OA-209 Airfoil at Low Reynolds Number
Aung Myo Thu; Sang Eon Jeon; Yung Hwan Byun; Soo Hyung Park
2014-01-01
The unsteady flow field around oscillating OA-209 airfoil at a Reynolds number of 3.5×105 were investigated. Three different reduced frequencies were tested in order to see how it affects the hysteresis loop of an airfoil. At a reduced frequency of 0.05 the deep dynamic stall phenomenon was observed. Lift overshooting was observed as a result of dynamic stall vortex (DSV) shedding. Further investigation was carried out to find out the cause of DSV formation and shedding over airfoil. Particle...
The influence of elevated feed stalls on feeding behaviour of lactating dairy cows
Directory of Open Access Journals (Sweden)
Barbara Benz
2014-10-01
Full Text Available The performance level of high yielding cows can only be guaranteed by high quality forage and high feed intake. An about 15–20 cm elevated and 160 cm long feed stall with rubber flooring doesn’t only offer undisturbed meals but also a yielding and dry standing surface. In a pilot stable with 130 dairy cows (German Simmental the feeding alley was subsequently equipped with elevated feed stalls. The results show that animals frequented the feeding barn less often while the duration of single meals prolonged. The specific behavioural changes differed depending on milk yield and number of lactation.
Power control of a wind farm with active stall wind turbines and AC grid connection
DEFF Research Database (Denmark)
Hansen, Anca Daniela; Sørensen, Poul; Iov, Florin
both the control on wind turbine level as well as the central control on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power production to the reference power ordered by the operators is assessed and discussed by means of simulations.......This paper describes the design of a centralised wind farm controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection. The overall aim of such controller is to enable the wind farms to provide the best grid support. The designed wind farm control involves...
Directory of Open Access Journals (Sweden)
Nassim Kernou
2018-01-01
Full Text Available A rational three-dimensional nonlinear finite element model (NLFEAS is used for evaluating the behavior of high strength concrete slabs under monotonic transverse load. The non-linear equations of equilibrium have been solved using the incremental-iterative technique based on the modified Newton-Raphson method. The convergence of the solution was controlled by a load convergence criterion. The validity of the theoretical formulations and the program used was verified, through comparison with results obtained using ANSYS program and with available experimental test results. A parametric study was conducted to investigate the effect of different parameters on the behavior of slabs which was evaluated in terms of loaddeflection characteristics, concrete and steel stresses and strains, and failure mechanisms. Also, punching shear resistance of slabs was numerically evaluated and compared with the prediction specified by some design codes.
Nonlinear analysis of end slabs in prestressed concrete reactor vessels
International Nuclear Information System (INIS)
Abdulrahman, H.O.
1978-01-01
A procedure for the nonlinear analysis of end slabs is prestressed concrete reactor vessels (PCRVs), based on the finite element method, is presented. The applicability of the procedure to the ultimate load analysis of small-scale models of the primary containment of nuclear reactors is shown. Material nonlinearity only is considered. The procedure utilizes the four-node linear quadrilateral isoparametric element with the choice of incorporating the nonconforming modes. This element is used for modeling the vessel as an axisymmetric solid. Concrete is assumed to be an isotropic material in the elastic range. The compressive stresses are judged according to a special form of the Mohr-Coulomb criterion. The nonlinear problem was solved using a generalized Newton-Raphson procedure. A detailed example problem of a pressure vessel with penetrations is presented. This is followed by a summary of the other cases studied. The solutions obtained match very closely the measured response of the test vessels under increasing internal pressure up to failure. The procedure is thus adequate for the assessment of the ultimate load behavior and failure of actual pressure vessels with a moderate demand on human and computational resources
Analysis of prestressed concrete slab-and-beam structures
Sapountzakis, E. J.; Katsikadelis, J. T.
In this paper a solution to the problem of prestressed concrete slab-and-beam structures including creep and shrinkage effect is presented. The adopted model takes into account the resulting inplane forces and deformations of the plate as well as the axial forces and deformations of the beam, due to combined response of the system. The analysis consists in isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The forces at the interface, which produce lateral deflection and inplane deformation to the plate and lateral deflection and axial deformation to the beam, are established using continuity conditions at the interface. The influence of creep and shrinkage effect relative with the time of the casting and the time of the loading of the plate and the beams is taken into account. The estimation of the prestressing axial force of the beams is accomplished iteratively. Both instant (e.g. friction, slip of anchorage) and time dependent losses are encountered. The solution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog equation method (AEM). The adopted model, compared with those ignoring the inplane forces and deformations, describes better the actual response of the plate-beams system and permits the evaluation of the shear forces at the interfaces, the knowledge of which is very important in the design of prefabricated ribbed plates.
Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG
2018-01-01
Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.
Wu, G.; Moresi, L. N.
2017-12-01
Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the
Coupled diffusion of two species in a slab with an eroding boundary
International Nuclear Information System (INIS)
Leite, S.B.; Ozisik, M.N.; Verghese, K.
1981-01-01
The diffusion of two interchangeable species in a medium with an eroding boundary is analyzed by modeling the problem as the solution of two diffusion equations coupled at the source term for a slab with a moving boundary. Formal solutions are developed for the concentration of the two species as a function of time and position in the slab for arbitrary initial distributions of the diffusing species, arbitrary sources within the medium and boundary conditions of the third kind at the bounding surfaces. It is shown with an illustrative example, that the resulting coupled integral equations for the species can be solved very efficiently by an approach employing both a lower- and upper-bound starting function for the concentrations. (author)
Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate
Energy Technology Data Exchange (ETDEWEB)
Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)
2013-11-01
This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.
Numerical Investigation into CO Emission, O Depletion, and Thermal Decomposition in a Reacting Slab
Directory of Open Access Journals (Sweden)
O. D. Makinde
2011-01-01
Full Text Available The emission of carbon dioxide (CO2 is closely associated with oxygen (O2 depletion, and thermal decomposition in a reacting stockpile of combustible materials like fossil fuels (e.g., coal, oil, and natural gas. Moreover, it is understood that proper assessment of the emission levels provides a crucial reference point for other assessment tools like climate change indicators and mitigation strategies. In this paper, a nonlinear mathematical model for estimating the CO2 emission, O2 depletion, and thermal stability of a reacting slab is presented and tackled numerically using a semi-implicit finite-difference scheme. It is assumed that the slab surface is subjected to a symmetrical convective heat and mass exchange with the ambient. Both numerical and graphical results are presented and discussed quantitatively with respect to various parameters embedded in the problem.
Determination of the ultimate load in concrete slabs by the yield line finite element method
International Nuclear Information System (INIS)
Vaz, L.E.; Feijo, B.; Martha, L.F.R.; Lopes, M.M.
1984-01-01
A method for calculating the ultimate load in reinforced concrete slabs is proposed. The method follows the finite element aproach representating the continuum slab as an assembly of rigid triangular plates connected along their sides through yield line elements. This approach leads to the definition of the displacement configuration of the plate only as a function of the transversal displacement at the nodes of the mesh (1 DOF per node) reducing significantly the number of DOF's in relation to the conventional formulation by means of the finite element method (minimum of 3 DOF per node). Nonlinear behaviour of the reinforced concrete section is considered in the definition of the moment rotation curve of the yield lines. The effect of the in plane forces acting in the middle surface of the plate is also taken into account. The validity of the model is verified comparing the numerical solutions with the results of the classical yield line theory. (Author) [pt
Directory of Open Access Journals (Sweden)
Sugyu Lee
2018-01-01
Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC slabs strengthened in flexure with basalt fabric-reinforced cementitious matrix (FRCM. A total of 13 specimens were fabricated to evaluate the flexural behavior of RC slabs strengthened with basalt FRCM composite and were tested under four-point loading. The fiber type, tensile reinforcement ratio, and the number of fabric layers were chosen as experimental variables. The maximum load of FRCM-strengthened specimens increased from 11.2% to 98.2% relative to the reference specimens. The energy ratio and ductility of the FRCM-strengthened specimens decreased with the higher amount of fabric and tensile reinforcement. The effective stress level of FRCM fabric can be accurately predicted by a bond strength of ACI 549 and Jung’s model.
Zsámberger, Noémi Kinga; Allcock, Matthew; Erdélyi, Róbert
2018-02-01
Modeling the behavior of magnetohydrodynamic waves in a range of magnetic geometries mimicking solar atmospheric waveguides, from photospheric flux tubes to coronal loops, can offer a valuable contribution to the field of solar magneto-seismology. The present study uses an analytical approach to derive the dispersion relation for magneto-acoustic waves in a magnetic slab of homogeneous plasma enclosed on its two sides by semi-infinite plasma of different densities, temperatures, and magnetic field strengths, providing an asymmetric plasma environment. This is a step further in the generalization of the classic magnetic slab model, which is symmetric about the slab, was developed by Roberts, and is an extension of the work by Allcock & Erdélyi where a magnetic slab is sandwiched in an asymmetric nonmagnetic plasma environment. In contrast to the symmetric case, the dispersion relation governing the asymmetric slab cannot be factorized into separate sausage and kink eigenmodes. The solutions obtained resemble these well-known modes; however, their properties are now mixed. Therefore we call these modes quasi-sausage and quasi-kink modes. If conditions on the two sides of the slab do not differ strongly, then a factorization of the dispersion relation can be achieved for the further analytic study of various limiting cases representing a solar environment. In the current paper, we examine the incompressible limit in detail and demonstrate its possible application to photospheric magnetic bright points. After the introduction of a mechanical analogy, we reveal a relationship between the external plasma and magnetic parameters, which allows for the existence of quasi-symmetric modes.
Casimir-type effects for scalar fields interacting with material slabs
International Nuclear Information System (INIS)
Fialkovsky, I V; Pis'mak, Yu M; Markov, V N
2010-01-01
We study the field theoretical model of a scalar field in the presence of spacial inhomogeneities in the form of one and two finite-width mirrors (material slabs). The interaction of the scalar field with the defect is described with a position-dependent mass term. For a single-layer system we develop a rigorous calculation method and derive explicitly the propagator of the theory, the S-matrix elements and the Casimir self-energy of the slab. Detailed investigation of particular limits of self-energy is presented, and the connection to known cases is discussed. The calculation method is also found applicable to the two-mirror case. With its help we derive the corresponding Casimir energy and analyze it. For particular values of parameters of the model an obtained result recovers the Lifshitz formula. We also propose a procedure to unambiguously obtain the finite Casimir self-energy of a single slab without reference to any renormalization conditions. We hope that our approach can be applied to the calculation of Casimir self-energies in other demanded cases (such as a dielectric ball, etc).
Cellular Neural Network Method for Critical Slab with Albedo Boundary Condition
International Nuclear Information System (INIS)
Pirouzmanda, A.; Hadada, K.; Suh, K. Y.
2010-01-01
The neutron transport problems have been studied theoretically and numerically for years. A number of researchers have studied the criticality problems of one-speed neutrons in homogeneous slabs and spheres using various methods. The Chebyshev polynomial approximation method (T N method) has lately been developed and improved for the neutron transport equation in slab geometry. The one-speed time-dependent neutron transport equation using the Cellular Neural Network (CNN) for the vacuum boundary condition has previously been solved. In this paper, we demonstrate the capacity of CNN in calculating the critical slab thickness for different boundary conditions and its variation with moments N. The architecture of the CNN has already been dealt with thoroughly. Essentially, the CNN is used to model a first-order system of the partial differential equations (PDEs). The original equations in the T N approximation are also a set of PDEs. The CNN approach lends itself to analog VLSI implementation. In this study, the CNN model is implemented using the HSpice software package
DESIGN OF A CONCRETE SLAB FOR STORAGE OF SNF AND HLW CASKS
International Nuclear Information System (INIS)
J. Bisset
2005-01-01
This calculation documents the design of the Spent Nuclear Fuel (SNF) and High-Level Waste (HLW) Cask storage slab for the Aging Area. The design is based on the weights of casks that may be stored on the slab, the weights of vehicles that may be used to move the casks, and the layout shown on the sketch for a 1000 Metric Ton of Heavy Metal (MTHM) storage pad on Attachment 2, Sht.1 of the calculation 170-C0C-C000-00100-000-00A (BSC 2004a). The analytical model used herein is based on the storage area for 8 vertical casks. To simplify the model, the storage area of the horizontal concrete modules and their related shield walls is not included. The heavy weights of the vertical storage casks and the tensile forces due to pullout at the anchorages will produce design moments and shear forces that will envelope those that would occur in the storage area of the horizontal modules. The design loadings will also include snow and live loads. In addition, the design will also reflect pertinent geotechnical data. This calculation will document the preliminary thickness and general reinforcing steel requirements for the slab. This calculation also documents the initial design of the cask anchorage. Other slab details are not developed in this calculation. They will be developed during the final design process. The calculation also does not include the evaluation of the effects of cask drop loads. These will be evaluated in this or another calculation when the exact cask geometry is known
Technological aspects of lift-slab method in high-rise-building construction.
Gaidukov, Pavel V.; Pugach, Evgeny M.
2018-03-01
The utilization efficiency of slab lifting technology for high-rise-building construction is regarded in the present article. The main problem of the article is organizing technology abilities indication, which proves the method application possibility. There is the comparing of lifting technologies and sequential concrete-frame extension, as follows: the first one: the parameters are defined, and the second one: the organizational model is executed. This model defines borders of the usage methods, as well. There is the mathematic model creating, which describes boundary conditions of the present technologies usage. This model allows to predict construction efficiency for different stored-number buildings.
Vokey, F J; Guard, C L; Erb, H N; Galton, D M
2001-12-01
A 15-wk 2 x 3 factorial trial in a university dairy herd compared the effects of two alley surfaces and three free-stall beds on indices of lameness. Alley surfaces were grooved concrete (Ct) or 1.9-cm-thick interlocking rubber mats (R). Stalls were deep sand (S), rubber mattresses (M), or concrete (C). Mattress and concrete stalls were bedded with sawdust. At wk 1 and 15, the hind claws and hocks of 120 primi- (n = 69) and multiparous (n = 51) cows were scored for lesions and three claw measurements (dorsal wall length, heel depth, and toe angle) were recorded. Rates of lateral and medial claw growth and wear were calculated by measuring the migration of a reference mark away from the coronet. Digital photographs of claw surfaces were used to rescore claw lesions. Clinical lameness was evaluated by assigning a locomotion score from 1 to 4 to each cow during wk 1, 5, 10, and 14. Digital dermatitis (present/not present) and interdigital dermatitis (mild, moderate, or severe) were recorded at wk 15. The number of days that cows spent in a hospital barn was recorded. Before assignment, cows were professionally foot trimmed, sorted by initial claw lesion score, and then randomized in consecutive blocks of three to stall treatments. Photograph scores were highly repeatable. Nonparametric statistical techniques were used for analyses of rank data. Claw lesion score increased significantly for all treatment groups except RC and RS; however, when early lactation cows were excluded, no differences were found between treatment groups. Hock scores increased significantly more for cows in CtC than in CtS or RS. Significantly more animals from RC spent more than 10 d in the hospital pen compared with RM and RS. Groups did not significantly differ for clinical lameness. Cows in RS and RC had significantly lower rates for lateral claw net growth than those in CtM. Having moderate or severe interdigital dermatitis at wk 15 was associated with greater increases in claw lesion score
Cízková, H. (Hana); Cadek, O.; Berg, A.P. van den; Vlaar, N.J.
1999-01-01
Below subduction zones, high resolution seismic tomographic models resolve fast anomalies that often extend into the deep lower mantle. These anomalies are generally interpreted as slabs penetrating through the 660-km seismic discontinuity, evidence in support of whole-mantle convection. However,
Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold
Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao
2018-03-01
A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.
Visualization by PIV of dynamic stall on a vertical axis wind turbine
Ferreira, C.J.S.; Kuik, van G.A.M.; Bussel, van G.J.W.; Scarano, F.
2009-01-01
The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle ¿ of the
Charley, Phillida A; Wilusz, Carol J; Wilusz, Jeffrey
2018-01-05
Regulated mRNA decay plays a vital role in determining both the level and quality of cellular gene expression. Viral RNAs must successfully evade this host RNA decay machinery to establish a productive infection. One way for RNA viruses to accomplish this is to target the cellular exoribonuclease XRN1, because this enzyme is accessible in the cytoplasm and plays a major role in mRNA decay. Members of the Flaviviridae use RNA structures in their 5'- or 3'-untranslated regions to stall and repress XRN1, effectively stabilizing viral RNAs while also causing significant dysregulation of host cell mRNA stability. Here, we use a series of biochemical assays to demonstrate that the 3'-terminal portion of the nucleocapsid (N) mRNA of Rift Valley fever virus, a phlebovirus of the Bunyaviridae family, also can effectively stall and repress XRN1. The region responsible for impeding XRN1 includes a G-rich portion that likely forms a G-quadruplex structure. The 3'-terminal portions of ambisense-derived transcripts of multiple arenaviruses also stalled XRN1. Therefore, we conclude that RNAs from two additional families of mammalian RNA viruses stall and repress XRN1. This observation. emphasizes the importance and commonality of this viral strategy to interfere with the 5'-to-3'-exoribonuclease component of the cytoplasmic RNA decay machinery. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio
Kruyt, J.W.; Heijst, Van G.F.; Altshuler, D.L.; Lentink, David
2015-01-01
Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle
Directory of Open Access Journals (Sweden)
Mario Eck
2017-03-01
Full Text Available Axial compressors in aero engines are prone to suffering a breakdown of orderly flow when operating at the peak of the pressure rise characteristic. The damaging potential of separated flows is why a safe distance has to be left between every possible operating point and an operating point at which stall occurs. During earlier investigations of stall inception mechanisms, a new type of prestall instability has been found. In this study, it could be demonstrated that the prestall instability characterised by discrete flow disturbances can be clearly assigned to the subject of “Rotating Instabilities”. Propagating disturbances are responsible for the rise in blade passing irregularity. If the mass flow is reduced successively, the level of irregularity increases until the prestall condition devolves into rotating stall. The primary objective of the current work is to highlight the basic physics behind these prestall disturbances by complementary experimental and numerical investigations. Before reaching the peak of the pressure rise characteristic flow, disturbances appear as small vortex tubes with one end attached to the casing and the other attached to the suction surface of the rotor blade. These vortex structures arise when the entire tip region is affected by blockage and at the same time the critical rotor incidence is not exceeded in this flow regime. Furthermore, a new stall indicator was developed by applying statistical methods to the unsteady pressure signal measured over the rotor blade tips, thus granting a better control of the safety margin.
Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments
Matalanis, Claude G.; Min, Byung-Young; Bowles, Patrick O.; Jee, Solkeun; Wake, Brian E.; Crittenden, Tom; Woo, George; Glezer, Ari
2014-01-01
An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers.
Artieri, Carlo G; Fraser, Hunter B
2014-12-01
The recent advent of ribosome profiling-sequencing of short ribosome-bound fragments of mRNA-has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling data set have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling. © 2014 Artieri and Fraser; Published by Cold Spring Harbor Laboratory Press.
Nonlinear Aeroelastic Study of Stall Induced Oscillation in a Symmetric Airfoil
Sarkar, S.; Bijl, H.
2006-01-01
In this paper the aeroelastic stability of a wind turbine rotor in the dynamic stall regime is investigated. Increased flexibility of modern turbine blades makes them more susceptible to aeroelastic instabilities. Complex oscillation modes like flap/lead-lag are of particular concern, which give way
Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines
Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.
2004-01-01
Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing
Roof slab cooling device in a FBR type reactor
International Nuclear Information System (INIS)
Tarutani, Kohei
1987-01-01
Purpose: To obtain a roof slab cooling device capable of retaining cooling performance even in a case of electric power supply stop or failure and effective from economical point of view. Constitution: Atmospheric air is introduced into the cooling chamber of a proof slab and spontaneously passed to a exit pipeway connected to a stack thereby cooling the roof slab. Specifically, atmospheric air entered from the inlet pipeway is introduced to the cooling chamber and absorbs heat generate from the inside of the reactor container. Warmed air is sucked from the exit pipeway and then released into the atmosphere passing through the stack. The air cools the roof slab during circulation due to spontaneous passage and keeps the slab at a low temperature. Since the air is passed spontaneously, no power such as for a blower is required at all and, if the electric power supply should be lost, the cooling power can be maintained as it is to provide a high reliability. Further, since no electric power is required for the blowing power, it has high economical merit. (Horiuchi, T.)
Processing and properties of large-sized ceramic slabs
Energy Technology Data Exchange (ETDEWEB)
Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.
2010-07-01
Large-sized ceramic slabs with dimensions up to 360x120 cm{sup 2} and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.
Processing and properties of large-sized ceramic slabs
International Nuclear Information System (INIS)
Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.
2010-01-01
Large-sized ceramic slabs with dimensions up to 360x120 cm 2 and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.
Sub-wavelength grating mode transformers in silicon slab waveguides.
Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J
2009-10-12
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.
Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall
Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)
1996-01-01
Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other
Study on the Old Girders in the Widening Hollow Slab Girder Bridge
Wang, Ying; Zhang, Li Fang; Ma, Hai Yan
2018-06-01
Taking the bridge widening project of Shanghai-Hangzhou-Ningbo expressway widening construction project (China) as the background in this paper, the variation law of the internal force of the old bridge in the widening hollow slab girder bridge under vehicle load is studied, which is under the condition of different span lengths and different widening widths. Three different span lengths of the pre-tensioned prestressed hollow slab girder bridges are selected, the spatial finite element models of both the old bridge and the whole structure of widening bridge are established and calculated respectively by Midas/Civil software. The influences of widening and load increasing on the old bridges under the vehicle load are compared and analyzed. In addition, the authors also analyze the influences of different widening widths on the force state of old bridges under the condition of widening the same number of lane. Moreover , the effects on the old bridges that are caused by the uneven foundation settlement of widening bridge structure are also studied in this paper. This paper can provide some references for widening design of hollow slab bridges.
Topological superfluids confined in a regular nano-scale slab geometry
Energy Technology Data Exchange (ETDEWEB)
Saunders, John; Bennett, Robert; Levitin, Lev; Casey, Andrew; Cowan, Brian [Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX (United Kingdom); Parpia, Jeevak [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Drung, Dietmar; Schurig, Thomas [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-19587, Berlin (Germany)
2012-07-01
Superfluid 3He confined in a regular nano-fabricated slab geometry provides a model system for the investigation of surface and thin film effects in a p-wave superfluid. We have fabricated and cooled such samples to well below 1 mK for the first time, and investigated their NMR response, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We have used NMR on a 650 nm thick superfluid slab to identify the profound effect of confinement on the relative stability of the A and B phases and to make quantitative measurements of the suppression and surface induced distortion of the order parameter. In these systems the effective confinement length scale (slab thickness/superfluid coherence length) is the new tuning parameter. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase or the planar phase. Nanofluidic samples of superfluid 3He promise a route to explore topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions.
Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David
2015-04-06
Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
International Nuclear Information System (INIS)
Jamet, P.; Berriaud, C.; Humbert, J.M.; Millard, A.; Nahas, G.
1983-01-01
A study was carried out in order to investigate the validity of a concrete model including tensile fracture and strain-softening under compressive loading. Triaxial tests were performed on micro-concrete specimens, and the post-peak behaviour of the material was characterized. The parameters required by the model were therefore obtained. The case of a circular slab loaded up to failure was then considered, in order to compare the numerical results obtained by a finite elements analysis including the concrete model, to the experimental data. (orig.)
International Nuclear Information System (INIS)
Jamet, P.
1983-08-01
A study was carried out in order to investigate the validity of a concrete model including tensile fracture and strain-softening under compressive loading. Triaxial tests were performed on micro-concrete specimens, and the post-peak behaviour of the material was characterized. The parameters required by the model were therefore obtained. The case of a circular slab loaded up to failure was then considered, in order to compare the numerical results obtained by a finite elements analysis including the concrete model, to the experimental data
CFD study of a NACA 63-415 aerofoil fitted with stall strips
Energy Technology Data Exchange (ETDEWEB)
Zahle, F.; Soerensen, N.N.; Johansen, J.
2002-09-01
The present work describes a thorough investigation of 2D computations of the flow around a NACA 63-415 aerofoil fitted with stall strips (SS). A mesh study as well as a time step study is carried out and all computations are compared with experiments. Two different SS, 5mm and 7mm are investigated at several positions. Furthermore the influence of laminar to turbulent transition and the effect of a rounded SS were tested. There is not sufficient agreement between the experimental results and the simulations to draw any conclusions of optimum position and geometry of the SS. The 7mm SS's placed at P00 and P-02 has the greatest effect on the max lift followed by SS P02. The 5mm SS's does, as in the experiment, not change the lift curve noticeably. Even though this investigation does not conclusively succeed in verifying the experimental results with CFD, many useful conclusions can be drawn from the results. It is observed in the experiment that the vertical force fluctuates at higher angles of attack. This indicates that small bubbles are being shed off the profile causing the force to vary. This property is observed when transition is included in the model and also when the tip of the SS is rounded. From this result it could be concluded that the level of turbulence produced on the tip of the SS is very important for the development of the flow downstream. In the sharp tip calculations using fully turbulent computations, this is most likely too high, which resulted in the fine structures being damped out, with only one bubble appearing. (au)
Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V. S.
2014-12-01
Published plate reconstructions typically show the Izu-Bonin Marianas arc (IBM) forming as a result of long-lived ~50 Ma Pacific subduction beneath the Philippine Sea. These reconstructions rely on the critical assumption that the Philippine Sea was continuously coupled to the Pacific during the lifetime of the IBM arc. Because of this assumption, significant (up to 1500 km) Pacific trench retreat is required to accommodate the 2000 km of Philippine Sea/IBM northward motion since the Eocene that is constrained by paleomagnetic data. In this study, we have mapped subducted slabs of mantle lithosphere from MITP08 global seismic tomography (Li et al., 2008) and restored them to a model Earth surface to constrain plate tectonic reconstructions. Here we present two subducted slab constraints that call into question current IBM arc reconstructions: 1) The northern and central Marianas slabs form a sub-vertical 'slab wall' down to maximum 1500 km depths in the lower mantle. This slab geometry is best explained by a near-stationary Marianas trench that has remained +/- 250 km E-W of its present-day position since ~45 Ma, and does not support any significant Pacific slab retreat. 2) A vanished ocean is revealed by an extensive swath of sub-horizontal slabs at 700 to 1000 km depths in the lower mantle below present-day Philippine Sea to Papua New Guinea. We call this vanished ocean the 'East Asian Sea'. When placed in an Eocene plate reconstruction, the East Asian Sea fits west of the reconstructed Marianas Pacific trench position and north of the Philippine Sea plate. This implies that the Philippine Sea and Pacific were not adjacent at IBM initiation, but were in fact separated by a lost ocean. Here we propose a new IBM arc reconstruction constrained by subducted slabs mapped under East Asia. At ~50 Ma, the present-day IBM arc initiated at equatorial latitudes from East Asian Sea subduction below the Philippine Sea. A separate arc was formed from Pacific subduction below
Construction of foundation slab of Temelin reactor building
International Nuclear Information System (INIS)
Lebr, P.; Vyleta, M.
1988-01-01
The concreting is described of the foundation slab under the WWER-1000 reactor in the Temelin nuclear power plant. The slab area is 68x68 m and thickness 2.4 m. For ease of concreting, the slab was divided in 12 blocks with vertical partition walls of steel mesh. The total thickness was concreted in three stages in which the partial thicknesses slightly differed for operating reasons. The first two partial thicknesses were concreted in layers of 0.45 m each, the third thickness consisted of two layers of 0.30 m each. The reinforcement was completely cleaned of the concrete residues from the previous stages in the break between the second and the third stages. Totally, 11,050 m 3 concrete were used. Briefly described is quality control during concreting and experiences and recommendations are summed up for other concreting jobs. (Z.M.). 19 figs
Criticality of neutron transport in a slab with finite reflectors
International Nuclear Information System (INIS)
Pao, C.V.
1978-01-01
The purpose of this paper is to investigate the subcriticality and the supercriticality for the neutron transport in a slab which is surrounded by two finite reflectors. The mathematical problem is to determine when the coupled boundary-value problem has or has no positive solution. It is shown under some explicit conditions on the material properties of the transport mediums and the size of the slab length that the coupled problem has a unique solution which insures the subcriticality of the system. It is also shown under some different conditions on the same physical quantities that the system cannot have a nonnegative solution when there is an external source, and it only has the trivial solution when there is no source in the system. This conclusion leads to the supercriticality of the system. Both upper and lower bounds for the critical length of the slab are explicitly given
Optimal Material Layout - Applied on Reinforced Concrete Slabs
DEFF Research Database (Denmark)
Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars
2015-01-01
This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible to deter......This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible...... to determine the optimal material layout of a slab in the ultimate load state, based on simple inputs such as outer geometry, boundary conditions, multiple load cases and design domains. The material layout of the optimal design can either be fully orthotropic or isotropic, or a combination with a predefined...
Fire resistance of extruded hollow-core slabs
DEFF Research Database (Denmark)
Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt
2016-01-01
Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load......-bearing capacity are identified and test results and calculation approach are for the first time Applied in accordance with each other for assessment of fire resistance of the structure....
Cost Effectiveness of Precast Reinforced Concrete Roof Slabs
Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.
2017-11-01
Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.
First-principles approach for superconducting slabs and heterostructures
Energy Technology Data Exchange (ETDEWEB)
Csire, Gabor [Wigner Research Centre for Physics, Budapest (Hungary)
2016-07-01
We present a fully ab-initio method to calculate the transition temperature for superconducting slabs and heterostructures. In the case of thin superconductor layers the electron-phonon interaction may change significantly. Therefore we calculate the layer dependent phonon spectrum to determine the layer dependence of the electron-phonon coupling for such systems. The phonon spectrum is than coupled to the Kohn-Sham-Bogoliubov-de Gennes equation via the McMillan-Hopfield parameter, and it is solved self-consistently. The theory is applied to niobium slabs and niobium-gold heterostructures. Based on these calculations we investigate both the dependence of the superconducting transition temperature on the thickness of superconducting slabs and the inverse proximity effect observed in thin superconducting heterostructures.
Why and Where do Large Shallow Slab Earthquakes Occur?
Seno, T.; Yoshida, M.
2001-12-01
Within a shallow portion (20-60 km depth) of subducting slabs, it has been believed that large earthquakes seldom occur because the differential stress is generally expected to be low between bending at the trench-outer rise and unbending at the intermediate-depth. However, there are several regions in which large ( M>=7.0 ) earthquakes, including three events early in this year, have occurred in this portion. Searching such events from published individual studies and Harvard University centroid moment tensor catalogue, we find nineteen events in eastern Hokkaido, Kyushu-SW Japan, Mariana, Manila, Sumatra, Vanuatu, Chile, Peru, El Salvador, Mexico, and Cascadia. Slab stresses revealed from the mechanism solutions of those large events and smaller events are tensional in a slab dip direction. However, ages of the subducting oceanic plates are generally young, which denies a possibility that the slab pull works as a cause. Except for Manila and Sumatra, the stresses in the overriding plates are characterized by the change in {σ }Hmax direction from arc-parallel in the back-arc to arc-perpendicular in the fore-arc, which implies that a horizontal stress gradient exists in the across-arc direction. Peru and Chile, where the back-arc is compressional, can be categorized into this type, because a horizontal stress gradient exists over the continent from tension in east to compression in the west. In these regions, it is expected that mantle drag forces are operating beneath the upper plates, which drive the upper plates to the trenchward overriding the subducting oceanic plates. Assuming that the mantle drag forces beneath the upper plates originate from the mantle convection currents or upwelling plumes, we infer that the upper plates driven by the convection suck the oceanic plates, making the shallow portion of the slabs in extra-tension, thus resulting in the large shallow slab earthquakes in this tectonic regime.
Directory of Open Access Journals (Sweden)
Norimasa Shiomi
2003-01-01
Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.
Directory of Open Access Journals (Sweden)
Zhi-ping Zeng
2014-01-01
Full Text Available The paper describes the numerical simulation of the vertical random vibration of train-slab track-bridge interaction system by means of finite element method and pseudoexcitation method. Each vehicle is modeled as four-wheelset mass-spring-damper system with two-layer suspension systems. The rail, slab, and bridge girder are modeled by three-layer elastic Bernoulli-Euler beams connected with each other by spring and damper elements. The equations of motion for the entire system are derived according to energy principle. By regarding rail irregularity as a series of multipoint, different-phase random excitations, the random load vectors of the equations of motion are obtained by pseudoexcitation method. Taking a nine-span simply supported beam bridge traveled by a train consisting of 8 vehicles as an example, the vertical random vibration responses of the system are investigated. Firstly, the suitable number of discrete frequencies of rail irregularity is obtained by numerical experimentations. Secondly, the reliability and efficiency of pseudoexcitation method are verified through comparison with Monte Carlo method. Thirdly, the random vibration characteristics of train-slab track-bridge interaction system are analyzed by pseudoexcitation method. Finally, applying the 3σ rule for Gaussian stochastic process, the maximum responses of train-slab track-bridge interaction system with respect to various train speeds are studied.
First wall fusion blanket temperature variation - slab geometry
International Nuclear Information System (INIS)
Fillo, J.A.
1978-01-01
The first wall of a fusion blanket is approximated by a slab, with the surface facing the plasma subjected to an applied heat flux, while the rear surface is convectively cooled. The relevant parameters affecting the heat transfer during the early phases of heating as well as for large times are established. Analytical solutions for the temperature variation with time and space are derived. Numerical calculations for an aluminum and stainless steel slab are performed for a wall loading of 1 MW(th)/m 2 . Both helium and water cooling are considered. (Auth.)
Simulation of curing of a slab of rubber
International Nuclear Information System (INIS)
Abhilash, P.M.; Kannan, K.; Varkey, Bijo
2010-01-01
The objective of the present work is to predict the degree of curing for a rectangular slab of rubber, which was subjected to non-uniform thermal history. As the thermal conductivity of rubber is very low, the temperature gradient across a slab is quite large, which leads to non-uniform vulcanization, and hence non-uniform mechanical properties-an inhomogeneous material. Since curing is an exothermic reaction, heat transfer and chemical reactions are solved in a coupled manner. The effect of heat generation on curing is also discussed.
Concrete mixtures with high-workability for ballastless slab tracks
Directory of Open Access Journals (Sweden)
Olga Smirnova
2017-10-01
Full Text Available The concrete track-supporting layer and the monolithic concrete slab of ballastless track systems are made in-situ. For this reason the concrete mixtures of high workability should be used. Influence of the sand kind, the quartz microfiller fineness and quantity as well as quantity of superplasticizer on workability of fresh concrete and durability of hardened concrete is shown. The compositions of the high-workability concrete mixtures with lower consumption of superplasticizer are developed. The results of the research can be recommended for high performance concrete of ballastless slab track.