WorldWideScience

Sample records for stall pitching circulation

  1. Dynamic Stall in Pitching Airfoils: Aerodynamic Damping and Compressibility Effects

    Science.gov (United States)

    Corke, Thomas C.; Thomas, Flint O.

    2015-01-01

    Dynamic stall is an incredibly rich fluid dynamics problem that manifests itself on an airfoil during rapid, transient motion in which the angle of incidence surpasses the static stall limit. It is an important element of many manmade and natural flyers, including helicopters and supermaneuverable aircraft, and low-Reynolds number flapping-wing birds and insects. The fluid dynamic attributes that accompany dynamic stall include an eruption of vorticity that organizes into a well-defined dynamic stall vortex and massive excursions in aerodynamic loads that can couple with the airfoil structural dynamics. The dynamic stall process is highly sensitive to surface roughness that can influence turbulent transition and to local compressibility effects that occur at free-stream Mach numbers that are otherwise incompressible. Under some conditions, dynamic stall can result in negative aerodynamic damping that leads to limit-cycle growth of structural vibrations and rapid mechanical failure. The mechanisms leading to negative damping have been a principal interest of recent experiments and analysis. Computational fluid dynamic simulations and low-order models have not been good predictors so far. Large-eddy simulation could be a viable approach although it remains computationally intensive. The topic is technologically important owing to the desire to develop next-generation rotorcraft that employ adaptive rotor dynamic stall control.

  2. Analysis of the grid connection sequence of stall- and pitch-controlled wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Quinonez-Varela, G.; Cruden, A.; Anaya-Lara, O.; Tumilty, R.; McDonald, J.R. [Univ. of Strathclyde, Inst. for Energy and Environment (United Kingdom)

    2007-11-15

    The realistic modelling of wind turbines and wind farms is crucial in any form of power system analysis, and consequently, knowledge about their electrical characteristics and performance is also vital. One of the operating conditions producing major transient interaction between a wind turbine generator and the local grid is the grid connection sequence itself, which is particularly significant in fixed-speed turbines. This paper presents experimental measurements of the grid connection sequence of both types of fixed speed wind turbines, i.e. stall- and pitch-controlled via a soft-start device performed at two existing wind farms. Some of the results evidenced significant discrepancies between the actual soft-start operating intervals and those stated/suggested by open literature. The discussion of the paper focuses on highlighting the importance of accurate modelling of the grid connection sequence in order to avoid erroneous estimations of the interaction between the turbine and the grid during this operating state, or inappropriate design of the grid connection. (au)

  3. The computation of the post-stall behavior of a circulation controlled airfoil

    Science.gov (United States)

    Linton, Samuel W.

    1993-01-01

    The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.

  4. The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2017-11-01

    We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.

  5. Experimental investigation of flow-induced vibration of a pitch-plunge NACA 0015 airfoil under deep dynamic stall

    Czech Academy of Sciences Publication Activity Database

    Šidlof, Petr; Vlček, Václav; Štěpán, M.

    2016-01-01

    Roč. 67, November (2016), s. 48-59 ISSN 0889-9746 R&D Projects: GA ČR GA13-10527S Institutional support: RVO:61388998 Keywords : NACA 0015 airfoil * aeroelasticity * stall flutter * dynamic stall * limit cycle oscillation * schlieren Subject RIV: BI - Acoustics Impact factor: 2.021, year: 2016 http://ac.els-cdn.com/S0889974615300724/1-s2.0-S0889974615300724-main.pdf?_tid=31f9fa5a-d1c0-11e6-a705-00000aab0f26&acdnat=1483453588_64a6e8b2119c9afad3639cdec32a4569

  6. Enhancing BEM simulations of a stalled wind turbine using a 3D correction model

    Science.gov (United States)

    Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi

    2018-03-01

    Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.

  7. Effects of Relative SG Tube Pitches on the Performance Characteristics of a Small Modular Reactor driven by Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjin; Yi, Kunwoo; Lee, Byungjin [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    In this research, the capacity and basic dimensions for SMRs driven by a natural circulation are preliminarily assumed to determine the SMR configuration for the conceptual design, and each of the pre-set values is explained below. Firstly, the PZR configuration is not considered because it is not included to the main flow of the primary coolant. One of the SMR requirements is that SMR shall carry on the road. Hence, the vehicle geometrical limits are 15 meters for the length, and 3.5 meters for the height, approximately. With these limits for the dimensions of the SMR, RV length is assumed about 13.8 meters and RV diameter about 2.5 meters. In IAEA definition for SMRs, the capacity of electric power is no more than 300 MWe. If the efficiency of SMR power plant is assumed to 33% compared to the commercial power plant, the core power is below 1,000 MWth. In this research, the core power is assumed to 200 MWth arbitrarily during normal operation. The primary coolant passes through the outside of tubes, and the heat is transfer to the secondary feedwater. The secondary feedwater passes through the inside of tubes, and the heat from the primary coolant is received to generate the superheated steam. The present work carries out numerical simulations to get an insight for the effects of the diameters of the reactor vessel and riser using the parameters such as the steam generator tube pitches. To sum up, the calculation results show a good agreement with the theoretical equation and the uniform diameter loop has a more uniform temperature distribution and larger mass flow rate.

  8. Electric Control Substituting Pitch Control for Large Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jon Kjellin

    2013-01-01

    turbine has fixed pitch and is only controlled electrically accommodated by passive stall of the blades. By electrically controlling the generator rotational speed with the inverter, passive stall regulation is enabled. The first results on experimental verification of stall regulation in gusty wind speeds are presented. The experiments show that the control system can keep the turbine rotational speed constant even at very gusty winds. It is concluded that electrical control accommodated by passive stall is sufficient as control of the wind turbine even at high wind speeds and can substitute mechanical control such as blade pitch.

  9. Numerical Investigations of Dynamic Stall Control

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2014-04-01

    Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.

  10. A Comparative Study of Three Methodologies for Modeling Dynamic Stall

    Science.gov (United States)

    Sankar, L.; Rhee, M.; Tung, C.; ZibiBailly, J.; LeBalleur, J. C.; Blaise, D.; Rouzaud, O.

    2002-01-01

    During the past two decades, there has been an increased reliance on the use of computational fluid dynamics methods for modeling rotors in high speed forward flight. Computational methods are being developed for modeling the shock induced loads on the advancing side, first-principles based modeling of the trailing wake evolution, and for retreating blade stall. The retreating blade dynamic stall problem has received particular attention, because the large variations in lift and pitching moments encountered in dynamic stall can lead to blade vibrations and pitch link fatigue. Restricting to aerodynamics, the numerical prediction of dynamic stall is still a complex and challenging CFD problem, that, even in two dimensions at low speed, gathers the major difficulties of aerodynamics, such as the grid resolution requirements for the viscous phenomena at leading-edge bubbles or in mixing-layers, the bias of the numerical viscosity, and the major difficulties of the physical modeling, such as the turbulence models, the transition models, whose both determinant influences, already present in static maximal-lift or stall computations, are emphasized by the dynamic aspect of the phenomena.

  11. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    Science.gov (United States)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  12. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian

    2007-01-01

    on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...

  13. Numerical simulation of the RISOe1-airfoil dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)

  14. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the...

  15. Investigating Stall Flutter using a DS model-An application for HAWTs

    International Nuclear Information System (INIS)

    Nichols, James; Haans, Wouter; Witcher, David; Attorni, Andrea

    2014-01-01

    As wind turbine blades become larger there is a tendency for the blade torsional stiffness to reduce, producing the possibility of dynamic instability at moderate windspeeds. While linearised methods can assess the envelope of allowable blade properties for avoiding classical flutter with attached flow aerodynamics, wind turbine aerofoils can experience stalled flow. Therefore, it is necessary to explore the possible effects of stall-flutter on blade stability. This paper aims to address methods for judging the stability of blade designs during both attached flow and stalled flow behaviour. This paper covers the following areas: i) Attached flow model A Beddoes-Leishman indicial model is presented and the choice of coefficients is explained in the context of Theodorsen's theory for flat-plate aerofoils and experimental results by Beddoes and Leishman. Special attention is given to the differing dynamic behaviour of the pitching moment due to flapping motion, pitching motion and dynamically varying inflow. (ii) Classical flutter analysis The time domain attached flow model is verified against a linear flutter analysis by comparing time domain results for a 3D model of a representative multi-megawatt turbine blade, varying the position of the centre of mass along the chord. The results show agreement to within 6% for a range of flutter onset speeds. (iii) Dynamic stall model On entering the stalled region, damping of torsional motion of an aerofoil section can become negative. A dynamic stall model which encompasses the effects of trailing edge separation and leading edge vortex detachment is presented and validated against published experimental data. (iv) Stall flutter The resulting time domain model is used in simulations validating the prediction of reduced flutter onset for stalled aerofoils. Representative stalled conditions for a multi-megawatt wind turbine blade are investigated to assess the possible reduction in flutter speed. A maximum reduction of 17

  16. 14 CFR 25.103 - Stall speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall speed. 25.103 Section 25.103... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.103 Stall speed. (a) The reference stall speed, VSR, is a calibrated airspeed defined by the applicant. VSR may not be less than a 1-g stall...

  17. Pitch Fork

    DEFF Research Database (Denmark)

    Williams, Peter Leslie; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using this materials natural acoustic...

  18. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...

  19. 14 CFR 25.203 - Stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall characteristics. 25.203 Section 25.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.203 Stall characteristics. (a) It must...

  20. Dynamic stall characterization using modal analysis of phase-averaged pressure distributions

    Science.gov (United States)

    Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan

    2017-11-01

    Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.

  1. High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression

    Science.gov (United States)

    Matalanis, Claude; Bowles, Patrick; Lorber, Peter; Crittenden, Thomas; Glezer, Ari; Schaeffler, Norman; Min, Byung-Young; Jee, Solkeun; Kuczek, Andrzej; Wake, Brian

    2016-01-01

    This work documents high-speed wind tunnel experiments conducted on a pitching airfoil equipped with an array of combustion-powered actuators (COMPACT). The main objective of these experiments was to demonstrate the stall-suppression capability of COMPACT on a high-lift rotorcraft airfoil, the VR-12, at relevant Mach numbers. Through dynamic pressure measurements at the airfoil surface it was shown that COMPACT can positively affect the stall behavior of the VR-12 at Mach numbers up to 0.4. Static airfoil results demonstrated 25% and 50% increases in post-stall lift at Mach numbers of 0.4 and 0.3, respectively. Deep dynamic stall results showed cycle-averaged lift coefficient increases up to 11% at Mach 0.4. Furthermore, it was shown that these benefits could be achieved with relatively few pulses during down-stroke and with no need to pre-anticipate the stall event. The flow mechanisms responsible for stall suppression were investigated using particle image velocimetry.

  2. Investigation of unsteady flow development over a pitching airfoil by means of TR-PIV

    OpenAIRE

    Mulleners, Karen; Henning, Arne; Mai, Holger; Raffel, Markus; Costes, Michel; Le Pape, Arnaud

    2009-01-01

    The flow over an OA209 airfoil subjected to a sinusoidal pitching motion under dynamic stall conditions is investigated experimentally by means of time resolved particle image velocimetry (TR-PIV) and surface pressure measurements. Dynamic stall is distinguished by the formation and convection of large scale coherent structures and a delay in massive flow separation. A vortex detection scheme based on an identification function derived directly from the velocity fields is adopted to identify ...

  3. Vorticity Transport on a Flexible Wing in Stall Flutter

    Science.gov (United States)

    Akkala, James; Buchholz, James; Farnsworth, John; McLaughlin, Thomas

    2014-11-01

    The circulation budget within dynamic stall vortices was investigated on a flexible NACA 0018 wing model of aspect ratio 6 undergoing stall flutter. The wing had an initial angle of attack of 6 degrees, Reynolds number of 1 . 5 ×105 and large-amplitude, primarily torsional, limit cycle oscillations were observed at a reduced frequency of k = πfc / U = 0 . 1 . Phase-locked stereo PIV measurements were obtained at multiple chordwise planes around the 62.5% and 75% spanwise locations to characterize the flow field within thin volumetric regions over the suction surface. Transient surface pressure measurements were used to estimate boundary vorticity flux. Recent analyses on plunging and rotating wings indicates that the magnitude of the pressure-gradient-driven boundary flux of secondary vorticity is a significant fraction of the magnitude of the convective flux from the separated leading-edge shear layer, suggesting that the secondary vorticity plays a significant role in regulating the strength of the primary vortex. This phenomenon is examined in the present case, and the physical mechanisms governing the growth and evolution of the dynamic stall vortices are explored. This work was supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program monitored by Dr. Douglas Smith, and through the 2014 AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).

  4. Clutch-Starting Stalled Research Students

    Science.gov (United States)

    Ahern, Kathy; Manathunga, Catherine

    2004-01-01

    Many research students go through periods where their research seems to stall, their motivation drops, and they seem unable to make any progress. As supervisors, we attempt to remain alert to signs that our student's progress has stalled. Drawing on cognitive strategies, this article explores a problem-solving model supervisors can use to identify…

  5. Basis for an Active Stall Avoidance System

    Directory of Open Access Journals (Sweden)

    Richard Schulze

    2000-01-01

    Full Text Available A single-stage subsonic compressor was examined with respect to compressor instabilities. During the inception of rotating stall, the transients of the pressure rise and mass flow were measured as well as their hysteresis. The development of the stall cell and the characteristics of the unstable operating range were determined.

  6. Construction of hydrogenation stalls for explosions

    Energy Technology Data Exchange (ETDEWEB)

    Raichle, L.

    1943-05-03

    This report contained explanations for different questions that had been asked by the Association of Chemical Manufacturers. The first item discussed was the pressure occurring in hydrogenation stalls in hydrogen explosions. The pressures actually used were much smaller than the maximum design pressure due to burning gases being allowed to escape from the top and front of the stalls since these areas were open and it could not be assumed that the whole stall space was filled with a 32% hydrogen concentration at the beginning of an explosion. The second item discussed was specifications and rules for the building of hydrogenation stalls. These included the calculations for simple wind pressure according to the Building Code with the usual safety factors and the calculations for an inner pressure of 300 kg/m/sup 2/ with the usual safety factors. An explanation of a stall explosion in Poelitz and reinforced stall construction in Poelitz were two other items that were discussed. Appendix I of the report involved maximum pressures and temperature in hydrogen explosions. Diagram I was involved with this. Appendix II discussed the behavior of a hydrogen flame at high emerging velocities and Appendix III discussed stall construction at Poelitz.

  7. Development of a Mechanical Passive Pitch System for a 500W Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Poryzala, Tomek; Mikkelsen, Robert Flemming; Kim, Taeseong

    2017-01-01

    The goal of this paper is to design, analyze, manufacture, and test a mechanical passive pitch mechanism for a small horizontal axis wind turbine. Several pitching concepts were investigated in the wind industry and related fields before ultimately deciding on a centrifugal governor design concept...... in a pitch-to-stall configuration. Inertial and aerodynamic models were developed in order to predict steady-state performance and an optimization routine was created to optimize the pitch mechanism configuration subject to manufacturing constraints. Dynamic modeling in HAWC2 validated the steady......-state design code, aeroelastic simulations were performed in turbulent wind conditions to simulate the pitch system dynamics. Physical testing of the full turbine was not completed, however the hub sub-assembly was tested on its own to validate the passive pitch characteristics and showed good agreement...

  8. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  9. Simulation model of a wind turbine pitch controller for grid frequency stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom

    2005-06-15

    This paper describes a pitch angle controller that enables an active-stall wind turbine to dampen actively grid frequency oscillations. This builds on previous work in the area of the transient stability control of active-stall turbines. The phenomenon of grid frequency oscillations is explained briefly and then the task for the wind turbine controller defined. The pitch controller that acts as a grid frequency stabiliser is explained in terms of its layout, control sequence and parameters. Finally, a transient fault situation with subsequent grid frequency oscillations is simulated and it is shown how the grid frequency stabiliser works. The performance of the controller is discussed and the conclusion is drawn that grid frequency stabilisation with an active-stall turbine is possible under certain conditions. (Author)

  10. The Relevance of the Dynamic Stall Effect for Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...

  11. Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall

    NARCIS (Netherlands)

    Stamhuis, Eize Jan

    2017-01-01

    A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or

  12. Prediction of induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Thomsen, K.; Aagaard Madsen, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)

  13. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations

    DEFF Research Database (Denmark)

    Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge

    2004-01-01

    This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...

  14. Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed

    Science.gov (United States)

    Kearney, John; Glezer, Ari

    2014-11-01

    Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  15. High coking value pitch

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  16. Plasma-based Compressor Stall Control

    Science.gov (United States)

    McGowan, Ryan; Corke, Thomas

    2017-11-01

    The use of dielectric barrier discharge (DBD) plasma actuator casing treatment to prevent or delay stall inception in an axial fan is examined. The actuators are powered by a pulsed-DC waveform which induces a larger peak velocity than a purely AC waveform such as a sine or sawtooth wave. With this system, a high-voltage DC source is supplied to both electrodes, remaining constant in time for the exposed electrode. Meanwhile, the covered electrode is periodically grounded for several microseconds and allowed to rise back to the source DC level. To test the actuators' ability to interact with and modify the formation of stall cells, a facility has been designed and constructed around nonconductive fan blades. The actuators are installed in the fan casing near the blade tips. The instrumentation allows for the measurement of rotating pressure disturbances (traveling stall cells) in this tip gap region as well as fan performance characteristics including pressure rise and flow rate. The casing plasma actuation is found to reduce the correlation of the rotating stall cells, thereby extending the stall margin of the fan. Various azimuthal arrangements of the plasma actuator casing treatment is explored, as well as input voltage levels to the actuator to determine optimum conditions. NASA SBIR Contract NNX14CC12C.

  17. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

    2016-01-01

    Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... agreement between the model and the experimental data in many cases, which suggests that the current two-dimensional dynamic stall model as used in blade element momentum-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination...

  18. The relevance of the dynamic stall effect for transient fault operations of active-stall wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak

    2005-06-15

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)

  19. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  20. Dynamic stall and 3D effects

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs

  1. Education stalls and subsequent stalls in African fertility: A descriptive overview

    Directory of Open Access Journals (Sweden)

    Anne Goujon

    2015-12-01

    Full Text Available Background: Recent stalls in fertility decline have been observed in a few countries in sub-Saharan Africa, and so far no plausible common reason has been identified in the literature. This paper develops the hypothesis that these fertility stalls could be associated with stalls in the progress of education among the women of the relevant cohorts, possibly resulting partly from the Structural Adjustment Programs (SAPs of the 1980s. Methods: We descriptively link the change in the education composition of successive cohorts of young women in sub-Saharan Africa and the recent fertility stalls. We use reconstructed data on population by age, gender, and level of education from www.wittgenstein centre.org/dataexplorer, and fertility rates from the United Nations. Results: In most sub-Saharan African countries, we observe that the same countries that had fertility stalls had a stall in the progress of education, particularly for young women who were of primary school age during the 1980s, when most of the countries were under structural adjustment. Conversely, stalls in fertility are less common in countries that did not have an education stall, possibly in relation to SAPs. Conclusions: The results point to the possibility of a link between the recent fertility stalls and discontinuities in the improvement of the education of the relevant cohorts, which in turn could be related to the SAPs in the 1980s. This descriptive finding now needs to be corroborated through more detailed cohort-specific fertility analysis. If the education-fertility link can be further established, it will have important implications for the projections of population growth in affected countries.

  2. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic...

  3. Calculation of Rotor Performance and Loads Under Stalled Conditions

    National Research Council Canada - National Science Library

    Yeo, Hyeonsoo

    2003-01-01

    Rotor behavior in stalled conditions is investigated using wind tunnel test data of a 1/10-scale CH-47B/C type rotor, which provides a set of test conditions extending from unstalled to light stall...

  4. Consonance and pitch.

    Science.gov (United States)

    McLachlan, Neil; Marco, David; Light, Maria; Wilson, Sarah

    2013-11-01

    To date, no consensus exists in the literature as to theories of consonance and dissonance. Experimental data collected over the last century have raised questions about the dominant theories that are based on frequency relationships between the harmonics of music chords. This study provides experimental evidence that strongly challenges these theories and suggests a new theory of dissonance based on relationships between pitch perception and recognition. Experiment 1 shows that dissonance does not increase with increasing numbers of harmonics in chords as predicted by Helmholtz's (1863/1954) roughness theory, nor does it increase with fewer pitch-matching errors as predicted by Stumpf's (1898) tonal fusion theory. Dissonance was strongly correlated with pitch-matching error for chords, which in turn was reduced by chord familiarity and greater music training. This led to the proposition that long-term memory templates for common chords assist the perception of pitches in chords by providing an estimate of the chord intervals from spectral information. When recognition mechanisms based on these templates fail, the spectral pitch estimate is inconsistent with the period of the waveform, leading to cognitive incongruence and the negative affect of dissonance. The cognitive incongruence theory of dissonance was rigorously tested in Experiment 2, in which nonmusicians were trained to match the pitches of a random selection of 2-pitch chords. After 10 training sessions, they rated the chords they had learned to pitch match as less dissonant than the unlearned chords, irrespective of their tuning, providing strong support for a cognitive mechanism of dissonance. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  5. Airfoil stall interpreted through linear stability analysis

    Science.gov (United States)

    Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis

    2017-11-01

    Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.

  6. 16 CFR 1505.50 - Stalled motor testing.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...

  7. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  8. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  9. Dynamic Stall Control Using Plasma Actuators

    Science.gov (United States)

    Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo

    2017-11-01

    Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.

  10. Controlled Aerodynamic Loads on an Airfoil in Coupled Pitch/Plunge by Transitory Regulation of Trapped Vorticity

    Science.gov (United States)

    Tan, Yuehan; Crittenden, Thomas; Glezer, Ari

    2017-11-01

    The aerodynamic loads on an airfoil moving in coupled, time-periodic pitch-plunge beyond the static stall margin are controlled using transitory regulation of trapped vorticity concentrations. Actuation is effected by a spanwise array of integrated miniature chemical (combustion based) impulse actuators that are triggered intermittently during the airfoil's motion and have a characteristic time scale that is an order of magnitude shorter than the airfoil's convective time scale. Each actuation pulse effects momentary interruption and suspension of the vorticity flux with sufficient control authority to alter the airfoil's global aerodynamic characteristics throughout its motion cycle. The effects of the actuation are assessed using time-dependent measurements of the lift and pitching moment coupled with time-resolved particle image velocimetry over the airfoil and in its near wake that is acquired phased-locked to its motion. It is shown that while the presence of the pitch-coupled plunge delays lift and moment stall during upstroke, it also delays flow reattachment during the downstroke and results in significant degradation of the pitch stability. These aerodynamic shortcomings are mitigated using superposition of a limited number of pulses that are staged during the pitch/plunge cycle and lead to enhancement of cycle lift and pitch stability, and reduces the cycle hysteresis and peak pitching moment.

  11. Pitch features of environmental sounds

    Science.gov (United States)

    Yang, Ming; Kang, Jian

    2016-07-01

    A number of soundscape studies have suggested the need for suitable parameters for soundscape measurement, in addition to the conventional acoustic parameters. This paper explores the applicability of pitch features that are often used in music analysis and their algorithms to environmental sounds. Based on the existing alternative pitch algorithms for simulating the perception of the auditory system and simplified algorithms for practical applications in the areas of music and speech, the applicable algorithms have been determined, considering common types of sound in everyday soundscapes. Considering a number of pitch parameters, including pitch value, pitch strength, and percentage of audible pitches over time, different pitch characteristics of various environmental sounds have been shown. Among the four sound categories, i.e. water, wind, birdsongs, and urban sounds, generally speaking, both water and wind sounds have low pitch values and pitch strengths; birdsongs have high pitch values and pitch strengths; and urban sounds have low pitch values and a relatively wide range of pitch strengths.

  12. Pitch memory and exposure effects.

    Science.gov (United States)

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-02-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory, long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch," is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well-established premises: (1) frequency of occurrence has an influence on the way we process stimuli; (2) in Western music, some pitches and musical keys are much more frequent than others. Based on these premises, we hypothesize that if absolute pitch values are indeed represented in long-term memory, pitch frequency of occurrence in music would significantly affect cognitive processes, in particular pitch learning and evaluation. Two experiments were designed to test this hypothesis in participants with no absolute pitch, most with little or no musical training. Experiment 1 demonstrated a faster response and a learning advantage for frequent pitches over infrequent pitches in an identification task. In Experiment 2, participants evaluated infrequent pitches as more pleasing than frequent pitches when presented in isolation. These results suggest that absolute pitch representation in memory may play a substantial, hitherto unacknowledged role in auditory (and specifically musical) cognition. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Speed control at low wind speeds for a variable speed fixed pitch wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rosmin, N.; Watson, S.J.; Tompson, M. [Loughborough Univ., Loughborough, Leicestershire (United Kingdom)

    2010-03-09

    The maximum power regulation below rated wind speed is regulated by changing the rotor/generator speed at large frequency range in a fixed pitch, variable speed, stall-regulated wind turbine. In order to capture the power at a maximum value the power coefficient is kept at maximum peak point by maintaining the tip speed ratio at its optimum value. The wind industry is moving from stall regulated fixed speed wind turbines to newer improved innovative versions with better reliability. While a stall regulated fixed pitch wind turbine is among the most cost-effective wind turbine on the market, its problems include noise, severe vibrations, high thrust loads and low power efficiency. Therefore, in order to improve such drawbacks, the rotation of the generator speed is made flexible where the rotation can be controlled in variable speed. This paper discussed the development of a simulation model which represented the behaviour of a stall regulated variable speed wind turbine at low wind speed control region by using the closed loop scalar control with adjustable speed drive. The paper provided a description of each sub-model in the wind turbine system and described the scalar control of the induction machine. It was concluded that by using a constant voltage/frequency ratio of the generator's stator side control, the generator speed could be regulated and the generator torque could be controlled to ensure the power coefficient could be maintained close to its maximum value. 38 refs., 1 tab., 10 figs.

  14. Vocal Pitch Shift in Congenital Amusia (Pitch Deafness)

    Science.gov (United States)

    Hutchins, Sean; Peretz, Isabelle

    2013-01-01

    We tested whether congenital amusics, who exhibit pitch perception deficits, nevertheless adjust the pitch of their voice in response to a sudden pitch shift applied to vocal feedback. Nine amusics and matched controls imitated their own previously-recorded speech or singing, while the online feedback they received was shifted mid-utterance by 25…

  15. The neurocognitive components of pitch processing: insights from absolute pitch.

    Science.gov (United States)

    Wilson, Sarah J; Lusher, Dean; Wan, Catherine Y; Dudgeon, Paul; Reutens, David C

    2009-03-01

    The natural variability of pitch naming ability in the population (known as absolute pitch or AP) provides an ideal method for investigating individual differences in pitch processing and auditory knowledge formation and representation. We have demonstrated the involvement of different cognitive processes in AP ability that reflects varying skill expertise in the presence of similar early age of onset of music tuition. These processes were related to different regions of brain activity, including those involved in pitch working memory (right prefrontal cortex) and the long-term representation of pitch (superior temporal gyrus). They reflected expertise through the use of context dependent pitch cues and the level of automaticity of pitch naming. They impart functional significance to structural asymmetry differences in the planum temporale of musicians and establish a neurobiological basis for an AP template. More generally, they indicate variability of knowledge representation in the presence of environmental fostering of early cognitive development that translates to differences in cognitive ability.

  16. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  17. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  18. 14 CFR 23.201 - Wings level stall.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wings level stall. 23.201 Section 23.201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS.... Starting from a speed at least 10 knots above the stall speed, the elevator control must be pulled back so...

  19. 14 CFR 33.65 - Surge and stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... stall characteristics. When the engine is operated in accordance with operating instructions required by...

  20. Compressible dynamic stall vorticity flux control using a dynamic ...

    Indian Academy of Sciences (India)

    management of its unsteady vorticity using a variable droop leading edge (VDLE) airfoil. Through ... the pressure gradient term for the dynamic stall conditions encountered by a helicopter-rotor retreating blade. Thus ... This paper discusses control of compressible dynamic stall using the novel idea of variable droop leading ...

  1. Theoretical analysis of transcription process with polymerase stalling

    Science.gov (United States)

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  2. Pitch memory and exposure effects.

    OpenAIRE

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-01-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory (LTM), long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch" (AP), is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly-discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well establishe...

  3. Fast pitch softball injuries.

    Science.gov (United States)

    Meyers, M C; Brown, B R; Bloom, J A

    2001-01-01

    The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision

  4. A fuzzy logic pitch angle controller for power system stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)

    2006-07-12

    In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).

  5. Flap motion of helicopter rotors with novel, dynamic stall model

    Directory of Open Access Journals (Sweden)

    Han Wei

    2016-01-01

    Full Text Available In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.

  6. Pitch perception beyond the traditional existence region of pitch

    DEFF Research Database (Denmark)

    Oxenham, Andrew J.; Micheyl, Christophe; Keebler, Michael V.

    2011-01-01

    Humans’ ability to recognize musical melodies is generally limited to pure-tone frequencies below 4 or 5 kHz. This limit coincides with the highest notes on modern musical instruments and is widely believed to reflect the upper limit of precise stimulusdriven spike timing in the auditory nerve. We...... tested the upper limits of pitch and melody perception in humans using pure and harmonic complex tones, such as those produced by the human voice and musical instruments, in melody recognition and pitchmatching tasks. We found that robust pitch perception can be elicited by harmonic complex tones...... with fundamental frequencies below 2 kHz, even when all of the individual harmonics are above 6 kHz—well above the currently accepted existence region of pitch and above the currently accepted limits of neural phase locking. The results suggest that the perception of musical pitch at high frequencies...

  7. Design of a wind turbine pitch angle controller for power system stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)

    2007-11-15

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)

  8. HAWT dynamic stall response asymmetries under yawed flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, S.; Robinson, M.; Hand, M.; Simms, D.

    2000-02-28

    Horizontal axis wind turbines can experience significant time varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components, and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modeling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle of attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location, and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated.

  9. Is Social Licence A Licence To Stall?

    Directory of Open Access Journals (Sweden)

    Mark Lowey

    2016-03-01

    Full Text Available The School of Public Policy at the University of Calgary organized a one-day symposium on Oct. 8, 2014 in Calgary, as part of the School’s TransCanada Corporation Energy Policy and Regulatory Frameworks Program. The symposium was titled “Is Social License a License to Stall?” Held at the Hotel Arts, the event attracted a full-capacity audience of about 110 people, including representatives from industry, government and environmental non-government organizations. The symposium included four moderated panel sessions and a keynote speaker at lunch. The School of Public Policy set the framework for discussion at the Calgary symposium with the following description: Canada’s regulators act in the public interest to review energy and infrastructure project applications. Regulators are guided by procedural fairness and follow a transparent application, review and hearing process with data filings and sworn testimony. But that’s changing. “Social license” is a relatively new term, which some interests are using to create a different standard for the approval of projects — especially energy projects. According to social license advocates, projects must meet often ill-defined requirements set up by non-governmental organizations, local residents or other interests — a new hurdle for project approval, but without the rigour and rule of law of a regulator. Is social license a meaningful addition to the regulatory process, or is it being used as a constantly moving goal-post designed to slow down regulatory processes, delay project implementation, frustrate energy infrastructure expansion and even enrich those advocates who promote it as a new model? This paper summarises the discussion and the themes that emerged throughout the day. Most notably, panellists concluded that “social licence” is a real and significant issue that presents both an opportunity and a problem, not only for regulators but for all parties involved in the

  10. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...

  11. The Dynamics of SecM-Induced Translational Stalling

    Directory of Open Access Journals (Sweden)

    Albert Tsai

    2014-06-01

    Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.

  12. The dynamics of SecM-induced translational stalling.

    Science.gov (United States)

    Tsai, Albert; Kornberg, Guy; Johansson, Magnus; Chen, Jin; Puglisi, Joseph D

    2014-06-12

    SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine

    National Research Council Canada - National Science Library

    Hathaway, Michael D; Herrick, Greg; Chen, Jenping; Webster, Robert

    2004-01-01

    .... Improved understanding of the stall inception process and how stall control technologies mitigate such will provide compressors with increased tolerance to stall, thereby expanding the operational...

  14. PTEN Regulates DNA Replication Progression and Stalled Fork Recovery

    Science.gov (United States)

    He, Jinxue; Kang, Xi; Yin, Yuxin; Chao, K.S. Clifford; Shen, Wen H.

    2015-01-01

    Faithful DNA replication is a cornerstone of genomic integrity. PTEN plays multiple roles in genome protection and tumor suppression. Here we report on the importance of PTEN in DNA replication. PTEN depletion leads to impairment of replication progression and stalled fork recovery, indicating an elevation of endogenous replication stress. Exogenous replication inhibition aggravates replication-originated DNA lesions without inducing S-phase arrest in cells lacking PTEN, representing replication stress tolerance. Our analysis reveals the physical association of PTEN with DNA replication forks and PTEN-dependent recruitment of Rad51. PTEN deletion results in Rad51 dissociation from replication forks. Stalled replication forks in Pten null cells can be reactivated by ectopic Rad51 or PTEN, the latter facilitating chromatin loading of Rad51. These data highlight the interplay of PTEN with Rad51 in promoting stalled fork restart. We propose that loss of PTEN may initiate a replication stress cascade that progressively deteriorates through the cell cycle. PMID:26158445

  15. Active Suppression of Rotating Stall Inception with Distributed Jet Actuation

    Directory of Open Access Journals (Sweden)

    Huu Duc Vo

    2007-01-01

    Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.

  16. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  17. Disorders of pitch production in tone deafness

    Directory of Open Access Journals (Sweden)

    Simone eDalla Bella

    2011-07-01

    Full Text Available Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15% are inaccurate singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as tone deafness, has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that pitch production (or imitation is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory on poor-pitch singing suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  18. Difficulties with Pitch Discrimination Influences Pitch Memory Performance: Evidence from Congenital Amusia

    OpenAIRE

    Jiang, Cunmei; Lim, Vanessa K.; Wang, Hang; Hamm, Jeff P.

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to crea...

  19. EQUINE THERMOREGULATORY RESPONSES DURING SUMMERTIME ROAD TRANSPORT AND STALL CONFINEMENT

    Directory of Open Access Journals (Sweden)

    ANGELA R. GREEN

    2007-04-01

    Full Text Available Thermoregulatory responses of horses subjected to summer-time road transport and stall confinement were investigated in this study. Six mature geldings were transported 168 km in a 4-horse trailer and were monitored while tethered in their stalls, on alternate days. Core body temperature (GT demonstrated negligible response during transport, but GT following transport was higher than GT for non-transport. GT tended to increase with increased temperature humidity index (THI. THI within the trailer was greatest for positions near the front, and was influenced by daily weather which varied over experiment days from heat stress conditions to moderate discomfort.

  20. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian

    2009-01-01

    The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in hea...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  1. Regulation of bacterial gene expression by ribosome stalling and rescuing.

    Science.gov (United States)

    Jin, Yongxin; Jin, Shouguang; Wu, Weihui

    2016-05-01

    Ribosome is responsible for protein synthesis and is able to monitor the sequence and structure of the nascent peptide. Such ability plays an important role in determining overall gene expression profile of the bacteria through ribosome stalling and rescuing. In this review, we briefly summarize our current understanding of the regulation of gene expression through ribosome stalling and rescuing in bacteria, as well as mechanisms that modulate ribosome activity. Understanding the mechanisms of how bacteria modulate ribosome activity will provide not only fundamental insights into bacterial gene regulation, but also new candidate targets for the development of novel antimicrobial agents.

  2. Reliable Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; Soltani, Mohsen

    2015-01-01

    The key objectives of wind turbine manufactures and buyers are to reduce the Total Cost of Ownership and Total Cost of Energy. Among others, low downtime of a wind turbine is important to increase the amount of energy produced during its lifetime. Historical data indicate that pitch systems...... accounts for a substantial part of the downtime of wind turbines. With a focus on fluid power pitch systems; this paper presents an overview of methods relevant to assessing and increasing the reliability and availability of such systems. Four major areas are identified and covered; failure analysis...

  3. Dynamic Stall Flow Control Through the Use of a Novel Plasma Based Actuator Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lynntech proposes a novel flow control methodology for airfoils undergoing dynamic stall. Dynamic stall refers to an aerodynamic phenomenon that is experienced by...

  4. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  5. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  6. Numerical study of effect of pitch angle on performance characteristics of a HAWT

    Directory of Open Access Journals (Sweden)

    Sudhamshu A.R.

    2016-03-01

    Full Text Available Wind energy is one of the clean renewable forms of energy that can handle the existing global fossil fuel crisis. Although it contributes to 2.5% of the global electricity demand, with diminishing fossil fuel sources, it is important that wind energy is harnessed to a greater extent to meet the energy crisis and problem of pollution. The present work involves study of effect of pitch angle on the performance of a horizontal axis wind turbine (HAWT, NREL Phase VI. The wind velocities considered for the study are 7, 15.1 and 25.1 m/s. The simulations are performed using a commercial CFD code Fluent. A frozen rotor model is used for simulation, wherein the governing equations are solved in the moving frame of reference rotating with the rotor speed. The SST k-ω turbulence model has been used. It is seen that the thrust increases with increase in wind velocity, and decreases with increase in pitch angle. For a given wind velocity, there is an optimum pitch angle where the power generated by the turbine is maximum. The observed effect of pitch angle on the power produced has been correlated to the stall characteristics of the airfoil blade.

  7. Absolute pitch--electrophysiological evidence.

    Science.gov (United States)

    Barnea, A; Granot, R; Pratt, H

    1994-02-01

    People who have the ability to label or to produce notes without any reference are considered to possess Absolute Pitch (AP). Others, who need a reference in order to identify the notes, possess Relative Pitch (RP). The AP ability is assumed to reflect a unique, language-like representation of non-lexical musical notes in memory. The purpose of this study was to examine this assumption by comparing Event Related Potentials (ERP) of musicians with and without AP, to lexical and non-lexical representation of musical material. Subjects were eighteen young adult musicians. Seven were AP and eleven RP. Auditory stimuli, presented through earphones, were piano notes (non-lexical) or a voice saying the note's name (lexical). Visual stimuli, presented on a computer display were note symbols (non-lexical) or letters (lexical). Subjects performed a number of tasks, combining the two modalities (visual and auditory) and stimulus types (lexical and non-lexical), and reaction times (RT), performance accuracy and evoked potentials were recorded. The tasks forced the subjects to transfer mental representations of musical material from one mode to another. Our most important findings were the differences, between groups, in the scalp distribution of P300 amplitudes. We conclude that absolute pitch possessors use the same internal language as relative pitch possessors, when possible, but the distribution of the underlying brain activity is different between AP and RP subjects.

  8. A Different Pitch to Slope

    Science.gov (United States)

    Wolbert, William

    2017-01-01

    The query "When are we ever going to use this?" is easily answered when discussing the slope of a line. The pitch of a roof, the grade of a road, and stair stringers are three applications of slope that are used extensively. The concept of slope, which is introduced fairly early in the mathematics curriculum has hands-on applications…

  9. Unsteady Double Wake Model for the Simulation of Stalled Airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær

    2015-01-01

    separation and its dynamics. In this paper, the calculated integral forces have been successfully validated against wind tunnel measurements for the FFA-W3-211 airfoil. Furthermore, the computed highly unsteady flow field is analyzed in detail for a set of angles of attack ranging from light to deep stall...

  10. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2013-01-01

    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  11. The Mechanical Impact of Aerodynamic Stall on Tunnel Ventilation Fans

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available This paper describes work aimed at establishing the ability of a tunnel ventilation fan to operate without risk of mechanical failure in the event of aerodynamic stall. The research establishes the aerodynamic characteristics of a typical tunnel ventilation fan when operated in both stable and stalled aerodynamic conditions, with and without an anti-stall stabilisation ring, with and without a “nonstalling” blade angle and at full, half, and one quarter design speed. It also measures the fan’s peak stress, thus facilitating an analysis of the implications of the experimental results for mechanical design methodology. The paper concludes by presenting three different strategies for tunnel ventilation fan selection in applications where the selected fan will most likely stall. The first strategy selects a fan with a low-blade angle that is nonstalling. The second strategy selects a fan with a high-pressure developing capability. The third strategy selects a fan with a fitted stabilisation ring. Tunnel ventilation system designers each have their favoured fan selection strategy. However, all three strategies can produce system designs within which a tunnel ventilation fan performs reliably in-service. The paper considers the advantages and disadvantages of each selection strategy and considered the strengths and weaknesses of each.

  12. THE IMPACT OF LOCALIZATION AND BARN TYPE ON INSOLATION OF SIDEWALL STALLS DURING SUMMER

    Directory of Open Access Journals (Sweden)

    Sabina Angrecka

    2017-07-01

    The obtained results allowed us to identify optimal orientation of barns and to suggest the simplest technical measures to protect sidewall stalls from solar heat gain deleterious to cows. The model analysis of stall shading demonstrated that extension of barn eaves to 1 m on the southern side reduced the insolation of stalls over even up to 90% of their area.

  13. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  14. Cross-Cultural Perspectives on Pitch Memory

    Science.gov (United States)

    Trehub, Sandra E.; Schellenberg, E. Glenn; Nakata, Takayuki

    2008-01-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and…

  15. Pitch perception prior to cortical maturation

    Science.gov (United States)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  16. Global distribution of the pitch canker fungus

    Science.gov (United States)

    L. David Dwinell

    1998-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, causes diseases of pines in the United States, Haiti, Japan, Mexico, Spain, and South Africa. Pitch canker was first reported in Virginia pine in North Carolina in 1946. Although the disease was reported in Haitian pine in 1953, pitch canker was generally considered a...

  17. Pitch and Plasticity: Insights from the Pitch Matching of Chords by Musicians with Absolute and Relative Pitch

    Directory of Open Access Journals (Sweden)

    Neil M. McLachlan

    2013-12-01

    Full Text Available Absolute pitch (AP is a form of sound recognition in which musical note names are associated with discrete musical pitch categories. The accuracy of pitch matching by non-AP musicians for chords has recently been shown to depend on stimulus familiarity, pointing to a role of spectral recognition mechanisms in the early stages of pitch processing. Here we show that pitch matching accuracy by AP musicians was also dependent on their familiarity with the chord stimulus. This suggests that the pitch matching abilities of both AP and non-AP musicians for concurrently presented pitches are dependent on initial recognition of the chord. The dual mechanism model of pitch perception previously proposed by the authors suggests that spectral processing associated with sound recognition primes waveform processing to extract stimulus periodicity and refine pitch perception. The findings presented in this paper are consistent with the dual mechanism model of pitch, and in the case of AP musicians, the formation of nominal pitch categories based on both spectral and periodicity information.

  18. Simulation Model of an Active-stall Fixed-speed Wind Turbine Controller

    DEFF Research Database (Denmark)

    Jauch, Clemens; Hansen, Anca D.; Soerensen, Poul

    2004-01-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented...... and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented...

  19. Simulation model of an active-stall fixed-speed wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.

    2004-07-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)

  20. Carbon fibers from SRC pitch

    Science.gov (United States)

    Greskovich, Eugene J.; Givens, Edwin N.

    1981-01-01

    This invention relates to an improved method of manufacturing carbon fibers from a coal derived pitch. The improvement resides in the use of a solvent refined coal which has been hydrotreated and subjected to solvent extraction whereby the hetero atom content in the resulting product is less than 4.0% by weight and the softening point is between about 100.degree.-250.degree. F.

  1. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  2. Disorders of pitch production in tone deafness.

    Science.gov (United States)

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as "tone deafness," has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  3. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  4. Effects of grit roughness and pitch oscillations on the S810 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-01-01

    An S810 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory 3 x 5 subsonic wind tunnel under steady state and unsteady conditions. The test defined baseline conditions for steady state angles of attack from -20{degrees} to +40{degrees} and examined unsteady behavior by oscillating the model about its pitch axis for three mean angles, three frequencies, and two amplitudes. For all cases, Reynolds numbers of 0.75, 1, 1.25, and 1.5 million were used. In addition, the above conditions were repeated after the application of leading edge grit roughness (LEGR) to determine contamination effects on the airfoil performance. Baseline steady state results of the S810 testing showed a maximum lift coefficient of 1.15 at 15.2{degrees}angle of attack. The application of LEGR reduced the maximum lift coefficient by 12% and increased the 0.0085 minimum drag coefficient value by 88%. The zero lift pitching moment of -0.0286 showed a 16% reduction in magnitude to -0.0241 with LEGR applied. Data were also obtained for two pitch oscillation amplitudes: {plus_minus}5.5{degrees} and {plus_minus}10{degrees}. The larger amplitude consistently gave a higher maximum lift coefficient than the smaller amplitude and both sets of unsteady maximum lift coefficients were greater than the steady state values. Stall was delayed on the airfoil while the angle of attack was increasing, thereby causing an increase in maximum lift coefficient. A hysteresis behavior was exhibited for all the unsteady test cases. The hysteresis loops were larger for the higher reduced frequencies and for the larger amplitude oscillations. In addition to the hysteresis behavior, an unusual feature of these data were a sudden increase in the lift coefficient where the onset of stall was expected. As in the steady case, the effect of LEGR in the unsteady case was to reduce the lift coefficient at high angles of attack.

  5. DYNSTALL: Subroutine package with a dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, Anders [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    2001-03-01

    A subroutine package, called DYNSTALL, for the calculation of 2D unsteady airfoil aerodynamics is described. The subroutines are written in FORTRAN. DYNSTALL is basically an implementation of the Beddoes-Leishman dynamic stall model. This model is a semi-empirical model for dynamic stall. It includes, however, also models for attached flow unsteady aerodynamics. It is complete in the sense that it treats attached flow as well as separated flow. Semi-empirical means that the model relies on empirically determined constants. Semi because the constants are constants in equations with some physical interpretation. It requires the input of 2D airfoil aerodynamic data via tables as function of angle of attack. The method is intended for use in an aeroelastic code with the aerodynamics solved by blade/element method. DYNSTALL was written to work for any 2D angles of attack relative to the airfoil, e.g. flow from the rear of an airfoil.

  6. Study and Control of a Radial Vaned Diffuser Stall

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan

    2012-01-01

    Full Text Available The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads—from a steady-state calculations point of view—to an increase by 40% of the compressor operating range extent.

  7. Simulasi Numerik Dynamic Stall Pada Airfoil Yang Berosilasi

    Directory of Open Access Journals (Sweden)

    Galih S.T.A. Bangga

    2012-09-01

    Full Text Available Kebutuhan analisa pada sudu helikopter, kompresor, kincir angin dan struktur streamline lainya yang beroperasi pada angle of attack yang tinggi dan melibatkan instationary effects yang disebut dynamic stall menjadi semakin penting. Fenomena ini ditandai dengan naiknya dynamic lift melewati static lift maksimum pada critical static stall angle, vortex yang terbentuk pada leading edge mengakibatkan naiknya suction contribution yang kemudian terkonveksi sepanjang permukaan hingga mencapai trailling edge diikuti terbentuknya trailling edge vortex yang menunjukkan terjadinya lift stall. Fenomena ini sangat berbahaya terhadap struktur airfoil itu sendiri. Secara umum, beban fatique yang ditimbulkan oleh adanya efek histerisis karena fluktuasi gaya lift akibat induksi vibrasi lebih besar dibandingkan kondisi statis. Simulasi numerik dilakukan secara 2D dengan menggunakan profil Boeing-Vertol V23010-1.58 pada α0 = 14.92°. Standard-kω dan SST-kω digunakan sebagai URANS turbulence modelling. Model osilasi dari airfoil disusun dalam suatu user defined function (UDF. Gerakan meshing beserta airfoil diakomodasi dengan menggunakan dynamic mesh approach. Simulasi numerik menunjukkan bahwa, model SST-kω menunjukkan performa yang lebih baik dibandingkan dengan Standard-kω. Fenomena travelling vortex yang terjadi mampu ditangkap dengan baik, meski pada angle of attack yang tinggi URANS turbulence model gagal memprediksikan fenomena yang terjadi karena dominasi efek 3D.

  8. Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow

    Science.gov (United States)

    Narsipur, Shreyas

    flap to model the effect of the separated boundary-layer. Unsteady RANS results for several pitch and plunge motions showed that the differences in aerodynamic loads between steady and unsteady flows can be attributed to the boundary-layer convection lag, which can be modeled by choosing an appropriate value of the time lag parameter, tau2. In order to provide appropriate viscous corrections to inviscid unsteady calculations, the non-linear decambering flap is applied with a time lag determined by the tau2 value, which was found to be independent of motion kinematics for a given airfoil and Reynolds number. The predictions of the aerodynamic loads, unsteady stall, hysteresis loops, and ow reattachment from the low-order model agree well with CFD and experimental results, both for individual cases and for trends between motions. The model was also found to perform as well as existing semi-empirical models while using only a single empirically defined parameter. Inclusion of LEV shedding capabilities and combining the resulting algorithm with phase one's trailing-edge separation model was the primary objective of phase two. Computational results at low and high Reynolds numbers were used to analyze the ow morphology of the LEV to identify the common surface signature associated with LEV initiation at both low and high Reynolds numbers and relate it to the critical leading-edge suction parameter (LESP ) to control the initiation and termination of LEV shedding in the low-order model. The critical LESP, like the tau2 parameter, was found to be independent of motion kinematics for a given airfoil and Reynolds number. Results from the final low-order model compared excellently with CFD and experimental solutions, both in terms of aerodynamic loads and vortex ow pattern predictions. Overall, the final combined dynamic stall model that resulted from the current research was successful in accurately modeling the physics of unsteady ow thereby helping restrict the number of

  9. Prediction of dynamic loads and induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)

    1998-05-01

    Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final

  10. Wider stall space affects behavior, lesion scores, and productivity of gestating sows.

    Science.gov (United States)

    Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M

    2015-10-01

    Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( pregnancy progressed, lesion scores increased among sows in CTL ( postural behaviors and sham chew behavior were affected by TRT ( changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.

  11. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Science.gov (United States)

    Jiang, Cunmei; Lim, Vanessa K; Wang, Hang; Hamm, Jeff P

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  12. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Directory of Open Access Journals (Sweden)

    Cunmei Jiang

    Full Text Available Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  13. Numerical Simulation of Transient Flows around a 3D Pitching Hydrofoil

    Directory of Open Access Journals (Sweden)

    Qin Wu

    2015-02-01

    Full Text Available The objective of this paper is to investigate the hydrodynamic characteristics of the transient flows around a 3D pitching hydrofoil via numerical studies, where the effects of tunnel wall boundary layer and gap flows are considered. Simulations are performed using an unsteady Reynolds Average Navier-Stokes solver and the k-ω SST turbulence model, coupled with a two-equation γ-Reθ transition model. Hydrodynamic forces and flow structures are compared to the results with the equivalent 2D computations. During the upward pitching stage, the transition phenomenon is accurately captured by both the 2D and 3D simulations. The slightly lower lift and suction side loading coefficients predicted by the 3D simulation are due to the pressure effects caused by the tip gap flow. During the dynamic stall stage, the 2D case exhibits a clear overshoot on the hydrodynamic force coefficients and the 3D simulation results better agree with the experimental results. During the downward pitching stage, the flow transitions back to laminar. As for the effect of gap flow and the wall boundary condition, the gap flow causes disturbances to the formation and development of the vortex structures, resulting in the complex distribution of the three-dimensional streamlines and the particle path.

  14. Ocean Circulation

    OpenAIRE

    Thompson, Andrew F.; Rahmstorf, Stefan

    2009-01-01

    The ocean moderates the Earth's climate due to its vast capacity to store and transport heat; the influence of the large-scale ocean circulation on changes in climate is considered in this chapter. The ocean experiences both buoyancy forcing (through heating/cooling and evaporation/precipitation) and wind forcing. Almost all ocean forcing occurs at the surface, but these changes are communicated throughout the entire depth of the ocean through the meridional overturning circulation (MOC). In ...

  15. Precautions against axial fan stall in reactor building to Tianwan NPP

    International Nuclear Information System (INIS)

    Liu Chunlong; Pei Junmin

    2011-01-01

    The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)

  16. Pitch perception in the first year of life: A comparison of lexical tones and musical pitch

    NARCIS (Netherlands)

    Chen, A.; Stevens, Catherine; Kager, R.W.J.

    2017-01-01

    Pitch variation is pervasive in speech, regardless of the language to which infants are exposed. Lexical tone is influenced by general sensitivity to pitch. We examined whether the development in lexical tone perception may develop in parallel with perception of pitch in other cognitive domains

  17. Parasites pitched against nature: Pitch Lake water protects guppies (Poecilia reticulata) from microbial and gyrodactylid infections.

    Science.gov (United States)

    Schelkle, Bettina; Mohammed, Ryan S; Coogan, Michael P; McMullan, Mark; Gillingham, Emma L; VAN Oosterhout, Cock; Cable, Joanne

    2012-11-01

    SUMMARY The enemy release hypothesis proposes that in parasite depleted habitats, populations will experience relaxed selection and become more susceptible (or less tolerant) to pathogenic infections. Here, we focus on a population of guppies (Poecilia reticulata) that are found in an extreme environment (the Pitch Lake, Trinidad) and examine whether this habitat represents a refuge from parasites. We investigated the efficacy of pitch in preventing microbial infections in Pitch Lake guppies, by exposing them to dechlorinated water, and reducing gyrodactylid infections on non-Pitch Lake guppies by transferring them to Pitch Lake water. We show that (i) natural prevalence of ectoparasites in the Pitch Lake is low compared to reference populations, (ii) Pitch Lake guppies transferred into aquarium water develop microbial infections, and (iii) experimentally infected guppies are cured of their gyrodactylid infections both by natural Pitch Lake water and by dechlorinated water containing solid pitch. These results indicate a role for Pitch Lake water in the defence of guppies from their parasites and suggest that Pitch Lake guppies might have undergone enemy release in this extreme environment. The Pitch Lake provides an ideal ecosystem for studies on immune gene evolution in the absence of parasites and long-term evolutionary implications of hydrocarbon pollution for vertebrates.

  18. Numeric aspects in pitch identification: an fMRI study

    Directory of Open Access Journals (Sweden)

    Schwenzer Michael

    2011-03-01

    Full Text Available Abstract Background Pitch identification had yielded unique response patterns compared to other auditory skills. Selecting one out of numerous pitches distinguished this task from detecting a pitch ascent. Encoding of numerous stimuli had activated the intraparietal sulcus in the visual domain. Therefore, we hypothesized that numerosity encoding during pitch identification activates the intraparietal sulcus as well. Methods To assess pitch identification, the participants had to recognize a single pitch from a set of four possible pitches in each trial. Functional magnetic resonance imaging (fMRI disentangled neural activation during this four-pitch-choice task from activation during pitch contour perception, tone localization, and pitch discrimination. Results Pitch identification induced bilateral activation in the intraparietal sulcus compared to pitch discrimination. Correct responses in pitch identification correlated with activation in the left intraparietal sulcus. Pitch contour perception activated the superior temporal gyrus conceivably due to the larger range of presented tones. The differentiation between pitch identification and tone localization failed. Activation in an ACC-hippocampus network distinguished pitch discrimination from pitch identification. Conclusion Pitch identification is distinguishable from pitch discrimination on the base of activation in the IPS. IPS activity during pitch identification may be the auditory counterpart of numerosity encoding in the visual domain.

  19. Comparison of Different Stall Conditions in Axial Flow Compressor Using Analytic Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Arshad Ali

    2017-12-01

    Full Text Available The rotating stall inception data analysis using Analytic Wavelet Transform (AWT in a low-speed axial compressor was presented in the authors’ previous studies [1], [2]. These studies focused on the detection of instability inception in an axial flow compressor when it enters into the instability regime due to the modal type of stall perturbation. In this paper, the effectiveness of AWT is further studied by applying it under different testing conditions. In order to examine the results of AWT on highly sampled data, at first, the stall data were acquired at a high sampling frequency and the results were compared with the conventional filtered signals. Secondly, the AWT analysis of stall data was carried out for the condition when compressor experienced a spike type rotating stall disturbance. The stall inception information obtained from the AWT analysis was then compared with the commonly used stall detection techniques. The results show that AWT is equally beneficial for the diagnostic of compressor instability regardless of the data sampling rate and represents an outstanding ability to detect stall disturbance irrespective of the type of stall precursor, i.e. the modal wave or spike.

  20. El departamento musical Disney : las Silly Symphonies y Carl Stalling

    OpenAIRE

    Duarte del Moral, Marina

    2014-01-01

    La historia de la animación tiene un nombre propio: Walt Disney. Gracias a su experimentación en diversos campos de esta materia, Disney consigue desarrollar la animación y su universo de una forma perseverante y continua, adaptándose a los diversos cambios producidos desde el nacimiento de ésta, reinventando una y otra vez el sector y añadiendo su toque mágico a la personalidad de cada personaje y cada obra. En este camino no está solo gracias al trabajo de genios como Carl Stalling, que apo...

  1. FBH1 Catalyzes Regression of Stalled Replication Forks

    DEFF Research Database (Denmark)

    Fugger, Kasper; Mistrik, Martin; Neelsen, Kai J

    2015-01-01

    DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression......, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose...

  2. Individual Pitch Control Using LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2012-01-01

    In this work the problem of individual pitch control of a variable-speed variable-pitch wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. However as the plant is nonlinear and time varying, a new approach is proposed to simplify...

  3. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. Perceptual limitations may be characterized by measuring an observer’s change in performance when introducting...... external noise in the physical stimulus (Lu and Dosher, 2008). The present study used this approach to attempt to quantify the “internal noise” involved in pitch coding of harmonic complex tones by estimating the amount of harmonic roving required to impair pitch discrimination performance. It remains...... a matter of debate whether pitch perception of natural complex sounds mostly relies on either spectral excitation-based information or temporal periodicity information. Comparing the way internal noise affects the internal representations of such information to how it affects pitch discrimination...

  4. The FFA dynamic stall model. The Beddoes-Leishman dynamic stall model modified for lead-lag oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden)

    1997-08-01

    For calculations of the dynamics of wind turbines the inclusion of a dynamic stall model is necessary in order to obtain reliable results at high winds. For blade vibrations in the lead-lag motion the velocity relative to the blade will vary in time. In the present paper modifications to the Beddoes-Leishman model is presented in order to improve the model for calculations of cases with a varying relative velocity. Comparisons with measurement are also shown and the influence on the calculated aerodynamic damping by the modifications are investigated. (au)

  5. Ingestive behavior of lambs confined in individual and group stalls.

    Science.gov (United States)

    Filho, A Eustáquio; Carvalho, G G P; Pires, A J V; Silva, R R; Santos, P E F; Murta, R M; Pereira, F M

    2014-02-01

    The experiment was conducted to evaluate the ingestive behavior of lambs confined in individual and group stalls. We used thirty-four lambs in their growing phase, aged an average of three months, with mean initial live weight of 17.8±5.2 kg. They were allotted in a completely randomized design with 24 animals kept in individual stalls and 10 animals confined as a group. The experiment lasted for a total of 74 days, and the first 14 days were dedicated to the animals' adaption to the management, facilities and diets. The data collection period lasted 60 days, divided into three 20-d periods for the behavior evaluation. The animals were subjected to five days of visual observation during the experiment period, by the quantification of 24 h a day, with evaluations on the 15th day of each period and an interim evaluation consisting of two consecutive days on the 30th and 31st day of the experiment. The animals confined as a group consumed less (pbehavior.

  6. A.C. Plasma Anemometer for Axial Compressor Stall Warning

    Science.gov (United States)

    Matlis, Eric; Cameron, Joshua; Morris, Scott; Corke, Thomas

    2007-11-01

    Compressor sections of turbo jet engines are subject to stall and surge as a result of flow instabilities that occur upstream of the compressor rotor. One of the instability modes that contributes to compressor surge is the so-called `spike' mode of stall inception. It has been shown that this mode of instability can be predicted before onset by performing real-time statistical auto-correlation measurements of the blade-passing pressure characteristic at the mid-chord location of the rotor. These measurements are performed with pressure sensors or hot-wires that are too fragile for a full-scale compressor. We have developed a sensor that can survive the vibration and temperatures of a full-scale rig while providing the bandwidth necessary to resolve the blade passage signature required by this coherence technique. This sensor, called the Plasma Anemometer, provides high-bandwith point measurements of velocity or pressure fluctuations with unparalleled mechanical robustness and resistance to vibration and thermal effects.

  7. Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil

    Science.gov (United States)

    Wu, Qin; Huang, Biao; Wang, Guoyu

    2016-02-01

    The objective of this paper is to address the transient flow structures around a pitching hydrofoil by combining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effectively, the Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) are utilized under the framework of Navier-Stokes flow computations. In the numerical simulations, the k-ω shear stress transport (SST) turbulence model, coupled with a two-equation γ {-Re}_θ transition model, is used for the turbulence closure. Results are presented for a NACA66 hydrofoil undergoing slowly and rapidly pitching motions from 0° to 15° then back to 0° at a moderate Reynolds number Re=7.5× 105. The results reveal that the transient flow structures can be observed by the LCS method. For the slowly pitching case, it consists of five stages: quasi-steady and laminar, transition from laminar to turbulent, vortex development, large-scale vortex shedding, and reverting to laminar. The observation of LCS and Lagrangian particle tracers elucidates that the trailing edge vortex is nearly attached and stable during the vortex development stage and the interaction between the leading and trailing edge vortex caused by the adverse pressure gradient forces the vortexes to shed downstream during the large-scale vortex shedding stage, which corresponds to obvious fluctuations of the hydrodynamic response. For the rapidly pitching case, the inflection is hardly to be observed and the stall is delayed. The vortex formation, interaction, and shedding occurred once instead of being repeated three times, which is responsible for just one fluctuation in the hydrodynamic characteristics. The numerical results also show that the FTLE field has the potential to identify the transient flows, and the LCS can represent the divergence extent of infinite neighboring particles and capture the interface of the vortex region.

  8. Pitch memory, labelling and disembedding in autism.

    Science.gov (United States)

    Heaton, Pamela

    2003-05-01

    Autistic musical savants invariably possess absolute pitch ability and are able to disembed individual musical tones from chords. Enhanced pitch discrimination and memory has been found in non-savant individuals with autism who also show superior performance on visual disembedding tasks. These experiments investigate the extent that enhanced disembedding ability will be found within the musical domain in autism. High-functioning children with autism, together with age- and intelligence-matched controls, participated in three experiments testing pitch memory, labelling and chord disembedding. The findings from experiment 1 showed enhanced pitch memory and labelling in the autism group. In experiment 2, when subjects were pre-exposed to labelled individual tones, superior chord segmentation was also found. However, in experiment 3, when disembedding performance was less reliant on pitch memory, no group differences emerged and the children with autism, like controls, perceived musical chords holistically. These findings indicate that pitch memory and labelling is superior in autism and can facilitate performance on musical disembedding tasks. However, when task performance does not rely on long-term pitch memory, autistic children, like controls, succumb to the Gestalt qualities of chords.

  9. Evaluating Classroom Interaction with the iPad®: An Updated Stalling's Tool

    Science.gov (United States)

    MacKinnon, Gregory; Schep, Lourens; Borden, Lisa Lunney; Murray-Orr, Anne; Orr, Jeff; MacKinnon, Paula

    2016-01-01

    A large study of classrooms in the Caribbean context necessitated the use of a validated classroom observation tool. In practice, the paper-version Stalling's instrument (Stallings & Kaskowitz 1974) presented specific challenges with respect to (a) facile data collection and (b) qualitative observations of classrooms. In response to these…

  10. Simulation of Entropy Generation under Stall Conditions in a Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-06-01

    Full Text Available Rotating stalls are generally the first instability met in turbomachinery, before surges. This 3D phenomenon is characterized by one or more stalled flow cells which rotate at a fraction of the impeller speed. The goal of the present work is to shed some light on the entropy generation in a centrifugal fan under rotating stall conditions. A numerical simulation of entropy generation is carried out with the ANSYS Fluent software which solves the Navier-Stokes equations and user defined function (UDF. The entropy generation characteristics in the centrifugal fan for five typical conditions are presented and discussed, involving the design condition, conditions on occurrence and development of stall inception, the rotating stall conditions with two throttle coefficients. The results show that the entropy generation increases after the occurrence of stall inception. The high entropy generation areas move along the circumferential and axial directions, and finally merge into one stall cell. The entropy generation rate during circumferential propagation of the stall cell is also discussed, showing that the entropy generation history is similar to sine curves in impeller and volute, and the volute tongue has a great influence on entropy generation in the centrifugal fan.

  11. Peripheral circulation.

    Science.gov (United States)

    Laughlin, M Harold; Davis, Michael J; Secher, Niels H; van Lieshout, Johannes J; Arce-Esquivel, Arturo A; Simmons, Grant H; Bender, Shawn B; Padilla, Jaume; Bache, Robert J; Merkus, Daphne; Duncker, Dirk J

    2012-01-01

    Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations. © 2012 American Physiological Society

  12. Timing matters: The processing of pitch relations

    Directory of Open Access Journals (Sweden)

    Annekathrin eWeise

    2014-06-01

    Full Text Available The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms, impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g. pitch of 2nd tone of a pair higher than pitch of 1st tone, while absolute pitch values varied across pairs. We measured the Mismatch Negativity (MMN; the brain’s error signal to auditory regularity violations to 2nd tones that rarely violated the pitch relation (e.g. pitch of 2nd tone lower. A Short condition in which tone duration (90 ms and stimulus onset asynchrony between the tones of a pair were short (110 ms was compared to two conditions, where this onset asynchrony was long (510 ms. In the Long Gap condition the tone durations were identical to Short (90 ms, but the silent interval was prolonged by 400 ms. In Long Tone the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms. Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing.

  13. Lateralization of the Huggins pitch

    Science.gov (United States)

    Zhang, Peter Xinya; Hartmann, William M.

    2004-05-01

    The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.

  14. Development of carbon-carbon composites from solvent extracted pitch

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-24

    There are several methods used to fabricate carbon-carbon composites. One used extensively in the fabrication of aerospace components such as rocket nozzles and reentry vehicle nosetips, as well as commercial components for furnace fixturing and glass manufacturing, is the densification of a woven preform with molten pitch, and the subsequent conversion of the pitch to graphite through heat treatment. Two types of pitch are used in this process; coal tar pitch and petroleum pitch. The objective of this program was to determine if a pitch produced by the direct extraction of coal could be used as a substitute for these pitches in the fabrication of carbon-carbon composites. The program involved comparing solvent extracted pitch with currently accepted pitches and rigidizing a carbon-carbon preform with solvent extracted pitch for comparison with carbon-carbon fabricated with currently available pitch.

  15. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  16. Proposed Chevron Tengiz venture stalls amid Soviet political squabble

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports on the status of foreign investment in Soviet oil and gas joint ventures which has reached a critical juncture. Just as the U.S. is considering granting most favored nation trade status to the U.S.S.R., the joint venture petroleum deal seen as the litmus test for such deals-Chevron Corp.'s proposed addition of supergiant Tengiz oil field to its Caspian Sea joint venture-has stalled amid controversy. Unconfirmed reports from Soviet officials and other foreign joint venture participants in the U.S.S.R. have Chevron pulling out of the long negotiated, multibillion dollar project after the Soviets rejected the company's terms. Chevron, however, insists the project is still alive

  17. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    sustainability. To illustrate the theoretical discussion, the paper gives some practical examples from the reprocessing industry in Norway. Findings - The paper finds, first, effective and efficient use of natural resources is necessary to implement circular value chains. Second, sustainable development...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  18. Pitch Synchronous Segmentation of Speech Signals

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pitch Synchronous Segmentation (PSS) that accelerates speech without changing its fundamental frequency method could be applied and evaluated for use at NASA....

  19. Objective correlates of pitch salience using pupillometry

    DEFF Research Database (Denmark)

    Bianchi, Federica; Santurette, Sébastien; Wendt, Dorothea

    2014-01-01

    the frequency region and F 0 , were considered. Pupil size was measured for each condition, while the subjects’ task was to detect the deviants by pressing a response button. The expected trend was that pupil size would increase with decreasing salience. Results for musically trained listeners showed......Although objective correlates of pitch salience have been investigated in several neuroimaging studies, the results remain controversial. In the present study, a novel approach to objectively estimate pitch salience was used. Pupil dilation was measured as an indicator of the required effort...... in performing a pitch discrimination task for complex tones of varying pitch salience. It has been shown that cognitive processing demands of the task can be reflected in the pupil response, whereby pupil size dilates when cognitive load increases. The hypothesis was that pupil size would increase...

  20. Major League Baseball pitch velocity and pitch type associated with risk of ulnar collateral ligament injury.

    Science.gov (United States)

    Keller, Robert A; Marshall, Nathan E; Guest, John-Michael; Okoroha, Kelechi R; Jung, Edward K; Moutzouros, Vasilios

    2016-04-01

    The number of Major League Baseball (MLB) pitchers requiring ulnar collateral ligament (UCL) reconstructions is increasing. Recent literature has attempted to correlate specific stresses placed on the throwing arm to risk for UCL injury, with limited results. Eighty-three MLB pitchers who underwent primary UCL reconstruction were evaluated. Pitching velocity and percent of pitch type thrown (fastball, curve ball, slider, and change-up) were evaluated 2 years before and after surgery. Data were compared with control pitchers matched for age, position, size, innings pitched, and experience. The evaluation of pitch velocity compared with matched controls found no differences in pre-UCL reconstruction pitch velocities for fastballs (91.5 vs. 91.2 miles per hour [mph], P = .69), curveballs (78.2 vs. 77.9 mph, P = .92), sliders (83.3 vs. 83.5 mph, P = .88), or change-ups (83.9 vs. 83.8 mph, P = .96). When the percentage of pitches thrown was evaluated, UCL reconstructed pitchers pitch significantly more fastballs than controls (46.7% vs. 39.4%, P = .035). This correlated to a 2% increase in risk for UCL injury for every 1% increase in fastballs thrown. Pitching more than 48% fastballs was a significant predictor of UCL injury, because pitchers over this threshold required reconstruction (P = .006). MLB pitchers requiring UCL reconstruction do not pitch at higher velocities than matched controls, and pitch velocity does not appear to be a risk factor for UCL reconstruction. However, MLB pitchers who pitch a high percentage of fastballs may be at increased risk for UCL injury because pitching a higher percent of fastballs appears to be a risk factor for UCL reconstruction. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Interpreting English Pitch Contours in Context

    OpenAIRE

    Schloeder, Julian; Lascarides, Alex

    2015-01-01

    This paper presents a model of how pitch contours influence the illocutionary and perlocutionary effects of utterances in conversation. Our account is grounded in several insights from the prior literature. Our distinctive contribution is to replace earlier informal claims about the implicatures arising from intonation with logical derivations: we validate inferences in the SDRT framework that resolve the partial meaning we associate with a pitch contour to different specific interpretations ...

  2. Wavelet Scattering on the Pitch Spiral

    OpenAIRE

    Lostanlen, Vincent; Mallat, Stéphane

    2016-01-01

    We present a new representation of harmonic sounds that linearizes the dynamics of pitch and spectral envelope, while remaining stable to deformations in the time-frequency plane. It is an instance of the scattering transform, a generic operator which cascades wavelet convolutions and modulus nonlinearities. It is derived from the pitch spiral, in that convolutions are successively performed in time, log-frequency, and octave index. We give a closed-form approximation of spiral scattering coe...

  3. Effects of culture on musical pitch perception.

    Directory of Open Access Journals (Sweden)

    Patrick C M Wong

    Full Text Available The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively. Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages. This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population, we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of

  4. Effects of culture on musical pitch perception.

    Science.gov (United States)

    Wong, Patrick C M; Ciocca, Valter; Chan, Alice H D; Ha, Louisa Y Y; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  5. A study of the drooped leading edge airfoil. [on wind tunnel models to reduce spin entry after stall

    Science.gov (United States)

    Anderson, J. D., Jr.; Barlow, J. B.

    1979-01-01

    Wind tunnel tests were conducted to examine various aspects of the drooped-leading edge airfoil which reduces the tendency for an airplane to enter a spin after stall occurs. Three baseline models were used for tests of two dimensional models: NACA 0015, 0014.6, and 0014.2. The 14.6% and 14.2% models were derived from NACA 0015 sections by increasing the chord and matching the profiles aft section. Force, balance data (lift, drag, pitching moment) were obtained for each model at a free-steam Reynold's number of 2.66 x 10 to the 6th power/m. In addition, oil flow visualization tests were performed at various angles of attack. An existing NACA 64 sub 1 A211 airfoil was used in a second series of tests. The leading edge flap was segmented in three parts which allowed various baseline/drooped leading edge configurations to be tested. Force balance and flow visualization tests were completer at chord Renolds numbers of 0.44 x 10 to the 6th power, 1.4 x 10 to the 6th power, and 2.11 x 10 to the 6th power. Test results are included.

  6. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech.

    Science.gov (United States)

    Yang, Wu-Xia; Feng, Jie; Huang, Wan-Ting; Zhang, Cheng-Xiang; Nan, Yun

    2013-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent.

  7. Determination of football pitch locations from video footage and official pitch markings.

    Science.gov (United States)

    Alcock, Alison; Hunter, Adam; Brown, Nicholas

    2009-06-01

    The ability to determine a specific location on a football (soccer) pitch from television footage would provide a cost-effective method of obtaining competition-specific information on many professional and international teams. This study presents the accuracy and reliability of a new method of calculating ball location from simulated television coverage and known pitch markings. The coordinates of 99 markers of known location on a football pitch were digitized from video. An intersection point was determined from the equations of two lines that form pitch markings and the relationship from this point to other known pitch coordinates was calculated using a curve-fitting based method. Average error between known and reconstructed measures was 0.21 m for pitch width and 0.11 m for pitch length from a view simulating television coverage. Inter- and intra-rater reliability analyses showed researchers could consistently reconstruct pitch locations to within less than half a metre. The accuracy and reliability of this method will be sufficient for most practical uses in an applied sport environment, although the level of accuracy required will depend on the specific application. This method could be applied to other sports to determine specific locations on a pitch or court or to improve current competition analysis systems.

  8. Perceptual Pitch Deficits Coexist with Pitch Production Difficulties in Music but Not Mandarin Speech

    Directory of Open Access Journals (Sweden)

    Wu-xia eYang

    2014-01-01

    Full Text Available Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics. To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, 8 amusics, 8 tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent.

  9. Familiarity and preference for pitch probability profiles.

    Science.gov (United States)

    Cui, Anja-Xiaoxing; Collett, Meghan J; Troje, Niko F; Cuddy, Lola L

    2015-05-01

    We investigated familiarity and preference judgments of participants toward a novel musical system. We exposed participants to tone sequences generated from a novel pitch probability profile. Afterward, we either asked participants to identify more familiar or we asked participants to identify preferred tone sequences in a two-alternative forced-choice task. The task paired a tone sequence generated from the pitch probability profile they had been exposed to and a tone sequence generated from another pitch probability profile at three levels of distinctiveness. We found that participants identified tone sequences as more familiar if they were generated from the same pitch probability profile which they had been exposed to. However, participants did not prefer these tone sequences. We interpret this relationship between familiarity and preference to be consistent with an inverted U-shaped relationship between knowledge and affect. The fact that participants identified tone sequences as even more familiar if they were generated from the more distinctive (caricatured) version of the pitch probability profile which they had been exposed to suggests that the statistical learning of the pitch probability profile is involved in gaining of musical knowledge.

  10. Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.

    2016-01-01

    During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.

  11. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  12. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  13. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    Science.gov (United States)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  14. Adaptive back-stepping pitch angle control for wind turbine based on a new electro-hydraulic pitch system

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Gu, Ya-jing; Lei, Peng-fei; Liu, Hong-wei

    2015-11-01

    A new electro-hydraulic pitch system is proposed to smooth the output power and drive-train torque fluctuations for wind turbine. This new pitch system employs a servo-valve-controlled hydraulic motor to enhance pitch control performances. This pitch system is represented by a state-space model with parametric uncertainties and nonlinearities. An adaptive back-stepping pitch angle controller is synthesised based on this state-space model to accurately achieve the desired pitch angle control regardless of such uncertainties and nonlinearities. This pitch angle controller includes a back-stepping procedure and an adaption law to deal with such uncertainties and nonlinearities and hence to improve the final pitch control performances. The proposed pitch system and the designed pitch angle controller have been validated for achievable and efficient power and torque regulation performances by comparative experimental results under various operating conditions.

  15. Pitch-verticality and pitch-size cross-modal interactions

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2017-01-01

    Two studies were conducted on cross-modal matching between pitch and sound source localization on the vertical axis, and pitch and size. In the first study 100 Hz, 200 Hz, 600 Hz, and 800 Hz tones were emitted by a loudspeaker positioned 60 cm above or below to the participant’s ear level. Using...

  16. Effects of grit roughness and pitch oscillations on the NACA 4415 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, M.J.; Reuss Ramsay, R.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-07-01

    A NACA 4415 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory 3 x 5 subsonic wind tunnel under steady state and unsteady conditions. The test defined baseline conditions for steady state angles of attack from {minus}10{degree} to +40{degree} and examined unsteady behavior by oscillating the model about its pitch axis for three mean angles, three frequencies, and two amplitudes. For all cases, Reynolds numbers of 0.75, 1, 1.25, and 1.5 million were used. In addition, these were repeated after the application of leading edge grit roughness (LEGR) to determine contamination effects on the airfoil performance. Steady state results of the NACA 4415 testing at Reynolds number of 1.25 million showed a baseline maximum lift coefficient of 1.30 at 12.3{degree} angle of attack. The application of LEGR reduced the maximum lift coefficient by 20% and increased the 0.0090 minimum drag coefficient value by 62%. The zero lift pitching moment of {minus}0.0967 showed a 13% reduction in magnitude to {minus}0.0842 with LEGR applied. Data were also obtained for two pitch oscillation amplitudes: {+-}5.5{degree} and {+-}10{degree}. The larger amplitude consistently gave a higher maximum lift coefficient than the smaller amplitude, and both unsteady maximum lift coefficients were greater than the steady state values. Stall is delayed on the airfoil while the angle of attack is increasing, thereby causing an increase in maximum lift coefficient. A hysteresis behavior was exhibited for all the unsteady test cases. The hysteresis loops were larger for the higher reduced frequencies and for the larger amplitude oscillations. As in the steady case, the effect of LEGR in the unsteady case was to reduce the lift coefficient at high angles of attack. In addition, with LEGR, the hysteresis behavior persisted into lower angles of attack than for the clean case.

  17. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    Science.gov (United States)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  18. Memory for pitch in congenital amusia: beyond a fine-grained pitch discrimination problem.

    Science.gov (United States)

    Williamson, Victoria Jane; Stewart, Lauren

    2010-08-01

    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination.

  19. Method of producing pitch (distillation residue)

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, M.A.; Belkina, T.V.; Krysin, V.P.

    1979-08-15

    A method is proposed for producing pitch by mixing hard coal pitch with anthracene fraction and thermal treatment of the mixture. The method is distinguished in that in order to increase the quality of the pitch, the anthracene fraction is subjected to thermal treatment at 250-300/sup 0/ for 10-13 hours in the presence of air. This duration of heat treatment allows one to build up in the anthracene fraction up to 20-24% of material which is not soluble and toluene, without the formation of products which are not soluble in quinoline. The fraction prepared in this manner is inserted into the initial pitch in the ratio 1:2 up to 1:9, the mixture is subject to heat treatment at temperature 360-380/sup 0/ and air consumption 7-91/kgX hours until the production of pitch with softening temperature of 85-90/sup 0/. As the initial raw material we used pitch with softening temperature of 60/sup 0/, content of substances which are not soluble in quinoline, 2.0% which are not soluble and toluene 20.6% and coking residue of 49.2%. Example. 80 grams of anthracene fraction is added to 320 grams of pitch. The anthracene fraction is subjected previously to heat treatment at 300/sup 0/ for 13 hours in the presence of air, supplied in the amount of 9 liters per hour. As a result of the heat treatment of the content of materials which are not soluble in toluence in the anthracene fraction is 24.0%, in quinoline it is 0.1%. The ratio of a pitch and thermally treated anthracene fraction in the mixture was 4:l. The produced mixture was subjected to heat treatment at 360/sup 0/ for 1.5 hours with air supply in the amount of 7 liters/ kilograms/hours. Pitch is produced with the following characteristics: softening temperature 88/sup 0/, content of substances which are not soluble in toluene 32.5%, in quinilone, 6.0%, coking residue, 56.7%. The invention can be used in the chemical coking and petrochemical industry.

  20. Pitch perception deficits in nonverbal learning disability.

    Science.gov (United States)

    Fernández-Prieto, I; Caprile, C; Tinoco-González, D; Ristol-Orriols, B; López-Sala, A; Póo-Argüelles, P; Pons, F; Navarra, J

    2016-12-01

    The nonverbal learning disability (NLD) is a neurological dysfunction that affects cognitive functions predominantly related to the right hemisphere such as spatial and abstract reasoning. Previous evidence in healthy adults suggests that acoustic pitch (i.e., the relative difference in frequency between sounds) is, under certain conditions, encoded in specific areas of the right hemisphere that also encode the spatial elevation of external objects (e.g., high vs. low position). Taking this evidence into account, we explored the perception of pitch in preadolescents and adolescents with NLD and in a group of healthy participants matched by age, gender, musical knowledge and handedness. Participants performed four speeded tests: a stimulus detection test and three perceptual categorization tests based on colour, spatial position and pitch. Results revealed that both groups were equally fast at detecting visual targets and categorizing visual stimuli according to their colour. In contrast, the NLD group showed slower responses than the control group when categorizing space (direction of a visual object) and pitch (direction of a change in sound frequency). This pattern of results suggests the presence of a subtle deficit at judging pitch in NLD along with the traditionally-described difficulties in spatial processing. Copyright © 2016. Published by Elsevier Ltd.

  1. Stalling HIV through social marketing: prospects in Pakistan.

    Science.gov (United States)

    Husain, Sara; Shaikh, Babar T

    2005-07-01

    Over the last two decades HIV/AIDS has evolved from a series of interesting case-reports to a growing epidemic that threatens the entire world. It is feared to cause devastation among large pockets of populations and may roll back more than thirty years of public health achievements. This killer disease has been more amenable to behavioral change than by provision of curative services and attempts are being made to educate the public about this threat. Various techniques of promotion have been tried through out the world including television dramas/soaps, mass media and school curricula. Social marketing is an evolving strategy used to influence human behavior and choices. By using the principles of marketing and promoting behavior as a product, social marketers attempt to understand the dynamics of human behaviour and devise messages and products to change, modify, accept or reject unsafe behaviors or practices. Thus, social marketers provide an effective force to combat the spread of HIV and may serve to be invaluable allies in health promotion efforts. In a complex and diversified cultural milieu of Pakistan, social marketing can have a significant impact on health determinants and the conditions that will facilitate the adoption of health-oriented behaviors and practices. This paper gives an account of the elements needed for the success of a health promotion strategy adopted in a developing country and makes a case for social marketing to be adopted as the lead strategy for stalling HIV/AIDS in Pakistan.

  2. Initial design of a stall-controlled wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)

    1997-08-01

    A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)

  3. Cow preference and usage of free stalls compared with an open pack area.

    Science.gov (United States)

    Fregonesi, J A; von Keyserlingk, M A G; Weary, D M

    2009-11-01

    Free-stall housing systems are designed to provide a comfortable and hygienic lying area, but some aspects of stall design may restrict usage by cows. The aim of this study was to compare free-stall housing with a comparable lying area (open pack) without stall partitions. We predicted that cows would spend more time lying down and standing in the bedded area when provided access to an open pack than when in free stalls. We also predicted that cows would spend less time standing outside of the lying area and less time perching with the front 2 hooves in the lying area when using the open pack. Groups (n = 8) of 12 cows each were provided access to either the open pack or stalls. After a 7-d adaptation period, each group was tested sequentially in the 2 treatments for 3 d each. This no-choice phase was followed by an 8-d choice phase during which cows had simultaneous access to both treatments. During the no-choice phase, cows spent more time lying down (13.03 +/- 0.24 vs. 12.48 +/- 0.24 h/d) and standing with all 4 hooves in the bedded area (0.96 +/- 0.12 vs. 0.41 +/- 0.12 h/d) of the open pack than in the stalls. During the choice phase, cows spent more time lying down (7.20 +/- 0.29 vs. 5.86 +/- 0.29 h/d) and standing with all 4 hooves in the bedded area (0.58 +/- 0.07 vs. 0.12 +/- 0.07 h/d) of the open pack than in the stalls. In both the no-choice (1.66 +/- 0.24 vs. 0.55 +/- 0.24 h/d) and choice (0.55 +/- 0.07 vs. 0.29 +/- 0.07 h/d) phases, cows spent more time standing with just 2 hooves in the stalls than in the open pack. In conclusion, cows spent more time lying and standing with all 4 hooves in the bedded open pack than in the stalls. Additionally, cows spent more time standing in the alley and standing with just the front 2 hooves on the bedding in the stalls than in the bedded open pack; increased standing time on wet concrete is a known risk factor for lameness.

  4. Experimental Investigation of Stall Inception Mechanisms of Low Speed Contra Rotating Axial Flow Fan Stage

    Directory of Open Access Journals (Sweden)

    Tegegn Dejene Toge

    2015-01-01

    Full Text Available The present paper is an attempt in understanding the stall inception mechanism in a low speed, contra rotating axial flow fan stage, using wavelet transforms. The rotors used in this study have relatively large tip gap (about 3% of the blade span and aspect ratio of 3. The study was carried out near stall and at stall mass flow conditions for different speed ratios of rotor-2 to rotor-1. Unsteady pressure data from the casing wall mounted sensors are used to understand the stall inception mechanism. The wavelet transform clearly indicates that stall inception occurs mainly through long length scale disturbances for both rotors. It also reveals that short length disturbances occur simultaneously or intermittently in the case of rotor-1. The analysis shows the presence of a strong modal disturbance with 25–80% of the rotor frequency in the case of rotor-1 at the stall mass flow for all the speed combinations studied. The most interesting thing observed in the present study is that the frequency amplitude of the disturbance level is very small for both rotors.

  5. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...

  6. Control Engineering Analysis of Mechanical Pitch Systems

    Science.gov (United States)

    Bernicke, Olaf; Gauterin, Eckhard; Schulte, Horst; Zajac, Michal

    2014-12-01

    With the help of a local stability analysis the coefficient range of a discrete damper, used for centrifugal forced, mechanical pitch system of small wind turbines (SWT), is gained for equilibrium points. - By a global stability analysis the gained coefficient range can be validated. An appropriate approach by Takagi-Sugeno is presented in the paper.

  7. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  8. Aerodynamic response of an airfoil section undergoing pitch motion and trailing edge flap deflection: a comparison of simulation methods

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Riziotis, Vasilis A.; Gaunaa, Mac

    2015-01-01

    The study presents and compares aerodynamic simulations for an airfoil section with an adaptive trailing edge flap, which deflects following a smooth deformation shape. The simulations are carried out with three substantially different methods: a Reynolds-averaged Navier–Stokes solver, a viscous...... to separated conditions and accounting for the effects of flap deflection; the steady results from the Navier–Stokes solver and the viscous–inviscid interaction method are used as input data for the simpler dynamic stall model. The paper characterizes then the dynamics of the unsteady forces and moments...... generated by the airfoil undergoing harmonic pitching motions and harmonic flap deflections. The unsteady aerodynamic coefficients exhibit significant variations over the corresponding steady-state values. The dynamic characteristics of the unsteady response are predicted with an excellent agreement among...

  9. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  10. Contour identification with pitch and loudness cues using cochlear implants

    OpenAIRE

    Luo, Xin; Masterson, Megan E.; Wu, Ching-Chih

    2013-01-01

    Different from speech, pitch and loudness cues may or may not co-vary in music. Cochlear implant (CI) users with poor pitch perception may use loudness contour cues more than normal-hearing (NH) listeners. Contour identification was tested in CI users and NH listeners; the five-note contours contained either pitch cues alone, loudness cues alone, or both. Results showed that NH listeners' contour identification was better with pitch cues than with loudness cues; CI users performed similarly w...

  11. Theoretical research for natural circulation operational characteristic of ship nuclear machinery under ocean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yan Binghuo [Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)], E-mail: yanbh1986@163.com; Yu Lei [Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)], E-mail: yulei301@163.com

    2009-06-15

    Based on the two-phase drift flux model and the multi-pressure nodes matrix solving method, natural circulation thermal hydraulic analysis models for the Nuclear Machinery (NM) under ocean conditions are developed. The neutron physical activities and the responses of the reactivity control systems are described by the two-group, 3-dimensional space and time dependent neutron kinetics model. Reactivity feedback is calculated by coupling the neutron physics and thermal hydraulic codes, and is tested by comparison with experiments. Using the models developed, the natural circulation operating characteristics of NM in rolling and pitching motions and the transitions between forced circulation (FC) to natural circulation (NC) are analyzed. The results show that the influence of the rolling motion increases as the rolling amplitude is increased, and as the rolling period becomes shorter. The results also show that for this NM, with the same rolling period and rolling angle, the influence of pitching motion on natural circulation is greater than that of rolling motion. Furthermore, the oscillation period for pitching motion is the same as the pitching period, while the oscillation period for rolling is one half of the rolling period. In the ocean environment, excessive flow oscillation of the natural circulation may cause the control rods to respond so frequently that the NM would not be able to realize the transition from the FC to NC steadily. However, the influence of ocean environment on the transition from NC to FC is limited.

  12. A Method to Predict Compressor Stall in the TF34-100 Turbofan Engine Utilizing Real-Time Performance Data

    Science.gov (United States)

    2015-06-01

    pass turbo –fan engine sensor data to seek its deterioration modelling and prognostics capability. In futurity this will allow for achievement of...preventive maintenance for the TF34-100 jet engine to prevent engine compressor stalls for the A-10 aircraft. Due to their destructive nature, compressor...stalls are a significant concern in axial flow compressor jet engines. A compressor stall is caused by air approaching the compressor blades at an

  13. Dynamic characteristics of peripheral jet ACV. II - Pitching motion

    Science.gov (United States)

    Mori, T.; Maeda, H.

    The dynamic pitching characteristics of peripheral jet ACV (Air Cushion Vehicle) which have a stability curtain are investigated analytically and experimentally. The measured values of moment, lift and cushion pressure are compared with numerical results noting applicability to the pitching motion. The response of ACV to the sinusoidal pitching oscillation of the ground is also studied.

  14. Characterization of Graphitization in Coal Tar and Petroleum Pitches.

    Science.gov (United States)

    1985-08-01

    oven gas," composed mainly of hydrogen and methane. Some organic material still remains in the coal after the coke - oven gas is - driven off. Further...we will be concentrating on coal -tar and petroleum pitch sources (1). Pyrolysis Pyrolyzation, or pitch-to- coke transformation, takes place very...4 Pitch...........................6 Pyrolysis ..................................... 7 Coke ..........................................17 Carbonization

  15. An archival analysis of stall warning system effectiveness during airborne icing encounters

    Science.gov (United States)

    Maris, John Michael

    An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance

  16. Stall Margin Improvement in a Centrifugal Compressor through Inducer Casing Treatment

    Directory of Open Access Journals (Sweden)

    V. V. N. K. Satish Koyyalamudi

    2016-01-01

    Full Text Available The increasing trend of high stage pressure ratio with increased aerodynamic loading has led to reduction in stable operating range of centrifugal compressors with stall and surge initiating at relatively higher mass flow rates. The casing treatment technique of stall control is found to be effective in axial compressors, but very limited research work is published on the application of this technique in centrifugal compressors. Present research was aimed to investigate the effect of casing treatment on the performance and stall margin of a high speed, 4 : 1 pressure ratio centrifugal compressor through numerical simulations using ANSYS CFX software. Three casing treatment configurations were developed and incorporated in the shroud over the inducer of the impeller. The predicted performance of baseline compressor (without casing treatment was in good agreement with published experimental data. The compressor with different inducer casing treatment geometries showed varying levels of stall margin improvement, up to a maximum of 18%. While the peak efficiency of the compressor with casing treatment dropped by 0.8%–1% compared to the baseline compressor, the choke mass flow rate was improved by 9.5%, thus enhancing the total stable operating range. The inlet configuration of the casing treatment was found to play an important role in stall margin improvement.

  17. An airloads theory for morphing airfoils in dynamic stall with experimental correlation

    Science.gov (United States)

    Ahaus, Loren A.

    Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.

  18. A time-varying subjective quality model for mobile streaming videos with stalling events

    Science.gov (United States)

    Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.

    2015-09-01

    Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.

  19. Early processing of pitch in the human auditory system.

    Science.gov (United States)

    Alho, Kimmo; Grimm, Sabine; Mateo-León, Sabina; Costa-Faidella, Jordi; Escera, Carles

    2012-10-01

    Middle-latency auditory evoked potentials, indicating early cortical processing, elicited by pitch changes and repetitions in pure tones and by complex tones with a missing-fundamental pitch were recorded in healthy adults ignoring the sounds while watching a silenced movie. Both for the pure and for the missing-fundamental tones, the Nb middle-latency response was larger for pitch changes (tones preceded by tones of different pitch) than for pitch repetitions (tones preceded by tones of the same pitch). This Nb enhancement was observed even for missing-fundamental tones preceded by repeated tones that had a different missing-fundamental pitch but included all harmonics of the subsequent tone with another missing-fundamental pitch. This finding rules out the possibility that the Nb enhancement in response to a change in missing-fundamental pitch was simply attributable to the activity of auditory cortex neurons responding specifically to the harmonics of missing-fundamental tones. The Nb effect presumably indicates pitch processing at or near the primary auditory cortex, and it was followed by a change-related enhancement of the N1 response, presumably generated in the secondary auditory cortex. This N1 enhancement might have been caused by a mismatch negativity response overlapping with the N1 response. Processing of missing-fundamental pitch was also reflected by the distribution of Nb responses. Tones with a higher missing-fundamental pitch elicited more frontally dominant Nb responses than tones with a lower missing-fundamental pitch. This effect of pitch, not seen for the pure tones, might indicate that the exact location of the Nb generator source in the auditory cortex depends on the missing-fundamental pitch of the eliciting tone. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Attending to pitch information inhibits processing of pitch information: the curious case of amusia.

    Science.gov (United States)

    Zendel, Benjamin Rich; Lagrois, Marie-Élaine; Robitaille, Nicolas; Peretz, Isabelle

    2015-03-04

    In normal listeners, the tonal rules of music guide musical expectancy. In a minority of individuals, known as amusics, the processing of tonality is disordered, which results in severe musical deficits. It has been shown that the tonal rules of music are neurally encoded, but not consciously available in amusics. Previous neurophysiological studies have not explicitly controlled the level of attention in tasks where participants ignored the tonal structure of the stimuli. Here, we test whether access to tonal knowledge can be demonstrated in congenital amusia when attention is controlled. Electric brain responses were recorded while asking participants to detect an individually adjusted near-threshold click in a melody. In half the melodies, a note was inserted that violated the tonal rules of music. In a second task, participants were presented with the same melodies but were required to detect the tonal deviation. Both tasks required sustained attention, thus conscious access to the rules of tonality was manipulated. In the click-detection task, the pitch deviants evoked an early right anterior negativity (ERAN) in both groups. In the pitch-detection task, the pitch deviants evoked an ERAN and P600 in controls but not in amusics. These results indicate that pitch regularities are represented in the cortex of amusics, but are not consciously available. Moreover, performing a pitch-judgment task eliminated the ERAN in amusics, suggesting that attending to pitch information interferes with perception of pitch. We propose that an impaired top-down frontotemporal projection is responsible for this disorder. Copyright © 2015 the authors 0270-6474/15/353815-10$15.00/0.

  1. Airfoil Pitch Control Using Trapped Vorticity Concentrations

    Science.gov (United States)

    Brzozowski, Daniel; Culp, John; Glezer, Ari

    2007-11-01

    Closed-loop feedback control of the attitude of a free pitching airfoil is effected without moving control surfaces by alternate actuation of nominally-symmetric trapped vorticity concentrations on the suction and pressure surfaces near the trailing edge. The pitching moment is varied with minimal lift and drag penalties over a broad range of angles of attack when the baseline flow is fully attached. Accumulation (trapping) and regulation of vorticity is managed by integrated hybrid actuators (each comprised of a miniature [O(0.01c)] obstruction and a synthetic jet actuator). In the present work, the model is trimmed using a position feedback loop and a servo motor actuator. Once the model is trimmed, the position feedback loop is opened and the servo motor acts like an inner loop control to alter the model's dynamic characteristics. Position control of the model is achieved using a reference model-based outer loop controller.

  2. Voice pitch influences perceptions of sexual infidelity.

    Science.gov (United States)

    O'Connor, Jillian J M; Re, Daniel E; Feinberg, David R

    2011-02-28

    Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  3. Voice Pitch Influences Perceptions of Sexual Infidelity

    Directory of Open Access Journals (Sweden)

    Jillian J.M. O'Connor

    2011-01-01

    Full Text Available Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  4. The role of tip clearance in high-speed fan stall

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, J.J. (NASA Lewis Research Center, Cleveland, OH (United States)); Celestina, M.L. (Sverdrup Tech., Inc., Cleveland, OH (United States)); Greitzer, E.M. (Massachusetts Institute of Technology, Cambridge, MA (United States))

    1993-01-01

    A numerical experiment has been carried out to define the near-stall casing endwall flow field of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-passage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock that is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade that controls the flow processes leading to stall.

  5. The role of tip clearance in high-speed fan stall

    Science.gov (United States)

    Adamczyk, J. J.; Celestina, M. L.; Greitzer, E. M.

    1991-01-01

    A numerical experiment has been carried out to define the near-stall casing endwall flowfield of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-pasage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock, which is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade which controls the flow processes leading to stall.

  6. Analysis of pitch system data for condition monitoring

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; van de Pieterman, René P.; Sørensen, John Dalsgaard

    2014-01-01

    Measurements of pitch motor torque and current give indirect information about the condition of the pitch system and can therefore potentially be used for condition-based maintenance. This paper presents an analysis of these measurements for a wind turbine, and the measurements are compared...... at a constant pitch velocity, but the 10 min maximum values are only approximately proportional, because the maximum values occur during acceleration and not simultaneously. These findings are important to consider, if using the pitch motor current or torque as an indicator for the pitch system health...... with a theoretical model based on aeroelastic simulations. The blade moment is found to have only minor influence on the friction in the blade bearing. The main factors affecting the static friction are the temperature and time after the latest pitch movement. Pitch motor current and torque are proportional...

  7. A perceptual pitch boundary in a non-human primate

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-09-01

    Full Text Available Pitch is an auditory percept critical to the perception of music and speech, and for these harmonic sounds, pitch is closely related to the repetition rate of the acoustic wave. This paper reports a test of the assumption that non-human primates and especially rhesus monkeys perceive the pitch of these harmonic sounds much as humans do. A new procedure was developed to train macaques to discriminate the pitch of harmonic sounds and thereby demonstrate that the lower limit for pitch perception in macaques is close to 30 Hz, as it is in humans. Moreover, when the phases of successive harmonics are alternated to cause a pseudo-doubling of the repetition rate, the lower pitch boundary in macaques decreases substantially, as it does in humans. The results suggest that both species use neural firing times to discriminate pitch, at least for sounds with relatively low repetition rates.

  8. Effect of summer grazing on welfare of dairy cows reared in mountain tie-stall barns

    Directory of Open Access Journals (Sweden)

    Simonetta Dovier

    2010-09-01

    Full Text Available Traditional mountain farms have an important economic, social and environmental role. The Alps management system for dairy cows consists of animals kept indoors from autumn to spring, mostly in tie-stalls, and moved to mountain pasture in summer. The aim of our study was to assess the effect of mountain summer grazing on the welfare of dairy cows housed in tie-stall barns. Twenty-four farms were considered. In twelve of them, animals were reared in tie-stalls and moved to mountain pasture for three months in summer; they were visited three times: (i four weeks before grazing during the indoor period in the stall; (ii about three weeks after the start of grazing; and (iii in the stall, in autumn, at least three weeks after returning from grazing. The other twelve farms kept the animals in tie-stalls all year; they were visited once in autumn. Data were collected following a protocol that considers animal-based measures and structure information on the basis of Quality Welfare Consortium® indications. Data allowed the calculation of both the Animal Needs Index score (ANI 35L and an overall assessment of the cows’ welfare obtained from three general aspects: housing, animal’s physical condition, and animal’s behaviour. Summer grazing had a significant positive effect on injuries, lameness and animal’s rising duration but a negative effect on faeces consistency. Moreover, a reduction of tongue playing was observed. The ANI 35L and the overall assessment did not show significant differences linked to summer grazing, which tended to have a positive but temporary effect on animal behaviour.

  9. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    DEFF Research Database (Denmark)

    Chen, Yun; Jørgensen, Mette; Kolde, Raivo

    2011-01-01

    strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. RESULTS: Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII...... of RNAPII stalling. CONCLUSIONS: In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data....

  10. Analysis of compressible light dynamic stall flow at transitional Reynolds numbers

    DEFF Research Database (Denmark)

    Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.

    1996-01-01

    Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...

  11. The influence of elevated feed stalls on feeding behaviour of lactating dairy cows

    Directory of Open Access Journals (Sweden)

    Barbara Benz

    2014-10-01

    Full Text Available The performance level of high yielding cows can only be guaranteed by high quality forage and high feed intake. An about 15–20 cm elevated and 160 cm long feed stall with rubber flooring doesn’t only offer undisturbed meals but also a yielding and dry standing surface. In a pilot stable with 130 dairy cows (German Simmental the feeding alley was subsequently equipped with elevated feed stalls. The results show that animals frequented the feeding barn less often while the duration of single meals prolonged. The specific behavioural changes differed depending on milk yield and number of lactation.

  12. Diagnosis of voltage collapse due to induction motor stalling using static analysis

    International Nuclear Information System (INIS)

    Karbalaei, F.; Kalantar, M.; Kazemi, A.

    2008-01-01

    Induction motor stalling is one of the important reasons for voltage collapse. This paper presents that, for induction motor stalling diagnosis, it is not necessary to use a third or first order dynamic model of induction motors. Instead, a method is presented based on algebraic calculations for which the steady state model of the induction motor considering different kinds of mechanical loads (constant and variable torque) is added to the power flow equations. Simulation results for a simple system confirm the correctness of the proposed method as compared to dynamic simulation results

  13. Power control of a wind farm with active stall wind turbines and AC grid connection

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul; Iov, Florin

    This paper describes the design of a centralised wind farm controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection. The overall aim of such controller is to enable the wind farms to provide the best grid support. The designed wind farm control involves...... both the control on wind turbine level as well as the central control on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power production to the reference power ordered by the operators is assessed and discussed by means of simulations....

  14. Validation of the Beddoes-Leishman Dynamic Stall Model for Horizontal Axis Wind Turbines using MEXICO data

    NARCIS (Netherlands)

    Pereira, R.; Schepers, G.; Pavel, M.D.

    2011-01-01

    The aim of this study is to assess the load predicting capability of a classical Beddoes-Leishman dynamic stall model in a horizontal axis wind turbine (HAWT) environment, in the presence of yaw-misalignment. The dynamic stall model was tailored to the HAWT environment, and validated against

  15. [Factors influencing the pitch and loudness of tinnitus].

    Science.gov (United States)

    Ueda, S; Asoh, S; Watanabe, Y

    1992-11-01

    Pitch match and loudness balance tests were given to 397 cases with tinnitus. The factors which influenced tinnitus pitch and loudness were analyzed statistically from the clinical point of view. The results obtained were as follows: 1) Onomatopoeia of tinnitus, either [Keeeen] or [Jeeeen], were observed in a majority of cases. 2) Significantly sharp sounding onomatopoeia such as [Keeeen] or [Meeeen] had high pitches, over 4kHz, and dull sounds like [Gooooh] or [Buuuun] had low pitches, below 500Hz. 3) Acute stage tinnitus, within one month of onset, had a significantly depressed pitch and walked loudness, above 6dB. 4) The pitches observed in cases with Meniere's disease and chronic otitis media were distributed evenly from low frequencies to high. In other cases, especially presbyacusis and noise deafness, high pitch tinnitus (above 4kHz) was frequently noted. The loudness of tinnitus without hearing loss was significantly greater than in other diseases. 5) As a rule the more deteriorated the hearing level was, the lower the frequency of the pitch, and the smaller the loudness in tinnitus. 6) A high pitch of tinnitus nearly corresponded with hearing type, that is, the pitch of tinnitus was also in accordance with the disturbed frequency in the hearing threshold.

  16. Finger forces in fastball baseball pitching.

    Science.gov (United States)

    Kinoshita, Hiroshi; Obata, Satoshi; Nasu, Daiki; Kadota, Koji; Matsuo, Tomoyuki; Fleisig, Glenn S

    2017-08-01

    Forces imparted by the fingers onto a baseball are the final, critical aspects for pitching, however these forces have not been quantified previously as no biomechanical technology was available. In this study, an instrumented baseball was developed for direct measurement of ball reaction force by individual fingers and used to provide fundamental information on the forces during a fastball pitch. A tri-axial force transducer with a cable having an easily-detachable connector were installed in an official baseball. Data were collected from 11 pitchers who placed the fingertip of their index, middle, ring, or thumb on the transducer, and threw four-seam fastballs to a target cage from a flat mound. For the index and middle fingers, resultant ball reaction force exhibited a bimodal pattern with initial and second peaks at 38-39ms and 6-7ms before ball release, and their amplitudes were around 97N each. The ring finger and thumb produced single-peak forces of approximately 50 and 83N, respectively. Shear forces for the index and middle fingers formed distinct peak at 4-5ms before release, and the peaks summed to 102N; a kinetic source for backspin on the ball. An additional experiment with submaximal pitching effort showed a linear relationship of peak forces with ball velocity. The peak ball reaction force for fastballs exceeded 80% of maximum finger strength measured, suggesting that strengthening of the distal muscles is important both for enhancing performance and for avoiding injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. How to pitch a brilliant idea.

    Science.gov (United States)

    Elsbach, Kimberly D

    2003-09-01

    Coming up with creative ideas is easy; selling them to strangers is hard. Entrepreneurs, sales executives, and marketing managers often go to great lengths to demonstrate how their new concepts are practical and profitable--only to be rejected by corporate decision makers who don't seem to understand the value of the ideas. Why does this happen? Having studied Hollywood executives who assess screenplay pitches, the author says the person on the receiving end--the "catcher"--tends to gauge the pitcher's creativity as well as the proposal itself. An impression of the pitcher's ability to come up with workable ideas can quickly and permanently overshadow the catcher's feelings about an idea's worth. To determine whether these observations apply to business settings beyond Hollywood, the author attended product design, marketing, and venture-capital pitch sessions and conducted interviews with executives responsible for judging new ideas. The results in those environments were similar to her observations in Hollywood, she says. Catchers subconsciously categorize successful pitchers as showrunners (smooth and professional), artists (quirky and unpolished), or neophytes (inexperienced and naive). The research also reveals that catchers tend to respond well when they believe they are participating in an idea's development. As Oscar-winning writer, director, and producer Oliver Stone puts it, screen-writers pitching an idea should "pull back and project what he needs onto your idea in order to make the story whole for him." To become a successful pitcher, portray yourself as one of the three creative types and engage your catchers in the creative process. By finding ways to give your catchers a chance to shine, you sell yourself as a likable collaborator.

  18. Physics of Prestall Propagating Disturbances in Axial Compressors and Their Potential as a Stall Warning Indicator

    Directory of Open Access Journals (Sweden)

    Mario Eck

    2017-03-01

    Full Text Available Axial compressors in aero engines are prone to suffering a breakdown of orderly flow when operating at the peak of the pressure rise characteristic. The damaging potential of separated flows is why a safe distance has to be left between every possible operating point and an operating point at which stall occurs. During earlier investigations of stall inception mechanisms, a new type of prestall instability has been found. In this study, it could be demonstrated that the prestall instability characterised by discrete flow disturbances can be clearly assigned to the subject of “Rotating Instabilities”. Propagating disturbances are responsible for the rise in blade passing irregularity. If the mass flow is reduced successively, the level of irregularity increases until the prestall condition devolves into rotating stall. The primary objective of the current work is to highlight the basic physics behind these prestall disturbances by complementary experimental and numerical investigations. Before reaching the peak of the pressure rise characteristic flow, disturbances appear as small vortex tubes with one end attached to the casing and the other attached to the suction surface of the rotor blade. These vortex structures arise when the entire tip region is affected by blockage and at the same time the critical rotor incidence is not exceeded in this flow regime. Furthermore, a new stall indicator was developed by applying statistical methods to the unsteady pressure signal measured over the rotor blade tips, thus granting a better control of the safety margin.

  19. Numerical Study on the Acoustic Characteristics of an Axial Fan under Rotating Stall Condition

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-11-01

    Full Text Available Axial fan is an important piece of equipment in the thermal power plant that provides enough air for combustion of coal. This paper focuses on the aerodynamic noise characteristics of an axial fan in the development from stall inception to stall cells. The aerodynamic noise characteristic of monitoring region in time and frequency domains was simulated employing the large-eddy simulation (LES, with the addition of throttle setting and the Ffowcs Williams-Hawkings (FW-H noise model. The numerical results show that, under the design condition, the acoustic pressure presents regular periodicity along with the time. The noise energy is concentrated with high energy of the fundamental frequency and high order harmonics. During the stall inception stage, the acoustic pressure amplitude starts fluctuating and discrete frequencies are increased significantly in the low frequency; among them, there are three obvious discrete frequencies: 27.66 Hz, 46.10 Hz and 64.55 Hz. On the rotating stall condition, the fluctuation of the acoustic pressure level and amplitude are more serious than that mentioned above. During the whole evolution process, the acoustic pressure peak is difficult to keep stable all the time, and a sudden increase of the peak value at the 34.5th revolution corresponds to the relative velocity’s first sudden increase at the time when the valve coefficient is 0.780.

  20. Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation.

    Science.gov (United States)

    Artieri, Carlo G; Fraser, Hunter B

    2014-12-01

    The recent advent of ribosome profiling-sequencing of short ribosome-bound fragments of mRNA-has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling data set have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling. © 2014 Artieri and Fraser; Published by Cold Spring Harbor Laboratory Press.

  1. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    Science.gov (United States)

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  2. 14 CFR 23.203 - Turning flight and accelerated turning stalls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turning flight and accelerated turning stalls. 23.203 Section 23.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... a 30 degree bank. Reduce speed by steadily and progressively tightening the turn with the elevator...

  3. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    NARCIS (Netherlands)

    Kruyt, J.W.; Heijst, Van G.F.; Altshuler, D.L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle

  4. Vortical structures responsible for delayed stall in an idealized humpback whale flipper model

    Science.gov (United States)

    Kim, Heesu; Kim, Jooha; Choi, Haecheon

    2016-11-01

    In this study, we investigate how the tubercles on the leading edge of an idealized humpback whale flipper model delay the stall. Oil-surface visualization is performed to see the surface flow pattern on the suction surface, and PIV is conducted in several streamwise and crossflow planes at different attack angles (α). Without tubercles, leading edge separation first occurs near the tip region and progresses inboard with increasing α. With tubercles, however, two types of vortical motions are observed at the mid-span. The first is streamwise vortex arrays which are dominant at α 9° , and these structures appear near the trailing edge. These two types of vortical motions delay flow separation at the peak regions of the mid-span, eliminating the spanwise stall progression and resulting in delayed stall. At α = 16° at which the tubercle model stalls, a large-scale streamwise vortex is originated from flow separation near the root region. This structure delays flow separation at the mid-span, leading to higher lift coefficient. Supported by NRF-2014M3C1B1033848.

  5. Identification of phlebovirus and arenavirus RNA sequences that stall and repress the exoribonuclease XRN1.

    Science.gov (United States)

    Charley, Phillida A; Wilusz, Carol J; Wilusz, Jeffrey

    2018-01-05

    Regulated mRNA decay plays a vital role in determining both the level and quality of cellular gene expression. Viral RNAs must successfully evade this host RNA decay machinery to establish a productive infection. One way for RNA viruses to accomplish this is to target the cellular exoribonuclease XRN1, because this enzyme is accessible in the cytoplasm and plays a major role in mRNA decay. Members of the Flaviviridae use RNA structures in their 5'- or 3'-untranslated regions to stall and repress XRN1, effectively stabilizing viral RNAs while also causing significant dysregulation of host cell mRNA stability. Here, we use a series of biochemical assays to demonstrate that the 3'-terminal portion of the nucleocapsid (N) mRNA of Rift Valley fever virus, a phlebovirus of the Bunyaviridae family, also can effectively stall and repress XRN1. The region responsible for impeding XRN1 includes a G-rich portion that likely forms a G-quadruplex structure. The 3'-terminal portions of ambisense-derived transcripts of multiple arenaviruses also stalled XRN1. Therefore, we conclude that RNAs from two additional families of mammalian RNA viruses stall and repress XRN1. This observation. emphasizes the importance and commonality of this viral strategy to interfere with the 5'-to-3'-exoribonuclease component of the cytoplasmic RNA decay machinery. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Theory/test correlation of helicopter rotor blade element airloads in the blade stall regime

    Science.gov (United States)

    Bobo, C. J.

    1972-01-01

    The effects of stall on a rotor blade element in a three-dimensional rotating environment was investigated. The model rotor test provided blade element airloads and local boundary layer flow characteristics at the three-quarter blade radius position for a wide range of rotor operating conditions. A description of the test program and the test results are presented.

  7. Tiles CMUT dies with pitch uniformity

    OpenAIRE

    Sudol, W.; Dirksen, P.; Henneken, V.A.; Dekker, R.; Louwerse, M.C.

    2016-01-01

    A large aperture CMUT transducer array is formed of a plurality of adjacently located tiles of CMUT cells. The adjacent edges of the tiles are formed by an anisotropic etch process, preferably a deep reactive ion etching process which is capable of cutting through the die and its substrate while maintaining vertical edges in close proximity to the CMUT cells at the edge of the tile. This enables the CMUT cells of continuous rows or columns to exhibit a constant pitch over multiple CMUT cell t...

  8. Analysis of Pitch Gear Deterioration using Indicators

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    of the damage, and can be used for Bayesian updating of a damage model used for risk-based decision making. For this decision problem, the risk of failure should be compared to the cost of preventive maintenance. The hypothesis that the maximum pitch motor torque is an indicator of the damage size is supported...... by results from a measurement campaign where measurements are available both before and after maintenance was performed. The loads dramatically decreased after the maintenance. However, after a few more months of measurements, and by including data from the SCADA system, it became obvious that seasonal...

  9. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch.

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A; Larson, Charles R

    2014-02-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Field rotor measurements. Data sets prepared for analysis of stall hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H.; Thirstrup Petersen, J. [Risoe National Lab. (Denmark); Bruining, A. [Delft Univ. of Technology (Netherlands); Brand, A. [ECN (Netherlands); Graham, M. [Imperical College (United Kingdom)

    1998-05-01

    As part of the JOULE-3 project `STALLVIB` an analysis and synthesis of the data from the field rotor experiments at ECN, Delft University, Imperial College, NREL and Risoe has been carried out. This has been done in order to see to what extent the data could be used for further development and validation of engineering dynamic stall models. A detailed investigation of the influence of the post-processing of the different data sets has been performed. Further, important statistical functions such as PSD spectra, coherence and transfer functions have been derived for the data sets which can be used as basis for evaluation of the quality of the data seen relative to actual application of the data. The importance of using an appropriate low-pass filtering to remove high frequency noise has been demonstrated when the relation between instantaneous values of e.g. {alpha} and C{sub N} is considered. In general, the complicated measurement on a rotor of {alpha} and w and the interpretation of these parameters combined with the strongly three-dimensional, turbulent flow field around the rotating blade has the consequence that it seems difficult to derive systematic information from the different data sets about stall hysteresis. In particular, the measurement of {alpha}, which determination of the stagnation point gives reasonable data below stall but fails in stall. On the other hand, measurements of {alpha} with a five hole pitot tube can be used also in the stall region. Another main problem is the non-dimensionalization of the coefficients C{sub N} and C{sub r}. If the dynamic pressure used for the non-dimensionalization is not fully correlated with the aerodynamic pressure over the considered airfoil section due to e.g. influence of the gravity on the pressure pipes, the hysteresis loops will be distorted. However, using the data with caution and applying a suitable post-processing as described by the different participants, it will probably be possible to obtain some

  11. A developmental study of latent absolute pitch memory.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  12. Relating binaural pitch perception to the individual listener's auditory profile

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception...... was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners...... sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural...

  13. Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    In many scenarios, a periodic signal of interest is often contaminated by different types of noise that may render many existing pitch estimation methods suboptimal, e.g., due to an incorrect white Gaussian noise assumption. In this paper, a method is established to estimate the pitch of such sig......In many scenarios, a periodic signal of interest is often contaminated by different types of noise that may render many existing pitch estimation methods suboptimal, e.g., due to an incorrect white Gaussian noise assumption. In this paper, a method is established to estimate the pitch...... against different noise situations. The simulation results confirm that the proposed MVDR method outperforms the state-of-the-art weighted least squares (WLS) pitch estimator in colored noise and has robust pitch estimates against missing harmonics in some time-frames....

  14. Target pitch angle for the microburst escape maneuver

    Science.gov (United States)

    Mulgund, Sandeep S.; Stengel, Robert F.

    1992-01-01

    Recovery performance of a commuter-type aircraft in a microburst encounter is studied using a constant-pitch-attitude strategy and flight path optimization. Results obtained indicate that the pitch attitude which maximized climb rate in a wind shear condition is strongly dependent on whether the aircraft is subjected to a horizontal shear or a downdraft. The pitch attitude which maximizes ground clearance depends on the altitude of the encounter, the strength of the microburst, and the initial position of the aircraft with respect to the downburst core. Best results are obtained at relatively low target pitch angles, in severe wind shear encounters at very low altitudes. A technique for maximizing ground clearance involves maintaining a low pitch attitude early in the encounter, followed by a gradual pitch-up that ceases when the wind shear has been excited.

  15. Absolute Pitch: Effects of Timbre on Note-Naming Ability

    OpenAIRE

    Vanzella, Patr?cia; Schellenberg, E. Glenn

    2010-01-01

    Background Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP poss...

  16. Pitch-Responsive Cortical Regions in Congenital Amusia.

    Science.gov (United States)

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  17. Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet

    Directory of Open Access Journals (Sweden)

    Qijun ZHAO

    2017-12-01

    Full Text Available The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes (URANS solver coupled with k-ω Shear Stress Transport (SST turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters (jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jet’s angles and momentum coefficients on control effects are similar to those of the unique jet. Finally, unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and as a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor. Keywords: Airfoil, Dynamic stall characteristics, Flow control, Moving-embedded grid methodology, Navier-Stokes equations, Parametric

  18. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon.

    Science.gov (United States)

    von der Malsburg, Karina; Shao, Sichen; Hegde, Ramanujan S

    2015-06-15

    Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome-Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S-RQC and 80S-Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome-translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel. © 2015 von der Malsburg et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Perception of words and pitch patterns in song and speech

    Directory of Open Access Journals (Sweden)

    Julia eMerrill

    2012-03-01

    Full Text Available This fMRI study examines shared and distinct cortical areas involved in the auditory perception of song and speech at the level of their underlying constituents: words, pitch and rhythm. Univariate and multivariate analyses were performed on the brain activity patterns of six conditions, arranged in a subtractive hierarchy: sung sentences including words, pitch and rhythm; hummed speech prosody and song melody containing only pitch patterns and rhythm; as well as the pure musical or speech rhythm.Systematic contrasts between these balanced conditions following their hierarchical organization showed a great overlap between song and speech at all levels in the bilateral temporal lobe, but suggested a differential role of the inferior frontal gyrus (IFG and intraparietal sulcus (IPS in processing song and speech. The left IFG was involved in word- and pitch-related processing in speech, the right IFG in processing pitch in song.Furthermore, the IPS showed sensitivity to discrete pitch relations in song as opposed to the gliding pitch in speech. Finally, the superior temporal gyrus and premotor cortex coded for general differences between words and pitch patterns, irrespective of whether they were sung or spoken. Thus, song and speech share many features which are reflected in a fundamental similarity of brain areas involved in their perception. However, fine-grained acoustic differences on word and pitch level are reflected in the activity of IFG and IPS.

  1. Context effects on pitch perception in musicians and nonmusicians

    DEFF Research Database (Denmark)

    Brattico, E; Naatanen, R; Tervaniemi, M

    2001-01-01

    Behavioral evidence indicates that musical context facilitates pitch discrimination. In the present study, we sought to determine whether pitch context and its familiarity might affect brain responses to pitch change even at the preattentive level. Ten musicians and 10 nonmusicians, while...... concentrating on reading a book, were presented with sound stimuli that had an infrequent (p = 15 %) pitch shift of 144 Hz. In the familiar condition, the infrequent third-position deviant changed the mode (major vs. minor) of the five-tone pattern. In the unfamiliar condition, patterns were formed from five...

  2. Impaired short-term memory for pitch in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pitch discrimination associated with phonological awareness: Evidence from congenital amusia.

    Science.gov (United States)

    Sun, Yanan; Lu, Xuejing; Ho, Hao Tam; Thompson, William Forde

    2017-03-13

    Research suggests that musical skills are associated with phonological abilities. To further investigate this association, we examined whether phonological impairments are evident in individuals with poor music abilities. Twenty individuals with congenital amusia and 20 matched controls were assessed on a pure-tone pitch discrimination task, a rhythm discrimination task, and four phonological tests. Amusic participants showed deficits in discriminating pitch and discriminating rhythmic patterns that involve a regular beat. At a group level, these individuals performed similarly to controls on all phonological tests. However, eight amusics with severe pitch impairment, as identified by the pitch discrimination task, exhibited significantly worse performance than all other participants in phonological awareness. A hierarchical regression analysis indicated that pitch discrimination thresholds predicted phonological awareness beyond that predicted by phonological short-term memory and rhythm discrimination. In contrast, our rhythm discrimination task did not predict phonological awareness beyond that predicted by pitch discrimination thresholds. These findings suggest that accurate pitch discrimination is critical for phonological processing. We propose that deficits in early-stage pitch discrimination may be associated with impaired phonological awareness and we discuss the shared role of pitch discrimination for processing music and speech.

  4. Endoscopic laryngeal web formation for pitch elevation.

    Science.gov (United States)

    Anderson, Jennifer

    2007-02-01

    Endoscopic laryngeal web formation has been used to elevate the speaking voice, primarily in male to female transsexuals as part of gender reassignment intervention. The goal of this article is to review the literature regarding surgical treatment for pitch elevation and to describe a novel method of laryngeal web formation. The results of this technique are also reported in a series of six patients. All patients were assessed and treated at the St. Michael's Hospital Voice Disorders Clinic, a tertiary referral centre for voice disorders. Pre- and postoperative voice recordings, acoustic analysis, and videostroboscopic examinations were performed in this series. The acoustic data collected included isolated vowel samples, a reading task, and a modified voice range profile. The patients all underwent successful endoscopic web formation with a Gelfoam augmentation technique. The voice results collected at least 6 months after vocal fold web formation demonstrate a dramatic increase in the habitual speaking fundamental frequency. This new modification for endoscopic web formation has been shown to be a successful procedure for permanent elevation of pitch with little or no morbidity.

  5. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  6. Pitch Correlogram Clustering for Fast Speaker Identification

    Directory of Open Access Journals (Sweden)

    Nitin Jhanwar

    2004-12-01

    Full Text Available Gaussian mixture models (GMMs are commonly used in text-independent speaker identification systems. However, for large speaker databases, their high computational run-time limits their use in online or real-time speaker identification situations. Two-stage identification systems, in which the database is partitioned into clusters based on some proximity criteria and only a single-cluster GMM is run in every test, have been suggested in literature to speed up the identification process. However, most clustering algorithms used have shown limited success, apparently because the clustering and GMM feature spaces used are derived from similar speech characteristics. This paper presents a new clustering approach based on the concept of a pitch correlogram that captures frame-to-frame pitch variations of a speaker rather than short-time spectral characteristics like cepstral coefficient, spectral slopes, and so forth. The effectiveness of this two-stage identification process is demonstrated on the IVIE corpus of 110 speakers. The overall system achieves a run-time advantage of 500% as well as a 10% reduction of error in overall speaker identification.

  7. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  8. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  9. Native experience with a tone language enhances pitch discrimination and the timing of neural responses to pitch change

    Directory of Open Access Journals (Sweden)

    Ryan J Giuliano

    2011-08-01

    Full Text Available Native tone language experience has been linked with alterations in the production and perception of pitch in language, as well as with the brain response to linguistic and non-linguistic tones. Here we use two experiments to address whether these changes apply to the discrimination of simple pitch changes and pitch intervals. ERPs were recorded from native Mandarin speakers and a control group during a same/different task with pairs of pure tones differing only in pitch height, and with pure tone pairs differing only in interval distance. Behaviorally, Mandarin speakers were more accurate than controls at detecting both pitch and interval changes, showing a sensitivity to small pitch changes and interval distances that was absent in the control group. Converging evidence from ERPs obtained during the same tasks revealed an earlier response to change relative to no-change trials in Mandarin speakers, as well as earlier differentiation of trials by change direction relative to controls. These findings illustrate the cross-domain influence of language experience on the perception of pitch, suggesting that the native use of tonal pitch contours in language leads to a general enhancement in the acuity of pitch representations.

  10. Auditory deficits in amusia extend beyond poor pitch perception.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2017-05-01

    Congenital amusia is a music perception disorder believed to reflect a deficit in fine-grained pitch perception and/or short-term or working memory for pitch. Because most measures of pitch perception include memory and segmentation components, it has been difficult to determine the true extent of pitch processing deficits in amusia. It is also unclear whether pitch deficits persist at frequencies beyond the range of musical pitch. To address these questions, experiments were conducted with amusics and matched controls, manipulating both the stimuli and the task demands. First, we assessed pitch discrimination at low (500Hz and 2000Hz) and high (8000Hz) frequencies using a three-interval forced-choice task. Amusics exhibited deficits even at the highest frequency, which lies beyond the existence region of musical pitch. Next, we assessed the extent to which frequency coding deficits persist in one- and two-interval frequency-modulation (FM) and amplitude-modulation (AM) detection tasks at 500Hz at slow (f m =4Hz) and fast (f m =20Hz) modulation rates. Amusics still exhibited deficits in one-interval FM detection tasks that should not involve memory or segmentation. Surprisingly, amusics were also impaired on AM detection, which should not involve pitch processing. Finally, direct comparisons between the detection of continuous and discrete FM demonstrated that amusics suffer deficits in both coding and segmenting pitch information. Our results reveal auditory deficits in amusia extending beyond pitch perception that are subtle when controlling for memory and segmentation, and are likely exacerbated in more complex contexts such as musical listening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Association Between Pitch Conditions and the Incidence of ...

    African Journals Online (AJOL)

    Background: Environmental conditions have been shown to influence incidence of rugby injuries. Harsh weather conditions and detrimental effect on poor Kenyan rugby pitches create a unique environment for injury exposure. We conducted a whole population prospective cohort study to determine the association of pitch ...

  12. Pixel size and pitch measurements of liquid crystal spatial light ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 2. Pixel size and pitch ... Liquid crystal displays; spatial light modulator; optical diffraction. Abstract. We present a simple technique for the determination of pixel size and pitch of liquid crystal (LC) based spatial light modulator (SLM). The proposed method is ...

  13. Global and Local Pitch Perception in Children with Developmental Dyslexia

    Science.gov (United States)

    Ziegler, Johannes C.; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M.

    2012-01-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global…

  14. The Association Between Pitch Conditions and the Incidence of ...

    African Journals Online (AJOL)

    shown to influence incidence of rugby injuries. Harsh weather conditions and detrimental effect on poor Kenyan rugby pitches create a unique environment for injury exposure. We conducted a whole population prospective cohort study to determine the association of pitch conditions with injury incidence and severity.

  15. Pitch Systems and Curwen Hand Signs: A Review of Literature

    Science.gov (United States)

    Frey-Clark, Marta

    2017-01-01

    Learning to sing from notation is a complex task, and accurately performing pitches without an external reference can be particularly challenging. As such, the use of mnemonic devices to reinforce tonal relationships is a long-standing practice among musicians. Chief among these mnemonic devices are pitch syllable systems and Curwen hand signs.…

  16. Stochastic wind turbine modeling for individual pitch control

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    and a simplified description of the aerodynamics with sufficient detail to design model-based individual pitch controllers. Combined with a simplified model of the wind turbine, we exemplify how to use the model elements to systematically design an individual pitch controller. The design is investigated...

  17. Pitch Perception, Working Memory, and Second-Language Phonological Production

    Science.gov (United States)

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  18. Thrust generation and wake structure for flow across a pitching ...

    Indian Academy of Sciences (India)

    In this work, we present detailed particle image velocimetry (PIV) based investigation of wake structure of a pitching airfoil. PIV measurements have been carried out for NACA0015 airfoil at Re = 2900 with reduced frequency range of 1.82–10.92 and pitching angle of 5°. Two different wake structures (reverse Kármán ...

  19. Shoulder joint velocity during fastball pitching in baseball

    NARCIS (Netherlands)

    Gasparutto, X.; van der Graaff, E; van der Helm, F.C.T.; Veeger, H.E.J.; Colloud, F.; Domalain, M.; Monnet, T.

    2015-01-01

    The purpose of this study was to assess the rotation and translation velocity of the shoulder complex during fastball pitching in baseball. 8 pitchers from the Dutch AAA team performed each 3 fastball pitches. Their motion was recorded by an opto-electronic device. Kinematic computation was

  20. Mathematical Precision of Pitch Gaps in Tribal Tonal

    African Journals Online (AJOL)

    SOCIAL PATHOLOGY OF CLEFT PALATE IN THE AFRICAN: MATHEMATICAL PRECISION OF PITCH GAPS IN TRIBAL TONAL ... with Tonic Solfa precision. I have done this both in tribal tonal linguistics and in ... in English. My native ear enables me to hear 4 pitches in the word “Agriculture” in Queen's English [high.

  1. Contamination of Pine Seeds by the Pitch Canker Fungus

    Science.gov (United States)

    L. David Dwinell; S.W. Fraedrich

    1999-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, has been identified as a significant problem in man pine seed orchards and nursuries in the South. THe fungus causes strobilus mortality, seed deterioation, and cankers on the main stem, branches, and shoots of pines Dwinell and others 1985). The pitche canker fungus...

  2. Pitch height modulates visual and haptic bisection performance in musicians

    Directory of Open Access Journals (Sweden)

    Carlotta eLega

    2014-04-01

    Full Text Available Consistent evidence suggests that pitch height may be represented in a spatial format, having both a vertical and an horizontal representation. The spatial representation of pitch height results into response compatibility effects for which high pitch tones are preferentially associated to up-right responses, and low pitch tones are preferentially associated to down-left responses (i.e., the SMARC effect, with the strength of these associations depending on individuals’ musical skills. In this study we investigated whether listening to tones of different pitch affects the representation of external space, as assessed in a visual and haptic line bisection paradigm, in musicians and non musicians. Low and high pitch tones affected the bisection performance in musicians differently, both when pitch was relevant and irrelevant for the task, and in both the visual and the haptic modality. No effect of pitch height was observed on the bisection performance of non musicians. Moreover, our data also show that musicians present a (supramodal rightward bisection bias in both the visual and the haptic modality, extending previous findings limited to the visual modality, and consistent with the idea that intense practice with musical notation and bimanual instrument training affects hemispheric lateralization.

  3. Estimates of pitch strength for musicians and nonmusicians

    Science.gov (United States)

    Clarkson, Marsha G.; Zettler, Cynthia M.; Follmer, Michelle J.; Faulk, Margaret; Takagi, Michael J.

    2003-04-01

    To measure the strength of the pitch of iterated rippled noise (IRN), 19 adults were tested in an operant conditioning procedure. Seven adults had music training and currently played an instrument; 12 adults had no training and did not currently play an instrument. To generate IRN, a 500-ms Gaussian noise stimulus was delayed by 5 or 6 ms (pitches of 200 or 166 Hz) and added to the original for 16 iterations. IRN stimuli having one delay were presented repeatedly. On signal trials the delay changed for 6 s. Stimulus level roved from 63-67 dBA (background of 28 dBA). Adults learned to press a button when the stimulus changed. Testing started with IRN stimuli having 0-dB attenuation (i.e., maximal pitch strength). Stimuli having weaker pitches (i.e., progressively greater attenuation applied to the delayed noise) followed. Strength of pitch was quantified as the maximum attenuation for which pitch was discerned. For each subject, threshold attenuation for pitch strength was extrapolated as the 71% point on a psychometric function depicting percent correct performance as a function of attenuation. Mean thresholds revealed that the pitch percept was similar for both nonmusically trained (18.70 dB) and musically trained adults (18.73 dB).

  4. Pitch Ability as an Aptitude for Tone Learning

    Science.gov (United States)

    Bowles, Anita R.; Chang, Charles B.; Karuzis, Valerie P.

    2016-01-01

    Tone languages such as Mandarin use voice pitch to signal lexical contrasts, presenting a challenge for second/foreign language (L2) learners whose native languages do not use pitch in this manner. The present study examined components of an aptitude for mastering L2 lexical tone. Native English speakers with no previous tone language experience…

  5. Autistic Traits and Enhanced Perceptual Representation of Pitch and Time

    Science.gov (United States)

    Stewart, Mary E.; Griffiths, Timothy D.; Grube, Manon

    2018-01-01

    Enhanced basic perceptual discrimination has been reported for pitch in individuals with autism spectrum conditions. We test whether there is a correlational pattern of enhancement across the broader autism phenotype and whether this correlation occurs for the discrimination of pitch, time and loudness. Scores on the Autism-Spectrum Quotient…

  6. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  7. Wing-pitching mechanism of hovering Ruby-throated hummingbirds

    International Nuclear Information System (INIS)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. (paper)

  8. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  9. Sparse Multi-Pitch and Panning Estimation of Stereophonic Signals

    DEFF Research Database (Denmark)

    Kronvall, Ted; Jakobsson, Andreas; Hansen, Martin Weiss

    2016-01-01

    In this paper, we propose a novel multi-pitch estimator for stereophonic mixtures, allowing for pitch estimation on multi-channel audio even if the amplitude and delay panning parameters are unknown. The presented method does not require prior knowledge of the number of sources present in the mix...

  10. Investigation of the wind climate in connection with double-stall on wind turbines in Tarifa[Spain]; Undersoegelse af vindklima i forbindelse med dobbelt-stall paa vindmoeller i Tarifa

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, T. [ELSAMPROJEKT A/S, Fredericia, (Denmark); Jensen, L.E. [LM Glasfiber A/S, Lunderskov (Denmark)

    2000-08-01

    This project has compiled data to allow the Danish manufacturers of wind turbines and blades to improve their knowledge of double stall. On the basis of the double stall difficulties different types of turbines using different makes of blades have encountered in the Tarifa area in Southern Spain, meteorological parameters and production data from two turbines have been measured for a local site. Part of the acquired data have been analysed to reach an understanding of why double stall occurs. The analysis strongly suggests that a change in power level due to double stall can be a result of several external factors: (1) Rain cleaning the blades. (2) A more or less random change in the wind speed components uv, or w, which in some cases can affect a - probably - fairly thick boundary layer. (3) A change in the high frequency turbulence where the vortex impact is too insignificant to affect an - almost - randomly - thick boundary layer. (au)

  11. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  12. Wind turbine pitch control using ICPSO-PID algorithm

    DEFF Research Database (Denmark)

    Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong

    2013-01-01

    , a pitch controller was designed based on power and wind speed and by considering the inertia and delay characteristics of a pitch-control system to achieve a constant power output when a wind speed was beyond the rated one. A novel ICPSO-PID control algorithm was proposed based on a combination...... of improved cooperative particle swarm optimization (ICPSO) and PID, subsequently, it was used to tune the pitch controller parameters; thus the difficulty in PID tuning was removed when a wind speed was above the rated speed. It was indicated that the proposed optimization algorithm can tune the pitch...... controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller...

  13. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica

    ) listeners and the effect of musical training for pitch discrimination of complex tones with resolved and unresolved harmonics. Concerning the first topic, behavioral and modeling results in listeners with sensorineural hearing loss (SNHL) indicated that temporal envelope cues of complex tones...... discrimination to that of NH listeners. In the second part of this work, behavioral and objective measures of pitch discrimination were carried out in musicians and non-musicians. Musicians showed an increased pitch-discrimination performance relative to non-musicians for both resolved and unresolved harmonics...... for the individual pitch-discrimination abilities, the musically trained listeners still allocated lower processing effort than did the non-musicians to perform the task at the same performance level. This finding suggests an enhanced pitch representation along the auditory system in musicians, possibly as a result...

  14. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  15. Task-dependent activations of human auditory cortex during pitch discrimination and pitch memory tasks.

    Science.gov (United States)

    Rinne, Teemu; Koistinen, Sonja; Salonen, Oili; Alho, Kimmo

    2009-10-21

    The functional organization of auditory cortex (AC) is still poorly understood. Previous studies suggest segregation of auditory processing streams for spatial and nonspatial information located in the posterior and anterior AC, respectively (Rauschecker and Tian, 2000; Arnott et al., 2004; Lomber and Malhotra, 2008). Furthermore, previous studies have shown that active listening tasks strongly modulate AC activations (Petkov et al., 2004; Fritz et al., 2005; Polley et al., 2006). However, the task dependence of AC activations has not been systematically investigated. In the present study, we applied high-resolution functional magnetic resonance imaging of the AC and adjacent areas to compare activations during pitch discrimination and n-back pitch memory tasks that were varied parametrically in difficulty. We found that anterior AC activations were increased during discrimination but not during memory tasks, while activations in the inferior parietal lobule posterior to the AC were enhanced during memory tasks but not during discrimination. We also found that wide areas of the anterior AC and anterior insula were strongly deactivated during the pitch memory tasks. While these results are consistent with the proposition that the anterior and posterior AC belong to functionally separate auditory processing streams, our results show that this division is present also between tasks using spatially invariant sounds. Together, our results indicate that activations of human AC are strongly dependent on the characteristics of the behavioral task.

  16. Why Do Promising Therapies Stall in Development and How Can We Move Them Forward?

    Science.gov (United States)

    Wegner, Craig D; Goodwin, Andrew; Cook, Jon C; Allamneni, Krishna; Sohn, Jane; McVean, Maralee

    There are many reasons that molecules fail to progress to market and various principles of risk-benefit decisions that can help drive the molecule through development. This symposium included discussions on global strategies involved in pushing promising molecules to market, what to do when a molecule stalls in its progress to market, and options for rescuing the molecule and pushing it forward again. Innovative partnerships that bring stalled drugs back into clinical development were also addressed. A regulatory perspective on common reasons for a molecule to fail in its forward progress was presented. In addition, situations arise when a third-party advisory committee can provide input to help overcome issues identified by a regulatory agency. Using examples from the private and public domain, presentations centered on how to repurpose a molecule and when more science is needed.

  17. Grid support of a wind farm with active stall wind turbines and AC grid connection

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul Ejnar; Iov, F.

    2006-01-01

    grid connection. The designed control system has the task of enabling such a wind farm to provide the best grid support. It is based on two control levels: a supervisory control level, which controls the power production of the whole farm by sending out reference signals to each individual wind turbine......, and a local control level, which ensures that the reference power signals at the wind turbine level are reached. The ability of active stall wind farms with AC grid connection to control the power production to the reference power ordered by the operators is assessed and discussed by means of simulations.......One of the main concerns in the grid integration of large wind farms is their ability to behave as active controllable components in the power system. This article presents the design of a new integrated power control system for a wind farm made up exclusively of active stall wind turbines with AC...

  18. Simulation model of a transient fault controller for an active-stall wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Soerensen, P.; Bak Jensen, B.

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed. (author)

  19. DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest.

    Science.gov (United States)

    Zhang, Yan; Mooney, Rachel A; Grass, Jeffrey A; Sivaramakrishnan, Priya; Herman, Christophe; Landick, Robert; Wang, Jue D

    2014-03-06

    In bacteria, translation-transcription coupling inhibits RNA polymerase (RNAP) stalling. We present evidence suggesting that, upon amino acid starvation, inactive ribosomes promote rather than inhibit RNAP stalling. We developed an algorithm to evaluate genome-wide polymerase progression independently of local noise and used it to reveal that the transcription factor DksA inhibits promoter-proximal pausing and increases RNAP elongation when uncoupled from translation by depletion of charged tRNAs. DksA has minimal effect on RNAP elongation in vitro and on untranslated RNAs in vivo. In these cases, transcripts can form RNA structures that prevent backtracking. Thus, the effect of DksA on transcript elongation may occur primarily upon ribosome slowing/stalling or at promoter-proximal locations that limit the potential for RNA structure. We propose that inactive ribosomes prevent formation of backtrack-blocking mRNA structures and that, in this circumstance, DksA acts as a transcription elongation factor in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. An automatic system for the detection of dairy cows lying behaviour in free-stall barns

    Directory of Open Access Journals (Sweden)

    Simona M.C. Porto

    2013-09-01

    Full Text Available In this paper, a method for the automatic detection of dairy cow lying behaviour in free-stall barns is proposed. A computer visionbased system (CVBS composed of a video-recording system and a cow lying behaviour detector based on the Viola Jones algorithm was developed. The CVBS performance was tested in a head-to-head free stall barn. Two classifiers were implemented in the software component of the CVBS to obtain the cow lying behaviour detector. The CVBS was validated by comparing its detection results with those generated from visual recognition. This comparison allowed the following accuracy indices to be calculated: the branching factor (BF, the miss factor (MF, the sensitivity, and the quality percentage (QP. The MF value of approximately 0.09 showed that the CVBS missed one cow every 11 well detected cows. Conversely, the BF value of approximately 0.08 indicated that one false positive was detected every 13 well detected cows. The high value of approximately 0.92 obtained for the sensitivity index and that obtained for QP of about 0.85 revealed the ability of the proposed system to detect cows lying in the stalls.

  1. Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance

    Science.gov (United States)

    Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter

    2018-01-01

    In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.

  2. The Relationships between Selection and Processing Food with Escherichia coli Contaminant on Food Stall Serving

    Directory of Open Access Journals (Sweden)

    Tris Eryando

    2014-04-01

    Full Text Available Escherichia coli in food stalls surrounding the X Campuss in Depok, year 2012. The research conducted to examine food safety, which were served in surrounding the campus X in Depok. Escherichia coli (E. coli existence was used to indicate the quality of hygiene and sanitation of the food that was served. Using the cross sectional method, the research examined the persons who served the food to be sold in the food stalls in the campus. There were 173 food servers chosen as the respondents from 10 different food stalls around the university. The existence of E. coli examined in the microbiology laboratory in the Faculty of Public Health. Using the most probable number (MPN method found that 59.54% of the food served in the campus were contaminated E. coli. Factors affecting the existence of E. coli were the raw materials (vegetables treated and the length of cooking of the materials (rice/beens. The improper treatment such as washing with no running water or even unwashed vegetables had 5 times risk of the E. coli contamination. Cooking less than 15 minutes was also more risky than cooking more than 15 minutes. As a result, this is very important to find a method to improve knowledge and to increase practical skills in food safety. Furthermore, in this research area may give contribution to avoid E. coli contamination which will prevent unnecessary illness among students in the campus.

  3. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts

    Science.gov (United States)

    Newman, Timothy J.; Mamun, Mohammed A.; Nieduszynski, Conrad A.; Blow, J. Julian

    2013-01-01

    During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts—Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe—also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10−8, which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms. PMID:23963700

  4. Near Stall Flow Analysis in the Transonic Fan of the RTA Propulsion System

    Science.gov (United States)

    Hah, Chunill

    2010-01-01

    Turbine-based propulsion systems for access to space have been investigated at NASA Glenn Research center. A ground demonstrator engine for validation testing has been developed as a part of the program. The demonstrator, the Revolutionary Turbine Accelerator (RTA-1), is a variable cycle turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratio from sea level static to Mach 4 flight condition. A key component of this engine is a new fan stage that accommodates these large variations in bypass ratio and flow ranges. In the present study, unsteady flow behavior in the fan of the RTA-1 is studied in detail with large eddy simulation (LES) and the numerical results are compared with measured data. During the experimental study of the fan stage, humming sound was detected at 100 % speed near stall operation. The main purpose of the study is to investigate details of the unsteady flow behavior at near stall operation and to identify a possible cause of the hum. The large eddy simulation of the current flow field reproduces main features of the measured flow very well. The LES simulation indicates that non-synchronous flow instability develops as the fan operates toward the stall limit. The FFT analysis of the calculated wall pressure shows that the rotating flow instability has the characteristic frequency that is about 50% of the blade passing frequency.

  5. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells.

    Science.gov (United States)

    Giraud, Matthieu; Yoshida, Hideyuki; Abramson, Jakub; Rahl, Peter B; Young, Richard A; Mathis, Diane; Benoist, Christophe

    2012-01-10

    Aire is a transcriptional regulator that induces expression of peripheral tissue antigens (PTA) in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in differentiating T cells. To elucidate its mechanistic pathways, we examined its transcriptional impact in MECs in vivo by microarray analysis with mRNA-spanning probes. This analysis revealed initiation of Aire-activated genes to be comparable in Aire-deficient and wild-type MECs, but with a block to elongation after 50-100 bp in the absence of Aire, suggesting activation by release of stalled polymerases by Aire. In contrast, patterns of activation by transcription factors such as Klf4 were consistent with regulation of initiation. Mapping of Aire and RNA polymerase-II (Pol-II) by ChIP and high-throughput sequencing (ChIP-seq) revealed that Aire bound all Pol-II-rich transcriptional start sites (TSS), irrespective of its eventual effect. However, the genes it preferentially activated were characterized by a relative surfeit of stalled polymerases at the TSS, which resolved once Aire was introduced into cells. Thus, transcript mapping and ChIP-seq data indicate that Aire activates ectopic transcription not through specific recognition of PTA gene promoters but by releasing stalled polymerases.

  6. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  7. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  8. Discriminating male and female voices: differentiating pitch and gender.

    Science.gov (United States)

    Latinus, Marianne; Taylor, Margot J

    2012-04-01

    Gender is salient, socially critical information obtained from faces and voices, yet the brain processes underlying gender discrimination have not been well studied. We investigated neural correlates of gender processing of voices in two ERP studies. In the first, ERP differences were seen between female and male voices starting at 87 ms, in both spatial-temporal and peak analyses, particularly the fronto-central N1 and P2. As pitch differences may drive gender differences, the second study used normal, high- and low-pitch voices. The results of these studies suggested that differences in pitch produced early effects (27-63 ms). Gender effects were seen on N1 (120 ms) with implicit pitch processing (study 1), but were not seen with manipulations of pitch (study 2), demonstrating that N1 was modulated by attention. P2 (between 170 and 230 ms) discriminated male from female voices, independent of pitch. Thus, these data show that there are two stages in voice gender processing; a very early pitch or frequency discrimination and a later more accurate determination of gender at the P2 latency.

  9. A New Approach to Model Pitch Perception Using Sparse Coding.

    Directory of Open Access Journals (Sweden)

    Oded Barzelay

    2017-01-01

    Full Text Available Our acoustical environment abounds with repetitive sounds, some of which are related to pitch perception. It is still unknown how the auditory system, in processing these sounds, relates a physical stimulus and its percept. Since, in mammals, all auditory stimuli are conveyed into the nervous system through the auditory nerve (AN fibers, a model should explain the perception of pitch as a function of this particular input. However, pitch perception is invariant to certain features of the physical stimulus. For example, a missing fundamental stimulus with resolved or unresolved harmonics, or a low and high-level amplitude stimulus with the same spectral content-these all give rise to the same percept of pitch. In contrast, the AN representations for these different stimuli are not invariant to these effects. In fact, due to saturation and non-linearity of both cochlear and inner hair cells responses, these differences are enhanced by the AN fibers. Thus there is a difficulty in explaining how pitch percept arises from the activity of the AN fibers. We introduce a novel approach for extracting pitch cues from the AN population activity for a given arbitrary stimulus. The method is based on a technique known as sparse coding (SC. It is the representation of pitch cues by a few spatiotemporal atoms (templates from among a large set of possible ones (a dictionary. The amount of activity of each atom is represented by a non-zero coefficient, analogous to an active neuron. Such a technique has been successfully applied to other modalities, particularly vision. The model is composed of a cochlear model, an SC processing unit, and a harmonic sieve. We show that the model copes with different pitch phenomena: extracting resolved and non-resolved harmonics, missing fundamental pitches, stimuli with both high and low amplitudes, iterated rippled noises, and recorded musical instruments.

  10. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  11. Mismatch negativity to pitch pattern deviants in schizophrenia.

    Science.gov (United States)

    Haigh, Sarah M; Matteis, Mario De; Coffman, Brian A; Murphy, Timothy K; Butera, Christiana D; Ward, Kayla L; Leiter-McBeth, Justin R; Salisbury, Dean F

    2017-09-01

    Simple mismatch negativity (MMN) to infrequent pitch deviants is impaired in individuals with long-term schizophrenia (Sz). The complex MMN elicited by pattern deviance often manifes is cut from here]->ts later after deviant onset than simple MMN and can ascertain deficits in abstracting relationships between stimuli. Sz exhibit reduced complex MMN, but so far this has only been measured when deviance detection relies on a grouping rule. We measured MMN to deviants in pitch-based rules to see whether MMN is also abnormal in Sz under these conditions. Three experiments were conducted. Twenty-seven Sz and 28 healthy matched controls (HC) participated in Experiments 1 and 2, and 24 Sz and 26 HC participated in Experiment 3. Experiment 1 was a standard pitch MMN task, and Sz showed the expected MMN reduction (~ 115 ms) in the simple pitch deviant compared to HC. Experiment 2 comprised standard groups of six tones that ascended in pitch, and deviant groups where the last tone descended in pitch. Complex MMN was late (~ 510 ms) and significantly blunted in Sz. Experiment 3 comprised standard groups of 12 tones (six tones ascending in pitch followed by six tones descending in pitch, like a scale), and deviant groups containing two repetitions of six ascending tones (the scale restarted midstream). Complex MMN was also late (~ 460 ms) and significantly blunted in Sz. These results identify a late pitch pattern deviance-related MMN that is deficient in schizophrenia. This suggests specific deficits in later more complex deviance detection in schizophrenia for abstract patterns. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Processing of Binaural Pitch Stimuli in Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2009-01-01

    Binaural pitch is a tonal sensation produced by introducing a frequency-dependent interaural phase shift in binaurally presented white noise. As no spectral cues are present in the physical stimulus, binaural pitch perception is assumed to rely on accurate temporal fine structure coding and intact...... level differences and binaural intelligibility level differences than subjects from group 1, but did not necessarily show reduced scores in a lexical decision task and a reading span test. Overall, these findings confirm that binaural pitch perception is either immediate or absent in hearing...

  13. The pitch-heave dynamics of transportation vehicles

    Science.gov (United States)

    Sweet, L. M.; Richardson, H. H.

    1975-01-01

    The analysis and design of suspensions for vehicles of finite length using pitch-heave models is presented. Dynamic models for the finite length vehicle include the spatial distribution of the guideway input disturbance over the vehicle length, as well as both pitch and heave degrees-of-freedom. Analytical results relate the vehicle front and rear accelerations to the pitch and heave natural frequencies, which are functions of vehicle suspension geometry and mass distribution. The effects of vehicle asymmetry and suspension contact area are evaluated. Design guidelines are presented for the modification of vehicle and suspension parameters to meet alternative ride quality criteria.

  14. Context effects on pitch perception in musicians and nonmusicians

    DEFF Research Database (Denmark)

    Brattico, E; Naatanen, R; Tervaniemi, M

    2001-01-01

    Behavioral evidence indicates that musical context facilitates pitch discrimination. In the present study, we sought to determine whether pitch context and its familiarity might affect brain responses to pitch change even at the preattentive level. Ten musicians and 10 nonmusicians, while...... is generally enhanced in a familiar context. Moreover, the latency of the mismatch negativity was shorter for musicians than for nonmusicians in both the familiar and unfamiliar conditions, whereas no difference between groups was observed in the no-context condition. This finding indicates that, in response...

  15. Tonal Scales and Minimal Simple Pitch Class Cycles

    DEFF Research Database (Denmark)

    Meredith, David

    2011-01-01

    Numerous studies have explored the special mathematical properties of the diatonic set. However, much less attention has been paid to the sets associated with the other scales that play an important rôle in Western tonal music, such as the harmonic minor scale and ascending melodic minor scale....... This paper focuses on the special properties of the class, T, of sets associated with the major and minor scales (including the harmonic major scale). It is observed that T is the set of pitch class sets associated with the shortest simple pitch class cycles in which every interval between consecutive pitch...

  16. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...... results show that the proposed method detects different fault scenarios of wind turbines under the stochastic external condition....

  17. Polyphonic pitch detection and instrument separation

    Science.gov (United States)

    Bay, Mert; Beauchamp, James W.

    2005-09-01

    An algorithm for polyphonic pitch detection and musical instrument separation is presented. Each instrument is represented as a time-varying harmonic series. Spectral information is obtained from a monaural input signal using a spectral peak tracking method. Fundamental frequencies (F0s) for each time frame are estimated from the spectral data using an Expectation Maximization (EM) algorithm with a Gaussian mixture model representing the harmonic series. The method first estimates the most predominant F0, suppresses its series in the input, and then the EM algorithm is run iteratively to estimate each next F0. Collisions between instrument harmonics, which frequently occur, are predicted from the estimated F0s, and the resulting corrupted harmonics are ignored. The amplitudes of these corrupted harmonics are replaced by harmonics taken from a library of spectral envelopes for different instruments, where the spectrum which most closely matches the important characteristics of each extracted spectrum is chosen. Finally, each voice is separately resynthesized by additive synthesis. This algorithm is demonstrated for a trio piece that consists of 3 different instruments.

  18. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    Directory of Open Access Journals (Sweden)

    Nafise Erfanian Saeedi

    2016-04-01

    Full Text Available Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  19. Circulation pump mounting

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  20. The effect of alphacypermethrin-treated mesh protection against African horse sickness virus vectors on jet stall microclimate, clinical variables and faecal glucocorticoid metabolites of horses.

    Science.gov (United States)

    Page, Patrick; Ganswindt, Andre; Schoeman, Johan; Venter, Gert; Guthrie, Alan

    2017-09-09

    African horse sickness (AHS) is of importance to health and international trade in horses worldwide. During export from and transit through AHS endemic countries or zones, physical and chemical measures to protect horses from the vectors of AHS virus (AHSV) are recommended by the World Organization for Animal Health. Protection of containerized air transport systems for horses (jet stalls) with alphacypermethrin insecticide-treated high density polyethylene mesh is effective in reducing the Culicoides midge vector attack rate. In order to determine the effect of this mesh on jet stall ventilation and horse welfare under temperate climatic conditions, jet stall microclimate, clinical variables and faecal glucocorticoid metabolite (FGM) levels of 12 horses were monitored during overnight housing in either a treated or untreated stall in two blocks of a 2 × 3 randomized crossover design. Temperature difference between the treated stall and outside was significantly higher than the difference between the untreated stall and outside at 1/15 time points only (P = 0.045, r = 0.70). Relative humidity (RH) difference between the treated stall and outside did not differ from the untreated stall and outside. Temperature and RH in the treated stall were highly and significantly correlated with outside temperature (r = 0.96, P < 0.001) and RH (r = 0.95, P < 0.001), respectively. No significant differences were detected between rectal temperatures, pulse and respiratory rates of horses in the treated stall compared to the untreated stall. Mean FGM concentrations for horses housed in the treated stall peaked earlier (24 h) and at a higher concentration than horses housed in the untreated stall (48 h), but were not significantly different from baseline. No significant difference was detected in FGM concentrations when the treated and untreated stall groups were compared at individual time points up to 72 h after exiting the jet stall. Alphacypermethrin

  1. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased...... (APs), 18 musicians without AP (non-APs), and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly...

  2. A Computationally Efficient Method for Polyphonic Pitch Estimation

    Directory of Open Access Journals (Sweden)

    Ruohua Zhou

    2009-01-01

    Full Text Available This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.

  3. Investors prefer entrepreneurial ventures pitched by attractive men.

    Science.gov (United States)

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E

    2014-03-25

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur's business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs.

  4. Determination of pitch rotation in a spherical birefringent microparticle

    Science.gov (United States)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  5. Thermal transformations of pitch and its compositions with thermoanthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Ulanovskii, M.L.; Krysin, V.P.

    1983-01-01

    Derivatogrphy is used to investigate the character of thermal transformations of hard coal pitch in compositions with thermoanthracite. It was shown that losses in mass during thermal transformations of hard coal pitch in the temperature interval 200-1000 C occur in two stages, at a varying rate in the 200-600 C range and at a constant rate in the 600-1000 C range. The rate of loss in the 200-600 C range is determined primarily by the rate of diffusion of volatile components and products of pitch conversion and in the 600-1000 C range mainly by the rate of the elemental chemical event. The thermal transformation is essentially unchanged in the presence of thermoanthracite. Silica intensifies the synthesis and increases the solid residue yield. Increasing the rate of heating of the pitch-thermoanthracite brings about incomplete separation of volatile products and a corresponding increase in the solid residue yield. (9 refs.)

  6. Association of the pitch canker pathogen Fusarium circinatum with ...

    African Journals Online (AJOL)

    Association of the pitch canker pathogen Fusarium circinatum with grass hosts in commercial pine production areas of South Africa. Cassandra L Swett, Bernice Porter, Gerda Fourie, Emma T Steenkamp, Thomas R Gordon, Michael J Wingfield ...

  7. Meet you in the elevator! Pitching yourself and your research

    NARCIS (Netherlands)

    Scheffel, Maren; Börner, Dirk

    2013-01-01

    Scheffel, M., & Börner, D. (2013, 31 May). Meet you in the elevator! Pitching yourself and your research. Workshop presentation at the 9th Joint European Summer School on Technology Enhanced Learning, Limassol, Cyprus.

  8. Series pid pitch controller of large wind turbines generator

    Directory of Open Access Journals (Sweden)

    Micić Aleksandar D.

    2015-01-01

    Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016

  9. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  10. A Method for Low-Delay Pitch Tracking and Smoothing

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    . In the second step, a Kalman filter is used to smooth the estimates and separate the pitch into a slowly varying component and a rapidly varying component. The former represents the mean pitch while the latter represents vibrato, slides and other fast changes. The method is intended for use in applica- tions...... that require fast and sample-by-sample estimates, like tuners for musical instruments, transcription tasks requiring details like vi- brato, and real-time tracking of voiced speech....

  11. Pitch perception in musical chords for cochlear implant users

    OpenAIRE

    Griffin, S. K.

    2017-01-01

    Many people with severe or profound hearing loss are able to benefit from electronic hearing provided by a cochlear implant (CI); however, perception of music is often reported to be unsatisfactory. Due to the sound processing restrictions and current spread, CI users do not always perceive accurate pitch information, which adversely affects their ability to perceive and enjoy music. This thesis examines the factors affecting pitch perception in musical contexts for CI recipients. A questionn...

  12. Accent phrase segmentation using transition probabilities between pitch pattern templates.

    OpenAIRE

    Shimodaira, Hiroshi; Nakai, Mitsuru

    1993-01-01

    This paper proposes a novel method for segmenting continuous speech into accent phrases by using a prosodic feature 'pitch pattern'. The pitch pattern extracted from input speech signals is divided into the accent segments automatically by using the One-Stage DP algorithm, in which reference templates representing various types of accent patterns and connectivity between them are used to find out the optimum sequence of accent segments. In case of making the reference templates from a large n...

  13. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  14. Animal hygiene assessment of microclimate in semi open free-stall barns for dairy cows

    Directory of Open Access Journals (Sweden)

    D. Dimov

    2017-03-01

    Full Text Available Abstract. The study was conducted in three semi open free-stall barns (B1, B2, and B3 for dairy cows with capacities for 120, 120 and 500 cows, respectively, from three different dairy farms (F-1, F-2 and F-3, situated in Central Southern Bulgaria. The investigated farms had the same production system – loose housing in semi open free-stall dairy barn. For each of the farms the main microclimatic parameters – air temperature, relative humidity and speed of airflow were recorded twice a month at 10.00 h 12.00 h, 14.00 h, 16.00 h and 18.00 h of the day inside the barns in three main technological zones - above the stalls, above manure and feed alleys and outside the buildings. It was found that: a Microclimatic parameters (air temperature, air relative humidity and speed of airflow in technological zones (above the stalls, the manure and feed alleys of three semi open free-stall dairy barns meet the animal hygienic requirements for all seasons according to Regulation No. 44 (2006. Exceptions are some values of relative humidity in B1 and B2 in the spring, and in B1 in winter and summer, which are lower than the minimum humidity (50% according to the standard. b The investigated barns are characterized with poor insulation and do not provide enough isolation from the external ambient temperatures. With the exception of winter, the temperature of the air inside the buildings was lower than that outside, with minor differences for all seasons. The fans in the barns have no effect on the inside air temperature, especially in summer. There was a risk of higher temperatures mainly during the summer period. c There is no significant difference between the average temperatures, air humidity and speed of airflow in all technological zones of the investigated barns. d The largest and statistically significant is the difference between the relative air humidity outside and inside the building in Farm 3, followed by buildings in Farm 1 and 2, where the

  15. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Science.gov (United States)

    2011-01-01

    Background Initiation and elongation of RNA polymerase II (RNAPII) transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. Results Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS). As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling. Conclusions In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data. PMID:22047616

  16. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2011-11-01

    Full Text Available Abstract Background Initiation and elongation of RNA polymerase II (RNAPII transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. Results Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS. As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling. Conclusions In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data.

  17. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David

    2016-03-16

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  18. Optimal pitching axis location of flapping wings for efficient hovering flight

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; van Keulen, A.

    2017-01-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of

  19. Stall, Spiculate, or Run Away: The Fate of Fibers Growing towards Fluctuating Membranes

    Science.gov (United States)

    Daniels, D. R.; Marenduzzo, D.; Turner, M. S.

    2006-09-01

    We study the dynamics of a growing semiflexible fiber approaching a membrane at an angle. At late times we find three regimes: fiber stalling, when growth stops, runaway, in which the fiber bends away from the membrane, and another regime in which spicules form. We discuss which regions of the resulting “phase diagram” are explored by (i) single and bundled actin fibers in living cells, (ii) sickle hemoglobin fibers, and (iii) microtubules inside vesicles. We complement our analysis with 3D stochastic simulations.

  20. Prediction of H.A.W.T. blade stall and performance

    Energy Technology Data Exchange (ETDEWEB)

    Giannakidis, G.; Graham, J.M.R. [Imperial College, Dept. of Aeronautics, London (United Kingdom)

    1996-09-01

    A model is being developed for the prediction of Horizontal Axis Wind Turbine blade stall and performance coupled with a simple aeroelastic analysis model. For the aerodynamic calculation a two dimensional unsteady Navier-Stokes solver on a sectional basis on the blade is coupled with a three dimensional vortex lattice wake. Pressure coefficient distributions are calculated from the two dimensional viscous flow in each blade section. The aerodynamic computations are coupled with a vibrating beam model in order to incorporate flapwise deformations of the blade. (au) 17 refs.

  1. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    Science.gov (United States)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  2. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  3. Facial expression and vocal pitch height: Evidence of an intermodal association

    DEFF Research Database (Denmark)

    Huron, David; Dahl, Sofia; Johnson, Randolph

    2009-01-01

    region, judges still rated the high-pitch faces friendlier than the low-pitch faces. These results are consistent with prior research showing that vocal pitch height is used to signal aggression (low pitch) or appeasement (high pitch). An analysis of the facial features shows a strong correlation between...... eyebrow position and sung pitch—consistent with the role of eyebrows in signaling aggression and appeasement. Overall, the results are consistent with an inter-modal linkage between vocal and facial expressions....

  4. Influence of Pitch Height on the Perception of Submissiveness and Threat in Musical Passages

    Directory of Open Access Journals (Sweden)

    David Huron

    2006-09-01

    Full Text Available Bolinger, Ohala, Morton and others have established that vocal pitch height is perceived to be associated with social signals of dominance and submissiveness: higher vocal pitch is associated with submissiveness, whereas lower vocal pitch is associated with social dominance. An experiment was carried out to test this relationship in the perception of non-vocal melodies. Results show a parallel situation in music: higher-pitched melodies sound more submissive (less threatening than lower-pitched melodies.

  5. Pre- and Postseason Dynamic Ultrasound Evaluation of the Pitching Elbow.

    Science.gov (United States)

    Keller, Robert A; Marshall, Nathan E; Bey, Michael J; Ahmed, Hafeez; Scher, Courtney E; van Holsbeeck, Marnix; Moutzouros, Vasilios

    2015-09-01

    To use ultrasound imaging to document changes over time (i.e., preseason v postseason) in the pitching elbow of high school baseball pitchers. Twenty-two high school pitchers were prospectively followed. Pitchers were evaluated after a 2-month period of relative arm rest via preseason physical exams, dynamic ultrasound imaging of their throwing elbow, and the Quick Disabilities of the Arm, Shoulder, and Hand (QuickDASH) assessment. Players were reevaluated within 1 week of their last game. Dynamic ultrasound images were then randomized, blinded to testing time point, and evaluated by 2 fellowship-trained musculoskeletal radiologists. Average pitcher age was 16.9 years. Average pitches thrown was 456.5, maximum velocity 77.7 mph, games pitched 7.3, and days off between starts 6.6. From preseason to postseason, there were significant increases in ulnar collateral ligament (UCL) thickness (P = .02), ulnar nerve cross-sectional area (P = .001), UCL substance heterogeneity (P = .001), and QuickDASH scores (P = .03). In addition, there was a nonsignificant increase in loaded ulnohumeral joint space (P = .10). No pitchers had loose bodies on preseason exam, while 3 demonstrated loose bodies postseason. The increase in UCL thickness was significantly associated with the number of bullpen sessions per week (P = .01). The increase in ulnar nerve cross-sectional area was significantly associated with the number of pitches (P = .04), innings pitched (P = .01), and games pitched (P = .04). The stresses placed on the elbow during only one season of pitching create adaptive changes to multiple structures about the elbow including UCL heterogeneity and thickening, increased ulnohumeral joint space laxity, and enlarged ulnar nerve cross-sectional area. Level II prospective observational study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  7. Learning for pitch and melody discrimination in congenital amusia.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2018-03-23

    Congenital amusia is currently thought to be a life-long neurogenetic disorder in music perception, impervious to training in pitch or melody discrimination. This study provides an explicit test of whether amusic deficits can be reduced with training. Twenty amusics and 20 matched controls participated in four sessions of psychophysical training involving either pure-tone (500 Hz) pitch discrimination or a control task of lateralization (interaural level differences for bandpass white noise). Pure-tone pitch discrimination at low, medium, and high frequencies (500, 2000, and 8000 Hz) was measured before and after training (pretest and posttest) to determine the specificity of learning. Melody discrimination was also assessed before and after training using the full Montreal Battery of Evaluation of Amusia, the most widely used standardized test to diagnose amusia. Amusics performed more poorly than controls in pitch but not localization discrimination, but both groups improved with practice on the trained stimuli. Learning was broad, occurring across all three frequencies and melody discrimination for all groups, including those who trained on the non-pitch control task. Following training, 11 of 20 amusics no longer met the global diagnostic criteria for amusia. A separate group of untrained controls (n = 20), who also completed melody discrimination and pretest, improved by an equal amount as trained controls on all measures, suggesting that the bulk of learning for the control group occurred very rapidly from the pretest. Thirty-one trained participants (13 amusics) returned one year later to assess long-term maintenance of pitch and melody discrimination. On average, there was no change in performance between posttest and one-year follow-up, demonstrating that improvements on pitch- and melody-related tasks in amusics and controls can be maintained. The findings indicate that amusia is not always a life-long deficit when using the current standard

  8. Faster decline of pitch memory over time in congenital amusia.

    Science.gov (United States)

    Williamson, Victoria J; McDonald, Claire; Deutsch, Diana; Griffiths, Timothy D; Stewart, Lauren

    2010-04-26

    Congenital amusia (amusia, hereafter) is a developmental disorder that impacts negatively on the perception of music. Psychophysical testing suggests that individuals with amusia have above average thresholds for detection of pitch change and pitch direction discrimination; however, a low-level auditory perceptual problem cannot completely explain the disorder, since discrimination of melodies is also impaired when the constituent intervals are suprathreshold for perception. The aim of the present study was to test pitch memory as a function of (a) time and (b) tonal interference, in order to determine whether pitch traces are inherently weaker in amusic individuals. Memory for the pitch of single tones was compared using two versions of a paradigm developed by Deutsch (1970a). In both tasks, participants compared the pitch of a standard (S) versus a comparison (C) tone. In the time task, the S and C tones were presented, separated in time by 0, 1, 5, 10, and 15 s (blocked presentation). In the interference task, the S and C tones were presented with a fixed time interval (5 s) but with a variable number of irrelevant tones in between 0, 2, 4, 6, and 8 tones (blocked presentation). In the time task, control performance remained high for all time intervals, but amusics showed a performance decrement over time. In the interference task, controls and amusics showed a similar performance decrement with increasing number of irrelevant tones. Overall, the results suggest that the pitch representations of amusic individuals are less stable and more prone to decay than those of matched non-amusic individuals.

  9. The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities

    OpenAIRE

    Schaal, Nora K.; Kretschmer, Marina; Keitel, Ariane; Krause, Vanessa; Pfeifer, Jasmin; Pollok, Bettina

    2017-01-01

    Pitch memory is a resource which is shared by music and language. Neuroimaging studies have shown that the right dorsolateral prefrontal cortex (DLPFC) is activated during pitch memory processes. The present study investigated the causal significance of this brain area for pitch memory in non-musicians by applying cathodal and sham transcranial direct current stimulation (tDCS) over the right DLPFC and examining the impact on offline pitch and visual memory span performances. On the overall s...

  10. Pitch contour identification with combined place and temporal cues using cochlear implants

    Science.gov (United States)

    Luo, Xin; Padilla, Monica; Landsberger, David M.

    2012-01-01

    This study investigated the integration of place- and temporal-pitch cues in pitch contour identification (PCI), in which cochlear implant (CI) users were asked to judge the overall pitch-change direction of stimuli. Falling and rising pitch contours were created either by continuously steering current between adjacent electrodes (place pitch), by continuously changing amplitude modulation (AM) frequency (temporal pitch), or both. The percentage of rising responses was recorded as a function of current steering or AM frequency change, with single or combined pitch cues. A significant correlation was found between subjects’ sensitivity to current steering and AM frequency change. The integration of place- and temporal-pitch cues was most effective when the two cues were similarly discriminable in isolation. Adding the other (place or temporal) pitch cues shifted the temporal- or place-pitch psychometric functions horizontally without changing the slopes. PCI was significantly better with consistent place- and temporal-pitch cues than with inconsistent cues. PCI with single cues and integration of pitch cues were similar on different electrodes. The results suggest that CI users effectively integrate place- and temporal-pitch cues in relative pitch perception tasks. Current steering and AM frequency change should be coordinated to better transmit dynamic pitch information to CI users. PMID:22352506

  11. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  12. DAILY TIME BUDGET OF DAIRY COWS HOUSED IN TIE STALL BARNS, DURING TOTAL CONFINEMENT

    Directory of Open Access Journals (Sweden)

    D. GAVOJDIAN

    2009-10-01

    Full Text Available Although individual and social behavior of cattle has been studied extensively under pasture and loose housing conditions, similar behavioral data for partial or total confinement housing are limited. Essentially, the 24- h time budget represents the net response of a cow to her environment (Grant, 2003. Daily time budget was first introduced by Grant and Albright (in 2000 for cows housed in free-stall environment. Choices in stabling and management affect the behavior, health, longevity and performance of cows. Behavior while resting, eating, ruminating, urinating or defecating provides additional information about comfort. In the current study were used ten Romanian Black and White multiparous cows, housed in a tie stall barn 24 hours per day. Experiments were carried out during the cold season, in February 2008. Cows monitored were in their first hundred days of lactation. In our study cows spent resting on average 379.9 minutes (6.33 hours, value that represents 26.38 % from the days interval. Time devoted to feeding was on average 341.9 minutes (5.69 hours, in 17.5 periods. Rumination had place on average in 17.3 periods and a total time of 517.5 minutes (8.62 hours. Cows adopted lying position on average 581.2 minutes (40.36% from 24-h and standing position on average in 858.7 minutes (59.63% from 24-h.

  13. 14-3-3 Proteins regulate exonuclease 1-dependent processing of stalled replication forks.

    Directory of Open Access Journals (Sweden)

    Kim Engels

    2011-04-01

    Full Text Available Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1 processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3-deficient cells fail to induce Mec1-dependent Exo1 hyperphosphorylation and accumulate Exo1-dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress.

  14. Numerical study on a single bladed vertical axis wind turbine under dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)

    2017-01-15

    The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.

  15. Wind-up of a spanwise vortex in deepening transition and stall

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.T.; Bowles, R.I. [University Coll., London (United Kingdom). Dept. of Mathematics; Walker, J.D.A. [Mechanical Engineering Department, Packard Laboratory No. 19, Lehigh University, Bethlehem, PA 18015 (United States)

    2000-09-01

    A fundamental flow problem of unsteady wind-up of a spanwise vortex is studied in this theoretical work on deepening dynamic stall and transition in a boundary layer, internal layer or related unsteady motion. It examines the nonlinear evolution of the spanwise vortex produced when the local wall pressure develops a maximum or minimum, subsequent to the finite-time break-up of an interacting layer and the impact of normal pressure gradients. The evolution is controlled by an inner-outer interaction between the effects of the normal pressure gradient and the momentum jumps across and outside the vortex, which is situated near the strong inflexion point induced in the mean flow. Although the work concentrates on a particular internal-flow context, many of the flow properties found are generic and in particular apply for a more general case including external flows. Analysis and associated computations point to two main distinct trends in the vortex response, depending to a large extent on a parameter gauging the relative strengths of the above effects. The response is either an explosive one, provoking enhanced wind-up, growth and pressure in the vortex, or it is implosive, causing the vortex to shrink and virtually empty itself through unwinding, leaving little local pressure variation. A further discussion includes the after-effects of this vortex response and some of the connections with experiments and direct computations on deepening stall and transition. (orig.)

  16. Experimental Methods Applied in a Study of Stall Flutter in an Axial Flow Fan

    Directory of Open Access Journals (Sweden)

    John D. Gill

    2004-01-01

    Full Text Available Flutter testing is an integral part of aircraft gas turbine engine development. In typical flutter testing blade mounted sensors in the form of strain gages and casing mounted sensors in the form of light probes (NSMS are used. Casing mounted sensors have the advantage of being non-intrusive and can detect the vibratory response of each rotating blade. Other types of casing mounted sensors can also be used to detect flutter of rotating blades. In this investigation casing mounted high frequency response pressure transducers are used to characterize the part-speed stall flutter response of a single stage unshrouded axial-flow fan. These dynamic pressure transducers are evenly spaced around the circumference at a constant axial location upstream of the fan blade leading edge plane. The pre-recorded experimental data at 70% corrected speed is analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using two probe and multi-probe techniques. The analysis techniques for each method are presented. Results from these two analysis methods indicate that flutter occurred at a frequency of 411 Hz with a dominant nodal diameter of 2. The multi-probe analysis technique is a valuable method that can be used to investigate the initiation of flutter in turbomachines.

  17. Active flow control of the laminar separation bubble on a plunging airfoil near stall

    Science.gov (United States)

    Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann

    2017-11-01

    The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.

  18. Compliance with NAGCAT work practices recommendations for youth cleaning service alleys in stall barns.

    Science.gov (United States)

    Canan, B D; Asti, L; Heaney, C; Ashida, S; Renick, K; Xiang, H; Stallones, L; Jepsen, S D; Crawford, J M; Wilkins, J R

    2011-04-01

    Unintentional injury is the leading cause of death in the U.S. among persons 1 to 44 years of age. Over one million children and adolescents in the U.S. live, work, and/or play on farms, where injury risk is relatively high compared to other settings. In an attempt to reduce the number of childhood agricultural injuries occurring on farms, the North American Guidelines for Children's Agricultural Tasks (NAGCAT) was developed to assist parents or other caregivers in assigning developmentally appropriate chores to youth exposed to agricultural hazards. The results presented here are from a longitudinal study in which we obtained (self-reported) daily chore, injury, and safety behavior data from children and adolescents. We focused on one NAGCAT chore, cleaning a service alley in a stall barn, in order to estimate the extent of compliance with specific work practice recommendations contained in the NAGCAT. Our results indicated that among the four NAGCAT-recommended safety practices for cleaning service alleys in stall barns (wearing nonskid shoes, leather gloves, a respirator, and eye protection), wearing non-skid shoes was the only safety practice reported with any degree of regularity. Overall, boys were more likely to wear non-skid shoes compared to girls. In addition, older youth were generally more likely to report higher work practice compliance compared to younger youth.

  19. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  20. Modeling unsteady forces and pressures on a rapidly pitching airfoil

    Science.gov (United States)

    Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.

    2014-11-01

    This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.

  1. Ethnic Dimensions of Guatemala's Stalled Transition: A Parity-Specific Analysis of Ladino and Indigenous Fertility Regimes.

    Science.gov (United States)

    Grace, Kathryn; Sweeney, Stuart

    2016-02-01

    In some contemporary populations, fertility levels appear to plateau, with women maintaining a consistently high level of fertility for a relatively extended period. Because this plateau does not reflect the historical patterns observed in Europe, the focus of most studies on fertility patterns, mechanisms underlying the plateau and the reinstatement of a decline have not been fully explored and are not fully understood. Through the construction of fertility histories of 25,000 women using multiple years of health survey data, we analyze some of the components of stalled fertility as they pertain to Guatemala, the only Central American country to have experienced a stalled fertility decline.

  2. Ocean circulation using altimetry

    Science.gov (United States)

    Minster, Jean-Francois; Brossier, C.; Gennero, M. C.; Mazzega, P.; Remy, F.; Letraon, P. Y.; Blanc, F.

    1991-01-01

    Our group has been very actively involved in promoting satellite altimetry as a unique tool for observing ocean circulation and its variability. TOPEX/POSEIDON is particularly interesting as it is optimized for this purpose. It will probably be the first instrument really capable of observing the seasonal and interannual variability of subtropical and polar gyres and the first to eventually document the corresponding variability of their heat flux transport. The studies of these phenomena require data of the best quality, unbiased extraction of the signal, mixing of these satellite data with in situ measurements, and assimilation of the whole set into a dynamic description of ocean circulation. Our group intends to develop responses to all these requirements. We will concentrate mostly on the circulation of the South Atlantic and Indian Oceans: This will be done in close connection with other groups involved in the study of circulation of the tropical Atlantic Ocean, in the altimetry measurements (in particular, those of the tidal issue), and in the techniques of data assimilation in ocean circulation models.

  3. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Middha, Manju; Kumar, Rishi; Raina, K. K.

    2014-01-01

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence

  4. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels

    This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...... pitch concept and detailed load analyses were performed. Also the comparison studies between numerical results and experimental results were performed. Moreover stability analyses for the PP- 2B turbine have been performed with HAWC2 and modal analysis using Hill’s method was performed to calculate...

  5. Pitching stability analysis of half-rotating wing air vehicle

    Science.gov (United States)

    Wang, Xiaoyi; Wu, Yang; Li, Qian; Li, Congmin; Qiu, Zhizhen

    2017-06-01

    Half-Rotating Wing (HRW) is a new power wing which had been developed by our work team using rotating-type flapping instead of oscillating-type flapping. Half-Rotating Wing Air Vehicle (HRWAV) is similar as Bionic Flapping Wing Air Vehicle (BFWAV). It is necessary to guarantee pitching stability of HRWAV to maintain flight stability. The working principle of HRW was firstly introduced in this paper. The rule of motion indicated that the fuselage of HRWAV without empennage would overturn forward as it generated increased pitching movement. Therefore, the empennage was added on the tail of HRWAV to balance the additional moment generated by aerodynamic force during flight. The stability analysis further shows that empennage could weaken rapidly the pitching disturbance on HRWAV and a new balance of fuselage could be achieved in a short time. Case study using numerical analysis verified correctness and validity of research results mentioned above, which could provide theoretical guidance to design and control HRWAV.

  6. Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller

    Directory of Open Access Journals (Sweden)

    Saman Tarbiat

    2014-01-01

    Full Text Available The research described in this paper was carried out to predict hydrodynamic and frictional forces of controllable pitch propeller (CPP that bring about fretting problems in a blade bearing. The governing equations are Reynolds-averaged Navier-Stokes (RANS and are solved by OpenFOAM solver for hydrodynamic forces behind the ship’s wake. Frictional forces are calculated by practical mechanical formulae. Different advance velocities with constant rotational speed for blades are used to achieve hydrodynamic coefficients in open water and the wake behind the propeller. Results are compared at four different pitches. Detailed numerical results of 3D modelling of the propeller, hydrodynamic characteristics, and probability of the fretting motion in the propeller are presented. Results show that the probability of the fretting movement is related to the pitch.

  7. Interaural bimodal pitch matching with two-formant vowels

    DEFF Research Database (Denmark)

    Guerit, Francois Marie Louis Paul; Chalupper, Josef; Santurette, Sébastien

    practice. Behavioral pitch matching between the two ears has also been suggested, but has been shown to be tedious and unreliable. Here, an alternative method using two-formant vowels was developed and tested with a vocoder system simulating different CI insertion depths. The hypothesis was that patients...... may more easily identify vowels than perform a classical pitch-matching task. A spectral shift is inferred by comparing vowel spaces, measured by presenting the first formant in the HA and the second either in the HA or the CI. Preliminary results suggest that pitch mismatches can be derived from...... such vowel spaces. In order to take auditory adaptation in individual patients into account, the method will be tested with CI patients with contralateral residual hearing....

  8. Boosting pitch encoding with audiovisual interactions in congenital amusia.

    Science.gov (United States)

    Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate

  9. Automatic pitch detection for a computer game interface

    International Nuclear Information System (INIS)

    Fonseca Solis, Juan M.

    2015-01-01

    A software able to recognize notes played by musical instruments is created through automatic pitch recognition. A pitch recognition algorithm is embedded into a software project, using the C implementation of SWIPEP. A memory game is chosen for project. A sequence of notes is listened and played by user to the computer, using a soprano recorder flute. The basic concepts to understand the acoustic phenomena involved are explained. The paper is aimed for all students with basic programming knowledge and want to incorporate sound processing to their projects. (author) [es

  10. Pitch and roll hydrodynamics of a pericell hovercraft

    Science.gov (United States)

    Moran, David D.

    1986-12-01

    Pitch and roll responses of hovercraft have been extremely difficult to predict due to the complexity of hydrodynamic analyses on one hand and the difficulties of appropriate cushion scale modeling on the other. The paper presents comparisons of pitch and roll stiffness coefficients for overwater and overland operations. Data are presented from model-scale and full-scale trials and analytic-numerical modeling. The effects of model-scale on the cushion dynamics relative to rotational responses are presented and the important characteristics of overwater and overland responses are discussed.

  11. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Optimization of Nano-Grating Pitch Evaluation Method Based on Line Edge Roughness Analysis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2017-12-01

    Full Text Available Pitch uncertainty and line edge roughness are among the critical quality attributes of a pitch standard and normally the analyses of these two parameters are separate. The analysis of self-traceable Cr atom lithography nano-gratings shows a positive relevance and sensitivity between LER and evaluated standard deviation of pitch. Therefore, LER can be used as an aided pre-evaluation parameter for the pitch calculation method, such as the gravity center method or the zero-crossing points method. The optimization of the nano-grating evaluation method helps to obtain the accurate pitch value with fewer measurements and provide a comprehensive characterization of pitch standards.

  13. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T

    2017-03-27

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Changes in pitch height elicit both language universal and language dependent changes in neural representation of pitch in the brainstem and auditory cortex

    Science.gov (United States)

    Krishnan, Ananthanarayan; Suresh, Chandan H.; Gandour, Jackson T.

    2017-01-01

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on i) neural responses to variations in pitch height, ii) presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na–Pb and Pb–Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na–Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. PMID:28108254

  15. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  16. Unmasking circulating tumor cells

    NARCIS (Netherlands)

    Swennenhuis, Joost Franciscus

    2017-01-01

    The number of Circulating Tumor Cells (CTCs) that can be isolated from blood of cancer patients is prognostic for the course of the disease. A higher number of CTCs correlates with a worse prognosis. A change from a higher number to a lower number of CTCs indicates a benefit of the current treatment

  17. Spins, Stalls, and Shutdowns: Pitfalls of Qualitative Policing and Security Research

    Directory of Open Access Journals (Sweden)

    Randy K. Lippert

    2015-11-01

    Full Text Available This article explores key elements of qualitative research on policing and security agencies, including barriers encountered and strategies to prevent them. While it is oft-assumed that policing/security agencies are difficult to access due to their clandestine or bureaucratic nature, this article demonstrates this is not necessarily the case, as access was gained for three distinct qualitative research projects. Yet, access and subsequent research were not without pitfalls, which we term security spins, security stalls, and security shutdowns. We illustrate how each was encountered and argue these pitfalls are akin to researchers falling into risk categories, not unlike those used by policing/security agents in their work. Before concluding we discuss methodological strategies for scholars to avoid these pitfalls and to advance research that critically interrogates the immense policing/security realm. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1601108

  18. URANS simulations of separated flow with stall cells over an NREL S826 airfoil

    Science.gov (United States)

    Sarlak, H.; Nishino, T.; Sørensen, J. N.

    2016-06-01

    A series of wind tunnel measurements and oil flow visualization was recently carried out at the Technical University of Denmark in order to investigate flow characteristics over a 14% thick NREL S826 airfoil at low Reynolds numbers. This paper aims at presenting numerical simulations of the same airfoil using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. Results of the simulations are demonstrated in terms of mean flow velocity, lift and drag, as well as pressure distribution, and validated against available experimental data. The simulations are carried out with a wide computational domain (with a span-to-chord ratio of 5) and it is illustrated that the URANS approach is capable of predicting 3D spanwise structures, known as stall cells.

  19. Fixed-speed active-stall wind turbines in offshore applications

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Nielsen, Arne Hejde

    2005-01-01

    A large offshore wind farm in the East Danish power system was commissioned in 2003 at Rodsand. The power capacity of the wind farm is 165 MW divided between 72 wind turbines. For this large offshore application, robust and well-known wind technology has been chosen in the form of fixed-speed, ac......, active-stall wind turbines equipped with induction generators. In this paper, maintaining and improving the short-term voltage stability is discussed and systematized in terms of this wind technology. Copyright (C) 2004 John Wiley Sons, Ltd.......A large offshore wind farm in the East Danish power system was commissioned in 2003 at Rodsand. The power capacity of the wind farm is 165 MW divided between 72 wind turbines. For this large offshore application, robust and well-known wind technology has been chosen in the form of fixed-speed...

  20. Performance augmentation with vortex generators: Design and testing for stall-regulated AWT-26 turbine

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)

    1996-12-31

    A study investigated the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. Based on wind-tunnel results and analysis, a VG array was designed for and tested on the AWT-26 prototype, designated Pt. Performance and loads data were measured for P1, both with and without VGs installed. The turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a minimal effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for wind speed sites up to 8.5 m/s. 8 refs., 8 figs., 3 tabs.

  1. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures

    Science.gov (United States)

    Tattoli, Ivan; Sorbara, Matthew T; Yang, Chloe; Tooze, Sharon A; Philpott, Dana J; Girardin, Stephen E

    2013-01-01

    Listeria can escape host autophagy defense pathways through mechanisms that remain poorly understood. We show here that in epithelial cells, Listeriolysin (LLO)-dependent cytosolic escape of Listeria triggered a transient amino-acid starvation host response characterized by GCN2 phosphorylation, ATF3 induction and mTOR inhibition, the latter favouring a pro-autophagic cellular environment. Surprisingly, rapid recovery of mTOR signalling was neither sufficient nor necessary for Listeria avoidance of autophagic targeting. Instead, we observed that Listeria phospholipases PlcA and PlcB reduced autophagic flux and phosphatidylinositol 3-phosphate (PI3P) levels, causing pre-autophagosomal structure stalling and preventing efficient targeting of cytosolic bacteria. In co-infection experiments, wild-type Listeria protected PlcA/B-deficient bacteria from autophagy-mediated clearance. Thus, our results uncover a critical role for Listeria phospholipases C in the inhibition of autophagic flux, favouring bacterial escape from host autophagic defense. PMID:24162724

  2. The Circulation Distribution on the Lifting Line for a Given Extracted Power

    Directory of Open Access Journals (Sweden)

    Ali Helali

    2012-01-01

    Full Text Available Presently, there exist few numerical methods which treat the inverse problem for the determination of the geometry of wind turbine blades. In this work, authors intend to solve the inverse optimum project for horizontal axis wind turbine in which the selection of the circulation distribution is obtained by resolving two variational problems: the first consists in sorting the circulation distribution on the lifting line, which, for a given power extracted by the wind turbine, minimizes the loses due to the induced velocity. In the second, the optimal circulation distribution is selected such that the kinetic energy of the wind downstream of the rotor disc is minimum, when the energy extracted by the wind turbine for one rotating period is imposed. A code has been developed which incorporates the real pitch of the helicoidal vortex wake. Very promising results have been obtained: the circulation distribution for a given extracted power and the chord lengths distribution law along the blade span.

  3. Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep

    Science.gov (United States)

    Hah, Chunill; Shin, Hyoun-Woo

    2011-01-01

    Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.

  4. Benchmarking welfare indicators in 73 free-stall dairy farms in north-western Spain

    Science.gov (United States)

    Trillo, Yolanda; Quintela, Luis Angel; Barrio, Mónica; Becerra, Juan José; Peña, Ana Isabel; Vigo, Marcos; Garcia Herradon, Pedro

    2017-01-01

    The aim of this study was to describe the status of body condition score (BCS), hock injuries prevalence, locomotion and body hygiene score as animal welfare measures in 73 free-stall dairy cattle farms in Lugo (Spain). A benchmarking process was established across farms: (1) the animal-based indicators were ordered from low to high values; (2) The farms were classified into three categories based on the number of indicators within less than the 25th percentile, 25th to 75th percentile and above the 75th percentile. The median prevalence of unsuitable BCS, hock injuries and clinical lameness was (median (range)) 51.7 per cent (13.3 to 89.5 per cent), 40.0 per cent (7.0per cent to 100 per cent) and 9.0 per cent (0per cent to 60.0 per cent) respectively. The dirtiness of the cow’s coat had a high prevalence (73.0 per cent (37.5per cent to 100 per cent)). Most farms did not display consistently good or poor animal-based indicators and each farm had its own set of strong and weak points. Moreover, facilities design and management practices were described to understand source of the observations made of the cows. The incidence of overstocking was 31.5 per cent for stalls and 26.0 per cent for headlocks. The front lunge space was reduced (farms and they could benefit from others by changing management practices related to facilities and herds. PMID:29018530

  5. Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials

    Directory of Open Access Journals (Sweden)

    Markku Saastamoinen

    2015-10-01

    Full Text Available Stable air quality and the choice of bedding material are an important health issue both in horses and people working or visiting horse stables. Risks of impaired respiratory health are those that can especially be avoided by improving air quality in the stable. The choice of bedding material is particularly important in cold climate conditions; where horses are kept most of the day and year indoors throughout their life. This study examined the effect of two bedding materials; wood shavings and peat; on stable air quality and health of horses. Ammonia and dust levels were also measured to assess conditions in the stable. Ammonia was not detected or was at very low levels (<0.25 ppm in the boxes in which peat was used as bedding; but its concentration was clearly higher (1.5–7.0 ppm in stalls with wood shavings as bedding. Personal measurements of workers revealed quite high ammonia exposure (5.9 ppm8h in the boxes in which wood shavings were used; but no exposure was Animals 2015, 5 966 observed in stalls bedded with peat. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses in the peat bedding group returned to the initial level in the end of the trial but horses bedded with wood shavings continued to be symptomatic. The hooves of the horses with peat bedding had a better moisture content than those of the horses bedded with wood shavings. The results suggest that peat is a better bedding material for horses than wood shavings regarding the health of both horses and stable workers.

  6. Climate trends account for stalled wheat yields in Australia since 1990.

    Science.gov (United States)

    Hochman, Zvi; Gobbett, David L; Horan, Heidi

    2017-05-01

    Global food security requires that grain yields continue to increase to 2050, yet yields have stalled in many developed countries. This disturbing trend has so far been only partially explained. Here, we show that wheat yields in Australia have stalled since 1990 and investigate the extent to which climate trends account for this observation. Based on simulation of 50 sites with quality weather data, that are representative of the agro-ecological zones and of soil types in the grain zone, we show that water-limited yield potential declined by 27% over a 26 year period from 1990 to 2015. We attribute this decline to reduced rainfall and to rising temperatures while the positive effect of elevated atmospheric CO 2 concentrations prevented a further 4% loss relative to 1990 yields. Closer investigation of three sites revealed the nature of the simulated response of water-limited yield to water availability, water stress and maximum temperatures. At all three sites, maximum temperature hastened time from sowing to flowering and to maturity and reduced grain number per m 2 and average weight per grain. This 27% climate-driven decline in water-limited yield is not fully expressed in actual national yields. This is due to an unprecedented rate of technology-driven gains closing the gap between actual and water-limited potential yields by 25 kg ha -1  yr -1 enabling relative yields to increase from 39% in 1990 to 55% in 2015. It remains to be seen whether technology can continue to maintain current yields, let alone increase them to those required by 2050. © 2017 John Wiley & Sons Ltd.

  7. The Effects of Lexical Pitch Accent on Infant Word Recognition in Japanese

    Directory of Open Access Journals (Sweden)

    Mitsuhiko Ota

    2018-01-01

    Full Text Available Learners of lexical tone languages (e.g., Mandarin develop sensitivity to tonal contrasts and recognize pitch-matched, but not pitch-mismatched, familiar words by 11 months. Learners of non-tone languages (e.g., English also show a tendency to treat pitch patterns as lexically contrastive up to about 18 months. In this study, we examined if this early-developing capacity to lexically encode pitch variations enables infants to acquire a pitch accent system, in which pitch-based lexical contrasts are obscured by the interaction of lexical and non-lexical (i.e., intonational features. Eighteen 17-month-olds learning Tokyo Japanese were tested on their recognition of familiar words with the expected pitch or the lexically opposite pitch pattern. In early trials, infants were faster in shifting their eyegaze from the distractor object to the target object than in shifting from the target to distractor in the pitch-matched condition. In later trials, however, infants showed faster distractor-to-target than target-to-distractor shifts in both the pitch-matched and pitch-mismatched conditions. We interpret these results to mean that, in a pitch-accent system, the ability to use pitch variations to recognize words is still in a nascent state at 17 months.

  8. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  9. Interaural bimodal pitch matching with two-formant vowels

    DEFF Research Database (Denmark)

    Guérit, François; Chalupper, Josef; Santurette, Sébastien

    2013-01-01

    For bimodal patients, with a hearing aid (HA) in one ear and a cochlear implant (CI) in the opposite ear, usually a default frequency-to-electrode map is used in the CI. This assumes that the human brain can adapt to interaural place-pitch mismatches. This “one-size-fits-all” method might be part...

  10. Children's Identification of Questions from Rising Terminal Pitch

    Science.gov (United States)

    Saindon, Mathieu R.; Trehub, Sandra E.; Schellenberg, E. Glenn; van Lieshout, Pascal

    2016-01-01

    Young children are slow to master conventional intonation patterns in their "yes/no" questions, which may stem from imperfect understanding of the links between terminal pitch contours and pragmatic intentions. In Experiment 1, five to ten-year-old children and adults were required to judge utterances as questions or statements on the…

  11. Distraction by novel and pitch-deviant sounds in children

    Directory of Open Access Journals (Sweden)

    Nicole Wetzel

    2016-12-01

    Full Text Available The control of attention is an important part of our executive functions and enables us to focus on relevant information and to ignore irrelevant information. The ability to shield against distraction by task-irrelevant sounds is suggested to mature during school age. The present study investigated the developmental time course of distraction in three groups of children aged 7 – 10 years. Two different types of distractor sounds that have been frequently used in auditory attention research – novel environmental and pitch-deviant sounds – were presented within an oddball paradigm while children performed a visual categorization task. Reaction time measurements revealed decreasing distractor-related impairment with age. Novel environmental sounds impaired performance in the categorization task more than pitch-deviant sounds. The youngest children showed a pronounced decline of novel-related distraction effects throughout the experimental session. Such a significant decline as a result of practice was not observed in the pitch-deviant condition and not in older children. We observed no correlation between cross-modal distraction effects and performance in standardized tests of concentration and visual distraction. Results of the cross-modal distraction paradigm indicate that separate mechanisms underlying the processing of novel environmental and pitch-deviant sounds develop with different time courses and that these mechanisms develop considerably within a few years in middle childhood.

  12. Periodic Burning In Table Mountain-Pitch Pine Stands

    Science.gov (United States)

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  13. Wear and Friction in a Controllable Pitch Propeller

    NARCIS (Netherlands)

    Godjevac, M.

    2010-01-01

    The author is a naval architect and this book is his PhD thesis. In this research the author focuses on friction in a controllable pitch propeller (CPP), formation of wear in a CPP system, and their mutual dependence. Instead of going deeply only in tribology aspects, the author tries to get an

  14. Pitch organisation in Hendrik Hofmeyr's Alleenstryd | May | South ...

    African Journals Online (AJOL)

    Hendrik Hofmeyr's Alleenstryd is of seminal importance in the evolution of the composer's musical language. Emerging ideas of types of pitch organisation in earlier works are here for the first time organised into a fully integrated system and the principles applied here later became some of the most important hallmarks of ...

  15. Shoulder muscle firing patterns during the windmill softball pitch.

    Science.gov (United States)

    Maffet, M W; Jobe, F W; Pink, M M; Brault, J; Mathiyakom, W

    1997-01-01

    The purpose of this study was to describe the activity of eight shoulder muscles during the windmill fast-pitch softball throw. Ten collegiate female pitchers were analyzed with intramuscular electromyography, high-speed cinematography, and motion analysis. The supraspinatus muscle fired maximally during arm elevation from the 6 to 3 o'clock position phase, centralizing the humeral head within the glenoid. The posterior deltoid and teres minor muscles acted maximally from the 3 to 12 o'clock position phase to continue arm elevation and externally rotate the humerus. The pectoralis major muscle accelerated the arm from the 12 o'clock position to ball release phase. The serratus anterior muscle characteristically acted to position the scapula for optimal glenohumeral congruency, and the subscapularis muscle functioned as an internal rotator and to protect the anterior capsule. Although the windmill softball pitch is overtly different from the baseball pitch, several surprising similarities were revealed. The serratus anterior and pectoralis major muscles work in synchrony and seem to have similar functions in both pitches. Although the infraspinatus and teres minor muscles are both posterior cuff muscles, they are characteristically uncoupled during the 6 to 3 o'clock position phase, with the infraspinatus muscle acting more independently below 90 degrees. Subscapularis muscle activity seems important in dynamic anterior glenohumeral stabilization and as an internal rotator in both the baseball and softball throws.

  16. Pitch perception in children with autistic spectrum disorders

    NARCIS (Netherlands)

    Altgassen, A.M.; Kliegel, M.; Williams, T.I.

    2005-01-01

    This study investigated the accuracy of musical pitch detection in children with autistic spectrum disorders as compared with typically developing children. Seventeen children on the autistic spectrum (Mage=9.34, SDage=1.12) and 13 typically developing, chronological age-matched children (Mage=9.13,

  17. Singing Video Games May Help Improve Pitch-Matching Accuracy

    Science.gov (United States)

    Paney, Andrew S.

    2015-01-01

    The purpose of this study was to investigate the effect of singing video games on the pitch-matching skills of undergraduate students. Popular games like "Rock Band" and "Karaoke Revolutions" rate players' singing based on the correctness of the frequency of their sung response. Players are motivated to improve their…

  18. Joint Pitch and DOA Estimation Using the ESPRIT method

    DEFF Research Database (Denmark)

    Wu, Yuntao; Amir, Leshem; Jensen, Jesper Rindom

    2015-01-01

    In this paper, the problem of joint multi-pitch and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signals is considered. A spatio-temporal matrix signal model for a uniform linear array is defined, and then the ESPRIT method based on subspace techniques that exploits...

  19. Process for tertiary oil recovery using tall oil pitch

    Science.gov (United States)

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  20. Multilingual evaluation of voice disability index using pitch rate

    Directory of Open Access Journals (Sweden)

    Shuji Shinohara

    2017-06-01

    Full Text Available We propose the use of the pitch rate of free-form speech recorded by smartphones as an index of voice disability. This research compares the effectiveness of pitch rate, jitter, shimmer, and harmonic-to-noise ratio (HNR as indices of voice disability in English, German, and Japanese. Normally, the evaluation of these indices is performed using long-vowel sounds; however, this study included the recitation of a set passage, which is more similar to free-form speech. The results showed that for English, the jitter, shimmer, and HNR were very effective indices for long-vowel sounds, but the shimmer and HNR for read speech were considerably worse. Although the effectiveness of jitter as an index was maintained for read speech, the pitch rate was better in distinguishing between healthy individuals and patients with illnesses affecting their voice. The read speech results in German, Japanese, and English were similar, and the pitch rate showed the greatest efficiency for identification. Nevertheless, compared to English, the identification efficiency for the other two languages was lower.

  1. The thermal transformations of pitch and its compositions with thermoanthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Krysin, V.P.; Ulanovskii, M.L.

    1983-01-01

    The loss of mass in the thermal transformations of a hard-coal pitch and its compositions with thermoanthracite in the temperature interval of 200-1000/sup 0/C takes place in two main stages: with a variable rate in the 200-600/sup 0/C interval and at a constant rate in the 600-1000/sup 0/C interval. The rate of the mass loss process in the 200-600/sup 0/C interval is determined mainly by the rate of diffusion of the volatile components and also of the light products of the thermal transformations of the pitch from the bulk to the phase separation boundary, and in the 600-1000/sup 0/C interval predominantly by the rate of the actual elementary chemical reaction. In the presence of thermoanthracite, the nature of the thermal transformations of the pitch does not change appreciably, while in the presence of silica synthetic reactions are intensified, which leads to an increase in the yield of solid residue by approximately 4 mass %. (A rise in the rate of heating of pitch-thermoanthracite compositions leads to the incomplete elimination of volatile products in the first stage, which has a favorable action on the increase in the yield of solid residue.)

  2. Diseases of pines caused by the pitch canker fungus

    Science.gov (United States)

    L. David Dwinell; Stephen W. Fraedrich; D. Adams

    2001-01-01

    Fusarium subglutinans f. sp. pini, the pitch canker fungus, causes a number of serious diseases of Pinus species. The pathogen infects a variety of vegetative and reproductive pine structures at different stages of maturity and produces a diversity of symptoms. When the pathogen infects the woody vegetative...

  3. Pitch, Tempo, and Timbral Preferences in Recorded Piano Music.

    Science.gov (United States)

    Wapnick, Joel

    1980-01-01

    Subjects (96 undergraduate music students) were given freedom to alter pitch levels, tempos, and timbral qualities of tape recordings of 12 familiar and unfamiliar piano solos. Subject responses were analyzed for accuracy, as well as for preference directions. (Author/SJL)

  4. Pitch and Loudness Tinnitus in Individuals with Presbycusis.

    Science.gov (United States)

    Seimetz, Bruna Macangnin; Teixeira, Adriane Ribeiro; Rosito, Leticia Petersen Schmidt; Flores, Leticia Sousa; Pappen, Carlos Henrique; Dall'igna, Celso

    2016-10-01

    Introduction  Tinnitus is a symptom that is often associated with presbycusis. Objective  This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods  Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results  The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance ( p  = 0.862) was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance ( p  = 0.115) was found. Conclusion  There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  5. Pitch and Loudness Tinnitus in Individuals with Presbycusis

    Directory of Open Access Journals (Sweden)

    Seimetz, Bruna Macangnin

    2016-02-01

    Full Text Available Introduction Tinnitus is a symptom that is often associated with presbycusis. Objective This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance (p = 0.862 was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance (p = 0.115 was found. Conclusion There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  6. The Relationship between Pitch and Space in Congenital Amusia

    Science.gov (United States)

    Williamson, Victoria J.; Cocchini, Gianna; Stewart, Lauren

    2011-01-01

    Congenital amusia manifests as a lifelong difficulty in making sense of musical sound. The extent to which this disorder is accompanied by deficits in visuo-spatial processing is an important question, bearing on the issue of whether pitch processing draws on supramodal spatial representations. The present study assessed different aspects of…

  7. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe

    2014-01-01

    Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  8. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Variable and reversible pitch propellers. 35.21 Section 35.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and...

  9. Pitch jnd and the tritone paradox: The linguistic nexus

    Science.gov (United States)

    Safari, Kourosh

    2002-11-01

    Previous research has shown a connection between absolute pitch (the ability to name a specific pitch in the absence of any reference) and native competence in a tone language (Deutsch, 1990). In tone languages, tone is one of the features which determines the lexical meaning of a word. This study investigates the relationship between native competence in a tone language and the just noticeable difference of pitch. Furthermore, the tritone paradox studies have shown that subjects hear two tritones (with bell-shaped spectral envelopes) as either ascending or descending depending on their linguistic backgrounds (Deutsch, 1987). It is hypothesized that the native speakers of tone languages have a higher JND for pitch, and hear the two tones of the tritone paradox as ascending, whereas, native speakers of nontone languages hear them as descending. This study will indicate the importance of early musical training for the development of acute tone sensitivity. It will also underline the importance of language and culture in the way it shapes our musical understanding. The significance of this study will be in the areas of music education and pedagogy.

  10. Thrust generation and wake structure for flow across a pitching ...

    Indian Academy of Sciences (India)

    ... not a sufficient condition for the generation of thrust. The vortex strength is found to be invariant of the pitching frequency. Certain differences from the reported results are noted, which may be because of difference in the airfoil shape. These results can help improve understanding of the flow behavior as the low Reynolds ...

  11. Effect of stall design on dairy calf transition to voluntary feeding on an automatic milk feeder after introduction to group housing.

    Science.gov (United States)

    Wilson, Tanya R; LeBlanc, Stephen J; DeVries, Trevor J; Haley, Derek B

    2018-03-14

    Automatic milk feeders (AMF) for young dairy calves are widely used in the dairy industry. These feeders are thought to have benefits for calf health and welfare and may reduce labor required for feeding; however, little is known about how calves adapt to feeding with AMF. The objective of this study was to observe the effects of feeding stall design on calves learning to use the AMF. The hypothesis was that solid side stalls, compared with steel bar stalls, would result in a longer latency to approach and feed from the AMF without assistance. A total of 147 Holstein calves (80 male and 67 female) were enrolled at 4 d of age, introduced to a group pen, and, at the same time, trained on an AMF. For training, calves were allowed to suck on the trainer's fingers and guided to the teat. Calves were allocated to 1 of 2 stall designs at the pen level, depending on which treatment cohort they were born into, either with steel bar stall walls (n = 46 male, 34 female calves) or with solid side stall walls (n = 34 male, 33 female calves). For 72 h after introductory training on the AMF, data from the feeders were collected and calf behavior was monitored by video. Outcomes measured included latency to first voluntary visit to the feeder and to first feeding, time spent in the feeder, amount of milk consumed over 72 h, number of retraining sessions required (retrained if linear regression models or a Poisson model for the outcome of retraining. For certain outcomes the effects of stall design interacted with difficulty of training (willingness to enter feeder and drink); for the 38% of calves that were scored as moderately difficult to train on a scale of easy, moderate, or difficult, treatment (stall design) differences were detected. These calves took 2× longer to lick or bite toward the nipple, 2× longer to first voluntarily feeding, and consumed less milk over 72 h following training when trained on the steel bar stall design. These results suggest simple features of a

  12. Pitch, roll, and yaw variations in patient positioning

    International Nuclear Information System (INIS)

    Kaiser, Adeel; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.; Smith, David D.; Han, Chunhui; Vora, Nayana L.; Pezner, Richard D.; Chen Yijen; Radany, Eric H.

    2006-01-01

    Purpose: To use pretreatment megavoltage-computed tomography (MVCT) scans to evaluate positioning variations in pitch, roll, and yaw for patients treated with helical tomotherapy. Methods and Materials: Twenty prostate and 15 head-and-neck cancer patients were selected. Pretreatment MVCT scans were performed before every treatment fraction and automatically registered to planning kilovoltage CT (KVCT) scans by bony landmarks. Image registration data were used to adjust patient setups before treatment. Corrections for pitch, roll, and yaw were recorded after bone registration, and data from fractions 1-5 and 16-20 were used to analyze mean rotational corrections. Results: For prostate patients, the means and standard deviations (in degrees) for pitch, roll, and yaw corrections were -0.60 ± 1.42, 0.66 ± 1.22, and -0.33 ± 0.83. In head-and-neck patients, the means and standard deviations (in degrees) were -0.24 ± 1.19, -0.12 ± 1.53, and 0.25 ± 1.42 for pitch, roll, and yaw, respectively. No significant difference in rotational variations was observed between Weeks 1 and 4 of treatment. Head-and-neck patients had significantly smaller pitch variation, but significantly larger yaw variation, than prostate patients. No difference was found in roll corrections between the two groups. Overall, 96.6% of the rotational corrections were less than 4 deg. Conclusions: The initial rotational setup errors for prostate and head-and-neck patients were all small in magnitude, statistically significant, but did not vary considerably during the course of radiotherapy. The data are relevant to couch hardware design for correcting rotational setup variations. There should be no theoretical difference between these data and data collected using cone beam KVCT on conventional linacs

  13. Absolute pitch: effects of timbre on note-naming ability.

    Directory of Open Access Journals (Sweden)

    Patrícia Vanzella

    2010-11-01

    Full Text Available Absolute pitch (AP is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names, it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP.A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones than for vocal (natural and synthesized voices test tones. This difference could not be attributed solely to vibrato (pitch variation, which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age.Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  14. Absolute pitch: effects of timbre on note-naming ability.

    Science.gov (United States)

    Vanzella, Patrícia; Schellenberg, E Glenn

    2010-11-11

    Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP. A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung) voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones) than for vocal (natural and synthesized voices) test tones. This difference could not be attributed solely to vibrato (pitch variation), which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age. Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  15. Neural coding and perception of pitch in the normal and impaired human auditory system

    DEFF Research Database (Denmark)

    Santurette, Sébastien

    2011-01-01

    investigated using psychophysical methods. First, hearing loss was found to affect the perception of binaural pitch, a pitch sensation created by the binaural interaction of noise stimuli. Specifically, listeners without binaural pitch sensation showed signs of retrocochlear disorders. Despite adverse effects......Pitch is an important attribute of hearing that allows us to perceive the musical quality of sounds. Besides music perception, pitch contributes to speech communication, auditory grouping, and perceptual segregation of sound sources. In this work, several aspects of pitch perception in humans were...... of reduced frequency selectivity on binaural pitch perception, the ability to accurately process the temporal fine structure (TFS) of sounds at the output of the cochlear filters was found to be essential for perceiving binaural pitch. Monaural TFS processing also played a major and independent role...

  16. Facial Expression and Vocal Pitch Height: Evidence of an Intermodal Association

    Directory of Open Access Journals (Sweden)

    David Huron

    2009-11-01

    Full Text Available Forty-four participants were asked to sing moderate, high, and low pitches while their faces were photographed. In a two-alternative forced choice task, independent judges selected the high-pitch faces as more friendly than the low-pitch faces. When photographs were cropped to show only the eye region, judges still rated the high-pitch faces friendlier than the low-pitch faces. These results are consistent with prior research showing that vocal pitch height is used to signal aggression (low pitch or appeasement (high pitch. An analysis of the facial features shows a strong correlation between eyebrow position and sung pitch—consistent with the role of eyebrows in signaling aggression and appeasement. Overall, the results are consistent with an inter-modal linkage between vocal and facial expressions.

  17. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study.

    Science.gov (United States)

    Dohn, Anders; Garza-Villarreal, Eduardo A; Heaton, Pamela; Vuust, Peter

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of autism traits using the Autism-Spectrum Quotient (AQ) in three matched groups of subjects: 16 musicians with AP (APs), 18 musicians without AP (non-APs), and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly correlated with pitch identification scores (r = .46, p = .003). However, our results showed that APs did not differ from non-APs on diagnostically crucial social and communicative domain scores and their total AQ scores were well below clinical thresholds for autism. Group differences emerged on the imagination and attention switching subscales of the AQ. Thus, whilst these findings do link AP with autism, they also show that AP ability is most strongly associated with personality traits that vary widely within the normal population.

  18. Two Studies of Pitch in String Instrument Vibrato: Perception and Pitch Matching Responses of University and High School String Players

    Science.gov (United States)

    Geringer, John M.; MacLeod, Rebecca B.; Ellis, Julia C.

    2014-01-01

    We investigated pitch perception of string vibrato tones among string players in two separate studies. In both studies we used tones of acoustic instruments (violin and cello) as stimuli. In the first, we asked 192 high school and university string players to listen to a series of tonal pairs: one tone of each pair was performed with vibrato and…

  19. Controlled humidity gas circulators

    International Nuclear Information System (INIS)

    Gruner, S.M.

    1981-01-01

    A programmable circulator capable of regulating the humidity of a gas stream over a wide range of humidity is described. An optical dew-point hygrometer is used as a feedback element to control the addition or removal of water vapor. Typical regulation of the gas is to a dew-point temperature of +- 0.2 0 C and to an accuracy limited by the dew-point hygrometer

  20. Ocean circulation studies

    Science.gov (United States)

    Koblinsky, C. J.

    1984-01-01

    Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.

  1. Fluid circulation control device

    International Nuclear Information System (INIS)

    Benard, Henri; Henocque, Jean.

    1982-01-01

    Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr

  2. Effects of a Simulated Game on Upper Extremity Pitching Mechanics and Muscle Activations Among Various Pitch Types in Youth Baseball Pitchers.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary; Henning, Lisa; Saper, Michael; Glimer, Gabrielle; Brambeck, Allison; Andrews, James R

    2017-03-21

    Throwing requires proper stability and orientation of the pelvis and scapula for efficient energy transfer during pitching. Fatigue of the pelvis and scapular musculature throughout the course of a game can impair pitching performance, and place excessive demands on the throwing arm leading to injury. The purpose of this study was to examine differences in pelvis, torso, and upper extremity pitching mechanics and muscle activations between the fastball, change-up, and curveball pitches in youth baseball pitchers following a simulated game. Fourteen youth baseball pitchers with no history of injury participated. Pitching mechanics were collected using an electromagnetic tracking system. Surface electromyography data were collected on the bilateral gluteus medius and maximus; and throwing arm side latissimus dorsi, lower trapezius, upper trapezius, and serratus anterior. Participants were instructed to throw maximum effort pitches during a simulated game that provided random game situations similar to those that occur in competition. Participants were limited to 85 pitches based on age-restricted pitch counts. Data from 3 fastballs, curveballs, and change-ups thrown in the first and last innings were selected for analysis. Repeated measures multivariate analyses of variance revealed that neither pitch type nor the effect of a simulated game resulted in statistically significant changes in pitching mechanics (F(10,600)=0.55, P=0.85), or muscle activations (pelvic: F(4,195)=0.07, P=0.85; scapular: F(4,118)=0.09, P=0.52). The principle findings of this study revealed that pitching to the age-restricted pitch count limit did not result in altered pitching mechanics or muscle activations, and no differences occurred between the 3 pitches. These results support previous research that indicate the curveball pitch is no more dangerous for youth than the other pitches commonly thrown. This is supported by the pitcher's ability to maintain a proper arm slot during all 3

  3. Local and global pitch perception in L1 and L2 readers of Dutch

    NARCIS (Netherlands)

    de Jong, Chiara; Postma, Marie; Mos, Maria; Vedder, Kayleigh; Hendriks, Danielle; Maggiore, G.

    2017-01-01

    Prior research showed a relationship between reading skills and pitch perception, however the exact nature remained unclear. By means of reading tests and a pitch perception test, we examined the relation between reading abilities and local and global pitch perception for 92 native Dutch children

  4. Pitch and Time Processing in Speech and Tones: The Effects of Musical Training and Attention

    Science.gov (United States)

    Sares, Anastasia G.; Foster, Nicholas E. V.; Allen, Kachina; Hyde, Krista L.

    2018-01-01

    Purpose: Musical training is often linked to enhanced auditory discrimination, but the relative roles of pitch and time in music and speech are unclear. Moreover, it is unclear whether pitch and time processing are correlated across individuals and how they may be affected by attention. This study aimed to examine pitch and time processing in…

  5. Major League pitching workload after primary ulnar collateral ligament reconstruction and risk for revision surgery.

    Science.gov (United States)

    Keller, Robert A; Mehran, Nima; Marshall, Nathan E; Okoroha, Kelechi R; Khalil, Lafi; Tibone, James E; Moutzouros, Vasilios

    2017-02-01

    Literature has attempted to correlate pitching workload with risk of ulnar collateral ligament (UCL) injury; however, limited data are available in evaluating workload and its relationship with the need for revision reconstruction in Major League Baseball (MLB) pitchers. We identified 29 MLB pitchers who underwent primary UCL reconstruction surgery and subsequently required revision reconstruction and compared them with 121 MLB pitchers who underwent primary reconstruction but did not later require revision surgery. Games pitched, pitch counts, and innings pitched were evaluated and compared for the seasons after returning from primary reconstruction and for the last season pitched before undergoing revision surgery. The difference in workload between pitchers who did and did not require revision reconstruction was not statistically significant in games pitched, innings pitched, and MLB-only pitch counts. The one significant difference in workload was in total pitch counts (combined MLB and minor league), with the pitchers who required revision surgery pitching less than those who did not (primary: 1413.6 pitches vs. revision: 959.0 pitches, P = .04). In addition, pitchers who required revision surgery underwent primary reconstruction at an early age (22.9 years vs. 27.3 years, P risk for injury after primary UCL reconstruction. However, correlations of risk may be younger age and less MLB experience at the time of the primary reconstruction. Copyright © 2017. Published by Elsevier Inc.

  6. Congenital Amusia in linguistic and non-linguistic pitch perception - What behavior and reaction times reveal

    NARCIS (Netherlands)

    Pfeifer, J.; Hamann, S.; Exter, M.; Campbell, N.; Gibbon, D.; Hirst, D.

    2014-01-01

    Congenital Amusia is a developmental disorder that has a negative influence on pitch perception. While it used to be described as a disorder of musical pitch perception, recent studies indicate that congenital amusics also show deficits in linguistic pitch perception. This study investigates the

  7. Pitch Discrimination and Melodic Memory in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A.

    2014-01-01

    Background: Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. Objective: The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and…

  8. The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities.

    Science.gov (United States)

    Schaal, Nora K; Kretschmer, Marina; Keitel, Ariane; Krause, Vanessa; Pfeifer, Jasmin; Pollok, Bettina

    2017-01-01

    Pitch memory is a resource which is shared by music and language. Neuroimaging studies have shown that the right dorsolateral prefrontal cortex (DLPFC) is activated during pitch memory processes. The present study investigated the causal significance of this brain area for pitch memory in non-musicians by applying cathodal and sham transcranial direct current stimulation (tDCS) over the right DLPFC and examining the impact on offline pitch and visual memory span performances. On the overall sample ( N = 22) no significant modulation effect of cathodal stimulation on the pitch span task was found. However, when dividing the sample by means of a median split of pre-test pitch memory abilities into a high and low performing group, a selective effect of significantly impaired pitch memory after cathodal tDCS in good performers was revealed. The visual control task was not affected by the stimulation in either group. The results support previous neuroimaging studies that the right DLPFC is involved in pitch memory processes in non-musicians and highlights the importance of baseline pitch memory abilities for the modulatory effect of tDCS.

  9. The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities

    Directory of Open Access Journals (Sweden)

    Nora K. Schaal

    2017-12-01

    Full Text Available Pitch memory is a resource which is shared by music and language. Neuroimaging studies have shown that the right dorsolateral prefrontal cortex (DLPFC is activated during pitch memory processes. The present study investigated the causal significance of this brain area for pitch memory in non-musicians by applying cathodal and sham transcranial direct current stimulation (tDCS over the right DLPFC and examining the impact on offline pitch and visual memory span performances. On the overall sample (N = 22 no significant modulation effect of cathodal stimulation on the pitch span task was found. However, when dividing the sample by means of a median split of pre-test pitch memory abilities into a high and low performing group, a selective effect of significantly impaired pitch memory after cathodal tDCS in good performers was revealed. The visual control task was not affected by the stimulation in either group. The results support previous neuroimaging studies that the right DLPFC is involved in pitch memory processes in non-musicians and highlights the importance of baseline pitch memory abilities for the modulatory effect of tDCS.

  10. Has Uganda experienced any stalled fertility transitions? Reflecting on the last four decades (1973-2011).

    Science.gov (United States)

    Kabagenyi, Allen; Reid, Alice; Rutaremwa, Gideon; Atuyambe, Lynn M; Ntozi, James P M

    2015-09-23

    Persistent high fertility is associated with mother and child mortality. While most regions in the world have experienced declines in fertility rates, there are conflicting views as to whether Uganda has entered a period of fertility transition. There are limited data available that explicitly detail the fertility trends and patterns in Uganda over the last four decades, from 1973 to 2011. Total fertility rate (TFR) is number of live births that a woman would have throughout her reproductive years if she were subject to the prevailing age specific fertility patterns. The current TFR for Uganda stands at 6.2 children born per woman, which is one of the highest in the region. This study therefore sought to examine whether there has been a fertility stall in Uganda using all existing Demographic Health Survey data, to provide estimates for the current fertility levels and trends in Uganda, and finally to examine the demographic and socioeconomic factors responsible for fertility levels in Uganda. This is a secondary analysis of data from five consecutive Ugandan Demographic Health Surveys (UDHS); 1988/1989, 1995, 2000/2001, 2006 and 2011. Using pooled data to estimate for fertility levels, patterns and trends, we applied a recently developed fertility estimation approach. A Poisson regression model was also used to analyze fertility differentials over the study period. Over the studied period, fertility trends and levels fluctuated from highs of 8.8 to lows of 5.7, with no specific lag over the study period. These findings suggest Uganda is at the pre-transitional stage, with indications of imminent fertility rate reductions in forthcoming years. Marital status remained a strong predictor for number of children born, even after controlling for other variables. This study suggests there is no evidence of a fertility stall in Uganda, but demonstrates an onset of fertility transition in the country. If this trend continues, Uganda will experience a low fertility rate in

  11. Effects of musical training and hearing loss on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Bianchi, Federica; Dau, Torsten

    2018-01-01

    Our ability to perceive the pitch of complex sounds is essential for melody perception and for our enjoyment of music. It also plays an important role in speech perception to convey intonation and sometimes meaning, e.g., in tonal languages, and greatly helps segregation of competing sound sources...... content of the sound and whether the harmonics are resolved by the auditory frequency analysis operated by cochlear processing. F0DLs are also heavily influenced by the amount of musical training received by the listener and by the spectrotemporal auditory processing deficits that often accompany...... sensorineural hearing loss. This paper reviews the latest evidence for how musical training and hearing loss affect pitch discrimination performance, based on behavioral F0DL experiments with complex tones containing either resolved or unresolved harmonics, carried out in listeners with different degrees...

  12. Neurological and developmental approaches to poor pitch perception and production.

    Science.gov (United States)

    Loui, Psyche; Demorest, Steven M; Pfordresher, Peter Q; Iyer, Janani

    2015-03-01

    Whereas much of research in music and neuroscience is aimed at understanding the mechanisms by which the human brain facilitates music, emerging interest in the neuromusic community aims to translate basic music research into clinical and educational applications. In the present paper, we explore the problems of poor pitch perception and production from both neurological and developmental/educational perspectives. We begin by reviewing previous and novel findings on the neural regulation of pitch perception and production. We then discuss issues in measuring singing accuracy consistently between the laboratory and educational settings. We review the Seattle Singing Accuracy Protocol--a new assessment tool that we hope can be adopted by cognitive psychologists as well as music educators-and we conclude with some suggestions that the present interdisciplinary approach might offer for future research. © 2014 New York Academy of Sciences.

  13. The Norma spiral arm: large-scale pitch angle

    Science.gov (United States)

    Vallée, Jacques P.

    2017-09-01

    In the inner Galaxy, we statistically find the mean pitch angle of the recently mapped Norma arm in two galactic quadrants (observed tangentially at galactic longitudes near l=328° and near l=20°), using the twin-tangent method, and obtain -13.7°± 1.4°. We compared with other measurements in the literature. Also, using the latest published data on pitch angle and the latest published data on the radial starting point of the four arms (R_{Gal} = 2.2 kpc) in each galactic quadrant, a revised velocity plot of the Norma spiral arm is made, along with other spiral arms in the Milky Way, in each Galactic quadrant.

  14. Compliance effects on dynamically pitching wind turbine airfoils

    Science.gov (United States)

    Magstadt, Andrew S.

    The effects of elastic compliance in dynamically pitching wind turbine blades have been investigated. A numerical model guided wind tunnel testing, which used unsteady surface pressure measurements and phase-locked Particle Imaging Velocimetry to gather aerodynamic information. Using a torsionally compliant member, aeroelastic effects on the unsteady aerodynamics were compared against the results from a corresponding rigidly pitching airfoil to isolate the effects of compliance. The novel experimental apparatus and data acquisition techniques developed at the University of Wyoming showed that the presence of compliance can alter flow-field structures and increase dynamic loading. The high sensitivity of this nonlinear system suggests the formation of fluid-structure instabilities in large-scale turbines and demonstrates the potential for aerodynamic control as a means to mitigate adverse loading effects and improve wind turbine efficiency.

  15. Torque- and Speed Control of a Pitch Regulated Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rasila, Mika

    2003-07-01

    Variable speed operated wind turbines has the potential to reduce fatigue loads, compared to fixed speed wind turbines. With pitch controllable rotor blades limitation of the power at high wind speeds is obtained. The thesis describes different controlling aspects concerning wind turbines and how these together can be used to optimize the system's performance. Torque control is used in order to achieve reduction on the mechanical loads on the drive-train for low wind speeds and limitation of power output for high wind speeds. In the high wind speed interval torque control is effective in order to limit the output power if a sufficiently fast pitch actuator is used. In the middle wind speed interval filter utilization can be used to give a reference signal to the controller in order to reduce speed and torque variations.

  16. Application of fin system to reduce pitch motion

    Directory of Open Access Journals (Sweden)

    B. Rajesh Reguram

    2016-07-01

    Full Text Available Container ships are prone to move at a greater speed compared to other merchant ships. The slenderness of the hull of container vessel is for better speed, but it leads to unfavorable motions. The pitch and roll are related and sometimes the vessel might be forced to parametric roll condition which is very dangerous. A fin attached to the ship hull proves to be more efficient in controlling the pitch. The fin is fitted at a lowest possible location of the hull surface and it is at the bow part of the ship. Simulations are done using proven software package ANSYS AQWA and the results are compared. Simulations are done for both regular and irregular seas and the effect of fin on ship motion is studied. P-M spectrum is considered for various sea states.

  17. Amusia for pitch caused by right middle cerebral artery infarct.

    Science.gov (United States)

    Hochman, M Seth; Abrams, Kevin J

    2014-01-01

    A 61-year-old right-handed man with hypertension and dyslipidemia noted that he was singing along to classic rock songs on his car radio, but his voice was off pitch. Six days later, a magnetic resonance imaging scan of his brain revealed a cerebral infarct of the right temporal parietal cortex and insula. Case reports of the precise anatomic correlates of disordered pitch musical processing have been few and fragmentary. The anatomic involvement of our case coincides with the areas of involvement in 3 previously reported cases. Increased awareness of amusia as a rare clinical presentation of stroke should lead to earlier stroke intervention. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. Congenital amusia: a disorder of fine-grained pitch discrimination.

    Science.gov (United States)

    Peretz, Isabelle; Ayotte, Julie; Zatorre, Robert J; Mehler, Jacques; Ahad, Pierre; Penhune, Virginia B; Jutras, Benoît

    2002-01-17

    We report the first documented case of congenital amusia. This disorder refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive deficits, socioaffective disturbance, or lack of environmental stimulation. This musical impairment is diagnosed in a middle-aged woman, hereafter referred to as Monica, who lacks most basic musical abilities, including melodic discrimination and recognition, despite normal audiometry and above-average intellectual, memory, and language skills. The results of psychophysical tests show that Monica has severe difficulties with detecting pitch changes. The data suggest that music-processing difficulties may result from problems in fine-grained discrimination of pitch, much in the same way as many language-processing difficulties arise from deficiencies in auditory temporal resolution.

  19. Light airplane crash tests at three pitch angles

    Science.gov (United States)

    Vaughan, V. L., Jr.; Alfaro-Bou, E.

    1979-01-01

    Three similar twin-engine general aviation airplane specimens were crash tested at an impact dynamics research facility at 27 m/sec, a flight path angle of -15 deg, and pitch angles of -15 deg, 0 deg, and 15 deg. Other crash parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  20. Engaging Design Pitches: Storytelling Approaches and their Impacts

    OpenAIRE

    Parkinson, David

    2016-01-01

    This paper discusses the findings of a doctoral research study that builds an understanding of the relationship between storytelling approaches and their impacts at the design pitch. Determined through a literature review, the following desirable impacts were used to focus conversation during a series of semi-structured interviews conducted with employees from Unilever and Accenture: ‘Delivering Understanding’, ‘Demonstrating Value’, ‘Stimulating Critique’, and ‘Encouraging more Holistic Thin...

  1. Improved Methods for Pitch Synchronous Linear Prediction Analysis of Speech

    OpenAIRE

    劉, 麗清

    2015-01-01

    Linear prediction (LP) analysis has been applied to speech system over the last few decades. LP technique is well-suited for speech analysis due to its ability to model speech production process approximately. Hence LP analysis has been widely used for speech enhancement, low-bit-rate speech coding in cellular telephony, speech recognition, characteristic parameter extraction (vocal tract resonances frequencies, fundamental frequency called pitch) and so on. However, the performance of the co...

  2. Pitch Fork: A Novel tactile Digital Musical Instrument

    OpenAIRE

    Williams, Peter; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using material computation to control aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output sig...

  3. Baseball pitching biomechanics in relation to injury risk and performance.

    Science.gov (United States)

    Fortenbaugh, Dave; Fleisig, Glenn S; Andrews, James R

    2009-07-01

    Baseball pitching kinematics, kinetics, ball velocity, and injuries at the shoulder and elbow are related. PubMed and Sport Discus were searched for original studies published between 1994 and 2008. Relevant references in these studies were retrieved. Inferential studies that tested relationships between kinematics and kinetics were included, as were studies that tested relationships between kinematics and ball velocity. Descriptive studies that simply quantified kinematics and/or kinetics were excluded. SEVERAL KINEMATIC PARAMETERS AT THE INSTANT OF FOOT CONTACT WERE ASSOCIATED WITH INCREASED UPPER EXTREMITY KINETICS: front foot position, front foot orientation, shoulder abduction, and shoulder horizontal adduction. The timing of shoulder external rotation, pelvis rotation, and upper trunk rotation was associated with increased kinetics and decreased ball velocity. Low braking force of the lead leg and a short stride were associated with decreased ball velocity. Decreased maximum shoulder external rotation, shoulder abduction, knee extension, and trunk tilt were also associated with decreased ball velocity. As pitchers develop, kinematic values remain similar, their variability reduces, and kinetic values gradually increase. Slight kinematic variations were seen among pitch types, although the kinetics of fastballs and curveballs were relatively the same; changeup kinetics were the lowest. As pitchers fatigued, kinetic values remained constant, but increases in arm pain were reported. Several kinematic parameters were related to joint kinetics and ball velocity. To enhance performance and reduce injury risk, pitchers need to learn proper fastball mechanics at an early age. A changeup is recommended as a safe secondary pitch to complement the fastball; the curveball can be added after fastball and changeup mechanics are mastered. Avoiding overuse and pitching while fatigued is necessary to minimize the risk of arm injury.

  4. Buds enable pitch and shortleaf pines to recover from injury

    Science.gov (United States)

    S. Little; H. A. Somes

    1956-01-01

    Pitch and shortleaf pines often survive severe damage by fires, cutting, rabbits, or deer. Deer may take all but 2 inches of the 6- to 8-inch shoots of seedlings, and still these seedlings may live and develop new shoots. Fires may kill all the foliage and terminal shoots on sapling or pole-size stems, but still these trees may green up and develop new leaders. Many of...

  5. Magnetosheath distortion of pitch angle distributions of solar protons

    International Nuclear Information System (INIS)

    Palmer, I.D.; Higbie, P.R.

    1978-01-01

    The propagation of energetic solar protons of 9 or approx. =1 MeV into the magnetosheath is investigated through three-dimensional pitch angle distributions measured on Vela satellites. Distortions are observed in the magnetosheath, as compared with isotropic or unidirectional distributions normally expected in interplanetary space. Two types of distortions are observed which are characterized by breaks in the distributions at μ/sub o/ O, where μ is the cosine of the pitch angle. The distributions in the magnetosheath are explained by a Liouville transformation, if particle motion across the bow shock and through the magnetosheath is assumed to be adiabatic. Whether μ/sub o/ is positive or negative is determined by whether the satellite in the magnetosheath lies beyond or in front of the region of maximum magnetic field compression (or neck) in the magnetosheath, relative to the direction of the net flow of particles. The magnitude of μ/sub o/ is a measure of the field ratio between neck and satellite. Scattering effects, which must occur at the bow shock and in the magnetosheath, only perturb the adiabatic propagation of the particles. The results show that one must be cautious in inferring the true interplanetary anisotropy from measurements in the magnetosheath. While the maxima and minima of the corresponding pitch angle distributions will be the same, the distributions can be vastly different, and both anisotropy and omnidirectional intensities significantly different, too. By corollary, the pitch angle distribution and anisotropy measured in the solar wind on field line that intercepts the bow shock sunward of the earth will in general be different from that which would be measured in interplanetary space on a field line not connected to the bow shock; to first order the effect of the bow shock can be computed by treating the motion as adiabatic

  6. World Ocean Circulation Experiment

    Science.gov (United States)

    Clarke, R. Allyn

    1992-01-01

    The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.

  7. Design of a 21 m blade with Risø-A1 airfoils for active stall controlled wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, Peter; Sangill, O.; Hansen, P.

    2002-01-01

    This is the final report, from the project, "Design of a Rotor/Airfoil Family for Active Stall-regulated Wind Turbines by Use of Multi-point Optimization". It describes the full scale testing of a 21 m wind turbine blade specially designed for active stallregulation. Design objectives were...... increased ratio of produced energy to turbine loads and more stable power control characteristics. Both were taken directly into account during the design of the blade using numerical optimization. The blade used theRisø-A1 airfoil family, which was specially designed for operation on wind turbine blades...... be concluded that the new LM 21.0 ASR blade could replace the LM 21.0P leading to improved cost efficiency and that the Risø-A1 airfoils were well suited for active stall control. With the newestablished knowledge of the actual airfoil characteristics, a possible future blade design could be made also...

  8. An investigation of spatial representation of pitch in individuals with congenital amusia.

    Science.gov (United States)

    Lu, Xuejing; Sun, Yanan; Thompson, William Forde

    2017-09-01

    Spatial representation of pitch plays a central role in auditory processing. However, it is unknown whether impaired auditory processing is associated with impaired pitch-space mapping. Experiment 1 examined spatial representation of pitch in individuals with congenital amusia using a stimulus-response compatibility (SRC) task. For amusic and non-amusic participants, pitch classification was faster and more accurate when correct responses involved a physical action that was spatially congruent with the pitch height of the stimulus than when it was incongruent. However, this spatial representation of pitch was not as stable in amusic individuals, revealed by slower response times when compared with control individuals. One explanation is that the SRC effect in amusics reflects a linguistic association, requiring additional time to link pitch height and spatial location. To test this possibility, Experiment 2 employed a colour-classification task. Participants judged colour while ignoring a concurrent pitch by pressing one of two response keys positioned vertically to be congruent or incongruent with the pitch. The association between pitch and space was found in both groups, with comparable response times in the two groups, suggesting that amusic individuals are only slower to respond to tasks involving explicit judgments of pitch.

  9. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball

    Directory of Open Access Journals (Sweden)

    Arik eCheshin

    2016-02-01

    Full Text Available Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from MLB World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing when faced with a pitcher perceived as happy and to avoid (no swing when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  10. Do individuals with Williams syndrome possess absolute pitch?

    Science.gov (United States)

    Martínez-Castilla, Pastora; Sotillo, María; Campos, Ruth

    2013-01-01

    Although absolute pitch (AP) is a rare skill in typical development, individuals with Williams syndrome (WS) are often referred to as possessing this musical ability. However, there is paucity of research on the topic. In this article, 2 studies were conducted to evaluate AP in WS. In Study 1, seven musically trained individuals with WS, 14 musically trained typically developing controls matched for chronological age, and 2 experienced musicians with AP completed a pitch-identification task. Although the task was a classical assessment of AP, it required participants to have musical knowledge, and the availability and accessibility of musically trained individuals with WS is very low. In Study 2, a paradigm suitable for evaluating AP in individuals without musical training was used, which made it possible to evaluate a larger group of participants with WS. A pitch memory test for isolated tones was presented to 27 individuals with WS, 54 typically developing peers matched for chronological age, and the 2 musicians with AP. Both individuals with WS and their controls obtained low results in the two studies. They showed an arbitrary pattern of response, and their performance was far from that of musicians with AP. Therefore, participants with WS did not appear to possess AP. Unlike what is usually claimed, results suggest that AP is not a remarkable ability in WS and that, as in the typically developing population, this musical ability is also rare in individuals with WS.

  11. Pitching effects of buoyancy during four competitive swimming strokes.

    Science.gov (United States)

    Cohen, Raymond C Z; Cleary, Paul W; Harrison, Simon M; Mason, Bruce R; Pease, David L

    2014-10-01

    The purpose of this study was to determine the pitching effects of buoyancy during all competitive swimming strokes--freestyle, backstroke, butterfly, and breaststroke. Laser body scans of national-level athletes and synchronized multiangle swimming footage were used in a novel markerless motion capture process to produce three-dimensional biomechanical models of the swimming athletes. The deforming surface meshes were then used to calculate swimmer center-of-mass (CoM) positions, center-of-buoyancy (CoB) positions, pitch buoyancy torques, and sagittal plane moments of inertia (MoI) throughout each stroke cycle. In all cases the mean buoyancy torque tended to raise the legs and lower the head; however, during part of the butterfly stroke the instantaneous buoyancy torque had the opposite effect. The swimming strokes that use opposing arm and leg strokes (freestyle and backstroke) had smaller variations in CoM positions, CoB positions, and buoyancy torques. Strokes with synchronized left-right arm and leg movement (butterfly and breaststroke) had larger variations in buoyancy torques, which impacts the swimmer's ability to maintain a horizontal body pitch for these strokes. The methodology outlined in this paper enables the rotational effects of buoyancy to be better understood by swimmers, allowing better control of streamlined horizontal body positioning during swimming to improve performance.

  12. Physics of pitch angle scattering and velocity diffusion. I - Theory

    Science.gov (United States)

    Karimabadi, H.; Krauss-Varban, D.; Terasawa, T.

    1992-01-01

    A general theory for the pitch angle scattering and velocity diffusion of particles in the field of a spectrum of waves in a magnetized plasma is presented. The test particle theory is used to analyze the particle motion. The form of diffusion surfaces is examined, and analytical expressions are given for the resonance width and bounce frequency. The resonance widths are found to vary strongly as a function of harmonic number. The resulting diffusion can be quite asymmetric with respect to pitch angle of 90 deg. The conditions for the onset of pitch angle scattering and energy diffusion are explained in detail. Some of the known shortcomings of the standard quasi-linear theory are also addressed, and ways to overcome them are shown. In particular, the often stated quasi-linear gap at 90 deg is found to exist only under very special cases. For instance, oblique wave propagation can easily remove the gap. The conditions for the existence of the gap are described in great detail. A new diffusion equation which takes into account the finite resonance widths is also discussed. The differences between this new theory and the standard resonance broadening theory is explained.

  13. Spatial Rack Drives Pitch Configurations: Essence and Content

    Science.gov (United States)

    Abadjieva, Emilia; Abadjiev, Valentin; Naganawa, Akihiro

    2018-03-01

    The practical realization of all types of mechanical motions converters is preceded by solving the task of their kinematic synthesis. In this way, the determination of the optimal values of the constant geometrical parameters of the chosen structure of the created mechanical system is achieved. The searched result is a guarantee of the preliminary defined kinematic characteristics of the synthesized transmission and in the first place, to guarantee the law of motions transformation. The kinematic synthesis of mechanical transmissions is based on adequate mathematical modelling of the process of motions transformation and on the object, realizing this transformation. Basic primitives of the mathematical models for synthesis upon a pitch contact point are geometric and kinematic pitch configurations. Their dimensions and mutual position in space are the input parameters for the processes of design and elaboration of the synthesized mechanical device. The study presented here is a brief review of the theory of pitch configurations. It is an independent scientific branch of the spatial gearing theory (theory of hyperboloid gears). On this basis, the essence and content of the corresponding primitives, applicable to the synthesis of spatial rack drives, are defined.

  14. A Fröhlich effect and representational gravity in memory for auditory pitch.

    Science.gov (United States)

    Hubbard, Timothy L; Ruppel, Susan E

    2013-08-01

    Memory for the initial pitch of an auditory target that increased or decreased in auditory frequency was examined. Memory was displaced forward in the direction of pitch motion, and this is consistent with the Fröhlich effect previously observed for visual targets moving in visual physical space. The Fröhlich effect for pitch increased with faster target velocity and decreased if an auditory cue with the same pitch as the initial pitch of the target was presented before the target was presented. The Fröhlich effect was larger for descending pitch motion than for ascending pitch motion, and this is consistent with an influence of representational gravity. The data suggest that representation of auditory frequency space exhibits some of the same biases as representation of visual physical space, and implications for theories of attention in displacement and for crossmodal and multisensory representation of space are discussed. 2013 APA, all rights reserved

  15. Fine-grained pitch processing of music and speech in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Rusconi, Elena; Traube, Caroline; Butterworth, Brian; Umiltà, Carlo; Peretz, Isabelle

    2011-12-01

    Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events. © 2011 Acoustical Society of America

  16. Binaural pitch perception in normal-hearing and hearing-impaired listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2007-01-01

    The effects of hearing impairment on the perception of binaural-pitch stimuli were investigated. Several experiments were performed with normal-hearing and hearing-impaired listeners, including detection and discrimination of binaural pitch, and melody recognition using different types of binaural...... pitches. For the normal-hearing listeners, all types of binaural pitches could be perceived immediately and were musical. The hearing-impaired listeners could be divided into three groups based on their results: (a) some perceived all types of binaural pitches, but with decreased salience or musicality...... compared to normal-hearing listeners; (b) some could only perceive the strongest pitch types; (c) some were unable to perceive any binaural pitch at all. The performance of the listeners was not correlated with audibility. Additional experiments investigated the correlation between performance in binaural...

  17. Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight

    Science.gov (United States)

    2014-08-06

    of the wind tunnel and is illustrated in Fig. 1. In order to simplify the operations, a two-bladed rotor design was preferred. The setup had manually...to wind turbines, compressors, helicopter rotors , and even insect wing aerodynamics. Dynamic stall occurs on rotating blades of a helicopter in forward...between the flow structure on helicopter rotor blades, wind turbine blades, and insect wings. Due to these wide engineering implications there has

  18. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil

    Directory of Open Access Journals (Sweden)

    Zhao Guoqing

    2014-10-01

    Full Text Available Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k − ω shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally, a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters (forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies (the best lift-drag ratio at F+ = 2.0 and jet angles (40° or 75° when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by 26.5% in comparison with the single point control case.

  19. ETAA1 acts at stalled replication forks to maintain genome integrity

    Science.gov (United States)

    Bass, Thomas E.; Luzwick, Jessica W.; Kavanaugh, Gina; Carroll, Clinton; Dungrawala, Huzefa; Glick, Gloria G.; Feldkamp, Michael D.; Putney, Reid; Chazin, Walter J.; Cortez, David

    2017-01-01

    The ATR checkpoint kinase coordinates cellular responses to DNA replication stress. Budding yeast contain three activators of Mec1 (the ATR orthologue); however, only TOPBP1 is known to activate ATR in vertebrates. We identified ETAA1 as a replication stress response protein in two proteomic screens. ETAA1-deficient cells accumulate double-strand breaks, sister chromatid exchanges, and other hallmarks of genome instability. They are also hyper-sensitive to replication stress and have increased frequencies of replication fork collapse. ETAA1 contains two RPA-interaction motifs that localize ETAA1 to stalled replication forks. It also interacts with several DNA damage response proteins including the BLM/TOP3α/RMI1/RMI2 and ATR/ATRIP complexes. It binds ATR/ATRIP directly using a motif with sequence similarity to the TOPBP1-ATR activation domain; and like TOPBP1, ETAA1 acts as a direct ATR activator. ETAA1 functions in parallel to the TOPBP1/RAD9/HUS1/RAD1 pathway to regulate ATR and maintain genome stability. Thus, vertebrate cells contain at least two ATR activating proteins. PMID:27723720

  20. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  1. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    Science.gov (United States)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  2. Histone H2B mono-ubiquitylation maintains genomic integrity at stalled replication forks

    Science.gov (United States)

    Northam, Matthew R.; Trujillo, Kelly M.

    2016-01-01

    Histone modifications play an important role in regulating access to DNA for transcription, DNA repair and DNA replication. A central player in these events is the mono-ubiquitylation of histone H2B (H2Bub1), which has been shown to regulate nucleosome dynamics. Previously, it was shown that H2Bub1 was important for nucleosome assembly onto nascent DNA at active replication forks. In the absence of H2Bub1, incomplete chromatin structures resulted in several replication defects. Here, we report new evidence, which shows that loss of H2Bub1 contributes to genomic instability in yeast. Specifically, we demonstrate that H2Bub1-deficient yeast accumulate mutations at a high frequency under conditions of replicative stress. This phenotype is due to an aberrant DNA Damage Tolerance (DDT) response upon fork stalling. We show that H2Bub1 normally functions to promote error-free translesion synthesis (TLS) mediated by DNA polymerase eta (Polη). Without H2Bub1, DNA polymerase zeta (Polζ) is responsible for a highly mutagenic alternative mechanism. While H2Bub1 does not appear to regulate other DDT pathways, error-free DDT mechanisms are employed by H2Bub1-deficient cells as another means for survival. However, in these instances, the anti-recombinase, Srs2, is essential to prevent the accumulation of toxic HR intermediates that arise in an unconstrained chromatin environment. PMID:27458205

  3. Exploring farmers’ seasonal and full year adoption of stall feeding of livestock in Tigrai region, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hadush Muuz

    2017-01-01

    Full Text Available Adoption of stall feeding (SF of livestock was assessed in northern Ethiopia based on a household survey conducted in 2015. The study covered 21 communities in Tigrai to account for differences in agroecology. The purpose of this study was to understand the driving factors of full or seasonal SF adoption and its intensity. A Heckman selection model was used to estimate adoption and extent of adoption based on a model of technology adoption within an agricultural household framework, and Poisson Model for explaining the number of SF adopting seasons. The descriptive results indicate that 36% of the farmers were actually practicing SF in a full year whereas 55.6% were seasonal adopters in the study area. Empirical results of this study showed that our result is in favor of the Boserupian hypothesis indicating that small grazing land and large exclosure are associated with a higher probability of use of SF and with a higher number of SF adopting seasons. In a similar vein, small average village farm size stimulated SF adoption and adopting seasons, Availability of labor and a number of breed cows significantly increased the probability of using SF by 0.01% and 66% respectively. While animal shock had a marginal effect of 14%, factors such as access to information and early exposure increased SF adoption by about 18% and 6%. Similarly, the positive marginal effect of real milk price is 15%. However, SF appears to be less attractive to those farmers with more herd size and less crop residue.

  4. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  5. Transonic Wind Tunnel Modernization for Experimental Investigation of Dynamic Stall in a Wide Range of Mach Numbers by Plasma Actuators with Combined Energy/Momentum Action

    Science.gov (United States)

    2015-01-02

    wind tunnel for the study of plasma based methods for the control of dynamic stall for helicopter rotor blades. The tunnel has a 3D positioning...SECURITY CLASSIFICATION OF: This equipment grant supported the design and construction of a subsonic variable speed wind tunnel for the study of...plasma based methods for the control of dynamic stall for helicopter rotor blades. The tunnel has a 3D positioning system and servomotor mounted below

  6. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    Science.gov (United States)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y

  7. Differential Recognition of Pitch Patterns in Discrete and Gliding Stimuli in Congenital Amusia: Evidence from Mandarin Speakers

    Science.gov (United States)

    Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei

    2012-01-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…

  8. Circulation in the Arctic Ocean

    OpenAIRE

    Jones, E. Peter

    2001-01-01

    Much information on processes and circulation within the Arctic Ocean has emerged from measurements made on icebreaker expeditions during the past decade. This article offers a perspective based on these measurements, summarizing new ideas regarding how water masses are formed and how they circulate. Best understood at present is the circulation of the Atlantic Layer and mid-depth waters, to depths of about 1700 m, which move in cyclonic gyres in the four major basins of the Arctic Ocean. New...

  9. Ocean General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  10. The ocean circulation inverse problem

    National Research Council Canada - National Science Library

    Wunsch, C

    1996-01-01

    .... This book addresses the problem of inferring the state of the ocean circulation, understanding it dynamically, and even forecasting it through a quantitative combination of theory and observation...

  11. Global ocean circulation by altimetry

    Science.gov (United States)

    Wunsch, Carl; Haidvogel, D.

    1991-01-01

    The overall objectives of this project are to determine the general circulation of the oceans and many of its climate and biochemical consequences through the optimum use of altimetry data from TOPEX/POSEIDON and related missions. Emphasis is on the global-scale circulation, as opposed to the regional scale, but some more local studies will be carried out. Because of funding limitations, the primary initial focus will be on the time-dependent global-scale circulation rather than the mean; eventually, the mean circulation must be dealt with as well.

  12. Normal-Hearing Listeners’ and Cochlear Implant Users’ Perception of Pitch Cues in Emotional Speech

    Directory of Open Access Journals (Sweden)

    Steven Gilbers

    2015-10-01

    Full Text Available In cochlear implants (CIs, acoustic speech cues, especially for pitch, are delivered in a degraded form. This study’s aim is to assess whether due to degraded pitch cues, normal-hearing listeners and CI users employ different perceptual strategies to recognize vocal emotions, and, if so, how these differ. Voice actors were recorded pronouncing a nonce word in four different emotions: anger, sadness, joy, and relief. These recordings’ pitch cues were phonetically analyzed. The recordings were used to test 20 normal-hearing listeners’ and 20 CI users’ emotion recognition. In congruence with previous studies, high-arousal emotions had a higher mean pitch, wider pitch range, and more dominant pitches than low-arousal emotions. Regarding pitch, speakers did not differentiate emotions based on valence but on arousal. Normal-hearing listeners outperformed CI users in emotion recognition, even when presented with CI simulated stimuli. However, only normal-hearing listeners recognized one particular actor’s emotions worse than the other actors’. The groups behaved differently when presented with similar input, showing that they had to employ differing strategies. Considering the respective speaker’s deviating pronunciation, it appears that for normal-hearing listeners, mean pitch is a more salient cue than pitch range, whereas CI users are biased toward pitch range cues.

  13. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING.

    Science.gov (United States)

    Plummer, Hillary A; Oliver, Gretchen D; Powers, Christopher M; Michener, Lori A

    2018-02-01

    Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Controlled Laboratory Study; Cross-sectional. Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; plean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R 2 = 0.28; p lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Diagnosis, level 3.

  14. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth

    Energy Technology Data Exchange (ETDEWEB)

    Kristula, M.A.; Dou, Z.; Toth, J.D.; Smith, B.I.; Harvey, N.; Sabo, M. [University of Penn, Kennett Square, PA (United States)

    2008-05-15

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., and Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.

  15. Evaluation of rice mutant lines for resistance to brown planthopper, nilaparvata lugens stall

    International Nuclear Information System (INIS)

    Mugiono

    1985-01-01

    The most important and common insect in rice cultivation in South East Asia is brown planthopper, nilaparvata lugens stall. Seven rice mutant lines produced by the National Atomic Energy Agency, Indonesia, were tested at IRRI, the Philippines for resistance to brown planthopper. Those mutant lines were Atomita 1, 627/10-3/PsJ, Atomita 2 and 627/4-E/PsJ originated from Pelita 1/1 which was irradiated with 0.2 kGy of gamma rays and A227/2/PsJ, A227/3/PsJ and A227/5/PsJ, originated from early maturing mutant A23/PsJ/72K from irradiated Pelita 1/1 which was irradiated with 0.1 kGy of gamma rays. Evaluation of resistance was carried out by seedling bulk screening, honeydew excretion, survival and population build up tests by using brown planthopper biotype 1, 2 and 3. Results of these tests showed that the seven tested mutant lines were resistant to biotype 1 but susceptible to biotype 2. Reaction to biotype 3 showed that six mutant lines tested were moderately resistant and only one mutant of 627/4-E/PsJ was susceptible. Reactions of the mutant lines to biotype 1, 2 and 3 were different from the resistant varieties, Mudgo or ASD-7. This indicated that mutant lines might have gene(s) for resistance which differed from those of resistant varieties. The results showed that resistance to brown planthopper is possible to be introduced in Indonesian rice varieties by means of mutations. (author)

  16. Stalled repair of lesions when present within a clustered DNA damage site

    International Nuclear Information System (INIS)

    Lomax, M.E.; Cunniffe, S.; O'Neill, P.

    2003-01-01

    Ionising radiation produces clustered DNA damages (two or more lesions within one or two helical turns of the DNA) which could challenge the repair mechanism(s) of the cell. Using purified base excision repair (BER) enzymes and synthetic oligonucleotides a number of recent studies have established the excision of a lesion within clustered damage sites is compromised. Evidence will be presented that the efficiency of repair of lesions within a clustered DNA damage site is reduced, relative to that of the isolated lesions, since the lifetime of both lesions is extended by up to four fold. Simple clustered damage sites, comprised of single-strand breaks, abasic sites and base damages, one or five bases 3' or 5' to each other, were synthesised in oligonucleotides and repair carried out in mammalian cell nuclear extracts. The rate of repair of the single-strand break/abasic site within these clustered damage sites is reduced, mainly due to inhibition of the DNA ligase. The mechanism of repair of the single-strand break/abasic site shows some asymmetry. Repair appears to be by the short-patch BER pathway when the lesions are 5' to each other. In contrast, when the lesions are 3' to each other repair appears to proceed along the long-patch BER pathway. The lesions within the cluster are processed sequentially, the single-strand break/abasic site being repaired before excision of 8-oxoG, limiting the formation of double-strand breaks to <2%. Stalled processing of clustered DNA damage extends the lifetime of the lesions to an extent that could have biological consequences, e.g. if the lesions are still present during transcription and/or at replication mutations could arise

  17. The speech signal segmentation algorithm using pitch synchronous analysis

    Directory of Open Access Journals (Sweden)

    Amirgaliyev Yedilkhan

    2017-03-01

    Full Text Available Parameterization of the speech signal using the algorithms of analysis synchronized with the pitch frequency is discussed. Speech parameterization is performed by the average number of zero transitions function and the signal energy function. Parameterization results are used to segment the speech signal and to isolate the segments with stable spectral characteristics. Segmentation results can be used to generate a digital voice pattern of a person or be applied in the automatic speech recognition. Stages needed for continuous speech segmentation are described.

  18. Fuzzy maintenance costs of a wind turbine pitch control device

    Directory of Open Access Journals (Sweden)

    Mariana Carvalho

    2015-07-01

    Full Text Available This paper deals with the problem of estimation maintenance costs for the case of the pitch controls system of wind farms turbines. Previous investigations have estimated these costs as (traditional “crisp” values, simply ignoring the uncertainty nature of data and information available. This paper purposes an extended version of the estimation model by making use of the Fuzzy Set Theory. The results alert decision-makers to consequent uncertainty of the estimations along with their overall level, thus improving the information given to the mainte-nance support system.

  19. Automatic cortical representation of auditory pitch changes in Rett syndrome.

    Science.gov (United States)

    Foxe, John J; Burke, Kelly M; Andrade, Gizely N; Djukic, Aleksandra; Frey, Hans-Peter; Molholm, Sophie

    2016-01-01

    Over the typical course of Rett syndrome, initial language and communication abilities deteriorate dramatically between the ages of 1 and 4 years, and a majority of these children go on to lose all oral communication abilities. It becomes extremely difficult for clinicians and caretakers to accurately assess the level of preserved auditory functioning in these children, an issue of obvious clinical import. Non-invasive electrophysiological techniques allow for the interrogation of auditory cortical processing without the need for overt behavioral responses. In particular, the mismatch negativity (MMN) component of the auditory evoked potential (AEP) provides an excellent and robust dependent measure of change detection and auditory sensory memory. Here, we asked whether females with Rett syndrome would produce the MMN to occasional changes in pitch in a regularly occurring stream of auditory tones. Fourteen girls with genetically confirmed Rett syndrome and 22 age-matched neurotypical controls participated (ages 3.9-21.1 years). High-density electrophysiological recordings from 64 scalp electrodes were made while participants passively listened to a regularly occurring stream of 503-Hz auditory tone pips that was occasionally (15 % of presentations) interrupted by a higher-pitched deviant tone of 996 Hz. The MMN was derived by subtracting the AEP to these deviants from the AEP produced to the standard. Despite clearly anomalous morphology and latency of the AEP to simple pure-tone inputs in Rett syndrome, the MMN response was evident in both neurotypicals and Rett patients. However, we found that the pitch-evoked MMN was both delayed and protracted in duration in Rett, pointing to slowing of auditory responsiveness. The presence of the MMN in Rett patients suggests preserved abilities to process pitch changes in auditory sensory memory. This work represents a beginning step in an effort to comprehensively map the extent of auditory cortical functioning in Rett

  20. Unsteady Surface Pressure Measurements on a Pitching Airfoil

    Science.gov (United States)

    1985-03-12

    through 8 Dynamics 7512B amplifiers. The pitching motions of the airfoil were generated by 6°jN\\! 920O/_ a PDP 11/03 computer controlling a Control...acquisition system. The pressure data were used to calculate pressure 2 coefficients which were in turn integrated to compute lift coefficients. Both...Airfoils," AIAA J., Vol. 13, No. 1, 17. Gormont, R.E., "A Mathenatical Model pp 71-79, Jan 1975. of Unsteady Aerodynamics and Radial 4. McAlister, K.W

  1. Crackle and fizz essential communication and pitching skills for scientists

    CERN Document Server

    Van den Brul, Caroline

    2014-01-01

    This is a book for scientists and other experts who need to explain the significance and potential of their work to colleagues, committees, funding bodies or the general public. It details how to harness story-telling principles to make complex or technical content easier to communicate and fulfilling for audiences. Eight narrative ingredients, Audience, Change and Affect, Lure, World, Character, Big Hook, Plot and Structure, are illustrated with examples and exercises to demonstrate how to build a presentation, how to pitch for funds or resources, how to make a persuasive argument, or simply how to explain ideas so they CRACKLE and FIZZ for the Audience.

  2. Binaural pitch perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Dau, Torsten; Santurette, Sébastien; Strelcyk, Olaf

    2007-01-01

    When two white noises differing only in phase in a particular frequency range are presented simultaneously each to one of our ears, a pitch sensation may be perceived inside the head. This phenomenon, called ’binaural pitch’ or ’dichotic pitch’, can be produced by frequency-dependent interaural...... phasedifference patterns. The evaluation of these interaural phase differences depends on the functionality of the binaural auditory system and the spectro-temporal information at its input. A melody recognition task was performed in the present study using pure-tone stimuli and six different types of noises...

  3. Relating the absence of binaural pitch percept to retro-cochlear impairment

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    that the salience of binaural pitch was affected by hearing impairment. Specifically, for subjects with a sensorineural impairment, binaural pitch perception was weaker than the normal-hearing average but the pitch sensation was immediately present. In contrast, no binaural pitch sensation at all was found...... for the (only) two subjects with damage at central stages. The aim of the present study is to clarify whether such a sharp distinction between levels of impairment can be made using binaural pitch stimuli. A pitch detection test was performed by three groups of subjects with: 1) normal hearing; 2) a cochlear...... be an interesting indicator of retro-cochlear deficit and useful for characterising the auditory profile of individual hearing-impaired listeners....

  4. Congenital amusics use a secondary pitch mechanism to identify lexical tones.

    Science.gov (United States)

    Bones, Oliver; Wong, Patrick C M

    2017-09-01

    Amusia is a pitch perception disorder associated with deficits in processing and production of both musical and lexical tones, which previous reports have suggested may be constrained to fine-grained pitch judgements. In the present study speakers of tone-languages, in which lexical tones are used to convey meaning, identified words present in chimera stimuli containing conflicting pitch-cues in the temporal fine-structure and temporal envelope, and which therefore conveyed two distinct utterances. Amusics were found to be more likely than controls to judge the word according to the envelope pitch-cues. This demonstrates that amusia is not associated with fine-grained pitch judgements alone, and is consistent with there being two distinct pitch mechanisms and with amusics having an atypical reliance on a secondary mechanism based upon envelope cues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Sino-Danish Brain Circulation

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2014-01-01

    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  6. Multi-circulation boiler design

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Malcolm [Babcock and Wilcox Canada Ltd (Canada)

    2011-07-01

    Steam assisted gravity drainage (SAGD) requires steam, which was historically supplied by once-through steam generators (OTSG). OTSGs are now often replaced by drum boilers for steam generation. Drum boilers have a higher capacity than OTSGs and produce reduced blowdown. However, the volume of contaminants in feedwater is generally significant and ASME criteria require high-quality feedwater. The current study investigates a new design for a multi-circulation boiler that would allow cleaner steam to be generated from lower quality feedwater. In drum boilers, water circulates in one zone. By analyzing circulation fundamentals (notably heat flux and void fraction), the design of multiple circulation zones was envisaged to separate the clean water from the contaminated water. Working with distinct circulation zones would allow the quality of the steam from low quality feedwater to be improved, all the while maintaining the blowdown. The new design would result in a boiler which is easier to clean and would meet ASME criteria.

  7. Voltage harmonic variation in three-phase induction motors with different coil pitches

    International Nuclear Information System (INIS)

    Deshmukh, Ram; Moses, Anthony John; Anayi, Fatih

    2006-01-01

    A pulse-width modulation (PWM) inverter feeding four different chorded three-phase induction motors was tested for low-order odd harmonic voltage component and efficiency at different loads. Total harmonic distortion (THD) due to 3rd, 5th and 9th harmonics was less in a motor with 160 o coil pitch. Particular harmonic order for each coil pitch was suppressed and the efficiency of a 120 o coil pitch motor was increased by 7.5%

  8. THE BEHAVIOR OF THE PITCH ANGLE OF SPIRAL ARMS DEPENDING ON OPTICAL WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E.; Puerari, Ivânio; Rosales-Ortega, F. F.; Luna, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); González-Lópezlira, Rosa A. [Centro de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, México, C.P. 58089 (Mexico); Fuentes-Carrera, Isaura, E-mail: ericmartinez@inaoep.mx [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Zacatenco, 07730 México, D.F. (Mexico)

    2014-09-20

    Based on integral field spectroscopy data from the CALIFA survey, we investigate the possible dependence of spiral arm pitch angle with optical wavelength. For three of the five studied objects, the pitch angle gradually increases at longer wavelengths. This is not the case for two objects where the pitch angle remains constant. This result is confirmed by the analysis of SDSS data. We discuss the possible physical mechanisms to explain this phenomenon, as well as the implications of the results.

  9. Ball Speed and Release Consistency Predict Pitching Success in Major League Baseball.

    Science.gov (United States)

    Whiteside, David; Martini, Douglas N; Zernicke, Ronald F; Goulet, Grant C

    2016-07-01

    Whiteside, D, Martini, DN, Zernicke, RF, and Goulet, GC. Ball speed and release consistency predict pitching success in Major League Baseball. J Strength Cond Res XX(X): 000-000, 2015-This study aimed to quantify how ball flight kinematics (i.e., ball speed and movement), release location, and variations therein relate to pitching success in Major League Baseball (MLB). One hundred ninety starting MLB pitchers met the inclusion criteria for this study. Ball trajectory information was collected for 76,000 pitches and inserted into a forward stepwise multiple regression model, which examined how (a) pitch selection, (b) ball speed, (c) ball movement (horizontal and lateral), (d) release location (horizontal and lateral), (e) variation in pitch speed, (f) variation in ball movement, and (g) variation in release location related to pitching success (as measured by fielding independent pitching-FIP). Pitch speed, release location variability, variation in pitch speed, and horizontal release location were significant predictors of FIP and, collectively, accounted for 24% of the variance in FIP. These findings suggest that (a) maximizing ball speed, (b) refining a consistent spatial release location, and (c) using varied pitch speeds should be primary foci for the pitching coach. However, between-pitcher variations underline how training interventions should be administered at the individual level, with consideration given to the pitcher's injury history. Finally, despite offering significant predictors of success, these three factors explained only 22% of the variance in FIP and should not be considered the only, or preeminent, indicators of a pitcher's effectiveness. Evidently, traditional pitching metrics only partly account for a pitcher's effectiveness, and future research is necessary to uncover the remaining contributors to success.

  10. Study on the structure of pitch-polymer compositions by fluorescence microscope

    OpenAIRE

    Makomaski, Grzegorz

    2014-01-01

    In this work, the results of studies on the evaluation of colloidal structure of coal-tar pitch compositions with selected waste polymers by fluorescence microscope. For pitch-polymer compositions containing 10?50?wt% waste polymer, softening point, coking value and content of components insoluble in toluene and quinoline were carried out. The results indicate that pitch-polymer compositions can be treated as microheterogeneous systems, colloidal and biphase, generally exhibiting uniform disp...

  11. Low vocal pitch preference drives first impressions of trustworthiness and dominance in non- contextual scenarios

    OpenAIRE

    Tsantani, Maria,; Belin, Pascal; Mcaleer, Phil,

    2016-01-01

    International audience; Vocal pitch has been found to influence judgments of perceived trustworthiness and dominance from a novel voice. However, the majority of findings arise from using only male voices and in context-specific scenarios. In two experiments, we first explore the influence of average vocal pitch on first-impression judgments of perceived trustworthiness and dominance, before establishing the existence of an overall preference for high or low pitch across genders. In Experimen...

  12. Pitch perception and production in congenital amusia: Evidence from Cantonese speakers

    OpenAIRE

    Liu, Fang; Chan, Alice H. D.; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C. M.

    2016-01-01

    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by ...

  13. Congenital Amusia (or Tone-Deafness) Interferes with Pitch Processing in Tone Languages

    OpenAIRE

    Tillmann, Barbara; Burnham, Denis; Nguyen, Sebastien; Grimault, Nicolas; Gosselin, Nathalie; Peretz, Isabelle

    2011-01-01

    Congenital amusia is a neurogenetic disorder that affects music processing and that is ascribed to a deficit in pitch processing. We investigated whether this deficit extended to pitch processing in speech, notably the pitch changes used to contrast lexical tones in tonal languages. Congenital amusics and matched controls, all non-tonal language speakers, were tested for lexical tone discrimination in Mandarin Chinese (Experiment 1) and in Thai (Experiment 2). Tones were presented in pairs an...

  14. Children’s identification of familiar songs from pitch and timing cues

    Directory of Open Access Journals (Sweden)

    Anna eVolkova

    2014-08-01

    Full Text Available The goal of the present study was to ascertain whether children with normal hearing and prelingually deaf children with cochlear implants could use pitch or timing cues alone or in combination to identify familiar songs. Children 4-7 years of age were required to identify the theme songs of familiar TV shows in a simple task with excerpts that preserved (1 the relative pitch and timing cues of the melody but not the original instrumentation, (2 the timing cues only (rhythm, meter, and tempo, and (3 the relative pitch cues only (pitch contour and intervals. Children with normal hearing performed at high levels and comparably across the three conditions. The performance of child implant users was well above chance levels when both pitch and timing cues were available, marginally above chance with timing cues only, and at chance with pitch cues only. This is the first demonstration that children can identify familiar songs from monotonic versions—timing cues but no pitch cues—and from isochronous versions—pitch cues but no timing cues. The study also indicates that, in the context of a very simple task, young implant users readily identify songs from melodic versions that preserve pitch and timing cues.

  15. arXiv Signal coupling to embedded pitch adapters in silicon sensors

    CERN Document Server

    Artuso, M.; Bezshyiko, I.; Blusk, S.; Bruendler, R.; Bugiel, S.; Dasgupta, R.; Dendek, A.; Dey, B.; Ely, S.; Lionetto, F.; Petruzzo, M.; Polyakov, I.; Rudolph, M.; Schindler, H.; Steinkamp, O.; Stone, S.

    2018-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  16. Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans

    Science.gov (United States)

    Ludwig, Vera U.; Adachi, Ikuma; Matsuzawa, Tetsuro

    2011-01-01

    Humans share implicit preferences for certain cross-sensory combinations; for example, they consistently associate higher-pitched sounds with lighter colors, smaller size, and spikier shapes. In the condition of synesthesia, people may experience such cross-modal correspondences to a perceptual degree (e.g., literally seeing sounds). So far, no study has addressed the question whether nonhuman animals share cross-modal correspondences as well. To establish the evolutionary origins of cross-modal mappings, we tested whether chimpanzees (Pan troglodytes) also associate higher pitch with higher luminance. Thirty-three humans and six chimpanzees were required to classify black and white squares according to their color while hearing irrelevant background sounds that were either high-pitched or low-pitched. Both species performed better when the background sound was congruent (high-pitched for white, low-pitched for black) than when it was incongruent (low-pitched for white, high-pitched for black). An inherent tendency to pair high pitch with high luminance hence evolved before the human lineage split from that of chimpanzees. Rather than being a culturally learned or a linguistic phenomenon, this mapping constitutes a basic feature of the primate sensory system. PMID:22143791

  17. Toward a quantitative account of pitch distribution in spontaneous narrative: method and validation.

    Science.gov (United States)

    Matteson, Samuel E; Olness, Gloria Streit; Caplow, Nancy J

    2013-05-01

    Pitch is well-known both to animate human discourse and to convey meaning in communication. The study of the statistical population distributions of pitch in discourse will undoubtedly benefit from methodological improvements. The current investigation examines a method that parameterizes pitch in discourse as musical pitch interval H measured in units of cents and that disaggregates the sequence of peak word-pitches using tools employed in time-series analysis and digital signal processing. The investigators test the proposed methodology by its application to distributions in pitch interval of the peak word-pitch (collectively called the discourse gamut) that occur in simulated and actual spontaneous emotive narratives obtained from 17 middle-aged African-American adults. The analysis, in rigorous tests, not only faithfully reproduced simulated distributions imbedded in realistic time series that drift and include pitch breaks, but the protocol also reveals that the empirical distributions exhibit a common hidden structure when normalized to a slowly varying mode (called the gamut root) of their respective probability density functions. Quantitative differences between narratives reveal the speakers' relative propensity for the use of pitch levels corresponding to elevated degrees of a discourse gamut (the "e-la") superimposed upon a continuum that conforms systematically to an asymmetric Laplace distribution.

  18. Musicians demonstrate experience-dependent brainstem enhancement of musical scale features within continuously gliding pitch.

    Science.gov (United States)

    Bidelman, Gavin M; Gandour, Jackson T; Krishnan, Ananthanarayan

    2011-10-10

    In contrast to language, where pitch patterns consist of continuous and curvilinear contours, musical pitch consists of relatively discrete, stair-stepped sequences of notes. Behavioral and neurophysiological studies suggest that both tone-language and music experience enhance the representation of pitch cues associated with a listener's domain of expertise, e.g., curvilinear pitch in language, discrete scale steps in music. We compared brainstem frequency-following responses (FFRs) of English-speaking musicians (musical pitch experience) and native speakers of Mandarin Chinese (linguistic pitch experience) elicited by rising and falling tonal sweeps that are exemplary of Mandarin tonal contours but uncharacteristic of the pitch patterns typically found in music. In spite of musicians' unfamiliarity with such glides, we find that their brainstem FFRs show enhancement of the stimulus where the curvilinear sweep traverses discrete notes along the diatonic musical scale. This enhancement was note specific in that it was not observed immediately preceding or following the scale tone of interest (passing note). No such enhancements were observed in Chinese listeners. These findings suggest that the musician's brainstem may be differentially tuned by long-term exposure to the pitch patterns inherent to music, extracting pitch in relation to a fixed, hierarchical scale. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Heroes and Villains: The Relationship between Pitch Tessitura and Sociability of Operatic Characters

    Directory of Open Access Journals (Sweden)

    Daniel Shanahan

    2015-01-01

    Full Text Available Research in speech prosody and ethology suggests that pitch height indexes positive and negative social affects, in the sense that higher pitched voices are used to convey friendliness, whereas lower pitched voices are used to convey aggression (Bolinger, 1964. Research concerning animal calls suggests that this association generalizes to many species. In a study of the calls for 56 species, Morton (1977, 1994 proposed a sound-size model in which large size (and low pitch is associated with aggression, whereas small size (and high pitch is associated with friendliness, fear, or appeasement. We examine whether this association can be observed in music. Specifically, the results of three studies are reported in which the pitch-height of various voices is related to estimates of the sociability of the corresponding operatic characters. Results indeed indicate an association between lower-pitched voices and less sociable characters, in contrast to higher-pitched voices being associated with more sociable characters. In addition, older male characters tend to exhibit lower-pitched voices, consistent with known physiological changes (Linville, 2004; Reubold, Harrington & Kleber, 2010.

  20. Anodal transcranial direct current stimulation over the supramarginal gyrus facilitates pitch memory.

    Science.gov (United States)

    Schaal, Nora K; Williamson, Victoria J; Banissy, Michael J

    2013-11-01

    Functional neuroimaging studies have shown activation of the supramarginal gyrus during pitch memory tasks. A previous transcranial direct current stimulation study using cathodal stimulation over the left supramarginal gyrus reported a detrimental effect on short-term pitch memory performance, indicating an important role of the supramarginal gyrus in pitch memory. The current study aimed to determine whether pitch memory could be improved following anodal stimulation of the left supramarginal gyrus. The performances of non-musicians on two pitch memory tasks (pitch recognition and recall) and a visual memory control task following anodal or sham transcranial direct current stimulation were compared. The results show that, post-stimulation, the anodal group but not the control group performed significantly better on both pitch memory tasks; performance did not differ on the face memory task. These findings provide strong support for the causal involvement of the left supramarginal gyrus in the pitch memory process, and highlight the potential efficacy of transcranial direct current stimulation as a tool to improve pitch memory. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Voice pitch alters mate-choice-relevant perception in hunter-gatherers.

    Science.gov (United States)

    Apicella, Coren L; Feinberg, David R

    2009-03-22

    In humans, voice pitch is thought to be a cue of underlying quality and an important criterion for mate choice, but data from non-Western cultures have not been provided. Here we test attributions to and preferences for voices with raised and lowered pitch in hunter-gatherers. Using a forced-choice playback experiment, we found that both men and women viewed lower pitched voices in the opposite sex as being better at acquiring resources (e.g. hunting and gathering). While men preferred higher pitched women's voices as marriage partners, women showed no overall preference for voice pitch in men. However, women who were currently breastfeeding had stronger preferences for higher pitched male voices whereas women not currently breastfeeding preferred lower pitched voices. As testosterone is considered a costly signal associated with dominance, heritable immunity to infection and low paternal investment, women's preferences potentially reflect a trade-off between securing good genes and paternal investment. Men's preferences for higher pitched female voices are probably due to an evolved preference for markers of fecundity, reflected in voice pitch.

  2. From amusic to musical?--Improving pitch memory in congenital amusia with transcranial alternating current stimulation.

    Science.gov (United States)

    Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina

    2015-11-01

    Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pitch perception and production in congenital amusia: Evidence from Cantonese speakers.

    Science.gov (United States)

    Liu, Fang; Chan, Alice H D; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C M

    2016-07-01

    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by independent listeners, and subjected to acoustic analyses. Relative to controls, amusics showed impaired discrimination of lexical tones in both speech and non-speech conditions. They also received lower ratings for singing proficiency, producing larger pitch interval deviations and making more pitch interval errors compared to controls. Demonstrating higher pitch direction identification thresholds than controls for both speech syllables and piano tones, amusics nevertheless produced native lexical tones with comparable pitch trajectories and intelligibility as controls. Significant correlations were found between pitch threshold and lexical tone perception, music perception and production, but not between lexical tone perception and production for amusics. These findings provide further evidence that congenital amusia is a domain-general language-independent pitch-processing deficit that is associated with severely impaired music perception and production, mildly impaired speech perception, and largely intact speech production.

  4. Effects of Music and Tonal Language Experience on Relative Pitch Performance.

    Science.gov (United States)

    Ngo, Mary Kim; Vu, Kim-Phuong L; Strybel, Thomas Z

    2016-01-01

    We examined the interaction between music and tone language experience as related to relative pitch processing by having participants judge the direction and magnitude of pitch changes in a relative pitch task. Participants' performance on this relative pitch task was assessed using the Cochran-Weiss-Shanteau (CWS) index of expertise, based on a ratio of discrimination over consistency in participants' relative pitch judgments. Testing took place in 2 separate sessions on different days to assess the effects of practice on participants' performance. Participants also completed the Montreal Battery of Evaluation of Amusia (MBEA), an existing measure comprising subtests aimed at evaluating relative pitch processing abilities. Musicians outperformed nonmusicians on both the relative pitch task, as measured by the CWS index, and the MBEA, but tonal language speakers outperformed non-tonal language speakers only on the MBEA. A closer look at the discrimination and consistency component scores of the CWS index revealed that musicians were better at discriminating different pitches and more consistent in their assessments of the direction and magnitude of relative pitch change.

  5. Determining Pitch-angle Diffusion Coefficients from Test Particle Simulations

    Science.gov (United States)

    Ivascenko, Alex; Lange, Sebastian; Spanier, Felix; Vainio, Rami

    2016-12-01

    The transport and acceleration of charged particles in turbulent media are topics of great interest in space physics and interstellar astrophysics. These processes are dominated by the scattering of particles off magnetic irregularities. The scattering process itself is usually described by small-angle scattering, with the pitch-angle coefficient {D}μ μ playing a major role. Since the diffusion coefficient {D}μ μ can be determined analytically only for the approximation of quasilinear theory, the determination of this coefficient from numerical simulations has become more important. So far these simulations have yielded particle tracks for small-scale scattering, which can then be interpreted using the running diffusion coefficients. This method has a limited range of validity. This paper presents two new methods that allow for the calculation of the pitch-angle diffusion coefficient from numerical simulations. These methods no longer analyze particle trajectories and instead examine the change of particle distribution functions. It is shown that these methods provide better resolved results and allow for the analysis of strong turbulence. The application of these methods to Monte Carlo simulations of particle scattering and hybrid MHD-particle simulations is presented. Both analysis methods are able to recover the diffusion coefficients used as input for the Monte Carlo simulations and provide better results in MHD simulations, especially for stronger turbulence.

  6. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  7. A nonmusical paradigm for identifying absolute pitch possessors

    Science.gov (United States)

    Ross, David A.; Olson, Ingrid R.; Marks, Lawrence E.; Gore, John C.

    2004-09-01

    The ability to identify and reproduce sounds of specific frequencies is remarkable and uncommon. The etiology and defining characteristics of this skill, absolute pitch (AP), have been very controversial. One theory suggests that AP requires a specific type of early musical training and that the ability to encode and remember tones depends on these learned musical associations. An alternate theory argues that AP may be strongly dependent on hereditary factors and relatively independent of musical experience. To date, it has been difficult to test these hypotheses because all previous paradigms for identifying AP have required subjects to employ knowledge of musical nomenclature. As such, these tests are insensitive to the possibility of discovering AP in either nonmusicians or musicians of non-Western training. Based on previous literature in pitch memory, a paradigm is presented that is intended to distinguish between AP possessors and nonpossessors independent of the subjects' musical experience. The efficacy of this method is then tested with 20 classically defined AP possessors and 22 nonpossessors. Data from these groups strongly support the validity of the paradigm. The use of a nonmusical paradigm to identify AP may facilitate research into many aspects of this phenomenon.

  8. Effect of paddock vs. stall housing on 24 hour gastric pH within the proximal and ventral equine stomach.

    Science.gov (United States)

    Husted, L; Sanchez, L C; Olsen, S N; Baptiste, K E; Merritt, A M

    2008-06-01

    Stall housing has been suggested as a risk factor for ulcer development in the equine stomach; however, the exact pathogenesis for this has not been established. To investigate the effect of 3 environmental situations (grass paddock, stall alone or stall with adjacent companion) on pH in the proximal and the ventral stomach. Six horses with permanently implanted gastric cannulae were used in a randomised, cross-over, block design. Each horse rotated through each of three 24 h environmental situations. Horses remained on their normal diet (grass hay ad libitum and grain b.i.d.) throughout the study. Intragastric pH was measured continuously for 72 h just inside the lower oesophageal sphincter (proximal stomach) and via a pH probe in the gastric cannula (ventral stomach). Neither proximal nor ventral 24 h gastric pH changed significantly between the 3 environmental situations. Mean hourly proximal gastric pH decreased significantly in the interval from 01.00-09.00 h compared to the interval from 13.00-20.00 h, regardless of environmental situation. Median hourly proximal pH only differed in the interval from 06.00-07.00 h compared to the interval 14.00-19.00 h. Neither mean nor median hourly ventral gastric pH varied significantly with the time of day. The change in housing status used in the current study did not affect acid exposure within either region of the equine stomach. The pH in the ventral stomach was uniformly stable throughout the study, while the proximal pH demonstrated a 24 h circadian pattern.

  9. Differential recognition of pitch patterns in discrete and gliding stimuli in congenital amusia: evidence from Mandarin speakers.

    Science.gov (United States)

    Liu, Fang; Xu, Yi; Patel, Aniruddh D; Francart, Tom; Jiang, Cunmei

    2012-08-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete or gliding pitches in the syllable /ma/ or its complex tone analog, from nineteen amusics and nineteen controls, all healthy university students with Mandarin Chinese as their native language. Amusics, unlike controls, had more difficulty recognizing pitch direction in discrete than in gliding pitches, for both speech and non-speech stimuli. Also, amusic thresholds were not significantly affected by stimulus types (speech versus non-speech), whereas controls showed lower thresholds for tones than for speech. These findings help explain why amusics have greater difficulty with discrete musical pitch perception than with speech perception, in which continuously changing pitch movements are prevalent. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The Effects of Gilts Housed Either in Group with the Electronic Sow Feeding System or Conventional Stall.

    Science.gov (United States)

    Jang, J C; Jung, S W; Jin, S S; Ohh, S J; Kim, J E; Kim, Y Y

    2015-10-01

    This experiment was conducted to assess the welfare and productivity of gestating gilts in groups with the electronic sow feeding (ESF) system compared to conventional stalls. A total of 83 gilts (Yorkshire×Landrace) were housed into individual stalls to be artificially inseminated. Gilts confirmed pregnant were introduced to their treatment, conventional stalls (ST) or groups with the ESF system. All gilts were taken to the farrowing crates one week prior to their expected farrowing date. In the gestation period, there were no significant differences between gilts allocated to ST and ESF on growth performance. However, backfat thickness gain (p = 0.08) and body condition score (BCS) at 110 days of gestation (p = 0.10) tended to be higher in ESF gilts than ST. Likewise, gilts housed in group showed significantly higher estimated body muscle contents at 110 days of gestation (p = 0.02) and body muscle change during gestation (p = 0.01). There was a trend for a shorter parturition time in ESF gilts (p = 0.07). In the lactation period, group housed gilts showed a tendency to increased BCS changes (p = 0.06). Reproductive performance did not differ with the exception of piglet mortality (ST = 0.2 no. of piglets vs ESF = 0.4 no. of piglets; p = 0.01). In blood profiles, ST gilts showed a higher cortisol level at 110 days of gestation (p = 0.01). Weaning to estrus interval was shorter in gilts housed in ESF than ST (p = 0.01). In locomotory behaviors, ESF gilts recorded a tendency to elevate locomotion score at 36, 70, and 110 days of gestation (p = 0.07, p = 0.06, and p = 0.06, respectively). Similarly, ESF gilts showed significantly higher incidence of scratches at 36, 70, and 110 days of gestation (p = 0.01). Moreover, farrowing rates were higher in stall treatment (97.6%) compare to group housing treatment (95.2%). In conclusion, while group housed gilts with ESF system positively affected welfare status in combination with less physiologically stressful

  11. Pitch and loudness matching of unmodulated and modulated stimuli in cochlear implantees.

    Science.gov (United States)

    Vandali, Andrew; Sly, David; Cowan, Robert; van Hoesel, Richard

    2013-08-01

    The pitch elicited by unmodulated and amplitude modulated electrical pulse trains was examined with six adult cochlear implantees. In addition, for three of those subjects who had some hearing in their contralateral ear, the pitch of unmodulated electrical pulse trains was compared to that of complex harmonic acoustic tones. In the first experiment, pulse rate discrimination and the effects of place and level differences on pitch were examined for unmodulated pulse trains. General results were consistent with previous studies showing that variations in pulse rate, while holding loudness fixed, elicit changes in pitch at low rates, but become progressively harder to discriminate as rates approach approximately 300 pulses-per-second. Variations in place or level of stimulation generally produced changes in pitch consistent with tonotopic place and spread of excitation. In the second experiment, pitch and loudness of unmodulated pulse trains were compared with those of amplitude modulated stimuli as a function of modulation depth, rate, and shape, and presentation level. The pitch elicited by an amplitude modulated pulse train was generally higher than that of an unmodulated pulse train with a pulse rate equal to the modulation rate, and generally decreased toward that of the unmodulated pulse train as modulation depth or rate increased, or as presentation level decreased. Sharper/narrower modulation produced lower pitch. In the final experiment, the pitch heights of acoustic complex harmonic tones and unmodulated pulse trains were compared. When electrical pulse rate was equal to the fundamental frequency of the acoustic tone, similar pitch heights were elicited. The results from these experiments indicate that F0 rate pitch derived from the temporal envelope in existing clinical cochlear implant strategies may often be higher than that of acoustic harmonic tones at the same F0 in normal hearing, and that pitch growth with increasing F0 may be shallower. The

  12. Meta-analytic evidence for the non-modularity of pitch processing in congenital amusia.

    Science.gov (United States)

    Vuvan, Dominique T; Nunes-Silva, Marilia; Peretz, Isabelle

    2015-08-01

    A major theme driving research in congenital amusia is related to the modularity of this musical disorder, with two possible sources of the amusic pitch perception deficit. The first possibility is that the amusic deficit is due to a broad disorder of acoustic pitch processing that has the effect of disrupting downstream musical pitch processing, and the second is that amusia is specific to a musical pitch processing module. To interrogate these hypotheses, we performed a meta-analysis on two types of effect sizes contained within 42 studies in the amusia literature: the performance gap between amusics and controls on tasks of pitch discrimination, broadly defined, and the correlation between specifically acoustic pitch perception and musical pitch perception. To augment the correlation database, we also calculated this correlation using data from 106 participants tested by our own research group. We found strong evidence for the acoustic account of amusia. The magnitude of the performance gap was moderated by the size of pitch change, but not by whether the stimuli were composed of tones or speech. Furthermore, there was a significant correlation between an individual's acoustic and musical pitch perception. However, individual cases show a double dissociation between acoustic and musical processing, which suggests that although most amusic cases are probably explainable by an acoustic deficit, there is heterogeneity within the disorder. Finally, we found that tonal language fluency does not influence the performance gap between amusics and controls, and that there was no evidence that amusics fare worse with pitch direction tasks than pitch discrimination tasks. These results constitute a quantitative review of the current literature of congenital amusia, and suggest several new directions for research, including the experimental induction of amusic behaviour through transcranial magnetic stimulation (TMS) and the systematic exploration of the developmental

  13. Internal magnetic pitch angle measurements at KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.; Chung, J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Messmer, M. C. C. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2015-05-15

    Specification of the hardware for photo-detecting and digitizing electronics has almost complete as well and many of them are ready for procurement. The main collaboration party is Eindhoven University of Technology in the Netherlands, whose main responsibilities include the development of filter module design and off-line and real-time analysis schemes along with overall consultations. The following sections describe some major parts of the design progress. 3D MSE stokes-vector simulations have been tuned to match the MSE spectra measured in KSTAR and used to design the band-pass filters. From these simulations, 0.4-nm 2-cavity interference filters have been chosen to minimize pitch angle errors. Figure 4 shows an example of the MSE spectrum calculated from the simulation that is compared with the measured spectrum. Also shown in Figure 4 are the possible passband (shaded in green) of the spectrum where the redmost shifted polarization component (+4π) is chosen, the pitch angles and their errors. Due to the overlap of the spectra among ion sources, the second ion source of NBI1 (NBI1-2) should operate at about 15% lower voltage than that of the first ion source (NBI1-1). An example of this overlap in the spectrum and the large error in pitch angle it causes is shown in Figure 5. Pass-band control by the filter-angle tuning is under development to fully cover most of the KSTAR plasmas which include Ip = 0.5 - 1 MA, Bt = 1.5 - 3.5 T, and the beam energy (for the ion source 1 from NBI1) = 70 - 100 keV. The accuracy obtained is in the order of 0.5 % and compatible with the MSE requirement. The software also allows sequences creation, which consists of executing a series of a predefined central wavelength and a corresponding time delay. One PC can control 5 controller hubs each of which can accommodate up to 6 rotational stage/controller sets, resulting in the maximum 30 sets.

  14. Pitch Range in the Production of Saudi and English Women

    Directory of Open Access Journals (Sweden)

    Reem Omar Maghrabi

    2017-12-01

    Full Text Available In the present small-scale preliminary study, we sampled four groups of younger and older female Arabic and English speakers to examine if speaking fundamental frequency (SFF could show any systematic variations across languages and different age groups performing different tasks.  All groups of  speakers were recorded reading the North Wind and the Sun twice in their native language, and speaking spontaneously about themselves for around two minutes. Mean SFF values for each speaker and speaking task were obtained using Praat’s autocorrelation algorithm with a pitch range of 100-500Hz, with manual correction to remove spurious F0 values caused by doubling or halving the first harmonic. As well as presenting SFF results for all groups, mean values will be given for each group and speaking task.

  15. Fire resistance of single pitched-roof steel portal frame

    Directory of Open Access Journals (Sweden)

    J. J. Ferrán Gozálvez

    2017-03-01

    Full Text Available The standard procedure of structural fire design is based on the simplified analysis of single members. This method leads to conservative results in the case of structures able to redistribution of forces. The failure mechanism affecting both life safety and fire propagation is unknown. This work proposes a methodology for the advanced fire calculation of single pitched-roof portal frame for an agroindustrial building according to the Spanish Specifications with the structural software SAP2000. A non-linear dynamic and plastic, geometric (P-Delta and large-displacements calculation method has been developed. The different failure mechanisms and their influence are studied in terms of fire time resistance, human hazard and good safety. Also, parametric analyses were conducted: load level, rotational stiffness of the base and finally, support fire protection.

  16. Adaptive pitch control for load mitigation of wind turbines

    Science.gov (United States)

    Yuan, Yuan; Tang, J.

    2015-04-01

    In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

  17. Vision and Visual-Motor Coordination in Pitched Visual Environments

    Science.gov (United States)

    Welch, Robert B.

    1999-01-01

    The everyday perception of one's bodily orientation is determined by two classes of sensory cues: Vision and gravity. Because these cues typically agree, as when one is standing in a lighted room, it is difficult if not impossible to determine the degree to which each contributes to spatial perception. Therefore, in order to make this judgment it is necessary to introduce a conflict between vision and gravity and note the resulting perceptual experience. One simple way to do this is to expose the observer to a visual framework that has been rolled or pitched relative to the gravitational vector. The underlying assumption is that the separate contributions of vision and gravity to the perception of bodily orientation that are measured in such a situation of intersensory conflict are the same as those that operate under normal (i.e., non-conflicting) circumstances.

  18. Computationally Efficient and Noise Robust DOA and Pitch Estimation

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    signals are often contaminated by different types of noise, which challenges the assumption of white Gaussian noise in most state-of-the-art methods. We establish filtering methods based on noise statistics to apply to nonparametric spectral and spatial parameter estimates of the harmonics. We design...... a joint DOA and pitch estimator. In white Gaussian noise, we derive even more computationally efficient solutions which are designed using the narrowband power spectrum of the harmonics. Numerical results reveal the performance of the estimators in colored noise compared with the Cram\\'{e}r-Rao lower...... bound. Experiments on real-life signals indicate the applicability of the methods in practical low local signal-to-noise ratios....

  19. A Cultural Paradigm--Learning by Observing and Pitching In.

    Science.gov (United States)

    Rogoff, Barbara; Mejía-Arauz, Rebeca; Correa-Chávez, Maricela

    2015-01-01

    We discuss Learning by Observing and Pitching In (LOPI) as a cultural paradigm that provides an interesting alternative to Assembly-Line Instruction for supporting children's learning. Although LOPI may occur in all communities, it appears to be especially prevalent in many Indigenous and Indigenous-heritage communities of the Americas. We explain key features of this paradigm, previewing the chapters of this volume, which examine LOPI as it occurs in the lives of families and communities. In this introductory chapter, we focus especially on one feature of the paradigm that plays an important role in its uptake and maintenance in families, institutions, and communities-the nature of assessment. We consider the power of the dominant paradigm and the challenges in making paradigm shifts. © 2015 Elsevier Inc. All rights reserved.

  20. Relativistic Electron Pitch Angle Distributions in the Inner Magnetosphere

    Science.gov (United States)

    Friedel, Reiner; Zhao, Hong; Reeves, Geoff; Chen, Yue; Henderson, Mike; Kanekal, Shri; Baker, Dan; Jaynes, Allison

    2017-04-01

    Relativistic electron pitch angle distributions (PADs) in the trapped inner region of the magnetosphere are a sensitive measure of many processes that govern the dynamics of these particles. We report here on statistical observations of relativistic electron PADs from the REPT (Relativistic Electron/Proton Telescope) instrument aboard the Van Allen Probes mission, which show an unexpected dawn/dusk asymmetry that seems to be a persistent feature during quiet times of Dst > -20 nT. The observed PADs show a more peaked pancake distribution at dusk compared to dawn for energies above 1.8 MeV only. Energies from a few 100 KeV to 1 m,eV do NOT show these asymmetries, ruling out magnetic field model effects. These observations hint at persistent processes that can act on relativistic electrons on timescales on the order of the outer radiation belt drift period (10 minutes).

  1. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  2. Theory of single-molecule controlled rotation experiments, predictions, tests, and comparison with stalling experiments in F1-ATPase.

    Science.gov (United States)

    Volkán-Kacsó, Sándor; Marcus, Rudolph A

    2016-10-25

    A recently proposed chemomechanical group transfer theory of rotary biomolecular motors is applied to treat single-molecule controlled rotation experiments. In these experiments, single-molecule fluorescence is used to measure the binding and release rate constants of nucleotides by monitoring the occupancy of binding sites. It is shown how missed events of nucleotide binding and release in these experiments can be corrected using theory, with F 1 -ATP synthase as an example. The missed events are significant when the reverse rate is very fast. Using the theory the actual rate constants in the controlled rotation experiments and the corrections are predicted from independent data, including other single-molecule rotation and ensemble biochemical experiments. The effective torsional elastic constant is found to depend on the binding/releasing nucleotide, and it is smaller for ADP than for ATP. There is a good agreement, with no adjustable parameters, between the theoretical and experimental results of controlled rotation experiments and stalling experiments, for the range of angles where the data overlap. This agreement is perhaps all the more surprising because it occurs even though the binding and release of fluorescent nucleotides is monitored at single-site occupancy concentrations, whereas the stalling and free rotation experiments have multiple-site occupancy.

  3. Brief Report: Discrimination of Foreign Speech Pitch and Autistic Traits in Non-Clinical Population

    Science.gov (United States)

    Iao, Lai-Sang; Wippich, Anna; Lam, Yu Hin

    2018-01-01

    Individuals with Autism Spectrum Conditions (ASC) are widely suggested to show enhanced perceptual discrimination but inconsistent findings have been reported for pitch discrimination. Given the high variability in ASC, this study investigated whether ASC traits were correlated with pitch discrimination in an undergraduate sample when musical and…

  4. A rule-based backchannel prediction model using pitch and pause information

    NARCIS (Netherlands)

    Truong, Khiet Phuong; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We manually designed rules for a backchannel (BC) prediction model based on pitch and pause information. In short, the model predicts a BC when there is a pause of a certain length that is preceded by a falling or rising pitch. This model was validated against the Dutch IFADV Corpus in a

  5. Effortful Pitch Glide: A Potential New Exercise Evaluated by Dynamic MRI

    Science.gov (United States)

    Miloro, Keri Vasquez; Pearson, William G., Jr.; Langmore, Susan E.

    2014-01-01

    Purpose: The purpose of this study was to compare the biomechanics of the effortful pitch glide (EPG) with swallowing using dynamic MRI. The EPG is a combination of a pitch glide and a pharyngeal squeeze maneuver for targeting laryngeal and pharyngeal muscles. The authors hypothesized that the EPG would elicit significantly greater structural…

  6. Training English Listeners to Identify Pitch-Accent Patterns in Tokyo Japanese

    Science.gov (United States)

    Shport, Irina A.

    2016-01-01

    The high-variability training paradigm (multiple words, phonetic contexts, and talkers) has been successful for perceptual learning of tone contrasts. Here, it is extended to training native English listeners on Tokyo Japanese pitch-accent contrasts. Participants had no previous experience with lexically contrastive pitch patterns. They learned to…

  7. Perceived Pitch of Violin and Cello Vibrato Tones among Music Majors

    Science.gov (United States)

    Geringer, John M.; MacLeod, Rebecca B.; Allen, Michael L.

    2010-01-01

    The purpose of this study was to investigate the perceived pitch of string vibrato tones. The authors used recordings of acoustic instruments (cello and violin) to provide both vibrato stimulus tones and the nonvibrato tones that listeners adjusted to match the perceived pitch of the vibrato stimuli. We were interested especially in whether there…

  8. Evaluation of health risks of playing sports on synthetic turf pitches with rubber granulate

    NARCIS (Netherlands)

    Oomen AG; de Groot GM; CPV; M&V

    2017-01-01

    New research by the Dutch National Institute for Public Health and the Environment (RIVM) indicates that the health risk of playing sports on synthetic turf pitches with an infill of rubber granulate is virtually negligible. Therefore, it is considered safe for people to play sports on such pitches.

  9. The musical environment and auditory plasticity: Hearing the pitch of percussion

    Directory of Open Access Journals (Sweden)

    Neil M Mclachlan

    2013-10-01

    Full Text Available Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  10. The musical environment and auditory plasticity: hearing the pitch of percussion.

    Science.gov (United States)

    McLachlan, Neil M; Marco, David J T; Wilson, Sarah J

    2013-01-01

    Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  11. Solid state 13 C NMR quantitative study of wood tar pitches

    International Nuclear Information System (INIS)

    Prauchner, Marcos Juliano; Pasa, Vanya Marcia Duarte; Menezes, Sonia Maria Cabral de

    1999-01-01

    In this work, solid-state 13 C NMR is used with other techniques to characterize Eucalyptus tar pitches and to follow their polymerization reactions. The pitches are the residues of distillation (about 50% m;m) of the tar generated in Eucalyptus slow pyrolysis for charcoal production in metal industry

  12. Ball flight kinematics, release variability and in-season performance in elite baseball pitching.

    Science.gov (United States)

    Whiteside, D; McGinnis, R S; Deneweth, J M; Zernicke, R F; Goulet, G C

    2016-03-01

    The purpose of this study was to quantify ball flight kinematics (ball speed, spin rate, spin axis orientation, seam orientation) and release location variability in the four most common pitch types in baseball and relate them to in-season pitching performance. Nine NCAA Division I pitchers threw four pitching variations (fastball, changeup, curveball, and slider) while a radar gun measured ball speed and a 600-Hz video camera recorded the ball trajectory. Marks on the ball were digitized to measure ball flight kinematics and release location. Ball speed was highest in the fastball, though spin rate was similar in the fastball and breaking pitches. Two distinct spin axis orientations were noted: one characterizing the fastball and changeup, and another, the curveball and slider. The horizontal release location was significantly more variable than the vertical release location. In-season pitching success was not correlated to any of the measured variables. These findings are instructive for inferring appropriate hand mechanics and spin types in each of the four pitches. Coaches should also be aware that ball flight kinematics might not directly relate to pitching success at the collegiate level. Therefore, talent identification and pitching evaluations should encompass other (e.g., cognitive, psychological, and physiological) factors. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Automatic and Data Driven Pitch Contour Manipulation with Functional Data Analysis

    NARCIS (Netherlands)

    Gubian, M.; Cangemi, F.; Boves, L.W.J.; Hasegawa-Johnson, M.

    2010-01-01

    Creating stimuli for perceptual experiments in intonation research involves manipulation of pitch contours extracted from spoken utterances. Difficulties arise when changes in the contour shape need to be applied globally and smoothly in the whole pitch curve. Moreover, it is hard to relate a

  14. Relative Influence of Musical and Linguistic Experience on Early Cortical Processing of Pitch Contours

    Science.gov (United States)

    Chandrasekaran, Bharath; Krishnan, Ananthanarayan; Gandour, Jackson T.

    2009-01-01

    To assess domain specificity of experience-dependent pitch representation we evaluated the mismatch negativity (MMN) and discrimination judgments of English musicians, English nonmusicians, and native Chinese for pitch contours presented in a nonspeech context using a passive oddball paradigm. Stimuli consisted of homologues of Mandarin high…

  15. The thermal transformations of pitch and its compositions with thermo-anthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Ulanovskii, M.L.; Krysin, V.P.

    1983-01-01

    The derivatographic method was used to examine the nature of thermal treatment of pitch in a mixture with heat-treated anthracite. The basic effect of anthracite on the thermal conversion of pitch was established, as well as the stages of mass loss and the processes that limit such losses. (9 refs.)

  16. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  17. The effects of medial ulnar collateral ligament reconstruction on Major League pitching performance.

    Science.gov (United States)

    Keller, Robert A; Steffes, Matthew J; Zhuo, David; Bey, Michael J; Moutzouros, Vasilios

    2014-11-01

    Medial ulnar collateral ligament (MUCL) reconstruction is commonly performed on Major League Baseball (MLB) pitchers. Previous studies have reported that most pitchers return to presurgical statistical performance levels after MUCL reconstruction. Pitching performance data--specifically, earned run average (ERA), walks and hits per inning pitched (WHIP), winning percentage, and innings pitched--were acquired for 168 MLB pitchers who had undergone MUCL reconstruction. These data were averaged over the 3 years before surgery and the 3 years after surgery and also acquired from 178 age-matched, uninjured MLB pitchers. Of the pitchers who had MUCL reconstruction surgery, 87% returned to MLB pitching. However, compared with presurgical data, pitching performance declined in terms of ERA (P = .001), WHIP (P = .011), and innings pitched (P = .026). Pitching performance also declined in the season before the surgery compared with previous years (ERA, P = .014; WHIP, P = .036; innings pitched, P risk factor for requiring surgery. In addition, there is an increased risk of MUCL reconstruction for pitchers who enter the major leagues at a younger age. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Perceiving differences in linguistic and non-linguistic pitch: A pilot study with German congenital amusics

    NARCIS (Netherlands)

    Hamann, S.; Exter, M.; Pfeifer, J.; Krause-Burmester, M.; Cambouropoulos, F.; Tsougras, C.; Mavromatis, P.; Pastiadis, K.

    2012-01-01

    This study investigates the perception of pitch differences by seven German congenital amusics in speech and two types of non-speech material (sinusoidal waves and pulse trains). Congenital amusia is defined by a deficit in musical pitch perception, and recent studies indicate that at least a

  19. Pitch Discrimination without Awareness in Congenital Amusia: Evidence from Event-Related Potentials

    Science.gov (United States)

    Moreau, Patricia; Jolicoeur, Pierre; Peretz, Isabelle

    2013-01-01

    Congenital amusia is a lifelong disorder characterized by a difficulty in perceiving and producing music despite normal intelligence and hearing. Behavioral data have indicated that it originates from a deficit in fine-grained pitch discrimination, and is expressed by the absence of a P3b event-related brain response for pitch differences smaller…

  20. Impaired Pitch Production and Preserved Rhythm Production in a Right Brain-Damaged Patient with Amusia

    Science.gov (United States)

    Murayama, Junko; Kashiwagi, Toshihiro; Kashiwagi, Asako; Mimura, Masaru

    2004-01-01

    Pre- and postmorbid singing of a patient with amusia due to a right-hemispheric infarction was analyzed acoustically. This particular patient had a premorbid tape recording of her own singing without accompaniment. Appropriateness of pitch interval and rhythm was evaluated based on ratios of pitch and duration between neighboring notes. The…