WorldWideScience

Sample records for stalled slab models

  1. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  2. Flap motion of helicopter rotors with novel, dynamic stall model

    Directory of Open Access Journals (Sweden)

    Han Wei

    2016-01-01

    Full Text Available In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.

  3. A Comparative Study of Three Methodologies for Modeling Dynamic Stall

    Science.gov (United States)

    Sankar, L.; Rhee, M.; Tung, C.; ZibiBailly, J.; LeBalleur, J. C.; Blaise, D.; Rouzaud, O.

    2002-01-01

    During the past two decades, there has been an increased reliance on the use of computational fluid dynamics methods for modeling rotors in high speed forward flight. Computational methods are being developed for modeling the shock induced loads on the advancing side, first-principles based modeling of the trailing wake evolution, and for retreating blade stall. The retreating blade dynamic stall problem has received particular attention, because the large variations in lift and pitching moments encountered in dynamic stall can lead to blade vibrations and pitch link fatigue. Restricting to aerodynamics, the numerical prediction of dynamic stall is still a complex and challenging CFD problem, that, even in two dimensions at low speed, gathers the major difficulties of aerodynamics, such as the grid resolution requirements for the viscous phenomena at leading-edge bubbles or in mixing-layers, the bias of the numerical viscosity, and the major difficulties of the physical modeling, such as the turbulence models, the transition models, whose both determinant influences, already present in static maximal-lift or stall computations, are emphasized by the dynamic aspect of the phenomena.

  4. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian

    2007-01-01

    on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...

  5. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian

    2009-01-01

    The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in hea...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  6. DYNSTALL: Subroutine package with a dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, Anders [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    2001-03-01

    A subroutine package, called DYNSTALL, for the calculation of 2D unsteady airfoil aerodynamics is described. The subroutines are written in FORTRAN. DYNSTALL is basically an implementation of the Beddoes-Leishman dynamic stall model. This model is a semi-empirical model for dynamic stall. It includes, however, also models for attached flow unsteady aerodynamics. It is complete in the sense that it treats attached flow as well as separated flow. Semi-empirical means that the model relies on empirically determined constants. Semi because the constants are constants in equations with some physical interpretation. It requires the input of 2D airfoil aerodynamic data via tables as function of angle of attack. The method is intended for use in an aeroelastic code with the aerodynamics solved by blade/element method. DYNSTALL was written to work for any 2D angles of attack relative to the airfoil, e.g. flow from the rear of an airfoil.

  7. Simulation Model of an Active-stall Fixed-speed Wind Turbine Controller

    DEFF Research Database (Denmark)

    Jauch, Clemens; Hansen, Anca D.; Soerensen, Poul

    2004-01-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented...... and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented...

  8. Simulation model of an active-stall fixed-speed wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.

    2004-07-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)

  9. The FFA dynamic stall model. The Beddoes-Leishman dynamic stall model modified for lead-lag oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden)

    1997-08-01

    For calculations of the dynamics of wind turbines the inclusion of a dynamic stall model is necessary in order to obtain reliable results at high winds. For blade vibrations in the lead-lag motion the velocity relative to the blade will vary in time. In the present paper modifications to the Beddoes-Leishman model is presented in order to improve the model for calculations of cases with a varying relative velocity. Comparisons with measurement are also shown and the influence on the calculated aerodynamic damping by the modifications are investigated. (au)

  10. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  11. Enhancing BEM simulations of a stalled wind turbine using a 3D correction model

    Science.gov (United States)

    Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi

    2018-03-01

    Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.

  12. Modified bond model for shear in slabs under concentrated loads

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; De Boer, A.

    2015-01-01

    Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, are less studied than beams in shear or slab-column connections in punching. To predict the shear capacity for this case, the Bond Model for concentric punching shear was studied initially.

  13. Investigating Stall Flutter using a DS model-An application for HAWTs

    International Nuclear Information System (INIS)

    Nichols, James; Haans, Wouter; Witcher, David; Attorni, Andrea

    2014-01-01

    As wind turbine blades become larger there is a tendency for the blade torsional stiffness to reduce, producing the possibility of dynamic instability at moderate windspeeds. While linearised methods can assess the envelope of allowable blade properties for avoiding classical flutter with attached flow aerodynamics, wind turbine aerofoils can experience stalled flow. Therefore, it is necessary to explore the possible effects of stall-flutter on blade stability. This paper aims to address methods for judging the stability of blade designs during both attached flow and stalled flow behaviour. This paper covers the following areas: i) Attached flow model A Beddoes-Leishman indicial model is presented and the choice of coefficients is explained in the context of Theodorsen's theory for flat-plate aerofoils and experimental results by Beddoes and Leishman. Special attention is given to the differing dynamic behaviour of the pitching moment due to flapping motion, pitching motion and dynamically varying inflow. (ii) Classical flutter analysis The time domain attached flow model is verified against a linear flutter analysis by comparing time domain results for a 3D model of a representative multi-megawatt turbine blade, varying the position of the centre of mass along the chord. The results show agreement to within 6% for a range of flutter onset speeds. (iii) Dynamic stall model On entering the stalled region, damping of torsional motion of an aerofoil section can become negative. A dynamic stall model which encompasses the effects of trailing edge separation and leading edge vortex detachment is presented and validated against published experimental data. (iv) Stall flutter The resulting time domain model is used in simulations validating the prediction of reduced flutter onset for stalled aerofoils. Representative stalled conditions for a multi-megawatt wind turbine blade are investigated to assess the possible reduction in flutter speed. A maximum reduction of 17

  14. Unsteady Double Wake Model for the Simulation of Stalled Airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær

    2015-01-01

    separation and its dynamics. In this paper, the calculated integral forces have been successfully validated against wind tunnel measurements for the FFA-W3-211 airfoil. Furthermore, the computed highly unsteady flow field is analyzed in detail for a set of angles of attack ranging from light to deep stall...

  15. A time-varying subjective quality model for mobile streaming videos with stalling events

    Science.gov (United States)

    Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.

    2015-09-01

    Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.

  16. Slab2 - Updated Subduction Zone Geometries and Modeling Tools

    Science.gov (United States)

    Moore, G.; Hayes, G. P.; Portner, D. E.; Furtney, M.; Flamme, H. E.; Hearne, M. G.

    2017-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0), is a highly utilized dataset that has been applied to a wide range of geophysical problems. In 2017, these models have been improved and expanded upon as part of the Slab2 modeling effort. With a new data driven approach that can be applied to a broader range of tectonic settings and geophysical data sets, we have generated a model set that will serve as a more comprehensive, reliable, and reproducible resource for three-dimensional slab geometries at all of the world's convergent margins. The newly developed framework of Slab2 is guided by: (1) a large integrated dataset, consisting of a variety of geophysical sources (e.g., earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow slab, tomography models, receiver functions, bathymetry, trench ages, and sediment thickness information); (2) a dynamic filtering scheme aimed at constraining incorporated seismicity to only slab related events; (3) a 3-D data interpolation approach which captures both high resolution shallow geometries and instances of slab rollback and overlap at depth; and (4) an algorithm which incorporates uncertainties of contributing datasets to identify the most probable surface depth over the extent of each subduction zone. Further layers will also be added to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling. Along with access to several queryable data formats, all components have been wrapped into an open source library in Python, such that suites of updated models can be released as further data becomes available. This presentation will discuss the extent of Slab2 development, as well as the current availability of the model and modeling tools.

  17. Validation of the Beddoes-Leishman Dynamic Stall Model for Horizontal Axis Wind Turbines using MEXICO data

    NARCIS (Netherlands)

    Pereira, R.; Schepers, G.; Pavel, M.D.

    2011-01-01

    The aim of this study is to assess the load predicting capability of a classical Beddoes-Leishman dynamic stall model in a horizontal axis wind turbine (HAWT) environment, in the presence of yaw-misalignment. The dynamic stall model was tailored to the HAWT environment, and validated against

  18. Modeling radon entry into Florida slab-on-grade houses.

    Science.gov (United States)

    Revzan, K L; Fisk, W J; Sextro, R G

    1993-10-01

    Radon entry into a Florida house whose concrete slab is supported by a permeable concrete-block stem wall and a concrete footer is modeled. The slab rests on backfill material; the same material is used to fill the footer trench. A region of undisturbed soil is assumed to extend 10 m beyond and below the footer. The soil is assumed homogeneous and isotropic except for certain simulations in which soil layers of high permeability or radium content are introduced. Depressurization of the house induces a pressure field in the soil and backfill. The Laplace equation, resulting from Darcy's law and the continuity equation, is solved using a steady-state finite-difference model to determine this field. The mass-transport equation is then solved to obtain the diffusive and advective radon entry rates through the slab; the permeable stem wall; gaps at the intersections of the slab, stem wall, and footer; and gaps in the slab. These rates are determined for variable soil, backfill, and stem-wall permeability and radium content, slab-opening width and position, slab and stem-wall diffusivity, and water table depth. The variations in soil permeability and radium content include cases of horizontally stratified soil. We also consider the effect of a gap between the edge of the slab and the stem wall that restricts the passage of soil gas from the stem wall into the house. Calculations indicate that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. Variations in most of the factors, other than the soil permeability and radium content, have only a small effect on the total radon entry rate. However, for a fixed soil permeability, the total radon entry rate may be reduced by a factor of 2 or more by decreasing the backfill permeability, by making the stem wall impermeable and gap-free, (possibly by constructing a one-piece slab/stem-wall/footer), or by increasing the pressure in the interior of the stem wall (by

  19. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...

  20. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations

    DEFF Research Database (Denmark)

    Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge

    2004-01-01

    This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...

  1. Vortical structures responsible for delayed stall in an idealized humpback whale flipper model

    Science.gov (United States)

    Kim, Heesu; Kim, Jooha; Choi, Haecheon

    2016-11-01

    In this study, we investigate how the tubercles on the leading edge of an idealized humpback whale flipper model delay the stall. Oil-surface visualization is performed to see the surface flow pattern on the suction surface, and PIV is conducted in several streamwise and crossflow planes at different attack angles (α). Without tubercles, leading edge separation first occurs near the tip region and progresses inboard with increasing α. With tubercles, however, two types of vortical motions are observed at the mid-span. The first is streamwise vortex arrays which are dominant at α 9° , and these structures appear near the trailing edge. These two types of vortical motions delay flow separation at the peak regions of the mid-span, eliminating the spanwise stall progression and resulting in delayed stall. At α = 16° at which the tubercle model stalls, a large-scale streamwise vortex is originated from flow separation near the root region. This structure delays flow separation at the mid-span, leading to higher lift coefficient. Supported by NRF-2014M3C1B1033848.

  2. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  3. Modeling radon entry into Florida slab-on-grade houses

    International Nuclear Information System (INIS)

    Revzan, K.L.; Fisk, W.J.; Sextro, R.G.

    1993-01-01

    Radon entry into a Florida house whose concrete slab is supported by a permeable concrete-block stem wall and a concrete footer is modeled. The slab rests on backfill material; the same material is used to fill the footer trench. A region of undisturbed soil is assumed to extend 10 m beyond and below the footer. The soil is assumed homogeneous and isotropic except for certain simulations in which soil layers of high permeability or radium content are introduced. Depressurization of the house induces a pressure field in the soil and backfill. The Laplace equation, resulting from Darcy's law and the continuity equation, is solved using a steady-state finite-difference model to determine this field. The mass-transport equation is then solved to obtain the diffusive and advective radon entry rates through the slab; the permeable stem wall; gaps at the intersections of the slab, stem wall, and footer; and gaps in the slab. These rates are determined for variable soil, backfill, and stem-wall permeability and radium content, slab-opening width and position, slab and stem-wall diffusivity, and water table depth. The variations in soil permeability and radium content include cases of horizontally stratified soil. We also consider the effect of a gap between the edge of the slab and the stem wall that restricts the passage of soil gas from the stem wall into the house. Calculations indicate that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. Variations in most of the factors, other than the soil permeability and radium content, have only a small effect on the total radon entry rate. However, for a fixed soil permeability, the total radon entry rate may be reduced by a factor of 2 or more by decreasing the backfill permeability, by making the stem wall impermeable and gap-free, (possibly by constructing a one-piece slab/stem-wall/footer), or by increasing the pressure in the interior of the stem wall

  4. Assimilating lithosphere and slab history in 4-D Earth models

    Science.gov (United States)

    Bower, Dan J.; Gurnis, Michael; Flament, Nicolas

    2015-01-01

    We develop methods to incorporate paleogeographical constraints into numerical models of mantle convection. Through the solution of the convection equations, the models honor geophysical and geological data near the surface while predicting mantle flow and structure at depth and associated surface deformation. The methods consist of four constraints determined a priori from a plate history model: (1) plate velocities, (2) thermal structure of the lithosphere, (3) thermal structure of slabs in the upper mantle, and (4) velocity of slabs in the upper mantle. These constraints are implemented as temporally- and spatially-dependent conditions that are blended with the solution of the convection equations at each time step. We construct Earth-like regional models with oceanic and continental lithosphere, trench migration, oblique subduction, and asymmetric subduction to test the robustness of the methods by computing the temperature, velocity, and buoyancy flux of the lithosphere and slab. Full sphere convection models demonstrate how the methods can determine the flow associated with specific tectonic environments (e.g., back-arc basins, intraoceanic subduction zones) to address geological questions and compare with independent data, both at present-day and in the geological past (e.g., seismology, residual topography, stratigraphy). Using global models with paleogeographical constraints we demonstrate (1) subduction initiation at the Izu-Bonin-Mariana convergent margin and flat slab subduction beneath North America, (2) enhanced correlation of model slabs and fast anomalies in seismic tomography beneath North and South America, and (3) comparable amplitude of dynamic and residual topography in addition to improved spatial correlation of dynamic and residual topography lows.

  5. Simulation model of a transient fault controller for an active-stall wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Soerensen, P.; Bak Jensen, B.

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed. (author)

  6. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

    2016-01-01

    Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... agreement between the model and the experimental data in many cases, which suggests that the current two-dimensional dynamic stall model as used in blade element momentum-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination...

  7. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  8. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  9. Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow

    Science.gov (United States)

    Narsipur, Shreyas

    Unsteady aerodynamics has been a topic of research since the late 1930's and has increased in popularity among researchers studying dynamic stall in helicopters, insect/bird flight, micro air vehicles, wind-turbine aerodynamics, and ow-energy harvesting devices. Several experimental and computational studies have helped researchers gain a good understanding of the unsteady ow phenomena, but have proved to be expensive and time-intensive for rapid design and analysis purposes. Since the early 1970's, the push to develop low-order models to solve unsteady ow problems has resulted in several semi-empirical models capable of effectively analyzing unsteady aerodynamics in a fraction of the time required by high-order methods. However, due to the various complexities associated with time-dependent flows, several empirical constants and curve fits derived from existing experimental and computational results are required by the semi-empirical models to be an effective analysis tool. The aim of the current work is to develop a low-order model capable of simulating incompressible dynamic-stall type ow problems with a focus on accurately modeling the unsteady ow physics with the aim of reducing empirical dependencies. The lumped-vortex-element (LVE) algorithm is used as the baseline unsteady inviscid model to which augmentations are applied to model unsteady viscous effects. The current research is divided into two phases. The first phase focused on augmentations aimed at modeling pure unsteady trailing-edge boundary-layer separation and stall without leading-edge vortex (LEV) formation. The second phase is targeted at including LEV shedding capabilities to the LVE algorithm and combining with the trailing-edge separation model from phase one to realize a holistic, optimized, and robust low-order dynamic stall model. In phase one, initial augmentations to theory were focused on modeling the effects of steady trailing-edge separation by implementing a non-linear decambering

  10. Analytical model for shear strength of end slabs of prestressed concrete nuclear reactor vessels

    International Nuclear Information System (INIS)

    Abdulrahman, H.O.; Sozen, M.A.; Schnobrich, W.C.

    1979-04-01

    The results are presented of an investigation of the behavior and strength of flat end slabs of cylindrical prestressed concrete nuclear reactor vessels. The investigation included tests of ten small-scale pressure vessels and development of a nonlinear finite-element model to simulate the deformation response and strength of the end slabs. Because earlier experimental studies had shown that the flexural strength of the end slab could be calculated using intelligible procedures, the emphasis of this investigation was on shear strength

  11. A slab expression in the Gibraltar arc?

    Science.gov (United States)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2017-04-01

    The present-day geodynamic setting of the Gibraltar arc region results from several Myrs of subduction rollback in the overall (oblique) convergence of Africa and Iberia. As for most rollback settings in a convergence zone, the interaction of these two components is complex and distinctly non-stationary. Gibraltar slab rollback is considered to have stalled, or at least diminished largely in magnitude, since the late Miocene/early Pliocene, suggesting that the effect of the slab on present-day surface motions is negligible. However, GPS measurements indicate that the Gibraltar arc region has an anomalous motion with respect to both Iberia and Africa, i.e., the Gibraltar arc region does not move as part of the rigid Iberian, or the rigid African plate. A key question is whether this surface motion is an expression of the Gibraltar slab. Seismic activity in the Gibraltar region is diffuse and considerable in magnitude, making it a region of high seismic risk. Unlike the North African margin to the east, where thrust earthquakes dominate the focal mechanism tables, a complex pattern is observed with thrust, normal and strike-slip earthquakes in a region stretching between the northern Moroccan Atlas across the Gibraltar arc and Alboran Sea (with the Trans-Alboran Shear Zone) to the Betics of southern Spain. Even though no large mega-thrust earthquakes have been observed in recent history, slab rollback may not have completely ceased. However, since no activity has been observed in the accretionary wedge, probably since the Pliocene, it is likely that the subduction interface is locked. In this study, we perform a series of numerical models in which we combine the relative plate convergence, variable magnitude of friction on fault segments, regional variations in gravitational potential energy and slab pull of the Gibraltar slab. We seek to reproduce the GPS velocities and slip sense on regional faults and thereby determine whether the Gibraltar slab has an effect on

  12. Evolution of the slab bending radius and the bending dissipation in three-dimensional subduction models with a variable slab to upper mantle viscosity ratio

    NARCIS (Netherlands)

    Schellart, W. P.

    2009-01-01

    Three-dimensional laboratory subduction models are presented investigating the influence of the slab/upper mantle viscosity ratio (ηSP/ηUM) on the slab bending radius (RB), with ηSP/ηUM = 66-1375. Here, RB is non-dimensionalized by dividing it by the upper mantle thickness (TUM). The results show

  13. The Relevance of the Dynamic Stall Effect for Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...

  14. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    Science.gov (United States)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  15. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  16. Analog Modeling of the Juan Fernández Ridge, Central Chile, and Implications for Flat-Slab Subduction Dynamics

    Science.gov (United States)

    Woodell, D.; Anderson, M. L.

    2009-12-01

    This study compares the strain experienced by the subducting lithosphere in analog models to the strain recorded by earthquakes in the subduction zone that includes the Juan Fernández Ridge (JFR), near 33 S, 73 W, off the coast of central Chile. The JFR is an aseismic hot spot ridge that has a thickened oceanic crust. The overthickened crust reduces the total density of the slab when compared to the surrounding slab areas, and thus increases the buoyancy of the subducting Nazca plate at this particular location. It is hypothesized that the Nazca plate experiences “flat-slab” subduction at the JFR subduction zone due to this buoyancy. Brudzinski and Chen (2005) argue that, due to the poorly aligned direction of maximum extension (T axes) for earthquakes in the subducting slab in flat-slab subduction zones, the theory of “slab pull” may not be valid for flat-slab subduction zones, and there must be other forces at work. However, Anderson et al. (2007) develop new, more precise slab contours from newly determined earthquake locations and use these contours to qualitatively compare the earthquake data to slab dip directions and thus expected slab-pull directions. They conclude that T axes are parallel to slab dip, and thus slab pull is the only force necessary for explaining the T axis direction. In this study, we quantitatively compare extension produced in analog "flat-slab" models in the laboratory to T axes from the Anderson et al. (2007) study, extending and further testing their idea. Several materials comprise the analog models. Light corn syrup represents the asthenosphere, while silicon putty represents the lithosphere. Recreating the dynamics of the buoyant JFR necessitates two different densities of silly putty: a denser one for the bulk of the slab, and a less dense one for the buoyant ridge. Shallow circular indentations (strain ellipses) on the slab facilitate recording of the strain in the subducting slab. Video and still pictures record each

  17. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked......-hinge model aimed at the analysis of the bending fracture of the cemented material. The model is based on the fracture mechanics concepts of the fictitious crack model with a linear stress–crack opening relationship. Moreover, the paper presents a two-parameter spring foundation model applied to realistically...

  18. Semi-analytical model for a slab one-dimensional photonic crystal

    Science.gov (United States)

    Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.

    2018-02-01

    In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.

  19. Numerical Modelling of Reinforced Concrete Slabs under Blast Loads of Close-in Detonations Using the Lagrangian Approach

    Science.gov (United States)

    Shuaib, M.; Daoud, O.

    2015-07-01

    This paper includes an investigation for the deformations, including deflections and damage modes, which occur in reinforced concrete (RC) slabs when subjected to blast loads of explosions. The slab considered for the investigation is a one-way square RC slab with the dimensions of 1000 x 1000 x 40 mm, fixed supported at two opposite sides. It was subjected to close-in detonations of three different charge weights for a constant standoff distance. For the study, the slab was analysed using the numerical method by means of nonlinear finite element analysis. The slab was modelled as 3-D structural continuum using LS-DYNA software. For concrete modelling, two constitutive models were selected, namely the KCC and Winfrith concrete models. Blast loads were applied to the slab through the Lagrangian approach, and the blast command available in the software, namely LOAD_BLAST_ENHANCED, was selected for the application. The deflections and damage modes results obtained were compared to those from a previously published experiment. From the study, both the KCC and Winfrith concrete models effectively and satisfactorily estimated the actual slab maximum deflection. For damage modes, the KCC model appeared to be capable to capture satisfactorily the general damage mode including flexural cracks. However, the model could not capture the local shear mode at the middle of slab (spallation) because the Lagrangian approach does not simulate the interaction between the ambient air and the solid slab.

  20. Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails

    Science.gov (United States)

    Mlilo, Nhlanganiso; Kaewunruen, Sakdirat

    2017-12-01

    Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure

  1. The relevance of the dynamic stall effect for transient fault operations of active-stall wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak

    2005-06-15

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)

  2. Slab1.0: A three-dimensional model of global subduction zone geometries

    Science.gov (United States)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of ‘average’ active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  3. A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity

    Science.gov (United States)

    Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.

    2011-01-01

    We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.

  4. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    Science.gov (United States)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  5. Computational Modelling of RC Slabs Cracking with an Embedded Discontinuity Formulation

    Directory of Open Access Journals (Sweden)

    Juárez-Luna G.

    Full Text Available Abstract This paper investigates the cracking process of reinforced concrete slabs subjected to vertical load, involving their crack pattern and the load-displacement capacity curve. Concrete was discretized with hexahedral finite elements with embedded discontinuities; whereas steel reinforcement was represented by 3D bar elements, placed along the edges of the solid elements, both kinds of elements have three degrees of freedom per node. The constitutive behaviour of concrete considers the softening deformation after reaching a failure surface, whereas the hardening of the reinforcing steel is represented by a 1D rate independent plasticity model with isotropic hardening. The coupling of solid and bar finite elements was validated with a reinforced concrete slab reported in the literature; other two slabs were also investigated showing their cracking patters at the top and at the bottom surfaces.

  6. Slab detachment in laterally varying subduction zones: 3-D numerical modeling

    NARCIS (Netherlands)

    Duretz, T.; Gerya, T.V.; Spakman, W.|info:eu-repo/dai/nl/074103164

    Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models,

  7. Numerical analyses of interaction of steel-fibre reinforced concrete slab model with subsoil

    Directory of Open Access Journals (Sweden)

    Jana Labudkova

    2017-01-01

    Full Text Available Numerical analyses of contact task were made with FEM. The test sample for the task was a steel-fibre reinforced concrete foundation slab model loaded during experimental loading test. Application of inhomogeneous half-space was used in FEM analyses. Results of FEM analyses were also confronted with the values measured during the experiment.

  8. Modelling of continuous and discontinuous floating slab tracks in a tunnel using a periodic approach

    Science.gov (United States)

    Gupta, S.; Degrande, G.

    2010-04-01

    This paper presents a periodic approach to couple a track and a tunnel-soil system of different periodicity. The periodicity of the track and the tunnel-soil system is exploited using the Floquet transform to efficiently formulate the problem in the frequency-wavenumber domain as well as to limit the discretization effort to a reference cell. The track and the tunnel-soil system are modelled as two separate systems of different periodicity and are coupled in the frequency-wavenumber domain. A coupled periodic finite element-boundary element method is used to model the tunnel-soil system, while a periodic finite element model or an analytical approach is used to model the track. A general analytical formulation to compute the response of three-dimensional periodic media that are excited by moving loads is discussed. It is shown that the response due to moving loads on the track can be calculated from the transfer function of the track-tunnel-soil system and the axle loads. A methodology for computing the transfer functions of the coupled track-tunnel-soil system as well as the computation of dynamic forces accounting for the interaction between the moving vehicle and the periodic track are described. The model accounts for quasi-static forces as well as dynamic forces due to parametric excitation and unevenness excitation. The methodology has been used to assess the vibration isolation efficiency of continuous and discontinuous floating slab tracks. It is concluded that both continuous and discontinuous floating slab tracks have a similar efficiency in the frequency range well above the isolation frequency of the slabs, which is usually higher than the slab passage frequency. In case of discontinuous slab tracks, the parametric excitation is found to be important, which results in a poorer performance of the track at low frequencies.

  9. Clutch-Starting Stalled Research Students

    Science.gov (United States)

    Ahern, Kathy; Manathunga, Catherine

    2004-01-01

    Many research students go through periods where their research seems to stall, their motivation drops, and they seem unable to make any progress. As supervisors, we attempt to remain alert to signs that our student's progress has stalled. Drawing on cognitive strategies, this article explores a problem-solving model supervisors can use to identify…

  10. Issues for Achieving an Experimental Model Concerning Bubble Deck Concrete Slab with Spherical Gaps

    Directory of Open Access Journals (Sweden)

    Sergiu Călin

    2010-01-01

    Full Text Available After realizing numerous constructions in the world, which use Bubble Deck concrete slabs with spherical gaps, valuable information were gathered, allowing a rigorous processing and systematization, with the purpose of realizing an experimental and documentary study. The paper presents some experimental programs which refer to concrete slabs with spherical gaps, existing in similar execution and loading conditions as those from a real construction; this implies the realization of a monolithic slab element at a scale of 1:1, which will be subjected to static gravitational loadings in order to determine the deformation (deflection, cracking and failing characteristics. The resultant conclusions will be used in defining the failing mechanisms, very useful in the formulation of an adequate mathematical model. The research proposed in the project offers an answer to the major objectives of the development of calculus methods and existent prescriptions of the concrete slabs with spherical gaps. The realization of the proposed objectives involves documentation activities, theoretical study, collaboration with different other partners, gathering and processing of the results obtained in laboratory and even in situ.

  11. Dynamic comparison of different types of slab tracks and ballasted track using a flexible track model

    OpenAIRE

    Blanco-Lorenzo, Julio; Santamaría Manrique, Javier; García Vadillo, Ernesto; Oyarzabal de Celis, Olatz

    2011-01-01

    The dynamic performance of a ballasted track and three types of slab tracks is analysed and compared by means of a comprehensive dynamic model of the train-track system, generated using two commercial analysis software packages: the commercial Multibody System (MBS) analysis software SIMPACK and the Finite Element Method (FEM) analysis software NASTRAN. The use of a commercial MBS software makes it possible to include in a reliable way models of advanced non-linear wheel-rail contact, as well...

  12. Subduction and Slab Advance at Orogen Syntaxes: Predicting Exhumation Rates and Thermochronometric Ages with Numerical Modeling

    Science.gov (United States)

    Nettesheim, Matthias; Ehlers, Todd A.; Whipp, David M.

    2017-04-01

    The change in plate boundary orientation and subducting plate geometry along orogen syntaxes may have major control on the subduction and exhumation dynamics at these locations. Previous work documents that the curvature of subducting plates in 3D at orogen syntaxes forces a buckling and flexural stiffening of the downgoing plate. The geometry of this stiffened plate region, also called indenter, can be observed in various subduction zones around the world (e.g. St. Elias Range, Alaska; Cascadia, USA; Andean syntaxis, South America). The development of a subducting, flexurally stiffened indenter beneath orogen syntaxes influences deformation in the overriding plate and can lead to accelerated and focused rock uplift above its apex. Moreover, the style of deformation in the overriding plate is influenced by the amount of trench or slab advance, which is the amount of overall shortening not accommodated by underthrusting. While many subduction zones exhibit little to no slab advance, the Nazca-South America subduction and especially the early stages of the India-Eurasia collision provide end-member examples. Here, we use a transient, lithospheric-scale, thermomechanical 3D model of an orogen syntaxis to investigate the effects of subducting a flexurally stiffened plate geometry and slab advance on upper plate deformation. A visco-plastic upper-plate rheology is used, along with a buckled, rigid subducting plate. The free surface of the thermomechanical model is coupled to a landscape evolution model that accounts for erosion by fluvial and hillslope processes. The cooling histories of exhumed rocks are used to predict the evolution of low-temperature thermochronometer ages on the surface. With a constant overall shortening for all simulations, the magnitude of slab advance is varied stepwise from no advance, with all shortening accommodated by underthrusting, to full slab advance, i.e. no motion on the megathrust. We show that in models where most shortening is

  13. Decarbonation of subducting slabs: insight from thermomechanical-petrological numerical modelling

    Science.gov (United States)

    Gonzalez, Christopher M.; Gorczyk, Weronika; Gerya, Taras

    2015-04-01

    This work extends a numerical geodynamic modelling code (I2VIS) to simulate subduction of carbonated lithologies (altered basalts and carbonated sediments) into the mantle. Code modifications now consider devolatilisation of H2O-CO2 fluids, a CO2-melt solubility parameterisation for molten sediments, and allows for carbonation of mantle peridotites. The purpose is to better understand slab generated CO2 fluxes and consequent subduction of carbonates into the deep mantle via numerical simulation. Specifically, we vary two key model parameters: 1) slab convergence rate (1,2,3,4,5 cm y-1) and 2) converging oceanic slab age (20,40,60,80 Ma) based on a half-space cooling model. The aim is to elucidate the role subduction dynamics has (i.e., spontaneous sedimentary diapirism, slab roll-back, and shear heating) with respect to slab decarbonation trends not entirely captured in previous experimental and thermodynamic investigations. This is accomplished within a fully coupled petrological-thermomechanical modelling framework utilising a characteristics-based marker-in-cell technique capable of solving visco-plastic rheologies. The thermodynamic database is modified from its original state to reflect the addition of carbonate as CO2 added to the rock's overall bulk composition. Modifications to original lithological units and volatile bulk compositions are as follows: GLOSS average sediments (H2O: 7.29 wt% & CO2: 3.01 wt%), altered basalts (H2O: 2.63 wt% & CO2: 2.90 wt%), and metasomatised peridotite (H2O: 1.98 wt% & CO2: 1.5 wt%). We resolve stable mineralogy and extract rock properties via PerpleX at a resolution of 5K and 25 MPa. Devolatilisation/consumption and stability of H2O-CO2 fluid is determined by accessing the thermodynamic database. When fluid is released due to unstable conditions, it is tracked via markers that freely advect within the velocity field until consumed. 56 numerical models were completed and our results show excellent agreement in dynamics with

  14. Preliminary models of 3-D oceanic plateau subduction: influence of the width ratio between plateau and slab

    Science.gov (United States)

    Arrial, P.; Billen, M. I.

    2012-12-01

    Subduction is driven by the negative buoyancy of the slab, which depends on both the temperature and composition of the lithospheric plate. Before subduction, the oceanic crust and underlying harzburgite layer have positive buoyancy. As a result an oceanic plateau or an over-thickened oceanic crust introduces an excess of buoyancy and decreases proportionally the driving forces. Previous 2-D numerical models have shown that an oceanic plateau subduction, associated to a young plate (30 My), can modify the slab behavior during the subduction (Arrial & Billen, in review). In a kinematically-driven model (convergence rate of 5 cm/yr), a partially eclogitized plateau can lead to a flat slab. However, eclogitization limits the depth extent of buoyant material and all plateaus eventually subduct regardless of thickness or width. In contrast, in dynamic models, oceanic plateau subduction does not lead to slab flattening, but we observe a decrease in the convergence rate proportional to the plateau geometry, and slab detachment and cessation of subduction for large plateaus. Extrapolation of the 2-D results to 3-D geometry predicts that sufficient slab buoyancy is available to sustain subduction for narrow plateaus with slab widths 6-7 times the plateau width (depending on plateau thickness and length). Here we show the preliminary results for 3-D models of oceanic plateau subduction investigating how the width ratio between the plateau and the slab affect subduction dynamics. We have modified the code CitcomS to introduce an eclogitization reaction and a composition dependent viscosity. Using particles the code track the three main compositions: basalt, harzburgite and lherzolite. The basalt/eclogite reaction is modeled as a progressive increasing of basaltic density. Furthermore, in order to maintain a free subduction and slab retreat, we impose a weaker viscosity for the basaltic composition.

  15. Application of a global plasticity model to determine the ultimate strength of a reinforced concrete slab

    International Nuclear Information System (INIS)

    Hoffmann, A.; Millard, A.; Nahas, G.

    1983-08-01

    In order to predict the behaviour of composite beams and shells loaded up to failure, a global method has been developped. This method is based on a generalized stress approach, formulated in terms of moment-curvature relations. The case of a reinforced concrete slab subjected to uniform pressure has been considered. It is shown that numerical results compare fairly well with experimental data. Some improvements to the model are also suggested

  16. The elastic transfer model of angular rate modulation in F1-ATPase stalling and controlled rotation experiments

    Science.gov (United States)

    Volkán-Kacsó, S.

    2017-06-01

    The recent experimental, theoretical and computational advances in the field of F1-ATPase single-molecule microscopy are briefly surveyed. The role of theory is revealed in the statistical analysis, interpretation and prediction of single-molecule experimental trajectories, and in linking them with atomistic simulations. In particular, a theoretical model of elastically coupled molecular group transfer is reviewed and a detailed method for its application in stalling and controlled rotation experiments is provided. It is shown how the model can predict, using previous experiments, the rates of ligand binding/release processes (steps) and their exponential dependence on rotor angle in these experiments. The concept of Brønsted slopes is reviewed in the context of the single-molecule experiments, and the rate versus rotor angle relations are explained using the elastic model. These experimental data are treated in terms of the effect of thermodynamic driving forces on the rates assuming that the rotor shaft is elastically coupled to stator ring subunits in which the steps occur. In the application of the group transfer model on an extended angular range processes leading up to the transfer are discussed. Implications for large-scale atomistic simulation are suggested for the treatment of torque-generating steps.

  17. A study of the drooped leading edge airfoil. [on wind tunnel models to reduce spin entry after stall

    Science.gov (United States)

    Anderson, J. D., Jr.; Barlow, J. B.

    1979-01-01

    Wind tunnel tests were conducted to examine various aspects of the drooped-leading edge airfoil which reduces the tendency for an airplane to enter a spin after stall occurs. Three baseline models were used for tests of two dimensional models: NACA 0015, 0014.6, and 0014.2. The 14.6% and 14.2% models were derived from NACA 0015 sections by increasing the chord and matching the profiles aft section. Force, balance data (lift, drag, pitching moment) were obtained for each model at a free-steam Reynold's number of 2.66 x 10 to the 6th power/m. In addition, oil flow visualization tests were performed at various angles of attack. An existing NACA 64 sub 1 A211 airfoil was used in a second series of tests. The leading edge flap was segmented in three parts which allowed various baseline/drooped leading edge configurations to be tested. Force balance and flow visualization tests were completer at chord Renolds numbers of 0.44 x 10 to the 6th power, 1.4 x 10 to the 6th power, and 2.11 x 10 to the 6th power. Test results are included.

  18. The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.

    Science.gov (United States)

    Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan; Yi, Nengjun

    2017-01-01

    Large-scale "omics" data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, there are considerable challenges in analyzing high-dimensional molecular data, including the large number of potential molecular predictors, limited number of samples, and small effect of each predictor. We propose new Bayesian hierarchical generalized linear models, called spike-and-slab lasso GLMs, for prognostic prediction and detection of associated genes using large-scale molecular data. The proposed model employs a spike-and-slab mixture double-exponential prior for coefficients that can induce weak shrinkage on large coefficients, and strong shrinkage on irrelevant coefficients. We have developed a fast and stable algorithm to fit large-scale hierarchal GLMs by incorporating expectation-maximization (EM) steps into the fast cyclic coordinate descent algorithm. The proposed approach integrates nice features of two popular methods, i.e., penalized lasso and Bayesian spike-and-slab variable selection. The performance of the proposed method is assessed via extensive simulation studies. The results show that the proposed approach can provide not only more accurate estimates of the parameters, but also better prediction. We demonstrate the proposed procedure on two cancer data sets: a well-known breast cancer data set consisting of 295 tumors, and expression data of 4919 genes; and the ovarian cancer data set from TCGA with 362 tumors, and expression data of 5336 genes. Our analyses show that the proposed procedure can generate powerful models for predicting outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). Copyright © 2017 by the Genetics Society of America.

  19. Slab track

    OpenAIRE

    Golob, Tina

    2014-01-01

    The last 160 years has been mostly used conventional track with ballasted bed, sleepers and steel rail. Ensuring the high speed rail traffic, increasing railway track capacities, providing comfortable and safe ride as well as high reliability and availability railway track, has led to development of innovative systems for railway track. The so-called slab track was first built in 1972 and since then, they have developed many different slab track systems around the world. Slab track was also b...

  20. Modeling of the flow-solidification interaction in thin slab casting

    Science.gov (United States)

    Vakhrushev, A.; Wu, M.; Ludwig, A.; Tang, Y.; Hackl, G.; Nitzl, G.

    2012-07-01

    A key issue for modelling the thin slab casting (TSC) is to consider the evolution of the solid shell, which strongly interacts with the turbulent flow and in the meantime is subject to continuous deformation due to the funnel shape (curvature) of the mould. Here an enthalpy-based mixture solidification model with consideration of turbulent flow [Prescott and Incropera, ASME HTD, vol. 280, 1994, pp. 59] is employed, and further enhanced to include the deforming solid shell. The solid velocity in the fully-solidified strand shell and partially-solidified mushy zone is estimated by solving the Laplace's equation. Primary goals of this work are to examine the sensitivity of the modelling result to different model implementation schemes, and to explore the importance of the deforming and moving solid shell in the solidification. Therefore, a 2D benchmark, to mimic the solidification and deformation behaviour of the thin slab casting, is firstly simulated and evaluated. An example of 3D TSC is also presented. Due to the limitation of the current computation resources additional numerical techniques like parallel computing and mesh adaptation are necessarily applied to ensure the calculation accuracy for the full-3D TSC.

  1. Soft computing for modeling punching shear of reinforced concrete flat slabs

    Directory of Open Access Journals (Sweden)

    Iyad Alkroosh

    2015-06-01

    Full Text Available This paper presents applying gene expression programming (GEP approach for predicting the punching shear strength of normal and high strength reinforced concrete flat slabs. The GEP model was developed and verified using 58 case histories that involve measured punching shear strength. The modeling was carried out by dividing the data into two sets: a training set for model calibration, and a validation set for verifying the generalization capability of the model. It is shown that the model is able to learn with high accuracy the complex relationship between the punching shear and the factors affecting it and produces this knowledge in the form of a function. The results have demonstrated that the GEP model performs very well with coefficient of determination, mean, standard deviation and probability density at 50% equivalent to 0.98, 0.99, 0.10 and 0.99, respectively. Moreover, the GEP predicts punching shear strength more accurately than the traditional methods.

  2. Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models

    DEFF Research Database (Denmark)

    Castelein, D.; Ragni, D.; Tescione, G.

    2015-01-01

    An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord-ba...

  3. Growth, collapse, and stalling in a mechanical model for neurite motility

    Science.gov (United States)

    Recho, Pierre; Jerusalem, Antoine; Goriely, Alain

    2016-03-01

    Neurites, the long cellular protrusions that form the routes of the neuronal network, are capable of actively extending during early morphogenesis or regenerating after trauma. To perform this task, they rely on their cytoskeleton for mechanical support. In this paper, we present a three-component active gel model that describes neurites in the three robust mechanical states observed experimentally: collapsed, static, and motile. These states arise from an interplay between the physical forces driven by growth of the microtubule-rich inner core of the neurite and the acto-myosin contractility of its surrounding cortical membrane. In particular, static states appear as a mechanical traction or compression balance of these two parallel structures. The model predicts how the response of a neurite to a towing force depends on the force magnitude and recovers the response of neurites to several drug treatments that modulate the cytoskeleton active and passive properties.

  4. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  5. Theoretical quasar emission-line ratios. VII - Energy-balance models for finite hydrogen slabs

    Science.gov (United States)

    Hubbard, E. N.; Puetter, R. C.

    1985-01-01

    The present energy balance calculations for finite, isobaric, hydrogen-slab quasar emission line clouds incorporate probabilistic radiative transfer (RT) in all lines and bound-free continua of a five-level continuum model hydrogen atom. Attention is given to the line ratios, line formation regions, level populations and model applicability results obtained. H lines and a variety of other considerations suggest the possibility of emission line cloud densities in excess of 10 to the 10th/cu cm. Lyman-beta/Lyman-alpha line ratios that are in agreement with observed values are obtained by the models. The observed Lyman/Balmer ratios can be achieved with clouds whose column depths are about 10 to the 22nd/sq cm.

  6. Mechanical Model for flexural behaviour of slab-column connections under seismically induced deformations

    OpenAIRE

    Drakatos Ioannis-Sokratis; Muttoni Aurelio; Beyer Katrin

    2014-01-01

    Reinforced concrete (RC) flat slabs supported on columns are one of the most widely used structural systems for office and industrial buildings. In regions of medium to high seismic risk RC walls are typically added as lateral force resisting system and to increase the lateral stiffness and strength. Although slab-column systems are not expected to contribute to the lateral resistance of the structure due to their low stiffness, the slab-column connection have to have the capacity to follow t...

  7. High-speed PIV applied to the wake of the NASA CRM model in ETW at high Re-number stall conditions for sub- and transonic speeds

    OpenAIRE

    Konrath, Robert; Geisler, Reinhard; Otter, Dirk; Philipp, Florian; Ehlers, Hauke; Agocs, Janos; Quest, Jürgen

    2015-01-01

    Within the framework of the EU project ESWIRP the Particle Image Velocimetry (PIV) using high-speed camera and laser has been used to measure the turbulent flow in the wake of a stalled aircraft wing. The measurements took place on the Common Research Model (CRM) provided by NASA in the pressurized cryogenic European Transonic Wind tunnel (ETW). A specific cryo-PIV system has been used and adapted for using high-speed PIV components under the cryogenic conditions of the wind tunnel faci...

  8. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  9. Dynamic stall and 3D effects

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs

  10. Transverse Crack Modeling of Continuously Casted Slabs through Finite Element Method in Roughing Rolling at Wide Strip Mill

    Science.gov (United States)

    Pesin, A.; Salganik, V.; Pustovoytov, D.

    2010-06-01

    In the pipe billet production at the wide strip mills of hot rolling big metal losses are caused by surface defects that affect most parts of the finished strips. The rolling surface defects are referred to the breach of steelmaking technology. Specialists mostly face defects of metal surface such as "scab" and "crack". The only area suffered from these defects is a slab edge. This area has the least surface temperature at the unbending of the continuous-casting machine, and together with deep buckles made by reciprocating motion of the crystallizer it is mostly subjected to transverse cracks that can be up to several millimeters. Each surface defect of the continuously casted slab will further turn into the surface defect of the strip bar. For some grade sets, mostly made of pipe steel grades the amount of strips with these defects can reach up to 60-70%. The area that is mostly prone to these defects is the edge of the strip. The work reveals investigation of the form change peculiarities in the transverse cracks of the continuously casted slab in roughing rolling in the horizontal rollers. The finite element method with software DEFORM 3D V6.1 has been applied in modeling. The work gives a form change mechanism of transverse cracks of slabs in deformation. Further crack growth in rolling is assessed due to Cockroft-Latham criteria.

  11. Finite Difference Energy Method for nonlinear numerical analysis of reinforced concrete slab using simplified isotropic damage model

    Directory of Open Access Journals (Sweden)

    M. V. A. Lima

    Full Text Available This work presents a model to predict the flexural behavior of reinforced concrete slabs, combining the Mazars damage model for simulation of the loss of stiffness of the concrete during the cracking process and the Classical Theory of Laminates, to govern the bending of the structural element. A variational formulation based on the principle of virtual work was developed for the model, and then treated numerically according to the Finite Difference Energy Method, with the end result a program developed in Fortran. To validate the model thus proposed have been simulated with the program, some cases of slabs in flexure in the literature. The evaluation of the results obtained in this study demonstrated the capability of the model, in view of the good predictability of the behavior of slabs in flexure, sweeping the path of equilibrium to the rupture of the structural element. Besides the satisfactory prediction of the behavior observed as positive aspects of the model to its relative simplicity and reduced number of experimental parameters necessary for modeling.

  12. Airfoil stall interpreted through linear stability analysis

    Science.gov (United States)

    Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis

    2017-11-01

    Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.

  13. THE IMPACT OF LOCALIZATION AND BARN TYPE ON INSOLATION OF SIDEWALL STALLS DURING SUMMER

    Directory of Open Access Journals (Sweden)

    Sabina Angrecka

    2017-07-01

    The obtained results allowed us to identify optimal orientation of barns and to suggest the simplest technical measures to protect sidewall stalls from solar heat gain deleterious to cows. The model analysis of stall shading demonstrated that extension of barn eaves to 1 m on the southern side reduced the insolation of stalls over even up to 90% of their area.

  14. Finite Element Modeling of GFRP-Reinforced Concrete Interior Slab-Column Connections Subjected to Moment Transfer

    Directory of Open Access Journals (Sweden)

    Ahmed Gouda

    2015-10-01

    Full Text Available A finite element model (FEM was constructed using specialized three-dimensional (3D software to investigate the punching shear behavior of interior slab-column connections subjected to a moment-to-shear ratio of 0.15 m. The FEM was then verified against the experimental results of full-scale interior slab-column connections reinforced with glass fiber reinforcement polymer (GFRP bars previously tested by the authors. The FEM results showed that the constructed model was able to predict the behavior of the slabs with reasonable accuracy. Afterward, the verified model was used to conduct a parametric study to investigate the effects of reinforcement ratio, perimeter-to-depth ratio, and column aspect ratio on the punching shear behavior of such connections. The test results showed that increasing the tested parameters enhanced the overall behavior of the connections in terms of decreasing deflections and reinforcement strain and increasing the ultimate capacity. In addition, the obtained punching shear stresses of the connections were compared to the predictions of the Canadian standard and the American guideline for FRP-reinforced concrete structures.

  15. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  16. Theoretical analysis of transcription process with polymerase stalling

    Science.gov (United States)

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  17. Computer Modeling of DC Casting Magnesium Alloy WE43 Rolling Slabs

    Science.gov (United States)

    Turski, M.; Grandfield, J. F.; Wilks, T.; Davis, B.; DeLorme, R.; Cho, K.

    During direct chill (DC) casting, significant stresses can develop within the material leading to cracking within the cast slab. The situation is made worse for higher strength magnesium alloys, such as Elektron™ WE43, which exhibits high strength at elevated temperatures. Consequently, the temperature and stress field must be well understood during the casting process to avoid failure during casting.

  18. Complex structure of the lithospheric slab beneath the Banda arc, eastern Indonesia depicted by a seismic tomographic model

    Directory of Open Access Journals (Sweden)

    Sri Widiyantoro

    2011-10-01

    Full Text Available Seismic tomography with a non-linear approach has been successfully applied to image the P-wave velocity structure beneath the Banda arc in detail. Nearly one million compressional phases including the surfacereflected depth phases pP and pwP from events within the Indonesian region have been used. The depth phases have been incorporated in order to improve the sampling of the uppermantle structure, particularly below the Banda Sea in the back-arc regions. For the model parameterization, we have combined a highresolution regional inversion with a low-resolution global inversion to allow detailed images of slab structures within the study region and to minimize the mapping of distant aspherical mantle structure into the volume under study. In this paper, we focus our discussion on the upper mantle and transition zone structure beneath the curved Banda arc. The tomographic images confirm previous observations of the twisting of the slab in the upper mantle, forming a spoon-shaped structure beneath the Banda arc. A slab lying flat on the 660 km discontinuity beneath the Banda Sea is also well imaged. Further interpretations of the resulting tomograms and seismicity data support the scenario of the Banda arc subduction rollback.

  19. Slab reformer

    Science.gov (United States)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1985-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  20. Slab reformer

    Science.gov (United States)

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  1. Dynamic Stall in Pitching Airfoils: Aerodynamic Damping and Compressibility Effects

    Science.gov (United States)

    Corke, Thomas C.; Thomas, Flint O.

    2015-01-01

    Dynamic stall is an incredibly rich fluid dynamics problem that manifests itself on an airfoil during rapid, transient motion in which the angle of incidence surpasses the static stall limit. It is an important element of many manmade and natural flyers, including helicopters and supermaneuverable aircraft, and low-Reynolds number flapping-wing birds and insects. The fluid dynamic attributes that accompany dynamic stall include an eruption of vorticity that organizes into a well-defined dynamic stall vortex and massive excursions in aerodynamic loads that can couple with the airfoil structural dynamics. The dynamic stall process is highly sensitive to surface roughness that can influence turbulent transition and to local compressibility effects that occur at free-stream Mach numbers that are otherwise incompressible. Under some conditions, dynamic stall can result in negative aerodynamic damping that leads to limit-cycle growth of structural vibrations and rapid mechanical failure. The mechanisms leading to negative damping have been a principal interest of recent experiments and analysis. Computational fluid dynamic simulations and low-order models have not been good predictors so far. Large-eddy simulation could be a viable approach although it remains computationally intensive. The topic is technologically important owing to the desire to develop next-generation rotorcraft that employ adaptive rotor dynamic stall control.

  2. 14 CFR 25.103 - Stall speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall speed. 25.103 Section 25.103... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.103 Stall speed. (a) The reference stall speed, VSR, is a calibrated airspeed defined by the applicant. VSR may not be less than a 1-g stall...

  3. Numerical Simulation on Slabs Dislocation of Zipingpu Concrete Faced Rockfill Dam during the Wenchuan Earthquake Based on a Generalized Plasticity Model

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2014-01-01

    Full Text Available After the Wenchuan earthquake in 2008, the Zipingpu concrete faced rockfill dam (CFRD was found slabs dislocation between different stages slabs and the maximum value reached 17 cm. This is a new damage pattern and did not occur in previous seismic damage investigation. Slabs dislocation will affect the seepage control system of the CFRD gravely and even the safety of the dam. Therefore, investigations of the slabs dislocation’s mechanism and development might be meaningful to the engineering design of the CFRD. In this study, based on the previous studies by the authors, the slabs dislocation phenomenon of the Zipingpu CFRD was investigated. The procedure and constitutive model of materials used for finite element analysis are consistent. The water elevation, the angel, and the strength of the construction joints were among major variables of investigation. The results indicated that the finite element procedure based on a modified generalized plasticity model and a perfect elastoplastic interface model can be used to evaluate the dislocation damage of face slabs of concrete faced rockfill dam during earthquake. The effects of the water elevation, the angel, and the strength of the construction joints are issues of major design concern under seismic loading.

  4. Numerical Simulation on Slabs Dislocation of Zipingpu Concrete Faced Rockfill Dam during the Wenchuan Earthquake Based on a Generalized Plasticity Model

    Science.gov (United States)

    Xu, Bin; Zou, Degao

    2014-01-01

    After the Wenchuan earthquake in 2008, the Zipingpu concrete faced rockfill dam (CFRD) was found slabs dislocation between different stages slabs and the maximum value reached 17 cm. This is a new damage pattern and did not occur in previous seismic damage investigation. Slabs dislocation will affect the seepage control system of the CFRD gravely and even the safety of the dam. Therefore, investigations of the slabs dislocation's mechanism and development might be meaningful to the engineering design of the CFRD. In this study, based on the previous studies by the authors, the slabs dislocation phenomenon of the Zipingpu CFRD was investigated. The procedure and constitutive model of materials used for finite element analysis are consistent. The water elevation, the angel, and the strength of the construction joints were among major variables of investigation. The results indicated that the finite element procedure based on a modified generalized plasticity model and a perfect elastoplastic interface model can be used to evaluate the dislocation damage of face slabs of concrete faced rockfill dam during earthquake. The effects of the water elevation, the angel, and the strength of the construction joints are issues of major design concern under seismic loading. PMID:25013857

  5. A finite element model development for simulation of the impact of slab thickness, joints, and membranes on indoor radon concentration.

    Science.gov (United States)

    Muñoz, E; Frutos, B; Olaya, M; Sánchez, J

    2017-10-01

    The focus of this study is broadly to define the physics involved in radon generation and transport through the soil and other materials using different parameter-estimation tools from the literature. The effect of moisture in the soil and radon transport via water in the pore space was accounted for with the application of a porosity correction coefficient. A 2D finite element model is created, which reproduces the diffusion and advection mechanisms resulting from specified boundary conditions. A comparison between the model and several analytical and numerical solutions obtained from the literature and field studies validates the model. Finally, the results demonstrate that the model can predict radon entry through different building boundary conditions, such as concrete slabs with or without joints, variable slab thicknesses and diffusion coefficients, and the use of several radon barrier membranes. Cracks in the concrete or the radon barrier membrane have been studied to understand how indoor concentration is affected by these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor

    Science.gov (United States)

    Yang, Yong; Chai, Xueguang

    2018-05-01

    When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.

  7. Modeling of slab-on-grade heat transfer in EnergyPlus simulation program

    Directory of Open Access Journals (Sweden)

    Vanessa Aparecida Caieiro da Costa

    Full Text Available Resumo O fluxo de calor entre o piso e o solo de uma edificação térrea é um dos aspectos mais influentes em seu desempenho térmico e energético. No entanto, há ainda um grande número de incertezas e poucos estudos nessa área. Neste trabalho comparam-se diferentes alternativas de modelagem nos programas EnergyPlus (8.5.0 e Slab (.75 dos parâmetros relacionados à transferência de calor entre o piso e o solo, e sua influência no desempenho térmico de uma edificação térrea naturalmente ventilada, localizada em São Carlos, Brasil. A comparação das alternativas de modelagem indicou grande variação nos resultados. Quando comparado ao Slab, o método KusudaAchenbach do objeto Ground Domain apresentou a maior variação, com diferença de 55,2 % no número de horas de desconforto. Observou-se que mesmo a forma de uso do Slab pode causar diferenças significativas nos resultados; por exemplo, a adoção ou não do procedimento de convergência. A condutividade térmica do solo foi um parâmetro de grande impacto, que implicou diferenças de até 57,5 % no desconforto. Tais resultados fornecem indicações da variabilidade e do impacto de uso das diferentes opções de modelagem desse fluxo de calor no EnergyPlus.

  8. HAWT dynamic stall response asymmetries under yawed flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, S.; Robinson, M.; Hand, M.; Simms, D.

    2000-02-28

    Horizontal axis wind turbines can experience significant time varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components, and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modeling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle of attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location, and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated.

  9. Does slab-window opening cause uplift of the overriding plate? A case study from the Gulf of California

    Science.gov (United States)

    Mark, Chris; Chew, David; Gupta, Sanjeev

    2017-11-01

    Complete subduction of an oceanic plate results in slab-window opening. A key uncertainty in this process is whether the higher heat flux and asthenospheric upwelling conventionally associated with slab-window opening generate a detectable topographic signature in the overriding plate. We focus on the Baja California Peninsula, which incorporates the western margin of the Gulf of California rift. The topography and tectonics of the rift flank along the peninsula are strongly bimodal. North of the Puertecitos accommodation zone, the primary drainage divide attains a mean elevation of ca. 1600 m above sea level (asl), above an asthenospheric slab-window opened by Pacific-Farallon spreading ridge subduction along this section of the trench at ca. 17-15 Ma. To the south, mean topography decreases abruptly to ca. 800 m asl (excluding the structurally distinct Los Cabos block at the southern tip of the peninsula), above fragments of the oceanic Farallon slab which stalled following slab tear-off at ca. 15-14 Ma. Along the peninsula, a low-relief surface established atop Miocene subduction-related volcaniclastic units has been incised by a west-draining canyon network in response to uplift. These canyons exhibit cut-and-fill relationships with widespread post-subduction lavas. Here, we utilise LANDSAT and digital elevation model (DEM) data, integrated with previously published K-Ar and 40Ar/39Ar lava crystallisation ages, to constrain the onset of rift flank uplift to ca. 9-5 Ma later than slab-window formation in the north and ca. 11-10 Ma later in the south. These greatly exceed response time estimates of ca. 2 Ma or less for uplift triggered by slab-window opening. Instead, uplift timing of the high-elevation northern region is consistent with lower-lithospheric erosion driven by rift-related convective upwelling. To the south, stalled slab fragments likely inhibited convective return flow, preventing lithospheric erosion and limiting uplift to the isostatic response

  10. Computational Modelling of Thermal Stability in a Reactive Slab with Reactant Consumption

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2012-01-01

    Full Text Available This paper investigates both the transient and the steady state of a one-step nth-order oxidation exothermic reaction in a slab of combustible material with an insulated lower surface and an isothermal upper surface, taking into consideration reactant consumption. The nonlinear partial differential equation governing the transient reaction-diffusion problem is solved numerically using a semidiscretization finite difference technique. The steady-state problem is solved using a perturbation technique together with a special type of the Hermite-Padé approximants. Graphical results are presented and discussed quantitatively with respect to various embedded parameters controlling the systems. The crucial roles played by the boundary conditions in determining the thermal ignition criticality are demonstrated.

  11. Strong Plate, Weak Slab Dichotomy

    Science.gov (United States)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.

    2015-12-01

    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  12. Precautions against axial fan stall in reactor building to Tianwan NPP

    International Nuclear Information System (INIS)

    Liu Chunlong; Pei Junmin

    2011-01-01

    The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)

  13. 14 CFR 25.203 - Stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall characteristics. 25.203 Section 25.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.203 Stall characteristics. (a) It must...

  14. Reconstructing subducted oceanic lithosphere by “reverse-engineering” slab geometries : The northern Philippine Sea Plate

    NARCIS (Netherlands)

    Pownall, Jonathan M.; Lister, Gordon S.; Spakman, Wim|info:eu-repo/dai/nl/074103164

    Subducting slabs commonly acquire complex geometries from the migration of subduction trenches, slab-mantle interaction, slab tearing, and collision of slabs at depth. Although it is possible to construct three-dimensional models of subducted slabs using earthquake hypocenter locations and

  15. Active Suppression of Rotating Stall Inception with Distributed Jet Actuation

    Directory of Open Access Journals (Sweden)

    Huu Duc Vo

    2007-01-01

    Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.

  16. Analysis and design of reinforced concrete slab

    OpenAIRE

    Kališnik, Žiga

    2014-01-01

    The graduation thesis examines the analysis and design of a reinforced concrete slab. Slab loads are based on guidelines from standards SIST EN 1990 and SIST EN 1991-1-1, and the design is made according to standard SIST EN 1992-1-1, which covers concrete structures' design. The slab is analysed with finite element method using Safe computer code. The process of modeling slab structure in Safe computer code is described. Based on loads from ultimate limit state reinforcement is calculated and...

  17. An analysis of seismic tomography, predicted slab volumes and forward modeled mantle structure of the circum-Arctic

    Science.gov (United States)

    Shephard, Grace; Heine, Christian; Flament, Nicolas; Quevedo, Leonardo; Clarke, Daniel; Seton, Maria; Dietmar Müller, R.

    2013-04-01

    Owing largely to the remoteness of the region, the detailed Mesozoic and Cenozoic kinematic evolution of the circum-Arctic is not well known. Highly dynamic plate boundaries, in particular related to the subduction of plates in northern Panthalassa and the South Anuyi oceans since the Jurassic, adds additional complexity due to fragmentation of the lithosphere into a large number of tectonic blocks. We have integrated key observations from publicly available geological and geophysical datasets to define major tectonic elements and generate a new plate tectonic reconstruction of the circum-Arctic. The time-dependent location of subduction, age of subducted lithosphere, convergence rates and intermittent ridge subduction impart significant effects on the evolution of overriding plates and of the mantle structure. We use our new plate tectonic reconstruction of the circum-Arctic, embedded within a global plate model, to drive forward geodynamic models of mantle flow. We analyse the spatio-temporal evolution of subducted slab volumes in the circum-Arctic and compare the present-day prediction of our model with P and S-wave tomography models.

  18. Group spike-and-slab lasso generalized linear models for disease prediction and associated genes detection by incorporating pathway information.

    Science.gov (United States)

    Tang, Zaixiang; Shen, Yueping; Li, Yan; Zhang, Xinyan; Wen, Jia; Qian, Chen'ao; Zhuang, Wenzhuo; Shi, Xinghua; Yi, Nengjun

    2018-03-15

    Large-scale molecular data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, standard approaches for omics data analysis ignore the group structure among genes encoded in functional relationships or pathway information. We propose new Bayesian hierarchical generalized linear models, called group spike-and-slab lasso GLMs, for predicting disease outcomes and detecting associated genes by incorporating large-scale molecular data and group structures. The proposed model employs a mixture double-exponential prior for coefficients that induces self-adaptive shrinkage amount on different coefficients. The group information is incorporated into the model by setting group-specific parameters. We have developed a fast and stable deterministic algorithm to fit the proposed hierarchal GLMs, which can perform variable selection within groups. We assess the performance of the proposed method on several simulated scenarios, by varying the overlap among groups, group size, number of non-null groups, and the correlation within group. Compared with existing methods, the proposed method provides not only more accurate estimates of the parameters but also better prediction. We further demonstrate the application of the proposed procedure on three cancer datasets by utilizing pathway structures of genes. Our results show that the proposed method generates powerful models for predicting disease outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). nyi@uab.edu. Supplementary data are available at Bioinformatics online.

  19. Influence of slab length on dynamic characteristics of subway train-steel spring floating slab track-tunnel coupled system

    Directory of Open Access Journals (Sweden)

    Qing-yuan Xu

    Full Text Available A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1 In general, the acceleration of each component of the coupled system decreases with the increase of slab length under the perfectly smooth track condition; (2 Slab length has different influence laws on acceleration of each component of subway train-steel spring floating slab track-tunnel coupled system under random irregularity of track condition. The lower the dominant frequency distribution of vibration acceleration is, the higher influence slab length has; (3 With the increase of slab length, the force of rail, fastener and steel spring also decreases significantly, which helps to lengthen the service life of these components; (4 With the increase of slab length, the longitudinal bending moment of slab increases sharply at first, then it begins to drop slightly. When slab length exceeds the distance between two bogies of a vehicle, the longitudinal bending moment of slab changes little; (5 Slab length has significant influence on the dynamic force and displacement of the coupled system when train speed is higher.

  20. Constraining subducted slab properties with deep earthquakes

    Science.gov (United States)

    Zhan, Z.; Yang, T.; Gurnis, M.; Shen, Z.; Wu, F.

    2017-12-01

    The discovery of deep earthquakes and Wadati-Benioff zone was a critical piece in the early history of plate tectonics. Today, deep earthquakes continue to serve as important markers/probes of subducted slab geometry, structure, and stress state. Here we discuss three examples in which we have recently used deep earthquakes to provide new insights to subducted slab properties. In the first application, we investigate the slab morphology and stress regimes under different trench motion histories with geodynamic models. We find that the isolation of the 2015 Mw 7.9 Bonin Islands deep earthquake from the background Wadati-Benioff zone may be explained as a result of Pacific slab buckling in response to the slow trench retreat. Additionally, subducted slab is inherently heterogeneous due to non-linear viscosity, contributing to the occurrences of isolated deep earthquakes. In the second application, we quantify the coda waveform differences from nearby deep earthquakes to image fine-scale slab structures. We find that large metastable olivine wedge suggested by several previous studies can not fit our observations. Therefore, the effects of metastable olivine on slab dynamics should be re-assessed. In the third application, we take advantage of P and S differential travel times from deep earthquake clusters to isolate signatures of Vp/Vs ratios within slabs from ambient mantle. We observe substantial deviations of slab Vp/Vs from that in 1D reference Earth models, and even possible lateral variations. This sheds light on potential difference in slab temperature or water content. All three applications underscore that deep earthquakes are still incredibly useful in informing us more about subducted slabs.

  1. Influence of slab length on dynamic characteristics of subway train-steel spring floating slab track-tunnel coupled system

    OpenAIRE

    Xu, Qing-yuan; Yan, Bin; Lou, Ping; Zhou, Xiao-lin

    2015-01-01

    A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1) In general, the acceleration of each component of the cou...

  2. Reentry and Ectopic Pacemakers Emerge in a Three-Dimensional Model for a Slab of Cardiac Tissue with Diffuse Microfibrosis near the Percolation Threshold.

    Science.gov (United States)

    Alonso, Sergio; Dos Santos, Rodrigo Weber; Bär, Markus

    2016-01-01

    Arrhythmias in cardiac tissue are generally associated with irregular electrical wave propagation in the heart. Cardiac tissue is formed by a discrete cell network, which is often heterogeneous. Recently, it was shown in simulations of two-dimensional (2D) discrete models of cardiac tissue that a wave crossing a fibrotic, heterogeneous region may produce reentry and transient or persistent ectopic activity provided the fraction of conducting connections is just above the percolation threshold. Here, we investigate the occurrence of these phenomena in three-dimensions by simulations of a discrete model representing a thin slab of cardiac tissue. This is motivated (i) by the necessity to study the relevance and properties of the percolation-related mechanism for the emergence of microreentries in three dimensions and (ii) by the fact that atrial tissue is quite thin in comparison with ventricular tissue. Here, we simplify the model by neglecting details of tissue anatomy, e. g. geometries of atria or ventricles and the anisotropy in the conductivity. Hence, our modeling study is confined to the investigation of the effect of the tissue thickness as well as to the comparison of the dynamics of electrical excitation in a 2D layer with the one in a 3D slab. Our results indicate a strong and non-trivial effect of the thickness even for thin tissue slabs on the probability of microreentries and ectopic beat generation. The strong correlation of the occurrence of microreentry with the percolation threshold reported earlier in 2D layers persists in 3D slabs. Finally, a qualitative agreement of 3D simulated electrograms in the fibrotic region with the experimentally observed complex fractional atrial electrograms (CFAE) as well as strong difference between simulated electrograms in 2D and 3D were found for the cases where reentry and ectopic activity were triggered by the micro-fibrotic region.

  3. Reentry and Ectopic Pacemakers Emerge in a Three-Dimensional Model for a Slab of Cardiac Tissue with Diffuse Microfibrosis near the Percolation Threshold.

    Directory of Open Access Journals (Sweden)

    Sergio Alonso

    Full Text Available Arrhythmias in cardiac tissue are generally associated with irregular electrical wave propagation in the heart. Cardiac tissue is formed by a discrete cell network, which is often heterogeneous. Recently, it was shown in simulations of two-dimensional (2D discrete models of cardiac tissue that a wave crossing a fibrotic, heterogeneous region may produce reentry and transient or persistent ectopic activity provided the fraction of conducting connections is just above the percolation threshold. Here, we investigate the occurrence of these phenomena in three-dimensions by simulations of a discrete model representing a thin slab of cardiac tissue. This is motivated (i by the necessity to study the relevance and properties of the percolation-related mechanism for the emergence of microreentries in three dimensions and (ii by the fact that atrial tissue is quite thin in comparison with ventricular tissue. Here, we simplify the model by neglecting details of tissue anatomy, e. g. geometries of atria or ventricles and the anisotropy in the conductivity. Hence, our modeling study is confined to the investigation of the effect of the tissue thickness as well as to the comparison of the dynamics of electrical excitation in a 2D layer with the one in a 3D slab. Our results indicate a strong and non-trivial effect of the thickness even for thin tissue slabs on the probability of microreentries and ectopic beat generation. The strong correlation of the occurrence of microreentry with the percolation threshold reported earlier in 2D layers persists in 3D slabs. Finally, a qualitative agreement of 3D simulated electrograms in the fibrotic region with the experimentally observed complex fractional atrial electrograms (CFAE as well as strong difference between simulated electrograms in 2D and 3D were found for the cases where reentry and ectopic activity were triggered by the micro-fibrotic region.

  4. Modeling Punching Shear Capacity of Fiber-Reinforced Polymer Concrete Slabs: A Comparative Study of Instance-Based and Neural Network Learning

    Directory of Open Access Journals (Sweden)

    Nhat-Duc Hoang

    2017-01-01

    Full Text Available This study investigates an adaptive-weighted instanced-based learning, for the prediction of the ultimate punching shear capacity (UPSC of fiber-reinforced polymer- (FRP- reinforced slabs. The concept of the new method is to employ the Differential Evolution to construct an adaptive instance-based regression model. The performance of the proposed model is compared to those of Artificial Neural Network (ANN and traditional formula-based methods. A dataset which contains the testing results of FRP-reinforced concrete slabs has been collected to establish and verify new approach. This study shows that the investigated instance-based regression model is capable of delivering the prediction result which is far more accurate than traditional formulas and very competitive with the black-box approach of ANN. Furthermore, the proposed adaptive-weighted instanced-based learning provides a means for quantifying the relevancy of each factor used for the prediction of UPSC of FRP-reinforced slabs.

  5. Basis for an Active Stall Avoidance System

    Directory of Open Access Journals (Sweden)

    Richard Schulze

    2000-01-01

    Full Text Available A single-stage subsonic compressor was examined with respect to compressor instabilities. During the inception of rotating stall, the transients of the pressure rise and mass flow were measured as well as their hysteresis. The development of the stall cell and the characteristics of the unstable operating range were determined.

  6. Topological susceptibility from slabs

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)

    2015-12-14

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.

  7. Topological Susceptibility from Slabs

    CERN Document Server

    Bietenholz, Wolfgang; Gerber, Urs

    2015-01-01

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.

  8. Research on Soft Reduction Amount Distribution to Eliminate Typical Inter-dendritic Crack in Continuous Casting Slab of X70 Pipeline Steel by Numerical Model

    Science.gov (United States)

    Liu, Ke; Wang, Chang; Liu, Guo-liang; Ding, Ning; Sun, Qi-song; Tian, Zhi-hong

    2017-04-01

    To investigate the formation of one kind of typical inter-dendritic crack around triple point region in continuous casting(CC) slab during the operation of soft reduction, fully coupled 3D thermo-mechanical finite element models was developed, also plant trials were carried out in a domestic continuous casting machine. Three possible types of soft reduction amount distribution (SRAD) in the soft reduction region were analyzed. The relationship between the typical inter-dendritic cracks and soft reduction conditions is presented and demonstrated in production practice. Considering the critical strain of internal crack formation, a critical tolerance for the soft reduction amount distribution and related casing parameters have been proposed for better contribution of soft reduction to the internal quality of slabs. The typical inter-dendritic crack around the triple point region had been eliminated effectively through the application of proposed suggestions for continuous casting of X70 pipeline steel in industrial practice.

  9. Surface anisotropy of iron oxide nanoparticles and slabs from first principles: Influence of coatings and ligands as a test of the Heisenberg model

    Science.gov (United States)

    Brymora, Katarzyna; Calvayrac, Florent

    2017-07-01

    We performed ab initio computations of the magnetic properties of simple iron oxide clusters and slabs. We considered an iron oxide cluster functionalized by a molecule or glued to a gold cluster of the same size. We also considered a magnetite slab coated by cobalt oxide or a mixture of iron oxide and cobalt oxide. The changes in magnetic behavior were explored using constrained magnetic calculations. A possible value for the surface anisotropy was estimated from the fit of a classical Heisenberg model on ab initio results. The value was found to be compatible with estimations obtained by other means, or inferred from experimental results. The addition of a ligand, coating, or of a metallic nanoparticle to the systems degraded the quality of the description by the Heisenberg Hamiltonian. Proposing a change in the anisotropies allowing for the proportion of each transition atom we could get a much better description of the magnetism of series of hybrid cobalt and iron oxide systems.

  10. Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California

    Science.gov (United States)

    Brothers, Daniel S.; Harding, Alistair J.; Gonzalez-Fernandez, Antonio; Holbrook, W.S. Steven; Kent, Graham M.; Driscoll, Neal W.; Fletcher, John M.; Lizarralde, Daniel; Umhoefer, Paul J.; Axen, Gary

    2012-01-01

    Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.

  11. A Method to Predict Compressor Stall in the TF34-100 Turbofan Engine Utilizing Real-Time Performance Data

    Science.gov (United States)

    2015-06-01

    pass turbo –fan engine sensor data to seek its deterioration modelling and prognostics capability. In futurity this will allow for achievement of...preventive maintenance for the TF34-100 jet engine to prevent engine compressor stalls for the A-10 aircraft. Due to their destructive nature, compressor...stalls are a significant concern in axial flow compressor jet engines. A compressor stall is caused by air approaching the compressor blades at an

  12. Estimation of the Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Pirzada, G. B. : Ph.D.

    In this thesis, work related to fundamental conditions has been extended to non-fundamental or the general case of probabilistic analysis. Finally, using the ss-unzipping technique a door has been opened to system reliability analysis of plastic slabs. An attempt has been made in this thesis...... to give a probabilistic treatment of plastic slabs which is parallel to the deterministic and systematic treatment of plastic slabs by Nielsen (3). The fundamental reason is that in Nielsen (3) the treatment is based on a deterministic modelling of the basic material properties for the reinforced...

  13. Construction of hydrogenation stalls for explosions

    Energy Technology Data Exchange (ETDEWEB)

    Raichle, L.

    1943-05-03

    This report contained explanations for different questions that had been asked by the Association of Chemical Manufacturers. The first item discussed was the pressure occurring in hydrogenation stalls in hydrogen explosions. The pressures actually used were much smaller than the maximum design pressure due to burning gases being allowed to escape from the top and front of the stalls since these areas were open and it could not be assumed that the whole stall space was filled with a 32% hydrogen concentration at the beginning of an explosion. The second item discussed was specifications and rules for the building of hydrogenation stalls. These included the calculations for simple wind pressure according to the Building Code with the usual safety factors and the calculations for an inner pressure of 300 kg/m/sup 2/ with the usual safety factors. An explanation of a stall explosion in Poelitz and reinforced stall construction in Poelitz were two other items that were discussed. Appendix I of the report involved maximum pressures and temperature in hydrogen explosions. Diagram I was involved with this. Appendix II discussed the behavior of a hydrogen flame at high emerging velocities and Appendix III discussed stall construction at Poelitz.

  14. Investigation of rail irregularity effects on wheel/rail dynamic force in slab track: Comparison of two and three dimensional models

    Science.gov (United States)

    Sadeghi, Javad; Khajehdezfuly, Amin; Esmaeili, Morteza; Poorveis, Davood

    2016-07-01

    Rail irregularity is one of the most significant load amplification factors in railway track systems. In this paper, the capability and effectiveness of the two main railway slab tracks modeling techniques in prediction of the influences of rail irregularities on the Wheel/Rail Dynamic Force (WRDF) were investigated. For this purpose, two 2D and 3D numerical models of vehicle/discontinuous slab track interaction were developed. The validation of the numerical models was made by comparing the results of the models with those obtained from comprehensive field tests carried out in this research. The effects of the harmonic and non-harmonic rail irregularities on the WRDF obtained from 3D and 2D models were investigated. The results indicate that the difference between WRDF obtained from 2D and 3D models is negligible when the irregularities on the right and left rails are the same. However, as the difference between irregularities of the right and left rails increases, the results obtained from 2D and 3D models are considerably different. The results indicate that 2D models have limitations in prediction of WRDF; that is, a 3D modeling technique is required to predict WRDF when there is uneven or non-harmonic irregularity with large amplitudes. The size and extent of the influences of rail irregularities on the wheel/rail forces were discussed leading to provide a better understanding of the rail-wheel contact behavior and the required techniques for predicting WRDF.

  15. Alternate approach slab reinforcement.

    Science.gov (United States)

    2010-06-01

    The upper mat of reinforcing steel, in exposed concrete bridge approach slabs, is prone to corrosion damage. Chlorides applied to the highways : for winter maintenance can penetrate this concrete layer. Eventually chlorides reach the steel and begin ...

  16. Slab replacement maturity guidelines.

    Science.gov (United States)

    2014-04-01

    This study investigated the use of maturity method to determine early age strength of concrete in slab : replacement application. Specific objectives were (1) to evaluate effects of various factors on the compressive : maturity-strength relationship ...

  17. Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall

    NARCIS (Netherlands)

    Stamhuis, Eize Jan

    2017-01-01

    A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or

  18. Prediction of induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Thomsen, K.; Aagaard Madsen, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)

  19. Simulasi Numerik Dynamic Stall Pada Airfoil Yang Berosilasi

    Directory of Open Access Journals (Sweden)

    Galih S.T.A. Bangga

    2012-09-01

    Full Text Available Kebutuhan analisa pada sudu helikopter, kompresor, kincir angin dan struktur streamline lainya yang beroperasi pada angle of attack yang tinggi dan melibatkan instationary effects yang disebut dynamic stall menjadi semakin penting. Fenomena ini ditandai dengan naiknya dynamic lift melewati static lift maksimum pada critical static stall angle, vortex yang terbentuk pada leading edge mengakibatkan naiknya suction contribution yang kemudian terkonveksi sepanjang permukaan hingga mencapai trailling edge diikuti terbentuknya trailling edge vortex yang menunjukkan terjadinya lift stall. Fenomena ini sangat berbahaya terhadap struktur airfoil itu sendiri. Secara umum, beban fatique yang ditimbulkan oleh adanya efek histerisis karena fluktuasi gaya lift akibat induksi vibrasi lebih besar dibandingkan kondisi statis. Simulasi numerik dilakukan secara 2D dengan menggunakan profil Boeing-Vertol V23010-1.58 pada α0 = 14.92°. Standard-kω dan SST-kω digunakan sebagai URANS turbulence modelling. Model osilasi dari airfoil disusun dalam suatu user defined function (UDF. Gerakan meshing beserta airfoil diakomodasi dengan menggunakan dynamic mesh approach. Simulasi numerik menunjukkan bahwa, model SST-kω menunjukkan performa yang lebih baik dibandingkan dengan Standard-kω. Fenomena travelling vortex yang terjadi mampu ditangkap dengan baik, meski pada angle of attack yang tinggi URANS turbulence model gagal memprediksikan fenomena yang terjadi karena dominasi efek 3D.

  20. Deceased Slabs Drive Oil

    Science.gov (United States)

    Stein, H. J.; Hannah, J. L.

    2017-12-01

    The application of Re-Os isotope geochemistry to dating single oils is a nascent field [1,2]. Challenges include dissection of oils into asphaltene-maltene (ASPH-MALT) components in a way that preserves meaningful chronologic and source information. Significantly, oil-water mixing rapidly transfers Os to the oil, while Re exchange is sluggish [3]. The Os initial ratio of the oil is shifted in the direction of Os carried in the aqueous fluid, whereas the Re-Os isotopic age is preserved. We show that this phenomenon is operative in natural systems. Further, we show that deserpentinization of old oceanic slabs [4], may be linked to expulsion of Os-enriched waters into overlying sedimentary sections - a process that may be of fundamental importance for oil generation. This conclusion does not diminish the role of traditional organic-rich shales as source rocks for the hydrocarbon, but shows that external fluids are essential to petroleum generation. Moreover, the external fluids may be an important driver for expulsion and migration of oils. We have taken apart several petroleum systems from source rock, to residual oil, to tar mat development, to in situ live oil, through to produced oil. In many cases, a fluid with low 187Os/188Os - unlike that of normal basinal brines - provides a critical component to the oil-water mixture. Funding - CHRONOS project supported by Norwegian petroleum industry (Eni-Norge, Lundin, Aker BP) Acknowledgement - Christine Fichler [4], who first queried us on old slabs and oil, and stimulated ideas. [1] Georgiev, S.V., Stein, H.J., Hannah, J.L., Galimberti, R., Nali, M., Yang, G., and Zimmerman, A. (2016) Re-Os dating of maltenes and asphaltenes within single samples of crude oil: Geochim. Cosmochim. Acta 179: 53-75. [doi.org/10.1016/j.gca.2016.01.016] [2] DiMarzio, J., Georgiev, S.V., Stein, H.J., and Hannah, J.L. (in press) Residency of rhenium and osmium in a heavy crude oil: Geochim. Cosmochim. Acta. [3] Hurtig, N.C., Georgiev, S

  1. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  2. Slabs and plumes crossing a broad density/viscosity discontinuity in the mid lower mantle (Invited)

    Science.gov (United States)

    Morra, G.; Yuen, D. A.; Cammarano, F.

    2010-12-01

    The depth-dependence of the viscosity is not well constrained by observations alone. Non-monotonic viscosity profiles have been often proposed in the past and are in the range of possible solutions. Such viscosity structures find new vigor on the light of recent discoveries of iron-spin transition in mantle minerals and their consequences on seismic interpretation [1] and dynamical evolution of the mantle. Using the recently introduced Multipole-Accelerated Boundary Element Method, we study the entire space of possible models of plumes and slabs crossing a broad region where mantle viscosity and/or density are non-monotonic [2]. The viscosity peak considered are 1, to 100 times then the rest of the mantle, while the density step considered is 0 to 2% different from the adiabatic profile. We identify the critical viscosity and density profiles that produce stalling or penetration of slabs and the continuous or intermittent penetration of plumes through the mid lower mantle. Based on our results, we envisage possible dynamic scenarios that would separate the mantle in two regions,suggesting a long term bifurcation originating, probably, from the spin transition itself. References: [1] Cammarano, F.; Marquardt, H.; Speziale, S.; Tackley, P. J., 2010, Role of iron-spin transition in ferropericlase on seismic interpretation: A broad thermochemical transition in the mid mantle? Geophysical Research Letters, Volume 37, Issue 3, CiteID L03308 [2] G. Morra, D. A. Yuen, L. Boschi, P. Chatelain, P. Koumoutzakos and P. Tackley, 2010, The fate of the slabs interacting with a smooth viscosity discontinuity in the mid lower mantle, Physics of the Earth and Planetary Interiors, Volume 180, Issues 3-4, 271-282, doi:10.1016/j.pepi.2010.04.001

  3. Surface anisotropy of iron oxide nanoparticles and slabs from first principles: Influence of coatings and ligands as a test of the Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna; Calvayrac, Florent, E-mail: Florent.Calvayrac@univ-lemans.fr

    2017-07-15

    Highlights: • A new method is given to extract surface anisotropies from ab initio calculations. • Heisenberg model for magnetic clusters and surfaces is validated in simple cases. • Ligands, metallic clusters, or coatings degrade the validity of the Heisenberg model. • Values for surface anisotropies, volume anisotropies, exchange constants are computed. • Results are in agreement with experimental data, previous theoretical findings. - Abstract: We performed ab initio computations of the magnetic properties of simple iron oxide clusters and slabs. We considered an iron oxide cluster functionalized by a molecule or glued to a gold cluster of the same size. We also considered a magnetite slab coated by cobalt oxide or a mixture of iron oxide and cobalt oxide. The changes in magnetic behavior were explored using constrained magnetic calculations. A possible value for the surface anisotropy was estimated from the fit of a classical Heisenberg model on ab initio results. The value was found to be compatible with estimations obtained by other means, or inferred from experimental results. The addition of a ligand, coating, or of a metallic nanoparticle to the systems degraded the quality of the description by the Heisenberg Hamiltonian. Proposing a change in the anisotropies allowing for the proportion of each transition atom we could get a much better description of the magnetism of series of hybrid cobalt and iron oxide systems.

  4. Craters in concrete slabs due to detonation – drawbacks of material models with a Mohr-Coulomb yield surface

    Directory of Open Access Journals (Sweden)

    Conrad Markus

    2015-01-01

    Full Text Available Numerical simulations have been performed with a commercial distributed explicit FE-solver and the results have been compared with experiments. High explosive was placed in front of different concrete slabs with the dimension 100 × 100 × 16 cm. Some of the results of the simulations, in particular the profile of the craters, are not in agreement with the test results. Therefore the key characteristics of the constitutive equation based on Mohr-Coulomb yield surfaces and a damage evolution linked to the plastic strain has been reviewed.

  5. A STUDY ON THE WHEELSET/SLAB TRACK VERTICAL INTERACTION

    Directory of Open Access Journals (Sweden)

    Traian MAZILU

    2012-05-01

    Full Text Available This paper deals with the interaction between a moving wheelset and a slab track due to the short-pitch corrugated rail. The wheelset is modeled using a free-free Timoshenko beam with attached rigid bodies as the axle boxes, wheels and brake discs. The slab track model consists of elastically supported double Euler-Bernoulli beams. In fact, both wheelset and slab track are symmetric structures and the issue of the wheelset/slab track interaction is reduced to the wheel/rail interaction. The nonlinear equations of motion describing the wheelset/slab track interaction due to the short-pitch corrugated rail are solved using the time-domain Green’s functions method and the convolution theorem. The wheelset/slab track interaction due to the short-pitch corrugated rail exhibits a critical velocity when the vibration reaches the maximum level

  6. A STUDY ON THE WHEELSET/SLAB TRACK VERTICAL INTERACTION

    OpenAIRE

    Traian MAZILU

    2012-01-01

    This paper deals with the interaction between a moving wheelset and a slab track due to the short-pitch corrugated rail. The wheelset is modeled using a free-free Timoshenko beam with attached rigid bodies as the axle boxes, wheels and brake discs. The slab track model consists of elastically supported double Euler-Bernoulli beams. In fact, both wheelset and slab track are symmetric structures and the issue of the wheelset/slab track interaction is reduced to the wheel/rail interaction. The n...

  7. The slab geometry laser. II - Thermal effects in a finite slab

    Science.gov (United States)

    Kane, T. J.; Byer, R. L.; Eggleston, J. M.

    1985-01-01

    This paper presents two methods for calculating the thermally induced stress, focusing, and depolarization in a pumped zigzag-slab solid-state laser. A computer program capable of detailed calculations of thermal effects in the general case is described. An approximate analysis of slab thermal effects in many cases allows calculation of these effects without use of the computer model directly. The analysis predicts that slabs of square cross section can be designed to have low depolarization and thermal focusing compared to Nd:YAG laser rods.

  8. Plasma-based Compressor Stall Control

    Science.gov (United States)

    McGowan, Ryan; Corke, Thomas

    2017-11-01

    The use of dielectric barrier discharge (DBD) plasma actuator casing treatment to prevent or delay stall inception in an axial fan is examined. The actuators are powered by a pulsed-DC waveform which induces a larger peak velocity than a purely AC waveform such as a sine or sawtooth wave. With this system, a high-voltage DC source is supplied to both electrodes, remaining constant in time for the exposed electrode. Meanwhile, the covered electrode is periodically grounded for several microseconds and allowed to rise back to the source DC level. To test the actuators' ability to interact with and modify the formation of stall cells, a facility has been designed and constructed around nonconductive fan blades. The actuators are installed in the fan casing near the blade tips. The instrumentation allows for the measurement of rotating pressure disturbances (traveling stall cells) in this tip gap region as well as fan performance characteristics including pressure rise and flow rate. The casing plasma actuation is found to reduce the correlation of the rotating stall cells, thereby extending the stall margin of the fan. Various azimuthal arrangements of the plasma actuator casing treatment is explored, as well as input voltage levels to the actuator to determine optimum conditions. NASA SBIR Contract NNX14CC12C.

  9. A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle-slab track systems

    Science.gov (United States)

    Zhu, Shengyang; Cai, Chengbiao; Spanos, Pol D.

    2015-01-01

    A nonlinear and fractional derivative viscoelastic (FDV) model is used to capture the complex behavior of rail pads. It is implemented into the dynamic analysis of coupled vehicle-slab track (CVST) systems. The vehicle is treated as a multi-body system with 10 degrees of freedom, and the slab track is represented by a three layer Bernoulli-Euler beam model. The model for the rail pads is one dimensional, and the force-displacement relation is based on a superposition of elastic, friction, and FDV forces. This model takes into account the influences of the excitation frequency and of the displacement amplitude through a fractional derivative element, and a nonlinear friction element, respectively. The Grünwald representation of the fractional derivatives is employed to numerically solve the fractional and nonlinear equations of motion of the CVST system by means of an explicit integration algorithm. A dynamic analysis of the CVST system exposed to excitations of rail harmonic irregularities is carried out, pointing out the stiffness and damping dependence on the excitation frequency and the displacement amplitude. The analysis indicates that the dynamic stiffness and damping of the rail pads increase with the excitation frequency while they decrease with the displacement amplitude. Furthermore, comparisons between the proposed model and ordinary Kelvin model adopted for the CVST system, under excitations of welded rail joint irregularities and of random track irregularities, are conducted in the time domain as well as in the frequency domain. The proposed model is shown to possess several modeling advantages over the ordinary Kelvin element which overestimates both the stiffness and damping features at high frequencies.

  10. Study and Control of a Radial Vaned Diffuser Stall

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan

    2012-01-01

    Full Text Available The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads—from a steady-state calculations point of view—to an increase by 40% of the compressor operating range extent.

  11. Vorticity Transport on a Flexible Wing in Stall Flutter

    Science.gov (United States)

    Akkala, James; Buchholz, James; Farnsworth, John; McLaughlin, Thomas

    2014-11-01

    The circulation budget within dynamic stall vortices was investigated on a flexible NACA 0018 wing model of aspect ratio 6 undergoing stall flutter. The wing had an initial angle of attack of 6 degrees, Reynolds number of 1 . 5 ×105 and large-amplitude, primarily torsional, limit cycle oscillations were observed at a reduced frequency of k = πfc / U = 0 . 1 . Phase-locked stereo PIV measurements were obtained at multiple chordwise planes around the 62.5% and 75% spanwise locations to characterize the flow field within thin volumetric regions over the suction surface. Transient surface pressure measurements were used to estimate boundary vorticity flux. Recent analyses on plunging and rotating wings indicates that the magnitude of the pressure-gradient-driven boundary flux of secondary vorticity is a significant fraction of the magnitude of the convective flux from the separated leading-edge shear layer, suggesting that the secondary vorticity plays a significant role in regulating the strength of the primary vortex. This phenomenon is examined in the present case, and the physical mechanisms governing the growth and evolution of the dynamic stall vortices are explored. This work was supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program monitored by Dr. Douglas Smith, and through the 2014 AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).

  12. Random vibration analysis of train-bridge under track irregularities and traveling seismic waves using train-slab track-bridge interaction model

    Science.gov (United States)

    Zeng, Zhi-Ping; Zhao, Yan-Gang; Xu, Wen-Tao; Yu, Zhi-Wu; Chen, Ling-Kun; Lou, Ping

    2015-04-01

    The frequent use of bridges in high-speed railway lines greatly increases the probability that trains are running on bridges when earthquakes occur. This paper investigates the random vibrations of a high-speed train traversing a slab track on a continuous girder bridge subjected to track irregularities and traveling seismic waves by the pseudo-excitation method (PEM). To derive the equations of motion of the train-slab track-bridge interaction system, the multibody dynamics and finite element method models are used for the train and the track and bridge, respectively. By assuming track irregularities to be fully coherent random excitations with time lags between different wheels and seismic accelerations to be uniformly modulated, non-stationary random excitations with time lags between different foundations, the random load vectors of the equations of motion are transformed into a series of deterministic pseudo-excitations based on PEM and the wheel-rail contact relationship. A computer code is developed to obtain the time-dependent random responses of the entire system. As a case study, the random vibration characteristics of an ICE-3 high-speed train traversing a seven-span continuous girder bridge simultaneously excited by track irregularities and traveling seismic waves are analyzed. The influence of train speed and seismic wave propagation velocity on the random vibration characteristics of the bridge and train are discussed.

  13. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Directory of Open Access Journals (Sweden)

    S. DeSouza-Machado

    2018-01-01

    Full Text Available One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR satellite sounders use cloud-cleared radiances (CCRs as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA. The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds. From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS and NWP

  14. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Science.gov (United States)

    DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang

    2018-01-01

    One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud

  15. On Early Age Crack Formation in FRC Slabs

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Stang, Henrik

    1997-01-01

    The problem of early age crack formation in FRC slabs due to restrained temperature and shrinkage deformations, is given an analytical treatment. A model taking into account the ageing properties of the tensile softening curve and the continued development in the temperature and shrinkage...... deformations after crack initiation, is presented. Based on this model a design strategy for FRC slabs is outlined....

  16. Slab Leaf Bowls

    Science.gov (United States)

    Suitor, Cheryl

    2012-01-01

    In science class, fourth graders investigate the structure of plants and leaves from trees and how the process of photosynthesis turns sunlight into sugar proteins. In this article, the author fuses art and science for a creative and successful clay slab project in her elementary art classroom. (Contains 1 online resource.)

  17. Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    1989-01-01

    In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....

  18. Education stalls and subsequent stalls in African fertility: A descriptive overview

    Directory of Open Access Journals (Sweden)

    Anne Goujon

    2015-12-01

    Full Text Available Background: Recent stalls in fertility decline have been observed in a few countries in sub-Saharan Africa, and so far no plausible common reason has been identified in the literature. This paper develops the hypothesis that these fertility stalls could be associated with stalls in the progress of education among the women of the relevant cohorts, possibly resulting partly from the Structural Adjustment Programs (SAPs of the 1980s. Methods: We descriptively link the change in the education composition of successive cohorts of young women in sub-Saharan Africa and the recent fertility stalls. We use reconstructed data on population by age, gender, and level of education from www.wittgenstein centre.org/dataexplorer, and fertility rates from the United Nations. Results: In most sub-Saharan African countries, we observe that the same countries that had fertility stalls had a stall in the progress of education, particularly for young women who were of primary school age during the 1980s, when most of the countries were under structural adjustment. Conversely, stalls in fertility are less common in countries that did not have an education stall, possibly in relation to SAPs. Conclusions: The results point to the possibility of a link between the recent fertility stalls and discontinuities in the improvement of the education of the relevant cohorts, which in turn could be related to the SAPs in the 1980s. This descriptive finding now needs to be corroborated through more detailed cohort-specific fertility analysis. If the education-fertility link can be further established, it will have important implications for the projections of population growth in affected countries.

  19. Calculation of Rotor Performance and Loads Under Stalled Conditions

    National Research Council Canada - National Science Library

    Yeo, Hyeonsoo

    2003-01-01

    Rotor behavior in stalled conditions is investigated using wind tunnel test data of a 1/10-scale CH-47B/C type rotor, which provides a set of test conditions extending from unstalled to light stall...

  20. Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area

    Science.gov (United States)

    Gaume, J.; Chambon, G.; Eckert, N.; Naaim, M.; Schweizer, J.

    2015-04-01

    Dry-snow slab avalanches are generally caused by a sequence of fracture processes, including failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation within the weak layer (WL) and tensile fracture through the slab. During past decades, theoretical and experimental work has gradually increased our knowledge of the fracture process in snow. However, our limited understanding of crack propagation and fracture arrest propensity prevents the evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab tensile failure propensity is examined using a mechanically based statistical model of the slab-WL system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by slab elasticity and possible tensile failure of the slab. Two types of avalanche release are distinguished in the simulations: (1) full-slope release if the heterogeneity is not sufficient to stop crack propagation and trigger a tensile failure within the slab; (2) partial-slope release if fracture arrest and slab tensile failure occur due to the WL heterogeneity. The probability of these two release types is presented as a function of the characteristics of WL heterogeneity and the slab. One of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide-scale crack propagation and thus lead to larger avalanches (full-slope release). In this case, the avalanche size is mainly influenced by topographical and morphological features such as rocks, trees, slope curvature and the spatial variability of the snow depth as often claimed in the literature.

  1. An airloads theory for morphing airfoils in dynamic stall with experimental correlation

    Science.gov (United States)

    Ahaus, Loren A.

    Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.

  2. Prediction of dynamic loads and induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)

    1998-05-01

    Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final

  3. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    Science.gov (United States)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-02-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  4. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    Science.gov (United States)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-04-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  5. STRUCTURAL TEST AND ANALYSIS OF RC SLAB AFTER FIRE LOADING

    Directory of Open Access Journals (Sweden)

    CHUL-HUN CHUNG

    2013-04-01

    Full Text Available In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.

  6. Structural Test and Analysis of RC Slab After Fire Loading

    International Nuclear Information System (INIS)

    Chung, Chulhun; Im, Cho Rong; Park, Jaegyun

    2013-01-01

    In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber

  7. 16 CFR 1505.50 - Stalled motor testing.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...

  8. S/sub N/ computational benchmark solutions for slab geometry models of a gas-cooled fast reactor (GCFR) lattice cell

    International Nuclear Information System (INIS)

    McCoy, D.R.

    1981-01-01

    S/sub N/ computational benchmark solutions are generated for a onegroup and multigroup fuel-void slab lattice cell which is a rough model of a gas-cooled fast reactor (GCFR) lattice cell. The reactivity induced by the extrusion of the fuel material into the voided region is determined for a series of partially extruded lattice cell configurations. A special modified Gauss S/sub N/ ordinate array design is developed in order to obtain eigenvalues with errors less than 0.03% in all of the configurations that are considered. The modified Gauss S/sub N/ ordinate array design has a substantially improved eigenvalue angular convergence behavior when compared to existing S/sub N/ ordinate array designs used in neutron streaming applications. The angular refinement computations are performed in some cases by using a perturbation theory method which enables one to obtain high order S/sub N/ eigenvalue estimates for greatly reduced computational costs

  9. Is Social Licence A Licence To Stall?

    Directory of Open Access Journals (Sweden)

    Mark Lowey

    2016-03-01

    Full Text Available The School of Public Policy at the University of Calgary organized a one-day symposium on Oct. 8, 2014 in Calgary, as part of the School’s TransCanada Corporation Energy Policy and Regulatory Frameworks Program. The symposium was titled “Is Social License a License to Stall?” Held at the Hotel Arts, the event attracted a full-capacity audience of about 110 people, including representatives from industry, government and environmental non-government organizations. The symposium included four moderated panel sessions and a keynote speaker at lunch. The School of Public Policy set the framework for discussion at the Calgary symposium with the following description: Canada’s regulators act in the public interest to review energy and infrastructure project applications. Regulators are guided by procedural fairness and follow a transparent application, review and hearing process with data filings and sworn testimony. But that’s changing. “Social license” is a relatively new term, which some interests are using to create a different standard for the approval of projects — especially energy projects. According to social license advocates, projects must meet often ill-defined requirements set up by non-governmental organizations, local residents or other interests — a new hurdle for project approval, but without the rigour and rule of law of a regulator. Is social license a meaningful addition to the regulatory process, or is it being used as a constantly moving goal-post designed to slow down regulatory processes, delay project implementation, frustrate energy infrastructure expansion and even enrich those advocates who promote it as a new model? This paper summarises the discussion and the themes that emerged throughout the day. Most notably, panellists concluded that “social licence” is a real and significant issue that presents both an opportunity and a problem, not only for regulators but for all parties involved in the

  10. An archival analysis of stall warning system effectiveness during airborne icing encounters

    Science.gov (United States)

    Maris, John Michael

    An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance

  11. Numerical Investigations of Dynamic Stall Control

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2014-04-01

    Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.

  12. Dynamic Stall Control Using Plasma Actuators

    Science.gov (United States)

    Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo

    2017-11-01

    Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.

  13. Diagnosis of voltage collapse due to induction motor stalling using static analysis

    International Nuclear Information System (INIS)

    Karbalaei, F.; Kalantar, M.; Kazemi, A.

    2008-01-01

    Induction motor stalling is one of the important reasons for voltage collapse. This paper presents that, for induction motor stalling diagnosis, it is not necessary to use a third or first order dynamic model of induction motors. Instead, a method is presented based on algebraic calculations for which the steady state model of the induction motor considering different kinds of mechanical loads (constant and variable torque) is added to the power flow equations. Simulation results for a simple system confirm the correctness of the proposed method as compared to dynamic simulation results

  14. Numerical Study of FRP Reinforced Concrete Slabs at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Masoud Adelzadeh

    2014-02-01

    Full Text Available One-way glass fibre reinforced polymer (GFRP reinforced concrete slabs at elevated temperatures are investigated through numerical modeling. Serviceability and strength requirements of ACI-440.1R are considered for the design of the slabs. Diagrams to determine fire endurance of slabs by employing “strength domain” failure criterion are presented. Comparisons between the existing “temperature domain” method with the more representative “strength domain” method show that the “temperature domain” method is conservative. Additionally, a method to increase the fire endurance of slabs by placing FRP reinforcement in two layers is investigated numerically. The amount of fire endurance gained by placing FRP in two layers increases as the thickness of slab increases.

  15. Punching strength of reinforced concrete flat slabs without shear reinforcement

    Directory of Open Access Journals (Sweden)

    P. V. P. Sacramento

    Full Text Available Punching strength is a critical point in the design of flat slabs and due to the lack of a theoretical method capable of explaining this phenomenon, empirical formulations presented by codes of practice are still the most used method to check the bearing capacity of slab-column connections. This paper discusses relevant aspects of the development of flat slabs, the factors that influence the punching resistance of slabs without shear reinforcement and makes comparisons between the experimental results organized in a database with 74 slabs carefully selected with theoretical results using the recommendations of ACI 318, EUROCODE 2 and NBR 6118 and also through the Critical Shear Crack Theory, presented by Muttoni (2008 and incorporated the new fib Model Code (2010.

  16. Evaluation of dynamic behavior of waffle slab to gym center

    Directory of Open Access Journals (Sweden)

    Yuri Cláudio Vieira da Costa

    Full Text Available In Brazil, the use of reinforced concrete waffle slab in multi-story buildings is widespread nowadays. These buildings are projected for different purposes such as fitness centers, supermarkets, parking garages, offices and residential units. Simple activities as walking, skipping and jumping can generate vibrations in these slabs. Vibrations can cause inconvenience in persons, questions about structure´s safety, and collapse risk that it is determined by its intensity of vibrations. The objective of this paper is evaluating the behavior of reinforced concrete waffle slabs due to the human rhythmic activities. Slabs are modeled by finite elements method using the SAP2000 program. The results are verified according to Brazilian and international codes. The waffle slabs are submitted to high-levels of acceleration and velocity generating discomfort in users.

  17. Punching Shear in Steel Fibre Reinforced Concrete Slabs Without Traditional Reinforcement

    Science.gov (United States)

    Tan, K. H.; Venkateshwaran, A.

    2017-09-01

    The punching shear capacity of steel fibre reinforced concrete (SFRC) slabs without traditional steel bar reinforcement was investigated by conducting central point-load tests on twelve square slabs. The test parameters covered fibres with different multi-hook ends, concrete compressive strength, reinforcing index and slab thickness. The statistical performance of two existing models for the prediction of punching shear capacity of SFRC slabs without traditional reinforcement was examined. The load carrying capacity of these slabs were also assessed using the yield line theory. It is noted that the slabs failed primarily in flexure and the yield line theory predicted the load carrying capacities of the slabs most accurately. The reason for a flexural failure in SFRC slabs without steel bars is attributed to the lesser energy required in the propagation of an existing flexural cracks than in the creation of a new circumferential cracks around the column face.

  18. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head

    Science.gov (United States)

    Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.

    2014-01-01

    Abstract. Near-infrared spectroscopy (NIRS) estimations of the adult brain baseline optical properties based on a homogeneous model of the head are known to introduce significant contamination from extracerebral layers. More complex models have been proposed and occasionally applied to in vivo data, but their performances have never been characterized on realistic head structures. Here we implement a flexible fitting routine of time-domain NIRS data using graphics processing unit based Monte Carlo simulations. We compare the results for two different geometries: a two-layer slab with variable thickness of the first layer and a template atlas head registered to the subject’s head surface. We characterize the performance of the Monte Carlo approaches for fitting the optical properties from simulated time-resolved data of the adult head. We show that both geometries provide better results than the commonly used homogeneous model, and we quantify the improvement in terms of accuracy, linearity, and cross-talk from extracerebral layers. PMID:24407503

  19. Robots are stalling in Fukushima

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Whereas robots were expected to be the heroes of the cleaning up of radioactive zones of the Fukushima power station, they fall, lack of autonomy, or stay prisoners of debris. After having briefly described how these robots look like (the characteristics of four models are given, two Japanese and two American robots), this article outlines that they resist quite well to radioactivity, but are rather slow and are not used all at the same time: some are being maintained, some are trapped in debris. Thus, they perform a mission once a week, with finally less than hundred hours of operation for each of them. They are often trapped by debris, their movements are often difficult (notably in front of stairs or of debris), their battery lacks autonomy, and they did not significantly reduce the exposure of humans to radioactivity, but they open perspectives for new devices

  20. The role of tip clearance in high-speed fan stall

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, J.J. (NASA Lewis Research Center, Cleveland, OH (United States)); Celestina, M.L. (Sverdrup Tech., Inc., Cleveland, OH (United States)); Greitzer, E.M. (Massachusetts Institute of Technology, Cambridge, MA (United States))

    1993-01-01

    A numerical experiment has been carried out to define the near-stall casing endwall flow field of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-passage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock that is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade that controls the flow processes leading to stall.

  1. The role of tip clearance in high-speed fan stall

    Science.gov (United States)

    Adamczyk, J. J.; Celestina, M. L.; Greitzer, E. M.

    1991-01-01

    A numerical experiment has been carried out to define the near-stall casing endwall flowfield of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-pasage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock, which is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade which controls the flow processes leading to stall.

  2. The computation of the post-stall behavior of a circulation controlled airfoil

    Science.gov (United States)

    Linton, Samuel W.

    1993-01-01

    The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.

  3. Long-life slab replacement concrete.

    Science.gov (United States)

    2015-03-01

    This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...

  4. SUB-SLAB PROBE INSTALLATION

    Science.gov (United States)

    Sub-slab sampling has become an integral part of vapor intrusion investigations. It is now recommended in guidance documents developed by EPA and most states. A method for sub-slab probe installation was devised in 2002, presented at conferences through 2005, and finally docume...

  5. Analytical reconstruction scheme for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates transport model in slab geometry

    International Nuclear Information System (INIS)

    Barros, Ricardo C.; Filho, Hermes Alves; Platt, Gustavo M.; Oliveira, Francisco Bruno S.; Militao, Damiano S.

    2010-01-01

    Coarse-mesh numerical methods are very efficient in the sense that they generate accurate results in short computational time, as the number of floating point operations generally decrease, as a result of the reduced number of mesh points. On the other hand, they generate numerical solutions that do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. In this paper we describe two steps for the analytical reconstruction of the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates (S N ) transport model in slab geometry. The first step of the algorithm is based on the analytical reconstruction of the coarse-mesh solution within each discretization cell of the grid set up on the spatial domain. The second step is based on the angular reconstruction of the discrete ordinates solution between two contiguous ordinates of the angular quadrature set used in the S N model. Numerical results are given so we can illustrate the accuracy of the two reconstruction techniques, as described in this paper.

  6. Effect of rheological approximations on slab detachment in 3D numerical simulations of continental collision

    Science.gov (United States)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2017-04-01

    It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in

  7. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    DEFF Research Database (Denmark)

    Chen, Yun; Jørgensen, Mette; Kolde, Raivo

    2011-01-01

    strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. RESULTS: Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII...... of RNAPII stalling. CONCLUSIONS: In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data....

  8. Analysis of compressible light dynamic stall flow at transitional Reynolds numbers

    DEFF Research Database (Denmark)

    Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.

    1996-01-01

    Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...

  9. Dynamic stall model for wind turbine airfoils

    DEFF Research Database (Denmark)

    Larsen, J.W.; Nielsen, S.R.K.; Krenk, Steen

    2007-01-01

    conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via...

  10. Investigation of Effect of Slab Opening Location to the Shear Stress

    Directory of Open Access Journals (Sweden)

    Burak Yön

    2010-01-01

    Full Text Available In this study, it is investigated the effect of slab opening location in reinforced concrete building to the structural behavior. For investigation of slab irregularity, three multi storey irregular structures that have different slab opening locations in structure plans and one regular structure are designed. Linear dynamic analyses are performed for the structure models using Time History Analysis method. 13 March 1992 Erzincan Earthquake acceleration records are used for these analyses. It is assumed that slabs of selected structures are modeled as elastic diaphragm. SAP2000 Structural Analysis Program is used in the analyses. Values of slab that near space shear stress obtained from dynamic analyses of selected structures are comparatively evaluated. According to analyses results, it is determined that location of slab opening of structures reasonably both affects the behavior of structures and occurs great slab shear stress.

  11. Theory/test correlation of helicopter rotor blade element airloads in the blade stall regime

    Science.gov (United States)

    Bobo, C. J.

    1972-01-01

    The effects of stall on a rotor blade element in a three-dimensional rotating environment was investigated. The model rotor test provided blade element airloads and local boundary layer flow characteristics at the three-quarter blade radius position for a wide range of rotor operating conditions. A description of the test program and the test results are presented.

  12. Reconstructing subducted oceanic lithosphere by "reverse-engineering" slab geometries: The northern Philippine Sea Plate

    Science.gov (United States)

    Pownall, Jonathan M.; Lister, Gordon S.; Spakman, Wim

    2017-09-01

    Subducting slabs commonly acquire complex geometries from the migration of subduction trenches, slab-mantle interaction, slab tearing, and collision of slabs at depth. Although it is possible to construct three-dimensional models of subducted slabs using earthquake hypocenter locations and tomographic models, it is often not possible to rigorously test their accuracy. Here we present a methodology for performing such a test, by "reverse-engineering" the presubduction configuration of a slab of oceanic lithosphere from interpretations of its present-day morphology. We illustrate our approach for the Ryukyu and Shikoku slabs, northwest Philippine Sea, having simulated them as viscoelastic sheets that we unfolded and "floated" to the surface. The net strain distribution of the floated mesh indicated which parts of the original slab model were geometrically viable (minimal net strain) and which parts of the mesh required additional tears and/or zones of localized ductile extension to have enabled the slab to deform during subduction. In the instance of the Ryukyu and Shikoku slabs, the Palau-Kyushu and Gagua ridges are shown to have both acted as planes of weakness that broke into major vertical slab tears. These subducted ridges are connected by a trench-parallel tear that represented the former contact between the Huatung and West Philippine Basins. The fossil spreading center of the Shikoku Basin formed a separate slab window upon subduction along the Nankai Trough. The methodology presented herein is a powerful tool to evaluate complex slab morphologies, infer the locations of slab tears, and therefore reconstruct intricate configurations of subducted oceanic lithosphere.

  13. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume?

    Science.gov (United States)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.

    2010-12-01

    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  14. Slab replacement maturity guidelines : [summary].

    Science.gov (United States)

    2014-04-01

    Concrete sets in hours at moderate temperatures, : but the bonds that make concrete strong continue : to mature over days to years. However, for : replacement concrete slabs on highways, it is : crucial that concrete develop enough strength : within ...

  15. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  16. 14 CFR 23.201 - Wings level stall.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wings level stall. 23.201 Section 23.201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS.... Starting from a speed at least 10 knots above the stall speed, the elevator control must be pulled back so...

  17. 14 CFR 33.65 - Surge and stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... stall characteristics. When the engine is operated in accordance with operating instructions required by...

  18. Compressible dynamic stall vorticity flux control using a dynamic ...

    Indian Academy of Sciences (India)

    management of its unsteady vorticity using a variable droop leading edge (VDLE) airfoil. Through ... the pressure gradient term for the dynamic stall conditions encountered by a helicopter-rotor retreating blade. Thus ... This paper discusses control of compressible dynamic stall using the novel idea of variable droop leading ...

  19. Shear and anchorage behaviour of fire exposed hollow core slabs

    OpenAIRE

    Fellinger, J.H.H.; Stark, J.; Walraven, J.C.

    2005-01-01

    The fire resistance of hollow core slabs is currently assessed considering flexural failure only. However, fire tests showed that shear or anchorage failure can also govern the load bearing behaviour. As the shear and anchorage capacity of these slabs rely on the tensile strength of the concrete, the load bearing capacity with respect to these failure modes decreases dramatically during fire due to the impact of thermal stresses. This paper presents a FE model for the shear and anchorage beha...

  20. Diffusion of radon through cracks in a concrete slab.

    Science.gov (United States)

    Landman, K A

    1982-07-01

    A mathematical model is developed to describe diffusion of radon through cracks or gaps in concrete slabs which are used in building foundations. As radon approaches the soil surface from underlying soil, it encounters a concrete slab. The radon will diffuse toward any air-filled cracks. The rate of exhalation through a portion of a cracked slab is determined and compared to the rate of exhalation from the same surface area of bare soil. In a typical case, this ratio is approx. 0.25. This is about a 20-fold increase to the ratio found when the concrete slab has no cracks. Therefore crack pathways are potentially a major source of indoor radon.

  1. Numerical Study on the Acoustic Characteristics of an Axial Fan under Rotating Stall Condition

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-11-01

    Full Text Available Axial fan is an important piece of equipment in the thermal power plant that provides enough air for combustion of coal. This paper focuses on the aerodynamic noise characteristics of an axial fan in the development from stall inception to stall cells. The aerodynamic noise characteristic of monitoring region in time and frequency domains was simulated employing the large-eddy simulation (LES, with the addition of throttle setting and the Ffowcs Williams-Hawkings (FW-H noise model. The numerical results show that, under the design condition, the acoustic pressure presents regular periodicity along with the time. The noise energy is concentrated with high energy of the fundamental frequency and high order harmonics. During the stall inception stage, the acoustic pressure amplitude starts fluctuating and discrete frequencies are increased significantly in the low frequency; among them, there are three obvious discrete frequencies: 27.66 Hz, 46.10 Hz and 64.55 Hz. On the rotating stall condition, the fluctuation of the acoustic pressure level and amplitude are more serious than that mentioned above. During the whole evolution process, the acoustic pressure peak is difficult to keep stable all the time, and a sudden increase of the peak value at the 34.5th revolution corresponds to the relative velocity’s first sudden increase at the time when the valve coefficient is 0.780.

  2. Field rotor measurements. Data sets prepared for analysis of stall hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H.; Thirstrup Petersen, J. [Risoe National Lab. (Denmark); Bruining, A. [Delft Univ. of Technology (Netherlands); Brand, A. [ECN (Netherlands); Graham, M. [Imperical College (United Kingdom)

    1998-05-01

    As part of the JOULE-3 project `STALLVIB` an analysis and synthesis of the data from the field rotor experiments at ECN, Delft University, Imperial College, NREL and Risoe has been carried out. This has been done in order to see to what extent the data could be used for further development and validation of engineering dynamic stall models. A detailed investigation of the influence of the post-processing of the different data sets has been performed. Further, important statistical functions such as PSD spectra, coherence and transfer functions have been derived for the data sets which can be used as basis for evaluation of the quality of the data seen relative to actual application of the data. The importance of using an appropriate low-pass filtering to remove high frequency noise has been demonstrated when the relation between instantaneous values of e.g. {alpha} and C{sub N} is considered. In general, the complicated measurement on a rotor of {alpha} and w and the interpretation of these parameters combined with the strongly three-dimensional, turbulent flow field around the rotating blade has the consequence that it seems difficult to derive systematic information from the different data sets about stall hysteresis. In particular, the measurement of {alpha}, which determination of the stagnation point gives reasonable data below stall but fails in stall. On the other hand, measurements of {alpha} with a five hole pitot tube can be used also in the stall region. Another main problem is the non-dimensionalization of the coefficients C{sub N} and C{sub r}. If the dynamic pressure used for the non-dimensionalization is not fully correlated with the aerodynamic pressure over the considered airfoil section due to e.g. influence of the gravity on the pressure pipes, the hysteresis loops will be distorted. However, using the data with caution and applying a suitable post-processing as described by the different participants, it will probably be possible to obtain some

  3. Seismic anisotropy and mantle flow below subducting slabs

    Science.gov (United States)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  4. Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet

    Directory of Open Access Journals (Sweden)

    Qijun ZHAO

    2017-12-01

    Full Text Available The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes (URANS solver coupled with k-ω Shear Stress Transport (SST turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters (jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jet’s angles and momentum coefficients on control effects are similar to those of the unique jet. Finally, unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and as a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor. Keywords: Airfoil, Dynamic stall characteristics, Flow control, Moving-embedded grid methodology, Navier-Stokes equations, Parametric

  5. Simulating the effect of slab features on vapor intrusion of crack entry

    OpenAIRE

    Yao, Yijun; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building founda...

  6. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration.

    Science.gov (United States)

    Wei, S Shawn; Wiens, Douglas A; van Keken, Peter E; Cai, Chen

    2017-01-01

    Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island-based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this "seismic belt" occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting.

  7. Research on mechanical behavior of casting slab during dynamic soft reduction

    Science.gov (United States)

    Qin, Qin; Huang, Jianlin; Zhou, Daomou; Yang, Xiaoying

    2017-10-01

    A three-dimensional dynamic solidification model incorporating the thermo-elastic-plastic coupling model has been proposed in this paper by ABAQUS considering the dynamic contact between the slab and rolls. The thermo-mechanical coupling model produces outputs such as temperature and mechanical behavior of the slab. And the stress-strain distribution of the high-temperature slab at the solidification end has been investigated in this paper. The influences of various reduction interval, reduction amount and reduction distribution on mechanical behavior of casting slab have been systematically discussed.

  8. Effect of stall design on dairy calf transition to voluntary feeding on an automatic milk feeder after introduction to group housing.

    Science.gov (United States)

    Wilson, Tanya R; LeBlanc, Stephen J; DeVries, Trevor J; Haley, Derek B

    2018-03-14

    Automatic milk feeders (AMF) for young dairy calves are widely used in the dairy industry. These feeders are thought to have benefits for calf health and welfare and may reduce labor required for feeding; however, little is known about how calves adapt to feeding with AMF. The objective of this study was to observe the effects of feeding stall design on calves learning to use the AMF. The hypothesis was that solid side stalls, compared with steel bar stalls, would result in a longer latency to approach and feed from the AMF without assistance. A total of 147 Holstein calves (80 male and 67 female) were enrolled at 4 d of age, introduced to a group pen, and, at the same time, trained on an AMF. For training, calves were allowed to suck on the trainer's fingers and guided to the teat. Calves were allocated to 1 of 2 stall designs at the pen level, depending on which treatment cohort they were born into, either with steel bar stall walls (n = 46 male, 34 female calves) or with solid side stall walls (n = 34 male, 33 female calves). For 72 h after introductory training on the AMF, data from the feeders were collected and calf behavior was monitored by video. Outcomes measured included latency to first voluntary visit to the feeder and to first feeding, time spent in the feeder, amount of milk consumed over 72 h, number of retraining sessions required (retrained if linear regression models or a Poisson model for the outcome of retraining. For certain outcomes the effects of stall design interacted with difficulty of training (willingness to enter feeder and drink); for the 38% of calves that were scored as moderately difficult to train on a scale of easy, moderate, or difficult, treatment (stall design) differences were detected. These calves took 2× longer to lick or bite toward the nipple, 2× longer to first voluntarily feeding, and consumed less milk over 72 h following training when trained on the steel bar stall design. These results suggest simple features of a

  9. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon.

    Science.gov (United States)

    von der Malsburg, Karina; Shao, Sichen; Hegde, Ramanujan S

    2015-06-15

    Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome-Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S-RQC and 80S-Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome-translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel. © 2015 von der Malsburg et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Shear wave velocities in the Pampean flat-slab region from Rayleigh wave tomography: Implications for slab and upper mantle hydration

    Science.gov (United States)

    Porter, Ryan; Gilbert, Hersh; Zandt, George; Beck, Susan; Warren, Linda; Calkins, Josh; Alvarado, Patricia; Anderson, Megan

    2012-11-01

    The Pampean flat-slab region, located in central Argentina and Chile between 29° and 34°S, is considered a modern analog for Laramide flat-slab subduction within western North America. Regionally, flat-slab subduction is characterized by the Nazca slab descending to ˜100 km depth, flattening out for ˜300 km laterally before resuming a more "normal" angle of subduction. Flat-slab subduction correlates spatially with the track of the Juan Fernandez Ridge, and is associated with the inboard migration of deformation and the cessation of volcanism within the region. To better understand flat-slab subduction we combine ambient-noise tomography and earthquake-generated surface wave measurements to calculate a regional 3D shear velocity model for the region. Shear wave velocity variations largely relate to changes in lithology within the crust, with basins and bedrock exposures clearly defined as low- and high-velocity regions, respectively. We argue that subduction-related hydration plays a significant role in controlling shear wave velocities within the upper mantle. In the southern part of the study area, where normal-angle subduction is occurring, the slab is visible as a high-velocity body with a low-velocity mantle wedge above it, extending eastward from the active arc. Where flat-slab subduction is occurring, slab velocities increase to the east while velocities in the overlying lithosphere decrease, consistent with the slab dewatering and gradually hydrating the overlying mantle. The hydration of the slab may be contributing to the excess buoyancy of the subducting oceanic lithosphere, helping to drive flat-slab subduction.

  11. Strengthening of RC bridge slabs using CFRP sheets

    Directory of Open Access Journals (Sweden)

    Fahmy A. Fathelbab

    2014-12-01

    Full Text Available Many old structures became structurally insufficient to carry the new loading conditions requirements. Moreover, they suffer from structural degradation, reinforcement steel bars corrosion, bad weather conditions…etc. Many official authorities in several countries had recognized many old bridges and buildings as structurally deficient by today’s standards. Due to these reasons, structural strengthening became an essential requirement and different strengthening techniques appeared in market. Fiber Reinforced Polymer (FRP strengthening techniques established a good position among all other techniques, giving excellent structural results, low time required and moderate cost compared with the other techniques. The main purpose of this research is to study analytically the strengthening of a reinforced concrete bridge slabs due to excessive loads, using externally bonded FRP sheets technique. A commercial finite element program ANSYS was used to perform a structural linear and non-linear analysis for strengthened slab models using several schemes of FRP sheets. A parametric study was performed to evaluate analytically the effect of changing both FRP stiffness and FRP schemes in strengthening RC slabs. Comparing the results with control slab (reinforced concrete slab without strengthening it is obvious that attaching FRP sheets to the RC slab increases its capacity and enhances the ductility/toughness.

  12. Tectonic evolution of the Mexico flat slab and patterns of intraslab seismicity.

    Science.gov (United States)

    Moresi, L. N.; Sandiford, D.

    2017-12-01

    The Cocos plate slab is horizontal for about 250 km beneath the Guerrero region of southern Mexico. Analogous morphologies can spontaneously develop in subduction models, through the presence of a low-viscosity mantle wedge. The Mw 7.1 Puebla earthquake appears to have ruptured the inboard corner of the Mexican flat slab; likely in close proximity to the mantle wedge corner. In addition to the historical seismic record, the Puebla earthquake provides a valuable constraint through which to assess geodynamic models for flat slab evolution. Slab deformation predicted by the "weak wedge" model is consistent with past seismicity in the both the upper plate and slab. Below the flat section, the slab is anomalously warm relative to its depth; the lack of seismicity in the deeper part of the slab fits the global pattern of temperature-controlled slab seismicity. This has implications for understanding the deeper structure of the slab, including the seismic hazard from source regions downdip of the Puebla rupture (epicenters closer to Mexico City). While historical seismicity provides a deformation pattern consistent with the weak wedge model , the Puebla earthquake is somewhat anomalous. The earthquake source mechanism is consistent with stress orientations in our models, however it maps to a region of relatively low deviatoric stress.

  13. MODOS GUIADOS EM SLABS METAMATERIAIS GUIDED MODES IN METAMATERIAL SLABS

    Directory of Open Access Journals (Sweden)

    Leonardo André Ambrosio

    2006-12-01

    Full Text Available Este trabalho apresenta um estudo de revisão de modos propagantes em um guia-de-onda slab constituído de materiais com índices de refração negativo, os chamados metamateriais, Mostra-se que os modos guiados em um slab metamaterial possuem algumas propriedades particulares, tais como a propagação de ondas lentas simétricas ou anti-simétricas, a ausência de modos fundamentais para ondas rápidas e a possibilidade de propagação de ondas guiadas em um meio menos denso. A análise é baseada em expansões de campo no guia e nos espaços superior e inferior ao mesmo.This paper presents a review of the propagation modes in a slab waveguide consisting of negative refraction index materials, known as metamaterials. Some particular properties of guided modes in a metamaterial slab, such as slow symmetric or antisymmetric slow wave propagation, the absence of fundamental modes for fast waves and the possibility of guided waves in a less dense medium. The analysis is based on field expansions in the guide and the upper and lower spaces of it.

  14. A numerical study on the fatigue life design of concrete slabs for railway

    OpenAIRE

    Poveda Bautista, Elisa; Rena C., Yu; Lancha Fernández, Juan Carlos; Ruiz López, Gonzalo Francisco

    2015-01-01

    With the growing use of high-speed trains, non-ballasted tracks have become more popular compared to ballasted ones. However, the study on fatigue evaluation in concrete slabs under train load has been rather limited. This work presents a numerical study on the fatigue life design of concrete slabs for railway tracks. A finite element model for a three-slab track system is established for extracting the principal vibration modes and transient analysis under time-dependent loads. T...

  15. Free subduction dynamics of a thermo-mechanical slab with non-linear rheology

    Science.gov (United States)

    Holt, A. F.; Becker, T. W.; Buffett, B. A.

    2012-12-01

    We investigate the dynamic controls on single plate subduction in a visco-plastic rheology using a 2D set up of the finite element code, CitcomCU. In contrast to previous studies, which focus largely on compositional slabs (e.g. Enns et al., 2005), we focus on thermal slabs (i.e. include effects of thermal diffusion). We analyse slabs that develop from plates both with uniform initial thicknesses and half-space cooling plates with thicknesses that vary with sqrt(x). A pseudo-plastic rheology facilitates the decoupling of the slab from the free slip upper surface. It is found that thermal slabs have lower strain rates in the bending region, due to the cooling upper boundary temperature condition, and so lower yield stresses are required to decouple thermal slabs than compositional slabs. As in previous work, it is found that stronger, thicker slabs promote trench advance (after the initial advancing phase). Both boundary conditions (basal and side) and incorporating a plate with half-space cooling thickness variations are shown to have a significant effect on slab dynamics, particularly on the maximum amount of trench retreat. Subsequently, models with non-Newtonian, stress-dependent rheologies are compared to Newtonian models with equivalent slab-mantle viscosity contrasts. Models with power law exponents of both 3, corresponding to dislocation creep, and a large exponent of 14, corresponding to near-pure plasticity (see Buffett and Becker, 2012), are analysed. It is found that, particularly for the n=14 case, the inclusion of a stress dependent rheology dramatically reduces the timescales of both trench migration and slab descent, while modifying slab morphology to a much lesser degree. Using a temperature threshold to confine the non-Newtonian rheology to within the slab prevents weakening in the surrounding mantle and so increases the subduction timescales to values that lie between the equivalent Newtonian and non-Newtonian (non-confined) timescales. While all

  16. Fracture Mechanisms and Strengthening of Slab Lasers

    Science.gov (United States)

    Marion, John E.

    1987-04-01

    The fracture mechanisms of slab lasers are examined and the critical defects, induced during optical fabrication, are identified. A rationale for determining an appropriate operating stress for the slab laser is outlined, based on Weibull statistics, and this method is experimentally assessed in full-sized slab fracture tests. Techniques for achieving strong slabs are then examined. We determine that strengthening by subsurface damage minimization has the highest potential for strengthening, but that slab durability must also be enhanced in order for the slab to remain strong in practice. Good chemical durability is achieved by the use of water-proof overcoats. Good mechanical durability is achieved by the use of compressive surface layers. The compressive surface layers prevent the deterioration in slab strength from physical damage to the slab surface.

  17. Long-life slab replacement concrete : [summary].

    Science.gov (United States)

    2015-04-01

    Concrete slab replacement projects in Florida have demonstrated a high incidence of : replacement slab cracking. Causes of cracking have not been reliably determined. University of South Florida researchers : sought to identify the factors or : param...

  18. ARC Code TI: SLAB Spatial Audio Renderer

    Data.gov (United States)

    National Aeronautics and Space Administration — SLAB is a software-based, real-time virtual acoustic environment rendering system being developed as a tool for the study of spatial hearing. SLAB is designed to...

  19. High-transmission acoustic self-focusing and directional cloaking in a graded perforated metal slab.

    Science.gov (United States)

    Zhao, Sheng-Dong; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-06-29

    A design strategy and its modeling for high-transmission acoustic self-focusing and directional cloaking in a two-dimensional (2D) and an axisymmetric three-dimensional (3D) gradient-index phononic crystal (GRIN-PC) are reported in this paper. A gradient perforated aluminum slab sandwiched by water is considered. A low-loss directional cloaking device is achieved by controlling the matching coefficient between the slab and the water. The anisotropy coefficient that affects the scattering properties is also introduced. Furthermore, the phase discontinuity for directional cloaking inside and outside the slab is overcome by introducing a non-gradient slab having a lower group velocity behind the GRIN slab as an acoustic delay device. In addition, an axisymmetric 3D directional cloaking structure is obtained by rotating the corresponding 2D structure around the slab axis.

  20. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.

    Science.gov (United States)

    Schellart, W P; Stegman, D R; Farrington, R J; Freeman, J; Moresi, L

    2010-07-16

    Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.

  1. Long-term deformational behaviour of thick reinforced concrete slab loaded by out of plane force

    International Nuclear Information System (INIS)

    Endoh, T.; Kanazu, T.; Ishida, H.; Hirai, T.; Itoh, M.; Takei, K.

    1993-01-01

    The Advanced Thermal Reactor plant is under the design in Japan, in which the reinforced concrete slab supporting a reactor is assumed to be exposed to high temperature and low humidity conditions. The slab deforms plastically over the design period due to creep and drying shrinkage of concrete. To ensure the long term serviceability of the slab, the vertical deformation of the slab in the design period has to be estimated. In the study, the experimental work using 1/5 scale partial models of the slab and the analytical simulations were carried out. Comparing the results of the analysis and the tests, it is confirmed that the analysis suggested here is a suitable procedure to estimate the long term deformation of the slab. (author)

  2. Transient slab flattening beneath Colombia

    Science.gov (United States)

    Wagner, L. S.; Jaramillo, J. S.; Ramírez-Hoyos, L. F.; Monsalve, G.; Cardona, A.; Becker, T. W.

    2017-07-01

    Subduction of the Nazca and Caribbean Plates beneath northwestern Colombia is seen in two distinct Wadati Benioff Zones, one associated with a flat slab to the north and one associated with normal subduction south of 5.5°N. The normal subduction region is characterized by an active arc, whereas the flat slab region has no known Holocene volcanism. We analyze volcanic patterns over the past 14 Ma to show that in the mid-Miocene a continuous arc extended up to 7°N, indicating normal subduction of the Nazca Plate all along Colombia's Pacific margin. However, by 6 Ma, we find a complete cessation of this arc north of 3°N, indicating the presence of a far more laterally extensive flat slab than at present. Volcanism did not resume between 3°N and 6°N until after 4 Ma, consistent with lateral tearing and resteepening of the southern portion of the Colombian flat slab at that time.

  3. Viscous Dissipation and Criticality of Subducting Slabs

    Science.gov (United States)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  4. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  5. Analysis of segregation solute redistribution and centerline in continuously cast thin slab

    Directory of Open Access Journals (Sweden)

    Changwen MA

    2004-11-01

    Full Text Available A model has been built to calculate the solute redistribution in continuously cast thin slab and the effect of the fluid flow in mush on the centerline segregation was analyzed. The corresponding simulation program was developed by applying the SIMPLER algorithm. The momentum, energy and species conservation equations were solved simultaneously. The macro-segregation of a 3-D thin slab with 900 mm x 50 mm cross section was simulated. The obtained results show that negative segregation forms near the slab surface and severe centerline segregation forms in the mid-thickness plane. The species concentration in the centerline of the slab increases obviously at the final solidification stage.

  6. A new crack propagation criterion for skier-triggered snow slab avalanches

    OpenAIRE

    Gaume Johan; Reuter Benjamin; van Herwijnen Alec; Schweizer Jürg

    2016-01-01

    Dry snow slab avalanches begin with a local failure in a weak snowpack layer buried below cohesive slab layers. If the size of the failed zone exceeds a critical length rapid crack propagation occurs possibly followed by slab release if the slope is steep enough. The probability to trigger a slab avalanche by a skier or a snowmobile is generally described by classical stability indices which do not account for crack propagation. In this study we propose a new model to evaluate the conditions ...

  7. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Malakhova Anna Nikolaevna

    2016-06-01

    Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.

  8. Method for Bubbledeck Concrete Slab with Gaps

    Directory of Open Access Journals (Sweden)

    Sergiu Călin

    2009-01-01

    Full Text Available The composite slabs are made of BubbleDeck type slab elements with spherical gaps, poured in place on transversal and longitudinal directions. By introducing the gaps leads to a 30...50\\% lighter slab which reduces the loads on the columns, walls and foundations, and of course of the entire building. BubbleDeck slab elements are plates with ribs on two directions made of reinforced concrete or precast concrete with spherical shaped bubbles. These slab elements have a bottom and an upper concrete part connected with vertical ribs that go around the gaps.

  9. Abrupt tectonics and rapid slab detachment with grain damage.

    Science.gov (United States)

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-02-03

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound.

  10. Microinstabilities in a radially contracting inhomogeneous cylindrical plasma slab

    International Nuclear Information System (INIS)

    Deutsch, R.; Kaeppeler, H.J.

    1980-07-01

    In order to study the development of microinstabilities in a collapsing cylindrical plasma sheath, corresponding to the situations in a z-pinch or a plasma focus, the dispersion relation for electromagnetic perturbations is derived with the aid of a newly established slab-model for an inhomogeneous, radially contracting plasma. In contrast to previously used slab-models, the orientation of the electric field is in direction of the cylinder axis and the azimuthal magnetic field is induced by the current flowing through the cylindrical plasma slab. The Vlasov equation is used together with the Krook collision term in order to include the influence of collisions. The results of this theory presented in this report will be used to calculate the growth of drift instabilities in the compression phase of a plasma focus, and shall serve as a basis for further development of a more general dispersion relation including runaway-effects. (orig.)

  11. Investigation on Blast Resistance of Precast Reinforced Concrete Floor Slab

    Science.gov (United States)

    Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Ruggiero, Andrew; Testa, Gabriel; Bernabei, Manuele; Cassioli, Luigi; Grossi, Silvana

    2017-06-01

    The knowledge of the effective blast resistance of civil infrastructures is a fundamental information for risk assessment and modelling consequences of terrorist attack in high population density urban environment. In this work, blast resistance of precast reinforced concrete floor slab, commonly used for commercial parking, was investigated performing blast tests, detonating bare explosive charge of RDX 80-20 in contact with the slab. The charge mass, and the stand-off distance, was varied in order to generate different damage extents, from visible to fully breached condition. Numerical simulations were performed considering all slab structural elements. Failure model for concrete was calibrated on breach size and shape observed in the experiments. The explosive and blast wave-structure interaction were simulated using arbitrary Lagrangian-Eulerian method (ALE) and particle blast method (PBM) for comparison.

  12. Heterogeneity in Subducting Slab Influences Fluid Properties, Plate Coupling and Volcanism: Hikurangi Subduction Zone, New Zealand

    Science.gov (United States)

    Eberhart-Phillips, D. M.; Reyners, M.; Bannister, S. C.

    2017-12-01

    Seismicity distribution and 3-D models of P- and S-attenuation (1/Q) in the Hikurangi subduction zone, in the North Island of New Zealand, show large variation along-arc in the fluid properties of the subducting slab. Volcanism is also non-uniform, with extremely productive rhyolitic volcanism localized to the central Taupo Volcanic zone, and subduction without volcanism in the southern North Island. Plate coupling varies with heterogeneous slip deficit in the northern section, low slip deficit in the central section, and high slip deficit (strong coupling) in the south. Heterogeneous initial hydration and varied dehydration history both are inferred to play roles. The Hikurangi Plateau (large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates along the Hikurangi subduction zone. It has an uneven downdip edge which has produced spatially and temporally localized stalls in subduction rate. The mantle wedge under the rhyolitic section has a very low Q feature centred at 50-125 km depth, which directly overlies a 150-km long zone of dense seismicity. This seismicity occurs below a sharp transition in the downdip extent of the Hikurangi Plateau, where difficulty subducting the buoyant plateau would have created a zone of increased faulting and hydration that spent a longer time in the outer-rise yielding zone, compared with areas to the north and south. At shallow depths this section has unusually high fracture permeability from the two episodes of bending, but it did not experience dehydration during Gondwana subduction. This central section at plate interface depths less than 50-km has low Q in the slab crust, showing that it is extremely fluid rich, and it exhibits weak plate coupling with both deep and shallow slow-slip events. In contrast in the southern section, where there is a large deficit in

  13. Initial design of a stall-controlled wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)

    1997-08-01

    A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)

  14. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    Science.gov (United States)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  15. Structured mass density slab as a waveguide of fast magnetoacoustic waves

    Science.gov (United States)

    Jelínek, P.; Karlický, M.

    Coronal loops are waveguides for magnetohydrodynamic (MHD) waves. These loops are expected to be structured. Therefore, in the present paper, we numerically studied the propagation of the fast MHD waves in the structured density slab (composed from a broad density slab with one axisymmetric narrow sub-slab superposed), and analysed the wave signals. Then, this structured slab was divided into its components, i.e., to simple broad and narrow slabs and the same analysis was made. We compared results of both these cases. For the calculations we adopted a two-dimensional (2D) magnetohydrodynamic (MHD) model, in which we solved a full set of ideal time-dependent MHD equations using the FLASH code, applying the adaptive mesh refinement (AMR) method. To initiate the fast sausage magnetoacoustic waves, we used axisymmetric Gaussian velocity perturbation. Wave signals were detected in different locations along the slab and as a diagnostic tool of these waves, the wavelet analysis method has been used. We found that for the structured density slab with sufficiently sharp boundaries, i.e., for good quality waveguides (without an energy leakage), the guided waves in the structured slab behave similarly as in its separated (simple slab) components.

  16. Analysis and design of composite slab by varying different parameters

    Science.gov (United States)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  17. The Dynamics of SecM-Induced Translational Stalling

    Directory of Open Access Journals (Sweden)

    Albert Tsai

    2014-06-01

    Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.

  18. The dynamics of SecM-induced translational stalling.

    Science.gov (United States)

    Tsai, Albert; Kornberg, Guy; Johansson, Magnus; Chen, Jin; Puglisi, Joseph D

    2014-06-12

    SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. IMPROVEMENT OF SLAB REHEATING PROCESS AT USIMINAS THROUGH MATHEMATICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2012-09-01

    Full Text Available Basic characteristics and application examples of the mathematical simulator for reheating process in walking-beam type furnaces, that has been developed and applied to Usiminas plate mill line at Ipatinga, are shown in this paper. This is a bi-dimensional mathematical model solved by the finite volume method, validated by temperature measurements inside the slab during heating and coded as a visual tool. Among these applications, the following can be highlighted: (i determination of suitable furnace zone temperatures and residence times for processing steels by accelerated cooling technology; (ii determination of slab average temperature at discharging as well as at each zone exit, supplying data to be fed to the automation system at the comissioning stage; (iii analyses of slab thermal distribution through the reheating process, enabling operational optimization

  20. Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine

    National Research Council Canada - National Science Library

    Hathaway, Michael D; Herrick, Greg; Chen, Jenping; Webster, Robert

    2004-01-01

    .... Improved understanding of the stall inception process and how stall control technologies mitigate such will provide compressors with increased tolerance to stall, thereby expanding the operational...

  1. Convective instability of stagnant slabs at the base of the Mantle Transition Zone

    Science.gov (United States)

    Motoki, M.; Ballmer, M. D.

    2013-12-01

    Seismic tomography reveals that subducting slabs descend to a depth of about 660 km to stagnate at the base of the mantle transition zone for long timescales. Most of the slab is composed of harzburgite covered by veneers of eclogite and hydrated mantle, a make-up that is positively buoyant overall. Initially, this positive compositional buoyancy is overwhelmed by the negative thermal buoyancy of the cool slab. However, the plate continues to be heated from above and below while it stagnates. Consequently, its thermal buoyancy is expected to slowly increase, turning an initially stable into an unstable thermochemical density stratification, and triggering convective instability. Plumes rising out of stagnating slabs may enhance the transition zone and asthenosphere with compositional heterogeneity, including water, as well as support decompression melting. To study these important processes, we systematically explore the parameters controlling convective instability of stagnating slabs in two-dimensional thermochemical geodynamic models. Preliminary results show that instability occurs at about 50-75 Myr after subduction, a timescale that increases with the age and speed of the subducting plate, as well as Rayleigh number. This timescale is further found to be sensitive to preexisting heterogeneity within the slab, as well as the occurrence of small-scale convection at the base of the overriding plate. The plumes rising out of the slab can deliver only a small fraction of the slab's eclogite to the transition zone, but a larger fraction of the slab's harzburgite and hydrated mantle to the base of the lithosphere, where hydrated lithologies undergo decompression melting in a subset of our models. Most of the slab's eclogite instead settles at the very base of the transition zone. These findings have important implications for the fate of subducted slabs, material transport across the transition zone, the compositional stratification of the mantle as a whole, as well

  2. Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking

    Science.gov (United States)

    Gholamhoseini, Alireza

    2018-02-01

    Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.

  3. Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking

    Science.gov (United States)

    Gholamhoseini, Alireza

    2018-03-01

    Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.

  4. Seismic Behaviour of Masonry Vault-Slab Structures

    International Nuclear Information System (INIS)

    Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco

    2008-01-01

    Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presented and the structural role resulting for the spandrels is discussed

  5. Bayesian Inference for Structured Spike and Slab Priors

    DEFF Research Database (Denmark)

    Andersen, Michael Riis; Winther, Ole; Hansen, Lars Kai

    2014-01-01

    Sparse signal recovery addresses the problem of solving underdetermined linear inverse problems subject to a sparsity constraint. We propose a novel prior formulation, the structured spike and slab prior, which allows to incorporate a priori knowledge of the sparsity pattern by imposing a spatial...... Gaussian process on the spike and slab probabilities. Thus, prior information on the structure of the sparsity pattern can be encoded using generic covariance functions. Furthermore, we provide a Bayesian inference scheme for the proposed model based on the expectation propagation framework. Using...

  6. Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance

    Science.gov (United States)

    Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter

    2018-01-01

    In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.

  7. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts

    Science.gov (United States)

    Newman, Timothy J.; Mamun, Mohammed A.; Nieduszynski, Conrad A.; Blow, J. Julian

    2013-01-01

    During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts—Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe—also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10−8, which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms. PMID:23963700

  8. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity

    Science.gov (United States)

    McCrory, Patricia A.; Blair, J. Luke; Waldhause, Felix; Oppenheimer, David H.

    2012-01-01

    A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.

  9. PTEN Regulates DNA Replication Progression and Stalled Fork Recovery

    Science.gov (United States)

    He, Jinxue; Kang, Xi; Yin, Yuxin; Chao, K.S. Clifford; Shen, Wen H.

    2015-01-01

    Faithful DNA replication is a cornerstone of genomic integrity. PTEN plays multiple roles in genome protection and tumor suppression. Here we report on the importance of PTEN in DNA replication. PTEN depletion leads to impairment of replication progression and stalled fork recovery, indicating an elevation of endogenous replication stress. Exogenous replication inhibition aggravates replication-originated DNA lesions without inducing S-phase arrest in cells lacking PTEN, representing replication stress tolerance. Our analysis reveals the physical association of PTEN with DNA replication forks and PTEN-dependent recruitment of Rad51. PTEN deletion results in Rad51 dissociation from replication forks. Stalled replication forks in Pten null cells can be reactivated by ectopic Rad51 or PTEN, the latter facilitating chromatin loading of Rad51. These data highlight the interplay of PTEN with Rad51 in promoting stalled fork restart. We propose that loss of PTEN may initiate a replication stress cascade that progressively deteriorates through the cell cycle. PMID:26158445

  10. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  11. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  12. Analysis of instability of tall buildings with prestressed and waffle slabs

    Directory of Open Access Journals (Sweden)

    V. M. Passos

    Full Text Available ABSTRACT The construction system of prestressed flat slabs has been gaining market in Brazil, since it eliminates the use of beams, allows you to perform structures under coluns by area and reduces the cycle of concrete slabs. Thus the analysis of global stability of buildings, takes into account the effects of 2nd order, and these additional effects to the structure obtained from the deformation thereof, calculated by the iterative method P-Delta. The Brazilian ABNT NBR 6118: 2014 [2] assesses the overall stability of reinforced concrete structures through practical parameters, which are the parameter a (Alpha and gz (Gamma z coefficient. In this research we seek to study the global stability of slender buildings consist of flat slabs, with slenderness (ratio of the smaller width with the height of the building approximately one to six, from the modeling of a building with prestressed slabs nonadherent and waffle slabs. To model will use the commercial software CAD / TQS.

  13. EQUINE THERMOREGULATORY RESPONSES DURING SUMMERTIME ROAD TRANSPORT AND STALL CONFINEMENT

    Directory of Open Access Journals (Sweden)

    ANGELA R. GREEN

    2007-04-01

    Full Text Available Thermoregulatory responses of horses subjected to summer-time road transport and stall confinement were investigated in this study. Six mature geldings were transported 168 km in a 4-horse trailer and were monitored while tethered in their stalls, on alternate days. Core body temperature (GT demonstrated negligible response during transport, but GT following transport was higher than GT for non-transport. GT tended to increase with increased temperature humidity index (THI. THI within the trailer was greatest for positions near the front, and was influenced by daily weather which varied over experiment days from heat stress conditions to moderate discomfort.

  14. Regulation of bacterial gene expression by ribosome stalling and rescuing.

    Science.gov (United States)

    Jin, Yongxin; Jin, Shouguang; Wu, Weihui

    2016-05-01

    Ribosome is responsible for protein synthesis and is able to monitor the sequence and structure of the nascent peptide. Such ability plays an important role in determining overall gene expression profile of the bacteria through ribosome stalling and rescuing. In this review, we briefly summarize our current understanding of the regulation of gene expression through ribosome stalling and rescuing in bacteria, as well as mechanisms that modulate ribosome activity. Understanding the mechanisms of how bacteria modulate ribosome activity will provide not only fundamental insights into bacterial gene regulation, but also new candidate targets for the development of novel antimicrobial agents.

  15. Contact Loss beneath Track Slab Caused by Deteriorated Cement Emulsified Asphalt Mortar: Dynamic Characteristics of Vehicle-Slab Track System and Prototype Experiment

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2016-01-01

    Full Text Available The contact loss beneath track slab caused by deteriorated cement emulsified asphalt mortar (CA mortar has been one of the main diseases occurring in the CRTS- (China Railway Track System- I Slab Track of high-speed railway in China. Based on the slab track design theory and the vehicle-track coupling vibration theory, a vehicle-track vertical coupling dynamic FEM model was established to analyze the influence of the contact loss length on the dynamic characteristics of vehicle and track subsystems at different train speeds. A prototype dynamic characteristic experimental test of CRTS-I Slab Track with CA mortar contact loss was conducted to verify the FEM model results. The train load was generated by the customized ZSS50 excitation car. The results showed that when the operation speed is less than 300 km/h, the contact loss with length smaller than 2.0 m barely affects the running smoothness ride safety of vehicle. The contact loss length effect on the dynamic characteristics of track subsystem is pronounced, especially on the track slab. Once the contact loss beneath the track slab occurs, the vibration displacement and the acceleration of the track slab increase rapidly, while it has little influence on the displacement and acceleration of the concrete roadbed.

  16. Tensor-guided fitting of subduction slab depths

    Science.gov (United States)

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  17. Global Adjoint Tomography - Hotspots and Slabs

    Science.gov (United States)

    Ruan, Y.; Lei, W.; Lefebvre, M. P.; Modrak, R. T.; Smith, J. A.; Orsvuran, R.; Bozdag, E.; Tromp, J.

    2017-12-01

    Plumes rise from the deep mantle due to thermal or/and chemical buoyancy, forming hotspots at the surface, and oceanic plates subduct underneath continents, piling up at discontinuities or sinking down to the core-mantle boundary. Despite these basic convection mechanisms, many questions remain about the origin of mantle plumes, slab subduction, their interaction with mantle convection, and their relationship with the large low shear velocity provinces (LLSVPs) at the base of the mantle. Plume and slab morphology at depth provide further insight into these questions but imaging them in the mid and lower mantle is known to be very challenging due to a lack of data coverage and resolvability limits of conventional body-wave traveltime tomography. The deployment of regional dense arrays (e.g., USArray) and development of full waveform inversion techniques provide opportunities to resolve finer 3D details of mantle plumes and slabs. Harnessing the power of supercomputer ''Titan'' at Oak Ridge National Laboratory, we employed a spectral-element method to accurately simulate seismograms in complex 3D Earth models and an adjoint method to obtain model updates. Bozdag et al. (2016) iteratively determined a transversely isotropic earth model (GLAD_M15) using 253 events. To achieve higher resolution and better coverage in the deep mantle, we expanded our database to 1,040 events; a 1/3 of them are deep earthquakes (>500 km). We reinverted source parameters using model GLAD_M15, recalculated synthetic seismograms, selected time windows that show good agreement between data and the synthetics, and made measurements within these windows. From the measurements, we further assess the overall quality of each event and station and exclude bad measurements using very conservative criteria. Thus far, we assimilated more than 10 million windows in three period bands from 17-250 s. As the model improves, we correct the centroid time and scalar moment of each event using its mean

  18. New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models

    Science.gov (United States)

    Álvarez, Orlando; Gimenez, Mario; Folguera, Andres; Spagnotto, Silvana; Bustos, Emilce; Baez, Walter; Braitenberg, Carla

    2015-11-01

    Satellite-only gravity measurements and those integrated with terrestrial observations provide global gravity field models of unprecedented precision and spatial resolution, allowing the analysis of the lithospheric structure. We used the model EGM2008 (Earth Gravitational Model) to calculate the gravity anomaly and the vertical gravity gradient in the South Central Andes region, correcting these quantities by the topographic effect. Both quantities show a spatial relationship between the projected subduction of the Copiapó aseismic ridge (located at about 27°-30° S), its potential deformational effects in the overriding plate, and the Ojos del Salado-San Buenaventura volcanic lineament. This volcanic lineament constitutes a projection of the volcanic arc toward the retroarc zone, whose origin and development were not clearly understood. The analysis of the gravity anomalies, at the extrapolated zone of the Copiapó ridge beneath the continent, shows a change in the general NNE-trend of the Andean structures to an ENE-direction coincident with the area of the Ojos del Salado-San Buenaventura volcanic lineament. This anomalous pattern over the upper plate is interpreted to be linked with the subduction of the Copiapó ridge. We explore the relation between deformational effects and volcanism at the northern Chilean-Pampean flat slab and the collision of the Copiapó ridge, on the basis of the Moho geometry and elastic thicknesses calculated from the new satellite GOCE data. Neotectonic deformations interpreted in previous works associated with volcanic eruptions along the Ojos del Salado-San Buenaventura volcanic lineament is interpreted as caused by crustal doming, imprinted by the subduction of the Copiapó ridge, evidenced by crustal thickening at the sites of ridge inception along the trench. Finally, we propose that the Copiapó ridge could have controlled the northern edge of the Chilean-Pampean flat slab, due to higher buoyancy, similarly to the control

  19. Prediction of H.A.W.T. blade stall and performance

    Energy Technology Data Exchange (ETDEWEB)

    Giannakidis, G.; Graham, J.M.R. [Imperial College, Dept. of Aeronautics, London (United Kingdom)

    1996-09-01

    A model is being developed for the prediction of Horizontal Axis Wind Turbine blade stall and performance coupled with a simple aeroelastic analysis model. For the aerodynamic calculation a two dimensional unsteady Navier-Stokes solver on a sectional basis on the blade is coupled with a three dimensional vortex lattice wake. Pressure coefficient distributions are calculated from the two dimensional viscous flow in each blade section. The aerodynamic computations are coupled with a vibrating beam model in order to incorporate flapwise deformations of the blade. (au) 17 refs.

  20. Enhanced Accelerated Drying of Concrete Floor Slabs

    OpenAIRE

    Holmes, Niall; West, Roger P.

    2013-01-01

    Concrete floor slabs dry out through a process of evaporation and diffusion provided the ambient environment promotes such drying. Impermeable floor coverings laid on concrete slabs can be subject to damage caused by high levels of residual moisture trapped by premature sealing of the surface. This damage can include timber floor boards buckling, vinyls blistering or tiles lifting. Whether or not it is safe to apply such a covering depends on whether the slab is sufficiently dry. Furthermore,...

  1. Generating Atomistic Slab Surfaces with Adsorbates

    Science.gov (United States)

    2017-12-01

    of spatial orientation on the possible adsorption sites. This framework was developed to coordinate the passing of structure information throughout...when making slabs. The list should be composed of strings that represent the name of the compound to skip. If no list is given for settings, then...8217_’+str(min_vac)) # Makes a slab directory except: pass iface_slab = Interface(structure, hkl

  2. Development of Flat Slab – Column Interaction with Different Thickness

    Directory of Open Access Journals (Sweden)

    Binti Joohari Ilya

    2017-01-01

    Full Text Available Flat slab – column connection has received much attention in recent years due to its simplicity of construction where beam is not required to support the slab. Flat slab has many usages in the construction field and has been investigated as a potential building material. Despite its many benefits, flat slab is easily subjected to punching shear failure. A simple approach to minimize punching shear failure is by increasing the slab thickness. It is generally accepted that the performance of flat slab is improved by using shear reinforcement; however, little attention has been paid to the selection of thickness. This research focuses on the crack behaviour of flat slab due to different slab thickness. Two specimens with different slab thickness have been constructed and tested to obtain the flat slab strength and crack pattern behaviour. Increasing the slab thickness was found to improve the strength of the flat slab and minimize the deflection and crack appearance on the slab.

  3. Contact Loss beneath Track Slab Caused by Deteriorated Cement Emulsified Asphalt Mortar: Dynamic Characteristics of Vehicle-Slab Track System and Prototype Experiment

    OpenAIRE

    Liu, Dan; Liu, Yu-feng; Ren, Juan-juan; Yang, Rong-shan; Liu, Xue-yi

    2016-01-01

    The contact loss beneath track slab caused by deteriorated cement emulsified asphalt mortar (CA mortar) has been one of the main diseases occurring in the CRTS- (China Railway Track System-) I Slab Track of high-speed railway in China. Based on the slab track design theory and the vehicle-track coupling vibration theory, a vehicle-track vertical coupling dynamic FEM model was established to analyze the influence of the contact loss length on the dynamic characteristics of vehicle and track su...

  4. Dynamic Stall Flow Control Through the Use of a Novel Plasma Based Actuator Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lynntech proposes a novel flow control methodology for airfoils undergoing dynamic stall. Dynamic stall refers to an aerodynamic phenomenon that is experienced by...

  5. The study of carrying capacity of timber slabs with use the finite elements method

    Directory of Open Access Journals (Sweden)

    Demeshok Vitalii

    2017-01-01

    Full Text Available In the article, the results of the study of behavior of timber slab under influence of fire with the standard “time-temperature” curve are presented. The finite element method was used for it. For the calculation we constructed a grid models of timber slabs. As a result of solution of the thermal problem was obtained temperature distribution and the graphs of maximum deflection of timber slabs and its slew rate depending on the time of the test. The obtained graphs allow to obtain data on the occurrence of the limit state of loss of bearing capacity by comparing current values of displacements and velocities with the maximum allowable. Analysis of the graphs shows that the criteria limit state of loss of bearing capacity does not occur. Calculation method of evaluating the fire resistance of timber slabs was developed. For it use database about strain-stress state of this slabs in conditions of influence of the fire.

  6. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  7. Degradation and mechanism of the mechanics and durability of reinforced concrete slab in a marine environment

    Science.gov (United States)

    Wu, Sheng-xing; Liu, Guan-guo; Bian, Han-bing; Lv, Wei-bo; Jiang, Jian-hua

    2016-04-01

    An experimental research was conducted to determine the corrosion and bearing capacity of a reinforced concrete (RC) slab at different ages in a marine environment. Results show that the development of corrosion-induced cracks on a slab in a marine environment can be divided into three stages according to crack morphology at the bottom of the slab. In the first stage, cracks appear. In the second stage, cracks develop from the edges to the middle of the slab. In the third stage, longitudinal and transverse corrosion-induced cracks coexist. The corrosion ratio of reinforcements nonlinearly increases with the age, and the relationship between the corrosion ratio of the reinforcements and the corrosion-induced crack width of the concrete is established. The flexural capacity of the corroded RC slab nonlinearly decreases with the age, and the model for the bearing capacity factor of the corroded RC slab is established. The mid-span deflection of the corroded RC slab that corresponds to the yield of the reinforcements linearly increases with the increase in corrosion ratio. Finally, the mechanisms of corrosion morphology and the degradation of the mechanical properties of an RC slab in a marine environment are discussed on the basis of the basic theories of steel corrosion in concrete and concrete structure design.

  8. Bridge approach slabs for Missouri DOT field evaluation of alternative and cost efficient bridge approach slabs.

    Science.gov (United States)

    2013-05-01

    Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et : al. 2010) has recommended three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace : slab with sleeper slab (C...

  9. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2013-01-01

    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  10. The Mechanical Impact of Aerodynamic Stall on Tunnel Ventilation Fans

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available This paper describes work aimed at establishing the ability of a tunnel ventilation fan to operate without risk of mechanical failure in the event of aerodynamic stall. The research establishes the aerodynamic characteristics of a typical tunnel ventilation fan when operated in both stable and stalled aerodynamic conditions, with and without an anti-stall stabilisation ring, with and without a “nonstalling” blade angle and at full, half, and one quarter design speed. It also measures the fan’s peak stress, thus facilitating an analysis of the implications of the experimental results for mechanical design methodology. The paper concludes by presenting three different strategies for tunnel ventilation fan selection in applications where the selected fan will most likely stall. The first strategy selects a fan with a low-blade angle that is nonstalling. The second strategy selects a fan with a high-pressure developing capability. The third strategy selects a fan with a fitted stabilisation ring. Tunnel ventilation system designers each have their favoured fan selection strategy. However, all three strategies can produce system designs within which a tunnel ventilation fan performs reliably in-service. The paper considers the advantages and disadvantages of each selection strategy and considered the strengths and weaknesses of each.

  11. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle

    NARCIS (Netherlands)

    Schellart, W. P.

    2007-01-01

    A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for

  12. Puzzling features of western Mediterranean tectonics explained by slab dragging

    Science.gov (United States)

    Spakman, Wim; Chertova, Maria V.; van den Berg, Arie.; van Hinsbergen, Douwe J. J.

    2018-02-01

    The recent tectonic evolution of the western Mediterranean region is enigmatic. The causes for the closure of the Moroccan marine gateway prior to the Messinian salinity crisis, for the ongoing shortening of the Moroccan Rif and for the origin of the seismogenic Trans-Alboran shear zone and eastern Betics extension are unclear. These puzzling tectonic features cannot be fully explained by subduction of the east-dipping Gibraltar slab in the context of the regional relative plate motion frame. Here we use a combination of geological and geodetic data, as well as three-dimensional numerical modelling of subduction, to show that these unusual tectonic features could be the consequence of slab dragging—the north to north-eastward dragging of the Gibraltar slab by the absolute motion of the African Plate. Comparison of our model results to patterns of deformation in the western Mediterranean constrained by geological and geodetic data confirm that slab dragging provides a plausible mechanism for the observed deformation. Our results imply that the impact of absolute plate motion on subduction is identifiable from crustal observations. Identifying such signatures elsewhere may improve the mantle reference frame and provide insights on subduction evolution and associated crustal deformation.

  13. 0-6722 : spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  14. Slab fluid release: localized in space and time

    Science.gov (United States)

    John, T.; Gussone, N. C.; Podladchikov, Y. Y.

    2012-12-01

    the amount of precipitated carbonate during flow. This indicates that some fraction of the slab fluid was liberated by sub-crustal dehydration, then transported over up to km scales within the overlying oceanic crust. Lithium chronometry is currently the tool of choice to obtain information on the duration of fluid flow and fluid-rock interaction. In a structure like our reaction selvage, the advective component of the element transport is focused into fracture-related porosity, e.g., into the vein. Consequently, for such a fluid-dominated system, element transport within unfractured rock adjacent to a fluid conduit is dominantly diffusive and can be treated as having resulted from bulk diffusion. Element transport occurs exclusively within the fluid-filled interconnected porosity and exchange with minerals occurs through dissolution-precipitation reactions. While the Ca isotopes indicate that intra slab fluid flow is highly channelized and that the released fluids travel through slabs along major conduits, Li-diffusion modeling shows that this fluid flow occurs in a pulse-like manner of less than ~200 years duration. This implies that even though the overall slab dehydration is a continuous process, dehydrating slabs release their fluid by short-lived, channelized fluid-flow events. Such pulses could feed arc magma sources with aqueous fluids, with these fluids traversing the slab-wedge interface in transient hydraulic fractures.

  15. Shear assessment of reinforced concrete slab bridges

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2013-01-01

    The capacity of reinforced concrete solid slab bridges in shear is assessed by comparing the design beam shear resistance to the design value of the applied shear force due to the permanent actions and live loads. Results from experiments on half-scale continuous slab bridges are used to develop a

  16. Photon transport in thin disordered slabs

    Indian Academy of Sciences (India)

    We examine using Monte Carlo simulations, photon transport in optically `thin' slabs whose thickness is only a few times the transport mean free path *, with particles of different scattering anisotropies. The confined geometry causes an auto-selection of only photons with looping paths to remain within the slab.

  17. Thin-slab casting–New possibilities

    Indian Academy of Sciences (India)

    Additionally, what started as a step for reducing investment in hot rolling has, in fact, given new opportunity for direct hot rolling of thickness that were, for long, ... A techno-economic analysis of thin-slab casting has been presented along with the benefits that arise when a thin-slab caster is linked to the blast furnace and ...

  18. Photon transport in thin disordered slabs

    Indian Academy of Sciences (India)

    This approximation of an incoherent energy transport is valid in the weak scattering limit ( Р*. ^ 1, where = 2. ). In this paper, we describe the results of our Monte Carlo simulations to study photon transport in thin slabs. We show that in small slabs, photons that traverse large paths are forced by the constrained geometry to ...

  19. Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams

    Directory of Open Access Journals (Sweden)

    Wei-jun Cen

    2016-07-01

    Full Text Available Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab elements, and a concrete random mesoscopic damage model was established. The seismic response of a 100-m high concrete face rockfill dam (CFRD, subjected to ground motion with different intensities, was simulated with the three-dimensional finite element method (FEM, with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes. The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes. With increasing earthquake intensity, the damaged zone and cracking zone on concrete slabs grow wider. During a 7.0-magnitude earthquake, the stress level of concrete slabs is low for the CFRD, and there is almost no damage or slight damage to the slabs. While during a 9.0-magnitude strong earthquake, the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake, peaking at approximately 26% and 5% at the end of the earthquake, respectively. The concrete random mesoscopic damage model can depict the entire process of sprouting, growing, connecting, and expanding of cracks on a concrete slab during earthquakes.

  20. Emplacement of the Kodiak batholith and slab-window migration

    Science.gov (United States)

    Farris, David W.; Haeussler, P.; Friedman, R.; Paterson, Scott R.; Saltus, R.W.; Ayuso, R.

    2006-01-01

    The Kodiak batholith is one of the largest, most elongate intrusive bodies in the forearc Sanak-Baranof plutonic belt located in southern Alaska. This belt is interpreted to have formed during the subduction of an oceanic spreading center and the associated migration of a slab window. Individual plutons of the Kodiak batholith track the location and evolution of the underlying slab window. Six U/Pb zircon ages from the axis of the batholith exhibit a northeastward-decreasing age progression of 59.2 ± 0.2 Ma at the southwest end to 58.4 ± 0.2 Ma at the northeast tip. The trench-parallel rate of age progression is within error of the average slab-window migration rate for the entire Sanak-Baranof belt (~19 cm/yr). Structural relationships, U/Pb ages, and a model of new gravity data indicate that magma from the Kodiak batholith ascended 5-10 km as a northeastward-younging series of 1-8-km-diameter viscoelastic diapirs. Individual plutons ascended by multiple emplacement mechanisms including downward flow, collapse of wall rock, stoping, and diking. Stokes flow xenolith calculations suggest ascent rates of 5-100 m/yr and an effective magmatic viscosity of 107-108 Pa s. Pre-existing structural or lithologic heterogeneities did not dominantly control the location of the main batholith. Instead, its location was determined by migration of the slab window at depth. 

  1. Study of global stability of tall buildings with prestressed slabs

    Directory of Open Access Journals (Sweden)

    L. A. Feitosa

    Full Text Available The use of prestressed concrete flat slabs in buildings has been increasing in recent years in the Brazilian market. Since the implementation of tall and slender buildings a trend in civil engineering and architecture fields, arises from the use of prestressed slabs a difficulty in ensuring the overall stability of a building without beams. In order to evaluate the efficiency of the main bracing systems used in this type of building, namely pillars in formed "U" in elevator shafts and stairs, and pillars in which the lengths are significantly larger than their widths, was elaborated a computational models of fictional buildings, which were processed and analyzed using the software CAD/TQS. From the variation of parameters such as: geometry of the pillars, thick slabs, characteristic strength of the concrete, reduceofthe coefficient of inertia for consideration of non-linearities of the physical elements, stiffness of the connections between slabs and pillars, among others, to analyze the influence of these variables on the overall stability of the building from the facing of instability parameter Gama Z, under Brazilian standard NBR 6118, in addition to performing the processing of building using the P-Delta iterative calculation method for the same purpose.

  2. Diode-side-pumped Alexandrite slab lasers.

    Science.gov (United States)

    Damzen, M J; Thomas, G M; Minassian, A

    2017-05-15

    We present the investigation of diode-side-pumping of Alexandrite slab lasers in a range of designs using linear cavity and grazing-incidence bounce cavity configurations. An Alexandrite slab laser cavity with double-pass side pumping produces 23.4 mJ free-running energy at 100 Hz rate with slope efficiency ~40% with respect to absorbed pump energy. In a slab laser with single-bounce geometry output power of 12.2 W is produced, and in a double-bounce configuration 6.5 W multimode and 4.5 W output in TEM 00 mode is produced. These first results of slab laser and amplifier designs in this paper highlight some of the potential strategies for power and energy scaling of Alexandrite using diode-side-pumped Alexandrite slab architectures with future availability of higher power red diode pumping.

  3. Snow instability evaluation in skier-triggered snow slab avalanches: combining failure initiation and crack propagation

    Science.gov (United States)

    Gaume, Johan; Reuter, Benjamin

    2017-04-01

    Dry-snow slab avalanches start with a local failure in a weak snowpack layer buried below cohesive snow slab layers. If the size of the failed zone exceeds a critical size, rapid crack propagation occurs possibly followed by slab release if the slope is steep enough. The probability of skier-triggering a slab avalanche is generally characterized by classical stability indices that do not account for crack propagation. In this study, we propose a new model to evaluate the conditions for the onset of crack propagation in skier-triggered slab avalanches. For a given weak layer, the critical crack length characterizing crack propagation propensity was compared to the size of the area where the skier-induced stress exceeds the shear strength of the weak layer. The ratio between both length scales yields a stability criterion combining the processes of failure initiation and crack propagation. The critical crack length was calculated from a recently developed model based on numerical simulations. The skier-induced stress was computed from analytical solutions and finite element simulations to account for slab layering. A detailed sensitivity analysis was performed for simplified snow profiles to characterize the influence of snowpack properties and slab layering on crack propagation propensity. Finally, we applied our approach for manually observed snow profiles and compared our results to rutschblock stability tests.

  4. A cryogenic slab CO laser

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-01-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ∼12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ∼14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ∼ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour. (lasers)

  5. Prediction of punching shear capacities of two-way concrete slabs reinforced with FRP bars

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Metwally

    2013-08-01

    Full Text Available Where corrosion of steel reinforcement is a concern, fiber-reinforced polymer (FRP reinforcing bar or grid reinforcement provides an alternative reinforcement for concrete flat slabs. The existing provisions for punching of slabs in most international design standards for reinforced concrete are based on tests of steel reinforced slabs. The elastic stiffness and bonding characteristics of FRP reinforcement are sufficiently different from those of steel to affect punching strength [1]. This paper evaluates the punching shear strength of concrete flat slabs reinforced with different types of fiber-reinforced polymer (FRP. A total of 59 full-size slabs were constructed and tested collected from the literature of FRP bars reinforced concrete slabs. The test parameters were the amount of FRP reinforcing bars, Young’s modulus of FRP bars, slab thickness, loaded areas and concrete compressive strength. The experimental punching shear strengths were compared with the available theoretical predictions, including the ACI 318 Code, BS 8110 Code, ACI 440 design guidelines, and a number of models proposed by some researchers in the literature. Two approaches for predicting the punching strength of FRP-reinforced slabs are examined. The first is an empirical new model which is considered as a modification of El-Gamal et al. [2] model. The second is a Neural Networks Technique; which has been developed to predict the punching shear capacity of FRP reinforced concrete slabs. The accuracies of both methods were evaluated against the experimental test data. They attained excellent agreement with available test results compared to the existing design formulas.

  6. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Science.gov (United States)

    2011-01-01

    Background Initiation and elongation of RNA polymerase II (RNAPII) transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. Results Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS). As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling. Conclusions In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data. PMID:22047616

  7. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2011-11-01

    Full Text Available Abstract Background Initiation and elongation of RNA polymerase II (RNAPII transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. Results Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS. As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling. Conclusions In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data.

  8. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  9. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  10. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    Science.gov (United States)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  11. The Spike-and-Slab RBM and Extensions to Discrete and Sparse Data Distributions.

    Science.gov (United States)

    Courville, Aaron; Desjardins, Guillaume; Bergstra, James; Bengio, Yoshua

    2014-09-01

    The spike-and-slab restricted Boltzmann machine (ssRBM) is defined to have both a real-valued "slab" variable and a binary "spike" variable associated with each unit in the hidden layer. The model uses its slab variables to model the conditional covariance of the observation-thought to be important in capturing the statistical properties of natural images. In this paper, we present the canonical ssRBM framework together with some extensions. These extensions highlight the flexibility of the spike-and-slab RBM as a platform for exploring more sophisticated probabilistic models of high dimensional data in general and natural image data in particular. Here, we introduce the subspace-ssRBM focused on the task of learning invariant features. We highlight the behaviour of the ssRBM and its extensions through experiments with the MNIST digit recognition task and the CIFAR-10 object classification task.

  12. May eclogite dehydration cause slab fracturation ?

    Science.gov (United States)

    Loury, Chloé; Lanari, Pierre; Rolland, Yann; Guillot, Stéphane; Ganino, Clément

    2015-04-01

    Petrological and geophysical evidences strongly indicate that fluids releases play a fundamental role in subduction zones as in subduction-related seismicity and arc magmatism. It is thus important to assess quantitatively their origin and to try to quantify the amount of such fluids. In HP metamorphism, it is well known that pressure-dependent dehydration reactions occur during the prograde path. Many geophysical models show that the variations in slab physical properties along depth could be linked to these fluid occurrences. However it remains tricky to test such models on natural sample, as it is difficult to assess or model the water content evolution in HP metamorphic rocks. This difficulty is bound to the fact that these rocks are generally heterogeneous, with zoned minerals and preservation of different paragenesis reflecting changing P-T conditions. To decipher the P-T-X(H2O) path of such heterogeneous rocks the concept of local effective bulk (LEB) composition is essential. Here we show how standardized X-ray maps can be used to constrain the scale of the equilibration volume of a garnet porphyroblast and to measure its composition. The composition of this equilibrium volume may be seen as the proportion of the rock likely to react at a given time to reach a thermodynamic equilibrium with the growing garnet. The studied sample is an eclogite coming from the carboniferous South-Tianshan suture (Central Asia) (Loury et al. in press). Compositional maps of a garnet and its surrounding matrix were obtained from standardized X-ray maps processed with the program XMapTools (Lanari et al, 2014). The initial equilibration volume was modeled using LEB compositions combined together with Gibbs free energy minimization. P-T sections were calculated for the next stages of garnet growth taking into account the fractionation of the composition at each stage of garnet growth. The modeled P-T-X(H2O) path indicates that the rock progressively dehydrates during the

  13. Estimation of RC slab-column joints effective strength using neural networks

    Directory of Open Access Journals (Sweden)

    A. A. Shah

    Full Text Available The nominal strength of slab-column joints made of highstrength concrete (HSC columns and normal strength concrete (NSC slabs is of great importance in structural design and construction of concrete buildings. This topic has been intensively studied during the last decades. Different types of column-slab joints have been investigated experimentally providing a basis for developing design provisions. However, available data does not cover all classes of concretes, reinforcements, and possible loading cases for the proper calculation of joint stresses necessary for design purposes. New numerical methods based on modern software seem to be effective and may allow reliable prediction of column-slab joint strength. The current research is focused on analysis of available experimental data on different slab-to-column joints with the aim of predicting the nominal strength of slabcolumn joint. Neural networks technique is proposed herein using MATLAB routines developed to analyze available experimental data. The obtained results allow prediction of the effective strength of column-slab joints with accuracy and good correlation coefficients when compared to regression based models. The proposed method enables the user to predict the effective design of column-slab joints without the need for conservative safety coefficients generally promoted and used by most construction codes.

  14. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    Science.gov (United States)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  15. Wider stall space affects behavior, lesion scores, and productivity of gestating sows.

    Science.gov (United States)

    Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M

    2015-10-01

    Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( pregnancy progressed, lesion scores increased among sows in CTL ( postural behaviors and sham chew behavior were affected by TRT ( changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.

  16. Consideration on punching shear strength of steel-fiber-reinforced concrete slabs

    Directory of Open Access Journals (Sweden)

    Hyunjin Ju

    2015-05-01

    Full Text Available The flat plate slab system is widely used in construction fields due to its excellent constructability and savings in story height compared to the conventional beam-column moment-resisting system. Many researchers are, however, concerned about the punching shear failure that can happen in a two-way flat plate slab system, for which many shear-strength-enhancement techniques have been suggested. One of the effective alternatives is the application of steel-fiber-reinforced concrete. However, most previous studies on the punching shear strength of steel-fiber-reinforced concrete flat slabs had presented empirical formulas based on experimental results. On the other hand, theoretical models proposed in previous studies are difficult to be applied to practical situations. Therefore, in this study, a punching shear strength model of the steel-fiber-reinforced concrete two-way flat slab is proposed. In this model, the total shear resistance of the steel-fiber-reinforced concrete flat slab is expressed by sum of the shear contribution of steel fibers in the cracked tension region and that of intact concrete in the compression zone. A total of 91 shear test data on steel-fiber-reinforced concrete slab–column connection were compared to the analysis results, and the proposed model provided a good accuracy on estimating the punching shear strength of the steel-fiber-reinforced concrete flat slabs.

  17. Effect of Cement Asphalt Mortar Debonding on Dynamic Properties of CRTS II Slab Ballastless Track

    OpenAIRE

    Ping Wang; Hao Xu; Rong Chen

    2014-01-01

    The debonding of cement emulsified asphalt mortar (CA mortar) is one of the main damage types in China railway track system II slab ballastless track. In order to analyze the influence of mortar debonding on the dynamic properties of CRTS II slab ballastless track, a vertical coupling vibration model for a vehicle-track-subgrade system was established on the base of wheel/rail coupling dynamics theory. The effects of different debonding lengths on dynamic response of vehicle and track system...

  18. FLEXURAL BEHAVIOUR OF FERROCEMENT COMPOSITE SLAB.

    OpenAIRE

    S.Dharanidharan *

    2016-01-01

    This project deals with an investigational program to understood the flexural behavior of a Ferro cement composite slabs under mid third loading. The concept of composite slabs bring in shut decking or shear connectors are well established. But still, in countries like India, the application of same is limited due to difficulties in manufacture and also due to concerns like fire resistance, durability, aesthetics etc., this study is an attempt to exploit the concept of steel – concrete compos...

  19. Photocatalytic, highly hydrophilic porcelain stoneware slabs

    Science.gov (United States)

    Raimondo, M.; Guarini, G.; Zanelli, C.; Marani, F.; Fossa, L.; Dondi, M.

    2011-10-01

    Photocatalytic, highly hydrophilic industrial porcelain stoneware large slabs were realized by deposition of nanostructured TiO2 coatings. Different surface finishing and experimental conditions were considered in order to assess the industrial feasibility. Photocatalytic and wetting behaviour of functionalized slabs mainly depends on surface phase composition in terms of anatase/rutile ratio, this involving - as a key issue - the deposition of TiO2 on industrially sintered products with an additional annealing step to strengthen coatings' performances and durability.

  20. Kinematics and flow patterns in deep mantle and upper mantle subduction models : Influence of the mantle depth and slab to mantle viscosity ratio

    NARCIS (Netherlands)

    Schellart, W. P.

    Three-dimensional fluid dynamic laboratory simulations are presented that investigate the subduction process in two mantle models, an upper mantle model and a deep mantle model, and for various subducting plate/mantle viscosity ratios (ηSP/ηM = 59-1375). The models investigate the mantle flow field,

  1. Differential uncertainty analysis for evaluating the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs.

    Science.gov (United States)

    Hasar, Ugur Cem; Barroso, Joaquim J; Sabah, Cumali; Kaya, Yunus; Ertugrul, Mehmet

    2012-12-17

    We apply a complete uncertainty analysis, not studied in the literature, to investigate the dependences of retrieved electromagnetic properties of two MM slabs (the first one with only split-ring resonators (SRRs) and the second with SRRs and a continuous wire) with single-band and dual-band resonating properties on the measured/simulated scattering parameters, the slab length, and the operating frequency. Such an analysis is necessary for the selection of a suitable retrieval method together with the correct examination of exotic properties of MM slabs especially in their resonance regions. For this analysis, a differential uncertainty model is developed to monitor minute changes in the dependent variables (electromagnetic properties of MM slabs) in functions of independent variables (scattering (S-) parameters, the slab length, and the operating frequency). Two complementary approaches (the analytical approach and the dispersion model approach) each with different strengths are utilized to retrieve the electromagnetic properties of various MM slabs, which are needed for the application of the uncertainty analysis. We note the following important results from our investigation. First, uncertainties in the retrieved electromagnetic properties of the analyzed MM slabs drastically increase when values of electromagnetic properties shrink to zero or near resonance regions where S-parameters exhibit rapid changes. Second, any low-loss or medium-loss inside the MM slabs due to an imperfect dielectric substrate or a finite conductivity of metals can decrease these uncertainties near resonance regions because these losses hinder abrupt changes in S-parameters. Finally, we note that precise information of especially the slab length and the operating frequency is a prerequisite for accurate analysis of exotic electromagnetic properties of MM slabs (especially multiband MM slabs) near resonance regions.

  2. Development of Flat Slab – Column Interaction with Different Thickness

    OpenAIRE

    Binti Joohari Ilya; Binti Mohd Amin Norliyati

    2017-01-01

    Flat slab – column connection has received much attention in recent years due to its simplicity of construction where beam is not required to support the slab. Flat slab has many usages in the construction field and has been investigated as a potential building material. Despite its many benefits, flat slab is easily subjected to punching shear failure. A simple approach to minimize punching shear failure is by increasing the slab thickness. It is generally accepted that the performance of fl...

  3. Numerical study on a single bladed vertical axis wind turbine under dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)

    2017-01-15

    The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.

  4. Active flow control of the laminar separation bubble on a plunging airfoil near stall

    Science.gov (United States)

    Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann

    2017-11-01

    The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.

  5. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.

    2017-01-01

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O 2 : He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

  6. On the analytical solution of the multigroup neutron diffusion kinetic equation in a multilayered slab

    International Nuclear Information System (INIS)

    Ceolin, Celina; Vilhena, Marco T.; Bodmann, Bardo E.J.; Alvim, Antonio Carlos Marques

    2011-01-01

    The authors solved analytically the neutron kinetic equations in a homogeneous slab, assuming the multi group energy model and six delayed neutron precursor groups by the Generalized Integral Laplace Transform Technique (GILTT) for a multi-layered slab. To this end, averaged values for the nuclear parameters in the multi-layered slab are used and the solution is constructed following the idea of Adomian's decomposition method upon reducing the heterogeneous problem to a set of recursive problems with constant parameters in the multi-layered slab. More specifically, the corrections that render the initially homogeneous problem into a heterogeneous one are plugged into the equation as successive source terms. To the best of our knowledge this sort of solution is novel and not found in literature. We further present some numerical simulations. (author)

  7. Experimental research of slab cast over precast joists with prestressed reinforcement

    Directory of Open Access Journals (Sweden)

    Koyankin Aleksandr Aleksandrovich

    2016-03-01

    Full Text Available At the present time reinforced concrete is the main construction material in civil and industrial construction. Cast-in-place and precast construction is gradually becoming a more widespread type of house-building, but still there is a lack of data, including experimental data, which allows evaluating the stress and strain state of a construction of a slab cast over precast joists. Experimental research of stress and strain state of slab cast over precast joists with prestressed reinforcement was carried out. An experimental model of a fragment of a hybrid precast/cast-in-place building was produced and tested (reduction scale 1:6. The experimental investigations of slab cast over precast joists with prestressed reinforcement proved that the construction solution of the framework offered in the previous works of the authors possess good stiffness, crack-resistance and bearing capacity. It well fits for constructing the slabs of long spans in residential and public buildings.

  8. Research and application of active hollow core slabs in building systems for utilizing low energy sources

    International Nuclear Information System (INIS)

    Xu, Xinhua; Yu, Jinghua; Wang, Shengwei; Wang, Jinbo

    2014-01-01

    Highlights: • A review on the development and modeling of active hollow core slab is presented. • The applications and performance evaluation of the slab in building are reviewed. • Finite element or finite difference method is often used in multidimensional model. • Performance evaluations of building using active slabs for ventilation are limited. • More works on the active hollow core slab are worthwhile. - Abstract: The society and the building professionals have paid much concern in recent years on building energy efficiency and the development and applications of low energy technologies for buildings/green buildings allowing the elimination, or at least reduction of dependence on electricity or fossil fuel while maintaining acceptable indoor environment. Utilizations of favorable diurnal temperature difference and ground thermal source for air conditioning are among these low energy technologies. Utilization of the hollow cores in the prefabricated slab for ventilation and the mass of the slab for thermal storage is widely used in building systems in Europe by exploiting the low energy source of the ambient air. These hollow core slabs aim at enlarging the heat transfer surface between the slab mass and the air in the core, which permits substantial heat flows even for relatively small temperature differences. This, in turn, allows the use of low energy cooling or heating sources, such as the ground, outside air or recovered process heat. In this paper, we present a comprehensive review of the research and application of active hollow core slabs in building systems for utilizing low energy sources. The principle and development of active hollow core slabs in building systems for leveling the indoor temperature fluctuation by ventilation air passing the cores are described. Calculation models of the active hollow core concrete slab as well as the practical applications and performance evaluation of the slab applied in building systems for air

  9. Brueckner G matrix for a planar slab of nuclear matter

    International Nuclear Information System (INIS)

    Baldo, M.; Lombardo, U.; Saperstein, E.E.; Zverev, M.V.

    2001-01-01

    The equation for the Brueckner G matrix is investigated for planar-slab geometry. A method for calculating the G matrix for a planar slab of nuclear matter is developed for a separable form of NN interaction. Actually, the separable version of the Paris NN potential is used. The singlet 1 S 0 and the triplet 3 S 1 - 3 D 1 channel are considered. The present analysis relies on the mixed momentum-coordinate representation, where use is made of the momentum representation in the slab plane and of the coordinate representation in the orthogonal direction. The full two-particle Hilbert space is broken down into the model subspace, where the two-particle propagator is considered exactly, and the complementary subspace, where the local-potential approximation is used, which was proposed previously for calculating the effective pairing potential. Specific calculations are performed for the case where the model subspace is constructed on the basis of negative-energy single-particle states. The G matrix is parametrically dependent on the total two-particle energy E and the total momentum P perpendicular in the slab plane. Since the G matrix is assumed to be further used to calculate the Landau-Migdal amplitude, the total two-particle energy is fixed at the value E = 2μ, where μ is the chemical potential of the system under investigation. The calculations are performed predominantly for P perpendicular = 0. The role of nonzero values of P perpendicular is assessed. The resulting G matrix is found to depend greatly on μ in the surface region

  10. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    Energy Technology Data Exchange (ETDEWEB)

    Orbovic, Nebojsa, E-mail: nebojsa.orbovic@cnsc-ccsn.gc.ca; Sagals, Genadijs; Blahoianu, Andrei

    2015-12-15

    better performance of slabs with transverse reinforcement in form of T-headed bars compared to the slabs with conventional stirrups with hooks with regards to perforation capacity under hard missile impact. Non-linear dynamic behavior of reinforced concrete slabs under impact loading by rigid missile was analyzed using the commercial Finite Element (FE) code LS-DYNA. FE blind predictions based on Winfrith concrete material model were compared to the tests on slabs with and without transverse reinforcement. The FE predictions obtained were in general agreement with tests. Two different types of transverse reinforcement were examined (stirrups and T-headed bars) using simplified models. Similar to the tests, the FE predictions show that transverse reinforcement localizes damage induced by missile impact but does not increase the perforation resistance of the concrete slab. FE predictions also showed that T-headed bars perform better than stirrups, providing approximately the same perforation resistance and smaller damaged area comparing with a slab with longitudinal reinforcement only. Additionally, FE modeling was conducted for two different slab thicknesses to assess the effect of the thickness.

  11. A theoretical investigation on influences of slab tracks on vertical dynamic responses of railway viaducts

    Science.gov (United States)

    Shi, Li; Cai, Yuanqiang; Wang, Peng; Sun, Honglei

    2016-07-01

    A railway viaduct model consisting of infinite spans of elastically-supported girders carrying a slab track of infinite length is established to investigate the influence of the slabs on the vertical dynamic response of the viaduct, when a moving harmonic point load or a moving sprung wheel is applied. The infinite rail, the discontinuous slabs and girders of identical span lengths are idealized as Euler-Bernoulli beams. The rail fasteners, the cushion layer beneath the slab and the elastic bearings at the girder supports are represented by discretely distributed springs of hysteretic damping. Due to the repetitive nature of the girders, the model can be divided into periodic three-beam units by the span length of the girder, and then solved analytically in the frequency domain using the property of periodic structure. Besides the first natural frequency of the girder with elastic bearings, it is found that the resonance frequency of the slab on the cushion layer has a significant influence on the dynamic response of the track and the girder. Parametric excitations due to the moving wheel periodically passing the discontinuous slabs contribute significantly to the wheel/rail interactions.

  12. Comparison of Different Stall Conditions in Axial Flow Compressor Using Analytic Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Arshad Ali

    2017-12-01

    Full Text Available The rotating stall inception data analysis using Analytic Wavelet Transform (AWT in a low-speed axial compressor was presented in the authors’ previous studies [1], [2]. These studies focused on the detection of instability inception in an axial flow compressor when it enters into the instability regime due to the modal type of stall perturbation. In this paper, the effectiveness of AWT is further studied by applying it under different testing conditions. In order to examine the results of AWT on highly sampled data, at first, the stall data were acquired at a high sampling frequency and the results were compared with the conventional filtered signals. Secondly, the AWT analysis of stall data was carried out for the condition when compressor experienced a spike type rotating stall disturbance. The stall inception information obtained from the AWT analysis was then compared with the commonly used stall detection techniques. The results show that AWT is equally beneficial for the diagnostic of compressor instability regardless of the data sampling rate and represents an outstanding ability to detect stall disturbance irrespective of the type of stall precursor, i.e. the modal wave or spike.

  13. Numerical simulation of the RISOe1-airfoil dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)

  14. El departamento musical Disney : las Silly Symphonies y Carl Stalling

    OpenAIRE

    Duarte del Moral, Marina

    2014-01-01

    La historia de la animación tiene un nombre propio: Walt Disney. Gracias a su experimentación en diversos campos de esta materia, Disney consigue desarrollar la animación y su universo de una forma perseverante y continua, adaptándose a los diversos cambios producidos desde el nacimiento de ésta, reinventando una y otra vez el sector y añadiendo su toque mágico a la personalidad de cada personaje y cada obra. En este camino no está solo gracias al trabajo de genios como Carl Stalling, que apo...

  15. FBH1 Catalyzes Regression of Stalled Replication Forks

    DEFF Research Database (Denmark)

    Fugger, Kasper; Mistrik, Martin; Neelsen, Kai J

    2015-01-01

    DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression......, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose...

  16. Cracking behavior of structural slab bridge decks

    Science.gov (United States)

    Baah, Prince

    Bridge deck cracking is a common problem throughout the United States, and it affects the durability and service life of concrete bridges. Several departments of transportation (DOTs) in the United States prefer using continuous three-span solid structural slab bridges without stringers over typical four-lane highways. Recent inspections of such bridges in Ohio revealed cracks as wide as 0.125 in. These measured crack widths are more than ten times the maximum limit recommended in ACI 224R-01 for bridge decks exposed to de-icing salts. Measurements using digital image correlation revealed that the cracks widened under truck loading, and in some cases, the cracks did not fully close after unloading. This dissertation includes details of an experimental investigation of the cracking behavior of structural concrete. Prism tests revealed that the concrete with epoxy-coated bars (ECB) develops the first crack at smaller loads, and develops larger crack widths compared to the corresponding specimens with uncoated (black) bars. Slab tests revealed that the slabs with longitudinal ECB developed first crack at smaller loads, exhibited wider cracks and a larger number of cracks, and failed at smaller ultimate loads compared to the corresponding test slabs with black bars. To develop a preventive measure, slabs with basalt and polypropylene fiber reinforced concrete were also included in the test program. These test slabs exhibited higher cracking loads, smaller crack widths, and higher ultimate loads at failure compared to the corresponding slab specimens without fibers. Merely satisfying the reinforcement spacing requirements given in AASHTO or ACI 318-11 is not adequate to limit cracking below the ACI 224R-01 recommended maximum limit, even though all the relevant design requirements are otherwise met. Addition of fiber to concrete without changing any steel reinforcing details is expected to reduce the severity and extent of cracking in reinforced concrete bridge decks.

  17. A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow : Results from dynamic subduction models with an overriding plate

    NARCIS (Netherlands)

    Schellart, W. P.; Moresi, L.

    2013-01-01

    We present numerical subduction models to investigate overriding plate deformation at subduction zones. All models show forearc shortening, resulting predominantly from shear stresses at the subduction zone interface and opposite-sense mantle shear stresses at the base of the forearc lithosphere.

  18. Slab detachment under the Eastern Alps seen by seismic anisotropy.

    Science.gov (United States)

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian-Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW-NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW-SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW-SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle.

  19. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  20. The Green's function method for critical heterogeneous slabs

    International Nuclear Information System (INIS)

    Kornreich, D.E.

    1996-01-01

    Recently, the Green's Function Method (GFM) has been employed to obtain benchmark-quality results for nuclear engineering and radiative transfer calculations. This was possible because of fast and accurate calculations of the Green's function and the associated Fourier and Laplace transform inversions. Calculations have been provided in one-dimensional slab geometries for both homogeneous and heterogeneous media. A heterogeneous medium is analyzed as a series of homogeneous slabs, and Placzek's lemma is used to extend each slab to infinity. This allows use of the infinite medium Green's function (the anisotropic plane source in an infinite homogeneous medium) in the solution. To this point, a drawback of the GFM has been the limitation to media with c 1; however, mathematical solutions exist which result in oscillating Green's functions. Such calculations are briefly discussing. The limitation to media with c < 1 has been relaxed so that the Green's function may also be calculated for media with c ≥ 1. Thus, materials that contain fissionable isotopes may be modeled

  1. Numerical analysis of waffle slabs in flexure considering the effects of concrete cracking

    Directory of Open Access Journals (Sweden)

    B. R. B. Recalde

    Full Text Available Waffle slab structures simulated by computational model are generally analyzed by simplified methods, for both the section geometry (converting into solid slabs or grids and for the material mechanical properties (linear elastic regime. Results obtained by those studies show large differences when compared with test results, even at low loading levels. This is mainly due to lack of consideration of the eccentricity between the axis of the ribs and the cover, as well as the simplification of the mechanical behavior of concrete tensile strength. The so called more realistic numerical models do consider the effect of the eccentricity between the axis of the cover and ribs. One may also introduce physical nonlinearity of reinforced concrete in these models, obtaining results closer to tests. The objective of this work is to establish a numerical model for the typical section of waffle slabs given the recommendationslisted above. Such model considers the eccentricity between the axis of the ribs and the cover, the physical nonlinearity of concrete in compression and the concrete contribution between cracks (tension stiffening through a smeared crack model. The finite element program SAP2000 version 16 is used for the non-linear analysis. The area element discretization uses the Shell Layered element along the thickness of layers, allowing for the heterogeneous material behavior of the reinforced concrete. The numerical model was validated comparing results with tests in slabs and, eventually, used to evaluate some waffle slabs subjected to excessive loading.

  2. Standing sausage modes in curved coronal slabs

    Science.gov (United States)

    Pascoe, D. J.; Nakariakov, V. M.

    2016-09-01

    Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.

  3. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  4. Accidents due to falls from roof slabs.

    Science.gov (United States)

    Rudelli, Bruno Alves; Silva, Marcelo Valerio Alabarce da; Akkari, Miguel; Santili, Claudio

    2013-01-01

    CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%). Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%), and flying a kite was the most prevalent game (37.9%). In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  5. Accidents due to falls from roof slabs

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rudelli

    Full Text Available CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%. Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%, and flying a kite was the most prevalent game (37.9%. In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  6. Conjecture with water and rheological control for subducting slab in the mantle transition zone

    Directory of Open Access Journals (Sweden)

    Fumiko Tajima

    2015-01-01

    Full Text Available Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs, flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the “660 km” discontinuity depths and low viscosity layers (LVLs beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20–30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ∼660 km. The variation of the discontinuity depths and highly localized low seismic speed anomaly (LSSA zones observed from seismic P waveforms in a relatively high frequency band (∼1 Hz support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+ diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not

  7. A simple new device to examine human stance: the totter-slab.

    Science.gov (United States)

    Roth, Robin; Wank, Veit; Müller, Otto; Hochwald, Harald; Günther, Michael

    2010-02-01

    This article describes a new measuring device to investigate balancing strategies of human stance: the totter-slab, i.e., a standing plate suspended with steel cables to hooks on a steel frame. First, we analysed the physical properties of the device by recording free oscillations under different conditions [varying amplitude, mass and centre of mass (COM) height]. This allowed us to determine the eigenfrequency f and the damping coefficient Dslab. We found that the totter-slab is a useful, well-defined, reliable and developable measuring device for different non-rigid-ground stance conditions. In a second part of the investigation, we compared the frequency spectra of six subjects balancing on the totter-slab with their spectra while standing quietly on a force plate fixed to the ground. The totter-slab spectra showed two distinct, dominant peak regions at approximately 0.3 and 1.1 Hz. This finding enforces the double inverted pendulum to be an adequate model particularly for balancing on the totter-slab. Compared with the firm ground condition, these two peak regions were more pronounced when balancing on the totter-slab. However, there is a variety of frequencies in the region 0.2...1.5 Hz specific for an individual subject in both balancing conditions.

  8. Calculation of spin and orbital magnetizations in Fe slab systems at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Garibay-Alonso, R [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Coahuila, Conjunto Universitario Camporredondo, Edificio ' D' , 25000 Saltillo (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis PotosI, Alvaro Obregon 64, San Luis PotosI (Mexico); Urrutia-Banuelos, EfraIn [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis PotosI (Mexico)

    2010-02-10

    The temperature dependence of spin and orbital local magnetizations is theoretically determined for the non-bulk atomic region of (001) and (110) Fe slab systems. A d band Hamiltonian, including spin-orbit coupling terms, was used to model the slabs, which were emulated by using Fe films of sufficient thickness to reach a bulk behavior at their most inner atomic layers. The temperature effects were considered within the static approximation and a simple mean field theory was used to integrate the local magnetic moment and charge thermal fluctuations. The results reflect a clear interplay between electronic itinerancy and the local atomic environment and they can be physically interpreted from the local small charge transfers occurring in the superficial region of the slabs. For recovering the experimental behavior on the results for the (001) slab system, the geometrical relaxations at its non-bulk atomic layers and a d band filling variation are required. A study on the magnetic anisotropy aspects in the superficial region of the slabs is additionally performed by analyzing the results for the orbital local magnetization calculated along two different magnetization directions in both slab systems.

  9. Convergence analysis of the rebalance methods in multiplying finite slab having periodic boundary conditions

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Lee, Young Ouk; Song, Jae Seung

    2009-01-01

    This paper analyzes the convergence of the rebalance iteration methods for the discrete ordinates transport equation in the multiplying finite slab problem. The finite slab is assumed to be homogeneous and it has the periodic boundary conditions. A general formulation is used to include three well-known rebalance methods of the linearized form in a unified way. The rebalance iteration methods considered in this paper are the CMR (Coarse-Mesh Rebalance), the CMFD (Coarse-Mesh Finite Difference), and p-CMFD (Partial Current-Based Coarse Mesh Finite Difference) methods which have been popularly used in the reactor physics. The convergence analysis is performed with the well-known Fourier analysis through a linearization. The analyses are applied for one-group problems. The theoretical analysis shows that there are one fundamental mode and N-1 Eigen-modes which determine the convergence if the finite slab is divided into N uniform meshes. The numerical tests show that the Fourier convergence analysis provides the reasonable estimate of the numerical spectral radii for the model problems and the spectral radius for the finite slab approaches the one for the infinite slab as the thickness of the slab increases. (author)

  10. Calculation of spin and orbital magnetizations in Fe slab systems at finite temperature

    International Nuclear Information System (INIS)

    Garibay-Alonso, R; Reyes-Reyes, M; Urrutia-Banuelos, EfraIn; Lopez-Sandoval, R

    2010-01-01

    The temperature dependence of spin and orbital local magnetizations is theoretically determined for the non-bulk atomic region of (001) and (110) Fe slab systems. A d band Hamiltonian, including spin-orbit coupling terms, was used to model the slabs, which were emulated by using Fe films of sufficient thickness to reach a bulk behavior at their most inner atomic layers. The temperature effects were considered within the static approximation and a simple mean field theory was used to integrate the local magnetic moment and charge thermal fluctuations. The results reflect a clear interplay between electronic itinerancy and the local atomic environment and they can be physically interpreted from the local small charge transfers occurring in the superficial region of the slabs. For recovering the experimental behavior on the results for the (001) slab system, the geometrical relaxations at its non-bulk atomic layers and a d band filling variation are required. A study on the magnetic anisotropy aspects in the superficial region of the slabs is additionally performed by analyzing the results for the orbital local magnetization calculated along two different magnetization directions in both slab systems.

  11. Energy Method Solution for the Vertical Deformation of Longitudinally Coupled Prefabricated Slab Track

    Directory of Open Access Journals (Sweden)

    Juanjuan Ren

    2017-01-01

    Full Text Available Upwarping on the longitudinally coupled prefabricated slab track system caused by the rising temperature is a common distress, which deteriorates the mechanical properties of the coupled slabs and the vertical stability of slabs. The objective of this paper is to quantify the upwarping deformation on the slab subjected to temperature force and to find out the influence of different factors on the upwarping phenomenon of the slabs. An analytical expression is deduced using energy method, and a finite element model is also established to verify the analytical solution’s adequacy. The following main findings are drawn: (1 when the amplitude of the initial elastic misalignment we is equal to a half of the amplitude of the initial plastic misalignment wp and the half-wavelength lmin takes the most unfavorable value, the maximum relative error between the analytical solution and the result in FEM is only 2.64%, which demonstrates that the analytical solution correlates well with the FEM results. (2 lmin is closely related with wp. With the increase of wp, lmin becomes longer, and the maximum length of the half-wavelength is 7.769 m. (3 When the total amplitude we+wp exaggerates, the slab will be much likely to suffer upwarping.

  12. Finite Element Analysis of Concrete Bridge Slabs Reinforced with Fiber Reinforced Polymer Bars

    Directory of Open Access Journals (Sweden)

    S.E. El-Gamal

    2014-12-01

    Full Text Available Due to their non-corrosive nature, high strength and light weight, fiber reinforced polymers (FRP are being widely used as reinforcement in concrete bridges, especially those in harsh environments. The current design methods of concrete deck slabs in most bridge design codes assume a flexural behavior under traffic wheel loads. The load carrying capacities of concrete bridge deck slabs, however, are greatly enhanced due to the arching action effect developed by lateral restraints. This study presents the results of a non-linear finite element (FE investigation that predicts the performance of FRP reinforced concrete (RC deck slabs. The FE investigation is divided into two main parts: a calibration study and a parametric study. In the calibration study, the validity and accuracy of the FE model were verified against experimental test results of concrete slabs reinforced with glass and carbon FRP bars. In the parametric study, the effect of some key parameters influencing the performance of FRP-RC deck slabs bars was investigated. These parameters include the FRP reinforcement ratio, concrete compressive strength, slab thickness and span-to-depth ratio.

  13. Ingestive behavior of lambs confined in individual and group stalls.

    Science.gov (United States)

    Filho, A Eustáquio; Carvalho, G G P; Pires, A J V; Silva, R R; Santos, P E F; Murta, R M; Pereira, F M

    2014-02-01

    The experiment was conducted to evaluate the ingestive behavior of lambs confined in individual and group stalls. We used thirty-four lambs in their growing phase, aged an average of three months, with mean initial live weight of 17.8±5.2 kg. They were allotted in a completely randomized design with 24 animals kept in individual stalls and 10 animals confined as a group. The experiment lasted for a total of 74 days, and the first 14 days were dedicated to the animals' adaption to the management, facilities and diets. The data collection period lasted 60 days, divided into three 20-d periods for the behavior evaluation. The animals were subjected to five days of visual observation during the experiment period, by the quantification of 24 h a day, with evaluations on the 15th day of each period and an interim evaluation consisting of two consecutive days on the 30th and 31st day of the experiment. The animals confined as a group consumed less (pbehavior.

  14. A.C. Plasma Anemometer for Axial Compressor Stall Warning

    Science.gov (United States)

    Matlis, Eric; Cameron, Joshua; Morris, Scott; Corke, Thomas

    2007-11-01

    Compressor sections of turbo jet engines are subject to stall and surge as a result of flow instabilities that occur upstream of the compressor rotor. One of the instability modes that contributes to compressor surge is the so-called `spike' mode of stall inception. It has been shown that this mode of instability can be predicted before onset by performing real-time statistical auto-correlation measurements of the blade-passing pressure characteristic at the mid-chord location of the rotor. These measurements are performed with pressure sensors or hot-wires that are too fragile for a full-scale compressor. We have developed a sensor that can survive the vibration and temperatures of a full-scale rig while providing the bandwidth necessary to resolve the blade passage signature required by this coherence technique. This sensor, called the Plasma Anemometer, provides high-bandwith point measurements of velocity or pressure fluctuations with unparalleled mechanical robustness and resistance to vibration and thermal effects.

  15. Slab tears and intermediate-depth seismicity

    Science.gov (United States)

    Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  16. Global Subducting Slab Entrainment of Oceanic Asthenosphere: Re-examination of Sub-Slab Shear-Wave Splitting Patterns

    Science.gov (United States)

    Song, T.; Liu, L.; Kawakatsu, H.

    2011-12-01

    Oceanic asthenosphere is characterized as a low seismic velocity, low viscosity, and strongly anisotropic channel separating from the oceanic lithosphere through a sharp shear wave velocity contrast. It has been a great challenge to reconcile all these observations and ultimately illuminate the fate of oceanic asthenosphere near convergent plate margins. Sub-slab shear wave splitting patterns are particularly useful to address the fate of oceanic asthenosphere since they are directly linked to deformation induced by the mantle flow beneath the subducting slab. To address slab entrainment of oceanic asthenosphere through shear wave splitting, it is important to recognize that oceanic asthenosphere is characterized by azimuthal anisotropy (1-3%) as well as strong P wave and S wave radial anisotropy (3-7%) for horizontally travelling P wave (VPH > VPV) and S wave (VSH > VSV), making it effectively an orthorhombic medium. Here we show that entrained asthenosphere predicts sub-slab SKS splitting pattern, where the fast splitting direction changes from predominantly trench-normal under shallow subduction zones to predominantly trench-parallel under relatively steep subduction zones. This result can be recognized by the 90 degrees shift in the polarization of the fast wave at about 20 degrees incident angle, where VSH equals to VSV forming a classical point singularity (Crampin, 1991). The thickness of the entrained asthenosphere is estimated to be on the order of 100 km, which predicts SKS splitting time varying from 0.5 seconds to 2 seconds. After briefly discussing improvement of the millefeuille model (Kawakatsu et al. 2009) of the asthenosphere upon this new constraint and long wave Backus averaging of orthorhombic solid and melt, we will illustrate that, in the range of observed trench migration speed, dynamic models of 2-D mantle convection with temperature-dependent viscosity do support thick subducting slab entrainment of asthenosphere under ranges of

  17. Entropy distribution in accelerated gaseous slabs

    International Nuclear Information System (INIS)

    Thomas, L.P.; Diez, J.A.

    1990-01-01

    Shocks developed in an accelerated plane layer of ideal gas are studied. The layer is driven towards vacuum by an ideal rigid piston. There can be an intermediate solid slab between the gas and the piston. It gives to the slabs a stepwise pressure pulse with or without prepulse. The shock compressions build up non-uniform profiles in the gas. Explicit analytical expressions for the Lagrangian distribution of entropy are found. Then, the width of innermost part of the gas with higher specific entropy was obtained. These results are of interest to regulate the spark formation parameters in ICF experiments. (Author)

  18. Behaviour of reinforced concrete slabs with steel fibers

    Science.gov (United States)

    Baarimah, A. O.; Syed Mohsin, S. M.

    2017-11-01

    This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.

  19. The Slab Method to Measure the Topological Susceptibility

    CERN Document Server

    Bietenholz, Wolfgang; de Forcrand, Philippe; Dromard, Arthur; Gerber, Urs

    2016-10-11

    In simulations of a model with topological sectors, algorithms which proceed in small update steps tend to get stuck in one sector, especially on fine lattices. This distorts the numerical results, in particular it is not straightforward to measure the topological susceptibility chi_t. We test a method to measure chi_t even if configurations from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as "slabs". This enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models and for 2-flavour QCD.

  20. Evaluating Classroom Interaction with the iPad®: An Updated Stalling's Tool

    Science.gov (United States)

    MacKinnon, Gregory; Schep, Lourens; Borden, Lisa Lunney; Murray-Orr, Anne; Orr, Jeff; MacKinnon, Paula

    2016-01-01

    A large study of classrooms in the Caribbean context necessitated the use of a validated classroom observation tool. In practice, the paper-version Stalling's instrument (Stallings & Kaskowitz 1974) presented specific challenges with respect to (a) facile data collection and (b) qualitative observations of classrooms. In response to these…

  1. Simulation of Entropy Generation under Stall Conditions in a Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-06-01

    Full Text Available Rotating stalls are generally the first instability met in turbomachinery, before surges. This 3D phenomenon is characterized by one or more stalled flow cells which rotate at a fraction of the impeller speed. The goal of the present work is to shed some light on the entropy generation in a centrifugal fan under rotating stall conditions. A numerical simulation of entropy generation is carried out with the ANSYS Fluent software which solves the Navier-Stokes equations and user defined function (UDF. The entropy generation characteristics in the centrifugal fan for five typical conditions are presented and discussed, involving the design condition, conditions on occurrence and development of stall inception, the rotating stall conditions with two throttle coefficients. The results show that the entropy generation increases after the occurrence of stall inception. The high entropy generation areas move along the circumferential and axial directions, and finally merge into one stall cell. The entropy generation rate during circumferential propagation of the stall cell is also discussed, showing that the entropy generation history is similar to sine curves in impeller and volute, and the volute tongue has a great influence on entropy generation in the centrifugal fan.

  2. Influence of flexible foundation slab on seismic response of nuclear reactor building

    International Nuclear Information System (INIS)

    Kobatake, M.; Hirashima, S.; Narikawa, M.; Tanaka, H.

    1985-01-01

    In the seismic design of massive and rigid structure such as nuclear reactor building, it is important to properly evaluate the dynamic interaction effect between soil and structure. The authors have carried out the vibration tests of a 1/36th scale model of the BWR type reactor building and its simulation analyses in order to grasp its dynamical behaviour, where the foundation slab was fixed with a shaking table. An analytical study was carried out for a recuced model with flexible foundation slab and semi-infinite soil. Frequency response analyses were then performed by using a FEM model and a lumped-mass model representing soil-structure interaction effect, and studies were made of the influence on building response according to the manner by which the frequency dependency of soil stiffness and the flexibility of foundation slab are treated. (orig.)

  3. Accuracy of oxygen saturation and total hemoglobin estimates in the neonatal brain using the semi-infinite slab model for FD-NIRS data analysis.

    Science.gov (United States)

    Barker, Jeffrey W; Panigrahy, Ashok; Huppert, Theodore J

    2014-12-01

    Frequency domain near-infrared spectroscopy (FD-NIRS) is a non-invasive method for measuring optical absorption in the brain. Common data analysis procedures for FD-NIRS data assume the head is a semi-infinite, homogenous medium. This assumption introduces bias in estimates of absorption (μa ), scattering ( [Formula: see text]), tissue oxygen saturation (StO2), and total hemoglobin (HbT). Previous works have investigated the accuracy of recovered μa values under this assumption. The purpose of this study was to examine the accuracy of recovered StO2 and HbT values in FD-NIRS measurements of the neonatal brain. We used Monte Carlo methods to compute light propagation through a neonate head model in order to simulate FD-NIRS measurements at 690 nm and 830 nm. We recovered μa , [Formula: see text], StO2, and HbT using common analysis procedures that assume a semi-infinite, homogenous medium and compared the recovered values to simulated values. Additionally, we characterized the effects of curvature via simulations on homogenous spheres of varying radius. Lastly, we investigated the effects of varying amounts of extra-axial fluid. Curvature induced underestimation of μa , [Formula: see text], and HbT, but had minimal effects on StO2. For the morphologically normal neonate head model, the mean absolute percent errors (MAPE) of recovered μa values were 12% and 7% for 690 nm and 830 nm, respectively, when source-detector separation was at least 20 mm. The MAPE for recovered StO2 and HbT were 6% and 9%, respectively. Larger relative errors were observed (∼20-30%), especially as StO2 and HbT deviated from normal values. Excess CSF around the brain caused very large errors in μa , [Formula: see text], and HbT, but had little effect on StO2.

  4. Advanced Turbulence Modeling for Unsteady and Stalled Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA code OVERFLOW is used extensively by academia, government institutions, and industry for a wide range of applications. Successful completion of Phase 1 and...

  5. Reinforcement of the concrete base slab of the ATLAS cavern

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 02: UX15 cavern, preparation for concreting of base slab first lift. Photo 05: UX15 cavern, placing of reinforcement for base slab first lift. Photo 07: UX15 cavern, preparation for concreting of base slab first lift. Photo 09: UX15 cavern, placing of reinforcement for base slab first lift. Photo 10: UX15 cavern, view into PX14 shaft above. Photo 12: UX15 cavern, temporary access platform of RB16 tunnel. Photo 15: UJ17 chamber, invert excavation.

  6. The need and benefit of slab track: case of Lithuania

    OpenAIRE

    Gailienė, Inesa; Laurinavičius, Alfredas

    2017-01-01

    Slab track structures have been used in the world for several decades now. However, the ballasted track is still much more popular compared to slab track structures, which is primarily due to its lower price. This article reviews and analyses development of slab tracks, with their advantages and disadvantages. Based on conditions prevailing on Lithuanian railways, the paper also distinguishes cases in which slab track structures could be of benefit, both economically and technologically. The ...

  7. Cost analysis of reinforced concrete slabs and columns

    OpenAIRE

    Spuś, Piotr

    2013-01-01

    The construction industry is increasingly looking for solutions that are both simple and effective and that provide cost savings, speed and flexibility of execution. Two-way slabs are a form of construction unique to reinforced concrete comparing with the other major structural materials. It is an efficient, economical, and widely used structural system. The present dissertation aims to analyze and compare costs between four types of slabs: waffle slab with recuperate molds, flat slabs wit...

  8. Proposed Chevron Tengiz venture stalls amid Soviet political squabble

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports on the status of foreign investment in Soviet oil and gas joint ventures which has reached a critical juncture. Just as the U.S. is considering granting most favored nation trade status to the U.S.S.R., the joint venture petroleum deal seen as the litmus test for such deals-Chevron Corp.'s proposed addition of supergiant Tengiz oil field to its Caspian Sea joint venture-has stalled amid controversy. Unconfirmed reports from Soviet officials and other foreign joint venture participants in the U.S.S.R. have Chevron pulling out of the long negotiated, multibillion dollar project after the Soviets rejected the company's terms. Chevron, however, insists the project is still alive

  9. Lifetime Reliability Assessment of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed...

  10. Scattering by a slab: an exact calculation

    Czech Academy of Sciences Publication Activity Database

    Bentosela, F.; Tater, Miloš

    2005-01-01

    Roč. 38, č. 22 (2005), s. 4835-4841 ISSN 0305-4470 R&D Projects: GA AV ČR IAA100480501 Institutional research plan: CEZ:AV0Z10480505 Keywords : scattering by a slab Subject RIV: BE - Theoretical Physics Impact factor: 1.566, year: 2005

  11. All-polymer photonic crystal slab sensor

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph

    2015-01-01

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured i...

  12. Numerical Evaluations of Functionally Graded RC Slabs

    Directory of Open Access Journals (Sweden)

    M. Mastali

    2014-01-01

    Full Text Available Nowadays, using fibrous materials is used widely in strengthening applications such as cross-section enlargement and using functionally graded reinforced concrete. Functionally graded reinforced concrete is used as multireinforced concrete layers that can be reinforced by different fiber types. The objective of this research was to address the structural benefits of functionally graded concrete materials by performing analytical simulations. In order to achieve this purpose, in the first stage of this study, three functionally graded reinforced concretes by steel and polypropylene (PP were experimentally tested under flexural loading. Inverse analysis was applied to obtain the used material properties of reinforced concrete by FEMIX software. After obtaining the material properties, to assess the performance of proposed slabs, some other cases were proposed and numerically evaluated under flexural and shear loading. The results showed that increasing steel fiber in reinforced entire cross section led to achieve better shear and flexural performance while the best performance of reinforced functionally graded slabs was achieved for slab at 1% fiber content. In the second stage, nineteen reinforced functionally graded RC slabs with steel bars were simulated and assessed and some other cases were considered which were not experimentally tested.

  13. Photon transport in thin disordered slabs

    Indian Academy of Sciences (India)

    ... auto-selection of only photons with looping paths to remain within the slab. The results of the Monte Carlo simulations are borne out by our analytical treatment that incorporates directional persistence by the use of the Ornstein–Uhlenbeck process, which interpolates between the short time ballistic and long time diffusive ...

  14. Simulating the effect of slab features on vapor intrusion of crack entry.

    Science.gov (United States)

    Yao, Yijun; Pennell, Kelly G; Suuberg, Eric M

    2013-01-01

    In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building foundation footprint size. In this paper, predictions from a three-dimensional model of vapor intrusion are used to compare the contaminant mass flow rates into buildings with different foundation slab crack features. The simulations show that the contaminant mass flow rate into the building does not change much for different assumed slab crack shapes and locations, and the foundation footprint size does not play a significant role in determining contaminant mass flow rate through a unit area of crack. Moreover, the simulation helped reveal the distribution of subslab contaminant soil vapor concentration beneath the foundation, and the results suggest that in most cases involving no biodegradation, the variation in subslab concentration should not exceed an order of magnitude, and is often significantly less than this.

  15. Development Length for Headed Bars in Slab-Column Joints of RC Slab Bridges

    Science.gov (United States)

    2015-12-04

    In accordance with the Caltrans Seismic Design Criteria, the superstructure in a slab bridge should remain essentially elastic and only the pile extensions/columns are permitted to develop inelastic deformations during a seismic event. Hence, the lon...

  16. Control of exceptional points in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav

    2017-01-01

    Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems, such as a pho...

  17. Slab detachment of subducted Indo-Australian plate beneath Sunda ...

    Indian Academy of Sciences (India)

    ... complicate the subduction zone processes and slab architecture. Based on evidences which include patterns of seismicity, seismic tomography and geochemistry of arc volcanoes, we have identified a horizontal slab tear in the subducted Indo-Australian slab beneath the Sunda arc. It strongly reflects on trench migration, ...

  18. Effect of Rotation in an Orthotropic Elastic Slab

    Directory of Open Access Journals (Sweden)

    Santra S.

    2017-02-01

    Full Text Available The fundamental equations of the two dimensional generalized thermoelasticity (L-S model with one relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue approach. The field variables in the space time domain are obtained numerically. The results corresponding to the cases of conventional thermoelasticity CTE, extended thermoelasticity (ETE and temperature rate dependent thermoelasticity (TRDTE are compared by means of graphs.

  19. Random Vibration Analysis of Train Moving over Slab Track on Bridge under Track Irregularities and Earthquakes by Pseudoexcitation Method

    OpenAIRE

    Zeng, Zhiping; Zhu, Kunteng; He, Xianfeng; Xu, Wentao; Chen, Lingkun; Lou, Ping

    2015-01-01

    This paper investigates the random vibration and the dynamic reliability of operation stability of train moving over slab track on bridge under track irregularities and earthquakes by the pseudoexcitation method (PEM). Each vehicle is modeled by multibody dynamics. The track and bridge is simulated by a rail-slab-girder-pier interaction finite element model. The coupling equations of motion are established based on the wheel-rail interaction relationship. The random excitations of the track i...

  20. Self-avoiding walks in a slab: rigorous results

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Orlandini, E; Whittingon, S G

    2006-01-01

    A polymer in the confined spaces between colloid particles loses entropy and exerts a repulsive entropic force on the confining particles. This situation can be modelled by a self-avoiding walk confined in a slab between two parallel planes in the lattice. In this paper, we prove the existence of a limiting free energy for the general case that the walk is interacting with the parallel bounding planes. We also prove that the limiting free energy is strictly increasing with the distance between the bounding planes in some regions of the phase diagram. These results demonstrate the presence of a non-zero repulsive entropic force in the model. Finally, we also examine the relation between the limiting free energy in this model and the limiting free energy in a model of walks adsorbing onto a single plane. We prove that these limiting free energies are equal in some regions of the phase diagram in the limit that the width of the slab between the parallel bounding planes is taken to infinity

  1. Bulldozing of Basal Continental Mantle Lithosphere During Flat-Slab Subduction

    Science.gov (United States)

    Axen, G. J.; van Wijk, J.; Currie, C. A.

    2017-12-01

    Flat-slab subduction occurs along 10% of subduction margins, forming magmatic gaps and causing inland migration of upper-plate deformation. We suggest that basal continental mantle lithosphere (CML) can be bulldozed ahead of the flat portion of horizontally-subducted oceanic lithosphere, forming a growing and advancing keel of thickened CML. This process fills the asthenospheric mantle wedge with CML, precluding melting. The bulldozed CML keel may transmit tectonic stresses ahead of the flat slab itself, causing upper-plate deformation ahead of the slab hinge. We designed 2-D numerical models after the North American Laramide orogeny, with subduction of a thick, buoyant oceanic plateau (conjugate Shatsky Rise) and with the continent advancing trenchward over the initial slab hinge. This results in slab-flattening, and removal of CML material. In our models, the thickness of the CML layer removed by this process depends on overriding plate rheology and is up to 25 km. The removed material is bulldozed ahead of the hinge and may fill up the asthenospheric wedge. Low-density (depleted) CML favors formation of bulldozed keels, which increase in width as CML strength decreases. Regular-density and/or stronger CML forms smaller bulldozed keels that are more likely to sink with the slab as eclogitization and densification proceed. When the flat slab rolls back, it leaves a step in the CML at the farthest extent of the slab. Relics of this step may remain below North America or may have dripped off. We interpret an upper-mantle fast-velocity anomaly below SE New Mexico and W Texas as a drip/keel, and the step in lithosphere thickness in southwestern Colorado as a fossil step, caused by the removal of the CML layer. Our model predicts that the Laramide bulldozed CML keel may have aided in stress transmission that caused basement uplifts as far as NE Wyoming and subsurface folds even farther N and E. Modern examples may exist in South American flat slab segments.

  2. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  3. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  4. Application of headed studs in steel fiber reinforced cementitious composite slab of steel beam-column connection

    Science.gov (United States)

    Yao, Cui; Nakashima, Masayoshi

    2012-03-01

    Steel fiber reinforced cementitous composites (SFRCC) is a promising material with high strength in both compression and tension compared with normal concrete. The ductility is also greatly improved because of 6% volume portion of straight steel fibers. A steel beam-column connection with Steel fiber reinforced cementitous composites (SFRCC) slab diaphragms is proposed to overcome the damage caused by the weld. The push-out test results suggested that the application of SFRCC promises larger shear forces transferred through headed studs allocated in a small area in the slab. Finite element models were developed to simulate the behavior of headed studs. The failure mechanism of the grouped arrangement is further discussed based on a series of parametric analysis. In the proposed connection, the SFRCC slab is designed as an exterior diaphragm to transfer the beam flange load to the column face. The headed studs are densely arranged on the beam flange to connect the SFRCC slab diaphragms and steel beams. The seismic performance and failure mechanism of the SFRCC slab diaphragm beam-column connection were investigated based on the cyclic loading test. Beam hinge mechanism was achieved at the end of the SFRCC slab diaphragm by using sufficient studs and appropriate rebars in the SFRCC slab.

  5. Theoretical Investigations on the Structural Behavior of Biaxial Hollow Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Nazar Kamel Ali Oukaili

    2015-06-01

    Full Text Available This paper presents a numerical analysis using ANSYS finite element program to simulate the reinforced concrete slabs with spherical voids. Six full-scale one way bubbled slabs of (3000mm length with rectangular cross-sectional area of (460mm width and (150mm depth are tested as simply supported under two-concentrated load. The results of the finite element model are presented and compared with the experimental data of the tested slabs. Material nonlinearities due to cracking and crushing of concrete and yielding of reinforcement are considered. The general behavior of the finite element models represented by the load-deflection curves at midspan, crack pattern, ultimate load, load-concrete strain curves and failure modes shows good agreement with the experimental data.

  6. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    Science.gov (United States)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  7. CONCRETE PROPERTIES IMPROVEMENT OF SLAB TRACKS USING CHEMICAL ADDITIVES

    Directory of Open Access Journals (Sweden)

    V. V. Pristinskaya

    2015-11-01

    Full Text Available Purpose. On the Railways of Ukraine a very large number of slab tracks are operated with cracks. Many scientific works of previous years are dedicated to improving the design of slab tracks. The main causes of defects are: poor exploitation of the track; insufficient physic-mechanical characteristics of concrete; poor quality of initial materials. It is therefore necessary to develop an optimum concrete mix for the manufacture of these concrete products. Methodology. To assess the impact of individual factors and effects of their interactions on properties of concrete mix and concrete method of experimental and statistical modeling was used. At this, methodological fundamentals of mathematical experiment planning in concrete technology and modern methods of optimization of composite materials were taking into account. Based on the obtained data during the planned experiment conducting, including15 studies and using the computer program MathCad, were obtained the regression equations, which describe the relevant physical and mechanical properties of concrete. On the basis of the equations with the help of computer program MATLAB R2012b the graphs were drawn, illustrating the dependences of system response from the changes of two factors at a fixed value of the third factor. Findings. Firstly was the analysis of cracks that occur in the process of operation in the constructions of slab tracks. Further reasons of possible occurrence of these cracks were presented. In the process of the conducted research the author has concluded that for rational concrete mix development it is necessary to conduct the planned experiment with the use of quality materials. It was established that to increase the strength, chemical additives should be added in to concrete mix, it will let reduce cement amount. Originality. Experiments proved the usage of modern chemical additives in order to improve the properties of concrete. Models were developed, reflecting

  8. Imaging subducted slabs using seismic arrays in the Western Pacific

    Science.gov (United States)

    Bentham, H. L.; Rost, S.

    2010-12-01

    In recent years array seismology has been used extensively to image the small scale structure of the Earth. Such structure likely represents chemical heterogeneity and is therefore essential in our understanding of mantle convection and the composition of the Earth’s deep interior. As subduction is the main source of (re)introducing slab material into the Earth, it is of particular interest to track these heterogeneities. Resolving details of the composition and deformation of subducted lithosphere can help provide constraints on the subduction process, the composition of the mantle and mantle convection. This study uses seismic array techniques to map seismic heterogeneities associated with western Pacfic subduction zones, where a variety of slab geometries have been previously observed. Seismic energy arriving prior to the PP arrival was analysed at Eielson Array (ILAR), Alaska. More than 200 earthquakes were selected with Mw ≥ 6 and with epicentral distances of 90-110deg, giving a good coverage of the PP precursor (P*P) wavefield. Initial findings indicate that the observed P*P arrive out of plane and are likely a result of scattering. These scatterers are linked to the subduction of the Pacific Plate under the Philippine Sea in the Izu-Bonin and Mariana subduction zones. To enable efficient processing of large datasets, a robust automatic coherent (but unpredicted) arrival detector algorithm has been developed to select suitable precursors. Slowness and backazimuth were calculated for each precursor and were used in conjunction with P*P arrival times to back-raytrace the energy from the array to the scatterer location. Processing of the full dataset will help refine models regarding slab deformation as they descend into the mantle as well as unveiling the depth of their descent.

  9. Effect of CFRP and TRM Strengthening of RC Slabs on Punching Shear Strength

    Directory of Open Access Journals (Sweden)

    Husain Abbas

    Full Text Available Abstract The paper presents experiments involving punching of RC slabs strengthened using externally bonded carbon fiber reinforced polymer (CFRP sheet and textile reinforced mortar (TRM. Twelve RC slab specimens of two concrete grades (39.9 and 63.2 MPa and employing two strengthening schemes (CFRP and TRM were tested. Specimens were supported on two opposite edges. Experimental load-displacement variations show two peak loads in strengthened slabs and one peak followed by a plateau in control. Second peak or the plateau corresponds to the combined action of aggregate interlock and the dowel action of back face rebars and strengthening layers. The dowel action of back face rebars and strengthening layers had no role in ultimate punching load (i.e. first peak. Strengthened slabs showed 9-18% increase in ultimate punching load (i.e. first peak whereas there was significant increase in the second peak load (190-276% for CFRP; 55-136% for TRM and energy absorption (~66% for CFRP and 22-56% for TRM. An analytical model was also developed for predicting the punching shear strength (first and second peaks of strengthened slabs showing good comparison with experiments.

  10. ABOUT INFLUENCE OF CONCRETE SLAB REINFORCEMENT ON PLATE RESISTANCE TO PUNCHING FORCE

    Directory of Open Access Journals (Sweden)

    A. I. Mordich

    2007-01-01

    Full Text Available The paper presents experimental research results and their analysis in respect of flat reinforced concrete slabs resting on point supports or soil in case of concentrated punching force. However the conducted researches have shown a number of incompatibilities accepted in computational model standards that appear in the form of critical parameters in the punching zone and configuration of computational (critical sections in comparison with an actual pattern of slab crack formation and their collapse in the places of concentrated force application. Moreover, the computational methods do not take into account at all an influence of longitudinal reinforcement on both principal axis of the building frame or take it into account this phenomenon by empirical dependence indirectly. In view of the above-mentioned facts an accumulation of new experimental data is considered as an expedient process with the purpose to identify a physical pattern of flat reinforced concrete slabs operation under concentrated punching force. The paper makes it possible to revise a calculative methodology and, preserving a high reliability, it also permits to improve efficiency of a floor construction of the whole framework. It has been determined that longitudinal reinforcement of reinforced concrete slabs is actively involved in their work under concentrated punching force and exerts a prominent influence on their resistance to punching force. The paper presents a possible approach pertaining to evaluation of a longitudinal reinforcement influence on resistance of reinforced concrete slabs to punching force with due account of regulations of the appropriate standardized documents. 

  11. Evaluation of the deflected mode of the monolithic span pieces and preassembled slabs combined action

    Science.gov (United States)

    Roshchina, Svetlana; Ezzi, Hisham; Shishov, Ivan; Lukin, Mikhail; Sergeev, Michael

    2017-10-01

    In single-story industrial buildings, the cost of roof covering comprises 40-55% of the total cost of the buildings. Therefore, research, development and application of new structural forms of reinforced concrete rafter structures, that allow to reduce material consumption and reduce the sub-assembly weight of structures, are the main tasks in the field of improving the existing generic solutions. The article suggests a method for estimating the relieving effect in the rafter structure as the result of combined deformation of the roof slabs with the end arrises. Calculated and experimental method for determining the stress and strain state of the rafter structure upper belt and the roof slabs with regard to their rigid connection has been proposed. A model of a highly effective roof structure providing a significant reduction in the construction height of the roofing and the cubic content of the building at the same time allowing to include the end arrises and a part of the slabs shelves with the help of the monolithic concrete has been proposed. The proposed prefabricated monolithic concrete rafter structure and its rigid connection with ribbed slabs allows to reduce the consumption of the prestressed slabs reinforcement by 50%.

  12. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses....... For the system to be effective, the pressure within the ducts must be lower than the pressure inside the house. The new principle was shown to be effective in preventing radon from polluting the indoor air by introducing low pressure in the horizontal grid of air ducts. A lower pressure than the pressure inside...

  13. Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoid

    Science.gov (United States)

    Tosi, Nicola; Čadek, Ondřej; Martinec, Zdeněk

    2009-11-01

    The characteristic broad local maxima exhibited by the long-wavelength geoid over subduction zones are investigated with a numerical model of mantle flow. In a spherical axisymmetric geometry, a synthetic model of buoyancy driven subduction is used to test the effects on the geoid caused by the depth of penetration of the lithosphere into the mantle, by the viscosity stratification and by lateral viscosity variations (LVV) in the lithosphere, upper and lower mantle. The presence of anomalous slab density in the lower mantle guarantees geoid amplitudes comparable with the observations, favouring the picture of slabs that penetrate the transition zone and sink into the deep mantle. The viscosity of the lower mantle controls the long-wavelength geoid to the first order, ensuring a clear positive signal when it is at least 30-times greater than the upper-mantle viscosity. The presence of LVV in the lithosphere, in the form of weak plate margins, helps to increase the contribution of the surface topography, causing a pronounced reduction of the geoid. Localized LVV associated with the cold slab play a secondary role if they are in the upper mantle. On the other hand, highly viscous slabs in the lower mantle exert a large influence on the geoid. They cause its amplitude to increase dramatically, way beyond the values typically observed over subduction zones. Long-wavelength flow becomes less vigorous as the slab viscosity increases. Deformation in the upper mantle becomes more localized and power is transferred to short wavelengths, causing the long-wavelength surface topography to diminish and the total geoid to increase. Slabs may be then weakened in the lower mantle or retain their high viscosity while other mechanisms act to lower the geoid. It is shown that a phase change from perovskite to post-perovskite above the core-mantle boundary can cause the geoid to reduce significantly, thereby helping to reconcile models and observations.

  14. Fast Waves in Smooth Coronal Slab

    Science.gov (United States)

    Lopin, I.; Nagorny, I.

    2015-03-01

    This work investigates the effect of transverse density structuring in coronal slab-like waveguides on the properties of fast waves. We generalized previous results obtained for the exponential and Epstein profiles to the case of an arbitrary transverse density distribution. The criteria are given to determine the possible (trapped or leaky) wave regime, depending on the type of density profile function. In particular, there are plasma slabs with transverse density structuring that support pure trapped fast waves for all wavelengths. Their phase speed is nearly equal to the external Alfvén speed for the typical parameters of coronal loops. Our findings are obtained on the basis of Kneser’s oscillation theorem. To confirm the results, we analytically solved the wave equation evaluated at the cutoff point and the original wave equation for particular cases of transverse density distribution. We also used the WKB method and obtained approximate solutions of the wave equation at the cutoff point for an arbitrary transverse density profile. The analytic results were supplemented by numerical solutions of the obtained dispersion relations. The observed high-quality quasi-periodic pulsations of flaring loops are interpreted in terms of the trapped fundamental fast-sausage mode in a slab-like coronal waveguide.

  15. Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation

    Science.gov (United States)

    Gaume, Johan; van Herwijnen, Alec; Chambon, Guillaume; Wever, Nander; Schweizer, Jürg

    2017-01-01

    The failure of a weak snow layer buried below cohesive slab layers is a necessary, but insufficient, condition for the release of a dry-snow slab avalanche. The size of the crack in the weak layer must also exceed a critical length to propagate across a slope. In contrast to pioneering shear-based approaches, recent developments account for weak layer collapse and allow for better explaining typical observations of remote triggering from low-angle terrain. However, these new models predict a critical length for crack propagation that is almost independent of slope angle, a rather surprising and counterintuitive result. Based on discrete element simulations we propose a new analytical expression for the critical crack length. This new model reconciles past approaches by considering for the first time the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The crack begins to propagate when the stress induced by slab loading and deformation at the crack tip exceeds the limit given by the failure envelope of the weak layer. The model can reproduce crack propagation on low-angle terrain and the decrease in critical length with increasing slope angle as modeled in numerical experiments. The good agreement of our new model with extensive field data and the ease of implementation in the snow cover model SNOWPACK opens a promising prospect for improving avalanche forecasting.

  16. Investigation of complete bandgaps in a piezoelectric slab covered with periodically structured coatings.

    Science.gov (United States)

    Zou, Kui; Ma, Tian-Xue; Wang, Yue-Sheng

    2016-02-01

    The propagation of elastic waves in a piezoelectric slab covered with periodically structured coatings or the so-called stubbed phononic crystal slab is investigated. Four different models are selected and the effects of distribution forms and geometrical parameters of the structured coatings on complete bandgaps are discussed. The phononic crystal slab with symmetric coatings can generate wider complete bandgaps while that with asymmetric coatings is favorable for the generation of multi-bandgaps. The complete bandgaps, which are induced by locally resonant effects, change significantly as the geometry of the coatings changes. Moreover, the piezoelectric effects benefit the opening of the complete bandgaps. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Numerical and experimental study of a waffle slab designed to serve as a tennis court floor

    Directory of Open Access Journals (Sweden)

    P. F. Schwetz

    Full Text Available Reinforced concrete waffle slabs have become a common option for designers due to a need of rationalization in construction with reduction in costs and deadlines. To better understand the behavior of this structural system, and more realistically quantify stresses and displacements, a full scale waffle slab was tested. The structure, designed to serve as a tennis court floor, was submitted to a load of 12 kN/m2 and instrumented to measure strains and deflections at different locations. The loading process used the floor's constructive base filling material and readings were taken at different loading stages and arrangements during the floor's construction. Test data was compared to results obtained from the matrix analysis program Sistema Computacional TQS v11.0 and from the finite element model program SAP2000 v14.2.2. Slab behavior was as expected, with deflection and bending moments close to those determined by the numerical analysis.

  18. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, M.; Heinzel, P. [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov, The Czech Republic (Czech Republic); Oliver, R.; Ballester, J. L. [Universitat de les Illes Balears. Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-08-20

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  19. Seismic Behavior and Force-Displacement Characterization of Neotype Column-Slab High Piers

    Directory of Open Access Journals (Sweden)

    YanQun Zhou

    2014-01-01

    Full Text Available The seismic behavior and plasticity spreading of a neotype column-slab high pier are researched in this paper. Four scale model tests of a web slab with two boundary columns are carried out under cyclic inelastic lateral displacements simulating seismic response. The test results show that the neotype column-slab high pier has strong and stable bearing capacity, good ductility, and energy dissipation capacity. The experimental values pertaining to the spread of plasticity are derived. An approach for deriving the spread of plasticity analytically is deduced and applied to the four tests. This method accurately assesses a pier’s spread of plasticity for most ductility levels. At nearly all ductility levels, the mean difference between analytical assessments of the spread of plasticity and results from 4 large-scale tests is 12% with a 9% coefficient of variation.

  20. Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs

    Science.gov (United States)

    Paul, Thomas; Rockstuhl, Carsten; Menzel, Christoph; Lederer, Falk

    2008-05-01

    We show that a longitudinal (Goos-Hänchen) and a transverse (Imbert-Fedorov) beam displacement can be observed upon total internal reflection at two-dimensional photonic crystal slabs. By inspecting only the dispersion relation of the photonic crystal we derive qualitative criteria for the direction of the beam shift. Furthermore, it will be shown that the beam shift can be strongly enhanced at particular angles of incidence where Fabry-Pérot resonances of the slab are excited. The Renard model, which predicts the strength of the shifts based on the Poynting vector in the totally reflecting medium, has been adapted to quantitatively analyze the beam shift.

  1. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    Science.gov (United States)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  2. Stalling HIV through social marketing: prospects in Pakistan.

    Science.gov (United States)

    Husain, Sara; Shaikh, Babar T

    2005-07-01

    Over the last two decades HIV/AIDS has evolved from a series of interesting case-reports to a growing epidemic that threatens the entire world. It is feared to cause devastation among large pockets of populations and may roll back more than thirty years of public health achievements. This killer disease has been more amenable to behavioral change than by provision of curative services and attempts are being made to educate the public about this threat. Various techniques of promotion have been tried through out the world including television dramas/soaps, mass media and school curricula. Social marketing is an evolving strategy used to influence human behavior and choices. By using the principles of marketing and promoting behavior as a product, social marketers attempt to understand the dynamics of human behaviour and devise messages and products to change, modify, accept or reject unsafe behaviors or practices. Thus, social marketers provide an effective force to combat the spread of HIV and may serve to be invaluable allies in health promotion efforts. In a complex and diversified cultural milieu of Pakistan, social marketing can have a significant impact on health determinants and the conditions that will facilitate the adoption of health-oriented behaviors and practices. This paper gives an account of the elements needed for the success of a health promotion strategy adopted in a developing country and makes a case for social marketing to be adopted as the lead strategy for stalling HIV/AIDS in Pakistan.

  3. Cow preference and usage of free stalls compared with an open pack area.

    Science.gov (United States)

    Fregonesi, J A; von Keyserlingk, M A G; Weary, D M

    2009-11-01

    Free-stall housing systems are designed to provide a comfortable and hygienic lying area, but some aspects of stall design may restrict usage by cows. The aim of this study was to compare free-stall housing with a comparable lying area (open pack) without stall partitions. We predicted that cows would spend more time lying down and standing in the bedded area when provided access to an open pack than when in free stalls. We also predicted that cows would spend less time standing outside of the lying area and less time perching with the front 2 hooves in the lying area when using the open pack. Groups (n = 8) of 12 cows each were provided access to either the open pack or stalls. After a 7-d adaptation period, each group was tested sequentially in the 2 treatments for 3 d each. This no-choice phase was followed by an 8-d choice phase during which cows had simultaneous access to both treatments. During the no-choice phase, cows spent more time lying down (13.03 +/- 0.24 vs. 12.48 +/- 0.24 h/d) and standing with all 4 hooves in the bedded area (0.96 +/- 0.12 vs. 0.41 +/- 0.12 h/d) of the open pack than in the stalls. During the choice phase, cows spent more time lying down (7.20 +/- 0.29 vs. 5.86 +/- 0.29 h/d) and standing with all 4 hooves in the bedded area (0.58 +/- 0.07 vs. 0.12 +/- 0.07 h/d) of the open pack than in the stalls. In both the no-choice (1.66 +/- 0.24 vs. 0.55 +/- 0.24 h/d) and choice (0.55 +/- 0.07 vs. 0.29 +/- 0.07 h/d) phases, cows spent more time standing with just 2 hooves in the stalls than in the open pack. In conclusion, cows spent more time lying and standing with all 4 hooves in the bedded open pack than in the stalls. Additionally, cows spent more time standing in the alley and standing with just the front 2 hooves on the bedding in the stalls than in the bedded open pack; increased standing time on wet concrete is a known risk factor for lameness.

  4. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    Science.gov (United States)

    Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália

    2017-09-01

    This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  5. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    Directory of Open Access Journals (Sweden)

    Bilčík Juraj

    2017-09-01

    Full Text Available This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  6. Dynamic stall characterization using modal analysis of phase-averaged pressure distributions

    Science.gov (United States)

    Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan

    2017-11-01

    Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.

  7. High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression

    Science.gov (United States)

    Matalanis, Claude; Bowles, Patrick; Lorber, Peter; Crittenden, Thomas; Glezer, Ari; Schaeffler, Norman; Min, Byung-Young; Jee, Solkeun; Kuczek, Andrzej; Wake, Brian

    2016-01-01

    This work documents high-speed wind tunnel experiments conducted on a pitching airfoil equipped with an array of combustion-powered actuators (COMPACT). The main objective of these experiments was to demonstrate the stall-suppression capability of COMPACT on a high-lift rotorcraft airfoil, the VR-12, at relevant Mach numbers. Through dynamic pressure measurements at the airfoil surface it was shown that COMPACT can positively affect the stall behavior of the VR-12 at Mach numbers up to 0.4. Static airfoil results demonstrated 25% and 50% increases in post-stall lift at Mach numbers of 0.4 and 0.3, respectively. Deep dynamic stall results showed cycle-averaged lift coefficient increases up to 11% at Mach 0.4. Furthermore, it was shown that these benefits could be achieved with relatively few pulses during down-stroke and with no need to pre-anticipate the stall event. The flow mechanisms responsible for stall suppression were investigated using particle image velocimetry.

  8. Experimental Investigation of Stall Inception Mechanisms of Low Speed Contra Rotating Axial Flow Fan Stage

    Directory of Open Access Journals (Sweden)

    Tegegn Dejene Toge

    2015-01-01

    Full Text Available The present paper is an attempt in understanding the stall inception mechanism in a low speed, contra rotating axial flow fan stage, using wavelet transforms. The rotors used in this study have relatively large tip gap (about 3% of the blade span and aspect ratio of 3. The study was carried out near stall and at stall mass flow conditions for different speed ratios of rotor-2 to rotor-1. Unsteady pressure data from the casing wall mounted sensors are used to understand the stall inception mechanism. The wavelet transform clearly indicates that stall inception occurs mainly through long length scale disturbances for both rotors. It also reveals that short length disturbances occur simultaneously or intermittently in the case of rotor-1. The analysis shows the presence of a strong modal disturbance with 25–80% of the rotor frequency in the case of rotor-1 at the stall mass flow for all the speed combinations studied. The most interesting thing observed in the present study is that the frequency amplitude of the disturbance level is very small for both rotors.

  9. Strength calculation for fiber concrete slabs under high velocity impact

    Science.gov (United States)

    Artem, Ustinov; Kopanica, Dmitry; Belov, Nikolay; Jugov, Nikolay; Jugov, Alexey; Koshko, Bogdan; Kopanitsa, Georgy

    2017-01-01

    The paper presents results of the research on strength of concrete slabs reinforced with steel fiber and tested under a high velocity impact. Mathematical models are proposed to describe the behavior of continua with a complex structure with consideration of porosity, non-elastic effects, phase transformations and dynamic destructions of friable and plastic materials under shock wave impact. The models that describe the behavior of structural materials were designed in the RANET-3 CAD software system. This allowed solving the tasks of hit and explosion in the full three-dimensional statement using finite elements method modified for dynamic problems. The research results demonstrate the validity of the proposed mathematical model to calculate stress-strain state and fracture of layered fiber concrete structures under high velocity impact caused by blast wave.

  10. Surgical and nonsurgical management of sagittal slab fractures of the third carpal bone in racehorses: 32 cases (1991-2001).

    Science.gov (United States)

    Kraus, Beth M; Ross, Michael W; Boston, Raymond C

    2005-03-15

    To compare results (ie, return to racing and earnings per race start) of surgical versus nonsurgical management of sagittal slab fractures of the third carpal bone in racehorses. Retrospective study. 32 racehorses (19 Thoroughbreds, 11 Standardbreds, and 2 Arabians). Medical records and radiographs were reviewed to obtain information regarding signalment and treatment. Follow-up information was obtained from race records. Robust regression analysis was performed to evaluate earnings per start in horses that raced at least once before and after injury. 22 (69%) horses raced at least once after treatment of the fracture. All 7 horses treated by means of interfragmentary compression raced after treatment, and horses that underwent interfragmentary compression had significantly higher earnings per start after the injury than did horses treated without surgery. Eight of 9 horses treated by means of arthroscopic debridement of the damaged cartilage and bone raced after treatment, but only 7 of 16 horses treated without surgery (ie, stall rest) were able to return to racing after treatment. Results suggest that racehorses with sagittal slab fractures of the third carpal bone have a favorable prognosis for return to racing after treatment. Horses treated surgically were more likely to race after treatment than were horses treated without surgery.

  11. Bayesian inference for spatio-temporal spike-and-slab priors

    DEFF Research Database (Denmark)

    Andersen, Michael Riis; Vehtari, Aki; Winther, Ole

    2017-01-01

    a transformed Gaussian process on the spike-and-slab probabilities. An expectation propagation (EP) algorithm for posterior inference under the proposed model is derived. For large scale problems, the standard EP algorithm can be prohibitively slow. We therefore introduce three different approximation schemes...

  12. Cenozoic tectonics of Western North America controlled by evolving width of Farallon slab

    NARCIS (Netherlands)

    Schellart, W. P.; Stegman, D. R.; Farrington, R. J.; Freeman, J.A.; Moresi, L.

    2010-01-01

    Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them.

  13. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes) are predo......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible...

  14. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. II: Multivariate spike and slab priors for marker effects and derivation of approximate Bayes and fractional Bayes factors for the complete family of models.

    Science.gov (United States)

    Martínez, Carlos Alberto; Khare, Kshitij; Banerjee, Arunava; Elzo, Mauricio A

    2017-03-21

    This study corresponds to the second part of a companion paper devoted to the development of Bayesian multiple regression models accounting for randomness of genotypes in across population genome-wide prediction. This family of models considers heterogeneous and correlated marker effects and allelic frequencies across populations, and has the ability of considering records from non-genotyped individuals and individuals with missing genotypes in any subset of loci without the need for previous imputation, taking into account uncertainty about imputed genotypes. This paper extends this family of models by considering multivariate spike and slab conditional priors for marker allele substitution effects and contains derivations of approximate Bayes factors and fractional Bayes factors to compare models from part I and those developed here with their null versions. These null versions correspond to simpler models ignoring heterogeneity of populations, but still accounting for randomness of genotypes. For each marker loci, the spike component of priors corresponded to point mass at 0 in R S , where S is the number of populations, and the slab component was a S-variate Gaussian distribution, independent conditional priors were assumed. For the Gaussian components, covariance matrices were assumed to be either the same for all markers or different for each marker. For null models, the priors were simply univariate versions of these finite mixture distributions. Approximate algebraic expressions for Bayes factors and fractional Bayes factors were found using the Laplace approximation. Using the simulated datasets described in part I, these models were implemented and compared with models derived in part I using measures of predictive performance based on squared Pearson correlations, Deviance Information Criterion, Bayes factors, and fractional Bayes factors. The extensions presented here enlarge our family of genome-wide prediction models making it more flexible in the

  15. Exploring farmers’ seasonal and full year adoption of stall feeding of livestock in Tigrai region, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hadush Muuz

    2017-01-01

    Full Text Available Adoption of stall feeding (SF of livestock was assessed in northern Ethiopia based on a household survey conducted in 2015. The study covered 21 communities in Tigrai to account for differences in agroecology. The purpose of this study was to understand the driving factors of full or seasonal SF adoption and its intensity. A Heckman selection model was used to estimate adoption and extent of adoption based on a model of technology adoption within an agricultural household framework, and Poisson Model for explaining the number of SF adopting seasons. The descriptive results indicate that 36% of the farmers were actually practicing SF in a full year whereas 55.6% were seasonal adopters in the study area. Empirical results of this study showed that our result is in favor of the Boserupian hypothesis indicating that small grazing land and large exclosure are associated with a higher probability of use of SF and with a higher number of SF adopting seasons. In a similar vein, small average village farm size stimulated SF adoption and adopting seasons, Availability of labor and a number of breed cows significantly increased the probability of using SF by 0.01% and 66% respectively. While animal shock had a marginal effect of 14%, factors such as access to information and early exposure increased SF adoption by about 18% and 6%. Similarly, the positive marginal effect of real milk price is 15%. However, SF appears to be less attractive to those farmers with more herd size and less crop residue.

  16. Hypothesis for Cretaceous rifting of east Gondwana caused by subducted slab capture

    Science.gov (United States)

    Luyendyk, Bruce P.

    1995-04-01

    In the process of subducted slab capture, a spreading ridge approaches subparallel to a subduction zone following the trailing edge of a downgoing plate. Eventually the downgoing plate is too young and small to subduct, and spreading stops. The spreading ridge stalls many tens of kilometres outboard of the subduction zone. The subducted plate welds to the outboard plate across the dormant spreading center and is captured by it. The captured plate then acquires the motion of the plate it welded to. In the southwest Pacific the Pacific-Phoenix ridge approached the east Gondwana margin as the Phoenix plate subducted beneath New Zealand, the Chatham Rise and Campbell Plateau, the Lord Howe Rise (collectively, Zealandia), and Marie Byrd Land in Cretaceous time. Spreading and subduction shut down here between 110 and 105 Ma, and some sections of the Phoenix plate became welded to (captured by) the Pacific plate. Pacific plate northward motion began in Aptian time, pulling the captured subducted microplates with it. This movement exerted a basal traction on the overlying east Gondwana margin and resulted in extension of Zealandia and Marie Byrd Land. Continued Pacific northward motion rifted Zealandia from Marie Byrd Land at about 85 Ma.

  17. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  18. Markov chain solution of photon multiple scattering through turbid slabs.

    Science.gov (United States)

    Lin, Ying; Northrop, William F; Li, Xuesong

    2016-11-14

    This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.

  19. CFRP strengthened openings in two-way concrete slabs

    DEFF Research Database (Denmark)

    Enochsson, O.; Lundqvist, J.; Täljsten, Björn

    2006-01-01

    Rehabilitation and strengthening of concrete structures with externally bonded fibre reinforced polymers (FRPs) has been a viable technique for at least a decade. An interesting and useful application is strengthening of slabs or walls where openings are introduced. In these situations, FRP sheets....... In this paper, laboratory tests on I I slabs with openings, loaded with a distributed load are presented together with analytical and numerical evaluations. Six slabs with openings have been strengthened with carbon fibre reinforced polymers (CFRPs) sheets. These slabs are compared with traditionally steel...

  20. Slab thickness tuning approach for solid-state strong coupling between photonic crystal slab nanocavity and a quantum dot.

    Science.gov (United States)

    Chen, Gengyan; Liu, Jing-Feng; Jiang, Haoxiang; Zhuo, Xiao-Lu; Yu, Yi-Cong; Jin, Chongjun; Wang, Xue-Hua

    2013-04-23

    The quality factor and mode volume of a nanocavity play pivotal roles in realizing the strong coupling interaction between the nanocavity mode and a quantum dot. We present an extremely simple method to obtain the mode volume and investigate the effect of the slab thickness on the quality factor and mode volume of photonic crystal slab nanocavities. We reveal that the mode volume is approximatively proportional to the slab thickness. As compared with the previous structure finely optimized by introducing displacement of the air holes, via tuning the slab thickness, the quality factor can be enhanced by about 22%, and the ratio between the coupling coefficient and the nanocavity decay rate can be enhanced by about 13%. This can remarkably enhance the capability of the photonic crystal slab nanocavity for realizing the strong coupling interaction. The slab thickness tuning approach is feasible and significant for the experimental fabrication of the solid-state nanocavities.

  1. Behavior of Partially Restrained Reinforced Concrete Slabs.

    Science.gov (United States)

    1986-09-01

    1assiied 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL DO FORM 1473, 84 MAR 83 APR edition may be used untI...Takehira, Derecho , and Iqbal [34] followed a similar approach to arrive at recommended design criteria for 1 the Naval Facilities Engineering Command...Compression in./in. Slab STI ST2 ST3 SSB - ___2 SB3_ CT _CB3 1 BC+ - C- CD+ - AB+ 0.0005 0.009 2 BC+ D+ - DE + AB+ AB+ 3 BC+ DE + CD+ D+ AB+ AB+ 0.011

  2. STRUCTURE FORMATION IN FOUNDATION SLAB CONCRETE

    Directory of Open Access Journals (Sweden)

    V. V. Kovalenko

    2016-04-01

    Full Text Available Purpose. The work involves identifying the dependence of structural and mechanical properties of the concrete on the composition of used modifier additives, the nature of changes of structural and mechanical properties depending on the period of concrete hardening of test and modified samples. Methodology. The applied microstructural, fractographic, microprobe analyses and physico-mechanical tests revealed the required dependencies. Findings. The microstructure of the cement stone under equal conditions of concrete mix selection depends on the composition of used raw materials and production technology. This paper investigates the structural changes in the setting time of hard mixture concrete and effect of component parts of the complex modifier additive PLKP (produced by «Logia», Dnepropetrovsk on morphology, dispersion and chemical composition of the cement stone, as well as the mechanical characteristics of concrete for the foundation slab. The study of the structural and physical-mechanical characteristics of the test samples and modified concrete at various hardening stages showed that the use Ukrainian hyper-plasticizer PLKP contributes to the formation of nano-structured concrete. The addition of hardening accelerators to the super-plasticizer additive reduces the diameter of crystal whiskers, increases the structural homogeneity and stability and improves the complex of the concrete mechanical characteristics. Application of new PLKP polycarboxylate additives in the production of concrete mixtures for the foundation slab allows eliminating the steaming from the foundation slab production technology. The absence of salt component in the additive improves the concrete durability. Originality. The paper showed that modification of the concrete with complex additive PLKP facilitates the formation of the most homogeneous structure of cement stone, which consists of compact crystals surrounded by fibrous crystals that are tightly

  3. Caracterização do microambiente em secção transversal de um galpão do tipo "free-stall" orientado na direção norte-sul Environment characterization in transversal direction in a free-stall housing oriented to north-south direction

    Directory of Open Access Journals (Sweden)

    Alessandro T. Campos

    2004-04-01

    Full Text Available O trabalho teve o objetivo de caracterizar o microambiente climático das baias de um galpão de confinamento para gado leiteiro, modelo "free-stall", no sentido transversal da instalação. O "free-stall" é orientado na direção norte-sul, localizado em Marechal Cândido Rondon, região Oeste do Paraná, com capacidade para abrigar 40 vacas em lactação (40 baias. Visando à determinação do Índice de Temperatura do Globo e Umidade (ITGU e da Carga Térmica de Radiação (CTR, foram instalados quatro globos negros, no centro de baias dispostas no sent ido transversal, dispondo dois globos no lado oeste e dois globos no lado leste (separados pelo corredor de alimentação. Lateralmente ao galpão, no lado leste, havia vegetação a 4 m da instalação, que promovia sombreamento nas primeiras horas do dia. Pode-se concluir que, nas primeiras horas do dia, não há diferença significativa entre os valores de ITGU e CTR encontrados, indicando que o sombreamento, devido à vegetação, foi capaz de amenizar os efeitos da radiação solar. Às 17 h 30 min, verificou-se que há ocorrência de maiores valores, tanto de ITGU quanto de CTR, nas baias localizadas no lado oeste do "free-stall".This work aimed to characterize the microclimatic conditions of the stalls of a free-stall model confinement building for dairy cattle in the transversal direction of the installation. Free-stall building was oriented to north-south direction, located in Marechal Cândido Rondon, west of Paraná State -Brazil, with a capacity of 40 dairy cows (40 stalls. In order to determine the Black-Globe-Humidity Index (BGHI and Radiant Heat Load (RHL, four black globes were installed in the center of stalls disposed in the transversal direction, disposing two globes in the west side and two globes in the east side (separated by the feed alley. At the building sidelong, east side, there was a four meter distant vegetation, that promoted shading in the first hours of the day

  4. Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site (1)

    Science.gov (United States)

    A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Of particular importance is the influence of a slab. Therefore, EPA/ORD is funding a research program with the primary...

  5. Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties

    Science.gov (United States)

    Schweizer, Jürg; Reuter, Benjamin; van Herwijnen, Alec; Richter, Bettina; Gaume, Johan

    2016-11-01

    complex slab-weak layer interaction, it also showed some deficiencies of the modelled metrics of instability - calling for an improved representation of the mechanical properties.

  6. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil

    Directory of Open Access Journals (Sweden)

    Zhao Guoqing

    2014-10-01

    Full Text Available Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k − ω shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally, a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters (forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies (the best lift-drag ratio at F+ = 2.0 and jet angles (40° or 75° when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by 26.5% in comparison with the single point control case.

  7. Analysis of the grid connection sequence of stall- and pitch-controlled wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Quinonez-Varela, G.; Cruden, A.; Anaya-Lara, O.; Tumilty, R.; McDonald, J.R. [Univ. of Strathclyde, Inst. for Energy and Environment (United Kingdom)

    2007-11-15

    The realistic modelling of wind turbines and wind farms is crucial in any form of power system analysis, and consequently, knowledge about their electrical characteristics and performance is also vital. One of the operating conditions producing major transient interaction between a wind turbine generator and the local grid is the grid connection sequence itself, which is particularly significant in fixed-speed turbines. This paper presents experimental measurements of the grid connection sequence of both types of fixed speed wind turbines, i.e. stall- and pitch-controlled via a soft-start device performed at two existing wind farms. Some of the results evidenced significant discrepancies between the actual soft-start operating intervals and those stated/suggested by open literature. The discussion of the paper focuses on highlighting the importance of accurate modelling of the grid connection sequence in order to avoid erroneous estimations of the interaction between the turbine and the grid during this operating state, or inappropriate design of the grid connection. (au)

  8. Experimental and Numerical Investigation on The Punching Behavior of High Strength R.C Flat Slab Under Repeated Load

    Directory of Open Access Journals (Sweden)

    Nameer Abdul-Ameer Alwash

    2017-05-01

    Full Text Available In this paper, the punching behavior of square simply supported reinforced concrete flat slabs was experimentally and numerically investigated. Four models of reinforced concrete flat slabs were constructed and tested. The test variables were type of concrete and load (four models: High Strength Concrete flat slabs under monotonicload or repeated load (two models and Normal Strength Concreteflat slabs under monotonicload or repeatedload (two models. The results showed that the punching shear strength of flat slabmodels increased up to 60% with the use of HSC. While, repeated load reduces the punching shear strength of flat slabmodels by about (34.4%-10%; it depends on the level of loading, number of cycles and type of concrete. Three-dimensional (3D nonlinear finite element (NFE analysis has been carried out to conduct the numerical investigation of the general behavior of HSC and NSC flat slab models. The ABAQUS model succeeded to an acceptable degree in predicting the structural behavior of the analyzed flat slabswith average of differences of about 5% between the predicted and experimental ultimate load

  9. Slab Profile Encoding (PEN) for Minimizing Slab Boundary Artifact in 3D Diffusion-Weighted Multislab Acquisition*

    Science.gov (United States)

    Van, Anh T; Aksoy, Murat; Holdsworth, Samantha J; Kopeinigg, Daniel; Vos, Sjoerd B; Bammer, Roland

    2014-01-01

    Purpose To propose a method for mitigating slab boundary artifacts in 3D multislab diffusion imaging with no or minimal increases in scan time. Methods The multislab acquisition was treated as parallel imaging acquisition where the slab profiles acted as the traditional receiver sensitivity profiles. All the slabs were then reconstructed simultaneously along the slab direction using Cartesian-based sensitivity encoding (SENSE) reconstruction. The slab profile estimation was performed using either a Bloch simulation or a calibration scan. Results Both phantom and in vivo results showed negligible slab boundary artifacts after reconstruction using the proposed method. The performance of the proposed method is comparable to the state-of-the-art slab combination method without the scan time penalty that depends on the number of acquired volumes. The obtained g-factor map of the SENSE reconstruction problem showed a maximum g-factor of 1.7 in the region of interest. Conclusion We proposed a novel method for mitigating slab boundary artifacts in 3D diffusion imaging by treating the multislab acquisition as a parallel imaging acquisition and reconstructing all slabs simultaneously using Cartesian SENSE. Unlike existing methods, the scan time increase, if any, does not scale with the number of image volumes acquired. PMID:24691843

  10. Slab profile encoding (PEN) for minimizing slab boundary artifact in three-dimensional diffusion-weighted multislab acquisition.

    Science.gov (United States)

    Van, Anh T; Aksoy, Murat; Holdsworth, Samantha J; Kopeinigg, Daniel; Vos, Sjoerd B; Bammer, Roland

    2015-02-01

    To propose a method for mitigating slab boundary artifacts in three-dimensional (3D) multislab diffusion imaging with no or minimal increases in scan time. The multislab acquisition was treated as parallel imaging acquisition where the slab profiles acted as the traditional receiver sensitivity profiles. All the slabs were then reconstructed simultaneously along the slab direction using Cartesian-based sensitivity encoding (SENSE) reconstruction. The slab profile estimation was performed using either a Bloch simulation or a calibration scan. Both phantom and in vivo results showed negligible slab boundary artifacts after reconstruction using the proposed method. The performance of the proposed method is comparable to the state-of-the-art slab combination method without the scan time penalty that depends on the number of acquired volumes. The obtained g-factor map of the SENSE reconstruction problem showed a maximum g-factor of 1.7 in the region of interest. We proposed a novel method for mitigating slab boundary artifacts in 3D diffusion imaging by treating the multislab acquisition as a parallel imaging acquisition and reconstructing all slabs simultaneously using Cartesian SENSE. Unlike existing methods, the scan time increase, if any, does not scale with the number of image volumes acquired. © 2014 Wiley Periodicals, Inc.

  11. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab.

    Science.gov (United States)

    Liu, Lijun; Stegman, Dave R

    2012-02-15

    The origin of the Steens-Columbia River (SCR) flood basalts, which is presumed to be the onset of Yellowstone volcanism, has remained controversial, with the proposed conceptual models involving either a mantle plume or back-arc processes. Recent tomographic inversions based on the USArray data reveal unprecedented detail of upper-mantle structures of the western USA and tightly constrain geodynamic models simulating Farallon subduction, which has been proposed to influence the Yellowstone volcanism. Here we show that the best-fitting geodynamic model depicts an episode of slab tearing about 17 million years ago under eastern Oregon, where an associated sub-slab asthenospheric upwelling thermally erodes the Farallon slab, leading to formation of a slab gap at shallow depth. Driven by a gradient of dynamic pressure, the tear ruptured quickly north and south and within about two million years covering a distance of around 900 kilometres along all of eastern Oregon and northern Nevada. This tear would be consistent with the occurrence of major volcanic dikes during the SCR-Northern Nevada Rift flood basalt event both in space and time. The model predicts a petrogenetic sequence for the flood basalt with sources of melt starting from the base of the slab, at first remelting oceanic lithosphere and then evolving upwards, ending with remelting of oceanic crust. Such a progression helps to reconcile the existing controversies on the interpretation of SCR geochemistry and the involvement of the putative Yellowstone plume. Our study suggests a new mechanism for the formation of large igneous provinces.

  12. Has Uganda experienced any stalled fertility transitions? Reflecting on the last four decades (1973-2011).

    Science.gov (United States)

    Kabagenyi, Allen; Reid, Alice; Rutaremwa, Gideon; Atuyambe, Lynn M; Ntozi, James P M

    2015-09-23

    Persistent high fertility is associated with mother and child mortality. While most regions in the world have experienced declines in fertility rates, there are conflicting views as to whether Uganda has entered a period of fertility transition. There are limited data available that explicitly detail the fertility trends and patterns in Uganda over the last four decades, from 1973 to 2011. Total fertility rate (TFR) is number of live births that a woman would have throughout her reproductive years if she were subject to the prevailing age specific fertility patterns. The current TFR for Uganda stands at 6.2 children born per woman, which is one of the highest in the region. This study therefore sought to examine whether there has been a fertility stall in Uganda using all existing Demographic Health Survey data, to provide estimates for the current fertility levels and trends in Uganda, and finally to examine the demographic and socioeconomic factors responsible for fertility levels in Uganda. This is a secondary analysis of data from five consecutive Ugandan Demographic Health Surveys (UDHS); 1988/1989, 1995, 2000/2001, 2006 and 2011. Using pooled data to estimate for fertility levels, patterns and trends, we applied a recently developed fertility estimation approach. A Poisson regression model was also used to analyze fertility differentials over the study period. Over the studied period, fertility trends and levels fluctuated from highs of 8.8 to lows of 5.7, with no specific lag over the study period. These findings suggest Uganda is at the pre-transitional stage, with indications of imminent fertility rate reductions in forthcoming years. Marital status remained a strong predictor for number of children born, even after controlling for other variables. This study suggests there is no evidence of a fertility stall in Uganda, but demonstrates an onset of fertility transition in the country. If this trend continues, Uganda will experience a low fertility rate in

  13. Compositional mantle layering revealed by slab stagnation at ~1000-km depth.

    Science.gov (United States)

    Ballmer, Maxim D; Schmerr, Nicholas C; Nakagawa, Takashi; Ritsema, Jeroen

    2015-12-01

    Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection.

  14. Seismic capacity evaluation of post-tensioned concrete slab-column frame buildings by pushover analysis

    Directory of Open Access Journals (Sweden)

    Nuttawut Intaboot

    2006-09-01

    Full Text Available Seismic capacity evaluation of post-tensioned concrete slab-column frame buildings designed only for gravity loads and wind load is presented. The series of nonlinear pushover analyses are carried out by using the computer program SAP2000. An equivalent frame model with explicit transverse torsional members is introduced for modeling slab-column connections. The analyses are carried out by ollowingguidelines in ATC-40 and FEMA-273/274, where several important factors such as P-Delta effects, strength and stiffness contributions from masonry infill walls, and foundation flexibility are well taken into account. The pushover analysis results, presented in the form of capacity curves, are compared with the seismic demand from the expected earthquake ground motion for Bangkok and then the seismic performance can be evaluated. Numerical examples are performed on the 9- and 30-storey post-tension flat-plate buildings in Bangkok. The results show that in general post-tensioned concrete slab-column frame buildings without shear wall possess relatively low lateral stiffness, low lateral strength capacity, and poor inelastic response characteristics. The evaluation also shows that the slab-column frame combined with the shear wall system and drop panel can increase the strength and stiffness significantly.

  15. Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite

    Science.gov (United States)

    Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.

    2015-01-01

    Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

  16. Temperature distributions in pavement and bridge slabs heated by using vertical ground-source heat pump systems - doi: 10.4025/actascitechnol.v35i4.15712

    Directory of Open Access Journals (Sweden)

    Asım Balbay

    2013-10-01

    Full Text Available Temperature distribution which occurs in pavement and bridge slabs heated for de-icing and snow melting during cold periods is determined by using vertical ground-source heat pump (GSHP systems with U-tube ground heat exchanger (GHE. The bridge and pavement models (slabs for de-icing and snow melting were constructed. A three-dimensional finite element model (FEM was developed to simulate temperature distribution of bridge slab (BS and pavement slab (PS. The temperature distribution simulations of PS and BS were conducted numerically by computational fluid dynamics (CFD program named ‘Fluent’. Congruence between the simulations and experimental data was determined.   

  17. Dissipative instabilities in a partially ionised prominence plasma slab. II. The effect of compressibility

    Science.gov (United States)

    Mather, J. F.; Ballai, I.; Erdélyi, R.

    2018-02-01

    This study deals with the dissipative instability that appears in a compressible partially ionised plasma slab embedded in a uniform magnetic field, modelling the state of the plasma in solar prominences. In the partially ionised plasma, the dominant dissipative effect is the Cowling resistivity. The regions outside the slab (modelling the solar corona) are fully ionised, and the dominant mechanism of dissipation is viscosity. Analytical solutions to the extended magnetohydrodynamic (MHD) equations are found inside and outside of the slab and solutions are matched at the boundaries of the slab. The dispersion relation is derived and solutions are found analytically in the slender slab limit, while the conditions necessary for the appearance of the instability is investigated numerically for the entire parameter space. Our study is focussed on the effect of the compressibility on the generation and evolution of instabilities. We find that compressibility reduces the threshold of the equilibrium flow, where waves can be unstable, to a level that is comparable to the internal cusp speed, which is of the same order of flow speeds that are currently observed in solar prominences. Our study addresses only the slow waves, as these are the most likely perturbations to become unstable, however the time-scales of the instability are found to be rather large ranging from 105-107 s. It is determined that the instability threshold is further influenced by the concentration of neutrals and the strength of the viscosity of the corona. Interestingly, these two latter aspects have opposite effects. Our numerical analysis shows that the interplay between the equilibrium flow, neutrals and dispersion can change considerably the nature of waves. Despite employing a simple model, our study confirms the necessity of consideration of neutrals when discussing the stability of prominences under solar conditions.

  18. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  19. Hybrid SN Laplace Transform Method For Slab Lattice Calculations

    International Nuclear Information System (INIS)

    Segatto, Cynthia F.; Vilhena, Marco T.; Zani, Jose H.; Barros, Ricardo C.

    2008-01-01

    In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this paper we describe a hybrid discrete ordinates (S N ) method for slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. We use special fuel-moderator interface conditions based on an approximate angular flux interpolation analytical method and the Laplace transform (LTS N ) numerical method to calculate the neutron flux distribution and the thermal disadvantage factor. We present numerical results for a range of typical model problems. (authors)

  20. Environmental Impact Optimization of Reinforced Concrete Slab Frame Bridges

    DEFF Research Database (Denmark)

    Yavari, Majid Solat; Du, Guangli; Pacoste, Costin

    2017-01-01

    The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environmental-friendly design. The case study bridge used in this work was also investigated in a previous paper...... focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both of these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive Life Cycle Assessment (LCA......) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements...

  1. Stall Margin Improvement in a Centrifugal Compressor through Inducer Casing Treatment

    Directory of Open Access Journals (Sweden)

    V. V. N. K. Satish Koyyalamudi

    2016-01-01

    Full Text Available The increasing trend of high stage pressure ratio with increased aerodynamic loading has led to reduction in stable operating range of centrifugal compressors with stall and surge initiating at relatively higher mass flow rates. The casing treatment technique of stall control is found to be effective in axial compressors, but very limited research work is published on the application of this technique in centrifugal compressors. Present research was aimed to investigate the effect of casing treatment on the performance and stall margin of a high speed, 4 : 1 pressure ratio centrifugal compressor through numerical simulations using ANSYS CFX software. Three casing treatment configurations were developed and incorporated in the shroud over the inducer of the impeller. The predicted performance of baseline compressor (without casing treatment was in good agreement with published experimental data. The compressor with different inducer casing treatment geometries showed varying levels of stall margin improvement, up to a maximum of 18%. While the peak efficiency of the compressor with casing treatment dropped by 0.8%–1% compared to the baseline compressor, the choke mass flow rate was improved by 9.5%, thus enhancing the total stable operating range. The inlet configuration of the casing treatment was found to play an important role in stall margin improvement.

  2. Accelerated slab replacement using temporary precast panels and self-consolidating concrete : [summary].

    Science.gov (United States)

    2016-06-01

    Researchers at Florida State University demonstrated the feasibility of using precast reinforced concrete panels to temporarily fill slab removal pits. The precast slabs can be driven on so traffic lanes can be open during the day, and new slab casti...

  3. Petrology of the Miocene igneous rocks in the Altar region, main Cordillera of San Juan, Argentina. A geodynamic model within the context of the Andean flat-slab segment and metallogenesis

    Science.gov (United States)

    Maydagán, Laura; Franchini, Marta; Chiaradia, Massimo; Pons, Josefina; Impiccini, Agnes; Toohey, Jeff; Rey, Roger

    2011-07-01

    The Altar porphyry Cu-(Au-Mo) deposit (31° 29' S, 70° 28' W) is located in the Andean Main Cordillera of San Juan Province (Argentina), in the southern portion of the flat-slab segment (28-33°S), 25 km north of the world-class porphyry Cu-Mo deposits of Los Pelambres and El Pachón. Igneous rocks in the area have been grouped into the Early Miocene Lower Volcanic Complex -composed of intercalations of lava flows and thin volcaniclastic units that grade upwards to a thick massive tuff- and the Middle-Late Miocene Upper Subvolcanic Suite that consists of a series of porphyritic stocks and dikes and magmatic and hydrothermal breccias. The Lower Volcanic Complex represents an Early Miocene arc (20.8 Ma ± 0.3 Ma; U-Pb age) erupted over a steep subduction zone. Their magmas equilibrated with an assemblage consisting of plagioclase- and pyroxene-dominated mineral residues, and experienced fractional crystallization and crustal contamination procesess. Their radiogenic signatures are interpreted to indicate conditions of relatively thickened continental crust in Altar during the Early Miocene, compared to the south and west. The Upper Subvolcanic Suite represents the development of a Middle-Late Miocene arc (11.75 ± 0.24 Ma, 10.35 ± 0.32 Ma; U-Pb ages) emplaced over a shallow subduction zone. A magmatic gap in Altar area betwen the Lower Volcanic Complex and Upper Subvolcanic Suite correlates with documented higher rates of compression in this period, that may have favored the storage of the USS magmas in cameras within the crust. Magmas of the Upper Subvolcanic Suite require a hornblende-bearing residual mineral assemblage that is interpreted to reflect their higher water contents. The relatively uniform radiogenic isotope compositions of the Upper Subvolcanic Suite magmas suggest a homogeneously mixed crust-mantle contribution in the source region. They have similar REE signatures as other fertile intrusives of the flat-slab. The differences observed in their

  4. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  5. Analysis of the impact of an aircraft crash on underground concrete ducts with protective slab at reactor buildings

    International Nuclear Information System (INIS)

    Kotulla, B.; Hansson, V.

    1977-01-01

    In this paper different types of idealization for a dynamic analysis of underground concrete ducts with protective slab are discussed and compared. Ducts between reactor and control building of a nuclear power plant are to be designed for loadings produced by an aircraft crash. These ducts have a height of about three to four meters and are two to eight meters wide. They are designed with a protective slab about 1.5 m in thickness at ground level and with an intermediate layer of earth of about one meter in thickness. An analysis has to take into account the combined effects of a protective slab with a relatively thin intermediate layer of earth and the underlaying duct and layer of soil with the nonlinear behavior of concrete due to cracking. For describing this behavior two types of idealization were made. One type is a continuum type calculation which describes the slab, the soil and the duct by finite elements. In the other type of idealization a model consisting of springs and lumped masses is used. The protective slab and the intermediate layer of earth may be described as a plate on elastic foundation. The behavior of the cracked part of the plate and the part of earth layer beneath and loads transferred to the uncracked part of the slab and the surrounding soil may be described by parallel springs. Spring and mass of this part of the model have to take into account the cracking of the upper slab which leads to a nonlinear characteristic of the spring. In addition the location of the loading in relation to the duct has to be considered. The duct may be described by a beam on elastic foundation which is loaded locally. From this model representative mass and spring have to be determined

  6. Three-dimensional MRI with independent slab excitation and encoding.

    Science.gov (United States)

    Eissa, Amir; Wilman, Alan H

    2012-02-01

    Three-dimensional MRI is typically performed with the same orientation for radiofrequency slab excitation and slab select phase encoding. We introduce independent slab excitation and encoding to create a new degree of freedom in three-dimensional MRI, which is the angular relationship between the prescribed excitation volume and the voxel encoding grid. By separating the directions of slab excitation and slab phase encoding, the independent slab excitation and encoding method allows choice of optimal voxel orientation, while maintaining volume excitation based on anatomic landmarks. The method requires simple pulse sequence modifications and uses standard image reconstruction followed by removal of aliasing and image reformatting. The independent slab excitation and encoding method enables arbitrary oblique angle imaging using fixed voxel encoding gradients to maintain similar eddy current, concomitant field, or magnetic dipole effects independent of the oblique angle of excitation. We apply independent slab excitation and encoding to phase and susceptibility-weighted imaging using fixed voxel encoding aligned with the main magnetic field to demonstrate its value in both standardizing and improving image contrast, when using arbitrary oblique imaging volumes. Copyright © 2011 Wiley Periodicals, Inc.

  7. Precast alternative for flat slab bridges : final report.

    Science.gov (United States)

    2013-10-26

    The cast-in-place (CIP) concrete slab bridge and the hollow core flat slab bridge are two very common bridge types utilized by the : South Carolina Department of Transportation (SCDOT). The CIP bridge is durable but has a long construction time while...

  8. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...

  9. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...

  10. Shear capacity of slabs under a combination of loads

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; Walraven, J.C.

    2013-01-01

    Existing solid slab bridges under a combination of wheel loads and distributed traffic loads sometimes do not fulfil the code requirements for shear. However, reinforced concrete slabs loaded close to the support are subjected to shear stresses which might result in a failure mode of combined

  11. Safety of Premature Loading on Reinforced Concrete Slabs | Shema ...

    African Journals Online (AJOL)

    ... two-thirds of its characteristic strength. The reliability indices of a prematurely loaded reinforced concrete slab in flexure are directly proportional to the characteristic strength of concrete. Therefore in practice, due consideration must be given to early-age strength development in reinforced concrete slabs before loading.

  12. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs

    Science.gov (United States)

    Wu, Xiaohu; Fu, Ceji

    2018-04-01

    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  13. Shear and Anchorage Behaviour of Fire Exposed Hollow Core Slabs

    NARCIS (Netherlands)

    Fellinger, J.H.H.

    2004-01-01

    Hollow core (HC) slabs are made of precast concrete with pretensioned strands. These slabs are popular as floor structures in offices and housing. At ambient conditions, the load bearing capacity can be dominated by four different failure modes, i.e. flexure, anchorage, shear compression and shear

  14. Shear and anchorage behaviour of fire exposed hollow core slabs

    NARCIS (Netherlands)

    Fellinger, J.H.H.; Stark, J.; Walraven, J.C.

    2005-01-01

    The fire resistance of hollow core slabs is currently assessed considering flexural failure only. However, fire tests showed that shear or anchorage failure can also govern the load bearing behaviour. As the shear and anchorage capacity of these slabs rely on the tensile strength of the concrete,

  15. Empirical Strengths of Concrete Roof Slabs After 34 Years Service ...

    African Journals Online (AJOL)

    This paper examines the strengths of four reinforced concrete roof slabs which have been in service for over 34years. The non-destructive test hammer was used to obtain data for the empirical determination of the practical strengths of the existing structures. A total of 110 tests were performed on each slab at 11 points ...

  16. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen

    2018-01-01

    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  17. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  18. Assessment of design parameters of a slab track railway system from a dynamic viewpoint

    Science.gov (United States)

    Steenbergen, M. J. M. M.; Metrikine, A. V.; Esveld, C.

    2007-09-01

    The development of the ballastless slab track, with applications especially on soft soil in combination with loading by high-speed trains, puts several specific engineering demands. One of these is how to provide the required vertical stiffness of the track system. According to the most common approach massive soil improvements are applied. An alternative to this would be to increase the bending stiffness of the slab, e.g. by applying an eccentric reinforcement. Both solutions have consequences for the dynamic track and ground response. In this contribution, the classical model of a beam on elastic half-space subject to a moving load is employed to assess effectiveness of these engineering solutions by analysis of their influence on the generalized dynamic track stiffness. The aim is to minimize the level of slab vibrations, in order to prevent deterioration. The effect of variation of other track properties is also evaluated. It is shown that for high frequencies an increase of the track stiffness is most effective, whereas for low frequencies soil improvement is a better solution. It is further shown that a relatively high track mass generally decreases track vibrations in the relevant frequency domain and that the width of the slab is an important parameter to control the level of track vibrations.

  19. Slab flattening, dynamic topography and normal faulting in the Cordillera Blanca region (northern Peru)

    Science.gov (United States)

    Margirier, A.; Robert, X.; Laurence, A.; Gautheron, C.; Bernet, M.; Simon-Labric, T.; Hall, S. R.

    2015-12-01

    Processes driving surface uplift in the Andes are still debated and the role of subduction processes as slab flattening on surface uplift and relief building in the Andes is not well understood. Some of the highest Andean summits, the Cordillera Blanca (6768 m) and the Cordillera Negra (5187 m), are located above a present flat subduction zone (3-15°S), in northern Peru. In this area, both the geometry and timing of the flattening of the slab are well constrained (Gutscher et al., 1999; Rosenbaum et al., 2005). This region is thus a perfect target to explore the effect of slab flattening on the Andean topography and uplift. We obtained new apatite (U-Th)/He and fission-track ages from three vertical profiles located in the Cordillera Blanca and the Cordillera Negra. Time-temperature paths obtained from inverse modeling of the thermochronological data indicates a Middle Miocene cooling for both Cordillera Negra profiles. We interpret it as regional exhumation in the Cordillera Occidental starting in Middle Miocene, synchronous with the onset of the subduction of the Nazca ridge (Rosenbaum et al., 2005). We propose that the Nazca ridge subduction at 15 Ma and onset of slab flattening in northern Peru drove regional positive dynamic topography and thus enhanced exhumation in the Cordillera Occidental. This study provides new evidence of the impact subduction processes and associated dynamic topography on paleogeography and surface uplift in the Andes.

  20. Cross-field flow and electric potential in a plasma slab

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-08-01

    Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.

  1. Investigating dynamic stall, 3-D and rotational effects on wind turbine blades by means of an unsteady quasi-3D Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece)

    1997-08-01

    The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are `fed` with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded `Dynamic Stall and 3-D Effects` JOU2-CT93-0345 and the ongoing `VISCWIND` JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG)

  2. Shear strength of end slabs of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Cheung, K.C.; Gotschall, H.L.; Liu, T.C.

    1975-01-01

    Prestressed concrete reactor vessels (PCRV's) have been adopted for primary containments in most large high-temperature gas-cooled reactor installations. The most common configuration for PCRVs is a right-vertical cylinder with thick end slabs. In order to assess the integrity of a PCRV it is necessary to predict the ultimate strength of the end slabs. The complexity of the basic mechanism of shear failure in the PCRV end slabs has thus far prohibited the development of a completely analytical solution. However, many experimental investigations of PCRV end slabs have been conducted over the past decade. This information makes it possible to establish empirical formulae for the ultimate strength of PCRV end slabs. The basis and development of an empirical shear-flexure interaction expression is presented. (Auth.)

  3. The gravitational field of an infinite flat slab

    International Nuclear Information System (INIS)

    Fulling, S A; Bouas, J D; Carter, H B

    2015-01-01

    We study Einstein's equations with a localized plane-symmetric source, with close attention to gauge freedom/fixing and to listing all physically distinct solutions. In the vacuum regions there are only two qualitatively different solutions, one curved and one flat; in addition, on each of the two sides there is a free parameter describing how the slab is embedded into the vacuum region. Surprisingly, for a generic slab source the solution must be curved on one side and flat on the other. We treat infinitely thin slabs in full detail and indicate how thick slabs can increase the variety of external geometry pairs. Positive energy density seems to force external geometries with curvature singularities at some distance from the slab; we speculate that such singularities occur in regions where the solution cannot be physically relevant anyway. (invited comment)

  4. Characterizing wet slab and glide slab avalanche occurrence along the Going-to-the-Sun Road, Glacier National Park, Montana, USA

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase

    2010-01-01

    Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.

  5. Evaluation of the Impact of Slab Foundation Heat Transfer on Heating and Cooling in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Vieira, R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Gu, L. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-09-01

    During the last three decades of energy-efficiency research, there has been limited study of heat transfer to slab-on-grade foundations in cooling-dominated climates. Most experimental research has focused on the impact of slab-on-grade foundations and insulation schemes on heat losses in heating-dominated climates. This is surprising because the floor area in single-family homes is generally equal to wall area, window area, or attic area, all of which have been extensively evaluated for heat-transfer properties. Moreover, slab foundations are the most common foundation type in cooling-dominated climates. Slab-on-grade construction is very popular in southern states, accounting for 77% of new home floors according to 2014 U.S. Census data. There is a widespread perception that tile flooring, as opposed to carpet, provides a cooler home interior in warm climates. Empirical research is needed because building energy simulation software programs running DOE-2 and EnergyPlus engines often rely on simplified models to evaluate the influence of flooring on interior temperature, even though in some cases more detailed models exist. The U.S. Department of Energy Building America Partnership for Improved Residential Construction (BA-PIRC) performed experiments in the Florida Solar Energy Center’s Flexible Residential Test Facility intended to assess for the first time (1) how slab-on-grade construction influences interior cooling in a cooling-dominated climate and (2) how the difference in a carpeted versus uncarpeted building might influence heating and cooling energy use. Two nominally identical side-by-side residential buildings were evaluated during the course of 1 year, from 2014 to 2015: the east building with a pad and carpet floor and the west building with a bare slab floor. A detailed grid shows temperature measurements taken on the slab surface at various locations as well as at depths of 1.0 ft, 2 ft, 5.0 ft, 10.0 ft, and 20.0 ft below the surface. Temperature

  6. Design Coefficients and Cracking Paths of Circular, Elliptic and Triangular Isolated Slabs

    Directory of Open Access Journals (Sweden)

    Juárez-Luna Gelacio

    2014-01-01

    Full Text Available Design coefficients and cracking paths for circular, elliptical and triangular labsare obtained by damage mechanics were determined. The nonlinear behavior of the reinforced concrete was simulated with a damage model which considers softening, whereas the behavior of the reinforcing steel was modeling with a bilinear plasticity model which has a Von Mises yield surface. The constitutive models and the finite element method were validated by comparing the computed numerical results with the experimental results of a rectangular slab reported in the scientific literature. The distribution of the reinforcing steel was proposed based on linear elastic analysis with plate elements. The coefficients were computed with elastic and nonlinear analyses, noticing that the last has a variation because of the stress redistribution. The crack paths are shown, which are dependent on the boundary conditions. The coefficients and the distribution of the reinforcing steel are a base on the regulation for the analysis and design of slabs with this kind of geometry.

  7. Possible deviations from Griffith’s criterion in shallow slabs, and consequences on slab avalanche release

    Directory of Open Access Journals (Sweden)

    F. Louchet

    2002-01-01

    Full Text Available Possible reasons for deviations from Griffith’s criterion in slab avalanche triggerings are examined. In the case of a major basal crack, we show (i that the usual form of Griffith’s criterion is valid if elastic energy is stored in a shallow and hard slab only, and (ii that rapid healing of broken ice bonds may lead to shear toughnesses larger than expected from tensile toughness experiments. In the case of avalanches resulting from failure of multi-cracked weak layers, where a simple Griffith’s criterion cannot be applied, frequency/size plots obtained from discrete elements and cellular automata simulations are shown to obey scale invariant power law distributions. These findings are confirmed by both frequency/acoustic emission duration and frequency/size plots obtained from field data, suggesting that avalanche triggerings may be described using the formalism of critical phenomena.

  8. Effect of summer grazing on welfare of dairy cows reared in mountain tie-stall barns

    Directory of Open Access Journals (Sweden)

    Simonetta Dovier

    2010-09-01

    Full Text Available Traditional mountain farms have an important economic, social and environmental role. The Alps management system for dairy cows consists of animals kept indoors from autumn to spring, mostly in tie-stalls, and moved to mountain pasture in summer. The aim of our study was to assess the effect of mountain summer grazing on the welfare of dairy cows housed in tie-stall barns. Twenty-four farms were considered. In twelve of them, animals were reared in tie-stalls and moved to mountain pasture for three months in summer; they were visited three times: (i four weeks before grazing during the indoor period in the stall; (ii about three weeks after the start of grazing; and (iii in the stall, in autumn, at least three weeks after returning from grazing. The other twelve farms kept the animals in tie-stalls all year; they were visited once in autumn. Data were collected following a protocol that considers animal-based measures and structure information on the basis of Quality Welfare Consortium® indications. Data allowed the calculation of both the Animal Needs Index score (ANI 35L and an overall assessment of the cows’ welfare obtained from three general aspects: housing, animal’s physical condition, and animal’s behaviour. Summer grazing had a significant positive effect on injuries, lameness and animal’s rising duration but a negative effect on faeces consistency. Moreover, a reduction of tongue playing was observed. The ANI 35L and the overall assessment did not show significant differences linked to summer grazing, which tended to have a positive but temporary effect on animal behaviour.

  9. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    Science.gov (United States)

    Yoshida, Masaki

    2017-07-01

    Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be

  10. LASERS: A cryogenic slab CO laser

    Science.gov (United States)

    Ionin, Andrei A.; Kozlov, A. Yu; Seleznev, L. V.; Sinitsyn, D. V.

    2009-03-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ~12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ~14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ~ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour.

  11. The influence of elevated feed stalls on feeding behaviour of lactating dairy cows

    Directory of Open Access Journals (Sweden)

    Barbara Benz

    2014-10-01

    Full Text Available The performance level of high yielding cows can only be guaranteed by high quality forage and high feed intake. An about 15–20 cm elevated and 160 cm long feed stall with rubber flooring doesn’t only offer undisturbed meals but also a yielding and dry standing surface. In a pilot stable with 130 dairy cows (German Simmental the feeding alley was subsequently equipped with elevated feed stalls. The results show that animals frequented the feeding barn less often while the duration of single meals prolonged. The specific behavioural changes differed depending on milk yield and number of lactation.

  12. Power control of a wind farm with active stall wind turbines and AC grid connection

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul; Iov, Florin

    This paper describes the design of a centralised wind farm controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection. The overall aim of such controller is to enable the wind farms to provide the best grid support. The designed wind farm control involves...... both the control on wind turbine level as well as the central control on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power production to the reference power ordered by the operators is assessed and discussed by means of simulations....

  13. Imaging a Remnant Slab Beneath Southeastern US: New Results from Teleseismic, Finite-frequency Tomography.

    Science.gov (United States)

    Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.

    2014-12-01

    Our new results from teleseismic, finite-frequency, body-wave tomography analysis reveal a relatively steep east-dipping fast velocity anomaly beneath the Southeastern US. The resolving power of our dataset is good enough to retrieve major mantle anomalies, such as this fast velocity body, owing to the dense receiver coverage provided by US Transportable Array (TA) and the SouthEastern Suture of the Appalachian Margin Experiment (SESAME). Various resolution and recovery tests demonstrate the robustness of this anomaly in our tomographic model between the depths of 60 and 660 km. Our images reveal that the dip of this structure decreases significantly in the mantle transition zone where it terminates. We also observe major gaps in the lateral continuity of this structure. Based on the amplitude, location and geometry of the velocity perturbation, we interpret this anomaly as remnant subducted lithosphere, suspended in the upper mantle after a subduction phase as young as 100-110 Ma or as old as 1Ga. Basic calculations and evaluations on the geometry and location of this anomaly help us to narrow down the origin of this slab to the Farallon flat-slab subduction in the west and Grenville Subduction during assembly of supercontinent Rodinia. Our images reveal possible mechanisms that would allow this slab to remain in the upper mantle without sinking into deeper mantle for such extended periods of time. We believe the flat geometry of the slab near the transition zone and the fragmented nature provide important clues about processes that could delay/resist the sinking while providing necessary time for it to transform into a more neutrally buoyant state. In this respect, we believe our results have broad implications for subduction processes and piece-meal slab failure, as well as tectonic implications for characteristics of former subduction zones that help shape North American Plate.

  14. Post-ridge-subduction acceleration of the Indian plate induced by slab rollback

    Directory of Open Access Journals (Sweden)

    Wei-dong Sun

    2018-03-01

    Full Text Available The driving forces of plate motion, especially that of its sudden change over time, has long been debated. During the closure of an old ocean, the subduction process of the mid-ocean ridge provides valuable clues to quantitative evaluation of the driving forces of plate tectonics. Here we show that the drifting rates of the Indian plate were correlated with a Late Cretaceous adakitic event hosting abundant adakites and adakitic charnockites in the Gangdese belt, southern Tibetan Plateau. While adakites form through slab melting, the ultra-high temperatures and dry nature of charnockites indicate major disturbance of the hot asthenosphere. Temporally, the oldest adakite corresponds to the initiation of the ridge subduction, whereas the youngest adakitic charnockite marks the onset of post-ridge-subduction slab rollback (steepening. Geodynamic modeling suggests that the initiation of the ridge subduction was facilitated by the Morondova mantle plume, corresponding to the lowest drifting rate of the Indian plate. Our analyses further show that the post-ridge-subduction slab rollback pushed the asthenospheric mantle backward, meanwhile it dramatically reduced the ridge-arc interaction force, leading to the first abrupt acceleration of the Indian plate. Slab rollback contributed ∼3.5 cm/yr but lasted for only ∼5 Ma, while slab pull, ridge push together with plume contributed ∼5 cm/yr to the acceleration of the Indian plate. Our study, therefore, provides evidence for a new type of driving forces of Indian plate acceleration during the Late Cretaceous Neotethys ridge subduction.

  15. Thermal, Petrologic, and Structural Conditions for the September 2017 M=8.2 and M=7.1 intra-slab earthquakes in Mexico

    Science.gov (United States)

    Wang, K.; Gao, X.; Rogers, G. C.

    2017-12-01

    The M=8.2 Tehuantepec and M=7.1 Puebla earthquakes of September 2017 are similar to the 1999 Oaxaca (M=7.5, Mexico), 2001 Geiyo (M=6.7, Nankai), and 2001 Nisqually (M=6.8, Cascadia) earthquakes. All these events are normal-faulting events in the 40-60 km depth range within young and warm subducting slabs. They all ruptured the mantle part of the slab. To investigate the thermal and petrologic conditions of these earthquakes, we have developed finite element thermal models in the areas of the two September events. Along the northern transect for the M=7.1 event, where the age of the incoming plate is 13.5 Ma, the slab geometry is well constrained by previous receiver function and earthquake location studies. Two available hypocenter locations of the main shock fall within or at the lower boundary of our model-predicted zone of serpentine (antigorite) stability in the slab mantle. Along the southern transect for the M=8.2 event, where the age of the incoming plate is 25.5 Ma, the slab geometry is less well known, and we have considered two published geometrical models. Several available hypocenter locations of the main shock are within or below the serpentine stability zone, depending on which slab geometry is assumed. Most of the rupture zone is shallower than the hypocenter. The model results support the following hypothesis. The two September earthquakes probably ruptured pre-existing normal faults that extended into the oceanic mantle and had been locally hydrated prior to and during the beginning phase of subduction. The earthquakes may have initiated at the dehydration boundary of antigorite or chlorite, facilitated by elevated pore fluid pressure (dehydration embrittlement). Most of the rupture was in the uppermost mantle part of the slab but may have involved parts of the slab crust. That large intra-slab earthquakes of this type tend to involve mantle rupture has been explained as due to the structural condition caused by warm-slab metamorphism (Wang et al

  16. Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction

    Science.gov (United States)

    Kufner, Sofia-Katerina; Schurr, Bernd; Haberland, Christian; Zhang, Yong; Saul, Joachim; Ischuk, Anatoly; Oimahmadov, Ilhomjon

    2017-03-01

    The terminal stage of subduction sets in when the continental margin arrives at the trench and the opposite forces of the sinking slab and buoyant continent extend and ultimately sever the subducted lithosphere. This process, although common in geological history, is short-lived, and therefore rarely observed. The deep seismicity under the Hindu Kush (Central Asia), including the 2015 Mw 7.5 event, is a rare case that testifies to this process. Here, we use new seismological data to create a high resolution picture of slab break-off and infer its dynamics. High precision earthquake locations and tomographic images show subduction of continental crust down to ∼180 km. A large dataset of source mechanisms indicates sub-vertical extension in the entire slab but a strain rate analysis showed that the deeper seismogenic portion of the slab, below the subducted crust, extends at higher rates (∼40 km/Ma). Most Mw > 7 earthquakes between 1983-2015, relocated relative to our new well-constrained earthquake catalog, cluster in a small volume below 180 km, and indicate shearing on an overturned interface. A slip model for the latest 2015 Mw 7.5 event suggests that it ruptured into a seismic gap on this interface. From this configuration we conclude that a horizontal slab tear develops along-strike of the Hindu Kush seismic zone at the base of the subducted continental crust. Below the subducted crust, the deepest and also largest earthquakes (180-265 km) are likely associated with deformation in the mantle lithosphere. From the seismicity distribution and the rupture mechanisms we further deduce that the dominant deformation mechanism in this deeper portion of the slab changes along-strike from simple to pure shear. The fastest detachment rates and largest earthquakes occur during the simple shear dominated stage. Earthquakes in the upper part (60-180 km), above the rapidly extending slab, might be triggered by processes related to the subduction of crustal rocks.

  17. Impact Resistance Behaviour of Banana Fiber Reinforced Slabs

    Science.gov (United States)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Rifdy Samsudin, Muhamad; Thiruchelvam, Sivadass; Usman, Fathoni; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of banana fibre reinforced slabs 300mm × 300mm size with varied thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.25 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the BF contents and slab thickness. A linear relationship has been established between first and ultimate crack resistance against BF contents and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the BF contents for a constant spacing for various banana fibre reinforced slab thickness. The increment in BF content has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Overall 1.5% BF content with slab thickness of 40 mm exhibit better first and ultimate crack resistance up to 16 times and up to 17 times respectively against control slab (without BF)

  18. On the spectrum of the one-speed slab-geometry discrete ordinates operator in neutron transport theory

    International Nuclear Information System (INIS)

    Abreu, Marcos Pimenta de

    1998-01-01

    We describe a numerical method applied to the first-order form of one-speed slab-geometry discrete ordinates equations modelling time-independent neutron transport problems with anisotropic scattering, with no interior source and defined in a nonmultiplying homogeneous host medium. Our numerical method is concerned with the generation of the spectrum and of a vector basis for the null space of the one-speed slab-geometry discrete ordinates operator. Moreover, it allows us to overcome the difficulties introduced in previous methods by anisotropic scattering and by angular quadrature sets of high order. To illustrate the positive features of our numerical method, we present numerical results for one-speed slab-geometry neutron transport model problems with anisotropic scattering

  19. Broadband high reflectivity in subwavelength-grating slab waveguides.

    Science.gov (United States)

    Tian, Hao; Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang

    2015-10-19

    We computationally study a subwavelength dielectric grating structure, show that slab waveguide modes can be used to obtain broadband high reflectivity, and analyze how slab waveguide modes influence reflection. A structure showing interference between Fabry-Perot modes, slab waveguide modes, and waveguide array modes is designed with ultra-broadband high reflectivity. Owing to the coupling of guided modes, the region with reflectivity R > 0.99 has an ultra-high bandwidth (Δf / ̅f > 30%). The incident-angle region with R > 0.99 extends over a range greater than 40°. Moreover, an asymmetric waveguide structure with a semiconductor substrate is studied.

  20. Interaction of an ion bunch with a plasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  1. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  2. Physics of Prestall Propagating Disturbances in Axial Compressors and Their Potential as a Stall Warning Indicator

    Directory of Open Access Journals (Sweden)

    Mario Eck

    2017-03-01

    Full Text Available Axial compressors in aero engines are prone to suffering a breakdown of orderly flow when operating at the peak of the pressure rise characteristic. The damaging potential of separated flows is why a safe distance has to be left between every possible operating point and an operating point at which stall occurs. During earlier investigations of stall inception mechanisms, a new type of prestall instability has been found. In this study, it could be demonstrated that the prestall instability characterised by discrete flow disturbances can be clearly assigned to the subject of “Rotating Instabilities”. Propagating disturbances are responsible for the rise in blade passing irregularity. If the mass flow is reduced successively, the level of irregularity increases until the prestall condition devolves into rotating stall. The primary objective of the current work is to highlight the basic physics behind these prestall disturbances by complementary experimental and numerical investigations. Before reaching the peak of the pressure rise characteristic flow, disturbances appear as small vortex tubes with one end attached to the casing and the other attached to the suction surface of the rotor blade. These vortex structures arise when the entire tip region is affected by blockage and at the same time the critical rotor incidence is not exceeded in this flow regime. Furthermore, a new stall indicator was developed by applying statistical methods to the unsteady pressure signal measured over the rotor blade tips, thus granting a better control of the safety margin.

  3. Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation.

    Science.gov (United States)

    Artieri, Carlo G; Fraser, Hunter B

    2014-12-01

    The recent advent of ribosome profiling-sequencing of short ribosome-bound fragments of mRNA-has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling data set have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling. © 2014 Artieri and Fraser; Published by Cold Spring Harbor Laboratory Press.

  4. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    Science.gov (United States)

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  5. 14 CFR 23.203 - Turning flight and accelerated turning stalls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turning flight and accelerated turning stalls. 23.203 Section 23.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... a 30 degree bank. Reduce speed by steadily and progressively tightening the turn with the elevator...

  6. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    NARCIS (Netherlands)

    Kruyt, J.W.; Heijst, Van G.F.; Altshuler, D.L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle

  7. Identification of phlebovirus and arenavirus RNA sequences that stall and repress the exoribonuclease XRN1.

    Science.gov (United States)

    Charley, Phillida A; Wilusz, Carol J; Wilusz, Jeffrey

    2018-01-05

    Regulated mRNA decay plays a vital role in determining both the level and quality of cellular gene expression. Viral RNAs must successfully evade this host RNA decay machinery to establish a productive infection. One way for RNA viruses to accomplish this is to target the cellular exoribonuclease XRN1, because this enzyme is accessible in the cytoplasm and plays a major role in mRNA decay. Members of the Flaviviridae use RNA structures in their 5'- or 3'-untranslated regions to stall and repress XRN1, effectively stabilizing viral RNAs while also causing significant dysregulation of host cell mRNA stability. Here, we use a series of biochemical assays to demonstrate that the 3'-terminal portion of the nucleocapsid (N) mRNA of Rift Valley fever virus, a phlebovirus of the Bunyaviridae family, also can effectively stall and repress XRN1. The region responsible for impeding XRN1 includes a G-rich portion that likely forms a G-quadruplex structure. The 3'-terminal portions of ambisense-derived transcripts of multiple arenaviruses also stalled XRN1. Therefore, we conclude that RNAs from two additional families of mammalian RNA viruses stall and repress XRN1. This observation. emphasizes the importance and commonality of this viral strategy to interfere with the 5'-to-3'-exoribonuclease component of the cytoplasmic RNA decay machinery. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Cross-polarization mode coupling and exceptional points in photonic crystal slabs

    Science.gov (United States)

    Bykov, Dmitry A.; Doskolovich, Leonid L.

    2018-01-01

    We study exceptional points that occur in photonic crystal slabs due to cross-polarization (TE-TM) mode coupling. To do this, we develop spatiotemporal coupled-mode theory that describes optical properties of photonic crystal slabs supporting TE and TM modes in the case of conical mount. The developed theory suggests that by tuning the in-plane wave numbers of the incident light one can make two modes of the structure coalesce, which results in an exceptional point. The developed theory provides simple analytical expressions for the exceptional point position and the line shape of the corresponding resonance. The parameters of the proposed model can be rigorously estimated by a numerical calculation of the S-matrix poles of the structure. We show that the proposed analytical model with the estimated parameters is in good agreement with the presented full-wave simulations.

  9. Effect of Temperature Variation on Modal Frequency of Reinforced Concrete Slab and Beam in Cold Regions

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2016-01-01

    Full Text Available Changes of modal frequencies induced by temperature variation can be more obvious than those caused by structural damage, which will lead to the false damage identification results. Therefore, quantifying the temperature effect on modal frequencies is a critical step to eliminate its interference in damage detection. Due to the nonuniform and time-dependent characteristics of temperature distribution, it is insufficient to obtain the reliable relationships between temperatures and modal frequencies using temperatures in air or at surface. In this paper, correlations between measured temperatures (air temperature, surface temperature, mean temperature, etc. and modal frequencies for the slab and beam are comparatively analyzed. And the quantitative models are constructed considering nonuniform temperature distribution. Firstly, the reinforced concrete slab and beam were constructed and placed outside the laboratory to be monitored. Secondly, the correlation coefficients between modal frequencies and three kinds of temperatures are calculated, respectively. Thirdly, simple linear regression models between mean temperature and modal frequencies are established for the slab and beam. Finally, five temperature variables are selected to construct the multiple linear regression models. Prediction results reveal that the proposed multiple linear regression models possess favorable accuracy to quantify the temperature effect on modal frequencies considering nonuniform temperature distribution.

  10. Climatology of the ionospheric slab thickness along the longitude of 120° E in China and its adjacent region during the solar minimum years of 2007–2009

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2015-10-01

    Full Text Available The ionospheric slab thickness is defined as the ratio of the total electron content (TEC to the ionospheric F2 layer peak electron density (NmF2. In this study, the slab thickness is determined by measuring the ionospheric TEC from dual-frequency Global Positioning System (GPS data and the NmF2 from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC. A statistical analysis of the diurnal, seasonal and spatial variation in the ionospheric slab thickness is presented along the longitude of 120° E in China and its adjacent region during the recent solar minimum phase (2007–2009. The diurnal ratio, defined as the maximum slab thickness to the minimum slab thickness, and the night-to-day ratio, defined as the slab thickness during daytime to the slab thickness during night-time, are both analysed. The results show that the TEC of the northern crest is greater in winter than in summer, whereas NmF2 is greater in summer than in winter. A pronounced peak of slab thickness occurs during the post-midnight (00:00–04:00 LT period, when the peak electron density is at the lowest level. A large diurnal ratio exists at the equatorial ionization anomaly, and a large night-to-day ratio occurs near the equatorial latitudes and mid- to high latitudes. It is found that the behaviours of the slab thickness and the F2 peak altitude are well correlated at the latitudes of 30–50° N and during the period of 10:00–16:00 LT. This current study is useful for improvement of the regional model and accurate calculation of the signal delay of radio waves propagating through the ionosphere.

  11. The Atlas of the Underworld - a global compilation of slab remnants imaged by tomography and dated through geology

    Science.gov (United States)

    Van Hinsbergen, D. J. J.; van der Meer, D.; Spakman, W.

    2016-12-01

    Since the advent of seismic tomography some three decades ago, positive seismic velocity anomalies in the upper and lower mantle have been associated with active subduction or remnants of past subduction. Particularly for lower mantle slab anomalies it was for long unclear, and in many cases still is, what the specific geographic relation is with zones of paleo-subduction. Here, we present an extensive global compilation of upper and lower mantle positive seismic velocity anomalies, building on our earlier work that we associate with geological evidence of past subduction, compiled in the `Atlas of the Underworld' (available at www.atlas-of-the-underworld.org once accepted for publication, with a forum for post-publication peer review). We have identified 100 positive velocity anomalies in P-wave and S-wave tomographic models that we interpreted as slabs or slab remnants and that we systematically associated with the geological records of past subduction. We show that Mesozoic and younger subduction zones can be associated with positive velocity anomalies. Furthermore, slab remnants of subduction systems confined to the Mesozoic are exclusively found in the lower mantle. Our results show sinking of slab material across the entire mantle with a strong decrease in average sinking rate (mantle depth/subduction age) between 660 km and 1500 km from speed from 15 to 40 mm/yr, consistent with strong viscosity reduction in the bottom few hundred kilometers of the mantle.

  12. Tectonic Stacking of HP/LT Metamorphic Rocks in Accretionary Wedges and the Role of Shallowing Slab-Mantle Decoupling

    Science.gov (United States)

    Aygül, Mesut; Oberhänsli, Roland

    2017-11-01

    High-pressure/low-temperature (HP/LT) chloritoid-bearing micaschists crop out widely in the central part of northern Turkey and represent deep-seated subduction-accretionary complexes. Three peak metamorphic assemblages are identified in the area studied: (1) garnet-chloritoid-glaucophane with pseudomorphs after lawsonite; (2) chloritoid with pseudomorphs after glaucophane; and (3) chloritoid with pseudomorphs after jadeite in addition to phengite, paragonite, quartz, chlorite, rutile, and apatite. The latter is interpreted as transformation of a chloritoid + glaucophane assemblage to chloritoid + jadeite with increasing pressure; PT modeling indicates 17 and 22-25 kbars for the two peak parageneses. The diversity of peak metamorphic assemblages and the PT estimates suggest that basal accretion occurred at different depths within the wedge. The depth of the basal accretion is possibly controlled by the slab-mantle decoupling depth. Stretching and thinning of the lithospheric fore arc induced by the slab rollback possibly caused shallowing of the slab-mantle decoupling depth which limited depth of the basal accretion from 70-80 km to 55 km within the subduction channel. A slab-mantle coupling depth-controlled basal accretion may also explain the scarcity of eclogite and high-grade blueschist facies metamorphic rocks in active intraoceanic subduction zones. Because the overriding plate is young and hot in intraoceanic subductions, the slab and mantle are coupled at a relatively shallow depth before eclogitization of the oceanic crust. This prevents accretion and exhumation of eclogite along the subduction channel.

  13. Optimising the Slab Yard Planning and Crane Scheduling Problem using a two-stage heuristic

    DEFF Research Database (Denmark)

    Hansen, Anders Dohn; Clausen, Jens

    2010-01-01

    In this paper, we present the Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem...

  14. 29 CFR 1926.705 - Requirements for lift-slab construction operations.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for lift-slab construction operations. 1926... Masonry Construction § 1926.705 Requirements for lift-slab construction operations. (a) Lift-slab...-slab construction. Such plans and designs shall be implemented by the employer and shall include...

  15. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter

    2014-01-01

    Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...

  16. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Integral bridge abutment-to-approach slab connection.

    Science.gov (United States)

    2008-06-01

    The Iowa Department of Transportation has long recognized that approach slab pavements of integral abutment bridges are prone to settlement and cracking, which manifests as the "bump at the end of the bridge". A commonly recommended solution is to in...

  18. The rideability of a deflected bridge approach slab.

    Science.gov (United States)

    2009-11-01

    This report presents the findings associated with the development of a new pavement roughness index called the Posted Speed Localized Roughness Index (LRIPS) that can be used to rate the ride quality on bridge approach slabs. Currently established pa...

  19. Field demonstration of new bridge approach slab designs and performance.

    Science.gov (United States)

    2014-06-01

    The Louisiana Department of Transportation and Development (DOTD) has initiated a major effort to minimize the bridge end bump problem associated : with differential settlement. As a result, a new design for the approach slab was proposed, which requ...

  20. Evaluation of precast concrete slabs using a heavy vehicle simulator

    CSIR Research Space (South Africa)

    Kohler, E

    2008-10-01

    Full Text Available -controlled conditions and that fully cured precast slabs can potentially be open to traffic almost immediately upon installation, making them attractive for use on heavily travelled highways. This paper describes an accelerated pavement testing experiment conducted...

  1. Effects of Posttensioning Slippage on 2-Way Spanning Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Niall Holmes

    2015-01-01

    Full Text Available This paper investigates the effect of improper posttensioning of a 2-way spanning concrete slab subject to a central point load. Due to plate slippage alone, the support conditions only offered a 1-way spanning action which could have led to premature failure with dangerous consequences. Posttensioning can strengthen a flat slab against punching shear by controlling deflections and cracking under service loads compared with traditional punching shear reinforcing methods leading to more slender structures and economic solutions for longer spans. However, if the method is not properly applied, these thinner floor plates can fail in a brittle and sudden manner by punching at ultimate limit state and excessive deflection in serviceability. Concrete slabs containing traditional shear reinforcement performed adequately and demonstrated that the critical punching shear perimeter, defined as twice the depth of the slab, was confirmed from measured deflections and crack pattern analysis.

  2. Spatial Relationships between Deep-focus Earthquakes and Structural Heterogeneities within the Subducting Slabs of the Western Pacific Subduction Zones

    Science.gov (United States)

    Chen, M.; Kiser, E.; Niu, F.

    2016-12-01

    The nature of deep-focus earthquakes with depths greater than 300 km has long been controversial. Mechanisms that may promote brittle deformation at such depths include dehydration embrittlement, phase transformational faulting, and thermal runaway instabilities. Of these, the most commonly referenced mechanism—phase transformational faulting—involves the breakdown of metastable olivine within the core of a cold subducting slab. Seismic observations of the metastable olivine wedge, as well as its spatial relationship to deep-focus seismicity, are limited. Classical 1-D ray-theory based tomography images indicate that deep-focus hypocenters coincide with the highest wave speed anomalies within the slab, traditionally viewed as the slab's cold core. However, our latest full waveform tomography images of the Kuril, Japan, and Izu-Bonin slabs show systematically deep-focus earthquakes located near the top of high wave speed regions, with hypocentral or centroid locations determined by EHB, global CMT, or JMA. In order to reduce location bias in global CMT solutions due to unmodeled 3-D structure, we relocate tens of deep-focus earthquakes within the new 3-D structural model based on a full wavefield modeling code SPECFEM3D_GLOBE, with seismic waves simulated to the shortest period of 9 seconds. We also determine the centroid locations of high-frequency energy (0.8 Hz-2 Hz) from back-projection results of several large earthquakes to understand how rupture propagates within the slab. The spatial correlations between the 3-D wave speed model and high-precision centroid locations from both long period and high frequency seismic waves further indicate that the deep-focus earthquakes occur and propagate near the top of the subducting slab. We will discuss the constraints that these relationships place on the mechanism of deep-focus earthquakes.

  3. Study of TEC, slab-thickness and neutral temperature of the thermosphere in the Indian low latitude sector

    Directory of Open Access Journals (Sweden)

    K. Venkatesh

    2011-09-01

    Full Text Available The ionospheric equivalent slab-thickness is an important parameter which measures the skewness of the electron density profile of the ionosphere. In this paper, the diurnal, seasonal, day-to-day and latitudinal variations of ionospheric parameters namely total electron content (TEC, the peak ionization density of F-layer (NmF2, equivalent slab-thickness (τ and neutral temperature (Tn are presented. The simultaneous data of GPS-TEC and NmF2 from Trivandrum (8.47° N, 76.91° E, Waltair (17.7° N, 83.3° E and Delhi (28.58° N, 77.21° E are used to compute the slab-thickness (τ = TEC/NmF2 of the low sunspot period, 2004–2005. The day-time TEC values at Waltair are found to be greater than those at Trivandrum, while at Delhi the day-time TEC values are much lower compared to those at Trivandrum and Waltair. The trends of variation in the monthly mean diurnal variation of TEC and NmF2 are similar at Delhi, while they are different at Trivandrum and Waltair during the day-time. The slab-thickness (τ has shown a pre-sunrise peak around 05:00 LT at all the three stations, except during the summer months over Delhi. A consistent secondary peak in slab-thickness around noon hours has also been observed at Trivandrum and Waltair. During equinox and winter months a large night-time enhancement in the slab-thickness (comparable to the early morning peak in slab-thickness is observed at Delhi. The latitudinal variation of slab-thickness has shown a decrease from the equatorial station, Trivandrum to the low-mid latitude station, Delhi. The neutral temperatures (Tn computed from the slab-thickness (τ has shown a sharp increase around 05:00 LT over Trivandrum and Waltair. Whereas at Delhi, a double peaking around 05:00 and 23:00 LT is observed during winter and equinoctial months. The neutral temperatures computed are compare well with those of the MSIS-90 model derived temperatures.

  4. The heterogeneous response method in slab geometry

    International Nuclear Information System (INIS)

    Villarino, E.A.; Stamm'ler, R.J.J.

    1984-01-01

    The heterogeneous response method (HRM) has been developed to calculate the multigroup flux in a heterogeneous system, e.g. a fuel assembly, without having to resort to dubious homogenization recipes. Here, the method is described in slab geometry in a manner that facilitates its computerization. By dividing the system into subsystems or nodes, say pin cells, two levels of calculation are created, which define a set of local problems and a global problem, respectively. In the local problem, collision probabilities are used to obtain for a node in vacuum, its response fluxes caused by sources and in-currents. They preserve the heterogeneous character of the node. In the global problem, the nodes are coupled by cosine currents. A suitable transformation reduces the number of two unknown currents per interface to one unknown per node, its total transmitted in-current. The global equation system thus becomes a set of three-point relations, which can be solved efficiently. In cases typical of fuel-assembly situations, the HRM produces fluxes that compare very well with the direct solution of the entire system by collision probabilities, though at a fraction of the computer cost. Extension of the method to 2- and 3-D systems is discussed. (author)

  5. Magnetoelectric sensor excitations in hexaferrite slabs

    Science.gov (United States)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-06-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite slabs in the frequency range of 100 Hz to 10 MHz. Novel circuit designs incorporating both spiral and solenoid coils and single and multi-capacitor banks were developed to probe the physics and properties of ME hexaferrites and explore ME effects for sensor detections. Fundamental measurements of the anisotropic tensor elements of the magneto-electric coupling parameter were performed using these novel techniques. In addition, for H-field sensing experiments we measured sensitivity of about 3000 Vm-1/G using solenoid coils and 8000 Vm-1/G using spiral coils. For E-field, sensing the sensitivity was 10-4 G/Vm-1 and using single capacitor detector. Sensitivity for multi-capacitor detectors was measured to be in the order of 10-3 G/Vm-1 and frequency dependent exhibiting a maximum value at ˜1 MHz. Tunability of 0.1%-90% was achieved for tunable inductor applications using both single and multi-capacitors excitation. We believe that significant (˜106) improvements in sensitivity and tunability are feasible with simple modifications of the fabrication process.

  6. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, Henrik Brøner; Nielsen, Mogens Peter

    2014-01-01

    This paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in Building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...... saw-cut into units with the desirable length. For this reason, hollow core slabs are usually not shear reinforced and anchorage of the prestressing strands has to be established by bond. Hollow core slabs may therefore be more critical to shear and Anchorage failure than ordinary two-way spanning...... reinforced concrete slabs....

  7. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter

    2014-01-01

    Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...... saw-cut into units with the desirable length. For this reason, hollow core slabs are usually not shear reinforced and anchorage of the prestressing strands has to be established by bond. Hollow core slabs may therefore be more critical to shear and anchorage failure than ordinary two-way spanning...... reinforced concrete slabs....

  8. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  9. Punching of flat slabs supported on rectangular columns

    OpenAIRE

    Sagaseta, Juan; Tassinari, Luca; Fernández Ruiz, Miguel; Muttoni, Aurelio

    2014-01-01

    This paper investigates the structural behaviour of RC flat slabs supported on rectangular interior columns and the influence of the loading conditions (one or two-way bending) on their punching shear strength. The punching shear strength of slabs at rectangular columns can be lower than at equivalent square col- umns with a similar length of the control perimeter. This is due to a potential concentration of shear forces alongthecontrol perimeter. Some, but notall designformulas for punchingd...

  10. GEOMETRIC AND MATERIAL NONLINEAR ANALYSIS OF REINFORCED CONCRETE SLABS AT FIRE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ayad A. Abdul -Razzak

    2013-05-01

    Full Text Available In the present study a nonlinear finite element analysis is presented  to predict the fire resistance of reinforced concrete slabs at fire environment. An eight node layered degenerated shell element utilizing Mindlin/Reissner thick plate theory is employed. The proposed model considered cracking, crushing and yielding of concrete and steel at elevated temperatures. The layered approach is used to represent the steel reinforcement and discretize the concrete slab through the thickness. The reinforcement steel is represented as a smeared layer of equivalent thickness with uniaxial strength and rigidity properties.Geometric nonlinear analysis may play an important role in the behavior of reinforced concrete slabs at high temperature. Geometrical nonlinearity in the layered approach is considered in the mathematical model, which is based on the total Lagrangian approach taking into account Von Karman assumptions.Finally two examples for which experimental results are available are analyzed, using the proposed model .The comparison showed good agreement with experimental results. 

  11. Recent progress in high-power slab lasers in Japan

    International Nuclear Information System (INIS)

    Fujii, Y.

    1988-01-01

    Recently, many solid-state lasers have been widely employed in Japanese industries, especially in the electronics industries for precise and reliable processing. To expand the use of solid-state lasers and to achieve higher processing speed, the authors are developing slab lasers of high power, high repetition rate, and high beam quality. Metal processing systems with optical fibers for large and complex 3-D work, multiwork station systems linked to only one laser with optical fibers, and compact x-ray sources for lithography are promising areas for such lasers. Surnitomo Metal Mining is growing Nd:GGG and Nd:YAG crystals 60 mm in diameter and 200 mm long. From 2 at.% Nd-doped GGG crystals without central core regions. The authors obtained two slab materials with dimensions of 35 X 9 X 192 and 55 X 15 X 213 mm/sup 3/. By using the smaller slab, they constructed a slab laser and obtained 370-W laser output power at 24-kW lamp input power and 10-pps repetition rate. Now they are constructing a 1-kW slab laser using the other larger size slab

  12. Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas

    Science.gov (United States)

    Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG

    2018-01-01

    Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.

  13. Energy Method Solution for the Vertical Deformation of Longitudinally Coupled Prefabricated Slab Track

    OpenAIRE

    Juanjuan Ren; Shijie Deng; Zhibin Jin; Junbin Yang; Xueyi Liu

    2017-01-01

    Upwarping on the longitudinally coupled prefabricated slab track system caused by the rising temperature is a common distress, which deteriorates the mechanical properties of the coupled slabs and the vertical stability of slabs. The objective of this paper is to quantify the upwarping deformation on the slab subjected to temperature force and to find out the influence of different factors on the upwarping phenomenon of the slabs. An analytical expression is deduced using energy method, and a...

  14. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  15. Magneto-acoustic Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Environment: The Effects of Asymmetry

    Science.gov (United States)

    Zsámberger, Noémi Kinga; Allcock, Matthew; Erdélyi, Róbert

    2018-02-01

    Modeling the behavior of magnetohydrodynamic waves in a range of magnetic geometries mimicking solar atmospheric waveguides, from photospheric flux tubes to coronal loops, can offer a valuable contribution to the field of solar magneto-seismology. The present study uses an analytical approach to derive the dispersion relation for magneto-acoustic waves in a magnetic slab of homogeneous plasma enclosed on its two sides by semi-infinite plasma of different densities, temperatures, and magnetic field strengths, providing an asymmetric plasma environment. This is a step further in the generalization of the classic magnetic slab model, which is symmetric about the slab, was developed by Roberts, and is an extension of the work by Allcock & Erdélyi where a magnetic slab is sandwiched in an asymmetric nonmagnetic plasma environment. In contrast to the symmetric case, the dispersion relation governing the asymmetric slab cannot be factorized into separate sausage and kink eigenmodes. The solutions obtained resemble these well-known modes; however, their properties are now mixed. Therefore we call these modes quasi-sausage and quasi-kink modes. If conditions on the two sides of the slab do not differ strongly, then a factorization of the dispersion relation can be achieved for the further analytic study of various limiting cases representing a solar environment. In the current paper, we examine the incompressible limit in detail and demonstrate its possible application to photospheric magnetic bright points. After the introduction of a mechanical analogy, we reveal a relationship between the external plasma and magnetic parameters, which allows for the existence of quasi-symmetric modes.

  16. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods

    Science.gov (United States)

    Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi

    2016-06-01

    We reconstructed Philippine Sea and East Asian plate tectonics since 52 Ma from 28 slabs mapped in 3-D from global tomography, with a subducted area of ~25% of present-day global oceanic lithosphere. Slab constraints include subducted parts of existing Pacific, Indian, and Philippine Sea oceans, plus wholly subducted proto-South China Sea and newly discovered "East Asian Sea." Mapped slabs were unfolded and restored to the Earth surface using three methodologies and input to globally consistent plate reconstructions. Important constraints include the following: (1) the Ryukyu slab is ~1000 km N-S, too short to account for ~20° Philippine Sea northward motion from paleolatitudes; (2) the Marianas-Pacific subduction zone was at its present location (±200 km) since 48 ± 10 Ma based on a >1000 km deep slab wall; (3) the 8000 × 2500 km East Asian Sea existed between the Pacific and Indian Oceans at 52 Ma based on lower mantle flat slabs; (4) the Caroline back-arc basin moved with the Pacific, based on the overlapping, coeval Caroline hot spot track. These new constraints allow two classes of Philippine Sea plate models, which we compared to paleomagnetic and geologic data. Our preferred model involves Philippine Sea nucleation above the Manus plume (0°/150°E) near the Pacific-East Asian Sea plate boundary. Large Philippine Sea westward motion and post-40 Ma maximum 80° clockwise rotation accompanied late Eocene-Oligocene collision with the Caroline/Pacific plate. The Philippine Sea moved northward post-25 Ma over the northern East Asian Sea, forming a northern Philippine Sea arc that collided with the SW Japan-Ryukyu margin in the Miocene (~20-14 Ma).

  17. Numerical Investigation into CO Emission, O Depletion, and Thermal Decomposition in a Reacting Slab

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2011-01-01

    Full Text Available The emission of carbon dioxide (CO2 is closely associated with oxygen (O2 depletion, and thermal decomposition in a reacting stockpile of combustible materials like fossil fuels (e.g., coal, oil, and natural gas. Moreover, it is understood that proper assessment of the emission levels provides a crucial reference point for other assessment tools like climate change indicators and mitigation strategies. In this paper, a nonlinear mathematical model for estimating the CO2 emission, O2 depletion, and thermal stability of a reacting slab is presented and tackled numerically using a semi-implicit finite-difference scheme. It is assumed that the slab surface is subjected to a symmetrical convective heat and mass exchange with the ambient. Both numerical and graphical results are presented and discussed quantitatively with respect to various parameters embedded in the problem.

  18. Experimental and finite element analysis of slabs under a missile impact

    International Nuclear Information System (INIS)

    Bangash, Y.

    1989-01-01

    The authors analyze the local failure of reinforced concrete slabs subjected to soft missile impact by using three-dimensional dynamic finite element analyses in which provision is made for the simulation of impact loads, plasticity and cracking of concrete. An assessment is made for perforation and scabbing. Concrete models are used for comparison. Three existing three-dimensional finite element programs are used to carry out the analysis. Two reinforced concrete slabs tested by UKAEA have been examined using the above computer packages and the analytical results are compared with each other and with those of the experiment. Despite slight deviations, the analytical results are in reasonable agreement with those given by experiment

  19. The 2017 Mw 8.2 Chiapas, Mexico, Earthquake: Energetic Slab Detachment

    Science.gov (United States)

    Ye, Lingling; Lay, Thorne; Bai, Yefei; Cheung, Kwok Fai; Kanamori, Hiroo

    2017-12-01

    On 8 September 2017, a great (Mw 8.2) normal faulting earthquake ruptured within the subducting Cocos Plate 70 km landward from the Middle American Trench beneath the Tehuantepec gap. Iterative inversion and modeling of teleseismic and tsunami data and prediction of GPS displacements indicate that the steeply dipping rupture extended 180 km to the northwest along strike toward the Oaxaca coast and from 30 to 70 km in depth, with peak slip of 13 m. The rupture likely broke through the entire lithosphere of the young subducted slab in response to downdip slab pull. The plate boundary region between the trench and the fault intersection with the megathrust appears to be frictionally coupled, influencing location of the detachment. Comparisons of the broadband body wave magnitude (mB) and moment-scaled radiated energy (ER/M0) establish that intraslab earthquakes tend to be more energetic than interplate events, accounting for strong ground shaking observed for the 2017 event.

  20. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  1. Nonlinear analysis of end slabs in prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Abdulrahman, H.O.

    1978-01-01

    A procedure for the nonlinear analysis of end slabs is prestressed concrete reactor vessels (PCRVs), based on the finite element method, is presented. The applicability of the procedure to the ultimate load analysis of small-scale models of the primary containment of nuclear reactors is shown. Material nonlinearity only is considered. The procedure utilizes the four-node linear quadrilateral isoparametric element with the choice of incorporating the nonconforming modes. This element is used for modeling the vessel as an axisymmetric solid. Concrete is assumed to be an isotropic material in the elastic range. The compressive stresses are judged according to a special form of the Mohr-Coulomb criterion. The nonlinear problem was solved using a generalized Newton-Raphson procedure. A detailed example problem of a pressure vessel with penetrations is presented. This is followed by a summary of the other cases studied. The solutions obtained match very closely the measured response of the test vessels under increasing internal pressure up to failure. The procedure is thus adequate for the assessment of the ultimate load behavior and failure of actual pressure vessels with a moderate demand on human and computational resources

  2. Cellular Neural Network Method for Critical Slab with Albedo Boundary Condition

    International Nuclear Information System (INIS)

    Pirouzmanda, A.; Hadada, K.; Suh, K. Y.

    2010-01-01

    The neutron transport problems have been studied theoretically and numerically for years. A number of researchers have studied the criticality problems of one-speed neutrons in homogeneous slabs and spheres using various methods. The Chebyshev polynomial approximation method (T N method) has lately been developed and improved for the neutron transport equation in slab geometry. The one-speed time-dependent neutron transport equation using the Cellular Neural Network (CNN) for the vacuum boundary condition has previously been solved. In this paper, we demonstrate the capacity of CNN in calculating the critical slab thickness for different boundary conditions and its variation with moments N. The architecture of the CNN has already been dealt with thoroughly. Essentially, the CNN is used to model a first-order system of the partial differential equations (PDEs). The original equations in the T N approximation are also a set of PDEs. The CNN approach lends itself to analog VLSI implementation. In this study, the CNN model is implemented using the HSpice software package

  3. Reducing slab boundary artifacts in three‐dimensional multislab diffusion MRI using nonlinear inversion for slab profile encoding (NPEN)

    Science.gov (United States)

    Koopmans, Peter J.; Frost, Robert; Miller, Karla L.

    2015-01-01

    Purpose To propose a method to reduce the slab boundary artifacts in three‐dimensional multislab diffusion MRI. Methods Bloch simulation is used to investigate the effects of multiple factors on slab boundary artifacts, including characterization of residual errors on diffusion quantification. A nonlinear inversion method is proposed to simultaneously estimate the slab profile and the underlying (corrected) image. Results Correction results of numerical phantom and in vivo data demonstrate that the method can effectively remove slab boundary artifacts for diffusion data. Notably, the nonlinear inversion is also successful at short TR, a regimen where previously proposed methods (slab profile encoding and weighted average) retain residual artifacts in both diffusion‐weighted images and diffusion metrics (mean diffusion coefficient and fractional anisotropy). Conclusion The nonlinear inversion for removing slab boundary artifacts provides improvements over existing methods, particularly at the short TRs required to maximize SNR efficiency. Magn Reson Med 76:1183–1195, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26510172

  4. Reducing slab boundary artifacts in three-dimensional multislab diffusion MRI using nonlinear inversion for slab profile encoding (NPEN).

    Science.gov (United States)

    Wu, Wenchuan; Koopmans, Peter J; Frost, Robert; Miller, Karla L

    2016-10-01

    To propose a method to reduce the slab boundary artifacts in three-dimensional multislab diffusion MRI. Bloch simulation is used to investigate the effects of multiple factors on slab boundary artifacts, including characterization of residual errors on diffusion quantification. A nonlinear inversion method is proposed to simultaneously estimate the slab profile and the underlying (corrected) image. Correction results of numerical phantom and in vivo data demonstrate that the method can effectively remove slab boundary artifacts for diffusion data. Notably, the nonlinear inversion is also successful at short TR, a regimen where previously proposed methods (slab profile encoding and weighted average) retain residual artifacts in both diffusion-weighted images and diffusion metrics (mean diffusion coefficient and fractional anisotropy). The nonlinear inversion for removing slab boundary artifacts provides improvements over existing methods, particularly at the short TRs required to maximize SNR efficiency. Magn Reson Med 76:1183-1195, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  5. DESIGN OF A CONCRETE SLAB FOR STORAGE OF SNF AND HLW CASKS

    International Nuclear Information System (INIS)

    This calculation documents the design of the Spent Nuclear Fuel (SNF) and High-Level Waste (HLW) Cask storage slab for the Aging Area. The design is based on the weights of casks that may be stored on the slab, the weights of vehicles that may be used to move the casks, and the layout shown on the sketch for a 1000 Metric Ton of Heavy Metal (MTHM) storage pad on Attachment 2, Sht.1 of the calculation 170-C0C-C000-00100-000-00A (BSC 2004a). The analytical model used herein is based on the storage area for 8 vertical casks. To simplify the model, the storage area of the horizontal concrete modules and their related shield walls is not included. The heavy weights of the vertical storage casks and the tensile forces due to pullout at the anchorages will produce design moments and shear forces that will envelope those that would occur in the storage area of the horizontal modules. The design loadings will also include snow and live loads. In addition, the design will also reflect pertinent geotechnical data. This calculation will document the preliminary thickness and general reinforcing steel requirements for the slab. This calculation also documents the initial design of the cask anchorage. Other slab details are not developed in this calculation. They will be developed during the final design process. The calculation also does not include the evaluation of the effects of cask drop loads. These will be evaluated in this or another calculation when the exact cask geometry is known

  6. DESIGN OF A CONCRETE SLAB FOR STORAGE OF SNF AND HLW CASKS

    Energy Technology Data Exchange (ETDEWEB)

    J. Bisset

    2005-02-14

    This calculation documents the design of the Spent Nuclear Fuel (SNF) and High-Level Waste (HLW) Cask storage slab for the Aging Area. The design is based on the weights of casks that may be stored on the slab, the weights of vehicles that may be used to move the casks, and the layout shown on the sketch for a 1000 Metric Ton of Heavy Metal (MTHM) storage pad on Attachment 2, Sht.1 of the calculation 170-C0C-C000-00100-000-00A (BSC 2004a). The analytical model used herein is based on the storage area for 8 vertical casks. To simplify the model, the storage area of the horizontal concrete modules and their related shield walls is not included. The heavy weights of the vertical storage casks and the tensile forces due to pullout at the anchorages will produce design moments and shear forces that will envelope those that would occur in the storage area of the horizontal modules. The design loadings will also include snow and live loads. In addition, the design will also reflect pertinent geotechnical data. This calculation will document the preliminary thickness and general reinforcing steel requirements for the slab. This calculation also documents the initial design of the cask anchorage. Other slab details are not developed in this calculation. They will be developed during the final design process. The calculation also does not include the evaluation of the effects of cask drop loads. These will be evaluated in this or another calculation when the exact cask geometry is known.

  7. Technological aspects of lift-slab method in high-rise-building construction.

    Science.gov (United States)

    Gaidukov, Pavel V.; Pugach, Evgeny M.

    2018-03-01

    The utilization efficiency of slab lifting technology for high-rise-building construction is regarded in the present article. The main problem of the article is organizing technology abilities indication, which proves the method application possibility. There is the comparing of lifting technologies and sequential concrete-frame extension, as follows: the first one: the parameters are defined, and the second one: the organizational model is executed. This model defines borders of the usage methods, as well. There is the mathematic model creating, which describes boundary conditions of the present technologies usage. This model allows to predict construction efficiency for different stored-number buildings.

  8. A subduction zone reference frame based on slab geometry and subduction partitioning of plate motion and trench migration

    NARCIS (Netherlands)

    Schellart, W. P.

    2011-01-01

    The geometry of subducted slabs that interact with the transition zone depends critically on the partitioning of the subduction velocity (v S⊥) at the surface into its subducting plate motion component (vSP⊥) and trench migration component (vT⊥). Geodynamic models of progressive subduction

  9. Investigation of the wind climate in connection with double-stall on wind turbines in Tarifa[Spain]; Undersoegelse af vindklima i forbindelse med dobbelt-stall paa vindmoeller i Tarifa

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, T. [ELSAMPROJEKT A/S, Fredericia, (Denmark); Jensen, L.E. [LM Glasfiber A/S, Lunderskov (Denmark)

    2000-08-01

    This project has compiled data to allow the Danish manufacturers of wind turbines and blades to improve their knowledge of double stall. On the basis of the double stall difficulties different types of turbines using different makes of blades have encountered in the Tarifa area in Southern Spain, meteorological parameters and production data from two turbines have been measured for a local site. Part of the acquired data have been analysed to reach an understanding of why double stall occurs. The analysis strongly suggests that a change in power level due to double stall can be a result of several external factors: (1) Rain cleaning the blades. (2) A more or less random change in the wind speed components uv, or w, which in some cases can affect a - probably - fairly thick boundary layer. (3) A change in the high frequency turbulence where the vortex impact is too insignificant to affect an - almost - randomly - thick boundary layer. (au)

  10. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    Science.gov (United States)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-03-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  11. Robust Nonlinear Control of Stall and Flutter in Aeroengines

    National Research Council Canada - National Science Library

    Murray, Richard

    2001-01-01

    ... (bleed valves and air injection). The goal of the third activity, begun after the initial student supported by the grant left Caltech, was to develop modeling and control approaches for complex, physical systems, including control...

  12. Why Do Promising Therapies Stall in Development and How Can We Move Them Forward?

    Science.gov (United States)

    Wegner, Craig D; Goodwin, Andrew; Cook, Jon C; Allamneni, Krishna; Sohn, Jane; McVean, Maralee

    There are many reasons that molecules fail to progress to market and various principles of risk-benefit decisions that can help drive the molecule through development. This symposium included discussions on global strategies involved in pushing promising molecules to market, what to do when a molecule stalls in its progress to market, and options for rescuing the molecule and pushing it forward again. Innovative partnerships that bring stalled drugs back into clinical development were also addressed. A regulatory perspective on common reasons for a molecule to fail in its forward progress was presented. In addition, situations arise when a third-party advisory committee can provide input to help overcome issues identified by a regulatory agency. Using examples from the private and public domain, presentations centered on how to repurpose a molecule and when more science is needed.

  13. Grid support of a wind farm with active stall wind turbines and AC grid connection

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul Ejnar; Iov, F.

    2006-01-01

    grid connection. The designed control system has the task of enabling such a wind farm to provide the best grid support. It is based on two control levels: a supervisory control level, which controls the power production of the whole farm by sending out reference signals to each individual wind turbine......, and a local control level, which ensures that the reference power signals at the wind turbine level are reached. The ability of active stall wind farms with AC grid connection to control the power production to the reference power ordered by the operators is assessed and discussed by means of simulations.......One of the main concerns in the grid integration of large wind farms is their ability to behave as active controllable components in the power system. This article presents the design of a new integrated power control system for a wind farm made up exclusively of active stall wind turbines with AC...

  14. Effect of Cement Asphalt Mortar Debonding on Dynamic Properties of CRTS II Slab Ballastless Track

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2014-01-01

    Full Text Available The debonding of cement emulsified asphalt mortar (CA mortar is one of the main damage types in China railway track system II slab ballastless track. In order to analyze the influence of mortar debonding on the dynamic properties of CRTS II slab ballastless track, a vertical coupling vibration model for a vehicle-track-subgrade system was established on the base of wheel/rail coupling dynamics theory. The effects of different debonding lengths on dynamic response of vehicle and track system were analyzed by using the finite element software. The results show that the debonding of CA mortar layer will increase the dynamic response of track. If the length of debonding exceeds 1.95 m, the inflection point will appear on the vertical displacement curve of track. The vertical vibration acceleration of slab increases 4.95 times and the vertical dynamic compressive stress of CA mortar near the debonding region increases 15 times when the debonding length reaches 3.9 m. Considering the durability of ballastless track, once the length of debonding reaches 1.95 m, the mortar debonding should be repaired.

  15. Building America Case Study: Optimized Slab-on-Grade Foundation Insulation Retrofits, Madison, Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 percent for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  16. Hydration adjacent to a deeply subducting slab: The roles of nominally anhydrous minerals and migrating fluids

    Science.gov (United States)

    Hebert, Laura B.; Montési, Laurent G. J.

    2013-11-01

    transport of water into the mantle has significant dynamical and geochemical implications. Dehydration of hydrous phases within the slab can introduce water into the transition zone and lower mantle, potentially hydrating nominally anhydrous minerals (NAM) and impacting the viscosity and density structure of the mantle over a wide area. We present models of fluid transport and mantle hydration in the vicinity of a deeply subducting slab, focusing on the fate of water released by deep dehydration reaction in the subducted serpentinized mantle. A sharp decrease in water storage capacity across the lower boundary of the transition zone may produce "secondary dehydration" of hydrated NAM, leading to precipitation of a hydrous fluid and heterogeneous hydration of the transition zone. Rapid fluid migration relative to the solid flow field can lead to a broad region of diffuse hydration within the upper mantle wedge and the potential for localized melt regions at the top of the transition zone coincident with fluid pathways. Slower fluid migration instead implies that the fluid phase can be transported deep into the lower mantle. Water stabilized in NAM and as a free fluid can initiate upwelling within and above the transition zone. A less abrupt change in water storage capacity across the base of the transition zone leads to high NAM water contents in a channel adjacent to the slab where viscosity is reduced. However, seismic and electromagnetic observations of hydration in the transition zone are most compatible with a sudden drop of water storage capacity.

  17. Thermal degradation in Carrara marbles as the cause of deformation of cladding slabs

    Directory of Open Access Journals (Sweden)

    A. Spagnoli

    2014-10-01

    Full Text Available Marble slabs, typically used as façade panels to externally cover buildings, might permanently deform after a certain time of environmental exposure. This phenomenon, called bowing, is generally accompanied by a reduction of strength which increases with increasing degree of bowing. In the present paper, a theoretical model to calculate the progressive bowing of marble slabs submitted to temperature cycles is briefly recalled and applied to a specific Carrara marble sample. The marble is investigated by a microscopic analysis of thin sections cut along three orthogonal directions. The digital photographs are treated by an image analysis code which is capable of extracting grain size and shape distributions. In this way the anisotropic microstructure of the marble is quantified and taken into account in the numerical analyses. The influence of size distribution of grains as well as of their distribution of optic axis orientation on the slab bowing is discussed with the attempt of offering a quantitative tool for a better understanding of in situ bowing measurements.

  18. Optical distortions in end-pumped zigzag slab lasers.

    Science.gov (United States)

    Tang, Bing; Zhou, Tangjian; Wang, Dan; Li, Mi

    2015-04-01

    Ray tracing is performed to investigate the optical distortions in the end-pumped, zigzag slab. Optical path differences caused by temperature, slab deformation, and stress birefringence are calculated under uniform pumping; the results show a steep edge in the width dimension and a thermal lens with an effective focal length as short as several meters in the thickness dimension. Dependence of depolarization on total internal reflection phase retardance as well as the slab's cut angle is studied by the Jones matrix technique; results show that although at the pumping power of 10 kW, the mean depolarization of the 2.5  mm×30  mm×150.2  mm Nd:YAG slab is generally below 3%, and it increases rapidly with pumping power. Besides, for the 0°- or 60°-cut slab, an optimal phase retardance range of 5° to 13° exists, in which the depolarization loss can be lower than 0.5%. Finally, experiments on temperature and depolarization measurements verify the numerical results.

  19. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  20. Processing and properties of large-sized ceramic slabs

    International Nuclear Information System (INIS)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-01-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm 2 and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.