WorldWideScience

Sample records for staged coal burners

  1. Numerical simulations for the coal/oxidant distribution effects between two-stages for multi opposite burners (MOB) gasifier

    International Nuclear Information System (INIS)

    Unar, Imran Nazir; Wang, Lijun; Pathan, Abdul Ghani; Mahar, Rasool Bux; Li, Rundong; Uqaili, M. Aslam

    2014-01-01

    Highlights: • We simulated a double stage 3D entrained flow coal gasifier with multi-opposite burners. • The various reaction mechanisms have evaluated with experimental results. • The effects of coal and oxygen distribution between two stages on the performance of gasifier have investigated. • The local coal to oxygen ratio is affecting the overall efficiency of gasifier. - Abstract: A 3D CFD model for two-stage entrained flow dry feed coal gasifier with multi opposite burners (MOB) has been developed in this paper. At each stage two opposite nozzles are impinging whereas the two other opposite nozzles are slightly tangential. Various numerical simulations were carried out in standard CFD software to investigate the impacts of coal and oxidant distributions between the two stages of the gasifier. Chemical process was described by Finite Rate/Eddy Dissipation model. Heterogeneous and homogeneous reactions were defined using the published kinetic data and realizable k–ε turbulent model was used to solve the turbulence equations. Gas–solid interaction was defined by Euler–Lagrangian frame work. Different reaction mechanism were investigated first for the validation of the model from published experimental results. Then further investigations were made through the validated model for important parameters like species concentrations in syngas, char conversion, maximum inside temperature and syngas exit temperature. The analysis of the results from various simulated cases shows that coal/oxidant distribution between the stages has great influence on the overall performance of gasifier. The maximum char conversion was found 99.79% with coal 60% and oxygen 50% of upper level of injection. The minimum char conversion was observed 95.45% at 30% coal with 40% oxygen at same level. In general with oxygen and coal above or equal to 50% of total at upper injection level has shown an optimized performance

  2. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  3. Assessment against Experiments of Devolatilization and Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NOx Pulverized Coal Burner

    Directory of Open Access Journals (Sweden)

    Marco Torresi

    2017-01-01

    Full Text Available In the next few years, even though there will be a continuous growth of renewables and a loss of the share of fossil fuel, energy production will still be strongly dependent on fossil fuels. It is expected that coal will continue to play an important role as a primary energy source in the next few decades due to its lower cost and higher availability with respect to other fossil fuels. However, in order to improve the sustainability of energy production from fossil fuels, in terms of pollutant emissions and energy efficiency, the development of advanced investigation tools is crucial. In particular, computational fluid dynamics (CFD simulations are needed in order to support the design process of low emission burners. Even if in the literature several combustion models can be found, the assessment of their performance against detailed experimental measurements on full-scale pulverized coal burners is lacking. In this paper, the numerical simulation of a full-scale low-NO x , aerodynamically-staged, pulverized coal burner for electric utilities tested in the 48 MW th plant at the Combustion Environment Research Centre (CCA - Centro Combustione e Ambiente of Ansaldo Caldaie S.p.A. in Gioia del Colle (Italy is presented. In particular, this paper is focused on both devolatilization and char burnout models. The parameters of each model have been set according to the coal characteristics without any tuning based on the experimental data. Thanks to a detailed description of the complex geometry of the actual industrial burner and, in particular, of the pulverized coal inlet distribution (considering the entire primary air duct, in order to avoid any unrealistic assumption, a correct selection of both devolatilization and char burnout models and a selection of suited parameters for the NO x modeling, accurate results have been obtained in terms of NO x formation. Since the model parameters have been evaluated a priori, the numerical approach proposed

  4. Coal-water mixture fuel burner

    Science.gov (United States)

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  5. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  6. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  7. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  8. The development of low NOx burners under the IEA Coal Combustion Sciences agreement

    Energy Technology Data Exchange (ETDEWEB)

    Whaley, H. [CANMET Energy Technology Centre, Ottawa, Ontario (Canada)

    1997-09-01

    Canada has been involved in the International Energy Agency (IEA) implementing agreement on coal combustion sciences since 1985. The other countries belonging to this agreement are Australia, Germany, Denmark, Finland, Italy, the Netherlands, Sweden, the United Kingdom and the US. There are two operating annexes, the first, Annex 1 being task-shared, in which designated research projects within the participating countries are reported on an annual basis. Annex 2 is cost-shared and the research is conducted at the International Flame Research Foundation (IFRF) in the Netherlands and paid for by the participants, Canada, Germany, the Netherlands and the UK. The objectives of Annex 2 are to develop advanced low NOx coal burners for power boilers and to characterize their performance with a wide range of coals and coal blends. Two burners have been selected as showing great promise in suppressing NOx formation, thereby reducing emissions to below regulatory levels. One is an aerodynamically air-staged burner (AASB) and the other an internally fuel-staged burner (IFSB). Both can utilize a single boiler entry port, which makes them ideal for retrofitting, the former relies on combustion air staging, the latter on fuel staging or reburning. The IFSB, when developed to a commercial stage, is anticipated to meet projected Canadian NOx regulations for the foreseeable future. Supplementary aspects of the program have been coal characterization, ash behavior and deposition, advanced in-flame measurement technique development and validation data bases for flame, combustion and NOx modeling. This presentation will focus on the two low NOx burners developed under the Annex 2 program.

  9. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    Science.gov (United States)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  10. Burners

    Science.gov (United States)

    ... among people who play contact sports. These include football, rugby, and wrestling. Symptoms of a burner A ... to your arm. Burners often happen when the force of a hit or fall pushes the head ...

  11. Method for reducing NOx during combustion of coal in a burner

    Science.gov (United States)

    Zhou, Bing [Cranbury, NJ; Parasher, Sukesh [Lawrenceville, NJ; Hare, Jeffrey J [Provo, UT; Harding, N Stanley [North Salt Lake, UT; Black, Stephanie E [Sandy, UT; Johnson, Kenneth R [Highland, UT

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  12. Pulverized coal burners from the German Democratic Republic in the Tisova power plant

    Energy Technology Data Exchange (ETDEWEB)

    Cech, F.; Frank, M.

    1984-06-01

    The installation, operation and performance of pulverized coal burners produced by the Braunkohlekraftwerke Peitz in the GDR are discussed. The burners were used in the Tisova power plant in Czechoslovakia in a K 11 boiler with a rated power of 100 kW, steam pressure 14.5/3.4 MPa, steam temperature 540/535 C, fired with brown coal with a calorific value from 8.4 to 10.8 MJ/kg from the Sokolov basin. Burners supplied by the Braunkohlekraftwerke used steam at a pressure of 3.4 MPa and a temperature of 510 C for transport of pulverized brown coal to the combustion chamber; the burners replaced ones fired with mazout. The burners were used for stabilizing boiler output. Comparative evaluations showed that efficiency of stabilizing burners using pulverized brown coal was similar to those using mazout. Replacing mazout burners in the K 11 boiler with pulverized fuel burners economized 600 t mazout per year. 1 reference.

  13. Root-cause analysis of burner tip failures in coal-fired power plants

    International Nuclear Information System (INIS)

    Citirik, E.

    2014-01-01

    Warpage and complete or partial tear of burner material was frequently experienced in coal-fired power plants due to material overheating. Root-cause analysis of a burner tip failure is investigated employing stress modeling in the burner tip material in this study. The analyses performed in this research paper include heat transfer and stress analyses employing computational tools. Thermal analysis was performed using Computational Fluid Dynamics (CFD) software FLUENT for computing temperature distribution within the burner tip due to convection and radiation. Once the temperature distribution in the burner tip is determined, Finite Element Analysis (FEA) is employed using ANSYS to determine the maximum stress and deformations in burner tip material. Both FLUENT and ANSYS are numerical commercial simulation tools employed in this study. Large temperature gradients along the burner tip result in local bending stresses. These stresses resulting in creep stresses might be causing warpage in the burner tip. In this study, a design option was exercised to eliminate the excessive stress gradient in the burner tip material. Seven different FEA models were developed to simulate different operating conditions. Proposed design modification (Model 5) was able to reduce the maximum compressive stress from 76.09 MPa to 33.59 MPa. Significant reduction in the thermal stress due to design modification in Model 5 made author believe that the proposed design solution would eliminate the burner tip failures in this particular power plant. - Highlights: • Maximum stress and displacement values in the baseline model were computed. • Computations were performed using commercial FEA software ANSYS. • Different operating conditions were simulated in models 1-2-3-4. • Proposed geometry to prevent the failure is simulated in Models 5 and 6. • The proposed design solution reduced the maximum compressive stresses by ∼50%

  14. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  15. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  16. Development of an advanced high efficiency coal combustor for boiler retrofit. Task 1, Cold flow burner development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, ``Cold Flow Burner Development``. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  17. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  18. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  19. Duquesne Light Company`s burner modification for NO{sub x} RACT compliance on a 200 MW single face fired pulverized coal unit

    Energy Technology Data Exchange (ETDEWEB)

    Bionda, J.P. [Energy Systems Associates, Pittsburgh, PA (United States); Gabrielson, J.E.; Hallo, A.

    1994-12-31

    This paper discusses the result of a research test program conducted on Duquesne Light Company`s Elrama Unit 4. The program was designed to determine the viability of achieving compliance with the recently enacted PA DER Reasonably Available Control Technology (RACT) regulations. These regulations stipulate presumptive RACT requirements for wall fired boilers which include the installations and operation of low NO{sub x} burners with separated overfire air. Duquesne Light Company contracted Energy Systems, Associates (ESA) to aide in the design and testing of a novel low NO{sub x} burner design and separated overfire air system. By modifying the coal burners, it has been possible to reduce the NO{sub x} emissions by 50% to 60% on Unit 4, with minimal impact to the unburned carbon in the ash. The burner modifications create fuel rich streams which are surrounded by air rich zones in the primary flame region, thus staging combustion at the burner. Additional NO{sub x} reductions are realized when the combustion is further staged by use of the separated overfire air system.

  20. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  1. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    Science.gov (United States)

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  2. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    Energy Technology Data Exchange (ETDEWEB)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal

  3. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  5. Biomass Suspension Combustion: Effect of Two-Stage Combustion on NOx Emissions in a Laboratory-Scale Swirl Burner

    DEFF Research Database (Denmark)

    Lin, Weigang; Jensen, Peter Arendt; Jensen, Anker Degn

    2009-01-01

    A systematic study was performed in a suspension fired 20 kW laboratory-scale swirl burner test rig for combustion of biomass and co-combustion of natural gas and biomass. The main focus is put on the effect of two-stage combustion on the NO emission, as well as its effect on the incomplete combu...

  6. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  7. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  8. Investigations of coal ignition in a short-range flame burner using optical measuring systems; Untersuchungen zur Kohlezuendung am Flachflammenbrenner unter Verwendung optischer Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik

    1999-09-01

    The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)

  9. Advances in measurements and simulation of gas-particle flows and coal combustion in burners/combustors

    International Nuclear Information System (INIS)

    Zhou, L X

    2009-01-01

    Innovative coal combustors were developed, and measurement and simulation of gas-particle flows and coal combustion in such combustors were done in the Department of Engineering Mechanics, Tsinghua University. LDV/PDPA measurements are made to understand the behavior of turbulent gas-particle flows in coal combustors. Coal combustion test was done for the non-slagging cyclone coal combustor. The full two-fluid model developed by the present author was used to simulate turbulent gas-particle flows, coal combustion and NO x formation. It is found by measurements and simulation that the optimum design can give large-size recirculation zones for improving the combustion performance for all the combustors. The combustion test shows that the nonslagging coal combustor can burn 3-5mm coal particles with good combustion efficiency and low NO emission. Simulation in comparison with experiments indicates that the swirl number can significantly affect the NO formation in the swirl coal combustor.

  10. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  11. Isothermal modeling of aerodynamic structure of the swirling flow in a two-stage burner

    Directory of Open Access Journals (Sweden)

    Yusupov Roman

    2017-01-01

    Full Text Available The work deals with the experimental study of the aerodynamic structure of a swirling flow in the isothermal model of two-stage vortex combustion chamber. The main attention is focused on the process of flow mixing of two successively connected tangential swirlers of the first and second stages of the working section. Data on flow visualization are presented for two patterns of flow swirling. Time-averaged profiles of the axial and tangential velocity components are obtained with the help of laser-Doppler anemometer. In the case of flow co-swirling between two stages of the working section, instability of a secondary flow in the form of precessing vortex was distinguished. For the regime with counter flow swirling, effective mixing of the swirl flows was found; this was reflected by formation of the flow with uniform distribution of axial velocity over the cross-section.

  12. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  13. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  14. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Science.gov (United States)

    2010-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant Unit...

  15. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse

    2010-01-01

    ) are independently fed into the burner through two concentric injection tubes, i.e., the centre and annular tubes, respectively. Multiple simulations are performed, using three meshes, two global reaction mechanisms for homogeneous combustion, two turbulent combustion models, and two models for fuel particle...... conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion....... The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen...

  16. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J. [and others

    1994-07-01

    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  17. Industrial burner and process efficiency program

    Science.gov (United States)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  18. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim

    2006-01-01

    a high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag...... unscheduled shutdowns, decreasing the availability and increasing the cost of the produced power. In addition, the fouling of the heat exchange surfaces reduces the system efficiency. In this work the melting and rheological properties of various biomass and biomass/ coal ash samples were studied by using....../metal interaction. Biomass ash proved to have significantly different melting behavior compared to that of the coal ash. Furthermore, the addition of biomass to coal ash led to lower viscosity and subsequently to higher stickiness of the produced ash particles. The melting behavior of the slag generated...

  19. New stage of clean coal technology in Japan; Clean coal technology no aratana tenkai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Y. [Agency of Natural Resources and Energy, Tokyo (Japan)

    1996-09-01

    The paper described the positioning and new development of clean coal technology. Coal is an important resource which supplies approximately 30% of the energy consumed in all the world. In the Asian/Pacific region, especially, a share of coal in energy is high, around 60% of the world, and it is indispensable to continue using coal which is abundantly reserved. Japan continues using coal as an important energy among petroleum substituting energies taking consideration of the global environment, and is making efforts for development and promotion of clean coal technology aiming at further reduction of environmental loads. Moreover, in the Asian region where petroleum depends greatly upon outside the region, it is extremely important for stabilization of Japan`s energy supply that coal producing countries in the region promote development/utilization of their coal resources. For this, it is a requirement for Japan to further a coal policy having an outlook of securing stable coal supply/demand in the Asian region. 6 figs., 2 tabs.

  20. Two-stage coal liquefaction without gas-phase hydrogen

    Science.gov (United States)

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  1. 57Fe NGR studies on three-stage hydroliquefaction of coals

    International Nuclear Information System (INIS)

    Jamond, M.; Bacaud, R.; Bussiere, P.; Charcosset, H.; Nickel-Pepin-Donat, B.

    1990-01-01

    Iron Moessbauer spectroscopy has been performed on liquefaction residues of two different French coals. In a three-stage liquefaction of high volatile bituminous coal (Freyming), without an added catalyst, the coal pyrite is not entirely converted into pyrrhotites, whereas in the presence of an added catalyst, coal pyrite is totally transformed into more dispersed pyrrhotites than those from the sample without an added catalyst; furthermore, the whole added catalyst precursor is reduced into pyrrhotites. In the case of liquefaction of subbituminous coal (Gardanne), full conversion of coal pyrite into pyrrhotites (even without an added catalyst) occurs. In addition, in the presence of the added catalyst, besides pyrrhotites, FeS is evidenced. When molybdenum-iron oxide is added as a catalyst precursor, no mixed Fe-Mo phase is detected. (orig.)

  2. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  3. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  4. LOW NOX BURNER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  5. Technical development of a retrofit wood burner for coal under-fed stokers in County Durham, and set up of demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N.

    2002-07-01

    Durham County Council wishes to convert its coal-burning solid fuel boilers to make use of readily-available waste wood dust. It is intended that the wood dust be converted to pelleted fuel. The emphasis was on cost-cutting rather than boiler efficiency. The experimental studies were carried out at two schools where the boilers were welded steel and cast iron sectional boilers. Factors studied were air supply to the boilers, fuel feed systems, fuel storage, fuel delivery and pelletization. The results have shown that operating costs of wood burning boilers are a little greater than coal-burning but this is slightly offset by savings elsewhere. The environmental benefits were significant in terms of lower emissions from the boilers, reduced road transport, and the wood waste is no longer sent to landfill. Further areas of study are recommended. The contractor for this study was North Energy Associates Ltd, and the study was part of the DTI Sustainable Energy Programme.

  6. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    The international coal market trends are outlined and the place of Australian coal industry is discussed. It is shown that while the world supply and demand for coal has begun to tighten, the demand for coal is expected to remain strong in both Asia and Europe. Consequently, in 1991-1992 Australian black coal production and export returns are forecast to rise by 4% and 7% respectively. 1 fig

  7. Mathematical modeling of the heat treatment and combustion of a coal particle. III. Volatile escape stage

    Science.gov (United States)

    Enkhjargal, Kh.; Salomatov, V. V.

    2011-05-01

    The present paper is a continuation of previous publications of the authors in this journal in which two phases of the multistage process of combustion of a coal particle were considered in detail with the help of mathematical modeling: its radiation-convection heating and drying. In the present work, the escape dynamics of volatiles is investigated. The physico-mathematical model of the thermodestruction of an individual coal particle with a dominant influence of endothermal effects has been formulated. Approximate-analytical solutions of this model that are of paramount importance for detailed analysis of the influence of the physical and regime parameters on the escape dynamics of volatiles have been found. The results obtained form the basis for engineering calculations of the volatile escape stage and can be used successfully in the search for effective regimes of burning of various solid fuels, in particular, Shivé-Ovoos coal of Mongolia.

  8. Duquesne Light Company`s modifications for nitric oxide RACT compliance on a 200 MW face fired pulverized coal unit

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.P.; Bionda, J.P.; Gabrielson, J.E. [Energy Systems Associates, Pittsburgh, PA (United States); Hallo, A.; Gretz, G.F. [Duquesne Light Co., Pittsburgh, PA (United States)

    1996-12-31

    This paper discusses the results of a research test program conducted on Duquesne Light Company`s Elrama Unit 4. The program was designed to determine the viability of achieving compliance with the recently enacted PA DER Reasonably Available Control Technology (RACT) regulations. These regulations stipulate presumptive RACT requirements for wall fired boilers which include the installation and operation of low NO{sub x} burners with separated overfire air. Duquesne Light Company contracted Energy Systems Associates (ESA) to aide in the design and testing of a novel low NO{sub x} burner design and separated overfire air system. A three-dimensional computational furnace model was developed by ESA of the Elrama Unit 4 furnace, and a two-dimensional fluid dynamics model was developed of the coal burner. By modifying the coal burners, it has been possible to reduce the nitric oxide emissions by 30% on Unit 4, with minimal impact of the unburned carbon in the ash. The burner modifications create fuel rich streams which are surrounded by air rich zones in the primary flame region, thus staging combustion at the burner. Additional nitric oxide reductions are realized when the combustion is further staged by use of the separated overfire air system.

  9. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  10. Innovative Clean Coal Technology (ICCT): 500-MW demonstration of advanced wall-fired cmbustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Field chemical emissions monitoring, Overfire air and overfire air/low NO{sub x} burner operation: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report summarizes data gathered by Radian Corporation at a coal-fired power plant, designated Site 16, for a program sponsored by the United States Department of Energy (DOE), Southern Company Services (SCS), and the Electric Power Research Institute (EPRI). Concentrations of selected inorganic and organic substances were measured in the process and discharge streams of the plant operating under two different types of combustion modifications: overfire air (OFA) and a combination of overfire air with low-NO{sub x} burners (OFA/LNB). Information contained in this report will allow DOE and EPRI to determine the effects of low-NO{sub x} modifications on plant emissions and discharges. Sampling was performed on an opposed wall-fired boiler burning medium-sulfur bituminous coal. Emissions were controlled by electrostatic precipitators (ESPs). The testing was conducted in two distinct sampling periods, with the OFA test performed in March of 1991 and the OFA/LNB test performed in May of 1993. Specific objectives were: to quantify emissions of target substances from the stack; to determine the efficiency of the ESPs for removing the target substances; and to determine the fate of target substances in the various plant discharge streams.

  11. Hydrogen from the two-stage pyrolysis of bituminous coal/waste plastics mixtures

    Czech Academy of Sciences Publication Activity Database

    Kříž, Vlastimil; Bičáková, Olga

    2011-01-01

    Roč. 36, č. 15 (2011), s. 9014-9022 ISSN 0360-3199 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrogen * two-stage pyrolysis * coal Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.054, year: 2011 http://www.sciencedirect.com/science/article/pii/S0360319911007622

  12. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    Science.gov (United States)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  13. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal

  14. Burner Characteristics for Activated Carbon Production

    Directory of Open Access Journals (Sweden)

    zakaria Supaat

    2017-01-01

    Full Text Available Carbonization process has become an important stage in developing activated carbon. However, existing burner are not efficient in time production which take 24 hours to15 days for charcoal production. Therefore, new design of burner/kilns is quite needed in order to produce larger number of charcoal in short time production, to improve charcoal quality regarding to the smooth surface area and pore volume. This research proposed new design burner which divided into two types which are vertical and horizontal types. Vertical is not completed by auto-rotating system while horizontal type is complete by auto-rotating and fume handling system. It developed using several equipment such as welding, oxy-cutting, drilling grinding and cutting machine. From the result of carbonization process shows that coconut shell charcoal need shorter time of 30 minutes as compared to palm shell charcoal of 2 h to completely carbonized. This result claim that the new design better than existing kiln that need longer time up to 24 h. The result of the palm and coconut shell charcoal believe will produce better properties of activated carbon in large surface area and higher total volume of pores. Therefore, this burner is high recommended for producing palm and coconut shell charcoal as well as other bio-based material.

  15. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    Science.gov (United States)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  16. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    It is estimated that World coal trade remained strong during the second quarter of 1991, with contributing factors including unseasonally large shipments to Japan for power generation, sustained Japanese steel production at around 112 Mt and some buildup in stocks in that country. Purchases by North Asian and European consumers also remained high. At the same time Soviet output and exports declined because of strikes and political unrest. In addition, exportable supplies in Poland fell. As a result the demand for Indonesian coal increased, and Australia exported larger than previously expected quantities of coal. ills

  17. Low NOx firing systems for bituminous coal and lignite

    International Nuclear Information System (INIS)

    Knyrim, W.; Scheffknecht, G.

    1997-01-01

    In the case of lignite fluidized boilers the denitrification down to less than 200 mg/m 3 was possible with primary measures on the firing side only. On account of the excellent results achieved with the reconstructed plants the firing systems for the new generation of brown coal fire steam generators with a capacity of 800 MW and more is designed in a similar way. For bituminous coal fire steam generators the primary measures on the firing side are nor sufficient to keep the German NO x emission limit. Therefore these units had to be retrofitted with a SCR-DENOX plant. The experience with the new firing system made in a 110 MW steam generator in Austria with a wide range of fuels is introduced. One of the largest bituminous coal fired once-trough steam generator built by EVT is the boiler for the power station Bexbach I (750 MW). The firing system is designed as a tangential firing system with 32 jet burners. These are arranged in pairs in the corners and divided into 4 burner levels with 4 burner pairs each. One mill is allocated to each burner level. An important characteristic feature is that the four bowl mills are arranged on one side of the steam generator. The plant is constructed with upper air nozzles which are arranged above the top burner level for the reduced of nitrogen oxides. During tests at steam generator with similar design, the nO x formation could be reduced from 750 to 500 mg/m 3 s.t.p. (dry, 6% O 2 ) with an addition of upper air of 20% at 100% unit capacity and constant total flow. As a main approach for the further reduction of the primary NO x emission at bituminous coal fired steam generators with tangential firing systems, the experience gained from the firing of brown coal has also been taken into account. A fundamental aspect in this respect was the vertical air staging in the direction of the furnace height. The results of many tests in a test reactor have shown that the differences of the achievable NO x values of brown and

  18. Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier

    Directory of Open Access Journals (Sweden)

    Abaimov Nikolay A.

    2017-01-01

    Full Text Available Integrated gasification combined cycle (IGCC technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI. The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.

  19. Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier

    Science.gov (United States)

    Abaimov, Nikolay A.; Ryzhkov, Alexander F.

    2017-10-01

    Integrated gasification combined cycle (IGCC) technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI). The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD) method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE) and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C) steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.

  20. Investigation of two-stage air-blown and air-steam-blown entrained-flow coal gasification

    Science.gov (United States)

    Abaimov, N. A.; Butakov, E. B.; Burdukov, A. P.; Ryzhkov, A. F.

    2017-09-01

    The aim of the paper is to compare effect of coal and steam supply to the second stage of the entrained-flow gasifiers on their main operating parameters. Two two-stage gasifiers of SB RAS Institute of Thermophysics were used as experimental units. The 5 MW unit has air-coal feeding to first and second stages (air-blown gasification). The 1 MW unit has air-coal feeding to first stage and steam feeding to second stage (air-steam-blown gasification). Experimental studies of air-blown and air-steam-blown gasification with various stoichiometric coefficients, flow rates, temperatures and supply points of secondary media (air-coal and steam) are carried out. Experimental and calculated (thermodynamic and CFD) methods have established that: in the air-blown gasification unit the increase of stoichiometric coefficients (secondary coal flow rate reduction) reduces the syngas heating value and increases the carbon conversion rate; in the air-steam-blown gasification unit the increase of the steam supply nozzle immersion to the gasifier leads to increase of the syngas heating value, the carbon conversion rate and decrease of the syngas H2/CO ratio.

  1. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  2. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  3. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  4. Catalytic Two-Stage Liquefaction (CTSL) process bench studies with bituminous coal. Final report, [October 1, 1988--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported herein are the details and results of Laboratory and Bench-Scale experiments using bituminous coal concluded at Hydrocarbon Research, Inc., under DOE contract during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with the application of coal cleaning methods and solids separation methods to the Catalytic Two-Stage Liquefaction (CTSL) Process. Additionally a predispersed catalyst was evaluated in a thermal/catalytic configuration, and an alternative nickel molybdenum catalyst was evaluated for the CTSL process. Three coals were evaluated in this program: Bituminous Illinois No. 6 Burning Star and Sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The tests involving the Illinois coal are reported herein, and the tests involving the Wyoming and New Mexico coals are described in Topical Report No. 1. On the laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects are reported in Topical Report No. 3. Other microautoclave tests, such as tests on rejuvenated catalyst, coker liquids, and cleaned coals, are described in the Bench Run sections to which they refer. The microautoclave tests conducted for modelling the CTSL process are described in the CTSL Modelling section of Topical Report No. 3 under this contract.

  5. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame

    International Nuclear Information System (INIS)

    Shimoda, M.; Sugano, A.; Kimura, T.; Watanabe, Y.; Ishiyama, K.

    1990-01-01

    This paper reports on a method predicting unburnt carbon in a coal fired utility boiler developed using an image processing technique. The method consists of an image processing unit and a furnace model unit. temperature distribution of combustion flames can be obtained through the former unit. The later calculates dynamics of the carbon reduction from the burner stages to the furnace outlet using coal feed rate, air flow rate, chemical and ash content of coal. An experimental study shows that the prediction error of the unburnt carbon can be reduced to 10%

  6. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  7. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  8. Mathematical models of gas-dynamic and thermophysical processes in underground coal mining at different stages of mine development

    Directory of Open Access Journals (Sweden)

    М. В. Грязев

    2017-03-01

    Full Text Available New trends have been traced and the existing ones refined regarding filtration and diffusive motion of gases in coal beds and surrounding rock, spontaneous heating of coal and transport of gas traces by ventilation currents in operating coal mines. Mathematical models of gas-dynamic and thermophysical processes inside underworked territories after mine abandonment have been justified. Mathematical models are given for feasible air feeding of production and development areas, as well as for the development of geotechnical solutions to ensure gas-dynamic safety at every stage of coal mine operation. It is demonstrated that the use of high-performance equipment in the production and development areas requires more precise filtration equations used when assessing coal mine methane hazard. A mathematical model of pressure field of non-associated methane in the edge area of the coal seam has been justified. The model is based on one-dimensional hyperbolic equation and takes into consideration final rate of pressure distribution in the seam. Trends in gas exchange between mined-out spaces of high methane- and CO2-concentration mines with the earth surface have been refined in order to ensure environmental safety of underworked territories.

  9. Burner ignition system

    Science.gov (United States)

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  10. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of

  11. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  12. Study of initial stage in coal liquefaction. Increase in oil yield with suppression of retrogressive reaction during initial stage; Ekika hanno no shoki katei ni kansuru kenkyu. 1.

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, K.; Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For the coal liquefaction, improvement of liquefaction conditions and increase of liquefied oil yield are expected by suppressing the recombination through rapid stabilization of pyrolytic radicals which are formed at the initial stage of liquefaction. Two-stage liquefaction combining prethermal treatment and liquefaction was performed under various conditions, to investigate the effects of reaction conditions on the yields and properties of products as well as to increase liquefied oil yield. Consequently, it was found that the catalyst contributes greatly to the hydrogen transfer to coal at the prethermal treatment. High yield of n-hexane soluble fraction with products having low condensation degree could be obtained by combining the prethermal treatment in the presence of hydrogen and catalyst with the concentration of slurry after the treatment. This was considered to be caused by the synergetic effect between the improvement of liquefaction by suppressing polymerization/condensation at the initial stage of reaction through the prethermal treatment and the effective hydrogen transfer accompanied with the improvement of contact efficiency of coal/catalyst by the concentration of slurry at the stage of liquefaction. 4 refs., 8 figs.

  13. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  14. A FUEL-RICH PRECOMBUSTOR. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS - VOLUME IV. ALTERNATE CON- CEPTS FOR SOX, NOX, AND PARTICULATE EMISSIONS CONTROL FROM

    Science.gov (United States)

    The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...

  15. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  16. Influence of Cu(NO32 initiation additive in two-stage mode conditions of coal pyrolytic decomposition

    Directory of Open Access Journals (Sweden)

    Larionov Kirill

    2017-01-01

    Full Text Available Two-stage process (pyrolysis and oxidation of brown coal sample with Cu(NO32 additive pyrolytic decomposition was studied. Additive was introduced by using capillary wetness impregnation method with 5% mass concentration. Sample reactivity was studied by thermogravimetric analysis with staged gaseous medium supply (argon and air at heating rate 10 °C/min and intermediate isothermal soaking. The initiative additive introduction was found to significantly reduce volatile release temperature and accelerate thermal decomposition of sample. Mass-spectral analysis results reveal that significant difference in process characteristics is connected to volatile matter release stage which is initiated by nitrous oxide produced during copper nitrate decomposition.

  17. Ecothal burner development; Ecothal braennarutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, Thomas [KANTHAL AB, Hallstahammar (Sweden)

    2004-08-01

    A SER burner system with catalytic cleaning have been optimised for an outer tube OD 100-115 mm. The aim has been to develop a burner with an emission of nitrogen oxides below 50 ppm and an efficiency higher than 80%. An optimised burner system have been realised but will not be stable enough for commercialisation. In order to fullfill the requirements it have to be regulated with closed loop oxygen sensor system regulating the air/gas supply (Lambda-value). Practically it is possible to reach 200-300 ppm nitrogen oxide with an efficiency around 70-80%. Following work have to focus on how to improve the stability considering geometrical changes when in operation but also towards accomodation of production tolerances and fluctuations in gas supply systems.

  18. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  19. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  20. IEN project - Fluidized bed burner

    International Nuclear Information System (INIS)

    1985-08-01

    Due to difficulties inherent to the organic waste storage from laboratories and institutes which use radioactive materials for scientific researches, the Nuclear Facilities Division (DIN/CNEN); elaborated a project for constructing a fluidized burner, in laboratory scale, for burning the low level organic radioactive wastes. The burning system of organic wastes is described. (M.C.K.) [pt

  1. Modernization of burner devices of gas- and liquid-fueled power boilers

    Science.gov (United States)

    Shestakov, N. S.; Leikam, A. E.; Asoskov, V. A.; Sorokin, A. P.

    2012-03-01

    The paper describes three types of low-toxic gas-fuel-oil burners that have up to now been implemented at several of Russia's power stations in the conversion of coal-fired boilers to natural-gas and fuel-oil combustion and modernization of gas-fuel oil boilers using known combustion technologies to suppress the formation of nitric oxides.

  2. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    OpenAIRE

    Ariyaratne, W. K. Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of...

  3. Towards a better understanding of biomass suspension co-firing impacts via investigating a coal flame and a biomass flame in a swirl-stabilized burner flow reactor under same conditions

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2012-01-01

    increases the residence time of coal particles. Both the factors favor a complete burnout of the coal particles. The higher volatile yields of the straw produce more off-gas, requiring more O2 for the fast gas phase combustion and causing the off-gas to proceed to a much larger volume in the reactor prior...... to mixing with oxidizer. For the pulverized straw particles of a few hundred microns in diameters, the intra-particle conversion is found to be a secondary issue at most in their combustion. The simulations also show that a simple switch of the straw injection mode can not improve the burnout of the straw...

  4. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  5. Pulverized fuel-oxygen burner

    Science.gov (United States)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    2017-09-05

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.

  6. Core Design Studies for a 300 MWe TRU Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has been developing the KALIMER-600 core design with a breakeven fissile conversion ratio. The core is loaded with a ternary metallic fuel (TRU-U-10Zr), and the breakeven characteristics are achieved without any blanket assembly. As an alternative plan, a KALIMER-600 burner core design has also been performed. In the early days of a fast reactor, the main purpose was an economical use of a uranium resource, but nowadays, in addition to the maximum utilization of a uranium resource, the burning of high level radioactive waste is taken as an additional interest for the harmony with the environment. In this paper, a 300 MWe burner core design is presented to demonstrate reactor performance for the reference KALIMER-600 burner. As a means to flatten the power distribution, instead of a single fuel enrichment scheme adapted in the design of the KALIMER-600 burner, the two enrichment zoning approach was adapted. Considering that the TRU fuel may not be qualified due to limited database, the uranium core was designed to permit the TRU core operation to cover after the uranium core is operated at an early stage.

  7. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  8. 3-D CFD Modeling for Parametric Study in a 300-MWe One-Stage Oxygen-Blown Entrained-Bed Coal Gasifier

    Directory of Open Access Journals (Sweden)

    Sang Shin Park

    2015-05-01

    Full Text Available Three-dimensional computational fluid dynamics (CFD modeling of the gasification performance in a one-stage, entrained-bed coal gasifier (Shell Coal Gasification Process (SCGP gasifier was performed, for the first time. The parametric study used various O2/coal and steam/coal ratios, and the modeling used a commercial code, ANSYS FLUENT. CFD modeling was conducted by solving the steady-state Navier–Stokes and energy equations using the Eulerian–Lagrangian method. Gas-phase chemical reactions were solved with the Finite–Rate/Eddy–Dissipation Model. The CFD model was verified with actual operating data of Demkolec demo Integrated Gasification Combined Cycle (IGCC facility in Netherlands that used Drayton coal. For Illinois #6 coal, the CFD model was compared with ASPEN Plus results reported in National Energy Technology Laboratory (NETL. For design coal used in the SCGP gasifier in Korea, carbon conversion efficiency, cold gas efficiency, temperature, and species mole fractions at the gasifier exit were calculated and the results were compared with those obtained by using ASPEN Plus-Kinetic. The optimal O2/coal and steam/coal ratios were 0.7 and 0.05, respectively, for the selected operating conditions.

  9. Hydrogen production by two-stage co-pyrolysis of bituminous coal-polymers mixtures

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Kříž, Vlastimil

    2008-01-01

    Roč. 5, č. 1 (2008), s. 77-82 ISSN 1214-9705 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : co-pyrolysis * coal * polymers Subject RIV: CD - Macromolecular Chemistry

  10. Current and advanced NO/sub x/-control technology for coal-fired industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A NOx-control-technology assessment study of coal-fired industrial boilers was conducted to examine the effectiveness of combustion-modification methods, including low excess air, staged combustion, and burner modifications. Boiler types considered included overfed and underfed stokers, spreader stokers, pulverized-coal and coal-fired cyclone units. Significant variations in NOx emissions occur with boiler type, firing method, and coal type; a relative comparison of emission-control performance, cost, and operational considerations is presented for each method. Baseline (as-found) emissions from grate-fired stokers were shown to be in the range of 200 to 300 ppM. Similarly, as-found emissions from suspension-fired units were quite low (350 to 600 ppM) as compared to comparably designed utility-sized units. Low excess air was shown to be the most effective method on existing units, reducing emissions by approximately 10%. Evaluation of staged combustion and burner modification, however, were limited due to current boiler designs. Major hardware modification/design and implementation are necessary before the potential of these techniques can be fully evaluated. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion-modification program, including energy considerations, incremental capital and operating costs, corrosion, secondary pollutants, and retrofit potential.

  11. Raising the Reliability, Efficiency, and Ecological Safety of Operation of the BKZ-210-140F Boiler Transferred to Stage Firing of Kuznetsk Coal in a U-Shape Flame

    International Nuclear Information System (INIS)

    Vagner, A. A.

    2004-01-01

    The BKZ-210-140F boiler of the West-Siberian Cogeneration Plant was equipped initially with four uniflow tangentially oriented burners and tertiary air nozzles. In order to raise the efficiency of operation and lower harmful emissions the boiler was reconstructed. U-shape aerodynamics was organized in the furnace by mounting 8 burners, 8 secondary air nozzles, and 8 tertiary air nozzles on the front and rear walls of the furnace. The reconstruction ensured higher stability of ignition of pulverized coal without flame division and rated temperatures of the superheater metal, lowered the optimum excess air factor at the outlet from the superheater to 1.2 - 1.25, decreased the concentration of nitrogen oxides in the combustion products to 360 - 380 mg/m 3 , and increased the gross efficiency of the boiler to 91.5 - 91.7%

  12. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  13. Acoustic Pressure Oscillations Induced in I-Burner

    Science.gov (United States)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  14. A new scaling methodology for NO(x) emissions performance of gas burners and furnaces

    Science.gov (United States)

    Hsieh, Tse-Chih

    1997-11-01

    A general burner and furnace scaling methodology is presented, together with the resulting scaling model for NOsb{x} emissions performance of a broad class of swirl-stabilized industrial gas burners. The model is based on results from a set of novel burner scaling experiments on a generic gas burner and furnace design at five different scales having near-uniform geometric, aerodynamic, and thermal similarity and uniform measurement protocols. These provide the first NOsb{x} scaling data over the range of thermal scales from 30 kW to 12 MW, including input-output measurements as well as detailed in-flame measurements of NO, NOsb{x}, CO, Osb2, unburned hydrocarbons, temperature, and velocities at each scale. The in-flame measurements allow identification of key sources of NOsb{x} production. The underlying physics of these NOsb{x} sources lead to scaling laws for their respective contributions to the overall NOsb{x} emissions performance. It is found that the relative importance of each source depends on the burner scale and operating conditions. Simple furnace residence time scaling is shown to be largely irrelevant, with NOsb{x} emissions instead being largely controlled by scaling of the near-burner region. The scalings for these NOsb{x} sources are combined in a comprehensive scaling model for NOsb{x} emission performance. Results from the scaling model show good agreement with experimental data at all burner scales and over the entire range of turndown, staging, preheat, and excess air dilution, with correlations generally exceeding 90%. The scaling model permits design trade-off assessments for a broad class of burners and furnaces, and allows performance of full industrial scale burners and furnaces of this type to be inferred from results of small scale tests.

  15. The precessing jet gas burner - a low NO[sub x] burner providing process efficiency and product quality improvements

    Energy Technology Data Exchange (ETDEWEB)

    Manias, C.G. (Adelaide Brighton Cement Ltd. (Australia)); Nathan, G.J. (Adelaide Univ., SA (Australia))

    1993-03-01

    Most of the world's cement clinker is produced with coal firing in kilns as the most economical fuel source for this heat-intensive process. However, in many parts of the world, including Australia, North and South America, the Middle East and the former Eastern Block countries, availability of natural gas makes this fuel an economical alternative. Adelaide Brighton Cement has some 25 years' experience in using natural gas to fire cement kilns in its South Australian operations. Natural gas has many attractions as a fuel source, in comparison to coal. However, it also has disadvantages which relate to its combustion characteristics. Clinker quality is largely dependent on the heat treatment in the kiln, where rapid heat-up rates, short time at high temperature and rapid cool down rates give the best crystal structure for cement reactivity and strength development. At Adelaide Brighton Cement, there have been many attempts over the years to improve the heat profile in the kiln for clinker quality. Nevertheless, although conditions were optimized, the basic disadvantages of gas flames remained. Now, however, the development of a new gas burner, based on novel and patented research by the Mechanical Engineering Department of Adelaide University, has exciting implications for natural gas firing. The precessing jet (P.J.) burner has demonstrated, in a full scale industrial application, the ability to produce a very short, sharp and luminous flame, reduce NO[sub x] emission by one half or more, improve clinker quality, as a result of better heat profiles in the kiln, and prior to increase kiln outputs and reduce fuel consumptions as a consequence of improved flame characteristics. This is achieved with a very simple configuration (the P.J. burner is almost as simple as the plain pipe) and without the use of primary air. (author)

  16. Numerical Investigation of the Low-Caloric Gas Burning Process in a Bottom Burner

    Directory of Open Access Journals (Sweden)

    Redko A.

    2017-08-01

    Full Text Available The use of low-grade gases in the fuel and energy balance of enterprises makes it possible to increase the energy efficiency of technological processes. The volumes of low-grade gases (blast furnace and coke oven gases, synthesis gas of coal gasification processes, biogas, coal gas, etc. that are utilized more significant in technological processes but their calorific value are low. At the same time artificial gases contain ballast gaseous (СО2, H2O and mechanical impurities that are harmful gas impurities. Their use requires technological preparation. Thus coal methane is characterized of high humidity, coal dust and drip moisture, variable composition. Thus was effective burning of coal methane it is required the development of constructive and regime measures that ensure a stable and complete burning of gaseous fuels. In this article it is presented the results of computer simulation of a stationary turbulent diffusion flame in a restricted space in the process of burning natural gas and coal methane in a bottom burner. The calculation results contain the fields of gear, temperature, concentration of CH4‚ CO‚ H2O‚ CO2 and nitrogen oxides. The structural elements of the flame (recirculation zone, hot "dome", mixing layer and far trace are determined. It has been established that complete combustion of coal methane in a modified bottom burner is ensured and the numerical values of nitrogen oxide concentrations in the flame are consistent with the literature data.

  17. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  18. Furnaces with multiple ?ameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple ?ameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a

  19. Burners. The decrease of nitrogen oxides in combustion process: the 2 nd generation GR LONOxFLAM burner; Les bruleurs, la reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    The Pillard company has developed, in cooperation with GDF (the French national gas utility), the GR-LONOxFLAM burner concept for reducing NOx emission levels and solid combustion products. The concept consists, for gaseous fuels, in the combination of an internal recirculation and a gas staging process; for liquid fuels, a separated flame process and air staging are combined. These concepts allow for an important reduction in NOx and non-burned residues, even with standard-size burners

  20. DESIGN AND DEVELOPMENT OF MILD COMBUSTION BURNER

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2013-12-01

    Full Text Available This paper discusses the design and development of the Moderate and Intense Low oxygen Dilution (MILD combustion burner using Computational Fluid Dynamics (CFD simulations. The CFD commercial package was used to simulate preliminary designs for the burner before the final design was sent to the workshop for fabrication. The burner is required to be a non-premixed and open burner. To capture and use the exhaust gas, the burner was enclosed within a large circular shaped wall with an opening at the top. An external EGR pipe was used to transport the exhaust gas which was mixed with the fresh oxidant. To control the EGR and exhaust flow, butterfly valves were installed at the top opening as a damper to close the exhaust gas flow at a certain ratio for EGR and exhaust out to the atmosphere. High temperature fused silica glass windows were installed to view and capture images of the flame and analyze the flame propagation. The burner simulation shows that MILD combustion was achieved for the oxygen mole fraction of 3-13%. The final design of the burner was fabricated and ready for the experimental validation.

  1. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  2. Mathematical modeling of the heat treatment and combustion of a coal particle. V. Burn-up stage

    Science.gov (United States)

    Enkhjargal, Kh.; Salomatov, V. V.

    2011-07-01

    The present material is a sequel of the previous publications of the authors in this journal under a common title in which by means of mathematical modeling the sequential stages of the process of combustion of coal fuels have been obtained: heating, drying, escape of volatiles, and ignition. Mathematical models of the final stage of combustion of an individual particle — the burn-up stage — have been formulated. On the basis of the solution methods for nonlinear boundary-value problems developed by us, approximate-analytic formulas for two characteristic regimes, burn-up simultaneously with the evaporation of the remaining moisture and burn-up of the completely dried coke residue, have been obtained. The previous history of the physical and chemical phenomena in the general burning pattern is taken into account. The influence of the ash shell on the duration of combustion has been extimated. Comparison of calculations by the obtained dependences with the results of other authors has been made. It showed an accuracy sufficient for engineering applications.

  3. Burners. Reduction of nitrogen oxides in combustion: 2. generation of GR LONOxFLAM burner; Les bruleurs. La reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    This paper presents the research work carried out by the French Pillard company in collaboration with Gaz de France for the design of low NO{sub x} burners. The different type of low NO{sub x} burners are presented according to the type of fuel: gas, liquid fuels and fuel oils. The gas burner uses the fuel staging principle and the recirculation of smokes and leads to NO{sub x} emissions lower than 100 mg/Nm{sup 3}. The liquid fuel and fuel oil burners use the separate flames and the smoke self-recirculation methods (fuel-air mixture staging, reduction of flame temperature and of the residence time in flames). (J.S.)

  4. Proposition of primary methods for nitrogen oxides emissions reduction at coal-fired 200 MW power unit (Yugoslavia)

    International Nuclear Information System (INIS)

    Repic, B.; Mladenovic, R.; Crnomarkovic, N.

    1997-01-01

    The combustion of coal is followed by increased pollution of the environment with toxic products. Together with the generation of other pollutants, the emission of nitrogen oxides (NO x ) represents, due to its high toxicity, a great environmental risk. Appropriate measures must be taken for lowering NO x emission, both on new facilities and those already in operation. Basic technologies (primary reduction methods) of several generations, developed until now and used in practice, are presented in the paper. The technologies applicable on domestic facilities and adjusted to domestic coals have been given particular consideration. Proposition of primary methods for NO x emission reduction at coal-fired 200 MW power unit at TPS 'Nikola Tesla' is analyzed. The following methods have been considered in detail: flue gases recirculation, multi-stage combustion, low-NO x burners, additional over-fire air, multi-stage air intake into the furnace, staged fuel injection, grinding fineness increase, etc. Considerations were performed according to existing constructive characteristics of the furnace and the burners, and characteristics of used fuels, i. e. lignites from Kolubara pit. (Author)

  5. Application of the NOx Reaction Model for Development of Low-NOx Combustion Technology for Pulverized Coals by Using the Gas Phase Stoichiometric Ratio Index

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2011-03-01

    Full Text Available We previously proposed the gas phase stoichiometric ratio (SRgas as an index to evaluate NOx concentration in fuel-rich flames. The SRgas index was defined as the amount of fuel required for stoichiometric combustion/amount of gasified fuel, where the amount of gasified fuel was the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. In the present study we found that SRgas was a good index to consider the gas phase reaction mechanism in fuel-rich pulverized coal flames. When SRgas < 1.0, NOx concentration was strongly influenced by the SRgas value. NOx concentration was also calculated by using a reaction model. The model was verified for various coals, particle diameters, reaction times, and initial oxygen concentrations. The most important reactions were gas phase NOx reduction reactions by hydrocarbons. The hydrocarbon concentration was estimated based on SRgas. We also investigated the ratio as an index to develop a new low-NOx combustion technology for pulverized coals. We examined the relation between local SRgas distribution in the fuel-rich region in the low-NOx flame and NOx emissions at the furnace exit, by varying burner structures. The relationship between local SRgas value and local NOx concentration was also examined. When a low-NOx type burner was used, the value of SRgas in the flame was readily decreased. When the local SRgas value was the same, it was difficult to influence the local NOx concentration by changing the burner structure. For staged combustion, the most important item was to design the burner structure and arrangement so that SRgas could be lowered as much as possible just before mixing with staged air.

  6. Mathematical modeling of the heat treatment and combustion of a coal particle. IV. Ignition stage

    Science.gov (United States)

    Enkhjargal, Kh.; Salomatov, V. V.

    2011-07-01

    The present paper is the continuation of the previous publications of the present authors in the Journal of Engineering Physics under the general title in which three sequential stages of the thermal preparation of a carbon particle for combustion are considered: heating, drying, and the yield of volatiles. The present paper is devoted to a detailed investigation of the stage of ignition of a carbon particle under the conditions of external radiative-convective supply that most adequately reflects the furnace medium. The characteristics of thermal ignition of a carbon matrix were studied with the aid of the adiabatic method. Such parameters as time and the heating temperature, the time of induction, the total time and the temperature of ignition of a carbon particle, the scale temperature, etc. have been found. The degree of dependence of the time of ignition on the initial temperature of the particle, the temperature of the external medium, heat transfer coefficient, and other inlet data has been analyzed.

  7. Coal liquefaction in early stage of NEDOL process 1t/d PSU; 1t/d PSU ni okeru ekika shoki hanno ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Kawabata, M.; Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the behavior of coal liquefaction reaction in early stage as a part of studies on the coal liquefaction characteristics using NEDOL process 1 t/d process supporting unit (PSU), coal slurry sample was taken from the outlet of slurry preheater located in the upflow of liquefaction reactors, and was tested. Tanito Harum coal was used for liquefaction. Preheater was operated under the condition of pressure of 170 kg/cm{sup 2}, gas flow rate of 64 Nm{sup 3}/hr, and at temperature up to 410{degree}C at the outlet, in response to the standard test condition. The slurry sample was discharged into a high temperature separator with temperature of 250{degree}C. Liquefaction was not proceeded at the outlet of preheater. Solid residue yielded around 80%, and liquid yielded around 15%. Gases, CO and CO2, and water yielded also small amount around 3%. The solid sample contained much IOM fraction (tetrahydrofuran-insoluble and ash), and the liquid contained much heavy oil fraction. Hydrogenation was not proceeded, and the hydrogen consumption was very low showing below one-tenth of that at the usual operation. Hydrogen sulfide gas was formed at early stage, which suggested that the change of iron sulfide catalyst occur at early stage of liquefaction. 1 ref., 5 figs., 2 tabs.

  8. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    Energi, Haesselbyverket, has now invested in equipment for burning pellets instead of coal. In Linkoeping wastes of rubber are mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1997 was 370 SEK/ton or 10 per cent higher than in 1996. For the world, the average import price fell to 46 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1998 as a result of the crisis in Asia. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards. The co-generation plants have all some sort of SO 2 -removal system. Mostly used is the wet-dry method. The biggest co-generation plant, Vaesteraas, has newly invested in a ca talytic NO x -cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO x -burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO x -duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 800 tons in 1997, a minor increase compared to 1996. The coal demand in the OECD-countries has increased about 1.7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong demand for electrical power in the Asian countries and the developing countries. However, greater efforts to minimize the

  9. Mathematical models of gas-dynamic and thermophysical processes in underground coal mining at different stages of mine development

    OpenAIRE

    М. В. Грязев; Н. М. Качурин; С. А. Воробьев

    2017-01-01

    New trends have been traced and the existing ones refined regarding filtration and diffusive motion of gases in coal beds and surrounding rock, spontaneous heating of coal and transport of gas traces by ventilation currents in operating coal mines. Mathematical models of gas-dynamic and thermophysical processes inside underworked territories after mine abandonment have been justified. Mathematical models are given for feasible air feeding of production and development areas, as well as for th...

  10. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  11. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  12. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.

    Science.gov (United States)

    Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian

    2014-01-01

    Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the

  13. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    Energy Technology Data Exchange (ETDEWEB)

    Ariyaratne, W.K. Hiromi; Melaaen, Morten C.; Tokheim, Lars-Andre [Telemark University College, Faculty of Technology, Kjoelnes Ring 56, P.O. Box 203, N-3901, Porsgrunn (Norway)

    2013-07-01

    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  14. Fuel-flexible burner apparatus and method for fired heaters

    Energy Technology Data Exchange (ETDEWEB)

    Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S. (Jamal); Benson, Charles E.; Pellizzari, Roberto O.; Little, Cody L.; Marty, Seth A.; Imel, K. Parker; Barnes, Jonathon E.; Parker, Chris S.

    2017-03-14

    A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in the burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.

  15. Methane combustion in catalytic premixed burners

    International Nuclear Information System (INIS)

    Cerri, I.; Saracco, G.; Specchia, V.

    1999-01-01

    Catalytic premixed burners for domestic boiler applications were developed with the aim of achieving a power modularity from 10 to 100% and pollutant emissions limited to NO x 2 , where the combustion took place entirely inside the burner heating it to incandescence and allowing a decrease in the flame temperature and NO x emissions. Such results were confirmed through further tests carried out in a commercial industrial-scale boiler equipped with the conical panels. All the results, by varying the excess air and the heat power employed, are presented and discussed [it

  16. Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    L. Surinaidu

    2014-09-01

    Full Text Available The Singareni Collieries Company Ltd (SCCL is exploiting coal in the Godavari valley coal fields spread over 5.33 km2 in Andhra Pradesh, India. In the area, six workable coal seams have been identified in Barakar formation by the analysis of the geologic logs of 183 bore wells. A finite difference based numerical groundwater flow model is developed with twenty conceptual layers and with a total thickness of 320 m. The flow model was calibrated under steady state conditions and predicted groundwater inflows into the mine pits at different mine development stages. The groundwater budget results revealed that the mining area would receive net groundwater inflows of 5877 m3 day−1, 12,818 m3 day−1, 12,910 m3 day−1, 20,428 m3 day−1, 22,617 m3 day−1 and 14,504 m3 day−1 at six mine development stages of +124 m (amsl, +93 m (amsl, +64 m (amsl, +41 m (amsl, +0 m (amsl and −41 m (amsl, respectively. The results of the study can be used to plan optimal groundwater pumping and the possible locations to dewater the groundwater for safe mining at different mine development stages.

  17. Reduction of NOx and particulate emissions from coal-fired boilers by modification of coal nozzles and combustion tuning

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, B.; Talanker, A.; Mugenstein, A.; Shpon, G.; Vikhansky, A.; Elperin, T.; Bar-Ziv, E.; Bockelie, M.; Eddings, E.; Sarofim, A.F. [Israel Electric Corporation, Haifa (Israel). Engineering Division

    2001-07-01

    In the present paper two issues are discussed: the effect of the burner replacement on boiler performance and NOx emissions and the effect of the burner replacement on performance and efficiency of electrostatic precipitators (ESP). We also have experimented with different coal types and found the coals that together with combustion tuning met commonly accepted emission limits for NOx (less than 600 mg/dNm{sup 3}) and levels of carbon in fly ash (LOI) (approximately 5-6%) for existing boilers without low NOx burners. Our measurements were accompanied by computer simulations of the combustion of the combustion process in the boiler. Special attention was paid to detailed simulation of the flow and ignition in the near-burner zone. 7 refs., 12 figs., 5 tabs.

  18. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  19. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  20. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  1. Effect of sulfur or hydrogen sulfide on initial stage of coal liquefaction in tetralin; Sekitan ekika shoki katei ni okeru io to ryuka suiso no hatasu yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, M. [Government Industrial Research Institute, Kyushu, Saga (Japan)

    1996-10-28

    It is well known that the solubilization of coal can be accelerated by adding sulfur or hydrogen sulfide during direct liquefaction of difficult coals. From the studies of authors on the coal liquefaction under the conditions at rather low temperatures between 300 and 400{degree}C, liquefaction products with high quality can be obtained by suppressing the aromatization of naphthene rings, but it was a problem that the reaction rate is slow. For improving this point, results obtained by changing solvents have been reported. In this study, to accelerate the liquefaction reaction, Illinois No.6 coal was liquefied in tetralin at temperature range from 300 to 400{degree}C by adding a given amount of sulfur or hydrogen sulfide at the initial stage of liquefaction. The addition of sulfur or hydrogen sulfide provided an acceleration effect of liquefaction reaction at temperature range between 300 and 400{degree}C. The addition of sulfur or hydrogen sulfide at 400{degree}C increased the oil products. At 370 and 400{degree}C, the liquid yield by adding sulfur was slightly higher than that by adding hydrogen sulfide, unexpectedly. The effects of sulfur and hydrogen sulfide were reversed when increasing the hydrogen pressure. 5 figs., 1 tab.

  2. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  3. Pressure Melting and Ice Skating / Bunsen Burner

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Pressure Melting and Ice Skating / Bunsen Burner - Revisited. Classroom Volume 1 Issue 5 May 1996 pp 71-78. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0071-0078. Resonance ...

  4. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  5. Effects on NOx and SO2 Emissions during Co-Firing of Coal With Woody Biomass in Air Staging and Reburning

    Directory of Open Access Journals (Sweden)

    Nihad Hodžić

    2018-02-01

    Full Text Available Co-firing coal with different types of biomass is increasingly being applied in thermal power plants in Europe. The main motive for the use of biomass as the second fuel in coal-fired power plants is the reduction of CO2 emissions, and related financial benefits in accordance with the relevant international regulations and agreements. Likewise, the application of primary measures in the combustion chamber, which also includes air staging and/or reburning, results in a significant reduction in emission of polluting components of flue gases, in particular NOx emissions. In addition to being efficient and their application to new and future thermoblocks is practically unavoidable, their application and existing conventional combustion chamber does not require significant constructional interventions and is therefore relatively inexpensive. In this work results of experimental research of co-firing coals from Middle Bosnian basin with waste woody biomass are presented. Previously formed fuel test matrix is subjected to pulverized combustion under various temperatures and various technical and technological conditions. First of all it refers to the different mass ratio of fuel components in the mixture, the overall coefficient of excess air and to the application of air staging and/or reburning. Analysis of the emissions of components of the flue gases are presented and discussed. The impact of fuel composition and process temperature on the values of the emissions of components of the flue gas is determined. Additionally, it is shown that other primary measures in the combustion chamber are resulting in more or less positive effects in terms of reducing emissions of certain components of the flue gases into the environment. Thus, for example, the emission of NOx of 989 mg/ measured in conventional combustion, with the simultaneous application of air staging and reburning is reduced to 782 mg/, or by about 21%. The effects of the primary measures

  6. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  7. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  8. Fuel burner and combustor assembly for a gas turbine engine

    Science.gov (United States)

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  9. CFD simulations on marine burner flames

    DEFF Research Database (Denmark)

    Cafaggi, Giovanni; Jensen, Peter Arendt; Glarborg, Peter

    of marine burners. The resulting auxiliary boilers shall be compact and able to operate with different fuel types, while reducing NOX emissions. The specific boiler object of this study uses a swirl stabilized liquid fuel burner, with a pressure swirl spill-return atomizer (Fig.1). The combustion chamber...... is enclosed in a water jacket used for water heating and evaporation, and a convective heat exchanger at the furnace outlet super-heats the steam. The purpose of the present study is to gather detailed knowledge about the influence of fuel spray conditions on marine utility boiler flames. The main goal...... of work presented in this paper was to obtain a spray description to setup a particle injection region in the CFD simulations of the boiler....

  10. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  11. Increase of Ecological Safety, Reliability and Efficiency of Coal-Fired Boilers

    Directory of Open Access Journals (Sweden)

    Volkov E.P.

    2017-04-01

    Full Text Available The changes of environmental legislation of the Russian Federation will lead to a drastic increase of the ecological payments for environmental pollution in excess of technological standards. Significant excess in relative emissions of nitrogen oxides take place in burning solid fuel with liquid slag-tap removal. The purpose of this article was to develop technical solutions for low-cost reconstruction of the boilers to ensure efficient combustion of the fuel and technological standards of emissions of nitrogen oxides. As shown the use of straight-flow burners with compulsory optimization of the aerodynamics of the furnace and the organization of staged combustion of fuel will provide low nitrogen oxide emissions and efficient fuel combustion. Research on physical models has demonstrated the feasibility of increasing the angle of the pulverized coal burners down to 65-70o, and also achieved a more uniform distribution and increase the speed of the jets coming from upper and lower tertiary air vertical compartments of nozzles through the installation of the vertical extra sheets, which guide the flow in a space between jets. The results obtained allow the transfer of existing boilers with slag-tag removal to a solid with the installation of direct-flow burners and optimization of the aerodynamics of the furnace, which provides regulations for energy efficiency and ecological safety corresponding to the best, achieved technologies, and dramatically reduces environmental payments. The proposed technology in boiler BKZ-210-140F allowed reducing emissions of nitrogen oxides by more than 2 times when burning highly reactive Kuznetsk coal, as shown as an example.

  12. Clean coal technologies and future prospects for coal

    International Nuclear Information System (INIS)

    Rose, A.; Torries, T.; Labys, W.

    1991-01-01

    The purpose of this paper is to analyze the future potential of coal in the US economy during the next 25 years in light of clean coal technologies. According to official US Department of Energy (DOE) designations, these technologies pertain only to the beneficiation, transformation, combustion, and postcombustion clean-up stages of the coal cycle; no coal mining or coal transport technologies are included. In general, clean coal technologies offer the prospect of mitigating environmental side-effects of coal utilization, primarily through improved operating efficiencies and lowered costs of air emission controls. If they prove successful, coal users will be able to meet more stringent environmental regulations at little or no additional cost. In assessing the influence of clean coal technologies on coal demand, we focus on the economics of three crucial areas: their development, their deployment, and coal utilization implications of their operation

  13. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS; VOLUME 2. TESTING IN A 100 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The report givesresults of100 million Btu/hr (29 MWt) experimental furnace to explore methods for achieving effective S02 removal in a coalfired utility boiler using calcium-based sorbents, through appropriate selection of injection location and injector design/operating paramete...

  14. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  15. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  16. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  17. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  18. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Scaroni, A.W.

    1997-06-03

    The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

  19. COAL SLAGGING AND REACTIVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion

  20. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  1. 0.20-m (8-in.) primary burner development report

    International Nuclear Information System (INIS)

    Stula, R.T.; Young, D.T.; Rode, J.S.

    1977-12-01

    High-Temperature Gas-Cooled Reactors (HTGRs) utilize graphite-base fuels. Fluidized-bed burners are being employed successfully in the experimental reprocessing of these fuels. The primary fluidized-bed burner is a unit operation in the reprocessing flowsheet in which the graphite moderator is removed. A detailed description of the development status of the 0.20-m (8-in.) diameter primary fluidized-bed burner as of July 1, 1977 is presented. Experimental work to date performed in 0.10; 0.20; and 0.40-m (4, 8, and 16 in.) diameter primary burners has demonstrated the feasibility of the primary burning process and, at the same time, has defined more clearly the areas in which additional experimental work is required. The design and recent operating history of the 0.20-m-diameter burner are discussed, with emphasis placed upon the evolution of the current design and operating philosophy

  2. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  3. Coal liquefaction and hydrogenation

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  4. Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Buhl, P.; Moroni, E.C.

    1983-07-01

    Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

  5. Results of Study of Sulfur Oxide Reduction During Combustion of Coal-Water Slurry Fuel Through use of Sulfur Capturing Agents

    Directory of Open Access Journals (Sweden)

    Murko Vasiliy I.

    2016-01-01

    Full Text Available It is shown that an effective way of burning high sulfur coal is to burn coal-water slurry fuel (CWF prepared on its basis containing a sulfur capture agent (SCA entered in the slurry at the stage of preparation. The technique of thermodynamic analysis of chemical reactions during CWF burning has been developed including burning in the presence of SCA. Using the developed calculation program, the optimal temperature conditions have been determined as required for the effective reduction of sulfur oxides in flue gases when using different types of SCA. According to the results of calculating the composition of CWF combustion products when entering various substances in the burner space as SCA it has been determined that magnesite, calcite, and dolomite are the most effective natural minerals. The analysis of calculated and experimental data proves the efficiency of SCA addition as well as validity of the obtained results.

  6. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  7. Flashback Avoidance in Swirling Flow Burners

    Directory of Open Access Journals (Sweden)

    Vigueras-Zúñiga Marco Osvaldo

    2014-10-01

    Full Text Available Lean premixed combustion using swirling flows is widely used in gas turbines and combustion. Although flashback is not generally a problem with natural gas combustion, there are some reports of flashback damage with existing gas turbines, whilst hydrogen enriched fuel blends cause concerns in this area. Thus, this paper describes a practical approach to study and avoid flashback in a pilot scale 100 kW tangential swirl burner. The flashback phenomenon is studied experimentally via the derivation of flashback limits for a variety of different geometrical conditions. A high speed camera is used to visualize the process and distinguish new patterns of avoidance. The use of a central fuel injector is shown to give substantial benefits in terms of flashback resistance. Conclusions are drawn as to mitigation technologies.

  8. Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner

    Science.gov (United States)

    Pagliaroli, Tiziano; Mancinelli, Matteo; Troiani, Guido; Iemma, Umberto; Camussi, Roberto

    2018-01-01

    In laboratory-scale burner it has been observed that the acoustic excitations change the flame topology inducing asymmetry and oscillations. Hence, an acoustic and aeroacoustic study in non reactive condition is of primary importance during the design stage of a new burner in order to avoid the development of standing waves which can force the flame. So wall pressure fluctuations inside and outside of a novel slot burner have been studied experimentally and numerically for a broad range of geometrical parameters and mass flow rates. Wall pressure fluctuations have been measured through cavity-mounted microphones, providing uni- and multi-variate pressure statistics in both the time and frequency domains. Furthermore, since the onset of combustion-driven oscillations is always presaged by intermittent bursts of high amplitude, a wavelet-based conditional sampling procedure was applied to the database in order to detect coherent signatures embedded in the pressure time signals. Since for a particular case the coherent structures identified have a multi-scale signature, a wavelet-based decomposition technique was proposed as well to separate the contribution of the large- and small-scale flow structures to the pressure fluctuation field. As a main outcome of the activity no coupling between standing waves and velocity fluctuations was observed, but only well localized pressure signatures with shape strongly affected by the neighbouring flow physics.

  9. Sensitivity of Transmutation Capability to Recycling Scenarios in KALIMER-600 TRU Burner

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Myung Hyun

    2013-01-01

    The purpose of this study is to test transmutation and design feasibility of KALIMER burner caused from many limitations in recycling options; such as low recovery factors and external feed. Design impact from many recycling options will be tested as a sensitivity to various recycling process parameters under many recycling scenarios. Through this study, possibilities when Pyro-processing is realized with SFR can be expected in the recycling scenarios. For the development of sodium-cooled fast reactor(SFR) technology, prototype KALIMER plant is now under R and D stage in Korea. For the future application of SFR for waste transmutation, KALIMER core was designed for TRU burner by KAERI. Feasibility of TRU burner cannot be evaluated exactly because overall functional parameters in pyro-processing recycling process has not been verified yet. There is great possibility to accept undesirable process functions in pyro-processing. Only TRU nuclides composition a little differs between PWR SF and CANDU SF so first scenario has no problem operating SFR. In second scenario, the radiotoxicity of waste at 99% of TRU RF have to be confirmed whether it is proper level to reposit as Low and Intermediate Level Wastes or not. And the reactor safety at high RF of RE must be inspected. Not only third scenario but also several scenarios for good measure are being calculated and will be evaluated

  10. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  11. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  12. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  13. Wet treatment of low-quality coal. II stage. Pilot Plant; Tratamiento en fase humeda de carbones de baja calidad 2 fase: planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    At this second stage, the project was aimed at determining the appropriate operating conditions which permit the use of slack with a high ratio of inert materials after a treatment by means of wet oxidation at thigh pressure as well as carrying out an economic feasibility study. Based on the conclusions of the first stage, four representative samples were selected and the pilot plant for testing the influence of different process variables was designed. Continuous tests were conducted and the basic engineering was determined (process diagram, material, energy and equipment balances). An economic analysis for the erecting of an industrial plant for the treatment of low-quality coal using this technology was also carried out in order to establish whether a short-term or medium-term profitability of the required investment for the erecting could be achieved. It can be deduced from both the theoretical and experimental studies carried out that the technology of wet oxidation can be applied to the treatment of slacks, but the energetic efficiency of the reaction is so low that its use is not advisable for the proposed purposes. (Author)

  14. Low NO subx heavy fuel combustor concept program. Phase 1A: Coal gas addendum

    Science.gov (United States)

    Rosfjord, T.; Sederquist, R.

    1982-01-01

    The performance and emissions from a rich-lean combustor fired on simulated coal gas fuels were investigated using a 12.7-cm diameter axially-staged burner originally designed for operation with high heating value liquid fuels. A simple, tubular fuel injector was substituted for the liquid fuel nozzle; no other combustor modifications were made. Four test fuels were studied including three chemically bound nitrogen-free gas mixtures with higher heating values of 88, 227, and 308 kj/mol (103, 258 and 349 Btu/scf), and a 227 kj/mol (258 Btu/scf) heating value doped with ammonia to produce a fuel nitrogen content of 0.5% (wt). Stable, ultra-low nitrogen oxide, smoke-free combustion was attained for the nitrogen-free fuels. Results with the doped fuel indicated that less than 5% conversion of NH3 to nitrogen oxide levels below Environmental Protection Agency limits could be achieved. In some instances, excessive CO levels were encountered. It is shown that use of a burner design employing a less fuel-rich primary zone than that found optimum for liquid fuels would yield more acceptable CO emissions.

  15. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  16. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  17. Simulation tools for the design of natural gas domestic burners

    Energy Technology Data Exchange (ETDEWEB)

    Hilka, M. [DEG Gaz de France, Saint Denise la Plaine (France). Direction de la Recherche; Quilichini, V.; Gicquel, O.; Darabiha, N. [Laboratoire E.M2.C., Ecole Centrale Paris, CNRS, Chatenay-Malabry (France)

    2000-07-01

    The design of domestic burners crucially depends on the availability of tools taking into account complex interactions between flame chemistry, heat transfer and fluid flow. A very promising approach is therefore the development of modern simulation tools incorporating appropriate physical models that enable the predicition of flame stability and pollutant formation in practical devices. Given the complex, 3D geometry of practical burners, we decided to adapt the commercially available, general purpose CFD-code ESTET to the simulation of combustion in domestic burners. This has been achieved through the implementation of a complex chemical kinetics library (BISCUIT) within the CFD code and an adaptation of the graphical user interface. The resulting tool is capable to predict partially premixed flames that characterize domestic burners, as well as the formation of pollutants such as NO{sub x} and has been carefully validated against experimental data obtained for a model burner. Computational ressources required for multi-dimensional burner configurations are standard UNIX workstations. Computing time typically varies from 3 h to 150 h, depending on the physical models used. (orig.)

  18. PULVERIZATION INDUCED CHARGE: IN-LINE DRY COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    John M. Stencel

    1999-11-12

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units is examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler is quantified. In addition to field charge measurements, an existing computational model is extended to numerically simulate charged particle motion in a turbulent gas through coal transport pipes and triboelectrostatic separation zone. Results from the field tests and numerical modeling are employed in a conceptual design and a 4--40 kg/hr laboratory-scale separator is constructed and tested. This laboratory unit is used to quantify the magnitude and differential charge imparted on coals during pulverization and transport typical in utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary and conceptual design for a 15 ton/hr, in-line, electrostatic coal cleaning device. Finally, the economic potential for applications to PC units is assessed.

  19. Measurements and simulation for design optimization for low NOx coal-firing system

    Energy Technology Data Exchange (ETDEWEB)

    E. Bar-Ziv; Y. Yasur; B. Chudnovsky; L. Levin; A. Talanker [Ben-Gurion University of Negev, Beer-Sheva (Israel)

    2003-07-01

    The information required to design a utility steam generator is the heat balance, fuel analysis and emission. These establish the furnace wall configuration, the heat release rates, and the firing technology. The furnace must be sized for (1) residence time for complete combustion with low NOx, and (2) reduction of flue gas temperature to minimize ash deposition. To meet these, computational fluid dynamics (CFD) of the combustion process in the furnace were performed and proven to be a powerful tool for this purpose. Still, reliable numerical simulations require careful interpretation and comparison with measurements. We report numerical results and measurements for a 575 MW pulverized coal tangential firing boiler of the Hadera power plant of Israel Electric Corporation (IEC). Measured and calculated values were found to be in reasonable agreement. We used the simulations for optimization and investigated temperature distribution, heat fluxes and concentration of chemical species. We optimized both the furnace flue gas temperature entering the convective path and the staged residence time for low NOx. We tested mass flow rates through close-coupled and separate overfire air ports and its arrangement and the coal powder fineness. These parameters can control the mixing rate between the fuel and the oxidizer streams and can affect the most important characteristics of the boiler such as temperature regimes, coal burning rate and nitrogen oxidation/reduction. From this effort, IEC started to improve the boiler performance by replacing the existing typical tangential burners to low NOx firing system to ensure the current regulation requirements of emission pollutions.

  20. Flashback Analysis in Tangential Swirl Burners

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2011-10-01

    Full Text Available Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blowoff limits coupled with low NOx emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front.

  1. Ecophysiological and biochemical traits of three herbaceous plants growing on the disposed coal combustion fly ash of different weathering stage

    Directory of Open Access Journals (Sweden)

    Gajić Gordana

    2013-01-01

    Full Text Available The ecophysiological and biochemical traits of Calamagrostis epigejos (Roth. Festuca rubra L. and Oenothera biennis L. growing on two fly ash lagoons of different weathering stage (L1-3 years and L2-11 years of the “Nikola Tesla- A” thermoelectric plant (Obrenovac, Serbia were studied. Species-dependent variations were observed at the L1 lagoon; the greatest vitality (Fv/Fm and Fm/Fo followed by higher photopigment and total phenolic contents were measured in O. biennis in relation to C. epigejos (p<0.001 and F. rubra (p<0.001. At the L2 site, higher vitality was found in O. biennis (p<0.001 and F. rubra (p<0.01 compared to C. epigejos. O. biennis had the highest photosynthetic capacity. The results obtained in this study indicate that all examined species maintained a level of photosynthesis that allowed them to survive and grow under the stressful conditions in ash lagoons, albeit with lower than optimal success. [Projekat Ministarstva nauke Republike Srbije, br. 173018

  2. Study on the effect of the side secondary air velocity on the aerodynamic field in a tangentially fired furnace with HBC-SSA Burner

    Science.gov (United States)

    Zhu, Tong; Sun, Shaozeng; Wu, Shaohua; Qin, Yukun

    1999-12-01

    The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal Burner with Side Secondary Air (HBC-SSA Burner). Experimental results show that, when the ram pressure ratio of side secondary air (SSA) to primary air (PA) (ρ2sv 2s /2 /ρ1v 1 2 ) is between 1.0 2.4, the furnace aerodynamic field only varies slightly. The relative rotational diameters (φ/L) in the burner domain are moderate and the furnace is in good fullness. When ρ2sv 2s /2 /ρ1v 1 2 is beyond 4, φ/L is so large that the stream sweeps water-cooled wall and rotates strongly in the furnace. Therefore, slagging and high temperature corrosion of tube metal will be formed on the water-cooled wall in actual operation. This investigation provides the basis for the application of this new type burner. In addition, numerical simulations are conducted, and some defects in the numerical simulation are also pointed out and analyzed in this paper.

  3. Development of an advanced high efficiency coal combustor for boiler retrofit

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, Cold Flow Burner Development''. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  4. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  5. Design and construction of an air inductor burner

    International Nuclear Information System (INIS)

    Martinez, Camilo; Cardona, Mario; Arrieta, Andres Amell

    2001-01-01

    This article presents research results performed with the purpose of obtain design parameters, construction, and air inductor burner operation, which are used in industrial combustion systems, in several processes such as: metal fusion (fusion furnaces), fluids heating (immerse heating tubes), steam production (steam boiler), drying processes, etc. In order to achieve such objectives, a prototype with thermal power modulation from 6 to 52 kW, was built to be either operated with natural gas or with LPG. The burner was built taking in mind the know how (design procedure) developed according to theoretical schemes of different bibliographic references and knowledge of the research group in gas science and technology of the University of Antioquia. However, with such procedure only the burner mixer is dimensioned and five parameters must to be selected by the designer: burner thermal power, primary aeration ratio, counter pressure at combustion chamber, air pressure admission and gas fuel intended to use. For head design we took in mind research done before by the group of science and technology in gas research: Mono port and bar burner heads with their respective stabilization flame systems

  6. Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand

    International Nuclear Information System (INIS)

    Makmool, U.; Jugjai, S.; Tia, S.; Vallikul, P.; Fungtammasan, B.

    2007-01-01

    Cooker-top burners are used extensively in Thailand because of the rapid combustion and high heating-rates created by an impinging flame, which is characteristic of these types of burners. High thermal efficiency with low level of CO emissions is the most important performance criteria for these burners. The wide variation in reported performances of the burners appears to be due to the ad hoc knowledge gained through trial and error of the local manufacturers rather than sound scientific principles. This is extremely undesirable in view of safety, energy conservation and environmental protection. In the present work, a nationwide cooker-top burner performance survey and an implementation of a PIV technique to analyze the burner performance as well as advising local manufacturers were carried out. Experimental data were reported for the base line value of thermal efficiency of all the burners. The thermal performance parameters and dynamic properties of the flow field at a flame impingement area, i.e. velocity magnitude, turbulent intensity, vorticity and strain rate were also reported as a function of burner type, which was categorized into four types based on the configuration of the burner head: radial flow burners, swirling flow burners, vertical flow burners and porous radiant burners

  7. IEA low NOx combustion project Stage III. Low NOx combustion and sorbent injection demonstration projects. V.2

    International Nuclear Information System (INIS)

    Payne, R.

    1991-03-01

    This report summarizes the main results from an IES project concerning the demonstration of low-NO x combustion and sorbent injection as techniques for the control of NO x and SO x emissions from pulverized coal fired utility boilers. The project has built upon information generated in two previous stages of activity, where NO x and SO x control processes were evaluated at both fundamental and pilot-scales. The concept for this stage of the project was for a unique collaboration, where the participating countries (Canada, Denmark and Sweden, together with the United States) have pooled information from full scale boiler demonstrations of low-NO x burner and sorbent injection technologies, and have jointly contributed to establishing a common basis for data evaluation. Demonstration testing was successfully carried out on five wall-fired commercial boiler systems which ranged in size from a 20 MW thermal input boiler used for district heating, up to a 300 MW electric utility boiler. All of these units were fired on high-volatile bituminous coals with sulfur contents ranging from 0.6-3.2 percent. At each site the existing burners were either modified or replaced to provide for low-NO x combustion, and provisions were made to inject calcium based sorbent materials into the furnace space for SO 2 emission control. The results of sorbent injection testing showed moderate levels of SO 2 removal which ranged from approximately 15 to 55 percent at an injected calcium to sulfur molar ratio to 2.0 and with boiler operation at nominal full load. Sulfur capture was found to depend upon the combined effects of parameters such as: sorbent type and reactivity; peak sorbent temperature; coal sulfur content; and the thermal characteristics of the boilers. (8 refs., 58 figs., 6 tabs.)

  8. Lumbar burner and stinger syndrome in an elderly athlete.

    Science.gov (United States)

    Wegener, Veronika; Stäbler, Axel; Jansson, Volkmar; Birkenmaier, Christof; Wegener, Bernd

    2018-01-01

    Burner or stinger syndrome is a rare sports injury caused by direct or indirect trauma during high-speed or contact sports mainly in young athletes. It affects peripheral nerves, plexus trunks or spinal nerve roots, causing paralysis, paresthesia and pain. We report the case of a 57-year-old male athlete suffering from burner syndrome related to a lumbar nerve root. He presented with prolonged pain and partial paralysis of the right leg after a skewed landing during the long jump. He was initially misdiagnosed since the first magnet resonance imaging was normal whereas electromyography showed denervation. The insurance company refused to pay damage claims. Partial recovery was achieved by pain medication and physiotherapy. Burner syndrome is an injury of physically active individuals of any age and may appear in the cervical and lumbar area. MRI may be normal due to the lack of complete nerve transection, but electromyography typically shows pathologic results.

  9. Studies of initial stage in coal liquefaction. Effect of decomposition of oxygen-functional groups on coal liquefaction; Ekika hanno no shoki katei ni kansuru kenkyu. 3. Gansanso kannoki no bunkai kyodo to ekika hanno eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Komeiji, A.; Kaneko, T.; Shimazaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    Pretreatment of brown coal in oil was conducted using 1-methyl naphthalene or mixture of tetralin and 1-methyl naphthalene as solvent at temperatures ranging from 300 to 430{degree}C under nitrogen atmosphere. Effects of the solvent properties on the structural change of oxygen-functional groups (OFG) and coal liquefaction were investigated by means of quantitative analysis of OFG and solid state {sup 13}C-NMR measurement. When hydrogen transfer from solvent was insufficient, it was suggested that brown coal molecules loose their hydrogen to be aromatized. While, at lower temperatures ranging from 300 to 350{degree}C, hydrogen contained in brown coal molecules was consumed for the stabilization of pyrolytic radicals, and the deterioration of liquefaction was not observed. When hydrogen transfer from solvent was insufficient at higher temperatures above 400{degree}C in nitrogen atmosphere during pretreatment in oil, crosslinking like benzofuran type was formed by dehydration condensation of hydroxyl group in brown coal, to deteriorate the liquefaction, remarkably. The addition of donor solvent like tetralin decreased the formation of crosslinking like benzofuran type, which suppressed the deterioration of liquefaction. 8 refs., 5 figs.

  10. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  11. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  12. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  13. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  14. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Burner fuel-oil service systems. 56.50-65 Section 56.50... SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-65 Burner fuel-oil service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless...

  15. Industrial Application of an Improved Multiple Injection and Multiple Staging Combustion Technology in a 600 MWe Supercritical Down-Fired Boiler.

    Science.gov (United States)

    Song, Minhang; Zeng, Lingyan; Chen, Zhichao; Li, Zhengqi; Zhu, Qunyi; Kuang, Min

    2016-02-02

    To solve the water wall overheating in lower furnace, and further reduce NOx emissions and carbon in fly ash, continuous improvement of the previously proposed multiple injection and multiple staging combustion (MIMSC) technology lies on three aspects: (1) along the furnace arch breadth, changing the previously centralized 12 burner groups into a more uniform pattern with 24 burners; (2) increasing the mass ratio of pulverized coal in fuel-rich flow to that in fuel-lean flow from 6:4 to 9:1; (3) reducing the arch-air momentum by 23% and increasing the tertiary-air momentum by 24%. Industrial-size measurements (i.e., adjusting overfire air (OFA) damper opening of 20-70%) uncovered that, compared with the prior MIMSC technology, the ignition distance of fuel-rich coal/air flow shortened by around 1 m. The gas temperature in the lower furnace was symmetric and higher, the flame kernel moved upward and therefore made the temperature in near-wall region of furnace hopper decrease by about 400 °C, the water wall overheating disappeared completely. Under the optimal OFA damper opening (i.e, 55%), NOx emissions and carbon in fly ash attained levels of 589 mg/m(3) at 6% O2 and 6.18%, respectively, achieving NOx and carbon in fly ash significant reduction by 33% and 37%, respectively.

  16. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semi-annual technical progress report, 15 August 1995--15 February 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Scaroni, A.W.

    1997-06-03

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the US Department of Energy (DOE) and the Commonwealth of Pennsylvania to determine the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. Information will also be generated to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The first three phases (i.e., the first 1,000-hour demonstration) have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) will be conducted with a proven CWSF-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrid circuit was recently installed and will be evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and will be used to generate baseline data firing No. 6

  17. Geochemistry of vanadium (V) in Chinese coals.

    Science.gov (United States)

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  18. ASSESSMENT OF THE USE FOR FERTILISATION PURPOSES INCINERATION ASH PELLETS USING GASIFICATION BURNER LESTER

    Directory of Open Access Journals (Sweden)

    Marzena Gibczyńska

    2016-12-01

    Full Text Available The use of biomass in system energetics for the purpose of increasing the share of renewable energy sources in the overall energy mix by biomass and coal co-combustion is not an optimal solution in the light of previous experience in Poland. It is appropriate to develop local biomass market for energy purposes as a basis for future distributed energy generation based on biomass. This solution facilitates the use of ash from biomass combustion for plant fertilisation. The present paper concerns the assessment of the use of ash from combustion of pellets in an innovative gasifying pellet burner – LESTER type, for soil fertilisation. The paper presents the analysis of the content of macro- and microelements in ash against the chemical composition of pellets in relation to permissible contents in fertilisers. The content of phosphorus, potassium, calcium and magnesium in bottom and fly ash from combustion of wood pellet and rye straw in LESTER gasifying burner validates the use of this material for soil fertilisation purposes. However, due to low nitrogen content – comparable to that found in soil, the material is not to be considered as fertiliser supplying this macroelement to soil. The analysed bottom ash used for fertilisation meets the conditions set out in the Regulation of the Minister of Environment of 9 September 2002. However, fly ash should be used with considerable caution due to high content of iron, zinc and nickel. The yield of bottom ash is several times higher than that of fly ash, therefore the possibility of its use in the form of mixtures in adequate proportions should be considered.

  19. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  20. Process development report: 0.20-m primary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1978-09-01

    HTGR reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite, separating the fissile and fertile particles, crushing and burning the SiC-coated fuel particles to remove the remainder of the carbon, dissolution and separation of the particles from insoluble materials, and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel elements is accomplished in a primary burner. This is a batch-continuous, fluidized-bed process utilizing above-bed gravity fines recycle. In gas-solid separation, a combination of a cyclone and porous metal filters is used. This report documents operational tests performed on a 0.20-m primary burner using crushed fuel representative of both Fort St. Vrain and large high-temperature gas-cooled reactor cores. The burner was reconstructed to a gravity fines recycle mode prior to beginning these tests. Results of two separate and successful 48-hour burner runs and several short-term runs have indicated the operability of this concept. Recommendations are made for future work

  1. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Th.H.

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbu- lence? To that end an active grid is constructed that consists of two perforated disks of which one is rotat- ing, creating a system of pulsating jets, which in the end can be used as a central

  2. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    2012-01-01

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To that end an active grid is constructed that consists of two perforated disks of which one is rotating, creating a system of pulsating jets, which in the end can be used as a central

  3. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    Science.gov (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  4. How Efficient is a Laboratory Burner in Heating Water?

    Science.gov (United States)

    Jansen, Michael P.

    1997-01-01

    Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…

  5. Coal exports still growing

    International Nuclear Information System (INIS)

    Blain, M.

    1998-01-01

    It is shown that the swings and roundabouts of the Asian economic shake out and Australian dollar devaluation are starting to work their way through the Australian export coal market. Perhaps somewhat surprisingly, at this stage the results are not proving to be as bad as were at first predicted by some market watchers. Export revenue and tonnages are up 12% for the year to July 98. Coal exports totaling $9.5 billion left Australia's shores in the 12 months confirming coal as Australia's single largest export revenue earner. Sales volumes in the present financial year are still increasing, the market being driven by steadily increasing Asian demand for steaming coal from places like Korea, Malaysia, Thailand and the Philippines

  6. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  7. Studies of initial stage in coal liquefaction. 4. Radical formation and structural change with thermal decomposition of coal; Ekika hanno no shoki katei ni kansuru kenkyu. 4. Netsubunkai ni tomonau radical seisei kyodo to kozo henka

    Energy Technology Data Exchange (ETDEWEB)

    Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan); Kumagai, H.; Chiba, T. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    In relation to coal liquefaction reaction, the effect of the coexistence of transferable hydrogen (TH) from process solvent on reduction of radical concentration and the effect of pre-heat treatment on average structure of coals were studied. In experiment, change in radical concentration with temperature rise was measured using the system composed of Yallourn coal and process solvent. The results are as follows. Process solvent with a wide boiling point range of 180-420{degree}C is effective in suppressing an increase in radical concentration even at higher temperature. The effect of hydrogen-donating solvent increases with TH. It was also suggested that high-boiling point constituents in solvent stabilize radicals even over 400{degree}C by vapor phase hydrogenation. The experimental results of pre-heat treatment are as follows. Although the conversion improvement effect of TH is equivalent to that of the model solvent, TH tends to produce soluble products with smaller ring numbers. It was thus suggested that pre-heat treatment in process solvent is effective to inhibit retrogressive reactions. 6 refs., 5 figs., 1 tab.

  8. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  9. Influence of Process Parameters on Coal Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount...... of carbon in ash. To this purpose, the effect of coal quality on NO and burnout has been investigated experimentally, a radiation heat balance has been developed based on simple chemical engineering methodology, and a mixing study has been conducted in order to describe the near burner macro mixing in terms...... with self-sustaining flames, while extensions are made to full scale boilers and furnace modeling. Since coal combustion and flame aerodynamics are reviewed elsewhere, these phenomena are only treated briefly. The influence of coal type and process conditions on NO formation and carbon burnout has been...

  10. Core Design Studies for a 1000 MWth Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.K.; Yang, W.S.; Grandy, C.; Hill, R.N. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2008-07-01

    This paper describes the core design and performance characteristics of 1000 MWth Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of approx0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with a wide range of TRU conversion ratio were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from approx0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties. (authors)

  11. Physicochemical properties of nanoparticles titania from alcohol burner calcination

    Directory of Open Access Journals (Sweden)

    Supan Yodyingyong

    2011-08-01

    Full Text Available The physicochemical properties of synthesized TiO2 nanoparticles from integrating sol-gel with flame-based techniques were studied. The synthesized nanoparticles properties were compared after using methanol, ethanol, and propanol fuel sources. The synthesized TiO2 were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, thermal analysis (thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC, and surface area Brunauer–Emmett–Teller (BET method. The photocatalytic activity of TiO2 nanoparticles was investigated by measuring the degradation of methylene blue. It was found that methanol and ethanol burners can be used as an alternative furnace that can yield TiO2 nanoparticles with physicochemical properties comparable to that of commercial TiO2 nanoparticles, while a propanol burner cannot be used as an alternative fuel.

  12. Geomorphology of coal seam fires

    Science.gov (United States)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  13. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    Gueorguieva, A.

    2001-01-01

    The main objective of this project is prediction and reduction of NOx and CO 2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO 2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  14. Passive safety design characteristics of the KALIMER-600 burner reactor

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Cho, Chung-Ho; Ha, Ki-Seok; Kim, Sang-Ji

    2009-01-01

    The Korea Atomic Energy Research Institute (KAERI) has recently studied several burner core designs for a transuranics (TRU) transmutation based on the breakeven core geometry of KALIMER-600. The KALIMER-600 is a net electrical rating of 600MWe, sodium-cooled, metallic-fueled, pool-type reactor. For the burner core concept selected for the present analysis, the smearing fractions of the fuel rods in three fuel zones are changed while maintaining the cladding outer diameter and cladding thickness. The resulting fuel slug smearing fractions of the inner, middle, and outer core zones are 36%, 40%, and 48%, respectively. The TRU conversion ratio is 0.57 and the TRU enrichment of the driver fuel is set to 30.0 w/o because of the current practical limitation of the U-TRU-10%Zr metal fuel database. The purpose of this paper is to evaluate the safety performance characteristics provided by the passive safety design features in the KALIMER-600 burner reactor by using a system-wide safety analysis code. The present scoping analysis focuses on an assessment of the enhanced safety design features that provide passive and self-regulating responses to transient conditions and an evaluation of the safety margin during unprotected overpower, unprotected loss of flow, and unprotected loss of heat sink events. The analysis results show that the KALIMER-600 burner reactor provides larger safety margins with respect to the sodium boiling, fuel rod integrity, and structural integrity. The overall inherent safety can be enhanced by accounting for the reactivity feedback mechanisms in the design process. (author)

  15. Effect of cycled combustion ageing on a cordierite burner plate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eugenio [Instituto de Ceramica y Vidrio, CSIC, c/ Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Gancedo, J. Ramon [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain); Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain)

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  16. Evaluation of the influence of a milling system on the coal consumption in a PF utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, E.; Gil, A.; Arauzo, I.; Iranzo, I. [Universidad de Zaragoza, Zaragoza (Spain). Center for Power Plant Efficiency Research (CIRCE)

    2001-07-01

    This paper presents a methodology for milling system performance analysis in coal fired power plants. A mill model has been designed. As inputs of the model, the following parameters are chosen: air mass flow rates, coal flow rates, grinding pieces age and classifier position. The outputs are: mill drive current, pressure drop through the mill and percentage of pulverized coal passing through 150, 75 and 45 {mu}m sieves. The developed models have been applied to the Teruel Power Station, a pulverized coal fired plant in Spain with a milling system of six planetary rod mills, each feeding a row of four burners. 7 refs., 13 figs., 4 tabs.

  17. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600 0 C), lower fluid bed operating temperature (850 0 C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  18. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  19. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Therkelsen, Peter L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-13

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements, researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state

  20. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  1. Design and analysis of the federal aviation administration next generation fire test burner

    Science.gov (United States)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  2. Modelling of coal combustion enhanced through plasma-fuel systems in full-scale boilers

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Askarova; Z. Jankoski; E.I. Karpenko; E.I. Lavrischeva; F.C. Lockwood; V.E. Messerle; A.B. Ustimenko [al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2005-07-01

    Plasma activation promotes more effective and environmental friendly low-rank coal combustion. This work presents numerical modelling results of plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler. Two kinetic mathematical models were used in the investigation of the processes of air-fuel mixture plasma activation, ignition and combustion. A 1D kinetic code, PLASMA-COAL, calculates the concentrations of species, temperatures and velocities of treated coal-air mixtures in a burner incorporating a plasma source. It gives initial data for 3D-modeling of power boilers furnaces by the code FLOREAN. A comprehensive image of plasma activated coal combustion processes in a furnace of pulverised coal fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated. 15 refs., 6 figs., 4 tabs.

  3. Low NO{sub x} pulverised fuel burners: Summary of plant experience

    Energy Technology Data Exchange (ETDEWEB)

    King, J.L. [Babcock Energy Limited, Renfrew (United Kingdom)

    1996-01-01

    Over the past six years Babcock Energy have retrofitted over 10,000 MW of electrical-power plant around the world with an advanced pulverised fuel fired low NO{sub x} burner. The burner was developed in 1989 in the Babcock Energy Large Scale Burner Test Facility in the United Kingdom. The paper summarises the significant results from the operational experience gained in the burner retrofits on a wide variety of wall fired boiler configurations and with a range of fuel qualities. NO{sub x} reductions of up to 70% have been achieved with no significant adverse effect on boiler efficiency and with positive operational benefits.

  4. Comparative analyses for selected clean coal technologies in the international marketplace

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

  5. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  6. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Lissianski, Vitali V.; Loc Ho; Maly, Peter M.; Zamansky, Vladimir M.

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The FFR can be retrofit to existing boilers and can be configured in several ways depending on the boiler, coal characteristics, and NO x control requirements. Fly ash generated by the technology will be a saleable byproduct for use in the cement and construction industries. FFR can also reduce NO x by 60%-70%, achieving an emissions level of 0.15 lb/10 6 Btu in many coal-fired boilers equipped with Low NO x Burners. Total process cost is expected to be one third to one half of that for Selective Catalytic Reduction (SCR). Activities during reporting period included design, manufacture, assembly, and shake down of the coal gasifier and pilot-scale testing of the efficiency of coal gasification products in FFR. Tests were performed in a 300 kW Boiler Simulator Facility. Several coals with different volatiles content were tested. Data suggested that incremental increase in the efficiency of NO x reduction due to the gasification was more significant for less reactive coals with low volatiles content. Experimental results also suggested that the efficiency of NO x reduction in FFR was higher when air was used as a transport media. Up to 14% increase in the efficiency of NO x reduction in comparison with that of basic reburning was achieved with air transport. Temperature and residence time in the gasification zone also affected the efficiency of NO x reduction

  7. Safety aspects of Particle Bed Reactor plutonium burner system

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-01-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling

  8. Rate Controlling Factors in a Bunsen Burner Flame

    Science.gov (United States)

    Andrade-Gamboa, Julio; Corso, Hugo L.; Gennari, Fabiana C.

    2003-05-01

    Combustion and flames have been extensively investigated during past decades due to their industrial importance. The associated phenomena are both physical and chemical in nature, and the rigorous mathematical description is beyond the undergraduate teaching level. While thermodynamic calculations of temperature of a Bunsen burner flame can be made at the college level, there are not accessible chemical kinetic descriptions that can be used for instruction. In this paper we present a simple model that accounts for mass transfer, energy transfer, and kinetics of chemical reaction. From such a description, different controlling regimes can be deduced and tested with experimental data.

  9. On open and closed tips of bunsen burner flames

    Science.gov (United States)

    Kozlovsky, G.; Sivashinsky, G. I.

    1994-04-01

    An adiabatic, constant-density reaction-diffusion-advection model for the Bunsen burner flame tip is studied numerically. It is shown that for Lewis numbers exceeding unity the reaction rate and flame speed gradually increase toward the flame tip. For small Lewis numbers the picture is quite different. The reaction rate drops near the tip. In spite of this the flame survives and, moreover, manages to consume all the fuel supplied to the reaction zone. There is no leakage of the fuel through the front. The flame speed varies nonmonotonously along the front from gradual reduction to steep increase near the tip.

  10. Premixed Combustion of Coconut Oil on Perforated Burner

    OpenAIRE

    Wirawan, I.K.G; Wardana, I.N.G; Soenoko, Rudy; Wahyudi, Slamet

    2013-01-01

    Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ) varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL) is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ ...

  11. Periodic motion of a bunsen flame tip with burner rotation

    Energy Technology Data Exchange (ETDEWEB)

    Gotoda, Hiroshi; Maeda, Kazuyuki; Ueda, Toshihisa; Cheng, Robert K.

    2003-09-01

    Effects of burner rotation on the shapes and dynamics of premixed Bunsen flames have been investigated experimentally in normal gravity and in microgravity. Mixtures of CH{sub 4}-air and C{sub 3}H{sub 8}-air are issued from the burner tube with mean flow velocity U = 0.6 m/s. The burner tube is rotated up to 1400 rpm (swirl number S = 1.58). An oscillating flame with large amplitude is formed between a conical-shape flame and a plateau flame under the condition of Lewis number Le > 1 mixtures (rich CH{sub 4}-air and lean C{sub 3}H{sub 8}-air mixtures). In contrast, for Le = 1 mixtures (lean CH{sub 4}-air and rich C{sub 3}H{sub 8}-air), asymmetric, eccentric flame or tilted flame is formed under the same swirl number range. Under microgravity condition, the oscillating flames are not formed, indicating that the oscillation is driven by buoyancy-induced instability associated with the unstable interface between the hot products and the ambient air. The flame tip flickering frequency {nu} is insensitive to burner rotation for S < 0.11. For S > 0.11, {nu} decreases linearly with increasing S. As S exceeds 0.11, a minimum value of axial mean velocity along the center line uj,m due to flow divergence is found and it has a linear relationship with {nu}. This result shows that uj,m has direct control of the oscillation frequency. When S approaches unity, the flame oscillation amplitude increases by a factor of 5, compared to the flickering amplitude of a conical-shape flame. This is accompanied by a hysteresis variation in the flame curvature from positive to negative and the thermo-diffusive zone thickness varying from small to large. With S > 1.3, the plateau flame has the same small flickering amplitudes as with S = 0. These results show that the competing centrifugal and buoyancy forces, and the non-unity Lewis number effect, play important roles in amplifying the flame-tip oscillation.

  12. Studies of initial stage in coal liquefaction. Effect of prethermal treatment condition with process solvent to increase oil yields; Ekika hanno no shoki katei ni kansuru kenkyu. Sekitan no maeshori joken to yozai koka

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, T.; Komatsu, N.; Kishimoto, M.; Okui, T.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. ltd., Tokyo (Japan)

    1996-10-28

    Process solvent was hydrogenated in the brown coal liquefaction, to investigate the influence of it on the prethermal treatment and liquefaction. Consequently, it was found that the n-hexane soluble (HS) yield was improved. In this study, capacity of hydrogen transfer from solvent during prethermal treatment and effects of catalyst were investigated. Since prethermal treatment in oil was effective for improving the oil yield in the presence of hydrogen/catalyst or high hydrogen-donor solvent, influence of hydrogen-donor performance of solvent or addition of catalyst on the hydrogenation behavior of coal and the characteristics of products during prethermal treatment were investigated in relation to successive liquefaction results. As a result, it was found that the increase of HS yield was due to the acceleration of conversion of THF-insoluble using high hydrogen-donor solvent and/or by adding catalyst. It was also found that the use of high hydrogen-donor solvent and highly active catalyst at the stage of prethermal treatment before the successive liquefaction was effective for improving the HS yield, i.e., liquefied oil yield. 2 refs., 5 figs., 1 tab.

  13. Exploratory Research on Novel Coal

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  14. Analysis of coal streams with californium-252

    International Nuclear Information System (INIS)

    Worster, B.W.

    1976-01-01

    The sulfur, ash, water, and energy content of coal are increasingly important parameters to various coal users because of their relationship to air pollution, energy conservation, and to the proper operation of coal-burning plants. For example, ash accumulation is critical in electric power plants and suppliers of coal operate under contracts specifying maximum ash and sulfur content of their product. Conventional analysis of streams of coal on the order of 100 to 2000 tons/hour have relief on elaborate mechanical sampling mechanisms to take primary, secondary, and tertiary cuts from the coal stream with pulverizing stages between cuts to reduce it down to a fine powder which is analyzed off-line with wet chemical methods. (X-ray backscatter techniques have been applied to small coal streams for ash analysis.) This technique is too slow for process control in coal cleaning and blending operations, and is unreliable because of the highly heterogeneous nature of coal as it comes from the mine. Analysis of the entire stream of coal for the parameters of interest appears to be feasible only by analyzing the prompt gamma rays produced by capture of thermal neutrons diffusing through the coal. At FMC Corporation, we are performing extensive tests of the analysis of coal on-line for its important parameters using a californium-252 neutron source. In this paper we report the progress of our tests and the outlook for commercial industrial application of the method

  15. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  16. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  17. Interim results: fines recycle testing using the 4-inch diameter primary graphite burner

    International Nuclear Information System (INIS)

    Palmer, W.B.

    1975-05-01

    The results of twenty-two HTGR primary burner runs in which graphite fines were recycled pneumatically to the 4-inch diameter pilot-plant primary fluidized-bed burner are described. The result of the tests showed that zero fines accumulation can easily be achieved while operating at plant equivalent burn rates. (U.S.)

  18. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  19. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  20. Experimental Investigation of Flame Stability in Porous Media Burners

    Science.gov (United States)

    Mohaddes, Danyal; Sobhani, Sadaf; Boigne, Emeric; Muhunthan, Priyanka; Ihme, Matthias

    2017-11-01

    Porous media burners (PMBs) facilitate the stabilization of a flame inside the pores of a solid porous material, and have benefits when compared to traditional burners in terms of emissions reduction and operating envelope extension. PMBs can potentially find application in a wide variety of domains, including household and industrial heating, internal combustion engines, and gas turbine engine combustors. The current study aims to motivate the use of PMBs in such applications on a thermodynamic basis, and subsequently compares the performance of two PMB designs. To this end, an experiment was devised and conducted to determine the stable operating conditions of a continuously varying and a discontinuously varying pore diameter profile PMB. In addition to investigating the stability regime of each design, pressure drop and axial temperatures were measured and compared at different operating conditions. The collected experimental data will be used both to inform computational studies of combustion within porous media and to aid in future optimizations of the design of PMBs. This work is supported by a Leading Edge Aeronautics Research for NASA (LEARN) Grant (Award No. NNX15AE42A).

  1. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  2. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-04-30

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 10), up to 20% by weight dry hardwood sawdust and switchgrass was compiled with Galatia coal and injected through the dual-register burner. Galatia coal is a medium-sulfur Illinois Basin coal ({approx}1.0% S). The dual-register burner is a generic low-NO{sub x} burner that incorporates two independent wind boxes. In the second test (Test 11), regular ({approx}70% passing 200 mesh) and finely ground ({approx}90% passing 200 mesh) Pratt Seam coal was injected through the single-register burner to determine if coal grind affects NO{sub x} and unburned carbon emissions. The results of these tests are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. No additional results of CFD modeling have been received as delivery of the Configurable Fireside Simulator is expected during the next quarter. Preparations are under way for continued pilot-scale combustion experiments with the single-register burner and a low-volatility bituminous coal. Some delays have been experienced in the acquisition and processing of biomass. Finally, a project review was held at the offices of Southern Research in Birmingham, on February 27, 2002.

  3. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    International Nuclear Information System (INIS)

    Larry G. Felix; P. Vann Bush

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 10), up to 20% by weight dry hardwood sawdust and switchgrass was compiled with Galatia coal and injected through the dual-register burner. Galatia coal is a medium-sulfur Illinois Basin coal ((approx)1.0% S). The dual-register burner is a generic low-NO(sub x) burner that incorporates two independent wind boxes. In the second test (Test 11), regular ((approx)70% passing 200 mesh) and finely ground ((approx)90% passing 200 mesh) Pratt Seam coal was injected through the single-register burner to determine if coal grind affects NO(sub x) and unburned carbon emissions. The results of these tests are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO(sub x) emissions and unburned carbon levels in the furnace exhaust. No additional results of CFD modeling have been received as delivery of the Configurable Fireside Simulator is expected during the next quarter. Preparations are under way for continued pilot-scale combustion experiments with the single-register burner and a low-volatility bituminous coal. Some delays have been experienced in the acquisition and processing of biomass. Finally, a project review was held at the offices of Southern Research in Birmingham, on February 27, 2002

  4. British coal-down to the line

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The long-running saga of British Coal's decline is in its final stages with virtually no change from last October when the British government announced plants to close 31 of the 50 remaining mines. That announcement produced a political outcry but having privatized the electricity industry in 1990 the government had effectively left itself up the creek without a paddle. It had no powers to force the generators to buy more coal. The status of the British coal industry is discussed

  5. The influence of the furnace design on emissions from small wood pellet burners

    International Nuclear Information System (INIS)

    Aspfors, Jonas; Larfeldt, Jenny

    1999-01-01

    Two pellet burners have been installed and tested in a small scale boiler for house heating. The boiler is representative for the Swedish households and the burners, upwards and forward burning, are commercially available on the Swedish market. This work focuses on the boiler operation and particularly the potential of improved emissions by changing the furnace design. An insulation of the fireplace lowered the emission of CO by 50% and the emission of OGC by 60% for the upwards burning burner at low load. Modifying the furnace using baffles did not have any influence on the emissions. It is concluded that an increased temperature in the furnace is more important than an increased residence time of the combustible gases to decrease the emissions. At full load both burners emit approximately 300 mg CO per nm 3 gas and the emission of OGC are negligible. At half load the emissions of CO increased to 1000 mg/m n 3 and OGC to 125 mg/m n 3 in the upward burning burner. The forwards burning burner had a small increase in OGC to about 10 mg/m n 3 at half load while the emission of CO increased to 800 mg/m n 3 . The forward burning burner is less influenced on the furnace design compared to the upward burning burner. The comparatively high emissions of OGC for the upward burning burner is explained by the intermittent operation. However, it was possible to reduce the emissions from this burner by ceramic insulation of the furnace Project report from the program: Small scale combustion of biofuels. 3 refs, 12 figs, 2 tab, 1 appendix with 33 figs and 12 tabs

  6. Annual Change Detection by ASTER TIR Data and an Estimation of the Annual Coal Loss and CO2 Emission from Coal Seams Spontaneous Combustion

    Directory of Open Access Journals (Sweden)

    Xiaomin Du

    2014-12-01

    Full Text Available Coal fires, including both underground and coal waste pile fires, result in large losses of coal resources and emit considerable amounts of greenhouse gases. To estimate the annual intensity of greenhouse gas emissions and the loss of coal resources, estimating the annual loss from fire-influenced coal seams is a feasible approach. This study assumes that the primary cause of coal volume loss is subsurface coal seam fires. The main calculation process is divided into three modules: (1 Coal fire quantity calculations, which use change detection to determine the areas of the different coal fire stages (increase/growth, maintenance/stability and decrease/shrinkage. During every change detections, the amount of coal influenced by fires for these three stages was calculated by multiplying the coal mining residual rate, combustion efficiency, average thickness and average coal intensity. (2 The life cycle estimate is based on remote sensing long-term coal fires monitoring. The life cycles for the three coal fire stages and the corresponding life cycle proportions were calculated; (3 The diurnal burnt rates for different coal fire stages were calculated using the CO2 emission rates from spontaneous combustion experiments, the coal fire life cycle, life cycle proportions. Then, using the fire-influenced quantity aggregated across the different stages, the diurnal burn rates for the different stages and the time spans between the multi-temporal image pairs used for change detection, we estimated the annual coal loss to be 44.3 × 103 tons. After correction using a CH4 emission factor, the CO2 equivalent emissions resulting from these fires was on the order of 92.7 × 103 tons. We also discovered that the centers of these coal fires migrated from deeper to shallower parts of the coal seams or traveled in the direction of the coal seam strike. This trend also agrees with the cause of the majority coal fires: spontaneous combustion of coalmine goafs.

  7. Numerical prediction of unburned carbon levels in large pulverized coal utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Javier Pallares; Inmaculada Arauzo; Luis Ignacio Diez [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumptions (CIRCE), Thermal Division

    2005-12-01

    Advanced combustion kinetics models are of widespread use to predict carbon losses from coal combustion. However, those models cannot completely capture the complexity of the real phenomena affecting the fluid flow in a full-scale utility boiler, such as burner-to-burner interactions and bottom hopper vortexes or reversed-flows, and usually underpredict carbon in ash values. The use of CFD codes offers a more detailed treatment of the fluid dynamics involved in the boiler. However, most of them do not incorporate advanced kinetics submodels for char oxidation. In this paper, rank-dependent correlations and ash inhibition submodel have been coupled to a commercial CFD code, significantly improving carbon in ash predictions. Results from the simulation of the ASM Brescia power plant (Italy) for three different South-American coals are compared against plant laboratory values, using either the popular single film combustion model or the modified combustion model discussed in this paper. 24 refs., 7 figs., 6 tabs.

  8. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR).

    Science.gov (United States)

    Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei

    2017-12-01

    Three identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 300 consecutive days for raw (R 1 ), ozonated (R 2 ) and catalytic ozonated (R 3 ) biologically pretreated coal gasification wastewater (BPCGW) treatment. The results demonstrated that catalytic ozonation process (COP) applied asa pretreatment remarkably improved the performance of the unsatisfactory single MBR. The overall removal efficiencies of COD, NH 3 -N and TN in R 3 were 92.7%, 95.6% and 80.6%, respectively. In addition, typical nitrogenous heterocyclic compounds (NHCs) of quinoline, pyridine and indole were completely removed in the integrated process. Moreover, COP could alter sludge properties and reshape microbial community structure, thus delaying the occurrence of membrane fouling. Finally, the total cost for this integrated process was estimated to be lower than that of single MBR. The results of this study suggest that COP is a good option to enhance pollutants removal and alleviate membrane fouling in the MBR for BPCGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Reproductive success, early life stage development, and survival of westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to elevated selenium in an area of active coal mining.

    Science.gov (United States)

    Rudolph, Barri-Lynn; Andreller, Iisak; Kennedy, Christopher J

    2008-04-15

    The effects of accumulated Se on the reproductive success and larval development of cutthroat trout (Oncorhynchus clarki lewis,) collected from a site of active coal mining in British Columbia were assessed. Eggs from 12 fish from an exposed site (Clode Pond) and 16 from a reference site (O'Rourke Lake) were field-collected and reared in the laboratory. Egg Se concentrations ranged from 12.3 to 16.7 and 11.8 to 140.0 microg/g dry weight (dw) from fish collected at the reference and exposed sites, respectively. Other studies, including those with this species, have not shown Se to affect egg viability; however, in the present study, eggs with Se concentrations > 86.3 microg/g dw were not successfully fertilized or were nonviable at fertilization, while eggs with concentrations > 46.8 and 20.6 microg/g dw. The present data, in conjunction with the data from several other studies in temperate fish, suggest that current Se thresholds are conservative for cold-water fish.

  10. The technology and method of coal mining in the Czechoslovakia in 1918-1938

    OpenAIRE

    Jureková, Dominika

    2012-01-01

    The content of this thesis is an analysis of coal mining in Czechoslovakia in 1918-1938. The accent is focused on technical and technological aspects of coal through to economic, political, mining law and other conditions that influence it. The technical part of mining has been for better visibility of work is divided into several stages. The thesis presents a summary of the regions of coal mining, the quantity of extracted coal and methods of coal mining. Keywords: The Czechoslovakia, coal m...

  11. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  12. The thermochemical transformations of hard-coal pitches at the stage of raising the softening temperature to 358-363K

    Energy Technology Data Exchange (ETDEWEB)

    Kekin, N.A.; Belkina, T.V.; Gordienko, V.G.; Stepanenko, M.A.

    1983-01-01

    By using the PMR method in association with IR spectroscopy, information has been obtained on the nature of the change in the amount of hydrogen in various groups of substances of the soluble fraction of the initial pitch and its thermal product at the stage of raising the softening temperature to 358-363K.

  13. Milliken Clean Coal Demonstration Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage

  14. A small porous-plug burner for studies of combustion chemistry and soot formation

    Science.gov (United States)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  15. Possibilities of using soil microarthropods, with emphasis on mites (Arachnida, Acari, Mesostigmata, in assessment of successional stages in a reclaimed coal mine dump (Pszów, S Poland

    Directory of Open Access Journals (Sweden)

    MADEJ GRAŻYNA

    2014-06-01

    Full Text Available The usefulness of 2 methods for biomonitoring of the effects of land rehabilitation were compared in Pszów (Upper Silesian Coal Basin, south of Poland. Thirty-one species of mesostigmatid mites were collected from 3 study plots representing different stages of restoration of the mine dump Wrzosy in Pszów and community structure of the mites was analysed. There was a general trend for mesostigmatid species richness, diversity, and density to increase with the development of vegetation. The dominant early successional mesostigmatid species was the phoretic Hypoapis claviger. During this study, 4616 specimens of soil microarthropods were extracted in total. They were classified according to the Biological Soil Quality Index (QBS. We tested the sensitivity and usefulness of this index for monitoring of soil quality and found its good relationship with successional stages in the reclaimed mine dump. Thus the QBS index seems to be an efficient index for monitoring the effects of restoration in mine dumps. It is a simpler, quicker, and cheaper bioindicator method than the earlier method based on community structure analysis of mesostigmatid mites.

  16. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  17. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  18. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...... modelling, data collection and observations at an industrial cement plant firing alternative fuels. Alternative fuels may differ from conventional fossil fuels in combustion behaviour through differences in physical and chemical properties and reaction kinetics. Often solid alternative fuels are available...

  19. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  20. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  1. A Modeling Tool for Household Biogas Burner Flame Port Design

    Science.gov (United States)

    Decker, Thomas J.

    Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.

  2. Industrial applications of Tenova FlexyTech flame-less low NOx burners

    International Nuclear Information System (INIS)

    Fantuzzi, M.; Ballarino, L.

    2008-01-01

    Environmental emissions constraints have led manufacturers to improve their low NO x recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NO x emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O 2 with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  3. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  4. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  5. Advanced coal liquefaction research: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gall, W.; McIlvried, III, H. G.

    1988-07-01

    This study had two objectives: (1) To enhance the fundamental understanding of observed differences in the short contact time, donor solvent liquefaction of bituminous and subbituminous coals. (2) To determine if physical refining of subbituminous coals could be used to give a better feedstock for the first stage of two-stage liquefaction processes. Liquefaction studies using microautoclaves were carried out. Results are discussed. 11 refs., 25 figs., 29 tabs.

  6. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  7. Design of Counter Flow Burner for Oxy-Combustion Studies Using CFD

    Science.gov (United States)

    Holifield, Laura; Uddi, Mruthunjaya

    2017-11-01

    Flat flames are useful for studying the fundamental physics of combustion through laser diagnostics and comparison with commercially (or open source) available 1D software such as Chemkin or Cantera. A counter flow burner is capable of producing this flat flame by achieving a flat velocity profile along the outlet. However, what is necessary to achieve this is not readily available. In order to find the optimal design parameters for a counter flow burner, different geometries and velocities were tested at the University of Alabama using Ansys Fluent CFD software. The geometry was axisymmetric and oriented horizontally on the xy-plane. The design of this burner was aimed at reducing the boundary layer while keeping the radial velocity at a minimum. The objective of this paper is to examine the effects of varying the angle, nozzle length, filet radius, inlet to outlet ratio, and velocity on the boundary layer and radial velocity of a counter flow burner. NSF Grant: EEC 1659710.

  8. The influence of combustion liner holes on noise production by ducted burners

    Science.gov (United States)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    The thermoacoustic energy conversion process in a turbulent flame is not yet sufficiently well understood to allow accurate prediction of the sound pressure field of even the simplest of laboratory burners. The present contribution is intended to be a step toward fuller understanding of this process. In particular, the possibility is explored that the source structure, in the form of the thermoacoustic efficiency spectrum, might be influenced by the acoustic response of the burner itself. Experimental results are presented which seem to establish that, at least for the gas-fueled laboratory burner studied, source activity is not affected by the addition of downstream combustion liner holes which otherwise alter the acoustic response of the burner.

  9. Low-NOx Burner Technologies for High-Temperature Processes With High Furnace Heating Density

    International Nuclear Information System (INIS)

    Boss, M.; Brune, M.; Flamme, M.

    1999-01-01

    The general objective of the presented work is process intensification by means of reduced furnace chamber volumes in combination with the use of low-NOx burner technologies. Fundamental experimental investigations of the reaction zone of different burner types were made. For the development of new burner designs the CFD code FLUENT was used. Throughout the investigations it was possible to increase the furnace heating density from 62 kW/m3 up to 1133 kW/m3. To demonstrate possible technical applications two simulated industrial furnaces designs have been investigated. One main conclusion the work gave is that process intensification without an increase of pollutant emissions is possible by optimizing furnace and burner design and also position and geometry of the furnace load in a combined strategy. (author)

  10. Experiments on Stability of Bunsen-Burner Flames for Turbulent Flow

    Science.gov (United States)

    Bollinger, Lowell M; Williams, David T

    1948-01-01

    The results of a study of the stability of propane-air flames on bunsen-burner tubes are presented. Fuel-air ratio, tube diameter, and Reynolds number were the primary variables. Regions of stability are outlined in plots of fuel-air ratio as a function of Reynolds number for flames seated on the burner lip and for flames suspended well above the burner. For fully developed flow, turbulent as well as laminar, the velocity gradient at the burner wall is a satisfactory variable for correlating the fuel-air ratio required for blow-off of seated flames for fuel-air ratios of less than 15 percent. For turbulent flames, wall velocity serves as a correlating variable in the same fuel-air-ratio range. (author)

  11. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    Science.gov (United States)

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  12. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  13. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  14. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  15. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  16. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  17. Coal and the competition

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI Consulting, Arlington, VA (United States). FT Energy

    2000-07-01

    24 overheads/viewgraphs outline a presentation on competition in the US coal industry. It discussed four main subjects: key factors driving coal demand (environmental regulations, electric utility deregulation; competition with natural gas, inter-regional coal competition, supply availability and pricing; and the export market and competition from off-shore coal sources); coal's ability to boost market share; shifts in coal distribution and the risk of more branded coal; and attempts to keep more regional sources of coal in business. State tax incentives for coal use in Arizona, Ohio, Oklahoma, Virginia and Alabama were discussed.

  18. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  19. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation

    OpenAIRE

    Valera Medina, Agustin; Marsh, Richard; Runyon, Jon; Pugh, Daniel; Beasley, Paul; Hughes, Timothy Richard; Bowen, Philip John

    2017-01-01

    Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were...

  20. Characterization of a Rijke Burner as a Tool for Studying Distribute Aluminum Combustion

    OpenAIRE

    Newbold, Brian R.

    1996-01-01

    As prelude to the quantitative study of aluminum distributed combustion, the current work has characterized the acoustic growth, frequency, and temperature of a Rijke burner as a function of mass flow rate, gas composition, and geometry. By varying the exhaust temperature profile, the acoustic growth rate can be as much as tripled from the baseline value of approximately 120 s-1• At baseline, the burner operated in the third harmonic mode at a frequency of 1300 Hz, but geometry or temperature...

  1. Design evaluation of the 20-cm (8-inch) secondary burner system

    Energy Technology Data Exchange (ETDEWEB)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated.

  2. Design evaluation of the 20-cm (8-inch) secondary burner system

    International Nuclear Information System (INIS)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated

  3. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  4. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  5. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  6. Assessment of coal liquids as refinery feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  7. Assessment of coal liquids as refinery feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  8. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  9. Core design studies for advanced burner test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.S.; Kim, T.K.; Hill, R.N. [Argonne National Laboratory, Argonne, IL (United States)

    2007-07-01

    This paper describes the core design and performance characteristics of 250 MWt Advanced Burner Test Reactor (ABTR) designs. A phased approach was adopted with initial startup using conventional enrichment plutonium-based fuel and gradual transition to full core loading of transmutation fuel after its qualification phase. Reference core designs were developed for ternary metal alloy and mixed oxide fuels based on weapons-grade plutonium feed. The transuranics (TRU) transmutation fuel tests can be accommodated in the designated test assemblies, and if fully developed, core conversion to TRU transmutation fuel can be envisioned. For the startup core designs, the calculated TRU conversion ratio is 0.65 for the metal fuel core and 0.64 for the oxide fuel core. The metal fuel core requires an average TRU enrichment of 18.8% and has a TRU loading of 732 kg. Compared to the metal fuel core, the lower density oxide fuel core requires an average TRU enrichment of 21.8%, which results in a 780 kg TRU loading despite a {approx} 9% smaller heavy metal inventory. Alternative designs were also studied for a light water reactor spent fuel TRU feed and a low conversion ratio, including the recycle of the ABTR spent fuel TRU. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core parameters, mass flow rates, power distributions, kinetic parameters, reactivity feedback coefficients, and reactivity control requirements and shutdown margins. (authors)

  10. Preliminary Results on the Effects of Distributed Aluminum Combustion Upon Acoustic Growth Rates in a Rijke Burner

    OpenAIRE

    Newbold, Brian R.

    1998-01-01

    Distributed particle combustion in solid propellant rocket motors may be a significant cause of acoustic combustion instability. A Rijke burner has been developed as a tool to investigate the phenomenon. Previous improvements and characterization of the upright burner lead to the addition of a particle injection flame. The injector flame increases the burner's acoustic driving by about 10% which is proportional to the injector's additional 2 g/min of gas. Frequency remained fairly constant fo...

  11. Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, Northeastern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Chinchon, S.; Lopez-Soler, A.

    1989-03-01

    Deposition of important coal accumulations in the proximal areas of a delta-estuary, occurred in the Maestrazgo Basin during the middle Albian (late Lower Cretaceous). These coals are characterized by high sulfur contents: 4.18% in coal from the Castellote subbasin, and 7.16% in coal from the Calanda subbasin (dry basis). A petrographic study of iron sulfide was carried out on the subject coals, to deduce an iron sulfide precipitation sequence for five principal stages: (a) early syngenetic stage; (b) late syngenetic stage; (c) syngenetic-diagenetic stage; (d) early epigenetic stage; and (e) late epigenetic stage. A sulfide precipitation control during the syngenetic stage, carried out by different compounds liberated from organic matter during its coalification stages, is deduced from the confrontation with other studies on coal differing in rank, depositional environment and geographical location. 16 refs., 19 figs.

  12. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  13. Aquatic ecosystems in the coal mining landscape of the upper Olifants River, and the way forward

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2014-03-01

    Full Text Available can provide guidance on managing water ecosystems in the future at various stages of mining operations, which include understanding the interface between water ecosystems and coal mining activities, assessing the likelihood of coal mining activities...

  14. Use of artificial intelligence techniques for optimisation of co-combustion of coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.K.; Wilcox, S.J.; Ward, J. [University of Glamorgan, Pontypridd (United Kingdom). Division of Mechanical Engineering

    2006-03-15

    The optimisation of burner operation in conventional pulverised-coal-fired boilers for co-combustion applications represents a significant challenge This paper describes a strategic framework in which Artificial Intelligence (AI) techniques can be applied to solve such an optimisation problem. The effectiveness of the proposed system is demonstrated by a case study that simulates the co-combustion of coal with sewage sludge in a 500-kW pilot-scale combustion rig equipped with a swirl stabilised low-NOx burner. A series of Computational Fluid Dynamics (CFD) simulations were performed to generate data for different operating conditions, which were then used to train several Artificial Neural Networks (ANNs) to predict the co-combustion performance. Once trained, the ANNs were able to make estimations of unseen situations in a fraction of the time taken by the CFD simulation. Consequently, the networks were capable of representing the underlying physics of the CFD models and could be executed efficiently for a large number of iterations as required by optimisation techniques based on Evolutionary Algorithms (EAs). Four operating parameters of the burner, namely the swirl angles and flow rates of the secondary and tertiary combustion air were optimised with the objective of minimising the NOx and CO emissions as well as the unburned carbon at the furnace exit. The results suggest that ANNs combined with EAs provide a useful tool for optimising co-combustion processes.

  15. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.

    Science.gov (United States)

    Wood, Susie; Fletcher, David F; Joseph, Stephen D; Dawson, Adrian; Harris, Andrew T

    2009-12-15

    Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology.

  16. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  17. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  18. Effects of the Burner Diameter on the Flame Structure and Extinction Limit of Counterflow Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Chang Bo Oh

    2010-09-01

    Full Text Available Experiments and numerical simulations were conducted to investigate the effects of the burner diameter on the flame structure and extinction limit of counterflow non-premixed methane flames in normal gravity and microgravity. Experiments were performed for counterflow flames with a large inner diameter (d of 50 mm in normal gravity to compare the extinction limits with those obtained by previous studies where a small burner (d < 25 mm was used. Two-dimensional (2D simulations were performed to clarify the flame structure and extinction limits of counterflow non-premixed flame with a three-step global reaction mechanism. One-dimensional (1D simulations were also performed with the same three-step global reaction mechanism to provide reference data for the 2D simulation and experiment. For microgravity, the effect of the burner diameter on the flame location at the centerline was negligible at both high (ag = 50 s−1 and low (ag = 10 s−1 strain rates. However, a small burner flame (d = 15 mm in microgravity showed large differences in the maximum flame temperature and the flame size in radial direction compared to a large burner flame (d = 50 mm at low strain rate. In addition, for normal gravity, a small burner flame (d = 23.4 mm showed differences in the flame thickness, flame location, local strain rate, and maximum heat release rate compared to a large burner flame (d = 50 mm at low strain rate. Counterflow non-premixed flames with low and high strain rates that were established in a large burner were approximated by 1D simulation for normal gravity and microgravity. However, a counterflow non-premixed flame with a low strain rate in a small burner could not be approximated by 1D simulation for normal gravity due to buoyancy effects. The 2D simulations of the extinction limits correlated well with experiments for small and large burner flames. For microgravity, the extinction limit of a small burner flame (d = 15 mm was much lower than that

  19. Improving combustion characteristics and NO(x) emissions of a down-fired 350 MW(e) utility boiler with multiple injection and multiple staging.

    Science.gov (United States)

    Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi

    2011-04-15

    Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.

  20. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  1. OXYCOAL-AC: Towards development of a zero-CO2-emission coal combustion process for efficient power generation

    International Nuclear Information System (INIS)

    Toporov, D.; Heil, P.; Foerster, M.; Kneer, R.

    2010-01-01

    The OXYCOAL-AC cooperative research project, presented here, aims at the development of the main components for an integrated zero-CO 2 emission power plant process which comprises combustion of pulverised coal in a mixture of recirculated flue gas (RFG) and oxygen produced from a ceramic ion transport membrane (ITM). This article focuses on the specifics of coal combustion in a CO 2 /O 2 atmosphere including flame stability and related burner design as well as the changes in the heat transfer inside an oxy-firing utility scale furnace. The membrane-based air separation modules and their design for oxycoal conditions are reviewed as well. (authors)

  2. Numerical study of flow, combustion and emissions characteristics in a 625 MWe tangentially fired boiler with composition of coal 70% LRC and 30% MRC

    Science.gov (United States)

    Sa'adiyah, Devy; Bangga, Galih; Widodo, Wawan; Ikhwan, Nur

    2017-08-01

    Tangential fired boiler is one of the methods that can produce more complete combustion. This method applied in Suralaya Power Plant, Indonesia. However, the boiler where supposed to use low rank coal (LRC), but at a given time must be mixed with medium rank coal (MRC) from another unit because of lack of LRC coal. Accordingly to the situation, the study about choosing the right position of LRC and MRC in the burner elevation must be investigated. The composition of coal is 70%LRC / 30%MRC where MRC will be placed at the lower (A & C - Case I)) or higher (E & G - Case II) elevation as the cases in this study. The study is carried out using Computational Fluid Dynamics (CFD) method. The simulation with original case (100%LRC) has a good agreement with the measurement data. As the results, MRC is more recommended at the burner elevation A & C rather than burner elevation E & G because it has closer temperature (880 K) compared with 100%LRC and has smaller local heating area between upper side wall and front wall with the range of temperature 1900 - 2000 K. For emissions, case I has smaller NOx and higher CO2 with 104 ppm and 15,6%. Moreover, it has samller O2 residue with 5,8% due to more complete combustion.

  3. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K.

    1999-07-07

    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  4. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  5. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    Energy Technology Data Exchange (ETDEWEB)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo [Dipartimento di Energetica, Politecnico di Milano, via La Masa, 34, 20156 Milano (Italy)

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  6. Combustion characteristics of porous media burners under various back pressures: An experimental study

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2017-07-01

    Full Text Available The porous media combustion technology is an effective solution to stable combustion and clean utilization of low heating value gas. For observing the combustion characteristics of porous media burners under various back pressures, investigating flame stability and figuring out the distribution laws of combustion gas flow and resistance loss, so as to achieve an optimized design and efficient operation of the devices, a bench of foamed ceramics porous media combustion devices was thus set up to test the cold-state resistance and hot-state combustion characteristic of burners in working conditions without back pressures and with two different back pressures. The following results are achieved from this experimental study. (1 The strong thermal reflux of porous media can preheat the premixed air effectively, so the flame can be kept stable easily, the combustion equivalent ratio of porous media burners is lower than that of traditional burners, and its pollutant content of flue gas is much lower than the national standard value. (2 The friction coefficient of foamed ceramics decreases with the increase of air flow rate, and its decreasing rate slows down gradually. (3 When the flow rate of air is low, viscosity is the dominant flow resistance, and the friction coefficient is in an inverse relation with the flow rate. (4 As the flow rate of air increases, inertia is the dominant flow resistance, and the friction coefficient is mainly influenced by the roughness and cracks of foamed ceramics. (5 After the introduction of secondary air, the minimum equivalent ratio of porous media burners gets much lower and its range of equivalent ratio is much larger than that of traditional burners.

  7. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  8. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY....1633, Fig. 10 Figure 10 to Part 1633—Jig for Setting Burners at Proper Distances From Mattress...

  9. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Science.gov (United States)

    2010-07-01

    ..., fuel oil (diesel and burner), kerosene, and solvents. 101-26.602-3 Section 101-26.602-3 Public... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a...,000 Diesel oil 10,000 Kerosene 10,000 Solvents 500 (2) Estimates shall not be submitted when the...

  10. A new method to assess mercury emissions: a study of three coal-fired electric-generating power station configurations.

    Science.gov (United States)

    Boylan, Helen M; Cain, Randy D; Kingston, H M

    2003-11-01

    U.S. Environmental Protection Agency (EPA) Method 7473 for the analysis of mercury (Hg) by thermal decomposition, amalgamation, and atomic absorption spectroscopy has proved successful for use in Hg assessment at coal-fired power stations. In an analysis time of approximately 5 min per sample, this instrumental methodology can directly analyze total Hg--with no discrete sample preparation--in the solid matrices associated with a coal-fired power plant, including coal, fly ash, bottom ash, and flue gas desulfurization (FGD) material. This analysis technique was used to investigate Hg capture by coal combustion byproducts (CCBs) in three different coal-fired power plant configurations. Hg capture and associated emissions were estimated by partial mass balance. The station equipped with an FGD system demonstrated 68% capture on FGD material and an emissions estimate of 18% (11 kg/yr) of total Hg input. The power plant equipped with low oxides of nitrogen burners and an electrostatic precipitator (ESP) retained 43% on the fly ash and emitted 57% (51 kg/yr). The station equipped with conventional burners and an ESP retained less than 1% on the fly ash, emitting an estimated 99% (88 kg/yr) of Hg. Estimated Hg emissions demonstrate good agreement with EPA data for the power stations investigated.

  11. Coal liquefaction co-processing

    Energy Technology Data Exchange (ETDEWEB)

    Nafis, D. A.; Humbach, M. J. [UOP, Inc., Des Plaines, IL (USA); Gatsis, J. G. [Allied-Signal, Inc., Des Plaines, IL (USA). Engineered Materials Research Center

    1988-09-19

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high quality synthetic oil. A highly active dispersed V{sub 2}O{sub 5} catalyst is used to enhance operations at moderate reaction conditions. A three-year research program has been completed to study the feasibility of this technology. Results are discussed. 7 refs., 14 figs., 21 tabs.

  12. Clean coal use in China: Challenges and policy implications

    International Nuclear Information System (INIS)

    Tang, Xu; Snowden, Simon; McLellan, Benjamin C.; Höök, Mikael

    2015-01-01

    Energy consumption in China is currently dominated by coal, a major source of air pollution and carbon emissions. The utilization of clean coal technologies is a likely strategic choice for China at present, however, although there have been many successes in clean coal technologies worldwide, they are not widely used in China. This paper examines the challenges that China faces in the implementation of such clean coal technologies, where the analysis shows that those drivers that have a negative bearing on the utilization of clean coal in China are mainly non-technical factors such as the low legal liability of atmospheric pollution related to coal use, and the lack of laws and mandatory regulations for clean coal use in China. Policies for the development of clean coal technologies are in their early stages in China, and the lack of laws and detailed implementation requirements for clean coal require resolution in order to accelerate China's clean coal developments. Currently, environmental pollution has gained widespread attention from the wider Chinese populace and taking advantage of this opportunity provides a space in which to regain the initiative to raise people’s awareness of clean coal products, and improve enterprises’ enthusiasm for clean coal. - Highlights: • Clean coal is not widely used in China due to many management issues. • Legal liability of pollution related with coal utilization is too low in China. • China is lack of laws and mandatory regulations for clean coal utilization. • It is difficult to accelerate clean coal utilization by incentive subsidies alone.

  13. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  14. Low NO[sub x] clinker production. [Gyro-therm burners in cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Manias, C.G. (Adelaide Brighton Management Ltd. (Australia)); Nathan, G.J. (Adelaide Univ., SA (Australia))

    1994-05-01

    Gyro-Therm gas burners have been developed for rotary kiln use in the cement industry. They are based on the new and innovative processing jet technology which provides a unique way for mixing natural gas fuel into a surrounding air stream by utilising a gyratory motion of a fluid jet induced by a particular nozzle design. The first installation of a Gyro-Therm kiln burner of commercial design has produced a marked improvement in production efficiency on kiln 3 at Swan Portland Cement, as well as a spectacular reduction in NO[sub x] emissions. (UK)

  15. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  16. Exploratory Research on Novel Coal Liquefaction Concept.

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1997-06-12

    Microautoclave tests confirmed that first-stage subbituminous coal conversions were greater in a more aromatic first-stage solvent. First-stage liquefaction tests with hydride ion `E` showed that high coal conversions can be obtained with a number of different first-stage water-gas-shift catalysts. Eight one-liter autoclave tests were completed. All tests used Black Thunder Mine subbituminous coal and Reilly Industries anthracene oil. Differences among the tests were the hydride ion reagent used, the post-run flash of water, and the shift catalyst. Filtration tests were conducted with five one-liter autoclave products of subbituminous coal. The filtration rates were slower than those that had been obtained with North Dakota lignite products, but were still within a commercially acceptable range. The influence of the first-stage shift catalyst on filtration rates is being investigated. Second-stage hydrotreating of products of tests made to simulate the British coal LSE process and the Wilsonville pilot plant preheaters had lower resid conversion and higher hydrogen uptake than the products of the hydride ion liquefaction reaction. The 300 mL second-stage reactor system went on line this quarter. Refinements in the experimental procedures are under way. A conceptual commercial plant design for the hydride ion reagent `A` case was completed. Evaluations of hydride ion reagent `D` and `E` cases were initiated, and an integrated liquefaction system balance for the hydride ion reagent `E` case was begun. A preliminary review of the final technical and economic reports from the Alberta Research Council study of low-rank coal conversion using the CO-steam process generated a number of questions on the published reports; further analysis of the reports is planned.

  17. Analysis of thermal radiation in coal-fired furnaces

    Science.gov (United States)

    Miles, Jonathan J.; Hammaker, Robert G.; Madding, Robert P.; Sunderland, J. E.

    1997-04-01

    Many utilities throughout the United States have added infrared scanning to their arsenal of techniques for inspection and predictive maintenance programs. Commercial infrared scanners are not designed, however, to withstand the searing interiors of boilers, which can exceed 2500 degrees Fahrenheit. Two high-temperature lenses designed to withstand the hostile environment inside a boiler for extended periods of time were developed by the EPRI M&D Center, thus permitting real-time measurement of steam tube temperatures and subsequent analysis of tube condition, inspection of burners, and identification of hot spots. A study was conducted by Sunderland Engineering, Inc. and EPRI M&D in order to characterize the radiative interactions that affect infrared measurements made inside a commercial, coal- fired, water-tube boiler. A comprehensive literature search exploring the existing record of results pertaining to analytical and experimental determination of radiative properties of coal-combustion byproducts was performed. An experimental component intended to provide data for characterization of the optical properties of hot combustion byproducts inside a coal-fired furnace was carried out. The results of the study indicate that hot gases, carbon particles, and fly ash, which together compose the medium inside a boiler, affect to varying degrees the transport of infrared radiation across a furnace. Techniques for improved infrared measurement across a coal-fired furnace are under development.

  18. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    n/a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed

  19. Energy-saving heating technology in a shaft furnace with modern recuperator burners; Energiesparende Beheizung eines Schachtofens mit modernen Rekuperator-Brennern

    Energy Technology Data Exchange (ETDEWEB)

    Kaczor, H.E. [Buderus Ederstahlwerke AG, Wetzlar (Germany); Bonnet, U. [WS Waermeprozesstechnik GmbH, Tech. Verkauf Nord/West, Witten (Germany)

    2006-06-15

    The article reports on the successful use of recuperator burners in a shaft furnace for reheating of forging ingots at Buderus Edelstahl GmbH. The cold-air burner equipped shaft furnace was converted in just twenty days to use modern recuperator burners, in order to achieve high energy savings. (orig.)

  20. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Science.gov (United States)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  1. Reconstruction of the aero-mixture channels of the pulverized coal plant of the 100MW power plant unit

    Directory of Open Access Journals (Sweden)

    Ivanovic Vladan B.

    2011-01-01

    Full Text Available After the last revitalization of thermal power block of 100 MW in TPP “Kostolac A”, made in the year 2004, during the operation of the plant, pulverized coal deposition often occurred in horizontal sections of the aero-mixture channels. Deposition phenomenon manifested itself in places ahead of spherical compensators in the direction of flow of pulverized coal to the burners, due to unfavorable configuration of these channels. Coal dust deposited in the channels dried and spontaneously combusted, causing numerous damage to channels and its isolation as well as the frequent stoppage of the operation for necessary interventions. The paper presents the original solution of reconstruction of aero-mixture channels which prevented deposition of coal dust and its eventual ignition. In this way the reliability of the mill plant is maximized and higher availability of boiler and block as a whole is achieved.

  2. A thermogravimetric analysis of the combustion of a Brazilian mineral coal

    Directory of Open Access Journals (Sweden)

    Claudionor Gomes da Silva Filho

    2008-01-01

    Full Text Available Knowledge of coal combustion kinetics is crucial for burner design. This work aims to contribute on this issue by determining the kinetics of a particular Brazilian bituminous coal. Non-isothermal thermogravimetry was applied for determining both the pre-exponential factor and the activation energy. Coal samples of 10 mg and 775 mm mean size were used in synthetic air atmospheres (21 % O2. Heating rates from 10 to 50 ºC/min were applied until the temperature reached 850 ºC, which was kept constant until burnout. The activation energy for the primary and the secondary combustion resulted, respectively, in 135.1 kJ/mol and 85.1 kJ/mol.

  3. Core design studies for advanced burner test reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating

  4. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  5. Milliken Clean Coal Demonstration Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-15

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage.

  6. Coal transportation road damage

    International Nuclear Information System (INIS)

    Burtraw, D.; Harrison, K.; Pawlowski, J.A.

    1994-01-01

    Heavy trucks are primarily responsible for pavement damage to the nation's highways. In this paper we evaluate the pavement damage caused by coal trucks. We analyze the chief source of pavement damage (vehicle weight per axle, not total vehicle weight) and the chief cost involved (the periodic overlay that is required when a road's surface becomes worn). This analysis is presented in two stages. In the first section we present a synopsis of current economic theory including simple versions of the formulas that can be: used to calculate costs of pavement wear. In the second section we apply this theory to a specific example proximate to the reference environment for the Fuel Cycle Study in New Mexico in order to provide a numerical measure of the magnitude of the costs

  7. Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, M.; Loewe, A.; Traa, Y. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    The search for alternatives in the fuel sector is an important technological challenge. An interim solution could be provided by direct coal liquefaction. Hydrogen economy and the lack of an efficient catalyst are the main obstacles for this process. We used a premium German brown coal with a high H/C molar ratio of 1.25 and nanostructured cobalt catalysts to improve the efficiency of direct coal liquefaction. We were able to recover and recycle the catalyst efficiently and reached good brown coal conversions and oil yields with single-stage coal liquefaction. The oil quality observed almost reached that of a conventional crude oil considering higher heating value (HHV), H/C molar ratio and aliphatic content. (orig.)

  8. CAPRA exploratory studies of U-free fast Pu burner cores

    International Nuclear Information System (INIS)

    Conti, A.; Garnier, J.C.; Lo Pinto, P.; Sunderland, R.E.; Newton, T.; Maschek, W.

    1995-01-01

    The exploratory studies are summarized that were carried out in the framework of the CAPRA project, on advanced plutonium burner cores, based on the uranium-free fuel concept (allowing the highest plutonium consumption rates to be reached). Taking into account the different requirements to be met in each of the fuel, core physics and safety domains, a conceptual approach is proposed. (author)

  9. Confronting the "Bra-Burners": Teaching Radical Feminism with a Case Study

    Science.gov (United States)

    Kreydatus, Beth

    2008-01-01

    In many of the U.S. History courses the author has taught, she has encountered students who refer to the second-wave feminists of the 1960s and 1970s as "bra-burners." Unsurprisingly, these students know very little about the origin of this epithet, and frequently, they know even less about the women's movement generally. Second-wave feminism, and…

  10. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...

  11. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sholes, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draft combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.

  12. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  13. Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification, and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ and Shankodi-Jangwa (SKJ – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV for energy conversion. The coal classification revealed that the Afuze (AFZ coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C, devolatilization (200-600 °C, and char decomposition (600-1000 °C. The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications.

  14. Queensland set to expand coal operations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    In addition to new coal mines which came on line in 2006 (as mentioned on pp 8-12 in this issue in the article entitled 'Coal production, exports and new mine developments' a number of advanced coal projects are at various stages of assessment and most are proceeding through the statutory approvals process while others are progressing to and beyond pre-feasibility studies. An overview of several of these projects is given in the article. These are: development of the Clermont open-cut thermal project; expanding open-cut operations at Ensham Central; assessing development of the Glen Wilga and Haystack Road deposits; and development at mines at Goonyella-Riverside, Hail Creek, Monto, Lenton, New Acland, Olive Downs, Peak Downs, Sonoma and Vermont. Coal exploration developments, particularly in the Bowen Basin, are reported, together with work in progress under the AUS $20 m Smart Exploration program. Figures are given for private expenditure on coal exploration, exploration, permits for coal received and active exploration permits for coal for June 1997 to June 2006. The article is part of a review called 'Queensland Mining and Production Industries 2006'. 3 figs., 1 tab.

  15. Oil from coal by flash pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I.W. (and others)

    1985-12-01

    This report summarizes the final stage of the NERDDP-funded work on coal liquefaction by flash pyrolysis. A working model pyrolyser, simulating a full-scale unit, has been operated over extended periods with Liddell and Piercefield (NSW), Acland, Millmerran and Macalister (Qld), and Loy Yang (Vic) coals. For several of the coals pyrolysed process heat was generated by combustion of some of the by-product char. Tar from Millmerran, Piercefield, Loy Yang, and Yallourn coals, produced in a separate pilot-scale pyrolyser, have been hydrogenated in continuous reactors to produce synthetic crude oils. Chars from Millmerran and Macalister sub-bituminous coals have been burned in the pilot-scale furnace with results as satisfactory as for the parent coals. The report shows that the flash pyrolysis method of making oil from coal is technically feasible, but cost studies show that in the present economic environment this method produces oil some three to four times more costly than natural oil. The report includes a summary of the overall CSIRO project of which this project formed a part, with emphasis on recent work of significance: e.g. methods of control of coke lay-down on tar hydrogenation catalysts; the combustion reactivity of pyrolysis chars; and various alternative uses of the flash pyrolysis method. Also included is an outline of related work carried out in other Australian and overseas laboratories, and a complete (to end of 1985) bibliography of all publications arising from the project.

  16. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  17. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  18. Development of a non-premix radiant burner. Evaluation of design possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, P.; Myken, A.N.; Rasmussen, N.B.

    1996-12-31

    The objective of the project period is to: make a study into materials suitable for the NPRB (Non-Premix Radiant Burner); chhose the materials for the construction; make proposals for the design of the NPRB; test the different proposals with a CFD-model (Computational Fluid Dynamics). In pursuit of finding a suitable material it is necessary first to estimate the maximum temperature that will occur in the burner. A realistic temperature was estimated to 2100-2300 K. After the literature study a few materials seemed promising. The final choice was made after having contacted some of the leading producers. One producer could produce burners of one of the suggested materials, zirconia. Several construction ideas for the NPRB have been discussed and some of them tested with a CFD-model. The proposed burner concept has been modified in order to obtain a homogenous temperature distribution, enhance air and gas mixing and reduce the maximum material temperature. The conditions for the CFD-calculations have been as follows: burner height x width: 300 mm x 300 mm; fuel input: 50kW (specific load: 550 kW/m{sup 2}); combustion air temperature: 800 deg. C; furnace temperature: 900 deg. C; excess air: 5%. The most promising way to disbribute the gas in the burner is by using perforated ceramic tubes. The CFD-calculations have been based on ten tubes with an outer diameter of 10 mm, each perforated with 40 1 mm holes. From the CFD-calculations it can be concluded that a cavity for mixing gas and hot air is necessary between two layers of ceramic foam. From the CFD-calculations it also can be concluded that the distance between the gas jets can be increased while the diameter of the jets should be decreased. From the CFD calculations it can be seen that a large amount of unburned fuel will leave the surface of the burner. It is suggested to add an extra ceramic foam to the construction to increase the burnout of the fuel in the burner. This concept has been developed for

  19. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z.; Morikawa, M.; Fujii, Y. [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  20. Evaluation of NOX emissions from TVA coal-fired power plants

    International Nuclear Information System (INIS)

    Jones, J.W.; Stamey-Hall, S.

    1991-01-01

    The paper gives results of a preliminary evaluation of nitrogen oxide (NOx) emissions from 11 Tennessee Valley Authority (TVA) coal-fired power plants. Current EPA AP-42 emission factors for NOx from coal-fired utility boilers do not account for variations either in these emissions as a function of generating unit load, or in designs of boilers of the same general type, particularly wall-fired boilers. The TVA has compiled short-term NOx emissions data from 30 units at 11 TVA coal-fired plants. These units include cyclone, cell burner, single wall, opposed wall, single tangential, and twin tangential boiler firing designs. Tests were conducted on 29 of the 30 units at high load; 18 were also tested at reduced load. NOx emissions rates were calculated for each test and compared to the calculated rate for each boiler type using AP-42. Preliminary analysis indicates that: (1) TVA cyclone-fired units emit more NOx than estimated using AP-42; (2) TVA cell burner units emit considerably more NOx than estimated; (3) most TVA single-wall-fired units emit slightly more NOx than estimated; (4) most TVA single-furnace tangentially fired units emit less NOx than estimated at high load, but the same as (or more than) estimated at reduced load; and (5) most TVA twin-furnace tangentially fired units, at high load, emit slightly more NOx than estimated using AP-42

  1. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  2. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong

    2009-11-10

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  3. Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

  4. Flash hydrogenation of coal

    Science.gov (United States)

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  5. A comparison of the spatio-temporal emission of sodium from standard and dewatered Loy Yang coal using PLIF

    Energy Technology Data Exchange (ETDEWEB)

    G.J. Nathan; P.J. Ashman; Z.T. Alwahabi; O. Lucas; K. Meeuwissen [University of Adelaide, SA (Australia). Schools of Mechanical and Chemical Engineering

    2003-07-01

    A comparative study of the spatial and temporal emissions of atomic sodium from large single particles of Loy Yang coal in a partially premixed Bunsen burner flame has been performed. Sodium atoms were probed using the Planar Laser Induced Fluorescence technique (PLIF). Three different types of Loy Yang coal were investigated: air-dried Loy Yang coal and Loy Yang coal dried to two different extents using the mechanical thermal expression (MTE) dewatering process. While it is known that the MTE process also removes water-soluble sodium, the effect of this on the relative magnitude of the Na emissions, especially the spatial and temporal relationship, is not well understood. The key findings are that: (I) the emission of atomic Na occurs at much longer time scales than the release of volatiles and on similar timescales to char combustion; (ii) the timescale of Na release is similar for each of the coals studied but slightly longer for the raw coal; (iii) the total signal of Na from the raw coal is approximately twice that of the MTE treated coals, consistent with higher Na in the fuel; and (iv) that the use of PLIF imaging of atomic Na is useful for investigating the release of Na from reacting solid fuel particles. 7 refs., 5 figs., 2 tabs.

  6. Cleaner Coal in China [Chinese Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    China’s rapid economic growth has aroused intense interest around the world. Policy makers, industrialists, investors, environmentalists, researchers and others want to better understand the issues that this populous nation faces as it further develops an already thriving economy largely fuelled by coal. This study sheds light on the Chinese coal supply and transformation sectors. China’s rapid economic growth has aroused intense interest around the world. Policy makers, industrialists, investors, environmentalists, researchers and others want to better understand the issues that this populous nation faces as it further develops an already thriving economy largely fuelled by coal. This study sheds light on the Chinese coal supply and transformation sectors. China’s coal, mined locally and available at a relatively low cost, has brought enormous benefits to energy consumers in China and to those outside the country who enjoy the products of its coal-based economy. Yet from another perspective, China’s coal use has a high cost. Despite progress, health and safety in the thousands of small coal mines lag far behind the standards achieved in China’s modern, large mines. Environmental degradation is a real and pressing problem at all stages of coal production, supply and use. Adding to these burdens, emissions of carbon dioxide are of concern to the Chinese government as it embarks on its own climate protection strategy. Technology solutions are already transforming the way coal is used in China and elsewhere. This study explores the context in which the development and deployment of these technologies can be accelerated. Providing a large amount of new data, it describes in detail the situation in China as well as the experiences of other countries in making coal cleaner. Above all, the report calls for much greater levels of collaboration – existing bi-lateral and multi-lateral co-operation with China on coal is found lacking. China’s growing openness

  7. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  8. Geochemistry of tin (Sn) in Chinese coals.

    Science.gov (United States)

    Qu, Qinyuan; Liu, Guijian; Sun, Ruoyu; Kang, Yu

    2016-02-01

    Based on 1625 data collected from the published literature, the geochemistry of tin (Sn) in Chinese coals, including the abundance, distribution, modes of occurrence, genetic types and combustion behavior, was discussed to make a better understanding. Our statistic showed the average Sn of Chinese coal was 3.38 mg/kg, almost two times higher than the world. Among all the samples collected, Guangxi coals occupied an extremely high Sn enrichment (10.46 mg/kg), making sharp contrast to Xinjiang coals (0.49 mg/kg). Two modes of occurrence of Sn in Chinese coals were found, including sulfide-bounded Sn and clay-bounded Sn. In some coalfields, such as Liupanshui, Huayingshan and Haerwusu, a response between REEs distribution and Sn content was found which may caused by the transportation of Sn including clay minerals between coal seams. According to the responses reflecting on REEs patterns of each coalfield, several genetic types of Sn in coalfields were discussed. The enrichment of Sn in Guangxi coals probably caused by Sn-rich source rocks and multiple-stage hydrothermal fluids. The enriched Sn in western Guizhou coals was probably caused by volcanic ashes and sulfide-fixing mechanism. The depletion of Sn in Shengli coalfield, Inner Mongolia, may attribute to hardly terrigenous input and fluids erosion. As a relative easily volatilized element, the Sn-containing combustion by-products tended to be absorbed on the fine particles of fly ash. In 2012, the emission flux of Sn by Chinese coal combustion was estimated to be 0.90 × 10(9) g.

  9. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  10. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  11. Characteristics of flue gases and ash in oxygen-blown pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pak, H.; Kobayashi, N.; Hasatan, M. [Nagoya University, Aichi (Japan). EcoTopia Science Institute

    2007-07-15

    A new coal combustion technology for a large-scale power plant is required to be applicable to various kinds of coal. An oxygen-blown pulverized coal combustion experiment was investigated with a bench scale apparatus to understand such characteristics as the combustion efficiency, NOx concentration, conversion from fuel-N, the unburned fraction and composition of mineral matter in the collected ash. The experiment was conducted in a down-fired, cylindrical and vertical furnace. The primary oxygen is injected into the ejector to carry coal particles to the burner, and the swirled secondary one is fed through an annulus. The CO{sub 2} concentration in flue gas was much higher than that of air-coal combustion, and the value was eight out of ten. The results made a feasible condition for CO{sub 2} separation and sequestration. The NOx emission was ranged in concentrations from 1650 to 1800 ppm in the complete combustion region. The NOx concentration was much higher, however the NO, conversion ratio was about the same level as the case of air combustion. The decrease of low-boiling component such as Na, Mg, K and Ca was identified because the flame temperature of the oxygen-blown coal combustion was achieved about 3000 K. We suggested the vaporized calcium components in the fly ash have a potential of the furnace desulfurization and the effect of SOx attack to the heat exchanger was inhibited.

  12. Coal Data: A reference

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  13. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  14. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    Science.gov (United States)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a

  15. Proceedings of a workshop on the utilization of coal fuels in process heaters

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Almost 5% of the nation's energy consumption takes place in tubular process heaters. Currently, these units are gas- and, to a lesser extent, oil-fired. Process heaters provide energy for refining petroleum and the manufacture of numerous chemicals and petrochemicals. Since the current state-of-the-art, using waste heat recovery and forced draft burners, can achieve thermal efficiencies of about 90%, it is unlikely that current process heat and fuel requirements will be dramatically reduced by process modifications and/or conservation measures. Hence, if this sizeable, inexorable drain on our fluid petroleum reserves is to be halted, it seems reasonable to consider the utilization of coal and/or coal-based fuels to fire process heaters. In order to assess the feasibility and potential for a coal-based process heater industry, Brookhaven National Laboratory (BNL) organized a workshop to define and explore the various problems that must be solved in order to burn coal in process heaters. A primary aim of the workshop was to consider the design methodology for process heaters when firing coal and compare it to those for gas and oil firing. The overall conclusions were: that retrofitting present process heaters to coal fuel was impractical; that it would be difficult to fit larger heaters designed to burn coal into present refineries; that there would be difficulties with process heaters burning coal; and that a better approach would be one large utility coal heater with a circulating heat transfer medium. Seven papers have been entered individually into EDB and ERA. (LTN)

  16. Low-NO sub x modification of a 200 MMBTU/HR natural gas-fired ring burner

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.; Rib, D. (Luz Engineering Corp., Boron, CA (US)); Czerniak, D.; Blakeslee, C. (Carnot, Tustin, CA (US))

    1990-01-01

    This paper presents a program to reduce emissions of oxides of nitrogen (NO{sub x}) from the boilers on solar electric generating stations (SEGS) located in Boron, California. The primary goal of the program was to reduce emissions by 20 ppm, from 80 to 60 ppm, at a low cost relative to total burner replacement with new commercial low-NO{sub x} burners. Each SEGS unit includes a 33 MW Westinghouse/Mitsubishi Heavy Industries (MHI) natural gas-fired boiler originally equipped with two MHI type SE-100 low-NO{sub x} burners rate at 200 MMBtu/hr. The type and size of these burners are typical of large utility boilers. The boiler is also equipped with steam injection to the combustion air to control NO{sub x} emission from approximately 100 ppm (uncontrolled) to 80 ppm for the original design.

  17. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2016-03-01

    The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1].

  18. Multidisciplinary learning at the University scientific museums: the Bunsen burner

    OpenAIRE

    agliolo gallitto, A.; Pace, V.; Zingales, R.

    2017-01-01

    We report on a laboratory activity carried out together with secondary school (high-school) students, with the aim of increasing their interest toward historical scientific instruments and stimulate their approach to scientific knowledge. To this purpose, we propose a hands-on activity that can be fruitfully performed at the University scientific museums. We organized a one-week summer stage at the Historical Collection of Physics Instruments and at the Museum of Chemistry of the University o...

  19. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari

    2013-12-01

    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  20. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  1. Core Design Studies for a 600 MWe Demonstration TRU Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Park, Won Seok; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The conceptual core design of the demonstration sodium cooled fast reactor (SFR) for TRU burning is being developed by the Korea Atomic Energy Research Institute (KAERI). The main objective of demonstration reactor for the construction and operation is to test and demonstrate the TRU fuel, the operation of the large sized (1500 MWth) sodium fast reactor and the TRU burning capability of commercial burner reactor. In this paper, a 600 MWe demonstration burner core design is presented. It is scheduled to use the uranium fuel for start core due to the uncertainty of the demonstration of TRU fuel, and to change core fuel to the LTRU core fuel from LWR spent fuel and core fuel to the MTRU core which consists of the LMR spent fuel and the self recycled fuel progressively so that total 4 cores having the different function, which consists of uranium core, LTRU core, MTRU core and Mod.MTRU core, were designed

  2. Core design studies for a 1000 MW{sub th} Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: tkkim@anl.gov; Yang, W.S.; Grandy, C.; Hill, R.N. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    This paper describes the core design and performance characteristics of 1000 MW{sub th} Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of {approx}0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with low and high TRU conversion ratios were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from {approx}0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties.

  3. Core design studies for a 1000 MW{sub th} advanced burner reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Yang, W. S.; Grandy, C.; Hill, R.; Nuclear Engineering Division

    2009-04-01

    This paper describes the core design and performance characteristics of 1000 MW{sub th} Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of {approx}0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with low and high TRU conversion ratios were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from {approx}0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties.

  4. Heat transfer efficiency evaluation for outward and inward multi-flame-hole gas burner

    Science.gov (United States)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Katayama, Takashi; Inaba, Hideo

    2012-04-01

    The purpose of this study is to understand the factor that influence the heating efficiency of the outward and inward multi-hole gas burner. The flame-hole angle and the distance from flame hole to heating object are chosen as the experimental parameters. The measurement of the flame temperature distribution is carried out on each experimental condition. The observation of combustion flame, by the Schlieren method, is done from the purpose to understand the combustion phenomenon on the heating efficiency. LPG (Liquefied petroleum gas) is used for the test fuel gas. The compositions of LPG are propane 97.5vol%, butane 0.2vol% and methane + ethylene 2.3vol%. The optimum ranges of the flame-hole angle and the distance from flame hole to heating object are clarified. The experimental correlation equations for the outward and inward multi-flame-hole gas burner are proposed.

  5. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  6. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    Science.gov (United States)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  7. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  8. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames

    Science.gov (United States)

    Bollinger, Lowell M; Williams, David T

    1949-01-01

    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  9. Numerical simulation of thermoacoustic response of laboratory scale premixed multi-slit burner flames

    Science.gov (United States)

    O'Brien, Adam

    Thermoacoustic instabilities are an entirely unwanted, yet nearly inevitable phenomenon occurring in many practical premixed combustors. If not properly accounted and designed for, they can incur significant increases in the development combustion systems. The fact that such unexpected issues are encountered is indicative of a fundamental lack of understanding regarding the mechanisms that drive thermoacoustic phenomena. Numerical techniques are used to characterize the thermoacoustic response of premixed multi-slit bunsen burner flames. A symmetrical representation of the multi-slit burner is used, and the transfer function is computed at several different frequencies and at three different equivalence ratios. The numerical results are then compared against experimental results in order to determine the suitability of numerical techniques for studying thermoacoustics. A fully compressible Navier-Stokes combustion solver is used in conjunction with adaptive mesh refinement (AMR) for improved resolution at the flame interface.

  10. Optimizing the flame aerodynamics and the design of tangentially arranged burners in a TGMP-314 boiler

    Science.gov (United States)

    Zroichikov, N. A.; Prokhorov, V. B.; Arkhipov, A. M.; Kirichkov, V. S.

    2011-08-01

    Technical solutions for optimizing the flame aerodynamics and the design of tangentially arranged burners in a TGMP-314 boiler are proposed. The implementation of these solutions will make it possible to achieve more reliable operation of the boiler during fuel oil combustion, smaller amount of NO x emissions during the combustion of gas and fuel oil, and a somewhat lower air excess factor in the furnace.

  11. Performance evaluation of premixed burner fueled with biomass derived producer gas

    OpenAIRE

    Punnarapong, P.; Sucharitakul, T.; Tippayawong, N.

    2017-01-01

    Energy consumption of liquefied petroleum gas (LPG) in ceramic firing process accounts for about 15–40% of production cost. Biomass derived producer gas may be used to replace LPG. In this work, a premixed burner originally designed for LPG was modified for producer gas. Its thermal performance in terms of axial and radial flame temperature distribution, thermal efficiency and emissions was investigated. The experiment was conducted at various gas production rates with equivalence ratios betw...

  12. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    Hofbauer, P.; Bornscheuer, W.

    1993-01-01

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.) [de

  13. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  14. Diesel burner for particle filter regeneration at mobile machinery; Vollstrombrenner zur Partikelfilterregeneration bei mobilen Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, Waldemar [Physitron GmbH, Wirges (Germany); Goy, Martina; Schloss, Heide vom; Pillai, Rishi [Oel-Waerme-Institut GmbH, Herzogenrath (Germany)

    2013-07-15

    As part of a joint project which was supported within the Bundesministerium fuer Wirtschaft und Technologie in the Zentrales Innovationsprogramm Mittelstand (ZIM), Physitron cooperating with the Oel-Waerme-Institut, an affiliated institute of the RWTH Aachen, developed a compact and adjustable diesel burner for the regeneration of particle filters in the case of non-road mobile machinery applications. It enables the regeneration of a soot particle filter system during engine operation. (orig.)

  15. Premixed Combustion of Kapok (Ceiba Pentandra) Seed Oil on Perforated Burner

    OpenAIRE

    Wirawan, I.K.G; Wardana, I.N.G; Soenoko, Rudy; Wahyudi, Slamet

    2014-01-01

    Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra) seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ) varie...

  16. An LCA study of an electricity coal supply chain

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available Purpose: The aim of this paper is to provide methods to find the emission source and estimate the amount of waste gas emissions in the electricity coal supply chain, establish the model of the environmental impact (burden in the electricity coal supply chain, detect the critical factor which causes significant environmental impact, and then identify the key control direction and reduce amount of environmental pollution in the electricity coal supply chain. Design/methodology/approach: In this context, life cycle inventory and life cycle assessment of China’s electricity coal were established in three difference stages: coal mining, coal transportation, and coal burning. Then the outcomes were analyzed with the aim to reduce waste gases emissions’ environmental impact in the electricity coal supply chain from the perspective of sensitivity analysis. Findings: The results and conclusion are as follow: (1 In terms of total waste gas emissions in electricity coal supply chain, CO2 is emitted in the greatest quantity, accounting for 98-99 wt% of the total waste gas emissions. The vast majority of the CO2, greater than 93%, is emitted from the power plant when the coal is combusted. (2 Other than CO2, the main waste gas is CH4, SO2 and so on. CH4 is mainly emitted from Coal Bed Methane (CBM, so the option is to consider capturing some of the CH4 from underground mines for an alternative use. SO2 is mainly emitted from power plant when the coal is combusted. (3 The environmental burden of coal burning subsystem is greatest, followed by the coal mining subsystem, and finally the coal transportation subsystem. Improving the coal-burning efficiency of coal-fired power plant in electricity coal supply chain is the most effective way to reduce the environmental impact of waste gas emissions. (4 Of the three subsystems examined (coal mining, coal transportation, and coal burning, transportation requires the fewest resources and has the lowest waste gas

  17. A New Low NOx Combustion Concept for Fan-assisted gas Burners

    International Nuclear Information System (INIS)

    Jaeger, F. Kleine; Koehne, H.

    1999-01-01

    The Department of Heat and Mass Transfer at Aachen Technical University has developed a combustion concept which makes low-emission combustion inside a burn-up chamber possible. In addition to the very low NOx emissions (ENOX < 10 mg/kWh) the fan-assisted gas burner is characterised by the comparatively low noise emissions which are obtained from the stabilisation of the flame within the burn-up chamber and the low flow rates in the flame. The main aim of the fan-assisted gas burner development work is to influence the thermal nitrogen oxide formation in order to obtain minimum emissions combined with low combustion noise. High fan pressures and the resulting increase in turbulence energy in marketable fan-assisted burner concepts often cause a high excitation of thermo-acoustic vibrations which are heard as interfering combustion noises and are often emitted via the chimney into the living space. Low noise emission must therefore be taken into consideration when approaches to reduce nitrogen oxide emissions are developed. One approach which achieves this aim and is in use is combustion on porous surfaces. This reduces the flow rates and therefore the kinetic turbulence energy. One problem with these concepts is, however, the thermal loading of the material which is exposed to a high thermal alternating stress which sometimes makes it brittle. An uneven flow rate distribution can also lead to increased emission of harmful substances. (author)

  18. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  19. Influence of the burner swirl on the azimuthal instabilities in an annular combustor

    Science.gov (United States)

    Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James

    2017-11-01

    Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).

  20. Performance evaluation of premixed burner fueled with biomass derived producer gas

    Directory of Open Access Journals (Sweden)

    P. Punnarapong

    2017-03-01

    Full Text Available Energy consumption of liquefied petroleum gas (LPG in ceramic firing process accounts for about 15–40% of production cost. Biomass derived producer gas may be used to replace LPG. In this work, a premixed burner originally designed for LPG was modified for producer gas. Its thermal performance in terms of axial and radial flame temperature distribution, thermal efficiency and emissions was investigated. The experiment was conducted at various gas production rates with equivalence ratios between 0.8 and 1.2. Flame temperatures of over 1200 °C can be achieved, with maximum value of 1260 °C. It was also shown that the burner can be operated at 30.5–39.4 kWth with thermal efficiency in the range of 84 – 91%. The maximum efficiency of this burner was obtained at producer gas flow rate of 24.3 Nm3/h and equivalence ratio of 0.84.

  1. Application of CALPUFF to PM10 emissions from beehive burners in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Ciccone, A.D. [Jacques Whitford and Associates Limited, Vancouver, BC (Canada); Waddell, G. [Canadian Forest Products Ltd., Prince George, BC (Canada)

    2000-07-01

    The complex local topography of the Bulkley Valley in the British Columbia interior greatly influences the local meteorology and climatology. The communities of Smithers and Houston which are located in the valley are hosts to three mills which operate conical burners for waste disposal and which define the extent of airshed. The CALMET/CALPUFF modelling system was chosen as a means to evaluate the contribution of the burners to the local airshed. CALPUFF was chosen because of the combined conditions of complex terrain and low wind speed in the region. Since MM5 gridded meteorological data was available from the BC Ministry of Environment to initialize the wind fields for CALMET in 1995, modelling was conducted in that year. CALPUFF provided 24-hour PM10 ground level concentrations over a 54 km by 72 km range. This included monitoring stations in the airshed. The impact from the conical burners was found to be low compared to the monitoring data which was collected. However, it was determined that the model was able to describe hourly changes in ambient PM10 levels, which reflected the hourly monitoring station data. The region is now equipped with a modelling platform that can be used to help in air pollution source appointment as well as for the management general air quality.

  2. Optimization of gas mixing system of premixed burner based on CFD analysis

    International Nuclear Information System (INIS)

    Zhang, Tian-Hu; Liu, Feng-Guo; You, Xue-Yi

    2014-01-01

    Highlights: • New multi-ejectors gas mixing system for premixed combustion burner is provided. • Two measures are proposed to improve the flow uniformity at the outlet of GMS. • Small improvement of uniformity induces significant decrease of pollutant emission. • Uniformity of velocity and fuel–gas mixing of ejector increases 234.2% and 2.9%. • Uniformity of flow rate and fuel–gas mixing of ejectors increases 1.9% and 2.2%. - Abstract: The optimization of gas mixing system (GMS) of premixed burner is presented by Computational Fluid Dynamics (CFD) and the uniformity at the outlet of GMS is proved experimentally to have strong influence on pollutant emission. To improve the uniformity at the outlet of GMS, the eleven distribution orifice plates and a diversion plate are introduced. The quantified analysis shows that the uniformity at the outlet of GMS is improved significantly. With applying the distribution orifice plates, the uniformity of velocity and fuel–gas mixing of single ejector is increased by 234.2% and 2.9%, respectively. With applying the diversion plate, the uniformity of flow rate and fuel–gas mixing of different ejectors is increased by 1.9% and 2.2%, respectively. The optimal measures and geometrical parameters provide an applicable guidance for the design of commercial premixed burner

  3. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  4. Design Strategy and Constraints for Medium-Power Lead-Alloy-Cooled Actinide Burners

    International Nuclear Information System (INIS)

    Hejzlar, Pavel; Buongiorno, Jacopo; MacDonald, Philip E.; Todreas, Neil E.

    2004-01-01

    We outline the strategy and constraints adopted for the design of medium-power lead-alloy-cooled actinide-burning reactors that strive for a lower cost than accelerator-driven systems and for robust safety. Reduced cost is pursued through the use of (1) a modular design and maximum power rating to capitalize on an economy of scale within the constraints imposed by modularity, (2) a very compact and simple supercritical-CO 2 power cycle, and (3) simplifications of the primary system allowed by the use of lead coolant. Excellent safety is pursued by adopting the integral fast reactor approach of achieving a self-controllable reactor that responds to all key abnormal occurrences, including anticipated transients without scrams, by a safe shutdown without exceeding core integrity limits. The three concepts developed are the fertile-free actinide burner for incineration of all transuranics from light water reactor (LWR) spent fuel, the fertile-free minor actinide (MA) burner for preferential burning of MAs working in tandem with LWRs or gas-cooled thermal reactors, and the actinide burner with thorium fuel aimed also at reducing the electricity generation costs through longer-cycle operation

  5. The Effects of Combustion Parameters on Pollutant Emissions in a Porous Burner

    Directory of Open Access Journals (Sweden)

    Negin Moallemi Khiavi

    2014-06-01

    Full Text Available This paper reports a two-dimensional numerical prediction of premixed methane/air combustion in inert porous media. The two dimensional Navier-stokes equations, the two separate energy equations for solid and gas and conservation equations for chemical species are solved using finite volume method based on SIMPLE algorithm. The burner under study is a rectangular one with two different regions. First region is a preheating zone (low porosity matrix that followed by the actual combustion region (high porosity matrix. For simulating the chemical reactions, skeletal mechanism (26 species and 77 reactions is used. For studying the pollutant emissions in this porous burner, the effects of porous matrix properties, excess air ratio and inlet velocity are studied. The predicted gas temperature contour and pollutant formations are in good agreement with the available experimental data. The results indicate that the downstream of the burner should be constructed from materials with high conductivity, high convective heat transfer coefficient and high porosity in order to decrease the CO and NO emissions. Also, with increasing the inlet velocity of gas mixture and the excess air ratio, the pollutant emissions are decreased.

  6. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  7. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  8. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  9. Coal and our environment

    International Nuclear Information System (INIS)

    1992-01-01

    This booklet describes how coal is important for economic development and how it can be used without environmental damage. Aspects covered include: improved air quality; Clean Air Act; controlling emissions from coal; flue gas desulfurization; acid rain; the greenhouse effect and climatic change; the cost of clean air; surface coal mining and land reclamation; underground mining and subsidence; and mining and water pollution including acid mine drainage

  10. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  11. Developing Queensland coal

    Energy Technology Data Exchange (ETDEWEB)

    Philp, A. [Australian QTherm (Australia)

    1998-11-01

    Despite regional economic woes and falling coal prices, there have been exciting developments in Queensland`s coal industry with the announcement of three new coal mines, four mine expansions and two mine feasibility studies being undertaken. The article describes new projects being undertaken in Coppabella, Morahbah North and Hall Creek all in the Northern Bowen Basin, and mine expansions underway at Burton, Enshan, Newlands and Oaky North. Feasibility studies are the progress in the Millmerran and Acland deposits in The Moreton Basin. However, a number of proposed expansions at some major mines, such as Moura, Saraji and Peak Downs, have been postponed due to falling international coal prices. 2 figs., 2 photos.

  12. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  13. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  14. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    Energy Technology Data Exchange (ETDEWEB)

    John S. Nordin; Norman W. Merriam

    1997-04-01

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  15. Changes in Frequency of Electromagnetic Radiation from Loaded Coal Rock

    Science.gov (United States)

    Song, Dazhao; Wang, Enyuan; Song, Xiaoyan; Jin, Peijian; Qiu, Liming

    2016-01-01

    To understand the relationship between the frequency of electromagnetic radiation (EMR) emitted from loaded coal rock and the micro-crack structures inside it, and assess the stress state and the stability of coal rock by analyzing frequency changes in characteristics of its emitted EMR, we first experimentally studied the changes in time sequence and the frequency spectrum characteristics of EMR during uniaxial compression, then theoretically derived the relationship between the principal frequency of EMR signals and the mechanical parameters of coal crack and analyzed the major factors causing the changes in the principal frequency, and lastly verified the results at Nuodong Coal Mine, Guizhou Province, China. The experimental results showed that (1) EMR intensity increased with the applied stress on loaded coal rock during its deformation and failure and could qualitatively reflect the coal's stress status; (2) with the applied stress increasing, the principal frequency gradually increased from near zero to about 60 kHz and then dropped to less than 20 kHz. During this period, coal rock first stepped into the linearly and elastically deformed stage and then ruptured around the peak load. Theoretical analysis showed that there was a negative correlation between the principle frequency and the size of internal cracks. Field detection showed that a lower principle frequency was generated from coal rock applied by a greater load, while a higher principal frequency was generated from coal rocks suffering a weaker load.

  16. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  17. The Indonesian coal industry

    International Nuclear Information System (INIS)

    Cook, A.; Daulay, B.

    2000-01-01

    In this comprehensive article the authors describe the origins and progress of the Indonesian coal industry and the role it plays, and will play, in the domestic energy scene and world coal trade. In the '80s, the Indonesian coal industry laid the basis for major expansion such that coal production rose from under a million tonnes in 1983 to 10.6 million tonnes in 1990, 50.9 million tonnes by 1996 and 61.2 million tonnes in 1992. At the same time, exports have increased from 0.4 million tonnes to 44.8 million tonnes. Current export levels are higher than originally expected, due in part to a slow down in the construction of electric power stations and a partial switch to natural gas. This has slowed the rate at which domestic coal demand has built up. The majority of coals currently exported are low rank steam coals, but some of the higher rank and very low ash coals are used for blast furnace injection, and a very small proportion may even be used within coking blends, even though they have poor coking properties. The Indonesian coal industry has developed very rapidly over the last six years to become a significant exporter, especially within the ASEAN context. The resources base appears to be large enough to support further increases in production above those already planned. It is probable that resources and reserves can be increased above the current levels. It is likely that some reserves of high value coals can be found, but it is also probable that the majority of additions to reserves will be lower in rank (and therefore quality) compared with the average of coals currently being mined. Reserves of qualities suitable for export will support that industry for a considerable period of time. However, in the longer term, the emphasis of production will increasingly swing to the domestic market

  18. Coals of Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.; Fodor, B.; Gombar, G.; Sebestyen, I.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and one surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.

  19. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  20. Study on dynamic multi-objective approach considering coal and water conflict in large scale coal group

    Science.gov (United States)

    Feng, Qing; Lu, Li

    2018-01-01

    In the process of coal mining, destruction and pollution of groundwater in has reached an imminent time, and groundwater is not only related to the ecological environment, but also affect the health of human life. Similarly, coal and water conflict is still one of the world's problems in large scale coal mining regions. Based on this, this paper presents a dynamic multi-objective optimization model to deal with the conflict of the coal and water in the coal group with multiple subordinate collieries and arrive at a comprehensive arrangement to achieve environmentally friendly coal mining strategy. Through calculation, this paper draws the output of each subordinate coal mine. And on this basis, we continue to adjust the environmental protection parameters to compare the coal production at different collieries at different stages under different attitude of the government. At last, the paper conclude that, in either case, it is the first arrangement to give priority to the production of low-drainage, high-yield coal mines.

  1. Adoption of clean coal technologies in India

    International Nuclear Information System (INIS)

    Sligar, J.

    1998-01-01

    Coal is a major Indian energy resource. It is being utilized in conventional power stations now. Considerable coal resources are not located near load centers and therefore involve transport by rail. India is becoming more concerned with environmental matters and particularly with the health of its population. Clean coal electricity generation technologies are at the commercial demonstration stage in Europe and the USA in unit capacities appropriate to Indian needs. These technologies minimize environmental problems and promise 25% more efficiency. This competitive technology can be introduced to India in greenfield power stations, in repowering older power stations and in providing an enviable alternative for existing and new power stations presently depending on liquid or gas as fuel. (author)

  2. India clamours for coal

    Energy Technology Data Exchange (ETDEWEB)

    Nadkarni, S.

    2000-10-01

    The steadily deteriorating quality of coal provided by government-owned companies in India has persuaded coal users to follow the lead of the World Bank and call for deregulation of the sector to allow quality coal to be procured at competitive prices from the global market.Some 24 opencast mines belonging to Coal India Limited subsidiaries were to be expanded to produce 112 mta of coal but the World Bank terminated a loan of 507 million dollars from the total sanctioned loan of 1.06 bn. CIL refuses to accept that the loan was terminated because the government failed to meet the terms and conditions imposed at the time of the loan sanction. In addition to slow demand from the power sector, the state-owned coal companies have found the World Bank terms impossible to meet. The favourable debt market in India has come to their aid but even this will not enable the quality of coal to be improved for use in many power plants. The Maharashtra State Electricity Board has called for the formation of a joint venture with the private sector to explore for and supply quality coal. 1 photo.

  3. Imported coal remains flexible

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, F.

    1982-01-01

    The new law on coal tariff quotas is one year old. During this period hard coal imports increased by 1 million tons, in spite of the slowed down economic activities and the wait-and-see attitude of consumers. The author gives a first survey.

  4. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  5. Mechanochemical hydrogenation of coal

    Science.gov (United States)

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  6. COAL USE REPORT

    Science.gov (United States)

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  7. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  8. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  9. The renaissance of coal

    International Nuclear Information System (INIS)

    Schernikau, Lars

    2013-01-01

    There is hardly another energy resource where public opinion and reality lie as far apart as they do for coal. Many think of coal as an inefficient relic from the era of industrialisation. However, such views underestimate the significance of this energy resource both nationally and globally. In terms of global primary energy consumption coal ranks second behind crude oil, which plays a central role in the energy sector. Since global electricity use is due to rise further, coal, being the only energy resource that can meet a growing electricity demand over decades, stands at the beginning of a renaissance, and does so also in the minds of the political leadership. Coal is indispensable as a bridging technology until the electricity demand of the world population can be met primarily through renewable resources.

  10. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  11. Clean Coal Technologies in China: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shiyan Chang

    2016-12-01

    Full Text Available Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology research and development (R&D. This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.

  12. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  13. Flow field and thermal characteristics in a model of a tangentially fired furnace under different conditions of burner tripping

    Science.gov (United States)

    Habib, M. A.; Ben-Mansour, R.; Antar, M. A.

    2005-08-01

    Tangentially fired furnaces are vortex-combustion units and are widely used in steam generators of industrial plants. The present study provides a numerical investigation of the problem of turbulent reacting flows in a model furnace of a tangentially fired boiler. The importance of this problem is mainly due to its relation to large boiler furnaces used in thermal power plants. In the present work, calculation of the flow field, temperature and species concentration-contour maps in a tangentially-fired model furnace are provided. The safety of these furnaces requires that the burner be tripped (its fuel is cut off) if the flame is extinguished. Therefore, the present work provides an investigation of the influence of number of tripped burners on the characteristics of the flow and thermal fields. The details of the flow, thermal and combustion fields are obtained from the solution of the conservation equations of mass, momentum and energy and transport equations for scalar variables in addition to the equations of the turbulence model. Available experimental measurements were used for validating the calculation procedure. The results show that the vortex created due to pressure gradient at the furnace center only influenced by tripping at least two burners. However, the temperature distributions are significantly distorted by tripping any of the burners. Regions of very high temperature close to the furnace walls appear as a result of tripping the fuel in one or two of the burners. Calculated heat flux along the furnace walls are presented.

  14. The Influence Of Calcite On The Ash Flow Temperature For Semi-Anthracite Coal From Donbas District

    Directory of Open Access Journals (Sweden)

    Čarnogurská Mária

    2014-12-01

    Full Text Available This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite dosing. Ash fusion temperatures were set for two coal samples (A, B and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489 °C to 1280 °C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450 °C to 1308 °C. Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.

  15. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  16. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  17. A Comparative Depletion Analysis using MCNP6 and REBUS-3 for Advanced SFR Burner Core

    Energy Technology Data Exchange (ETDEWEB)

    You, Wu Seung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    In this paper, we evaluated the accuracy of fast reactor design codes by comparing with MCNP6-based Monte Carlo simulation and REBUS-3-based the nodal transport theory for an initial cycle of an advanced uranium-free fueled SFR burner core having large heterogeneities. It was shown that the nodal diffusion calculation in REBUS-3 gave a large difference in initial k-effective value by 2132pcm when compared with MCNP6 depletion calculation using heterogeneous model.The code system validation for fast reactor design is one of the important research topics. In our previous studies, depletion analysis and physics parameter evaluation of fast reactor core were done with REBUS-3 code and DIF3D code, respectively. In particular, the depletion analysis was done with lumped fission products. However, it is need to verify the accuracy of these calculation methodologies by using Monte Carlo neutron transport calculation coupled with explicit treatment of fission products. In this study, the accuracy of fast reactor design codes and procedures were evaluated using MCNP6 code and VARIANT nodal transport calculation for an initial cycle of an advanced sodium-cooled burner core loaded with uranium-free fuels. It was considered that the REBUS-3 nodal diffusion option can not be used to accurately estimate the depletion calculations and VARIANT nodal transport or VARIANT SP3 options are required for this purpose for this kind of heterogeneous burner core loaded with uranium-free fuel. The control rod worths with nodal diffusion and transport options were estimated with discrepancies less than 12% while these methods for sodium void worth at BOC gave large discrepancies of 12.2% and 16.9%, respectively. It is considered that these large discrepancies in sodium void worth are resulted from the inaccurate consideration of spectrum change in multi-group cross section.

  18. Coal: Less than lackluster

    International Nuclear Information System (INIS)

    Doerell, P.

    1994-01-01

    Not many in the world coal industry will remember 1993 as a good year. The reasons for the poor state of affairs were first the weak economic climate, and second, the energy glut. For the first time after expanding steadily since the 70s, seaborne trade in hard coal fell by about 4% to 350M mt. Steam coal accounted for a good half of this volume. While demand continued to rise in the newly industrialized countries of the Pacific area, imports into Europe of both coking coal and steam coal fell sharply. The United States, CIS, and Canada had to accept substantial losses of export volume. Australia, as well as South Africa, Colombia, and Indonesia consolidated their market positions and Poland, too, recorded high volumes available for export. The positive news came from Australia, where in mid-December the New South Wales coal industry reported an increase in the net profit after tax from $A83M (about $55M) to $A98M (about $126M) in 1992/1993. This success was however ascribed less to an improvement in the fundamental mining indicators than to the fall in the Australian dollar and the lowering of corporate tax. The reduction in capital investment by 26% down to $A330M (after the previous year when it had also been cut by 25%) is seen by the chairman of the NSW Coal Assoc. as not auguring well for the industry's ability to meet the forecast growth in demand to the year 2000

  19. Interim design status and operational report for remote handling fixtures: primary and secondary burners

    Energy Technology Data Exchange (ETDEWEB)

    Burgoyne, R.M.

    1976-12-01

    The HTGR reprocessing flowsheet consists of two basic process elements: (1) spent fuel crushing and burning and (2) solvent extraction. Fundamental to these elements is the design and development of specialized process equipment and support facilities. A major consideration of this design and development program is equipment maintenance: specifically, the design and demonstration of selected remote maintenance capabilities and the integration of these into process equipment design. This report documents the current status of the development of remote handling and maintenance fixtures for the primary and secondary burners.

  20. Combustion of low calorific value gases in porous burners; Verbrennung von niederkalorischen Gasen in Porenbrennern

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.; Talukdar, P.; Issendorff, F. von; Trimis, D. [Lehrstuhl fuer Stroemungsmechanik Friedrich-Alexander-Univ., Erlangen-Nuernberg (Germany)

    2005-04-01

    By the use of low calorific value gases significant energy amounts can be saved, emissions can be reduced and system efficients can be increased. These mixtures are generated in different fields like waste sites and fuel cell systems with reformation of hydrocarbons. Conventional combustion techniques are not suited for the combustion of this kind of gases. Due to its high internal heat recuperation the porous burner technology has great potential for the combustion of low calorific value gases. In this work the influence of the combustion zone properties, the surface load and the educt temperature were determined by numerical simulations and experiments. (orig.)

  1. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  2. Phenomenological study of the behavior of some silica formers in a high velocity jet fuel burner

    Science.gov (United States)

    Cawley, J. D.; Handschuh, R. F.

    1985-01-01

    Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered Si3N4 and polycrystalline MoSi2, were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix.

  3. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    Science.gov (United States)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory and the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  4. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis

    International Nuclear Information System (INIS)

    Du, Yuying; Jiang, Xuguang; Lv, Guojun; Ma, Xiaojun; Jin, Yuqi; Wang, Fei; Chi, Yong; Yan, Jianhua

    2014-01-01

    Highlights: • The Activation energy for the blends is lower than that of BR and coal when BR < 50%. • The BR/coal blends start to decompose at approximately 45 °C releasing ammonia. • The yield of gaseous products increases with increasing BR blending ratio. • NH 3 , alkanes and CO 2 increase with increasing BR blending ratio. • Interactions most likely occur between the BR and the coal during co-pyrolysis. - Abstract: In this work, the thermal behavior and kinetics of bio-ferment residue (BR) and coal blends during co-pyrolysis were investigated using TG-FTIR and kinetic analysis. The co-pyrolysis of BR and coal occurred in three major stages. The BR/coal blends lost most of their weight during the devolatilization stage. The kinetics of the BR/coal blends in this stage implied that the activation energy was lower than that of BR and coal below a certain BR blending ratio. The BR/coal blends started to decompose at approximately 45 °C, releasing ammonia followed by alkanes, carbon dioxide, methane and carbon monoxide. The total yield of gaseous products (primarily ammonia, alkanes and carbon dioxide) increased with increasing BR blending ratio. Moreover, interactions most likely occurred between the BR and the coal during co-pyrolysis

  5. Coal potential of Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Rose, G.; McElroy, C.T.

    1987-01-01

    This report attempts to bring together available information on the coal deposits of Antarctica and discuss factors that would be involved if these deposits were to be explored and mined. Most of the reported principal coal deposits in Antarctica lie generally within the Transantarctic Mountains: the majority are of Permian age and are present in the Victoria Group of the Beacon Supergroup. Several other deposits have been recorded in East Antarctica and in the Antarctic Peninsula, including minor occurrences of Mesozoic and Tertiary coal and carbonaceous shale.

  6. Extreme coal handling

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, S; Homleid, D. [Air Control Science Inc. (United States)

    2004-04-01

    Within the journals 'Focus on O & M' is a short article describing modifications to coal handling systems at Eielson Air Force Base near Fairbanks, Alaska, which is supplied with power and heat from a subbituminous coal-fired central plant. Measures to reduce dust include addition of an enclosed recirculation chamber at each transfer point and new chute designs to reduce coal velocity, turbulence, and induced air. The modifications were developed by Air Control Science (ACS). 7 figs., 1 tab.

  7. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  8. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  9. The impact of resource tax reform on China's coal industry

    International Nuclear Information System (INIS)

    Liu, Huihui; Chen, ZhanMing; Wang, Jianliang; Fan, Jihong

    2017-01-01

    Contributing to approximately two-thirds of primary energy consumption, coal usage is the focus of China's energy policies. To regulate the resource taxation system and reduce the burden of coal enterprises, the Chinese government launched a reform of its resource tax system in 2014 for coal, introducing the ad valorem system to replace the volume-based system that had been in place for the preceding thirty years. To assess the impact of the tax reform, this paper constructs two-stage dynamic game models by taking the coal and coal-fired power industries as the players. The market situations of shortage and oversupply are investigated separately. Empirical data are collected to estimate the model parameters for numerical simulations. The model results suggest that the tax reform will reduce both coal prices and the coal industry profitability if the tax levied on each ton of coal is maintained at the same level as before the reform, regardless of whether the market is in a shortage or an oversupply situation. However, the increased buyer's power will amplify the effect of the tax reform. The numerical simulations also provide an estimation of the tax rate of the ad valorem system that maintains the profit of the coal industry. Considering the demand and supply situations in China's coal market, policy recommendations are provided to guide further reform of China's resource tax system. - Highlights: • The paper examines the influence of resource tax reform on China's coal industry. • We construct two-stage game models between coal and coal-fired power industries. • Market situations of shortage and oversupply are studied in two taxation systems. • Coal price will decrease if maintaining the tax levied on each ton of coal the same. • To achieve the reform objective, the ad valorem tax rate should not be set too high.

  10. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  11. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  12. Study on the characteristics of coal rock electromagnetic radiation (EMR) and the main influencing factors

    Science.gov (United States)

    Song, Xiaoyan; Li, Xuelong; Li, Zhonghui; Zhang, Zhibo; Cheng, Fuqi; Chen, Peng; Liu, Yongjie

    2018-01-01

    Coal rock would produce electromagnetic radiation (EMR) in the loading process, but study on the influence factors influence on the coal rock EMR characteristics in the mesoscopic level is not insufficient. In the paper, the EMR characteristics of coal and rock samples under uniaxial loading are studied. Several typical microcosmic mechanisms affecting the characteristics of EMR are discussed, such as strength, composition and microstructure of the samples. Results show that the macroscopic structure of the outburst coal is soft, the corresponding EMR signal increases slowly with the loading increase and the EMR peak is smaller. The rockburst coal has a strong brittleness, the EMR signal increases quickly and EMR peak appears while the coal breaks is larger than the outburst coal. The EMR characteristics of rock samples are similar to the rockburst coal, but the EMR peak is the largest. When the coal rock microstructure is complete, the coal rock block is larger and the brittleness is stronger, then the corresponding strength would be larger. And the free charge generated by thermal excitation, field emission and intergranular chemical bond breakage would also be more. In the meantime, the crack propagation rate becomes greater, therefore the EMR is more stronger. The piezoelectric effect is mainly caused by the linear elastic stage of the specimen deformation and rupture, which contributes less to the EMR signals. This study is of great theoretical and practical value for assessing the mechanical state of coal rock through EMR technology, and accurately monitoring and predicting the coal rock dynamic disasters.

  13. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  14. Quarterly coal report

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  15. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  16. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Viterbo, J.

    2011-09-15

    As the energy demand grows, coal is more and more exported and its trade is very flourishing. Asian countries produce 61% of the world production and Japan is the biggest coal importer: 27% of the world exports. The world reserves are huge: 860 billions tonnes which represents 130 years of today's production. The use of coal is very polluting and the quest of a clean coal is a challenge for the next decade. Different ways of improvement are currently developed: -) the use of more efficient filters to block polluting releases, -) the recovery of the energy of the smokes, -) a higher thermal yield through the use of supercritical cycles, or the addition of a gasification step to a combined cycle, or the simultaneous production of power, heat and chemical by-products, and -) the storage of CO{sub 2} produced in deep geological reservoirs. (A.C.)

  17. Uranium in coal

    International Nuclear Information System (INIS)

    Facer, J.F. Jr.

    1979-05-01

    United States production of coal in 1977 was 695 million short tons of which 477 million tons were burned in power plants. The ash from these power plants was about 67 million tons containing an estimated 900 tons U 3 O 8 , assuming 14 percent ash from the type of coal used by utilities and 12 ppM U contained in ash. Perhaps 1 to 3 percent of the domestic uranium requirement could be met from coal ash, provided processing technology could be developed for uranium recovery at acceptable costs. However, the environmental problems for disposal of the slimy leached ash would be enormous. The average uranium grade of coal in the United States is less than half of that of the Earth's crust. Burning the coal concentrates the contained uranium in the ash from 2 to 20 times. However, even at 20 times concentration, the percent uranium in coal ash is less than 1/100 of the grade of the uranium ore being processed today from conventional deposits. Although it is conceivable that some coal ash might contain enough uranium to make the ash an economic source of uranium, this is not now the case for ash from any major coal-fired power plant in the United States. During 1963 to 67, about 180,000 tons of uranium-bearing carbonaceous rock from the southwestern part of the Williston Basin were mined and processed to recover about 1 million pounds of U 3 O 8 . None of this material has been mined since 1967. The uranium reserves of the area are small, and the environmental problems with calcining the lignitic material may be prohibitive. Some other uraniferous coal and lignite could be mined and processed as a uranium ore, but less than half of one percent of the domestic $30 reserves are in coal. A few samples of mid-continent coal have been reported to contain about 100 ppM U but little is known about the size of such deposits or the likelihood that they will be mined and used for power plant fuel to produce a high-uranium ash

  18. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  19. Coal utilization and environment

    International Nuclear Information System (INIS)

    Sanchez, J.C.D.; Formoso, M.L.L.

    1990-01-01

    This paper attempts at presenting a database on environmental pollution due to coal-fired power plants and coal-mining, according to regional and national bibliography available to the authors. Data on air, water and soil pollution in Rio Grande do Sul and Pollution due to mining in Santa Catarina are presented. The paper consists of a bibliographic compilation, with the quantification of polluting factors. (author)

  20. Coal pillar design procedures

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available ). ..................................................................................................................25 Figure 1-3 Stress in coal pillar versus pillar compression. After Wagner (1980).......................27 Figure 1-4 Frequency of pillar collapse versus the design safety factor. ..................................38 Figure 1-5 Frequency... ......................................................................................57 Table 2-6 Calculation of factor of safety of pillars at collapsed sites in Klip River coal field.......................................................................................................................58 Table 2-7 Summary...

  1. Coal transporting systems

    International Nuclear Information System (INIS)

    Vasilevski, Goce; Sazdov, Dushko; Tasevski, Apostol

    1999-01-01

    Installation of transporting systems in coal open pits in Macedonia was connected with construction and purchasing of the equipment from foreign companies. During 1998 Electric Power Company of Macedonia in connection with needs of the Oslomej Thermal Power Plant and delivery conditions,decided to give this task to domestic companies. This paper presents the planning activities an the implementation of the new coal transporting system. (Author)

  2. Improvements in monitoring coal

    International Nuclear Information System (INIS)

    Wright, H.R.C.; Tulloch, A.T.; Basterfield, A.

    1984-01-01

    An instrument for determining a first characteristic of a material, eg ash in coal, by X-radiation comprises a turntable with material feeding means. An X-radiation source and detector unit determines the first characteristic, and a microwave source and detector unit, determine a second characteristic of the material, eg moisture in coal. The turntable is transparent to microwaves in at least the region traversed by the microwaves. (author)

  3. Oil from coal

    Energy Technology Data Exchange (ETDEWEB)

    Thurlow, G.G.

    1978-10-01

    Our great-grandchildren will view the petroleum age as a brief perturbation in the life-style of mankind, less than a hundred years in which we discovered, exploited, squandered and exhausted the natural resource of liquid petroelum laid down over many million years of pre-history. What the sources of energy in common use in our great-grandchildren's day will be is something we cannot know. By then, the need for liquid hydrocarbon fuels may have passed. What is more sure, however, is that for a while, man will want to continue to use the equipment and the methods familiar to him from this petroleum-product dominated age beyond the time when natural petroleum sources become scarce. During these decades there will be a need to produce liquid hydrocarbons from other sources and one of these sources, abundantly available at this time, will be coal. Converting coal to liquid basically entails accomplishing two steps: (1) the separation of the coal substance from the ash and impurities associated with the coal, and (2) breaking down the complex coal molecules into simpler molecules and increasing the hydrogen-to-carbon ratio. It is also necessary, of course, to develop processes which will lead to the production of a range of liquid products to meet the demands of the commerical market, whether as fuels or as chemical feedstocks. Converting coal to a liquid needs energy, both heat and power, and hydrogen; if all these have to be generated starting from coal, their production may use approaching half of the Btu value of the coal fed to the plant. The economic advantage of one process over another will be mainly dependent on the products required and the price assigned to them and on the effectiveness with which the plant can be engineered to minimize energy loss and to operate effectively.

  4. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eskinazi, D. [Electric Power Research Inst., Washington, DC (United States); Tavoulareas, E.S. [Energy Technologies Enterprises Corp., McLean, VA (United States)

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  5. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  6. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    Energy Technology Data Exchange (ETDEWEB)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  7. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  8. Experimental and numerical investigation of the acoustic response of multi-slit Bunsen burners

    Energy Technology Data Exchange (ETDEWEB)

    Kornilov, V.N.; de Goey, L.P.H. [Department of Mechanical Engineering, Combustion Technology Group, TU/e, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rook, R.; ten Thije Boonkkamp, J.H.M. [Department of Mathematics and Computer Science, Scientific Computing Group, TU/e, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-10-15

    Experimental and numerical techniques to characterize the response of premixed methane-air flames to acoustic waves are discussed and applied to a multi-slit Bunsen burner. The steady flame shape, flame front kinematics and flow field of acoustically exited flames, as well as the flame transfer function and matrix are computed. The numerical results are compared with experiments. The influence of changes in the mean flow velocity, mixture equivalence ratio, slit width and distance between the slits on the transfer function is studied, both numerically and experimentally. Good agreement is found which indicates the suitability of both the experimental and numerical approach and shows the importance of predicting the influence of the flow on the flame and vice versa. On the basis of the results obtained, the role and physical nature of convective flow structures, heat transfer between the flame and burner plate and interaction between adjacent flames are discussed. Suggestions for analytical models of premixed flame-acoustics interaction are formulated. (author)

  9. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  10. Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner

    Science.gov (United States)

    Mansourian, Mohammad; Kamali, Reza

    2017-05-01

    In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.

  11. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  12. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-09-11

    Characteristics of propagating nonpremixed edge-flames were investigated in a counterflow, annular slot burner. A high-voltage direct current (DC) was applied to the lower part of the burner and the upper part was grounded, creating electric field lines perpendicular to the direction of edge-flame propagation. Upon application of an electric field, an ionic wind is caused by the migration of positive and negative ions to lower and higher electrical potential sides of a flame, respectively. Under an applied DC, we found a significant decrease in edge-flame displacement speeds unlike several previous studies, which showed an increase in displacement speed. Within a moderate range of field intensity, we found effects on flame propagation speeds to be negligible after correcting the flame displacement speed with respect to the unburned flow velocity ahead of the flame edge. This indicates that the displacement speed of an edge-flame strongly depends on ionic wind and that an electric field has little or no impact on propagation speed. The ionic wind also influenced the location of the stoichiometric contour in front of the propagating edge in a given configuration such that a propagating edge was relocated to the higher potential side due to an imbalance between ionic winds originating from positive and negative ions. In addition, we observed a steadily wrinkled flame following transient propagation of the edge-flame, a topic for future research. © 2016 The Combustion Institute

  13. Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner

    Energy Technology Data Exchange (ETDEWEB)

    Galpin, Jeremy [IFP, B.P. 311, 92506 Rueil-Malmaison Cedex (France); INSA - CORIA - CNRS, Institut National des Sciences Appliquees de Rouen (France); Naudin, Alexandre; Vervisch, Luc; Domingo, Pascale [INSA - CORIA - CNRS, Institut National des Sciences Appliquees de Rouen (France); Angelberger, Christian; Colin, Olivier [IFP, B.P. 311, 92506 Rueil-Malmaison Cedex (France)

    2008-10-15

    Large-eddy simulation (LES) of a fuel-lean premixed turbulent swirling flame is performed, in the configuration of a burner experimentally studied by Meier et al. [Combust. Flame 150 (1-2) (2007) 2-26]. Measurements of velocity field, temperature, and major species concentrations are compared against LES results. The unresolved sub-grid scale turbulent species and temperature fluctuations are accounted for using a presumed probability density function and flamelet tabulated detailed chemistry. Before the turbulent burner is simulated, various strategies to introduce tabulated detailed chemistry into a fully compressible Navier-Stokes solver are discussed and tested for laminar flames. The objective is to ensure a proper coupling between chemical tables and unsteady solutions of the Navier-Stokes equations in their fully compressible form, accounting for the inherent constraints of high-performance computing. Comparisons of LES results with experiments are discussed in terms of filtered quantities, leading to the introduction of an extra term to account for the difference in filter sizes used in experiment and LES. Velocity, temperature, and major species LES fields are then compared against measurements. Most of the turbulent flame features are reproduced, and observed discrepancies are analyzed to seek out possible improvements of the subgrid-scale modeling. (author)

  14. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    International Nuclear Information System (INIS)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-01-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% Δk. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% Δk. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  15. Hazardous waste and used oil fuel burning; Continuing regulatory concerns for generators, marketers and burners

    Energy Technology Data Exchange (ETDEWEB)

    Voelpel, J.W. (Honigman Miller Schwartz and Cohn, Detroit, MI (US))

    1987-01-01

    With the closing of interim status 'windows' and with the interest of many present HWF blenders and burners in restricting entry into the field, the concerns and opportunities associated with the blending and burning marketplace remain topical and in some areas not yet clearly defined. Also, further regulation, such as the promised rules for burners due in April, 1987, may force some to leave the field, thus creating additional concerns and opportunities. In any event, because hazardous wastes with substantial heat value will be generated for many years to come and because of the present load on available hazardous waste incinerators, blending and burning of HWF and used oil promise to remain an extremely important means of destruction of these materials. The author presents a discussion of the following areas: history, who can blend and who can't, who can burn and who can't, regulation of combustion residuals, impact of the land disposal ban rules, and state and other federal regulatory impacts.

  16. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  17. NON-INTRUSIVE GAS-PHASE THERMOMETRY FOR INDUSTRIAL OXY-FUEL BURNERS

    Directory of Open Access Journals (Sweden)

    J. W. Tröger

    2015-03-01

    Full Text Available The use of oxy-fuel combustion processes is of large interest for several industrial fields applications since it offers the advantages of low NOx emissions in combination with high combustion temperatures even without additional preheating. For optimization of such processеs a detailed understanding based on precise experimental data is necessary. So far there is still a lack of precise experimental data achieved with high spatial and temporal resolution from industrial relevant turbulent oxy-fuel combustion processes. Beside species concentration information the gas phase temperature is of utmost importance for an improved understanding of the basic chemical reactions and the pollutant formation. The coherent anti-Stokes Raman spectroscopy (CARS technique is a very well suited laser based tool for a non-intrusive investigation of such turbulent high temperature combustion processes. In this work we analysed an industrial 400 kW oxy-fuel burner with the help of O2 based vibrational CARS system which is integrated in an industrial relevant test furnace. The burner is fed with pure oxygen and natural gas at an equivalence ratio of =0.9. At one downstream position temporal and spatial resolved temperatures were measured along a 600 mm line. Additional air sucked in from the environment seems to influence the gas phase temperature significantly.

  18. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    Science.gov (United States)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  19. Non-periodic motion of a Bunsen flame tip with burner rotation

    Science.gov (United States)

    Hiroshi, Gotoda; Toshihisa, Ueda

    2004-11-01

    In relation to the local structure of a turbulent premixed flame, unsteady flame tip motion with burner rotation, are experimentally investigated from the viewpoint of nonlinear dynamics. The mean exit velocity from the burner tube, U, is varied from 0.6 to 1.3 m/s, keeping the swirl number S = 1.14 constant. Rich methane - air mixture with equivalence ratio is used. The variation in the flame tip motion is quantitatively evaluated by calculating mean value of a parallel trajectory value G. At U > 0.7 m/s, the value of G is estimated at about zero, indicating periodic motion. As U increases, the trajectory of the attractor becomes complicated and G gradually increases. The value of G approaches the value of the Fourier transformed surrogate data with further increase in U. This suggests that, the flame tip motion varies from periodic to chaotic due to the influence of phase random with increasing U. The short-term forward prediction method based on the orbit of the attractor, can be performed. The modification of the short-term forward prediction method can extend the prediction term successfully, keeping that the correlation coefficient R(p) between the measured data and the predicted data is enough high even in the case of a non - periodic flame motion. The results suggest that the modified short-term forward prediction method proposed in the present study is valid for predicting the motion of unsteady flames.

  20. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  1. The use of mechanically activated micronized coal in thermal power engineering

    Directory of Open Access Journals (Sweden)

    Burdukov Anatoliy P.

    2016-01-01

    Full Text Available Coal is one of the main energy resources and development of new promising technologies on its basis is certainly topical. This article discusses the use of new technology of gas and fuel oil replacement by mechanically activated micronized coal in power engineering: ignition and stabilization of pulverized coal flame combustion, as well as gasification of micronized coal in the flow. The new technology coal combustion with two stages of grinding is suggested. Optimization of the scheme of two-stage combustion is calculated. The first experimental data on the combustion process are obtained. The first demonstration tests on gas and heavy oil replacement by micronized coal during boiler ignition were carried out in the real power boiler with the capacity of 320 tons of steam per hour.

  2. The magnetohydrodynamics coal-fired flow facility

    Science.gov (United States)

    1990-12-01

    The purpose of this report is to provide the status of a multi-task research and development program in coal fired MHD/steam combined cycle power production (more detailed information on specific topics is presented in topical reports). Current emphasis is on developing technology for the Steam Bottoming Cycle Program. The approach being taken is to design test components that simulate the most important process variables, such as gas temperature, chemical composition, tube metal temperature, particulate loading, etc., to gain test data needed for scale-up to larger size components. This quarter, a 217 hour coal-fired long-duration test was completed as part of the Proof-of-Concept (POC) test program. The aggregate test time is now 1512 hours of a planned 2000 hours on Eastern coal. The report contains results of testing the newly installed automatic ash/seed handling system and the high pressure sootblower system. The conceptual design for the modifications to the coal processing system to permit operation with Western coal is presented. Results of analysis of superheater test module tube removed after 500 hours of coal-fired testing are summarized. The status of the environmental program is reported. Pollutant measurements from remote monitoring trailers that give the dispersion of stack emissions are presented. Results of advanced measurement systems operated by both UTSI and Mississippi State University during the POC test are summarized. Actions to prepare for the installation of a 20MW(sub t) prototype of the TRW slag rejection combustor first stage are discussed. Contract management and administrative actions completed during the quarter are included.

  3. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  4. Refining and end use study of coal liquids

    International Nuclear Information System (INIS)

    1998-01-01

    Two direct coal liquids were evaluated by linear programming analysis to determine their value as petroleum refinery feedstock. The first liquid, DL1, was produced from bitiuminous coal using the Hydrocarbon Technologies, Inc.(HTI) two-stage hydrogenation process in Proof of Concept Run No.1, POC-1. The second liquid, DL2,was produced from sub-bituminous coal using a three-stage HTI process in Proof of Concept Run No. 2, POC-2; the third stage being a severe hydrogenation process. A linear programming (LP) model was developed which simulates a generic 150,000 barrel per day refinery in the Midwest U.S. Data from upgrading tests conducted on the coal liquids and related petroleum fractions in the pilot plant testing phase of the Refining and End Use Study was inputed into the model. The coal liquids were compared against a generic petroleum crude feedstock. under two scenarios. In the first scenario, it was assumed that the refinery capacity and product slate/volumes were fixed. The coal liquids would be used to replace a portion of the generic crude. The LP results showed that the DL1 material had essentially the same value as the generic crude. Due to its higher quality, the DL2 material had a value of approximately 0.60 $/barrel higher than the petroleum crude. In the second scenario, it was assumed that a market opportunity exists to increase production by one-third. This requires a refinery expansion. The feedstock for this scenario could be either 100% petroleum crude or a combination of petroleum crude and the direct coal liquids. Linear programming analysis showed that the capital cost of the refinery expansion was significantly less when coal liquids are utilized. In addition, the pilot plant testing showed that both of the direct coal liquids demonstrated superior catalytic cracking and naphtha reforming yields. Depending on the coal liquid flow rate, the value of the DL1 material was 2.5-4.0 $/barrel greater than the base petroleum crude, while the DL2

  5. Environmental monitoring handbook for coal conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; DeCicco, S.G. (eds.)

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impacts during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.

  6. Coal market outlook in China

    International Nuclear Information System (INIS)

    Yu Zhufeng; Zheng Xingzhou

    2005-01-01

    Coal is the major primary energy source in China. It is forecast that coal will account for over 60% of the primary energy consumption mix, and the total coal demand will reach 2.3-2.9 billion tons in 2020. However, ensuring the coal supply will be faced with a lot of obstacles in fields such as the degree of detailed exploration of coal reserves, the level of mining technology and mine safety, the production capacity building of mines, transport conditions, and ecological and environmental impacts. More comprehensive measures should be adopted, including improvements in energy efficiency, strengthening coal production and transportation capacity, to rationalise coal mine disposition and the coal production structure, and to raise the levels of coal mining technologies and mine safety management, etc. (author)

  7. Innovation Developments of Coal Chemistry Science in L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine

    Directory of Open Access Journals (Sweden)

    Shendrik, T.G.

    2015-11-01

    Full Text Available The article presents short historical review and innovation developments of Coal Chemistry Department of L.M. Litvinenko Institute, NAS of Ukraine connected with coal mine exploitation problems, search for decisions toward prevention of spontaneous combustion, dust control in mines, establishing structural chemical features of coal with different genesis and stages of metamorphism with the aim to develop new methods of their modification and rational use. The methods of obtaining inexpensive sorbents from Ukrainian raw materials (including carbon containing waste are proposed. The problems of modern coal chemistry science in IPOCC of NAS of Ukraine are outlined.

  8. The nexus of the coal industry and the state in Australia: Historical dimensions and contemporary challenges

    International Nuclear Information System (INIS)

    Baer, Hans A.

    2016-01-01

    This article presents a historical account of the close relationship between the coal mining industry and the federal and various state governments, thus over time building a state/coal industry nexus in Australia. It examines (1) an early colonial stage extending from the late 18th century to around the time of Federation in 1902 when the nexus emerged; (2) an intermediate stage from the early 20th century to the late 1970s when the nexus became solidified; and (3) a late stage from the early 1980s to the present day when the corporate sector came to dominate the nexus. Both Coalition and Australian Labor Party governments have consistently supported the exploitation of Australia's coal and natural gas, including recently coal seam gas, and supported the expansion of coal ports. An opposition movement has called for leaving coal and coal seam gas in the ground and shifting Australia’s energy production to renewable sources, particularly solar and wind energy. The article highlights how the nexus between coal mining and the state inhibits action on climate change. It argues this can be transcended by energy policy directed at socializing coal mining, wedded to a program of transitioning it to renewable energy production. - Highlights: • A close nexus exists between the coal industry and the state in Australia. • An anti-coal movement has developed in recent years in Australia. • Breaking the coal industry/state nexus requires socialization of energy production. • This would enable a shift from reliance on coal to renewable energy sources.

  9. Coal recovery from a coal waste dump

    Directory of Open Access Journals (Sweden)

    Rozanski Zenon

    2016-01-01

    Full Text Available The possibilities and efficiency of coal recovery from the waste material located at the Central Coal Waste Dump in Poland were presented in this paper. The waste material includes significant amount of fly ash. Research conducted into determination of energetic properties of such wastes showed that the average ash content was 75.75% and the average gross calorific value was 7.81 MJ/kg. Coal was gravitationally separated from the waste material in a pulsatory jig and in a spiral washer including size fractions: 30-5 and 8-0 mm (this was crushed to a size <3.2 mm, respectively. The application of the pulsatory jig (pulse classifier allowed to obtain a high-quality energetic concentrate with the ash content lower than 12% and the gross calorific value higher than 26 MJ/kg (with average yield 7.8%. The spiral separator gave much worse results. The average gross calorific value for the concentrate was 11.6 MJ/kg, with the high ash content 56.5% and yield approximately 26%.

  10. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  11. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  12. Burner (Stinger)

    Science.gov (United States)

    ... as possible. This will help you withstand the force of an impact to this area. Gently stretch your neck muscles before any athletic activity. Use protective gear. Equipment like a football neck collar or specially designed shoulder pads can ...

  13. Participatory Communication and Sustainability Development: Case Study of Coal Mining Environment in East Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Inda Fitryarini

    2018-03-01

    Full Text Available This essay tries to analyze about participatory communication, especially those currently practiced in coal mining communities in Samarinda, East Kalimantan Province, Indonesia. In addition, specific practices to facilitate participatory communication are identified and discussed. This essay is based on the author's research on environmental conflicts in coal mining areas. The conclusion of this essay is that community participatory communication in coal mining industry area is still at a pseudo participatory stage.

  14. Co-combustion of waste with coal in a circulating fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Abelha, P.; Lopes, H.; Cabrita, I. [DEECA-INETI, Lisboa (Portugal)

    2002-07-01

    The results of a study of cocombustion of waste with coal is described. Various wastes (biomass, sludge, and refuse derived fuel) were burned with coal in a circulating fluidised bed combustor. Conditions that prevent segregated combustion, reduce production of nitrogen oxides, and attain high combustion efficiency were studied. The effects of variations in air staging in the riser, mixing of air with volatiles, coal/biomass ratio, methods of feeding biomass, and temperature are described. 5 refs., 3 figs., 5 tabs.

  15. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  16. EIA projections of coal supply and demand

    International Nuclear Information System (INIS)

    Klein, D.E.

    1989-01-01

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion

  17. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    Science.gov (United States)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  18. 11th annual conference on clean coal technology, proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Topics covered at the conference include coal combustion technology, multi-purpose coal conversion technology (including entrained-bed coal flash pyrolysis process (CPX), hydrogen production from coal and coal liquefaction), coal ash utilization technology, next general technology (including dry coal cleaning technologies and coal conversion by supercritical water) and basic coal utilization technology (including ash behaviour during coal gasification).

  19. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalaitzidis, Stavros; Siavalas, George; Christanis, Kimon [Dept. of Geology, University of Patras, 26504 Rio-Patras (Greece); Skarpelis, Nikos [Dept. of Geology and Geoenvironment, University of Athens, 15784 Zografou (Greece); Araujo, Carla Viviane [Petrobras-Cenpes GEOQ/PDEXP, Rua Horacio Macedo n 950, Cidade Universitaria - Ilha do Fundao, 21941-915 Rio de Janeiro (Brazil)

    2010-04-01

    The Pera-Lakkos coal located on top of bauxite deposits in the Ghiona mining district (Central Greece), is the only known Mesozoic (Late Cretaceous) coal in the country. It was derived from herbaceous plants and algae growing in mildly brackish mires that formed behind a barrier system during a regression of the sea, on a karstified limestone partly filled in with bauxitic detritus. Petrological, mineralogical and geochemical data point to the predominance of reducing conditions and intense organic matter degradation in the palaeomires. O/C vs. H/C and OI vs. HI plots, based on elemental analysis and Rock-Eval data, characterize kerogen types I/II. This reflects the relatively high liptinite content of the coal. Besides kerogen composition, O/C vs. H/C plot for the Pera-Lakkos coals is in accordance with a catagenesis stage of maturation in contrast with vitrinite reflectance and T{sub max} from Rock-Eval pyrolysis, which indicate the onset of oil window maturation stage. Suppression of vitrinite reflectance should be considered and the high liptinite content corroborates this hypothesis. Despite some favourable aspects for petroleum generation presented by the Pera-Lakkos coal, its maximum thickness (up to 50 cm) points to a restricted potential for petroleum generation. Coal oxidation took place either during the late stage of peat formation, due to wave action accompanying the subsequent marine transgression, or epigenetically after the emergence of the whole sequence due to percolation of drainage waters. Both options are also supported by the REE shale-normalized profiles, which demonstrate an upwards depletion in the coal layer. Oxidation also affected pyrite included in the coal; this led to the formation of acidic (sulfate-rich) solutions, which percolated downwards resulting in bleaching of the upper part of the underlying bauxite. (author)

  20. Coal inclusions in sedimentary rocks. A geochemical phenomenon. A review

    Energy Technology Data Exchange (ETDEWEB)

    Yudovich, Ya. E. [Institute of Geology, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, Morozova st., 100, ap. 49, 167023 Syktyvkar (Russian Federation)

    2003-12-01

    summary, the review shows that coal inclusions are unique geochemical phenomenon, sharply different from even neighboring coal beds in trace element content. Among the most extreme elements is germanium, its mean concentration in the ash of coal inclusions being up to 220 times higher than in the ash of coal beds. The most important peculiarity of the coalified wood is the good preservation of the original lignin structures, which may effectively scavenge Ge from solutions, whereas peat-born coals (in beds) contained such structures in far fewer amounts. In addition, a reservoir of dissolved germanium in peat bog waters was of lower concentration than in sediments, which buried the coal inclusions. Finally, the peat bog acidic environment may act as an unfavorable factor.Ge-enrichment can be completed in a time ranging from a few thousand years up to tens of million years. However, if the waters are enriched in Ge, the process can proceed more rapidly and would be completed even under the most unfavorable parameters (compared to the model conditions). This implies that enrichment can take place during the early diagenetic stage. Such a scenario was supported by geologic considerations.Some Canadian and Soviet works performed from 1950 to 1960 along with some recent Russian studies show that Ge in coal inclusions can be of economic interest. Geochemistry and mineralogy of coal inclusions are of great interest and need further detailed study.

  1. Coal: geology, resources and reserves. Political economy of mineral coal

    International Nuclear Information System (INIS)

    Allegre, Maurice; Martin-Amouroux, Jean-Marie

    2014-04-01

    A first article indicates the different types of coal (lignite, coking coal, thermal coal) and their calorific power. The author discusses the geology and genesis of coal, and then evokes the various extraction techniques. He comments the definition used regarding resources and reserves, comments various resource assessments, and discusses the future evolution of resources and reserves. He comments the consequences of coal geology for perspectives and costs of production. The second article comments the strong increase of World coal consumption since 1980 (a table is given with data for each continent), outlines that thermoelectricity is the engine of coal demand, that extraction costs and transport costs remained limited (when extraction costs become too high, the mining site is generally closed). The author comments the development of international trade on very competitive markets, and outlines that national coal policies are much different among countries

  2. What component of coal causes coal workers' pneumoconiosis?

    Science.gov (United States)

    McCunney, Robert J; Morfeld, Peter; Payne, Stephen

    2009-04-01

    To evaluate the component of coal responsible for coal workers' pneumoconiosis (CWP). A literature search of PubMED was conducted to address studies that have evaluated the risk of CWP based on the components of coal. The risk of CWP (CWP) depends on the concentration and duration of exposure to coal dust. Epidemiology studies have shown inverse links between CWP and quartz content. Coal from the USA and Germany has demonstrated links between iron content and CWP; these same studies indicate virtually no role for quartz. In vitro studies indicate strong mechanistic links between iron content in coal and reactive oxygen species, which play a major role in the inflammatory response associated with CWP. The active agent within coal appears to be iron, not quartz. By identifying components of coal before mining activities, the risk of developing CWP may be reduced.

  3. Leachability of trace elements in coal and coal combustion wastes

    International Nuclear Information System (INIS)

    Rice, C.A.; Breit, G.N.; Fishman, N.S.; Bullock, J.H. Jr.

    1999-01-01

    Leaching of trace elements from coal and coal combustion waste (CCW) products from a coal-fired power plant, burning coal from the Appalachian and Illinois basins, was studied using deionized (DI) water as a lixiviant to resemble natural conditions in waste disposal sites exposed to dilute meteoric water infiltration. Samples of bottom ash, fly ash, and feed coal were collected from two combustion units at monthly intervals, along with a bulk sample of wastes deposited in an on-site disposal pond. The units burn different coals, one a high-sulfur coal (2.65 to 3.5 weight percent S) and the other, a low-sulfur coal (0.6--0.9 eight percent S). Short-term batch leaches with DI water were performed for times varying from a few minutes to 18 hours. Select fly ash samples were also placed in long-term (> 1 year) flow-through columns

  4. Coal Matrix Deformation and Pore Structure Change in High-Pressure Nitrogen Replacement of Methane

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ji

    2018-01-01

    Full Text Available Coal matrix deformation is one of the main controlling factors for coal reservoir permeability changes in nitrogen foam fracturing. The characteristics and mechanism of coal matrix deformation during the process of adsorption/desorption were studied by isothermal adsorption/desorption experiments with methane and nitrogen. Based on the free-energy theories, the Langmuir equation, and elastic mechanics, mathematical models of coal matrix deformation were developed and the deformation characteristics in adsorption/desorption processes were examined. From the study, we deduced that the coal matrix swelling, caused by methane adsorption, was a Langmuir-type relationship with the gas pressure, and exponentially increased as the adsorption quantity increased. Then, the deformation rate and amplitude of the coal matrix decreased gradually with the increase of the pressure. At the following stage, where nitrogen replaces methane, the coal matrix swelling continued but the deformation amplitude decreased, which was only 19.60% of the methane adsorption stage. At the mixed gas desorption stage, the coal matrix shrank with the reduction of pressure and the shrinkage amount changed logarithmically with the pressure, which had the hysteresis effect when compared with the swelling in adsorption. The mechanism of coal matrix deformation was discussed through a comparison of the change of micropores, mesopores, and also part macropores in the adsorption process.

  5. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  6. Resuspension of coal and coal/municipal sewage sludge combustion generated fine particles for inhalation health effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Art; Wendt, Jost O.L. [Department of Chemical and Environmental Engineering, University of Arizona, 85721 Tucson, AZ (United States); Cenni, Roberta [Institut fuer Verfahrenstechnik und Dampfkesselwesen, Universitaet Stuttgart, Stuttgart (Germany); Young, R. Scott; Witten, Mark L. [Lung Injury Laboratory, Department of Pediatrics, Arizona Health Sciences Center, 85721 Tucson, AZ (United States)

    2002-03-27

    Airborne particulate matter (PM) is an important environmental issue because of its association with acute respiratory distress in humans, although the specific particle characteristics that cause lung damage have yet to be identified. Particle size, acid aerosols, water-soluble transition metals (e.g. Cu, Fe, V, Ni and Zn), polyaromatic hydrocarbons, and particle composition are the focus of several popular hypotheses addressing respiratory distress. All of the above mentioned characteristics are contained in PM generated from the combustion of both pulverized coal, and biomass, including dried municipal sewage sludge (MSS). In this investigation, we report results from collaborative interdisciplinary research on the inhalation health risks caused by particles emitted from the co-combustion of municipal sewage sludge (MSS) and coal. A solid particle resuspension system was implemented to resuspend ash particles. Mice were exposed to resuspended coal and MSS/coal ash particles. Mice exposed to MSS/coal ash particulate demonstrated significant increases in lung permeability, a marker of the early stages of pathological lung injury, while the mice exposed to coal-only ash did not. These results show that the composition of particles actually inhaled is important in determining lung damage. Zinc was significantly more concentrated in the MSS/coal ash than coal ash particles and the pH of these particles did not differ significantly. Specifically, an MSS/coal mixture, when burned, emits particles that may cause significantly more lung damage than coal alone, and that consequently, the use of MSS as a 'green', CO{sub 2}-neutral replacement fuel should be carefully considered.

  7. Mathematical methods in geometrization of coal field

    Science.gov (United States)

    Shurygin, D. N.; Kalinchenko, V. M.; Tkachev, V. A.; Tretyak, A. Ya

    2017-10-01

    In the work, the approach to increase overall performance of collieries on the basis of an increase in accuracy of geometrization of coal thicknesses is considered. The sequence of stages of mathematical modelling of spatial placing of indicators of a deposit taking into account allocation of homogeneous sites of thickness and an establishment of quantitative interrelations between mountain-geological indicators of coal layers is offered. As a uniform mathematical method for modelling of various interrelations, it is offered to use a method of the group accounting of arguments (MGUA), one of versions of the regressive analysis. This approach can find application during delimitation between geological homogeneous sites of coal thicknesses in the form of a linear discriminant function. By an example of division into districts of a mine field in the conditions of mine “Sadkinsky” (East Donbass), the use of the complex approach for forecasting of zones of the small amplitude of disturbance of a coal layer on the basis of the discriminant analysis and MGUA is shown.

  8. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  9. Laminar partially premixed flame stability - application to domestic burner; Stabilite de flammes laminaires partiellement premelangees. Application aux bruleurs domestiques

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, C.

    2006-05-15

    Phenomena responsible of partially premixed laminar flame stabilisation are investigated on a rich premixed burner configuration. The structure and aerodynamic of the flame generated by a cooking model burner are characterized by Planar Laser Induced Fluorescence of OH radical and Particle Image Velocimetry. The flame behaviour is studied from a stable reference case toward blow-out by varying the flow inlet conditions, the burner geometry and its thermal properties. The flame can be considered as two neighbour and independent reactive zones, each consisting of a double edge flame. The upper double flame stabilisation is similar to the one of a Bunsen burner with a flame-holder attached base and a flame tip stabilized in the flow according to the ratio of the flow velocity and flame speed of the rich pre-mixture. The bottom double flame is stabilized at the crossing point of the stoichiometric flame speed. The flame is finally blown out when there is no more crossing point. (author)

  10. Increasing the speed of computational fluid dynamics procedure for minimization the nitrogen oxide polution from the premixed atmospheric gas burner

    Directory of Open Access Journals (Sweden)

    Fotev Vasko G.

    2017-01-01

    Full Text Available This article presents innovative method for increasing the speed of procedure which includes complex computational fluid dynamic calculations for finding the distance between flame openings of atmospheric gas burner that lead to minimal NO pollution. The method is based on standard features included in commercial computational fluid dynamic software and shortens computer working time roughly seven times in this particular case.

  11. Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners

    Science.gov (United States)

    Orain, M.; Hardalupas, Y.

    2011-11-01

    Local, time-dependent measurements of mixture fraction of the reacting mixture were obtained in a swirl-stabilised natural gas-fuelled, nominally non-premixed burner using the intensity of chemiluminescence from OH∗ and CH∗ radicals. The measurements quantified the mean, rms of fluctuations and probability density functions of local mixture fraction at the stabilisation region of the flame. In addition, the probability of flame presence and the degree of lean or rich versus stoichiometric reaction is reported. The burner was operated for three air flow Reynolds numbers (Re=18970, 29100 and 57600), at an overall equivalence ratio of 0.32, without and with imposed oscillations to the air flow of the burner at the resonance frequency of 350 Hz. Results show that combustion occurred in a partially premixed mode for all flow conditions, although fuel and air were injected separately in the reaction zone. The mean local mixture fraction was nearly stoichiometric at the base of the flame without imposed air oscillations, but with large fluctuations leading to around 80% of lean or rich reaction. The degree of non-stoichiometric reaction increased with axial distance from the burner exit and Reynolds number and lean reaction dominated. Imposed air oscillations led to lifted flames and increased the degree of non-stoichiometric reaction for Re=18970 and 29100, whereas the flame remained attached onto the injector for Re=57600 and little modification of the mixture fraction was observed.

  12. Mill performance of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Bennett; G. O' Brien; D. Holcombe [CoalTech Pty Ltd. (Australia)

    2005-07-01

    Evaluating the potential performance of coal blends for use as pulverised fuel (PF) in power plants and pulverised coal injection (PCI) into blast furnaces requires knowledge of the size distribution of the organic and mineral matter components of a blend, especially when there are significant differences in the Hardgrove Grindability Index (HGI) of the component coals. The size distribution of the organic matter impacts on combustibility of thermal and PCI coal blends and handleability of PCI coal blends. Petrography techniques were used to examine four size fractions from the PF of single coals and blends to measure the size distribution of maceral groups. For most coals, a good estimate of a blend's size distribution can be made assuming that the size distribution of the individual coals, milled under the same conditions, are added together in the proportions of the blend. The exception is when a very soft coal (HGI 90) is blended with a very hard coal (HGI 35). In this case preferential milling (more reporting to the smaller size fractions) of the softer coal occurred. All coals studied in this project show some sign of preferential grinding of the softer maceral group when the coal was milled individually or in a blend. It is only when there is a large difference in the relative strength of the maceral groups of the coals blended that the preferential milling of a coal in a blend is observed in the size distribution of the blend. The results indicate that the breakage characteristics (change in size reduction per unit of energy) of maceral groups in individual coals do not change when they are blended with other coals. 12 refs., 5 figs., 2 tabs.

  13. Global thermal coal trade outlook

    International Nuclear Information System (INIS)

    Ewart, E.

    2008-01-01

    Wood Mackenzie operates coal consulting offices in several cities around the world and is the number one consulting company in terms of global coal coverage. The company offers a unique mine-by-mine research methodology, and owns a proprietary modeling system for coal and power market forecasting. This presentation provided an overview of global thermal markets as well as recent market trends. Seaborne markets have an impact on price far greater than the volume of trade would imply. Research has also demonstrated that the global thermal coal market is divided between the Pacific and Atlantic Basins. The current status of several major coal exporting countries such as Canada, the United States, Venezuela, Colombia, Indonesia, Australia, China, South Africa, and Russia was displayed in an illustration. The presentation included several graphs indicating that the seaborne thermal coal market is highly concentrated; traditional coal flow and pricing trends shift as Asian demand growth and supply constraints lead to chronic under supply; coal prices have risen to historic highs in recent times; and, the Asian power sector demand is a major driver of future growth. The correlation between oil and gas markets to thermal coal was illustrated along with two scenarios of coal use in the United States in a carbon-constrained world. The impact of carbon legislation on coal demand from selected coal regions in the United States was also discussed. Wood Mackenzie forecasts a very strong growth in global thermal coal demand, driven largely by emerging Asian economies. tabs., figs

  14. Development and evaluation of highly-loaded coal slurries. Phase I summary report, October 15, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Scheffee, R.S.

    1979-05-01

    Slurry fuels comprised of either bituminous, subbituminous, or lignite coal, and either aqeuous media or emulsions of No. 6 oil in water as the carrier were developed and evaluated at solids loadings up to 70% by weight. Emphasis was placed on aqueous slurries of bituminous coal. These slurries were developed for use in place of No. 6 oil in oil-fired burners. High solids loadings were attained by use of bimodal particle size distributions, which are blends of coarse-grind coal (approx. 50 to 85% -50 mesh) and fine-grind coal (generally 90% -200 mesh). The effect of the blends on slurry viscosity was determined to find the blends that minimize viscosity. The effect of mill conditions on particle size distribution was determined for each coal, using a hammermill pulverizer. A large number of water-soluble resins were evaluated for effect on slurry stability and viscosity. The best of these was found to be hydroxypropylated corn starch. Slurries based on the use of 3% solutions of the starch in water were prepared with up to 70% by weight bituminous coal and up to 65% subbituminous coal. The slurries are pourable pseudo-plastic fluids having room-temperature viscosities in the range of 550 to 1100 cp at a shear rate of 3000 sec/sup -1/, depending on the type of coal, solids loading, and particle size distribution. None of the slurries exhibited hard pack settling, even after room-temperature storage up to 74 days. Oil-in-water emulsions made with polyethylene glycol (23) lauryl ether as an emulsifier were found to be stable with respect to phase separation when stored at 160/sup 0/F. Slurries made with these emulsions do not exhibit hard pack settling after one week storage at 160/sup 0/F.

  15. Distinctive features of high-ash bituminuos coals combution with low milling fineness in furnace chambers with bottom blowing

    Science.gov (United States)

    Zroychikov, N. A.; Kaverin, A. A.; Biryukov, Ya A.

    2017-11-01

    Nowadays the problem of improvement of pulverized coal combustion schemes is an actual one for national power engineering, especially for combustion of coals with low milling fineness with significant portion of moisture or mineral impurities. In this case a big portion of inert material in the fuel may cause impairment of its ignition and combustion. In addition there are a lot of boiler installations on which nitrogen oxides emission exceeds standard values significantly. Decreasing of milling fineness is not without interest as a way of lowering an electric energy consumption for pulverization, which can reach 30% of power plant’s auxiliary consumption of electricity. Development of a combustion scheme meeting the requirements both for effective coal burning and environmental measures (related to NOx emission) is a complex task and demands compromising between these two factors, because implementation of NOx control by combustion very often leads to rising of carbon-in-ash loss. However widespread occurrence of such modern research technique as computer modeling allows to conduct big amount of variants calculations of combustion schemes with low cost and find an optimum. This paper presents results of numerical research of combined schemes of coal combustion with high portion of inert material based on straight-flow burners and nozzles. Several distinctive features of furnace aerodynamics, heat transfer and combustion has been found. The combined scheme of high-ash bituminouos coals combustion with low milling fineness, which allows effective combustion of pointed type of fuels with nitrogen oxides emission reduction has been proposed.

  16. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals

    International Nuclear Information System (INIS)

    Ge, Lichao; Zhang, Yanwei; Xu, Chang; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    This study investigates the influence of hydrothermal dewatering performed at different temperatures on the combustion characteristics of Chinese low-rank coals with different coalification maturities. It was found that the upgrading process significantly decreased the inherent moisture and oxygen content, increased the calorific value and fixed carbon content, and promoted the damage of the hydrophilic oxygen functional groups. The results of oxygen/carbon atomic ratio indicated that the upgrading process converted the low-rank coals near to high-rank coals which can also be gained using the Fourier transform infrared spectroscopy. The thermogravimetric analysis showed that the combustion processes of upgraded coals were delayed toward the high temperature region, and the upgraded coals had higher ignition and burnout temperature. On the other hand, based on the higher average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and the Da Tong bituminous coal. In ignition segment, the activation energy increased after treatment but decreased in the combustion stage. The changes in coal compositions, microstructure, rank, and combustion characteristics were more notable as the temperature in hydrothermal dewatering increased from 250 to 300 °C or coals of lower ranks were used. - Highlights: • Typical Chinese lignites with various ranks are upgraded by hydrothermal dewatering. • Upgraded coals exhibit chemical compositions comparable with that of bituminous coal. • FTIR show the change of microstructure and improvement in coal rank after upgrading. • Upgraded coals exhibit difficulty in ignition but combust easily. • More evident effects are obtained for raw brown coal with relative lower rank.

  17. Low void effect (CFV) core concept flexibility: from self-breeder to burner core - 15091

    International Nuclear Information System (INIS)

    Buiron, L.; Dujcikova, L.

    2015-01-01

    In the frame of the French strategy on sustainable nuclear energy, several scenarios consider fuel cycle transition toward a plutonium multi-recycling strategy in sodium cooled fast reactor (SFR). Basically, most of these scenarios consider the deployment of a 60 GWe SFR fleet in 2 steps to renew the French PWR fleet. As scenarios do investigate long term deployment configurations, some of them require tools for nuclear phase-out studies. Instead of designing new reactors, the adopted strategy does focus on adaptation of existing ones into burner configurations. This is what was done in the frame of the EFR project at the end of the 90's using the CAPRA approach (French acronym for Enhance Plutonium Consumption in Fast Reactor). The EFR burner configuration was obtained by inserting neutronic penalties inside the core (absorber material and/or diluent subassembly). Starting from the preliminary industrial image of a SFR 3600 MWth core based on Low Sodium Void concept (CFV in French), a 'CAPRA-like' approach has been studied. As the CFV self-breeding is ensured by fertile blankets, a first modification consisted in the substitution of the corresponding depleted uranium by 'inert' or absorber material leading to a 'natural burner' core with only small impacts on flux distribution. The next step forward CAPRA configuration was the substitution of 1/3 of the fuel pins by 'dummy' pins (MgO pellets). The small spectrum shift due to MgO material insertion leads to an increase Doppler constant which exceeds the value of the reference case. As the core sodium void worth value is conserved, the CFV CAPRA core 'safety' potential is quite similar to the one of the reference core. Fuel thermo-mechanical requirements are met by both nominal core power and fuel time residence reduction. However, these reduction factors are lower than those obtained for EFR core. The management of the enhanced reactivity swing is discussed

  18. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2018-01-11

    Partially premixed turbulent flames with non-homogeneous jet of propane were generated in a concentric flow conical nozzle burner in order to investigate the effect of the coflow on the stability and flame structure. The flame stability is first mapped and then high-speed stereoscopic particle image velocimetry, SPIV, plus OH planar laser-induced fluorescence, OH-PLIF, measurements were conducted on a subset of four flames. The jet equivalence ratio Φ = 2, Jet exit Reynolds number Re = 10,000, and degree of premixing are kept constant for the selected flames, while the coflow velocity, Uc, is progressively changed from 0 to 15 m/s. The results showed that the flame is stable between two extinction limits of mixture inhomogeneity, and the optimum stability is obtained at certain degree of mixture inhomogeneity. Increasing Φ, increases the span between these two extinction limits, while these limits converge to a single point (corresponding to optimum mixture inhomogeneity) with increasing Re. Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads to optimum flame stability. The time averaged SPIV results show that the coflow induces a big annular recirculation zone surrounds the jet flames. The size and the location of this zone is seen to be sensitive to Uc. However, the instantaneous images show the existence of a small vortical structure close to the shear layer, where the flame resides there in the case of no-coflow. These small vertical structures are seen playing a vital role in the flame structure, and increasing the flame corrugation close to the nozzle exit. Increasing the coflow velocity expands the central jet at the expense of the jet velocity, and drags the flame in the early flame regions towards the recirculation zone, where the flame tracks

  19. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  20. Bright outlook for coal

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    After enduring contract price cuts over the past two years of almost 17% for thermal coal and 23% for hard coking coal, the New South Wales coal industry is looking forward to a reversal of fortune for 2001. Increased export demand, improved prices, significant improvements in mine site productivity, a weak Australian dollar and the probability of a number of new projects or extensions progressing to development are likely to result in an increase in NSW saleable production to around 110 million tonnes (Mt) in 2000-01. Sharply weaker coal prices over the past two years, intensified international competition and the Asian economic downturn had a negative impact on profitability, investment, exports and employment in the NSW coal industry. As a result, the industry has undergone substantial restructuring. The restructuring process has led to a consolidation in ownership, reduced production costs and improved operational efficiency. The outcome is an industry well positioned to take advantage of the positive market conditions and one likely to experience levels of profitability not achieved over the past few years

  1. Coal processing plants

    Science.gov (United States)

    Bitterlich, W.; Bohn, T.; Eickhoff, H. G.; Geldmacher, H.; Mengis, W.; Oomatia, H.; Stroppel, K. G.

    1980-08-01

    The efficient design of processing plants which combine various coal based technologies in order to maximize the effectiveness of coal utilization is considered. The technical, economical and ecological virtues which compound plants for coal conversion offer are assayed. Twenty-two typical processes of coal conversion and product refinement are selected and described by a standardized method of characterization. An analysis of product market and a qualitative assessment of plant design support six different compound plant propositions. The incorporation of such coal conversion schemes into future energy supply systems was simulated by model calculations. The analysis shows that byproducts and nonconverted materials from individual processes can be processed in a compound plant in a profitable manner. This leads to an improvement in efficiencies. The product spectrum can be adapted to a certain degree to demand variations. Furthermore, the integration of fluidized bed combustion can provide an efficient method of desulfurization. Compound plants are expected to become economic in the 1990's. A necessary condition to compound technologies is high reliability in the functioning of all individual processes.

  2. Coal production, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons)

  3. Clean coal technology

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1990-01-01

    One of the major technology challenges in the next decade will be to develop means of using coal imaginatively as a source of chemicals and in a more energy-efficient manner. The Clean Air Act will help to diminish the acid rain but will not reduce CO 2 emissions. The Department of Energy (DOE) is fostering many innovations that are likely to have a positive effect on coal usage. Of the different innovations in the use of coal fostered by DOE, two are of particular interest. One is the new pressurized fluid bed combustion (PFBC) combined-cycle demonstration. The PFBC plant now becoming operational can reduce SO 2 emissions by more than 90% and NO x emissions by 50-70%. A second new technology co-sponsored by DOE is the Encoal mild coal gasification project that will convert a sub-bituminous low-BTU coal into a useful higher BTU solid while producing significant amounts of a liquid fuel

  4. Coal fire interferometry

    International Nuclear Information System (INIS)

    Van Genderen, J.L.; Prakash, A.; Gens, R.; Van Veen, B.; Liding, Chen; Tao, Tang Xiao; Feng, Guan

    2000-07-01

    This BCRS project demonstrates the use of SAR interferometry for measuring and monitoring land subsidence caused by underground coal fires and underground mining in a remote area of north west China. China is the largest producer and consumer of coal in the world. Throughout the N.W., N. and N.E. of China, the coal-seams are very susceptible to spontaneous combustion, causing underground coal fires. As the thick coal seams are burned out, the overburden collapses, causing land subsidence, and producing new cracks and fissures, which allow more air to penetrate and continue the fire to spread. SAR interferometry, especially differential interferometry has been shown to be able to measure small differences in surface height caused by such land subsidence. This report describes the problems, the test area, the procedures and techniques used and the results obtained. It concludes with a description of some of the problems encountered during the project plus provides some general conclusions and recommendations. 127 refs

  5. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-07-01

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 12), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Galatia coal and injected through the single-register burner. Liquid ammonia was intermittently added to the primary air stream to increase fuel-bound nitrogen and simulate cofiring with chicken litter. Galatia coal is a medium-sulfur ({approx} 1.2% S), high chlorine ({approx}0.5%) Illinois Basin coal. In the second test (Test 13), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx} 0.7% S) Eastern bituminous coal. The results of these tests are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The Configurable Fireside Simulator has been delivered from REI, Inc. and is being tested with exiting CFD solutions. Preparations are under way for a final pilot-scale combustion experiment using the single-register burner fired with comilled mixtures of Jim Walters No.7 low-volatility bituminous coal and switchgrass. Because of the delayed delivery of the Configurable Fireside Simulator, it is planned to ask for a no-cost time extension for the project until the end of this calendar year. Finally, a paper describing this project that included preliminary results from the first four cofiring tests was presented at the 12th European

  6. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2017-01-01

    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  7. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In order to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)

  8. New data on the formation of Carboniferous coal balls

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A.C.; Mattey, D.P.; Howard, R. [University of London, Egham (United Kingdom). Royal Holloway and Bedford New College, Dept. of Geology

    1996-10-01

    Coal balls are formed from the precipitation of carbonate minerals, predominantly calcite, from water during or immediately post-peat formation. Previous petrological studies suggest permineralization occurred at various stages during the peatificiation process by precipitation from a mixture of marine and meteoric freshwater. The geochemical studies reported here aimed to test previous theories of coal ball formation. The coal balls studied are from Upper Carboniferous and Carboniferous/Permian coal seams in Britain, United States of America, Belgium and China. Stable carbon isotopic values of calcites range from {delta}{sup 13}C of -5 to -35 parts per thousand indicating highly variable contribution of decayed organic matter to the carbonate cement. Oxygen isotopic values of delta({sup 18}) range from -3 to -15 parts per thousand suggest both marine and meteoric freshwater sources. The range, in the British coal balls in particular, with {delta}{sup 13}C ranging from -7 to -25 parts per thousand indicates the complexity of carbonate generation. Isotopic data support at least four theories of carbonate coal ball formation. This makes their absence from post-Permian coals the more puzzling and it is suggested that the overall structure of the peat may play a role.

  9. Transmission electron microscopy (TEM) study of minerals in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Kuang-Chien [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1982-01-01

    Minerals in eight coals from different mines were characterized in the micron-size range by using analytical transmission electron microscopy. Specimens were thinned by ion-milling wafers cut from these coals; a cold stage cooled by liquid nitrogen was used to reduce thermal degradation of the minerals by the ion-beam. Different mineral compounds were observed in different coals. The major minerals are clays, sulfides, oxides, carbonates and some minor-element-bearing phosphates. Clays (kaolinite, illite and others) have been most commonly found as either flat sheets or round globules. Iron sulfide was mostly found in the No. 5 and No. 6 coals from Illinois, distributed as massive polycrystals, as clusters of single crystals (framboids) or as isolated single crystals with size range down to some 0.25 microns. Other sulfides and some oxides were found in other coals with particle size as small as some 200 angstroms. Quartz, titanium oxides and many other carbonates and phosphate compounds were also characterized. Brief TEM work in the organic mass of coal was also introduced to study the nature of the coal macerals.

  10. Exchange of experience: sieve analyses of coal and coal paste

    Energy Technology Data Exchange (ETDEWEB)

    1943-02-01

    This report consisted of a cover letter (now largely illegible) and a graph. The graph showed percentages of material left behind as residue on sieves of various mesh sizes, graphed against the mesh sizes themselves. The materials for which data were shown were both dry coal and coal paste from Ludwigshafen, Scholven, Gelsenberg, and Poelitz. The dry coal from Poelitz seemed to be by far the least finely-ground, but the coal paste from Poelitz seemed to be the most finely-ground. The values for coal paste from the other three plants were very close together over most of the range of mesh sizes. The dry coal from Gelsenberg seemed to be the most finely-ground dry coal, while the dry coals from Scholven and Ludwigshafen gave similar values over most of the range of mesh sizes. In all cases, the coal paste from a plant was more finely-ground than the dry coal from the same plant, but for Gelsenberg, the difference between the two was not nearly as great as it was for the other plants, especially Poelitz. For example, for a sieve with about 3,600 cells per square centimeter, only about 10% of the Poelitz coal paste was retained versus about 85% of the Poelitz dry coal retained, whereas the corresponding figures for Gelsenberg materials were about 36% versus about 53%.

  11. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and

  12. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  13. Viscosity Depressants for Coal Liquefaction

    Science.gov (United States)

    Kalfayan, S. H.

    1983-01-01

    Proposed process modification incorporates viscosity depressants to prevent coal from solidifying during liquefaction. Depressants reduce amount of heat needed to liquefy coal. Possible depressants are metallic soaps, such as stearate, and amides, such as stearamide and dimer acid amides.

  14. Distribution of chlorine in coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Fenghua; Ren Deyi; Zhang Shuangquan [China Univ. of Mining and Technology, Beijing (China). Dept. of Resource and Engineering; Zhang Wang [Antaibao Opencast Mine, Pingshuo, Shanxi (China)

    1998-12-31

    The current advance of study on chlorine in coal is reviewed. The concentrations of chlorine in 45 Chinese coal samples are determined on whole coal basis using instrumental neutron activation analysis (INAA). The sequential chemical extraction method is put forward to determine the occurrence modes of chlorine in coal. The research shows that Chinese coals are not chlorine-rich ones compared with those from other countries. In coal from Pingshuo Antaibao Opencast Mine, 46.70%--91.78% of chlorine is in a water-soluble state, 5.20%--48.38% of it is organic chlorine bonded to coal molecules, and only 4.92%--18.78% is an organic one in an ion-exchange state; the proportions of organic chlorine increase with the decrease in ash of coal.

  15. Second stage gasifier in staged gasification and integrated process

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  16. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-01-31

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. One additional biomass co-firing test burn was conducted during this quarter. In this test (Test 9), up to 20% by weight dry hardwood sawdust and switchgrass was injected through the center of the single-register burner with Jacobs Ranch coal. Jacobs Ranch coal is a low-sulfur Powder River Basin coal ({approx} 0.5% S). The results from Test 9 as well as for Test 8 (conducted late last quarter) are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and preparations are under way for continued pilot-scale combustion experiments with the dual-register burner. Finally, a project review was held at NETL in Pittsburgh, on November 13, 2001.

  17. TEKO returns to coal

    International Nuclear Information System (INIS)

    TREND

    2003-01-01

    Slovak government will not grant state long-term credit guarantee sized about 1 billion Slovak crowns, which Geoterm, a.s., Kosice company would like to get from World bank. Loan should be used as for construction of geothermal source in village Durkov near Kosice, which would be connected in Kosice thermal plant TEKO, a.s. Geothermal sources capacity after realization of planned investments should reach half of present output of plant. The nearest TEKO investments should head to changes in plant production process. Plant wants to redirect in heat and thermal energy production from existing dominant gas consumption to black coal incineration. Black coal incineration is more advantageous than natural gas exploitation in spite of ecologic loads. TEKO also will lower gas consumption for at least 30 per cent and rise up present black coal consumption almost twice

  18. Pyrolysis of coal

    Science.gov (United States)

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  19. Coal: the dinosaur wakes up

    International Nuclear Information System (INIS)

    Rousseau, Y.; Cosnard, D.

    2005-01-01

    In western countries, coal is considered as an industry of the past, but at the Earth's scale the situation is radically the opposite. Since three years, coal is the faster developing energy source, in particular thanks to China expansion and to the oil crisis which makes coal more competitive. This short paper presents the situation of coal mining in China: projects, working conditions and environmental impact. (J.S.)

  20. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.