WorldWideScience

Sample records for stage specific embryonic

  1. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Directory of Open Access Journals (Sweden)

    Tobias D Schneider

    Full Text Available Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.

  2. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive

  3. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    Science.gov (United States)

    Qian, Chen; Wong, Carol Wing Yan; Wu, Zhongluan; He, Qiuming; Xia, Huimin; Tam, Paul Kwong Hang; Wong, Kenneth Kak Yuen; Lui, Vincent Chi Hang

    2017-01-01

    Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. To address the temporal requirement of Pdgfra in embryonic development. We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.

  4. Laminin binding protein, 34/67 laminin receptor, carries stage-specific embryonic antigen-4 epitope defined by monoclonal antibody Raft.2

    International Nuclear Information System (INIS)

    Katagiri, Yohko U.; Kiyokawa, Nobutaka; Nakamura, Kyoko; Takenouchi, Hisami; Taguchi, Tomoko; Okita, Hajime; Umezawa, Akihiro; Fujimoto, Junichiro

    2005-01-01

    We previously produced monoclonal antibodies against the detergent-insoluble microdomain, i.e., the raft microdomain, of the human renal cancer cell line ACHN. Raft.2, one of these monoclonal antibodies, recognizes sialosyl globopentaosylceramide, which has the stage-specific embryonic antigen (SSEA)-4 epitope. Although the mouse embryonal carcinoma (EC) cell line F9 does not express SSEA-4, some F9 cells stained with Raft.2. Western analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry identified the Raft.2 binding molecule as laminin binding protein (LBP), i.e., 34/67 laminin receptor. Weak acid treatment or digestion with Clostridium perfringens sialidase reduced Raft.2 binding to LBP on nitrocellulose sheets and [ 14 C]galactose was incorporated into LBP, indicating LBP to have a sialylated carbohydrate moiety. Subcellular localization analysis by sucrose density-gradient centrifugation and examination by confocal microscopy revealed LBP to be localized on the outer surface of the plasma membrane. An SSEA-4-positive human EC cell line, NCR-G3 cells, also expressed Raft.2-binding LBP

  5. Embryonic effects of radiation on ICR mice depending developmental stages

    International Nuclear Information System (INIS)

    Gu, Yeun Hwa; Kusama, Tomoko; Kai, Michiaki

    1995-01-01

    The ICR pregnant mice were irradiated at 1.5Gy in every 6 hours in the period of organogenesis in order to classify the stage specificity of the embryonic effects of radiation and the stage of development differentiation of the primordium of each major organ. Intrauterine death, fetal body weight and external malformation in live fetuses were observed on day 18 of gestation. There was no statistically significant difference in the intrauterine mortality at any stage organogenesis. The fetal body weight of the mice irradiated in the intermediate stage of organogenesis showed significantly lower. There were specific highly sensitive stages in the incidences of each external malformation, that is exencephalia, open eyelid, cleft palate, anomalies of extremities and anomalies of the tail. At these stage, the primordial of the major organs are established in ICR mice

  6. Description of post-implantation embryonic stages in European roe deer (Capreolus capreolus) after embryonic diapause.

    Science.gov (United States)

    Beyes, M; Nause, N; Bleyer, M; Kaup, F-J; Neumann, S

    2017-12-01

    The embryonic stage of development is defined as the period between fertilization and the establishment of most of the organ systems by the end of this period. Development in this stage is rapid. In many mammalian species, particularly in humans, the interval between fertilization and implantation is exactly determined and continuous without intermission. However, European roe deer (Capreolus capreolus) embryos undergo a reversible retardation of development. This interesting reproduction strategy is called embryonic diapause (delayed implantation). After this period of embryonic arrest, development continues without further interruption. The aim of this study was to investigate embryonic development after diapause in European roe deer. Because of the embryonic diapause and the unknown date of fertilization, it was impossible to assign the embryos to a certain gestational age (days). This study describes normal stages of embryonic development mainly based on the external morphological traits of 56 well-preserved post-implantation roe deer embryos and attempts to assign the embryos to certain development stages. Carnegie stages of human embryos were used as an orientation for staging roe deer embryos. We observed a considerable range of variation of embryonic stages investigated until the end of January. We found post-implantation stages of embryonic development already at the end of December and foetuses at the end of January. Moreover, assigning the embryos to a particular stage of development allows the comparison between pairs of twins and triplets. We showed that twins and triplets were always at the same development level, despite the discrepancy in inter-twin and inter-triplet size. © 2017 Blackwell Verlag GmbH.

  7. Thyroid Progenitors Are Robustly Derived from Embryonic Stem Cells through Transient, Developmental Stage-Specific Overexpression of Nkx2-1

    Directory of Open Access Journals (Sweden)

    Keri Dame

    2017-02-01

    Full Text Available The clinical importance of anterior foregut endoderm (AFE derivatives, such as thyrocytes, has led to intense research efforts for their derivation through directed differentiation of pluripotent stem cells (PSCs. Here, we identify transient overexpression of the transcription factor (TF NKX2-1 as a powerful inductive signal for the robust derivation of thyrocyte-like cells from mouse PSC-derived AFE. This effect is highly developmental stage specific and dependent on FOXA2 expression levels and precise modulation of BMP and FGF signaling. The majority of the resulting cells express thyroid TFs (Nkx2-1, Pax8, Foxe1, Hhex and thyroid hormone synthesis-related genes (Tg, Tpo, Nis, Iyd at levels similar to adult mouse thyroid and give rise to functional follicle-like epithelial structures in Matrigel culture. Our findings demonstrate that NKX2-1 overexpression converts AFE to thyroid epithelium in a developmental time-sensitive manner and suggest a general methodology for manipulation of cell-fate decisions of developmental intermediates.

  8. Thyroid Progenitors Are Robustly Derived from Embryonic Stem Cells through Transient, Developmental Stage-Specific Overexpression of Nkx2-1.

    Science.gov (United States)

    Dame, Keri; Cincotta, Steven; Lang, Alex H; Sanghrajka, Reeti M; Zhang, Liye; Choi, Jinyoung; Kwok, Letty; Wilson, Talitha; Kańduła, Maciej M; Monti, Stefano; Hollenberg, Anthony N; Mehta, Pankaj; Kotton, Darrell N; Ikonomou, Laertis

    2017-02-14

    The clinical importance of anterior foregut endoderm (AFE) derivatives, such as thyrocytes, has led to intense research efforts for their derivation through directed differentiation of pluripotent stem cells (PSCs). Here, we identify transient overexpression of the transcription factor (TF) NKX2-1 as a powerful inductive signal for the robust derivation of thyrocyte-like cells from mouse PSC-derived AFE. This effect is highly developmental stage specific and dependent on FOXA2 expression levels and precise modulation of BMP and FGF signaling. The majority of the resulting cells express thyroid TFs (Nkx2-1, Pax8, Foxe1, Hhex) and thyroid hormone synthesis-related genes (Tg, Tpo, Nis, Iyd) at levels similar to adult mouse thyroid and give rise to functional follicle-like epithelial structures in Matrigel culture. Our findings demonstrate that NKX2-1 overexpression converts AFE to thyroid epithelium in a developmental time-sensitive manner and suggest a general methodology for manipulation of cell-fate decisions of developmental intermediates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Morphometric human embryonic brain features according to developmental stage.

    Science.gov (United States)

    Kobayashi, Ami; Ishizu, Koichi; Yamada, Shigehito; Uwabe, Chigako; Kose, Katsumi; Takakuwa, Tetsuya

    2016-04-01

    The present study investigated linear, area, and volume measurements of human brain samples according to Carnegie stages (CS) in an attempt to select suitable morphometric features that reflect embryonic development. Using magnetic resonance imaging, we measured seven linear segments, three separate areas, and three regional volumes in 101 samples between CS13 and 23. Brain volume was determined via manual segmentation of the magnetic resonance image, whereby a formula was generated to estimate the volume of each linear measurement. All parameters correlated with crown-rump length. Bitemporal length and mesencephalic height increased linearly according to the CS, and a high correlation between bitemporal length and both whole-brain (r = 0.98) and prosencephalon (r = 0.99) volumes was found when brain cavity volume was excluded. Morphometric data related to human embryonic stages are valuable for correcting and comparing sonographic data. The present approach may contribute to improvements in prenatal diagnostics by enabling the selection of more suitable measurements during early embryonic stages. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  10. Normal embryonic stages of the Longnose Gar, Lepisosteus osseus

    Science.gov (United States)

    Long, Wilbur L; Ballard, William W

    2001-01-01

    Background Gaps exist in the modern literature that describes patterns of development in living groups of actinopterygian fishes. Relatively recent descriptions of development exist for the teleost fishes, bowfin, sturgeon, paddlefish and bichirs. Such literature dealing with the gars is to be found in older work, done approximately a century ago. The present study concerns the gars, of which the garpike, Lepisosteus osseus, is a representative example. Results The embryonic period of life of this fish is divided, as required for experimentation, into 34 stages, from fertilization to exhaustion of the yolk supply. Diagnostic structural characteristics are cited for each stage, and the rate of development is indicated. Conclusions Three features of development are especially noted that compare or contrast with other members of the Neopterygii, and with the Chondrostei. These are meroblastic cleavage, a well-defined yolk syncytial layer (ysl), and a pit at the posterodorsal edge of the blastoderm, which defines an overhanging dorsal lip. Meroblastic cleavage and the ysl in the garpike show an affinity to those character states in the teleosts, though not with Amia, the other neopterygian fish. The posterodorsal pit and dorsal lip are reminiscent of similar features in the Chondrostei. Lepisosteus is unique among the Neopterygii with respect to this character state. Such comparisons set the stage for a broader understanding of the mechanisms for development in these organisms, and of the evolutionary relationships between them. PMID:11319037

  11. [Cytotoxic effects of etoposide at different stages of differentiation of embryoid bodies formed by mouse embryonic stem cells].

    Science.gov (United States)

    Gordeeva, O F

    2013-01-01

    The initial stages of in vitro differentiation of embryonic stem cells are considered as unique three-dimensional models of early development of mammals for basic, pharmacological, and toxicological studies. It has been previously shown (Gordeeva, 2012) that the assessment of embryotoxicity in the model of undifferentiated embryonic stem cells can be insufficiently accurate in predicting toxic effects on mammalian embryos. In view of this, we performed a comparative study of the damaging effects of the cytostatic etoposide in undifferentiated embryonic stem cells and embryoid bodiesof different stages of differentiation that have similar three-dimensional structures with early embryos. The analysis of growth, cell death, and dynamics of differentiation of embryonic stem cells and embryoid bodies exposed to etoposide showed that the cytostatic and cytotoxic effects of etoposide are stage-specific. The damaging effects of etoposide were maximum in the undifferentiated embryonic stem cells and decreased with growth and differentiation of embryoid bodies. We assume that the increase in the cell volume of embryoid bodies and the development of the hypertrophic we suggest that the increase of embryoid body volume and overgrowth of extraembryonic endoderm layer lead to a decrease in the diffusion, transport, and metabolism of chemical and bioactive substances and prevent the damaging effects.

  12. Cloning of embryonal stem cell-specific genes: characterization of the transcriptionally controlled gene esg-1.

    Science.gov (United States)

    Bierbaum, P; MacLean-Hunter, S; Ehlert, F; Möröy, T; Müller, R

    1994-01-01

    We have isolated, by differential library screening, eight cDNAs representing genes that are specifically expressed in the embryonal stem cell line IMT-11, when compared to the parietal endoderm-like cell line PYS-2 or to NIH3T3 fibroblasts. One of these genes, embryonal stem cell gene 1 (esg-1), was analyzed in detail. esg-1 mRNA is found at high levels in both IMT-11 and F9 embryonal carcinoma cells and disappears during the differentiation of the stem cells. Furthermore, expression of the gene was found to be extremely low in, or absent from, oocytes and fertilized eggs, but it is strongly induced at the 2-cell stage, reaching maximum levels at the 4-cell stage. In contrast, esg-1 expression is detectable neither in midgestation embryos nor in neonatal tissues. These results strongly suggest that esg-1 is expressed specifically or at least predominantly in embryonal stem cells. Antibodies directed against a glutathione S-transferase-esg-1 fusion product detect a protein of M(r) approximately 14,000 in F9 embryonal carcinoma cells, but not in differentiated cells. Apart from the esg-1 gene, which contains two introns, there are at least seven esg-1-related pseudogenes in the mouse genome that differ from the esg-1 gene by the presence of multiple point mutations, by the lack of intervening sequences, and/or by the presence of a polyadenylated stretch at the 3' end. The esg-1 gene is under stringent transcriptional control in differentiating and differentiated cells, as shown by both nuclear run-on assays and the transient F9 stem cell-specific expression of constructs consisting of esg-1 upstream sequences fused to a luciferase reporter gene.

  13. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors.

    Science.gov (United States)

    Reichman, David E; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P; Taketo, Makoto M; Rosenwaks, Zev; James, Daylon

    2018-01-08

    Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. © 2018. Published by The Company of Biologists Ltd.

  14. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    Science.gov (United States)

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  15. Embryonic staging system for the Black Mastiff Bat, Molossus rufus (Molossidae), correlated with structure-function relationships in the adult.

    Science.gov (United States)

    Nolte, Mark J; Hockman, Dorit; Cretekos, Chris J; Behringer, Richard R; Rasweiler, John J

    2009-02-01

    An embryonic staging system for Molossus rufus (also widely known as Molossus ater) was devised using 17 reference specimens obtained during the postimplantation period of pregnancy from wild-caught, captive-bred females. This was done in part by comparing the embryos to a developmental staging system that had been created for another, relatively unrelated bat, Carollia perspicillata (family Phyllostomidae). Particular attention was paid to the development of species-specific features, such as wing and ear morphology, and these are discussed in light of the adaptive significance of these structures in the adult. M. rufus can be maintained and bred in captivity and is relatively abundant in the wild. This embryonic staging system will facilitate further developmental studies of M. rufus, a model species for one of the largest and most successful chiropteran families, the Molossidae. (c) 2008 Wiley-Liss, Inc.

  16. The embryonic development of Schistosoma mansoni eggs: proposal for a new staging system.

    Science.gov (United States)

    Jurberg, Arnon D; Gonçalves, Tiana; Costa, Tatiane A; de Mattos, Ana Carolina A; Pascarelli, Bernardo M; de Manso, Pedro Paulo A; Ribeiro-Alves, Marcelo; Pelajo-Machado, Marcelo; Peralta, José M; Coelho, Paulo Marcos Z; Lenzi, Henrique L

    2009-05-01

    Schistosomiasis is a water-borne parasitic illness caused by neoophoran trematodes of the genus Schistosoma. Using classical histological techniques and whole-mount preparations, the present work describes the embryonic development of Schistosoma mansoni eggs in the murine host and compares it with eggs maintained under in vitro conditions. Two pre-embryonic stages occur inside the female worm: the prezygotic stage is characterized by the release of mature oocytes from the female ovary until its fertilization. The zygotic stage encompasses the migration of the zygote through the ootype, where the eggshell is formed, to the uterus. Fully formed eggs are laid still undeveloped, without having suffered any cleavage. In the outside environment, eight embryonic stages can be defined: stage 1 refers to early cleavages and the beginning of yolk fusion. Stage 2 represents late cleavage, with the formation of a stereoblastula and the onset of outer envelope differentiation. Stage 3 is defined by the elongation of the embryonic primordium and the onset of inner envelope formation. At stage 4, the first organ primordia arise. During stages 5 to 7, tissue and organ differentiation occurs (neural mass, epidermis, terebratorium, musculature, and miracidial glands). Stage 7 is characterized by the nuclear condensation of neurons of the central neural mass. Stage 8 refers to the fully formed larva, presenting muscular contraction, cilia, and flame-cell beating. This staging system was compared to a previous classification and could underlie further studies on egg histoproteomics (morphological localizome). The differentiation of embryonic structures and their probable roles in granulomatogenesis are discussed herein.

  17. Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage.

    Science.gov (United States)

    Li, J-Y; Chen, X; Hosseini Moghaddam, S H; Chen, M; Wei, H; Zhong, B-X

    2009-10-01

    The shotgun approach has gained considerable acknowledgement in recent years as a dominant strategy in proteomics. We observed a dramatic increase of specific protein spots in two-dimensional electrophoresis (2-DE) gels of the silkworm (Bombyx mori) embryo at labrum appearance, a characteristic stage during embryonic development of silkworm which is involved with temperature increase by silkworm raiser. We employed shotgun liquid chromatography tandem mass spectrometry (LC-MS/MS) technology to analyse the proteome of B. mori embryos at this stage. A total of 2168 proteins were identified with an in-house database. Approximately 47% of them had isoelectric point (pI) values distributed theoretically in the range pI 5-7 and approximately 60% of them had molecular weights of 15-45 kDa. Furthermore, 111 proteins had an pI greater than 10 and were difficult to separate by 2-DE. Many important functional proteins related to embryonic development, stress response, DNA transcription/translation, cell growth, proliferation and differentiation, organogenesis and reproduction were identified. Among them proteins related to nervous system development were noticeable. All known heat shock proteins (HSPs) were detected in this developmental stage of B. mori embryo. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed energetic metabolism at this stage. These results were expected to provide more information for proteomic monitoring of the insect embryo and better understanding of the spatiotemporal expression of genes during embryonic developmental processes.

  18. Expression cloning of camelid nanobodies specific for Xenopus embryonic antigens.

    Directory of Open Access Journals (Sweden)

    Keiji Itoh

    Full Text Available Developmental biology relies heavily on the use of conventional antibodies, but their production and maintenance involves significant effort. Here we use an expression cloning approach to identify variable regions of llama single domain antibodies (known as nanobodies, which recognize specific embryonic antigens. A nanobody cDNA library was prepared from lymphocytes of a llama immunized with Xenopus embryo lysates. Pools of bacterially expressed cDNAs were sib-selected for the ability to produce specific staining patterns in gastrula embryos. Three different nanobodies were isolated: NbP1 and NbP3 stained yolk granules, while the reactivity of NbP7 was predominantly restricted to the cytoplasm and the cortex. The isolated nanobodies recognized specific protein bands in immunoblot analysis. A reverse proteomic approach identified NbP1 target antigen as EP45/Seryp, a serine protease inhibitor. Given the unique stability of nanobodies and the ease of their expression in diverse systems, we propose that nanobody cDNA libraries represent a promising resource for molecular markers for developmental biology.

  19. Primordial germ cell specification from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available BACKGROUND: Primordial germ cell (PGC specification is the first crucial step in germ line development. However, owing to significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with embryo manipulation, it is desirable to generate embryonic stem (ES cells that are capable of overcoming these aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we studied the detailed process of PGC specification from stella-GFP ES cells. We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stella-negative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8 and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we developed an in vitro model of PGC specification in a completely chemically defined medium (CDM that indicated that BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation. CONCLUSIONS AND SIGNIFICANCE: The in vitro model we have established can recapitulate the developmental processes in vivo and provides new insights into the mechanism of PGC specification.

  20. Brain Activity at the Embryonic Stages of Development

    Directory of Open Access Journals (Sweden)

    D.R. Akhmetshina

    2015-06-01

    Full Text Available The main function of our brain is to run internal models of the external world. These models enable us to analyze complex sensory inputs from the outside and our bodies, as well as to generate a system of commands underlying our behavior. This is implemented by a complex network, which is built out of billions of interconnected neurons. The network is formed during the ontogeny with the most intense phase of synaptogenesis starting during second half of gestation in the utero. So, the neonate is born with a remarkably developed frame of the central nervous system capable of receiving, processing, and memorizing information from the external world. This review discusses how the brain operates during the fetal stages of development and how the early activities expressed in the fetal brain contribute to the prenatal assembly of the nervous system.

  1. Embryonic Developmental Stages of African Giant Catfish Heterobranchus longifilis (Valenciennes, 1840) (Teleostei, Clariidae)

    Science.gov (United States)

    Wilfred-Ekprikpo, P. C.

    2016-02-01

    One of the major challenges confronting the globe is the issue of food insecurity. This problem results from inadequate protein intake by humans especially those people from the third world countries. In order to arrest this ugly situation, there is the need to increase protein production by intensifying aquaculture. In sub-saharan Africa, particularly Nigeria, the major aquaculture species is African mud catfish (Clarias gariepinus) and its production has increase protein output but the protein deficit is still wide. Thus, necessitating the need to develop other aquaculture species endemic to the region. One of these species is Heterobranchus and there successful breeding depending on a good understanding of their biology. The embryonic developmental stages of Heterobranchus longifilis in freshwater tanks were determined. The first cleavage cell division occurred 30 minutes after fertilization of eggs while, the morula stage was observed within 2 hours. The blastula stage occurred between 2 and 8 hours, while the gastrula stage occurred between 12 and 18 hours. Thereafter, neurulation period, and embryonic body formation appeared. The optical vesicle and auditory vesicle formed. Finally muscular contraction, tail formation, heartbeat and hatching occurred. The embryonic developmental stage of H. longifilis started immediately the oocyte (egg) was fertilized and terminated when the embryo hatched from the chorion membranous wall. The young larva emerged from the embryonic membrane at 24.46 hrs with vigorous lashing of the caudal region against the chorion membrane. The average weight and length of the yolk larvae were 0.005g and 0.43 cm respectively. The percentage fertilization and hatchability rates were 82.50 and 65.10% respectively. The experiment revealed that Heterobranchus longifilis could be a good aquaculture species.

  2. [Research of Embryonic Mortality Stages of Drosophila melanogaster Depending on Age and Starvation of an Imago].

    Science.gov (United States)

    Kostenko, V V; Kolot, N V; Vorobyova, L I

    2015-01-01

    Influence of age of parents and duration of starvation on egg production and demonstration of embryonic mortality at different stages of egg development has been studied. It is shown that, with increasing age of organisms, the overall egg production reduces and the percentage of embryonic mortality increases at 0-5.5 and 5.5-17 h of development. An increase in the duration of starvation also promotes a reduction in egg production in 3- and 10-day-old adult D. melanogaster compared with short-term starvation. A statistically significant effect of factors, such as the allelic state of the white locus, the genetic background, the age of the parents, and the duration of starvation, on all studied parameters was established.

  3. Treatment of mouse zygotic or pregastrulation stages to 5-azacytidine produced embryonic death and fetal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Dellarco, V.L.; Kimmel, G.L. [EPA, Washington, DC (United States); Shourbaji, A.G.; Generoso, W.M. [Oak Ridge National Laboratory, TN (United States); Rutledge, J.C. [Children`s Hospital and Medical Center, Seattle, WA (United States)

    1994-12-31

    Several studies have shown that the mouse zygote and the two-cell embryo are susceptible to the induction of congenital anomalies with certain genotoxic agents. The mechanisms by which the pathogenesis of these development defects arise are not known. In certain cases, it is possible that a nonconventional, perhaps epigenetic, mechanism is involved. To provide indirect evidence for this possibility, we conducted studies with 5-azacytidine (AzaC), an agent known to selectively activate transcription. Female mice were given a single ip injection of 20 mg/kg of AzaC at various postmating intervals to expose the zygotic and subsequent pregastrulation stages (i.e., 1 to 144 hrs post-mating). Females were killed on gestational day 17, the uterine contents scored and the live fetuses examined for external anomalies. AzaC treatment during 1 to 20 hrs after mating produced slight increases in embryonic death and in the incidence of fetal anomalies. The responses significantly increased with treatment at 25 hrs after mating. This interval corresponds approximately to the time when embryonic genes are beginning to be switched on. The frequency of fetal anomalies remained elevated at subsequent intervals until 64 hrs (blastocyst stage) when a further increase in the incidence of fetal anomalies occurred. Exposures after 64 hrs produced extreme embryoethality, thus, relatively lower doses were used. A stage dependent spectrum of anomalies were found which include anterior region affects of the fetus (e.g., exencephaly, eye defects, cleft palate, frontal nasal syndrome).

  4. Acute toxicity of acetylsalicylic acid to juvenile and embryonic stages of Danio rerio.

    Science.gov (United States)

    Praskova, Eva; Zivna, Dana; Stepanova, Stanislava; Sevcikova, Marie; Blahova, Jana; Marsalek, Petr; Siroka, Zuzana; Voslarova, Eva; Svobodova, Zdenka

    2012-01-01

    The aim of this study was to compare the acute toxicity of acetylsalicylic acid to embryonic and juvenile stages of aquarium fish - zebrafish (Danio rerio), oxidative stress parameters and detoxifying enzyme. Tests were performed according to OECD No. 203 (Fish, acute toxicity test) and OECD No. 212 (Fish, short-term toxicity test on embryo and sac-fry stages) methodology. The results showed the mean acetylsalicylic acid LC50 value to be 567.7 mg/L in juvenile zebrafish. The acute toxicity of acetylsalicylic acid for zebrafish embryos was 274.6 mg/L. Statistically significantly higher activity of GST was found in concentrations 340, 380 and 420 mg/L of acetylsalicylic acid. TBARS, GPx and GST didn't show statistically significant activity in tested concentrations of acetylsalicylic acid. The results revealed a statistically significantly higher degree of sensitivity in the embryonic stages of zebrafish compared to its juveniles. Acetylsalicylic acid did not cause statistically significantly higher antioxidative defence in zebrafish.

  5. Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium

    Directory of Open Access Journals (Sweden)

    Madeline Midgett

    2017-08-01

    Full Text Available Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress results in cardiac defects seen in congenital heart disease (CHD. However, the detrimental remodeling processes that relate altered blood flow to cardiac malformation and defects remain unclear. Heart development is a finely orchestrated process with rapid transformations that occur at the tissue, cell, and subcellular levels. Myocardial cells play an essential role in cardiac tissue maturation by aligning in the direction of stretch and increasing the number of contractile units as hemodynamic load increases throughout development. This study elucidates the early effects of altered blood flow on myofibril and mitochondrial configuration in the outflow tract myocardium in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24 (~24 h during tubular heart stages. 3D focused ion beam scanning electron microscopy analysis determined that increased hemodynamic load induced changes in the developing myocardium, characterized by thicker myofibril bundles that were more disbursed in circumferential orientation, and mitochondria that organized in large clusters around the nucleus. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with altered myofibril thin filament assembly and function, and mitochondrial maintenance and organization. Additionally, pathway analysis of the proteomics data identified possible activation of signaling pathways in response to banding, including the renin-angiotensin system (RAS. Imaging and proteomic data combined indicate that myofibril and mitochondrial arrangement in early embryonic stages is a critical developmental process that when disturbed by altered blood flow may contribute to cardiac malformation and defects.

  6. Embryonic water uptake during pregnancy is stage- and fecundity-dependent in the snake Vipera aspis.

    Science.gov (United States)

    Lourdais, Olivier; Lorioux, Sophie; Dupoué, Andréaz; Wright, Christian; DeNardo, Dale F

    2015-11-01

    Water is a crucial resource that can profoundly impact the biology of terrestrial organisms. Early life stages are particularly sensitive to hydric constraints because water uptake is an important component of embryonic development. While amniotic eggs constitute a key innovation to terrestrial life, many vertebrates are viviparous wherein the mother must be the source of water for her developing embryos. Since most viviparous squamates are lecithotrophic (i.e., energy is supplied to the offspring as yolk deposited into pre-ovulated follicles), water is the predominant resource allocated from the mother to the offspring during development. Contrary to energy that can be stored (e.g., as fat reserves), water typically cannot be acquired in advance. Therefore, the embryos' need for water can impose significant constraints on the pregnant female. We detailed water flux during pregnancy in a viviparous snake, the aspic viper (Vipera aspis). We found that embryonic water uptake occurred mostly during the second half of pregnancy-a period dominated by somatic growth. We also found that, somewhat unexpectedly, changes in female plasma osmolality were negatively related to fecundity. This latter result suggests that water consumption by the female is especially important for large litter sizes, and thus may suggest an important sensitivity of reproductive females to environmental water availability. Copyright © 2015. Published by Elsevier Inc.

  7. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Ana Mafalda Baptista Tadeu

    Full Text Available In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.

  8. An embryonic staging table for in ovo development of Eublepharis macularius, the leopard gecko.

    Science.gov (United States)

    Wise, Patrick A D; Vickaryous, Matthew K; Russell, Anthony P

    2009-08-01

    Squamates constitute a major vertebrate radiation, representing almost one-third of all known amniotes. Although speciose and morphologically diverse, they remain poorly represented in developmental studies. Here, we present an embryonic staging table of in ovo development for the basal gekkotan Eublepharis macularius (the leopard gecko) and advocate this species as a laboratory-appropriate developmental model. E. macularius, is a hardy and tractable species of relatively large body size (with concomitantly relatively large eggs and embryos), that is widely available and easy to maintain and propagate. Additionally, E. macularius displays a body plan appropriate to the study of the plesiomorphic quadrupedal condition of early pentadactylous terrestrial amniotes. Although not unexpected, it is worth noting that the morphological events characterizing limb development in E. macularius are comparable with those described for the avian Gallus gallus. Therefore, E. macularius holds great promise as a model for developmental studies focusing on pentadactyly and the formation of digits. Furthermore, it is also attractive as a developmental model because it demonstrates temperature-dependent sex determination. The staging table presented herein is based on an all-female series and represents the entire 52 day in ovo period. Overall, embryogenesis of E. macularius is similar to that of other squamates in terms of developmental stage attained at the time of oviposition, patterns of limb and pharyngeal arch development, and features of the appearance of scalation and pigmentation, indicative of a conserved developmental program. (c) 2009 Wiley-Liss, Inc.

  9. Neural Organization of the Optic Lobe Changes Steadily from Late Embryonic Stage to Adulthood in CuttlefishSepia pharaonis.

    Science.gov (United States)

    Liu, Yung-Chieh; Liu, Tsung-Han; Su, Chia-Hao; Chiao, Chuan-Chin

    2017-01-01

    The optic lobe is the largest structure in the cuttlefish brain. While the general morphology of the optic lobe in adult cuttlefish has been well described, the 3D structure and ontogenetic development of its neural organization have not been characterized. To correlate observed behavioral changes within the brain structure along the development of this animal, optic lobes from the late embryonic stage to adulthood were examined systematically in the present study. The MRI scan revealed that the so called "cell islands" in the medulla of the cephalopod's optic lobe (Young, 1962, 1974) are in fact a contiguous tree-like structure. Quantification of the neural organizational development of optic lobes showed that structural features of the cortex and radial column zone were established earlier than those of the tangential zone during embryonic and post-hatching stages. Within the cell islands, the density of nuclei was decreased while the size of nuclei was increased during the development. Furthermore, the visual processing area in the optic lobe showed a significant variation in lateralization during embryonic and juvenile stages. Our observation of a continuous increase in neural fibers and nucleus size in the tangential zone of the optic lobe from late embryonic stage to adulthood indicates that the neural organization of the optic lobe is modified along the development of cuttlefish. These findings thus support that the ontogenetic change of the optic lobe is responsible for their continuously increased complexity in body patterning and visuomotor behaviors.

  10. Transcriptome analysis reveals determinant stages controlling human embryonic stem cell commitment to neuronal cells.

    Science.gov (United States)

    Li, Yuanyuan; Wang, Ran; Qiao, Nan; Peng, Guangdun; Zhang, Ke; Tang, Ke; Han, Jing-Dong J; Jing, Naihe

    2017-12-01

    Proper neural commitment is essential for ensuring the appropriate development of the human brain and for preventing neurodevelopmental diseases such as autism spectrum disorders, schizophrenia, and intellectual disorders. However, the molecular mechanisms underlying the neural commitment in humans remain elusive. Here, we report the establishment of a neural differentiation system based on human embryonic stem cells (hESCs) and on comprehensive RNA sequencing analysis of transcriptome dynamics during early hESC differentiation. Using weighted gene co-expression network analysis, we reveal that the hESC neurodevelopmental trajectory has five stages: pluripotency (day 0); differentiation initiation (days 2, 4, and 6); neural commitment (days 8-10); neural progenitor cell proliferation (days 12, 14, and 16); and neuronal differentiation (days 18, 20, and 22). These stages were characterized by unique module genes, which may recapitulate the early human cortical development. Moreover, a comparison of our RNA-sequencing data with several other transcriptome profiling datasets from mice and humans indicated that Module 3 associated with the day 8-10 stage is a critical window of fate switch from the pluripotency to the neural lineage. Interestingly, at this stage, no key extrinsic signals were activated. In contrast, using CRISPR/Cas9-mediated gene knockouts, we also found that intrinsic hub transcription factors, including the schizophrenia-associated SIX3 gene and septo-optic dysplasia-related HESX1 gene, are required to program hESC neural determination. Our results improve the understanding of the mechanism of neural commitment in the human brain and may help elucidate the etiology of human mental disorders and advance therapies for managing these conditions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma

    International Nuclear Information System (INIS)

    Lengerke, Claudia; Kanz, Lothar; Fend, Falko; Perner, Sven; Bareiss, Petra M; Staebler, Annette; Fehm, Tanja; Kurth, Ralf; Neubauer, Hans; Scheble, Veit; Müller, Friederike; Schneider, Friederike; Petersen, Karen; Wallwiener, Diethelm

    2011-01-01

    The SRY-related HMG-box family of transcription factors member SOX2 has been mainly studied in embryonic stem cells as well as early foregut and neural development. More recently, SOX2 was shown to participate in reprogramming of adult somatic cells to a pluripotent stem cell state and implicated in tumorigenesis in various organs. In breast cancer, SOX2 expression was reported as a feature of basal-like tumors. In this study, we assessed SOX2 expression in 95 primary tumors of postmenopausal breast cancer patients. Samples from 95 patients diagnosed and treated at the University of Tuebingen Institute of Pathology and Women's Hospital were analyzed by immunohistochemistry for SOX2 expression in the primary tumor samples and in corresponding lymph node metastasis, where present. Furthermore, SOX2 amplification status was assessed by FISH in representative samples. In addition, eighteen fresh frozen samples were analyzed for SOX2, NANOG and OCT4 gene expression by real-time PCR. SOX2 expression was detected in 28% of invasive breast carcinoma as well as in 44% of ductal carcinoma in situ (DCIS) lesions. A score of SOX2 expression (score 0 to 3) was defined in order to distinguish SOX2 negative (score 0) from SOX2 positive samples (score 1-3) and among latter the subgroup of SOX2 high expressors (score 3 > 50% positive cells). Overall, the incidence of SOX2 expression (score 1-3) was higher than previously reported in a cohort of lymph node negative patients (28% versus 16.7%). SOX2 expression was detected across different breast cancer subtypes and did not correlate with tumor grading. However, high SOX2 expression (score 3) was associated with larger tumor size (p = 0.047) and positive lymph node status (0.018). Corresponding metastatic lymph nodes showed higher SOX2 expression and were significantly more often SOX2 positive than primary tumors (p = 0.0432). In this report, we show that the embryonic stem cell factor SOX2 is expressed in a variety of early

  12. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma

    Directory of Open Access Journals (Sweden)

    Wallwiener Diethelm

    2011-01-01

    Full Text Available Abstract Background The SRY-related HMG-box family of transcription factors member SOX2 has been mainly studied in embryonic stem cells as well as early foregut and neural development. More recently, SOX2 was shown to participate in reprogramming of adult somatic cells to a pluripotent stem cell state and implicated in tumorigenesis in various organs. In breast cancer, SOX2 expression was reported as a feature of basal-like tumors. In this study, we assessed SOX2 expression in 95 primary tumors of postmenopausal breast cancer patients. Methods Samples from 95 patients diagnosed and treated at the University of Tuebingen Institute of Pathology and Women's Hospital were analyzed by immunohistochemistry for SOX2 expression in the primary tumor samples and in corresponding lymph node metastasis, where present. Furthermore, SOX2 amplification status was assessed by FISH in representative samples. In addition, eighteen fresh frozen samples were analyzed for SOX2, NANOG and OCT4 gene expression by real-time PCR. Results SOX2 expression was detected in 28% of invasive breast carcinoma as well as in 44% of ductal carcinoma in situ (DCIS lesions. A score of SOX2 expression (score 0 to 3 was defined in order to distinguish SOX2 negative (score 0 from SOX2 positive samples (score 1-3 and among latter the subgroup of SOX2 high expressors (score 3 > 50% positive cells. Overall, the incidence of SOX2 expression (score 1-3 was higher than previously reported in a cohort of lymph node negative patients (28% versus 16.7%. SOX2 expression was detected across different breast cancer subtypes and did not correlate with tumor grading. However, high SOX2 expression (score 3 was associated with larger tumor size (p = 0.047 and positive lymph node status (0.018. Corresponding metastatic lymph nodes showed higher SOX2 expression and were significantly more often SOX2 positive than primary tumors (p = 0.0432. Conclusions In this report, we show that the embryonic stem

  13. Radioisotopes demonstrate the contrasting bioaccumulation capacities of heavy metals in embryonic stages of cephalopod species.

    Science.gov (United States)

    Lacoue-Labarthe, Thomas; Villanueva, Roger; Rouleau, Claude; Oberhänsli, François; Teyssié, Jean-Louis; Jeffree, Ross; Bustamante, Paco

    2011-01-01

    Cephalopods play a key role in many marine trophic food webs and also constitute alternative fishery resources in the context of the ongoing decline in finfish stocks. Most coastal cephalopod species of commercial importance migrate into shallow waters during the breeding season to lay their eggs, and are consequently subjected to coastal contamination. Eggs of common cuttlefish Sepia officinalis, European squid Loligo vulgaris, common octopus Octopus vulgaris and the sepiolid Rossia macrosoma were exposed during embryonic development to dissolved (110m)Ag, (109)Cd, (60)Co, (54)Mn and (65)Zn in order to determine their metal accumulation efficiencies and distribution among different egg compartments. Cuttlefish eggs, in which hard shells enclose the embryos, showed the lowest concentration factor (CF) values despite a longer duration of exposure. In contrast, octopus eggs, which are only protected by the chorionic membrane, accumulated the most metal. Uptake appears to be linked to the selective retention properties of the egg envelopes with respect to each element. The study also demonstrated that the octopus embryo accumulated (110m)Ag directly from the dissolved phase and also indirectly through assimilation of the contaminated yolk. These results raise questions regarding the potential contrasting vulnerability of early life stages of cephalopods to the metallic contamination of coastal waters.

  14. Surviving a flood: effects of inundation period, temperature and embryonic development stage in locust eggs.

    Science.gov (United States)

    Woodman, J D

    2015-08-01

    The Australian plague locust, Chortoicetes terminifera (Walker), is an important agricultural pest and oviposits into compacted soil across vast semi-arid and arid regions prone to irregular heavy summer rainfall. This study aimed to quantify the effects of flooding (control, 7, 14, 21, 28 and 35 days) at different temperatures (15, 20 and 25°C) and embryonic development stages (25 and 75%) on egg viability, hatchling nymph body mass and survival to second-instar. Egg viability after flooding was dependent on temperature and flood duration. Eggs inundated at 15°C showed ≥53.5% survival regardless of flood duration and development stage compared with ≤29.6% for eggs at 25°C for ≥21 days early in development and ≥14 days late in development. Hatchling nymphs did not differ in body mass relative to temperature or flood duration, but weighed more from eggs inundated early in development rather than late. Survival to second-instar was ≤55.1% at 15 and 20°C when eggs were flooded for ≥28 days late in development, ≤35.6% at 25°C when flooded for ≥28 days early in development, and zero when flooded for ≥21 days late in development. These results suggest that prolonged flooding in summer and early autumn may cause very high egg mortality and first-instar nymph mortality of any survivors, but is likely to only ever affect a small proportion of the metapopulation. More common flash flooding for ≤14 days is unlikely to cause high mortality and have any direct effect on distribution and abundance.

  15. The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb

    OpenAIRE

    Cotney, Justin; Leng, Jing; Yin, Jun; Reilly, Steven K.; DeMare, Laura E.; Emera, Deena; Ayoub, Albert E.; Rakic, Pasko; Noonan, James P.

    2013-01-01

    The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find...

  16. Embryonic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in chickens: effects of dose and embryonic stage on hatchability and growth.

    Science.gov (United States)

    Bruggeman, V; Swennen, Q; De Ketelaere, B; Onagbesan, O; Tona, K; Decuypere, E

    2003-09-01

    Chicken embryos (Gallus domesticus) were injected with 0, 8, 20 or 50 ng tetrachlorodibenzo-p-dioxin (TCDD) per egg at embryonic day (ED) 4, 8 or 12 to investigate the effects of differential periods of sensitivity to TCDD exposure. At hatch, all chicks were weighed, sexed and examined macroscopically to identify possible malformations. Liver, bursa, heart and spleen masses were recorded from a number of chicks. The remaining chicks were raised until 6 weeks of age and body and organ masses, plasma concentrations of thyroid hormones, triglycerides and glucose were measured. Dose and stage during embryonic development at which injection was performed affected hatchability. Fifty nanogram of TCDD was highly toxic for 4-day-old chicken embryos. TCDD was less toxic for chicken embryos of 8- and especially 12-days old. One-day-old chick and organ weights were not different between TCDD doses at all injection days. However, injection performed at ED4 or ED8 with 20 and 50 ng, respectively, significantly depressed post-hatch body mass gain. Moreover, body mass gain in males was more depressed than in females. The delayed growth in TCDD treated chickens was accompanied by changes in T(3)/T(4) ratio that at some ages were significantly higher compared to control animals. No pronounced changes in plasma triglycerides or glucose concentrations during postnatal life were observed. Absolute and relative organ masses of 6-week-old chickens showed no remarkable changes.

  17. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis.

    Science.gov (United States)

    Géraud, Cyrill; Koch, Philipp-Sebastian; Zierow, Johanna; Klapproth, Kay; Busch, Katrin; Olsavszky, Victor; Leibing, Thomas; Demory, Alexandra; Ulbrich, Friederike; Diett, Miriam; Singh, Sandhya; Sticht, Carsten; Breitkopf-Heinlein, Katja; Richter, Karsten; Karppinen, Sanna-Maria; Pihlajaniemi, Taina; Arnold, Bernd; Rodewald, Hans-Reimer; Augustin, Hellmut G; Schledzewski, Kai; Goerdt, Sergij

    2017-03-01

    Microvascular endothelial cells (ECs) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular ECs instruct neighboring cells in their organ-specific vascular niches through angiocrine factors, which include secreted growth factors (angiokines), extracellular matrix molecules, and transmembrane proteins. However, the molecular regulators that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity are largely elusive. In contrast to other ECs, which form a continuous cell layer, liver sinusoidal ECs (LSECs) constitute discontinuous, permeable microvessels. Here, we have shown that the transcription factor GATA4 controls murine LSEC specification and function. LSEC-restricted deletion of Gata4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition, formation of a continuous EC layer, and increased expression of VE-cadherin. Correspondingly, ectopic expression of GATA4 in cultured continuous ECs mediated the downregulation of continuous EC-associated transcripts and upregulation of LSEC-associated genes. The switch from discontinuous LSECs to continuous ECs during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells, resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence, which are indispensable for liver development. The data also establish an essential role of the hepatic microvasculature in embryonic hematopoiesis.

  18. Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells.

    Science.gov (United States)

    Slotkin, Theodore A; Skavicus, Samantha; Stapleton, Heather M; Seidler, Frederic J

    2017-09-01

    In addition to their activity as endocrine disruptors, brominated and organophosphate flame retardants are suspected to be developmental neurotoxicants, although identifying their specific mechanisms for that activity has been elusive. In the current study, we evaluated the effects of several flame retardants on neurodifferentiation using two in vitro models that assess distinct "decision nodes" in neural cell development: embryonic rat neural stem cells (NSCs), which evaluate the origination of neurons and glia from precursors, and rat neuronotypic PC12 cells, which characterize a later stage where cells committed to a neuronal phenotype undergo neurite outgrowth and neurotransmitter specification. In NSCs, both brominated and organophosphate flame retardants diverted the phenotype in favor of glia and away from formation of neurons, leading to an increased glia/neuron ratio, a common hallmark of the in vivo effects of neurotoxicants. For this early decision node, the brominated flame retardants were far more potent than the organophosphates. In PC12 cells, the brominated flame retardants were far less effective, whereas tris (1,3-dichloro-2-propyl) phosphate, an organophosphate, was more effective. Thus, the two classes of flame retardants differentially impact the two distinct vulnerable periods of neurodifferentiation. Furthermore, the effects on neurodifferentiation were separable from outright cytotoxicity, an important requirement in establishing a specific effect of these agents on neural cell development. These results reinforce the likelihood that flame retardants act as developmental neurotoxicants via direct effects on neural cell differentiation, over and above other activities that can impact nervous system development, such as endocrine disruption. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Extra-embryonic-specific imprinted expression is restricted to defined lineages in the post-implantation embryo

    OpenAIRE

    Hudson, Quanah J.; Seidl, Christine I.M.; Kulinski, Tomasz M.; Huang, Ru; Warczok, Katarzyna E.; Bittner, Romana; Bartolomei, Marisa S.; Barlow, Denise P.

    2011-01-01

    A subset of imprinted genes in the mouse have been reported to show imprinted expression that is restricted to the placenta, a short-lived extra-embryonic organ. Notably these so-called 'placental-specific' imprinted genes are expressed from both parental alleles in embryo and adult tissues. The placenta is an embryonic-derived organ that is closely associated with maternal tissue and as a consequence, maternal contamination can be mistaken for maternal-specific imprinted expression. The comp...

  20. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A

    2016-01-01

    Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i) or with ......Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i...

  1. Cell-type-specific predictive network yields novel insights into mouse embryonic stem cell self-renewal and cell fate.

    Directory of Open Access Journals (Sweden)

    Karen G Dowell

    Full Text Available Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC self-renewal by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data: ∼2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by stem cell researchers (at http://StemSight.org to explore hypotheses about gene function in the context of self-renewal and to prioritize genes of interest for experimental validation.

  2. Male Differentiation of Germ Cells Induced by Embryonic Age-Specific Sertoli Cells in Mice1

    Science.gov (United States)

    Ohta, Kohei; Yamamoto, Miyuki; Lin, Yanling; Hogg, Nathanael; Akiyama, Haruhiko; Behringer, Richard R.; Yamazaki, Yukiko

    2012-01-01

    ABSTRACT Retinoic acid (RA) is a meiosis-inducing factor. Primordial germ cells (PGCs) in the developing ovary are exposed to RA, resulting in entry into meiosis. In contrast, PGCs in the developing testis enter mitotic arrest to differentiate into prospermatogonia. Sertoli cells express CYP26B1, an RA-metabolizing enzyme, providing a simple explanation for why XY PGCs do not initiate meios/is. However, regulation of entry into mitotic arrest is likely more complex. To investigate the mechanisms that regulate male germ cell differentiation, we cultured XX and XY germ cells at 11.5 and 12.5 days postcoitus (dpc) with an RA receptor inhibitor. Expression of Stra8, a meiosis initiation gene, was suppressed in all groups. However, expression of Dnmt3l, a male-specific gene, during embryogenesis was elevated but only in 12.5-dpc XY germ cells. This suggests that inhibiting RA signaling is not sufficient for male germ cell differentiation but that the male gonadal environment also contributes to this pathway. To define the influence of Sertoli cells on male germ cell differentiation, Sertoli cells at 12.5, 15.5, and 18.5 dpc were aggregated with 11.5 dpc PGCs, respectively. After culture, PGCs aggregated with 12.5 dpc Sertoli cells increased Nanos2 and Dnmt3l expression. Furthermore, these PGCs established male-specific methylation imprints of the H19 differentially methylated domains. In contrast, PGCs aggregated with Sertoli cells at late embryonic ages did not commit to the male pathway. These findings suggest that male germ cell differentiation is induced both by inhibition of RA signaling and by molecule(s) production by embryonic age-specific Sertoli cells. PMID:22262692

  3. Defining progressive stages in the commitment process leading to embryonic lens formation

    Science.gov (United States)

    Jin, Hong; Fisher, Marilyn; Grainger, Robert M.

    2013-01-01

    Summary The commitment of regions of the embryo to form particular tissues or organs is a central concept in development, but the mechanisms controlling this process remain elusive. The well-studied model of lens induction is ideal for dissecting key phases of the commitment process. We find in Xenopus tropicalis, at the time of specification of the lens, i.e. when presumptive lens ectoderm (PLE) can be isolated, cultured and will differentiate into a lens, that the PLE is not yet irreversibly committed, or determined, to form a lens. When transplanted into the posterior of a host embryo lens development is prevented at this stage, while approximately 3 hr later, using the same assay, determination is complete. Interestingly, we find that specified lens ectoderm, when cultured, acquires the ability to become determined without further tissue interactions. Further, we show that specified PLE has a different gene expression pattern than determined PLE, and that determined PLE can maintain expression of essential regulatory genes (e.g. foxe3, mafB) in an ectopic environment while specified PLE cannot. These observations set the stage for a detailed mechanistic study of the genes and signals controlling tissue commitment. PMID:22566346

  4. Regional differences in expression of specific markers for human embryonic stem cells

    DEFF Research Database (Denmark)

    Laursen, Steen B; Møllgård, Kjeld; Olesen, Christian

    2007-01-01

    Characterization of human embryonic stem cell (hESC) lines derived from the inner cell masses of blastocysts generally includes expression analysis of markers such as OCT4, NANOG, SSEA3, SSEA4, TRA-1-60 and TRA-1-81. Expression is usually detected by immunocytochemical staining of entire colonies...... staining to weak or absent NANOG staining, and vice versa. SSEA4 staining was only observed in small clusters or single cells and not confined to the TRA territory. Co-expression of all markers was only detected in small areas. SSEA1 expression was found exclusively outside the TRA territory. In conclusion......, pronounced regional differences in the expression of markers considered specific for undifferentiated hESC may suggest the existence of different cell populations....

  5. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.

    Science.gov (United States)

    van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso

    2014-11-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'. © 2014. Published by The Company of Biologists Ltd.

  6. Stage-specific predictive models for breast cancer survivability.

    Science.gov (United States)

    Kate, Rohit J; Nadig, Ramya

    2017-01-01

    Survivability rates vary widely among various stages of breast cancer. Although machine learning models built in past to predict breast cancer survivability were given stage as one of the features, they were not trained or evaluated separately for each stage. To investigate whether there are differences in performance of machine learning models trained and evaluated across different stages for predicting breast cancer survivability. Using three different machine learning methods we built models to predict breast cancer survivability separately for each stage and compared them with the traditional joint models built for all the stages. We also evaluated the models separately for each stage and together for all the stages. Our results show that the most suitable model to predict survivability for a specific stage is the model trained for that particular stage. In our experiments, using additional examples of other stages during training did not help, in fact, it made it worse in some cases. The most important features for predicting survivability were also found to be different for different stages. By evaluating the models separately on different stages we found that the performance widely varied across them. We also demonstrate that evaluating predictive models for survivability on all the stages together, as was done in the past, is misleading because it overestimates performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Lack of Virus-Specific Bacterial Adherence to Bovine Embryonic Lung Cells Infected with Bovine Parainfluenza Virus Type 3 †

    OpenAIRE

    Toth, Thomas E.; Gates, Connie

    1983-01-01

    Infection of bovine embryonic lung cells with bovine parainfluenza virus type 3 did not induce in vitro, virus-specific, hemadsorption-related adherence of Corynebacterium pyogenes, Haemophilus somnus, Staphylococcus aureus, Streptococcus zooepidemicus, Pasteurella haemolytica, Listeria monocytogenes, Escherichia coli, Pasteurella multocida, Brucella sp., or Salmonella typhimurium.

  8. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development.

    Science.gov (United States)

    Hen, Gideon; Nicenboim, Julian; Mayseless, Oded; Asaf, Lihee; Shin, Masahiro; Busolin, Giorgia; Hofi, Roy; Almog, Gabriella; Tiso, Natascia; Lawson, Nathan D; Yaniv, Karina

    2015-12-15

    Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds. © 2015. Published by The Company of Biologists Ltd.

  9. Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Kamil Kruczek

    2017-06-01

    Full Text Available The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs. Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation.

  10. The postradiation efficacy of serotonin and its dependence on the stage of embryonal growith of mice

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Podmareva, O.N.; Dontsova, G.V.; Turpaev, T.M.

    1994-01-01

    In earlier experiments, the authors discovered that if serotonin was given to the mouse after its exposure to radiation on the 8th or 9th day of pregnancy, i.e., in the period of intensive neurogenesis, during which this particular biogenic amine was accumulated in the neural tube, the radiation damage was lessened and the growth of the fetus was normalized. These findings suggested involvement of exogenous serotonin in the elimination of radiation damage to the central nervous system of the germ. A question rises: Can serotonin lessen radiation damage to the embryo if it is exposed to ionizing radiation at later periods of gestation, during the period when the bones and the muscles are formed? This is the object of the present study. If mice were irradiated on the 11th day of gestation at a dose of 2.63 Gy, the number of female mice with viable fetuses decreased to 76.9% (compared with 100% of intact controls). The number of fetuses per female decreases to 3.2 (vs. 5.14); all developed fetuses had abnormalities, while there were no malformations in the fetuses of the intact (not irradiated) animals. Comparison results, showing the absence of the therapeutic effect of serotonin at the stage of skeleton formation, with results of previous studies, which demonstrated serotonin efficacy at the stage of formation of the central nervous system, suggests that the therapeutic effect of serotonin depends on the stage of embryo growth during which the mother is exposed to radiation

  11. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.

    Directory of Open Access Journals (Sweden)

    Sabine S Lange

    2016-01-01

    Full Text Available DNA polymerase ζ (pol ζ is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.

  12. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.

    Science.gov (United States)

    Lange, Sabine S; Tomida, Junya; Boulware, Karen S; Bhetawal, Sarita; Wood, Richard D

    2016-01-01

    DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.

  13. Single cell analysis facilitates staging of Blimp1-dependent primordial germ cells derived from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    John J Vincent

    Full Text Available The cell intrinsic programming that regulates mammalian primordial germ cell (PGC development in the pre-gonadal stage is challenging to investigate. To overcome this we created a transgene-free method for generating PGCs in vitro (iPGCs from mouse embryonic stem cells (ESCs. Using labeling for SSEA1 and cKit, two cell surface molecules used previously to isolate presumptive iPGCs, we show that not all SSEA1+/cKit+ double positive cells exhibit a PGC identity. Instead, we determined that selecting for cKit(bright cells within the SSEA1+ fraction significantly enriches for the putative iPGC population. Single cell analysis comparing SSEA1+/cKit(bright iPGCs to ESCs and embryonic PGCs demonstrates that 97% of single iPGCs co-express PGC signature genes Blimp1, Stella, Dnd1, Prdm14 and Dazl at similar levels to e9.5-10.5 PGCs, whereas 90% of single mouse ESC do not co-express PGC signature genes. For the 10% of ESCs that co-express PGC signature genes, the levels are significantly lower than iPGCs. Microarray analysis shows that iPGCs are transcriptionally distinct from ESCs and repress gene ontology groups associated with mesoderm and heart development. At the level of chromatin, iPGCs contain 5-methyl cytosine bases in their DNA at imprinted and non-imprinted loci, and are enriched in histone H3 lysine 27 trimethylation, yet do not have detectable levels of Mvh protein, consistent with a Blimp1-positive pre-gonadal PGC identity. In order to determine whether iPGC formation is dependent upon Blimp1, we generated Blimp1 null ESCs and found that loss of Blimp1 significantly depletes SSEA1/cKit(bright iPGCs. Taken together, the generation of Blimp1-positive iPGCs from ESCs constitutes a robust model for examining cell-intrinsic regulation of PGCs during the Blimp1-positive stage of development.

  14. Age determination enhanced by embryonic foot bud and foot plate measurements in relation to Carnegie stages, and the influence of maternal cigarette smoking

    DEFF Research Database (Denmark)

    Lutterodt, M C; Rosendahl, M; Yding Andersen, C

    2009-01-01

    habits, and delivered a urine sample for cotinine analysis. Embryonic age was evaluated by vaginal ultrasound measurements and by post-termination foot length and compared with the Carnegie stages. RESULTS: Foot bud and foot plate were defined and measured as foot length in embryos aged 35-47 days p......BACKGROUND: Reliable age determination of first-trimester human embryos and fetuses is an important parameter for clinical use and basic science. Age determination by ultrasound or morphometric parameters of embryos 4-6 weeks post conception (p.c.) have been questioned, and more accurate methods...... are required. Data on whether and how maternal smoking and alcohol consumption influence embryonic and fetal foot growth is also lacking. METHODS: Embryonic tissue from 102 first-trimester legal abortions (aged 35-69 days p.c.) were collected. All women answered a questionnaire concerning smoking and drinking...

  15. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system

    NARCIS (Netherlands)

    Wessels, A.; Vermeulen, J. L.; Verbeek, F. J.; Virágh, S.; Kálmán, F.; Lamers, W. H.; Moorman, A. F.

    1992-01-01

    A monoclonal antibody raised against an extract from the Ganglion Nodosum of the chick and designated G1N2 proves to bind specifically to a subpopulation of cardiomyocytes in the embryonic human heart. In the youngest stage examined (Carnegie stage 14, i.e., 4 1/2 weeks of development) these

  16. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain

    Directory of Open Access Journals (Sweden)

    Vanesa eNieto-Estévez

    2016-02-01

    Full Text Available The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs. This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP and the subventricular zone-olfactory bulb (SVZ-OB. By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also, by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis and neuron integration in synaptic circuits.

  17. Insufficient Apaf-1 expression in early stages of neural differentiation of human embryonic stem cells might protect them from apoptosis.

    Science.gov (United States)

    Karimzadeh, Somayeh; Hosseinkhani, Saman; Fathi, Ali; Ataei, Farangis; Baharvand, Hossein

    2018-03-01

    Recent evidence suggests that mitochondrial apoptosis regulators and executioners may regulate differentiation, without being involved in cell death. However, the involved factors and their roles in differentiation and apoptosis are still not fully determined. In the present study, we compared mitochondrial pathway of cell death during early neural differentiation from human embryonic stem cells (hESCs). Our results demonstrated that ROS generation, cytosolic cytochrome c release, caspases activation and rise in p53 protein level occurred upon either neural or apoptosis induction in hESCs. However, unlike apoptosis, no remarkable increase in apoptotic protease activating factor-1 (Apaf-1) level at early stages of differentiation was observed. Also the caspase-like activity of caspase-9 and caspase-3/7 were seen less than apoptosis. The results suggest that low levels of Apaf-1 as an adaptor protein might be considered as a possible regulatory barrier by which differentiating cells control cell death upon rise in ROS production and cytochrome c release from mitochondria. Better understanding of mechanisms via which mitochondria-mediated apoptotic pathway promote neural differentiation can result in development of novel therapeutic approaches. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Liver Stage specific response among Endemic Populations: Diet & Immunity

    Directory of Open Access Journals (Sweden)

    Sarat Kumar Dalai

    2015-03-01

    Full Text Available Developing effective anti-malarial vaccine has been a challenge for long. Various factors including complex life cycle of parasite and lack of knowledge of stage specific critical antigens are some of the reasons. Moreover, inadequate understanding of the immune responses vis-à-vis sterile protection induced naturally by Plasmodia infection has further compounded the problem. It has been shown that people living in endemic areas take years to develop protective immunity to blood stage infection. But hardly anyone believes that immunity to liver-stage infection could be developed. Various experimental model studies using attenuated parasite suggest that liver stage immunity might exist among endemic populations. This could be induced because of the attenuation of parasite in liver by various compounds present in the diet of endemic populations.

  19. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    Science.gov (United States)

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kee K.; Adelstein, Robert S.; Kawamoto, Sachiyo, E-mail: kawamots@mail.nih.gov

    2014-08-08

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.

  1. Imaging of post-embryonic stage model organisms at high resolution using multi-orientation optoacoustic mesoscopy

    Science.gov (United States)

    Omar, Murad; Rebling, Johannes; Wicker, Kai; Schmitt-Manderbach, Tobias; Schwarz, Mathias; Gateau, Jerome; Lopez-Schier, Hernan; Mappes, Timo; Ntziachristos, Vasilis

    2017-03-01

    Model organisms such as zebrafish play an important role for developmental biologists and experimental geneticists. Still, as they grow into their post-embryonic stage of development it becomes more and more difficult to image them because of high light scattering inside biological tissue. Optoacoustic mesoscopy based on spherically focused, high frequency, ultrasound detectors offers an alternative, where it relies on the focusing capabilities of the ultrasound detectors in generating the image rather than on the focusing of light. Nonetheless, because of the limited numerical aperture the resolution is not isotropic, and many structures, especially elongated ones, such as blood vessels and other organs, are either invisible, or not clearly identifiable on the final image. Herein, based on high frequency ultrasound detectors at 100 MHz and 50 MHz we introduce multi orientation (view) optoacoustic mesoscopy. We collect a rich amount of signals from multiple directions and combine them using a weighted sum in the Fourier domain and a Wiener deconvolution into a single high resolution three-dimensional image. The new system achieves isotropic resolutions on the order of 10 μm in-plane, 40 μm axially, and SNR enhancement of 15 dB compared to the single orientation case. To showcase the system we imaged a juvenile zebrafish ex vivo, which is too large to image using optical microscopic techniques, the reconstructed images show unprecedented performance in terms of SNR, resolution, and clarity of the observed structures. Using the system we see the inner organs of the zebrafish, the pigmentation, and the vessels with unprecedented clarity.

  2. Advanced stages of embryonic development and cotylocidial morphogenesis in the intrauterine eggs of Aspidogaster limacoides Diesing, 1835 (Aspidogastrea), with comments on their phylogenetic implications.

    Science.gov (United States)

    Świderski, Zdzisław; Poddubnaya, Larisa G; Gibson, David I; Młocicki, Daniel

    2012-06-01

    Ultrastructural aspects of the advanced embryonic development and cotylocidial morphogenesis of the aspidogastrean Aspidogaster limacoides are described. The posterior or distal regions of the uterus are filled with eggs containing larvae at advanced stages of morphogenesis and fully-formed cotylocidia. Various stages and organs of this larva are described in detail, including the aspects of the developing and fully-differentiated cotylocidium, the body wall (tegument and musculature), glandular regions and the protonephridial excretory system. Blastomere multiplication by means of mitotic divisions takes place simultaneously with the degeneration or apoptosis of some micromeres; this frequently observed characteristic is compared and discussed in relation to corresponding reports for other neodermatans. During the advanced stages of the embryonic development of A. limacoides, the vitelline syncytium disappears and the size of the embryo increases rapidly. Evident polarization of the differentiating larva was observed; towards one pole of the egg, cytodifferentiation of the mouth, surrounded by the oral sucker and cephalic glands, takes place, whereas, towards the opposite pole, differentiation of the posterior sucker (incipient ventral disc) occurs. The oral and posterior suckers are formed from numerous embryonic cells which have differentiated into myocytes. The central part of the oral sucker undergoes invagination and forms the future pharynx and intestine. Fully-developed cotylocidia of A. limacoides have a neodermatan type of tegument, flame cells and two types of glandular structures. These results suggest a sister relationship between the Aspidogastrea and the Digenea, although the systematic position of aspidogastreans in relation to other platyhelminth taxa remains somewhat equivocal.

  3. A proposed staging system and stage-specific interventions for familial adenomatous polyposis

    DEFF Research Database (Denmark)

    Lynch, Patrick M; Morris, Jeffrey S; Wen, Sijin

    2016-01-01

    BACKGROUND: It is not possible to accurately count adenomas in many patients with familial adenomatous polyposis (FAP). Nevertheless, polyp counts are critical in evaluating each patient's response to interventions. However, the U.S. Food and Drug Administration no longer recognizes the decrease...... classification scheme for lower GI tract polyposis. METHODS: Twenty-four colonoscopy or sigmoidoscopy videos were reviewed by 26 clinicians familiar with diagnosis and treatment of FAP. The reviewers independently assigned a stage to a case using the proposed system and chose a stage-specific intervention...... in the review of individual cases of polyposis. Therefore, reliable and clinically relevant means for measuring trial outcomes can be developed. Outlier cases showing wide scatter in stage assignment call for individualized attention and may be inappropriate for enrollment in clinical trials for this reason....

  4. Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency.

    Science.gov (United States)

    Tailor, Jignesh; Kittappa, Raja; Leto, Ketty; Gates, Monte; Borel, Melodie; Paulsen, Ole; Spitzer, Sonia; Karadottir, Ragnhildur Thora; Rossi, Ferdinando; Falk, Anna; Smith, Austin

    2013-07-24

    Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.

  5. Identification and characterization of L1-specific endo-siRNAs essential for early embryonic development in pig.

    Science.gov (United States)

    Zhang, Heng; Liu, Jilong; Tai, Yurong; Zhang, Xiaolei; Zhang, Jiaming; Liu, Shichao; Lv, Jiawei; Liu, Zhonghua; Kong, Qingran

    2017-04-04

    Small noncoding RNAs (sncRNAs) play important roles in RNA interference (RNAi). In addition to microRNA (miRNA) and Piwi-interacting RNA (piRNA), one key member of sncRNAs group is endogenous small interfering RNA (endo-siRNA). Some studies do show the role of endo-siRNAs in Dicer and/or Ago mutants, however, the biological functions of specific endo-siRNAs remains mostly unanswered. In the study, we have performed a comparative analysis of endo-siRNAs present in porcine sperms, oocytes and zygotes, identified by deep sequencing and bioinformatics analysis. Further, we observe a large amount of endo-siRNAs specific binding on ORF2 and 3' UTR of porcine L1 (L1-siRNAs). And, 9 L1-siRNAs generated from a dsRNA formed between L1 transcript and a newly identified an antisense noncoding RNA was characterized. We show the L1-siRNAs regulate early embryonic development by inhibiting the activity of L1 retrotransposition. This work can contribute to understanding the functional role of abundant endo-siRNAs in embryonic development.

  6. Regional differences in expression of specific markers for human embryonic stem cells

    DEFF Research Database (Denmark)

    Laursen, Steen B; Møllgård, Kjeld; Olesen, Christian

    2007-01-01

    Characterization of human embryonic stem cell (hESC) lines derived from the inner cell masses of blastocysts generally includes expression analysis of markers such as OCT4, NANOG, SSEA3, SSEA4, TRA-1-60 and TRA-1-81. Expression is usually detected by immunocytochemical staining of entire colonies...... of hESC, using one colony for each individual marker. Four newly established hESC lines showed the expected expression pattern and were capable of differentiating into the three germ layers in vitro. Neighbouring sections of entire colonies grown for 4, 11, 21 and 28 days respectively were stained...... with different markers to study the regional distribution and cellular co-expression. TRA-1-60 staining defined the hESC territory at all time points analysed. This territory comprised a characteristic OCT4 and NANOG staining often in overlapping subregions. Staining intensity of nuclei varied from strong OCT4...

  7. MORPHOLOGICAL VARIABILITY OF LONG-LEGGED WOOD FROG (RANA MACROCNEMIS UNDER THE INFLUENCE OF PERMANENT HYPERMAGNETIC FIELD AT DIFFERENT STAGES OF EMBRYONIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    I. T. Gatsalova

    2016-01-01

    Full Text Available Abstract. Aim. The aim of study was to investigate morphological changes after the effect of magnetic fields on the embryonic development of Rana macrocnemis. Methods. We conducted four different experiments in which embryos at different developmental stages were exposed to the magnetic field. After hatching, the larvae were measured for the following morphological characteristics: trunk length, tail length, body length, tail height at base. Hypermagnetic conditions were created by increasing the tension of the natural magnetic field. The Petri dish with the egg mass  was placed at an equal distance (9 cm between opposite poles of two permanent magnets of cylindrical shape. The north magnetic pole was on top and the south at the bottom of the cup. With this arrangement of the magnets, the magnitude of the magnetic flux was 11.5 m/T. Results. The body length is the most stable feature of all investigated species. The most variable parameter is the length of the tail. In the fourth experiment, under the influence of magnetic fields from the neurula stage to the tailbud stage, we observed the most pronounced decrease of features of tadpoles as compared with the control and with the other experiments. Conclusions. Thus, under the effect of hypermagnetic field at various stages of embryonic development of the Iranian long-legged wood frog, the linear sizes all diagnosed features of tadpoles in the test groups decreased, especially the length of the body and tail.

  8. RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Lluis Morey

    2013-01-01

    Full Text Available The Polycomb repressive complex 1 (PRC1 is required for decisions of stem cell fate. In mouse embryonic stem cells (ESCs, two major variations of PRC1 complex, defined by the mutually exclusive presence of Cbx7 or RYBP, have been identified. Here, we show that although the genomic localization of the Cbx7- and RYBP-containing PRC1 complexes overlaps in certain genes, it can also be mutually exclusive. At the molecular level, Cbx7 is necessary for recruitment of Ring1B to chromatin, whereas RYBP enhances the PRC1 enzymatic activity. Genes occupied by RYBP show lower levels of Ring1B and H2AK119ub and are consequently more highly transcribed than those bound by Cbx7. At the functional level, we show that genes occupied by RYBP are primarily involved in the regulation of metabolism and cell-cycle progression, whereas those bound by Cbx7 predominantly control early-lineage commitment of ESCs. Altogether, our results indicate that different PRC1 subtypes establish a complex pattern of gene regulation that regulates common and nonoverlapping aspects of ESC pluripotency and differentiation.

  9. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    Energy Technology Data Exchange (ETDEWEB)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  10. Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laureen Jacquet

    Full Text Available Huntington disease (HD; OMIM 143100, a progressive neurodegenerative disorder, is caused by an expanded trinucleotide CAG (polyQ motif in the HTT gene. Cardiovascular symptoms, often present in early stage HD patients, are, in general, ascribed to dysautonomia. However, cardio-specific expression of polyQ peptides caused pathological response in murine models, suggesting the presence of a nervous system-independent heart phenotype in HD patients. A positive correlation between the CAG repeat size and severity of symptoms observed in HD patients has also been observed in in vitro HD cellular models. Here, we test the suitability of human embryonic stem cell (hESC lines carrying HD-specific mutation as in vitro models for understanding molecular mechanisms of cardiac pathology seen in HD patients. We have differentiated three HD-hESC lines into cardiomyocytes and investigated CAG stability up to 60 days after starting differentiation. To assess CAG stability in other tissues, the lines were also subjected to in vivo differentiation into teratomas for 10 weeks. Neither directed differentiation into cardiomyocytes in vitro nor in vivo differentiation into teratomas, rich in immature neuronal tissue, led to an increase in the number of CAG repeats. Although the CAG stability might be cell line-dependent, induced pluripotent stem cells generated from patients with larger numbers of CAG repeats could have an advantage as a research tool for understanding cardiac symptoms of HD patients.

  11. Embryonic mortality and intrauterine growth retardation (IUGR) associated with placental alterations in pregnant rats treated with methyl methanesulfonate (MMS) at the peri-implantation stage.

    Science.gov (United States)

    Yokoi, Ryohei; Hayashi, Morimichi; Tamura, Toru; Kobayashi, Kazuo; Kuroda, Junji; Kusama, Hiroshi; Kagami, Hiroshi; Ono, Tamao

    2008-12-01

    Embryonic mortality and intrauterine growth retardation (IUGR) are induced by exposure of rodents to xenobiotic agents during the pregastrulation period of development. We examined the time course of the effects of methyl methanesulfonate (MMS), an alkylating agent, on conceptus development in order to clarify the relative roles of the embryo and the placenta in their induction. Pregnant rats were treated orally with a single dose of MMS (200 mg/kg) in the morning of gestation day (GD) 6 (peri-implantation stage). Embryonic mortality was increased on GD12 and thereafter by MMS treatment, with newly dead embryos showing placental hypoplasia at GD12. Embryo or fetal weight was also smaller for MMS-treated dams than for control dams from GD14 to GD20. The labyrinth zone and junctional zone (JZ) of the placenta were thinner in MMS-treated rats from GD12 to GD17 and from GD12 to GD20 (except for GD17), respectively. Furthermore, MMS-treated dams showed a smaller number of glycogen cells in the JZ on GD14. In contrast, the placental glycogen concentration was higher and the expression of glucose transporter 1 in the JZ remained at GD20. These results indicate that exposure of pregnant rats to MMS at the peri-implantation stage of embryogenesis affects placental development and growth. The placental impairment induced by MMS was likely responsible for the embryonic death observed 6 days after exposure of dams to this agent as well as for the IUGR of surviving embryos or fetuses throughout the gestation period.

  12. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system.

    Science.gov (United States)

    Anton, Tobias; Bultmann, Sebastian; Leonhardt, Heinrich; Markaki, Yolanda

    2014-01-01

    Labeling and tracing of specific sequences in living cells has been a major challenge in studying the spatiotemporal dynamics of native chromatin. Here we repurposed the prokaryotic CRISPR/Cas adaptive immunity system to specifically detect endogenous genomic loci in mouse embryonic stem cells. We constructed a catalytically inactive version of the Cas9 endonuclease, fused it with eGFP (dCas9-eGFP) and co-expressed small guide RNAs (gRNAs) to target pericentric, centric, and telomeric repeats, which are enriched in distinct nuclear structures. With major satellite specific gRNAs we obtained a characteristic chromocenter (CC) pattern, while gRNAs targeting minor satellites and telomeres highlighted smaller foci coinciding with centromere protein B (CENP-B) and telomeric repeat-binding factor 2 (TRF2), respectively. DNA sequence specific labeling by gRNA/dCas9-eGFP complexes was directly shown with 3D-fluorescent in situ hybridization (3D-FISH). Structured illumination microscopy (3D-SIM) of gRNA/dCas9-eGFP expressing cells revealed chromatin ultrastructures and demonstrated the potential of this approach for chromatin conformation studies by super resolution microscopy. This programmable dCas9 labeling system opens new perspectives to study functional nuclear architecture.

  13. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    International Nuclear Information System (INIS)

    Theunissen, P.T.; Robinson, J.F.; Pennings, J.L.A.; Herwijnen, M.H. van; Kleinjans, J.C.S.; Piersma, A.H.

    2012-01-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  14. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    Energy Technology Data Exchange (ETDEWEB)

    Theunissen, P.T., E-mail: Peter.Theunissen@rivm.nl [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Robinson, J.F. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Pennings, J.L.A. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Herwijnen, M.H. van [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Kleinjans, J.C.S. [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Piersma, A.H. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Institute for Risk Assessment Sciences, Faculty of Veterinary Sciences, Utrecht University, Utrecht (Netherlands)

    2012-08-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  15. Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure.

    Science.gov (United States)

    Burić, Petra; Jakšić, Željko; Štajner, Lara; Dutour Sikirić, Maja; Jurašin, Darija; Cascio, Claudia; Calzolai, Luigi; Lyons, Daniel Mark

    2015-10-01

    With the ever growing use of nanoparticles in a broad range of industrial and consumer applications there is increasing likelihood that such nanoparticles will enter the aquatic environment and be transported through freshwater systems, eventually reaching estuarine or marine waters. Due to silver's known antimicrobial properties and widespread use of silver nanoparticles (AgNP), their environmental fate and impact is therefore of particular concern. In this context we have investigated the species-specific effects of low concentrations of 60 nm AgNP on embryonal development in Mediterranean sea urchins Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis. The sensitivity of urchin embryos was tested by exposing embryos to nanoparticle concentrations in the 1-100 μg L(-1) range, with times of exposure varying from 30 min to 24 h (1 h-48 h for S. granularis) post-fertilisation which corresponded with fertilized egg, 4 cell, blastula and gastrula development phases. The most sensitive species to AgNP was A. lixula with significant modulation of embryonal development at the lowest AgNP concentrations of 1-10 μg L(-1) with high numbers of malformed embryos or arrested development. The greatest impact on development was noted for those embryos first exposed to nanoparticles at 6 and 24 h post fertilisation. For P. lividus, similar effects were noted at higher concentrations of 50 μg L(-1) and 100 μg L(-1) for all times of first exposure. The S. granularis embryos indicated a moderate AgNP impact, and significant developmental abnormalities were recorded in the concentration range of 10-50 μg L(-1). As later post-fertilisation exposure times to AgNP caused greater developmental changes in spite of a shorter total exposure time led us to postulate on additional mechanisms of AgNP toxicity. The results herein indicate that toxic effects of AgNP are species-specific. The moment at which embryos first encounter AgNP is also shown to be

  16. SET domain-containing protein 5 is required for expression of primordial germ cell specification-associated genes in murine embryonic stem cells.

    Science.gov (United States)

    Yu, Seung Eun; Kim, Min Seong; Park, Su Hyung; Yoo, Byong Chul; Kim, Kyung Hee; Jang, Yeun Kyu

    2017-07-01

    Primordial germ cell (PGC) specification is one of the most fundamental processes in developmental biology. Because PGCs are a common source of both gametes, generation of PGCs from embryonic stem cells (ESCs) is a useful model for analysing the germ line lineage. Although several studies focused on the role of epigenetic regulation on PGC differentiation from ESCs in vitro have been published, germ line commitment remains poorly understood. Here, we show that SET domain-containing protein (Setd5), which has a previously unknown function, is essential for regulating germ cell-associated genes in murine ESCs (mESCs). Even though Setd5 knockdown with 3 distinct shRNAs did not affect expression of pluripotency genes or levels of global histone methylation, all 3 shRNAs significantly diminished the expression of early and late-stage PGC-associated genes. Furthermore, our immunoprecipitation assay showed that Setd5 can interact with Tbl1xr1 and Ctr9, which are components of 2 different transcriptional regulatory complexes, namely, NcoR1 corepressor complex and Paf1 complex, respectively, in mESCs. Taken together, our data suggest that Setd5 is required for maintaining PGC-associated genes and Setd5-associated protein complexes containing Tbl1xr1 and Ctr9, which in turn are likely involved in regulating germ cell-related genes in mESCs. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Specific fixation of bovine brain and retinal acidic and basic fibroblast growth factors to mouse embryonic eye basement membranes

    International Nuclear Information System (INIS)

    Jeanny, J.C.; Fayein, N.; Courtois, Y.; Moenner, M.; Chevallier, B.; Barritault, D.

    1987-01-01

    The labeling pattern of mouse embryonic eye frozen sections incubated with radioiodinated brain acidic and basic fibroblasts growth factors (aFGF and bFGF) was investigated by autoradiography. Both growth factors bind to basement membranes in a dose-dependent way, with a higher affinity for bFGF. Similar data were obtained with eye-derived growth factors (EDGF), the retinal forms of FGF. There was a heterogeneity in the affinity of the various basement membranes toward these growth factors. The specificity of the growth factor-basement membrane interaction was demonstrated by the following experiments: (i) an excess of unlabeled growth factor displaced the labeling; (ii) unrelated proteins with different isoelectric points did not modify the labeling; and (iii) iodinated EGF or PDGF did not label basement membrane. In order to get a better understanding of the nature of this binding, the authors performed the incubation of the frozen sections with iodinated FGFs preincubated with various compounds. These results demonstrate that FGFs bind specifically to basement membranes, probably on the polysaccharidic part of the proteoheparan sulfate, and suggest that this type of interaction may be a general feature of the mechanism of action of these growth factors

  18. Specification of the enveloping layer and lack of autoneuralization in zebrafish embryonic explants.

    Science.gov (United States)

    Sagerström, Charles G; Gammill, Laura S; Veale, Robin; Sive, Hazel

    2005-01-01

    We have analyzed the roles of cell contact during determination of the outermost enveloping layer (EVL) and deeper neurectoderm in zebrafish embryos. Outer cells, but not deeper cells, are specified to express the EVL-specific marker, cyt1 by late blastula. EVL specification requires cell contact or close cell proximity, because cyt1 is not expressed after explant dissociation. The EVL may be homologous to the Xenopus epithelial layer, including the ventral larval epidermis. While Xenopus epidermal cytokeratin gene expression is activated by bone morphogenetic protein (BMP) signaling, zebrafish cyt1 is not responsive to BMPs. Zebrafish early gastrula ectodermal explants are specified to express the neural markers opl (zic1) and otx2, and this expression is prevented by BMP4. Dissociation of zebrafish explants prevents otx2 and opl expression, suggesting that neural specification in zebrafish requires cell contact or close cell proximity. This finding is in contrast to the case in Xenopus, where ectodermal dissociation leads to activation of neural gene expression, or autoneuralization. Our data suggest that distinct mechanisms direct development of homologous lineages in different vertebrates.

  19. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1

    DEFF Research Database (Denmark)

    Robert-Moreno, Àlex; Robert-Moreno, Àlex; Guiu, Jordi

    2008-01-01

    Specific deletion of Notch1 and RBPjκ in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult...

  20. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Roman J Krawetz

    Full Text Available The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK play pivotal roles in cell migration, apoptosis (membrane blebbing, cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined.P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed.Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of pluripotent cell populations should be further examined to elucidate the

  1. Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis

    DEFF Research Database (Denmark)

    Vadodaria, Krishna C; Brakebusch, Cord; Suter, Ueli

    2013-01-01

    The molecular mechanisms underlying the generation, maturation, and integration of new granule cells generated throughout life in the mammalian hippocampus remain poorly understood. Small Rho GTPases, such as Cdc42 and Rac1, have been implicated previously in neural stem/progenitor cell (NSPC......) proliferation and neuronal maturation during embryonic development. Here we used conditional genetic deletion and virus-based loss-of-function approaches to identify temporally distinct functions for Cdc42 and Rac1 in adult hippocampal neurogenesis. We found that Cdc42 is involved in mouse NSPC proliferation......, initial dendritic development, and dendritic spine maturation. In contrast, Rac1 is dispensable for early steps of neuronal development but is important for late steps of dendritic growth and spine maturation. These results establish cell-autonomous and stage-specific functions for the small Rho GTPases...

  2. Loggerhead sea turtle (Caretta caretta) egg yolk concentrations of persistent organic pollutants and lipid increase during the last stage of embryonic development

    International Nuclear Information System (INIS)

    Alava, Juan Jose; Keller, Jennifer M.; Kucklick, John R.; Wyneken, Jeanette; Crowder, Larry; Scott, Geoffrey I.

    2006-01-01

    Data are scarce describing the concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides in sea turtle eggs. The purpose of this study was to establish appropriate sample collection methodology to monitor these contaminants in sea turtle eggs. Contaminant concentrations were measured in yolk samples from eggs that failed to hatch from three loggerhead sea turtle (Caretta caretta) nests collected in southern Florida to determine if concentrations change through embryonic development. One to three egg yolk samples per nest were analyzed from early, middle, and late developmental stages (n = 22 eggs total). PCB and pesticide concentrations were determined by gas chromatography with electron capture detection (GC-ECD). Geometric mean concentrations of ΣPCBs (52 congeners), ΣDDTs, Σchlordanes, and dieldrin in all eggs were 65.0 (range = 7.11 to 3930 ng/g lipid), 67.1 (range = 7.88 to 1340 ng/g lipid), 37.0 (range = 4.04 to 685 ng/g lipid), and 11.1 ng/g lipid (range = 1.69 to 44.0 ng/g lipid), respectively. Early and middle developmental stage samples had similar concentrations of PCBs and organochlorine pesticides on a wet-mass basis (ng/g tissue extracted), but the concentrations doubled by the late stage. This increase is most likely attributable to the 50% increase in lipid content observed in the late-stage yolk. These findings indicate that an early-stage sample cannot be directly compared to a late-stage sample, especially from different nests. These preliminary findings also allowed us to calculate the minimum number of eggs per nest required for analysis to obtain an acceptable mean concentration per nest. More research is required to investigate geographical trends of contaminant concentrations and potential health effects (i.e., abnormalities) caused by these contaminants on sea turtle development

  3. Loggerhead sea turtle (Caretta caretta) egg yolk concentrations of persistent organic pollutants and lipid increase during the last stage of embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Alava, Juan Jose [School of the Environment, University of South Carolina, 702G Byrnes Building, Columbia, SC 29208 (United States) and Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration, 219 Ft. Johnson Road, Charleston, SC 29412 (United States)]. E-mail: jalavasa@sfu.ca; Keller, Jennifer M. [National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412 (United States)]. E-mail: Jennifer.Keller@noaa.gov; Kucklick, John R. [National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412 (United States); Wyneken, Jeanette [Florida Atlantic University, Department of Biological Sciences, 777 Glades Road, Boca Raton, FL 33431 (United States); Crowder, Larry [Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, NC 28516 (United States); Scott, Geoffrey I. [Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration, 219 Ft. Johnson Road, Charleston, SC 29412 (United States)

    2006-08-15

    Data are scarce describing the concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides in sea turtle eggs. The purpose of this study was to establish appropriate sample collection methodology to monitor these contaminants in sea turtle eggs. Contaminant concentrations were measured in yolk samples from eggs that failed to hatch from three loggerhead sea turtle (Caretta caretta) nests collected in southern Florida to determine if concentrations change through embryonic development. One to three egg yolk samples per nest were analyzed from early, middle, and late developmental stages (n = 22 eggs total). PCB and pesticide concentrations were determined by gas chromatography with electron capture detection (GC-ECD). Geometric mean concentrations of {sigma}PCBs (52 congeners), {sigma}DDTs, {sigma}chlordanes, and dieldrin in all eggs were 65.0 (range = 7.11 to 3930 ng/g lipid), 67.1 (range = 7.88 to 1340 ng/g lipid), 37.0 (range = 4.04 to 685 ng/g lipid), and 11.1 ng/g lipid (range = 1.69 to 44.0 ng/g lipid), respectively. Early and middle developmental stage samples had similar concentrations of PCBs and organochlorine pesticides on a wet-mass basis (ng/g tissue extracted), but the concentrations doubled by the late stage. This increase is most likely attributable to the 50% increase in lipid content observed in the late-stage yolk. These findings indicate that an early-stage sample cannot be directly compared to a late-stage sample, especially from different nests. These preliminary findings also allowed us to calculate the minimum number of eggs per nest required for analysis to obtain an acceptable mean concentration per nest. More research is required to investigate geographical trends of contaminant concentrations and potential health effects (i.e., abnormalities) caused by these contaminants on sea turtle development.

  4. Sleep Stage Transition Dynamics Reveal Specific Stage 2 Vulnerability in Insomnia

    NARCIS (Netherlands)

    Wei, Yishul; Colombo, Michele A; Ramautar, Jennifer R; Blanken, Tessa F; van der Werf, Ysbrand D; Spiegelhalder, Kai; Feige, Bernd; Riemann, Dieter; Van Someren, Eus J W

    2017-01-01

    Study Objectives: Objective sleep impairments in insomnia disorder (ID) are insufficiently understood. The present study evaluated whether whole-night sleep stage dynamics derived from polysomnography (PSG) differ between people with ID and matched controls and whether sleep stage dynamic features

  5. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes.

    Science.gov (United States)

    Dinopoulou, Vasiliki; Drakakis, Peter; Kefala, Stella; Kiapekou, Erasmia; Bletsa, Ritsa; Anagnostou, Elli; Kallianidis, Konstantinos; Loutradis, Dimitrios

    2016-06-01

    During in vitro maturation (IVM), intrinsic and extrinsic factors must co-operate properly in order to ensure cytoplasmic and nuclear maturation. We examined the possible effect of LH/hCG in the process of oocyte maturation in mice with the addition of recombinant LH (r-LH) and hCG in our IVM cultures of mouse germinal vesicle (GV)-stage oocytes. Moreover, the effects of these hormones on fertilization, early embryonic development and the expression of LH/hCG receptor were examined. Nuclear maturation of GV-stage oocytes was evaluated after culture in the presence of r-LH or hCG. Fertilization rates and embryonic development were assessed after 24h. Total RNA was isolated from oocytes of different stages of maturation and from zygotes and embryos of different stages of development in order to examine the expression of LH/hCG receptor, using RT-PCR. The in vitro nuclear maturation rate of GV-stage oocytes that received hCG was significantly higher compared to the control group. Early embryonic development was increased in the hCG and LH cultures of GV oocytes when LH was further added. The LH/hCG receptor was expressed in all stages of in vitro matured mouse oocytes and in every stage of early embryonic development. Addition of hCG in IVM cultures of mouse GV oocytes increased maturation rates significantly. LH, however, was more beneficial to early embryonic development than hCG. This suggests a promising new technique in basic science research or in clinical reproductive medicine. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Embryonic development of lake whitefish Coregonus clupeaformis: a staging series, analysis of growth and effects of fixation.

    Science.gov (United States)

    Sreetharan, S; Thome, C; Mitz, C; Eme, J; Mueller, C A; Hulley, E N; Manzon, R G; Somers, C M; Boreham, D R; Wilson, J Y

    2015-09-01

    A reference staging series of 18 morphological stages of laboratory reared lake whitefish Coregonus clupeaformis is provided. The developmental processes of blastulation, gastrulation, neurulation as well as development of the eye, circulatory system, chromatophores and mouth are included and accompanied by detailed descriptions and live imaging. Quantitative measurements of embryo size and mass were taken at each developmental stage. Eggs were 3·19 ± 0·16 mm (mean ± s.d.) in diameter at fertilization and embryos reached a total length (LT ) of 14·25 ± 0·41 mm at hatch. Separated yolk and embryo dry mass were 0·25 ± 0·08 mg and 1·39 ± 0·17 mg, respectively, at hatch. The effects of two common preservatives (formalin and ethanol) were examined throughout development and post hatch. Embryo LT significantly decreased following fixation at all points in development. A correction factor to estimate live LT from corresponding fixed LT was determined as live LT = (fixed LT )(1·025) . Eye diameter and yolk area measurements significantly increased in fixed compared with live embryos up to 85-90% development for both measurements. The described developmental stages can be generalized to teleost species, and is particularly relevant for the study of coregonid development due to additionally shared developmental characteristics. The results of this study and staging series are therefore applicable across various research streams encompassing numerous species that require accurate staging of embryos and descriptions of morphological development. © 2015 The Fisheries Society of the British Isles.

  7. Dual effect of fetal bovine serum on early development depends on stage-specific reactive oxygen species demands in pigs.

    Directory of Open Access Journals (Sweden)

    Seong-Eun Mun

    Full Text Available Despite the application of numerous supplements to improve in vitro culture (IVC conditions of mammalian cells, studies regarding the effect of fetal bovine serum (FBS on mammalian early embryogenesis, particularly in relation to redox homeostasis, are lacking. Herein, we demonstrated that early development of in vitro-produced (IVP porcine embryos highly depends on the combination of FBS supplementation timing and embryonic reactive oxygen species (ROS requirements. Interestingly, FBS significantly reduced intracellular ROS levels in parthenogenetically activated (PA embryos regardless of the developmental stage. However, the beneficial effect of FBS on early embryogenesis was found only during the late phase (IVC 4-6 days treatment group. In particular, developmental competence parameters, such as blastocyst formation rate, cellular survival, total cell number and trophectoderm proportion, were markedly increased by FBS supplementation during the late IVC phase. In addition, treatment with FBS elevated antioxidant transcript levels during the late IVC phase. In contrast, supplementation with FBS during the entire period (1-6 days or during the early IVC phase (1-2 days greatly impaired the developmental parameters. Consistent with the results from PA embryos, the developmental competence of in vitro fertilization (IVF or somatic cell nuclear transfer (SCNT embryos were markedly improved by treatment with FBS during the late IVC phase. Moreover, the embryonic stage-specific effects of FBS were reversed by the addition of an oxidant and were mimicked by treatment with an antioxidant. These findings may increase our understanding of redox-dependent early embryogenesis and contribute to the large-scale production of high-quality IVP embryos.

  8. Overexpression of Cardiac-Specific Kinase TNNI3K Promotes Mouse Embryonic Stem Cells Differentiation into Cardiomyocytes.

    Science.gov (United States)

    Wang, Yin; Wang, Shi-Qiang; Wang, Li-Peng; Yao, Yu-Hong; Ma, Chun-Yan; Ding, Jin-Feng; Ye, Jue; Meng, Xian-Min; Li, Jian-Jun; Xu, Rui-Xia

    2017-01-01

    Backgroud/Aims: The biological function of cardiac troponin I-interacting kinase (TNNI3K), a cardiac-specific functional kinase, is largely unknown. We investigated the effect of human TNNI3K (hTNNI3K) on the differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. First, the time-space expression of endogenous Tnni3k was detected by real-time polymerase chain reaction (PCR) and western blotting at 16 different time-points over a period of 28 days. Further, action potentials and calcium current with/without 5 µM nifedipine were measured by patch clamp for mESC-derived cardiomyocytes. HTNNI3K and mouse-derived siRNA were transfected into mESC using lentivirus vector to induce hTNNI3K overexpression and knock-down, respectively. The number of troponin-T (cTnT) positive cells was greater in the group with TNNI3K overexpression as compared to that in control group, while less such cells were detected in the mTnni3k knock-down group as evaluated on flow cytometry (FCM) and ImageXpress Micro system. After upregulation of connexin43, cardiac troponin-I (Ctni), Ctni, Gata4 were detected in mESCs with TNNI3K overexpression; however, overexpression of α-Actinin and Mlc2v was not detected. Interestingly, Ctnt, connexin40 and connexin45, the markers of ventricular, atrial, and pacemaker cells, respectively, were detected in by real-time PCR in TNNI3K overexpression group. our study indicated that TNNI3K overexpression promoted mESC differentiating into beating cardiomyocytes and induced up-regulating expression of cTnT by PKCε signal pathway, which suggested a modulation of TNNI3K activity as a potential therapeutic approach for ischemic cardiac disease. © 2017 The Author(s) Published by S. Karger AG, Basel.

  9. Embryonic development and larval stages of Steindachneridion parahybae (Siluriformes: Pimelodidae: implications for the conservation and rearing of this endangered Neotropical species

    Directory of Open Access Journals (Sweden)

    Renato M. Honji

    Full Text Available Steindachneridion parahybae is a freshwater catfish endemic to the Paraíba do Sul River and is classified as an endangered Neotropical species. An increasing number of conservation biologists are incorporating morphological and physiological research data to help conservation managers in rescue these endangered species. This study investigated the embryonic and larval development of S. parahybae in captivity, with emphasis in major events during the ontogeny of S. parahybae. Broodstocks were artificially induced to reproduce, and the extrusion occurred 200-255 degree-hours after hormonal induction at 24°C. Larval ontogeny was evaluated every 10 minutes under microscopic/stereomicroscopic using fresh eggs samples. The main embryogenic development stages were identified: zygote, cleavage, including the morula, blastula, gastrula phase, organogenesis, and hatching. The extruded oocytes showed an average diameter of 1.10 ± 0.10 mm, and after fertilization and hydration of eggs, the average diameter of eggs increased to about 1.90 ± 0.60 mm, characterized by a large perivitelline space that persisted up to embryo development, the double chorion, and the poles (animal and vegetative. Cell division started about 2 minutes after fertilization (AF, resulting in 2, 4, 8 (4 x 2 arrangement of cells, 16 (4 x 4, 32 (4 x 8 and 64 (2 x 4 x 8 cells. Furthermore, the blastula and gastrula stages followed after these cells divisions. The closed blastopore occurred at 11 h 20 min AF; following the development, the organogenetic stages were identified and subdivided respectively in: early segmentation phase and late segmentation phase. In the early segmentation phase, there was the establishment of the embryonic axis, and it was possible to distinguish between the cephalic and caudal regions; somites, and the optic vesicles developed about 20 h AF. Total hatching occurred at 54 h AF, and the larvae average length was 4.30 ± 0.70 mm. Gradual yolk sac reduction

  10. Save the mystery - staging specificity of Pina Bausch's dance theatre

    Directory of Open Access Journals (Sweden)

    Monika Roszak

    2009-01-01

    Full Text Available In the article are presented the fundamental determinants of the style of the theatre of Pina Bausch. Tanztheater Wuppertal performances delight with their totality and originality (stage design, costumes, the musical layer, textual layer. Montage, collage, acting based on improvisation - these are the means which are the pillars of Bausch's theatre. Tanztheater Wuppertal performances have reformed the modern ballet and created a new kind of performance based - apart from dance, movement and pantomime - on the realistic activities, routine behaviours, dialogues and singing.

  11. Embryonic death, dwarfism and fetal malformations after irradiation of embryos at the zygote stage. Studies on two mouse strains

    International Nuclear Information System (INIS)

    Jacquet, P.; Saint-Georges, L. de; Baugnet-Mahieu, L.; Vankerkom, J.

    1995-01-01

    Female mice of the BALB/c and CF1 strains were mated and irradiated with various doses of X-rays 7 h after presumed fertilization. 18 days later, females were killed and their uteri examined for prenatal mortality at the different stages of development. Living fetuses were weighed and examined for the presence of external malformations. A number of them were also examined for skeletal anomalies. Radiation induced mainly a dose-dependent increase of the preimplantation loss in the BALB/c strain and of the early postimplantation loss in the CF1 strain. Embryos of the BALB/c strain were refractory to the induction of teratogenic effects after such preimplantation irradiation. In CF1 mice, the frequency of malformed fetuses increased regularly after irradiation, the difference with controls being significant for the doses of 10, 50 and 100 cGy. Dwarfism occurrence also appeared to be increased by irradiation in this strain, although the importance of this effect varied depending on the criterion chosen for the assessment of dwarfs. With the definition proposed in the present paper, the increase in the frequency of dwarfs paralleled that of malformed fetuses, being significant after doses of 50 and 100 cGy. Irradiation did not increase the frequency of skeletal anomalies. A careful examination of the various data obtained to date led us to conclude that radiation may possibly be teratogenic in several mouse strains, when administered as early as during the one-cell stage and, to a lesser extent, during the following preimplantation stages. However, early prenatal mortality will remain by far the greatest risk associated with an exposure to radiation during this period. Moreover, the relativity of the risk of abnormality due to such irradiation should be considered in the context of the high prevalence of developmental defects spontaneously occurring during human pregnancy

  12. The effects of copper and nickel on the embryonic life stages of the purple sea urchin (Strongylocentrotus purpuratus).

    Science.gov (United States)

    Tellis, Margaret S; Lauer, Mariana M; Nadella, Sunita; Bianchini, Adalto; Wood, Chris M

    2014-10-01

    The aim of this research was to generate data on the mechanisms of toxicity of copper [Cu (4-12 µg/L)] and nickel [Ni (33-40 µg/L)] during continuous sublethal exposure in seawater (32 ppt, 15 °C) in a sensitive test organism (Strongylocentrotus purpuratus) at its most sensitive life stage (developing embryo). Whole-body ions [calcium (Ca), sodium (Na), potassium (K), and magnesium (Mg)], metal burdens, Ca uptake, and Ca ATPase activity were measured every 12 h during the first 72-84 h of development. Ionoregulatory disruption was clearly an important mechanism of toxicity for both metals and occurred with minimal metal bioaccumulation. Most noteworthy was a significant disruption of Ca homeostasis, which was evident from an inhibition of unidirectional Ca uptake rates, whole-body Ca accumulation, and Ca ATPase activity intermittently during 72-84 h of development. At various times, Cu- and Ni-exposed embryos also displayed lower levels of K and increased levels of Na suggesting inhibition of Na/K ATPase activity. Greater levels of Mg during initial stages of development in Cu-exposed embryos were also observed and were considered a possible compensatory mechanism for disruptions to Ca homeostasis because both of these ions are important constituents of the developing spicule. Notably, most of these effects occurred during the initial stages of development but were reversed by 72-84 h. We therefore propose that it is of value to study the toxic impacts of contaminants periodically during development before the traditional end point of 48-72 h.

  13. Embryonic death, dwarfism and fetal malformations after irradiation of embryos at the zygote stage. Studies on two mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.; Saint-Georges, L. de; Baugnet-Mahieu, L. [Laboratory of Radiobiology, Department of Radioprotection, CEN/SCK, Mol (Belgium); Vankerkom, J. [Division of Environmental Research, VITO, Mol (Belgium)

    1995-11-01

    Female mice of the BALB/c and CF1 strains were mated and irradiated with various doses of X-rays 7 h after presumed fertilization. 18 days later, females were killed and their uteri examined for prenatal mortality at the different stages of development. Living fetuses were weighed and examined for the presence of external malformations. A number of them were also examined for skeletal anomalies. Radiation induced mainly a dose-dependent increase of the preimplantation loss in the BALB/c strain and of the early postimplantation loss in the CF1 strain. Embryos of the BALB/c strain were refractory to the induction of teratogenic effects after such preimplantation irradiation. In CF1 mice, the frequency of malformed fetuses increased regularly after irradiation, the difference with controls being significant for the doses of 10, 50 and 100 cGy. Dwarfism occurrence also appeared to be increased by irradiation in this strain, although the importance of this effect varied depending on the criterion chosen for the assessment of dwarfs. With the definition proposed in the present paper, the increase in the frequency of dwarfs paralleled that of malformed fetuses, being significant after doses of 50 and 100 cGy. Irradiation did not increase the frequency of skeletal anomalies. A careful examination of the various data obtained to date led us to conclude that radiation may possibly be teratogenic in several mouse strains, when administered as early as during the one-cell stage and, to a lesser extent, during the following preimplantation stages. However, early prenatal mortality will remain by far the greatest risk associated with an exposure to radiation during this period. Moreover, the relativity of the risk of abnormality due to such irradiation should be considered in the context of the high prevalence of developmental defects spontaneously occurring during human pregnancy.

  14. Prenatal development of the sound transmitting apparatus in different embryonic stages of Malpolon monsspesulanus (squamata-serpentes).

    Science.gov (United States)

    Dakrory, A I; Abu-Taira, A M; El-Din, E Y Salah; Mohamed, Y B

    2018-01-15

    The developmental investigation of sound transmitting apparatus is important in understanding the ontogenetic processes behind morphological diversity. The development of sound conducting apparatus was studied in Montpellier snake; Malpolon monspessulanus at 6.5, 7.2, 8.3 and 9.3 cm total body lengths using light microscopy study. The columella auris firstly appeared as undifferentiated rod shape mesenchymal cells. As the growth proceeded, it chondrified and differentiates into two main parts. In addition, the viscerocranium components which participate in formation of sound transmitting apparatus undergo critical organization. In more advanced stages, procartilagenous stylohyal chondrified and fuse with the well organized quadrate. These data considered as a base for functional and molecular mechanisms of sound transmitting apparatus studies and identification of diseases that may infect them.

  15. Fungi predatory activity on embryonated Toxocara canis eggs inoculated in domestic chickens (Gallus gallus domesticus) and destruction of second stage larvae.

    Science.gov (United States)

    Hiura, Emy; Del Carmen Garcia Lopes, Aline; da Paz, Jeanne Saraiva; Gava, Maylla Garschagen; Flecher, Mayra Cunha; Colares, Manuela; de Freitas Soares, Filippe Elias; da Fonseca, Leandro Abreu; Lacerda, Tracy; de Araújo, Jackson Victor; Braga, Fabio Ribeiro

    2015-09-01

    The objective of this study was to evaluate the infectivity of Toxocara canis eggs after interacting with isolated nematophagous fungi of the species Duddingtonia flagrans (AC001) and Pochonia chlamydosporia (VC4), and test the predatory activity of the isolated AC001 on T. canis second stage larvae after 7 days of interaction. In assay A, 5000 embryonated T. canis eggs previously in contact with the AC001 and VC4 isolated for 10 days were inoculated into domestic chickens (Gallus gallus domesticus), and then these animals were necropsied to collect material (digested liver, intestine, muscles and lungs) at 3-, 7-, 14-, and 21-day intervals after inoculation. In assay A, the results demonstrated that the prior interaction of the eggs with isolated AC001 and VC4 decreases the amount of larvae found in the collected organs. Difference (p canis eggs with the tested fungal isolates were efficient in reducing the development and migration of this parasite, in addition to the first report of proven predatory activity on L2.

  16. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain; II. Correlation between positron emission tomography and reaching behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, S.B. [Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge (United Kingdom); Brooks, D.J.; Ashworth, S.; Opacka-Juffrey, J.; Myers, R.; Hume, S.P. [PET Methodology Group, Cyclotron Unit, MRC Clinical Science Centre, Hammersmith Hospital, London (United Kingdom); Torres, E.M.; Fricker, R.A. [Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge (United Kingdom)

    1997-05-26

    Grafts of embryonic striatal primordia are able to elicit behavioural recovery in rats which have received an excitotoxic lesion to the striatum, and it is believed that the P zones or striatal-like tissue within the transplants play a crucial role in these functional effects. We performed this study to compare the effects of different donor stage of embryonic tissue on both the morphology (see accompanying paper) and function of striatal transplants. Both the medial and lateral ganglionic eminence was dissected from rat embryos of either 10 mm, 15 mm, 19 mm, or 23 mm crown-rump length, and implanted as a cell suspension into adult rats which had received an ibotenic acid lesion 10 days prior to transplantation. After four months the animals were tested on the 'staircase task' of skilled forelimb use. At 10-14 months rats from the groups which had received grafts from 10 mm or 15 mm donor embryos were taken for positron emission tomography scanning in a small diameter postiron emission tomography scanner, using ligands to the dopamine D{sub 1} and D{sub 2} receptors, [{sup 11}C]SCH 23390 and [{sup 11}C]raclopride, respectively. A lesion-alone group was also scanned with the same ligands for comparison. Animals which had received transplants from the 10 mm donors showed a significant recovery with their contralateral paw on the 'staircase test'. No other groups showed recovery on this task. Similarly, the animals with grafts from the youngest donors showed a significant increase in D{sub 1} and D{sub 2} receptor binding when compared to the lesion-alone group. No increase in signal was observed with either ligand in the group which had received grafts from 15 mm donors. Success in paw reaching showed a strong correlation to both the positron emission tomography signal obtained and the P zone volume of the grafts.These results suggest that striatal grafts from younger donors (10 mm CRL) give greater behavioural recovery than grafts preparedfrom

  17. In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function.

    Science.gov (United States)

    Männer, Jörg; Thrane, Lars; Norozi, Kambiz; Yelbuz, T Mesud

    2009-12-01

    The cardiac cycle-related deformations of tubular embryonic hearts were traditionally described as concentric narrowing and widening of a tube of circular cross-section. Using optical coherence tomography (OCT), we have recently shown that, during the cardiac cycle, only the myocardial tube undergoes concentric narrowing and widening while the endocardial tube undergoes eccentric narrowing and widening, having an elliptic cross-section at end-diastole and a slit-shaped cross-section at end-systole. Due to technical limitations, these analyses were confined to early stages of ventricular development (chick embryos, stages 10-13). Using a modified OCT-system, we now document, for the first time, the cyclic changes in cross-sectional shape of beating embryonic ventricles at stages 14 to 17. We show that during these stages (1) a large area of diminished cardiac jelly appears at the outer curvature of the ventricular region associated with formation of endocardial pouches; (2) the ventricular endocardial lumen acquires a bell-shaped cross-section at end-diastole and becomes compressed like a fireplace bellows during systole; (3) the contracting portions of the embryonic ventricles display stretching along its baso-apical axis at end-systole. The functional significance of our data is discussed with respect to early cardiac pumping function. (c) 2009 Wiley-Liss, Inc.

  18. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    Science.gov (United States)

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  19. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage

    Science.gov (United States)

    Santo-Orihuela, Pablo Luis; Carvajal, Guillermo; Picollo, María Inés; Vassena, Claudia Viviana

    2013-01-01

    The aim of the present work was to study the deltamethrin susceptibility of eggs from Triatoma infestans populations and the contribution of pyrethroid esterases to deltamethrin degradation. Insects were collected from sylvatic areas, including Veinte de Octubre and Kirus-Mayu (Bolivia) and from domiciliary areas, including El Palmar (Bolivia) and La Pista (Argentina). Deltamethrin susceptibility was determined by dose-response bioassays. Serial dilutions of deltamethrin (0.0005-1 mg/mL) were topically applied to 12-day-old eggs. Samples from El Palmar had the highest lethal dose ratio (LDR) value (44.90) compared to the susceptible reference strain (NFS), whereas the Veinte de Octubre samples had the lowest value (0.50). Pyrethroid esterases were evaluated using 7-coumaryl permethrate (7-CP) on individually homogenised eggs from each population and from NFS. The El Palmar and La Pista samples contained 40.11 and 36.64 pmol/min/mg protein, respectively, and these values were statistically similar to NFS (34.92 pmol/min/mg protein) and different from Kirus-Mayu and Veinte de Octubre (27.49 and 22.69 pmol/min/mg protein, respectively). The toxicological data indicate that the domestic populations were resistant to deltamethrin, but no statistical contribution of 7-CP esterases was observed. The sylvatic populations had similar LDR values to NFS, but lower 7-CP esterase activities. Moreover, this is the first study of the pyrethroid esterases on T. infestans eggs employing a specific substrate (7-CP). PMID:24402155

  20. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage

    Directory of Open Access Journals (Sweden)

    Pablo Luis Santo-Orihuela

    2013-12-01

    Full Text Available The aim of the present work was to study the deltamethrin susceptibility of eggs from Triatoma infestans populations and the contribution of pyrethroid esterases to deltamethrin degradation. Insects were collected from sylvatic areas, including Veinte de Octubre and Kirus-Mayu (Bolivia and from domiciliary areas, including El Palmar (Bolivia and La Pista (Argentina. Deltamethrin susceptibility was determined by dose-response bioassays. Serial dilutions of deltamethrin (0.0005-1 mg/mL were topically applied to 12-day-old eggs. Samples from El Palmar had the highest lethal dose ratio (LDR value (44.90 compared to the susceptible reference strain (NFS, whereas the Veinte de Octubre samples had the lowest value (0.50. Pyrethroid esterases were evaluated using 7-coumaryl permethrate (7-CP on individually homogenised eggs from each population and from NFS. The El Palmar and La Pista samples contained 40.11 and 36.64 pmol/min/mg protein, respectively, and these values were statistically similar to NFS (34.92 pmol/min/mg protein and different from Kirus-Mayu and Veinte de Octubre (27.49 and 22.69 pmol/min/mg protein, respectively. The toxicological data indicate that the domestic populations were resistant to deltamethrin, but no statistical contribution of 7-CP esterases was observed. The sylvatic populations had similar LDR values to NFS, but lower 7-CP esterase activities. Moreover, this is the first study of the pyrethroid esterases on T. infestans eggs employing a specific substrate (7-CP.

  1. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis

    Directory of Open Access Journals (Sweden)

    RICARDO I TEJOS

    2010-01-01

    Full Text Available The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  2. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis.

    Science.gov (United States)

    Tejos, Ricardo I; Mercado, Ana V; Meisel, Lee A

    2010-01-01

    The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  3. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    Science.gov (United States)

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  4. Plasma neuronal specific enolase: a potential stage diagnostic marker in human African trypanosomiasis.

    Science.gov (United States)

    Sternberg, Jeremy M; Mitchell, Julia A

    2014-07-01

    This study was carried out to determine the potential of neuronal specific enolase (NSE) as a stage diagnostic marker in human African trypanosomiasis. Plasma and cerebrospinal fluid were obtained from a cohort of Trypanosoma brucei rhodesiense-infected patients and non-infected controls. Neuronal specific enolase concentrations were measured by ELISA and analysed in relation to diagnosis and disease-stage data. Plasma NSE concentration was significantly increased in late-stage patients (median 21 ng/ml), compared to the control (median 11 ng/ml), but not in early-stage patients (median 5.3 ng/ml). Cerebrospinal fluid NSE concentration did not vary between stages. Plasma NSE is a potential stage diagnostic in this cohort and merits further investigation. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Hydrogen test of a small, low specific speed centrifugal pump stage

    Science.gov (United States)

    1991-01-01

    A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.

  6. Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain.

    Science.gov (United States)

    Lin, Suewei; Lai, Sen-Lin; Yu, Huang-Hsiang; Chihara, Takahiro; Luo, Liqun; Lee, Tzumin

    2010-01-01

    Numb can antagonize Notch signaling to diversify the fates of sister cells. We report here that paired sister cells acquire different fates in all three Drosophila neuronal lineages that make diverse types of antennal lobe projection neurons (PNs). Only one in each pair of postmitotic neurons survives into the adult stage in both anterodorsal (ad) and ventral (v) PN lineages. Notably, Notch signaling specifies the PN fate in the vPN lineage but promotes programmed cell death in the missing siblings in the adPN lineage. In addition, Notch/Numb-mediated binary sibling fates underlie the production of PNs and local interneurons from common precursors in the lAL lineage. Furthermore, Numb is needed in the lateral but not adPN or vPN lineages to prevent the appearance of ectopic neuroblasts and to ensure proper self-renewal of neural progenitors. These lineage-specific outputs of Notch/Numb signaling show that a universal mechanism of binary fate decision can be utilized to govern diverse neural sibling differentiations.

  7. Low-pressure reversible axial fan designed with different specific work of elementary stages

    Directory of Open Access Journals (Sweden)

    Bogdanović Božidar P.

    2012-01-01

    Full Text Available Low-pressure axial fan impellers designed according to the principle of equal specific work of all elementary stages have blades whose profile near the fan hub is under a significantly larger inclination angle than at the impeller periphery. In order to minimize the spatial curvature of the fan blades and the fan hub length, impeller blades of low-pressure axial fans can be designed with different specific work of elementary stages, so that the specific work of elementary stages is smaller at the hub than at the periphery. This paper presents the operating characteristics of a low-pressure reversible axial fan with straight blade profiles, designed with different specific work of elementary stages. The fan was tested on a standard test rig, with air intake loading on the suction side of the fan.

  8. Insulin: its binding to specific receptors and its stimulation of DNA synthesis and 2',3'-cyclic nucleotide phosphohydrolase in embryonic mouse brain cell cultures

    International Nuclear Information System (INIS)

    Shanker, G.; Pieringer, R.A.

    1986-01-01

    Previously, the authors demonstrated that ornithine decarboxylase was stimulated by insulin in cultures of embryonic mouse brain cells. In the present work, they have investigated the presence and specificity of insulin receptors in these cultures. A time study showed that maximum binding of 125 [I] labelled insulin was around 75 min. Other studies measured the influence of concentration and age on insulin binding. A displacement study using increasing concentrations of cold insulin, glucagon or growth hormone demonstrated that the specificity of the receptors for insulin was rather high. It was also found that insulin displayed a clear dose-dependent stimulation of thymidine incorporation into the brain cells. Insulin also stimulated the glial enzyme 2':3'-cyclic nucleotide phosphohydrolase (CNP-ase). The results suggest a dual role for insulin; it regulates both cell proliferation as well as differentiation

  9. Single site-specific integration targeting coupled with embryonic stem cell differentiation provides a high-throughput alternative to in vivo enhancer analyses

    Directory of Open Access Journals (Sweden)

    Adam C. Wilkinson

    2013-10-01

    Comprehensive analysis of cis-regulatory elements is key to understanding the dynamic gene regulatory networks that control embryonic development. While transgenic animals represent the gold standard assay, their generation is costly, entails significant animal usage, and in utero development complicates time-course studies. As an alternative, embryonic stem (ES cells can readily be differentiated in a process that correlates well with developing embryos. Here, we describe a highly effective platform for enhancer assays using an Hsp68/Venus reporter cassette that targets to the Hprt locus in mouse ES cells. This platform combines the flexibility of Gateway® cloning, live cell trackability of a fluorescent reporter, low background and the advantages of single copy insertion into a defined genomic locus. We demonstrate the successful recapitulation of tissue-specific enhancer activity for two cardiac and two haematopoietic enhancers. In addition, we used this assay to dissect the functionality of the highly conserved Ets/Ets/Gata motif in the Scl+19 enhancer, which revealed that the Gata motif is not required for initiation of enhancer activity. We further confirmed that Gata2 is not required for endothelial activity of the Scl+19 enhancer using Gata2−/− Scl+19 transgenic embryos. We have therefore established a valuable toolbox to study gene regulatory networks with broad applicability.

  10. Embryonic development and larval stages of Steindachneridion parahybae (Siluriformes: Pimelodidae: implications for the conservation and rearing of this endangered Neotropical species

    Directory of Open Access Journals (Sweden)

    Renato M. Honji

    2012-01-01

    Full Text Available Steindachneridion parahybae is a freshwater catfish endemic to the Paraíba do Sul River and is classified as an endangered Neotropical species. An increasing number of conservation biologists are incorporating morphological and physiological research data to help conservation managers in rescue these endangered species. This study investigated the embryonic and larval development of S. parahybae in captivity, with emphasis in major events during the ontogeny of S. parahybae. Broodstocks were artificially induced to reproduce, and the extrusion occurred 200-255 degree-hours after hormonal induction at 24°C. Larval ontogeny was evaluated every 10 minutes under microscopic/stereomicroscopic using fresh eggs samples. The main embryogenic development stages were identified: zygote, cleavage, including the morula, blastula, gastrula phase, organogenesis, and hatching. The extruded oocytes showed an average diameter of 1.10 ± 0.10 mm, and after fertilization and hydration of eggs, the average diameter of eggs increased to about 1.90 ± 0.60 mm, characterized by a large perivitelline space that persisted up to embryo development, the double chorion, and the poles (animal and vegetative. Cell division started about 2 minutes after fertilization (AF, resulting in 2, 4, 8 (4 x 2 arrangement of cells, 16 (4 x 4, 32 (4 x 8 and 64 (2 x 4 x 8 cells. Furthermore, the blastula and gastrula stages followed after these cells divisions. The closed blastopore occurred at 11 h 20 min AF; following the development, the organogenetic stages were identified and subdivided respectively in: early segmentation phase and late segmentation phase. In the early segmentation phase, there was the establishment of the embryonic axis, and it was possible to distinguish between the cephalic and caudal regions; somites, and the optic vesicles developed about 20 h AF. Total hatching occurred at 54 h AF, and the larvae average length was 4.30 ± 0.70 mm. Gradual yolk sac reduction

  11. In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17

    DEFF Research Database (Denmark)

    Männer, Jörg; Thrane, Lars; Norozi, Kambiz

    2009-01-01

    curvature of the ventricular region associated with formation of endocardial pouches; (2) the ventricular endocardial lumen acquires a bell-shaped cross-section at end-diastole and becomes compressed like a fireplace bellows during systole; (3) the contracting portions of the embryonic ventricles display...

  12. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  13. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions.

    Directory of Open Access Journals (Sweden)

    Ibon Garitaonandia

    Full Text Available The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs make them a promising source of material for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging, and feeder-free vs. mouse embryonic fibroblast feeder substrate, on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages, we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability, higher rates of cell proliferation, and persistence of OCT4/POU5F1-positive cells in teratomas, with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers, we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53, which was associated with decreased mRNA expression of TP53, as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures, we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies.

  14. Mechanisms of embryonic stomach development.

    Science.gov (United States)

    McCracken, Kyle W; Wells, James M

    2017-06-01

    The stomach is a digestive organ that has important roles in human physiology and pathophysiology. The developmental origin of the stomach is the embryonic foregut, which also gives rise a number of other structures. There are several signaling pathways and transcription factors that are known to regulate stomach development at different stages, including foregut patterning, stomach specification, and gastric regionalization. These developmental events have important implications in later homeostasis and disease in the adult stomach. Here we will review the literature that has shaped our current understanding of the molecular mechanisms that coordinate gastric organogenesis. Further we will discuss how developmental paradigms have guided recent efforts to differentiate stomach tissue from pluripotent stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Science.gov (United States)

    Stratton, Matthew S; Staros, Michelle; Budefeld, Tomaz; Searcy, Brian T; Nash, Connor; Eitel, Chad; Carbone, David; Handa, Robert J; Majdic, Gregor; Tobet, Stuart A

    2014-01-01

    Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABA(B) receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B) receptor to a 7-day critical period (E11-E17) during embryonic development. Experiments tested the role of GABA(B) receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B) receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B) receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B) receptor antagonist. Embryonic exposure to GABA(B) receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B) receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  16. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  17. Tomato Yield and Water Use Efficiency - Coupling Effects between Growth Stage Specific Soil Water Deficits

    DEFF Research Database (Denmark)

    Chen, Si; Zhenjiang, Zhou; Andersen, Mathias Neumann

    2015-01-01

    To investigate the sensitivity of tomato yield and water use efficiency (WUE) to soil water content at different growth stages, the central composite rotatable design (CCRD) was employed in a five-factor-five-level pot experiment under regulated deficit irrigation. Two regression models concerning...... the effects of stage-specific soil water content on tomato yield and WUE were established. The results showed that the lowest available soil water (ASW) content (around 28%) during vegetative growth stage (here denoted θ1) resulted in high yield and WUE. Moderate (around 69% ASW) during blooming and fruit...... effects of ASW in two growth stages were between θ2 and θ5, θ3. In both cases a moderate θ2 was a precondition for maximum yield response to increasing θ5 and θ3. Sensitivity analysis revealed that yield was most sensitive to soil water content at fruit maturity (θ5). Numerical inspection...

  18. Gender differences and stage-specific influence of parent-adolescent conflicts on adolescent suicidal ideation.

    Science.gov (United States)

    Chiu, Yu-Ching; Tseng, Chin-Yuan; Lin, Fu-Gong

    2017-09-01

    This study examined familial and peer related factors as predictors of suicidal ideation in school students. Total 2896 participants were included from Taiwan Youth Project released data, a longitudinal survey of adolescent suicidal ideation at ages 15, 18, and 20. Logistic regression analysis risk factors associated with adolescent suicidal ideation reveled differences during the developmental stages. After adjusted for psychological symptoms, effect of quarrels with parents on suicidal ideation lasts in early and middle stages; in the late adolescent stage, only cigarette or alcohol use remained significant. Girls who reported quarrels with parents had the highest level of suicidal ideation before age 18. Stage- and gender-specific differences may provide appropriate intervention strategies for parents and teachers preventing adolescent suicidal ideation. Copyright © 2017. Published by Elsevier B.V.

  19. Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages

    OpenAIRE

    Lee, Sooncheol; Truesdell, Samuel S.; Bukhari, Syed I. A.; Lee, Ju Huck; LeTonqueze, Olivier; Vasudevan, Shobha

    2014-01-01

    This study uncovers a critical role for a general translation factor in specific developmental stages, including immature oocytes and ES cells, and during growth-factor deprivation of mammalian cells, which induces the transition to cell-cycle arrest. These conditions alter and decrease general translation yet maintain ongoing translation. We reveal upregulation of the eukaryotic translation factor 5B (eIF5B), which becomes essential for general translation, specifically in these conditions. ...

  20. Mental health problems during puberty : Tanner stage-related differences in specific symptoms. The TRAILS study

    NARCIS (Netherlands)

    Oldehinkel, Albertine J.; Verhulst, Frank C.; Ormel, Johan

    The aim of this study was to investigate associations between specific mental health problems and pubertal stage in (pre)adolescents participating in the Dutch prospective cohort study TRAILS (first assessment: N = 2230, age 11.09 +/- 0.56, 50.8% girls; second assessment: N = 2149, age 13.56 +/-

  1. "Life Stage-Specific" Variations in Performance in Response to Age Stereotypes

    Science.gov (United States)

    Hehman, Jessica A.; Bugental, Daphne Blunt

    2013-01-01

    In a test of life stage-specific responses to age-based stigma, older (n = 54, ages 62-92) and younger (n = 81, ages 17-22) adults were told that a task (Weschler Adult Intelligence Scale-III block design) required either (a) speed/contemporary knowledge (YA; "youth advantage") or (b) life experience/wisdom (OA; "age…

  2. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    LENUS (Irish Health Repository)

    Prendergast, James G D

    2012-05-19

    AbstractBackgroundChromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).ResultsUsing a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.ConclusionThese results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.

  3. Assessing species and stage specific effects of preservation on fish oocytes over different temporal scales

    Directory of Open Access Journals (Sweden)

    M. RAKKA

    2015-09-01

    Full Text Available This study assessed the effect of 10% neutral buffered formalin and of three ethanol solutions of different concentration on Mediterranean sardine and European anchovy oocytes over several temporal scales (days, weeks, months. The two species exhibit differences both in the elemental composition and the shape of their oocytes which further allowed an appraisal of oocyte shrinkage dynamics in relation to oocyte shape, developmental stage and composition. We showed that the effect of the preservative on oocyte size is stage specific while different preservation periods of ovarian material might lead to discrepancies among studies.

  4. Use of Multicolor Flow Cytometry for Isolation of Specific Cell Populations Deriving from Differentiated Human Embryonic Stem Cells

    NARCIS (Netherlands)

    Mengarelli, Isabella; Fryga, Andrew; Barberi, Tiziano

    2016-01-01

    Flow Cytometry-Sorting (FCM-Sorting) is a technique commonly used to identify and isolate specific types of cells from a heterogeneous population of live cells. Here we describe a multicolor flow cytometry technique that uses five distinct cell surface antigens to isolate four live populations with

  5. Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonic Stem Cell Subtypes and Specification of Inner Cell Mass-Derived Epiblast

    Directory of Open Access Journals (Sweden)

    Dario Acampora

    2016-06-01

    Full Text Available Mouse embryonic stem cells (ESCs and the inner cell mass (ICM-derived epiblast exhibit naive pluripotency. ESC-derived epiblast stem cells (EpiSCs and the postimplantation epiblast exhibit primed pluripotency. Although core pluripotency factors are well-characterized, additional regulators, including Otx2, recently have been shown to function during the transition from naive to primed pluripotency. Here we uncover a role for Otx2 in the control of the naive pluripotent state. We analyzed Otx2-binding activity in ESCs and EpiSCs and identified Nanog, Oct4, and Sox2 as direct targets. To unravel the Otx2 transcriptional network, we targeted the strongest Otx2-binding site in the Nanog promoter, finding that this site modulates the size of specific ESC-subtype compartments in cultured cells and promotes Nanog expression in vivo, predisposing ICM differentiation to epiblast. Otx2-mediated Nanog regulation thus contributes to the integrity of the ESC state and cell lineage specification in preimplantation development.

  6. Mesenchymal condensation-dependent accumulation of collagen VI stabilizes organ-specific cell fates during embryonic tooth formation.

    Science.gov (United States)

    Mammoto, Tadanori; Mammoto, Akiko; Jiang, Amanda; Jiang, Elisabeth; Hashmi, Basma; Ingber, Donald E

    2015-06-01

    Mechanical compression of cells during mesenchymal condensation triggers cells to undergo odontogenic differentiation during tooth organ formation in the embryo. However, the mechanism by which cell compaction is stabilized over time to ensure correct organ-specific cell fate switching remains unknown. Here, we show that mesenchymal cell compaction induces accumulation of collagen VI in the extracellular matrix (ECM), which physically stabilizes compressed mesenchymal cell shapes and ensures efficient organ-specific cell fate switching during tooth organ development. Mechanical induction of collagen VI deposition is mediated by signaling through the actin-p38MAPK-SP1 pathway, and the ECM scaffold is stabilized by lysyl oxidase in the condensing mesenchyme. Moreover, perturbation of synthesis or cross-linking of collagen VI alters the size of the condensation in vivo. These findings suggest that the odontogenic differentiation process that is induced by cell compaction during mesenchymal condensation is stabilized and sustained through mechanically regulated production of collagen VI within the mesenchymal ECM. © 2015 Wiley Periodicals, Inc.

  7. Efficient Generation of Human Embryonic Stem Cell-Derived Cardiac Progenitors Based on Tissue-Specific Enhanced Green Fluorescence Protein Expression

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I.; Sarkadi, Balázs

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFPhigh rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFPhigh rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFPhigh rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications. PMID:24734786

  8. Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells

    International Nuclear Information System (INIS)

    Sun Chuanhai; Nakatake, Yuhki; Ura, Hiroki; Akagi, Tadayuki; Niwa, Hitoshi; Koide, Hiroshi; Yokota, Takashi

    2008-01-01

    Embryonic stem (ES) cells are pluripotent cells derived from inner cell mass of blastocysts. An orphan nuclear receptor, Dax1, is specifically expressed in undifferentiated ES cells and plays an important role in their self-renewal. The regulatory mechanism of Dax1 expression in ES cells, however, remains unknown. In this study, we found that STAT3 and Oct3/4, essential transcription factors for ES cell self-renewal, are involved in the regulation of Dax1 expression. Suppression of either STAT3 or Oct3/4 resulted in down-regulation of Dax1. Reporter assay identified putative binding sites for these factors in the promoter/enhancer region of the Dax1 gene. Chromatin immunoprecipitation analysis suggested the in vivo association of STAT3 and Oct3/4 with the putative sites. Furthermore, gel shift assay indicated that these transcription factors directly bind to their putative binding sites. These results suggest that STAT3 and Oct3/4 control the expression of Dax1 to maintain the self-renewal of ES cells

  9. 2,3,7,8-Tetrachlorodibenzo-p-dioxin specifically reduces mRNA for the mineralization-related dentin sialophosphoprotein in cultured mouse embryonic molar teeth

    International Nuclear Information System (INIS)

    Kiukkonen, Anu; Sahlberg, Carin; Lukinmaa, Pirjo-Liisa; Alaluusua, Satu; Peltonen, Eija; Partanen, Anna-Maija

    2006-01-01

    Previous studies show that the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), interferes with mineralization of the dental matrices in developing mouse and rat teeth. Culture of mouse embryonic molar teeth with TCDD leads to the failure of enamel to be deposited and dentin to undergo mineralization. Lactationally exposed rats show defectively matured enamel and retardation of dentin mineralization. To see if the impaired mineralization is associated with changes in the expression of dentin sialophosphoprotein (Dspp), Bono1 and/or matrix metalloproteinase-20 (MMP-20), thought to be involved in mineralization of the dental hard tissues, we cultured mouse (NMRI) E18 mandibular molars for 3, 5 or 7 days and exposed them to 1 μM TCDD after 2 days of culture. As detected by in situ hybridization of tissue sections, localization and intensity of Bono1 and MMP-20 expression showed no definite difference between the control and exposed tooth explants, suggesting that TCDD does not affect their expression. On the contrary, TCDD reduced or prevented the expression of Dspp in secretory odontoblasts and decreased it in presecretory ameloblasts. The results suggest that the retardation of dentin mineralization by TCDD in mouse molar teeth involves specific interference with Dspp expression

  10. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.

    Science.gov (United States)

    Ebata, Kevin T; Mesh, Kathryn; Liu, Shichong; Bilenky, Misha; Fekete, Alexander; Acker, Michael G; Hirst, Martin; Garcia, Benjamin A; Ramalho-Santos, Miguel

    2017-01-01

    Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.

  11. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.

    Science.gov (United States)

    Cebola, Inês; Rodríguez-Seguí, Santiago A; Cho, Candy H-H; Bessa, José; Rovira, Meritxell; Luengo, Mario; Chhatriwala, Mariya; Berry, Andrew; Ponsa-Cobas, Joan; Maestro, Miguel Angel; Jennings, Rachel E; Pasquali, Lorenzo; Morán, Ignasi; Castro, Natalia; Hanley, Neil A; Gomez-Skarmeta, Jose Luis; Vallier, Ludovic; Ferrer, Jorge

    2015-05-01

    The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.

  12. The sensitive period for male-to-female sex reversal begins at the embryonic stage in the Nile tilapia and is associated with the sexual genotype.

    Science.gov (United States)

    Gennotte, Vincent; Mélard, Charles; D'Cotta, Helena; Baroiller, Jean-François; Rougeot, Carole

    2014-12-01

    In this study, we sought to determine the mechanism of early sex reversal in a teleost by applying 4 hr feminization treatments to XY (17α-ethynylestradiol 2000 μg L(-1) ) and YY (6500 μg L(-1) ) Nile tilapia embryos on the first day post-fertilization (dpf). We then searched for changes in the expression profiles of some sex-differentiating genes in the brain (cyp19a1b, foxl2, and amh) and in sex steroids (testosterone, 17β-estradiol, and 11-ketotestosterone) concentrations during embryogenesis and gonad differentiation. No sex reversal was observed in YY individuals, whereas sex-reversal rates in XY progeny ranged from 0-60%. These results, together with the clearance profile of 17α-ethynylestradiol, confirmed the existence of an early sensitive period for sex determination that encompasses embryonic and larval development and is active prior to any sign of gonad differentiation. Estrogen treatment induced elevated expression of cyp19a1b and higher testosterone and 17β-estradiol concentrations at 4 dpf in both XY and YY individuals. foxl2 and amh were repressed at 4 dpf and their expression levels were not different between treated and control groups at 14 dpf, suggesting that foxl2 did not control cyp19a1b in the brains of tilapia embryos. Increased cyp19a1b expression in treated embryos could reflect early brain sexualization, although this difference alone cannot account for the observed sex reversal as the treatment was ineffective in YY individuals. The differential sensitivity of XY and YY genotypes to embryonic induced-feminization suggests that a sex determinant on the sex chromosomes, such as a Y repressor or an X activator, may influence sex reversal during the first steps of tilapia embryogenesis. © 2014 Wiley Periodicals, Inc.

  13. Organ-Specific Metabolic Shifts of Flavonoids in Scutellaria baicalensis at Different Growth and Development Stages.

    Science.gov (United States)

    Xu, Jingyuan; Yu, Yilan; Shi, Ruoyun; Xie, Guoyong; Zhu, Yan; Wu, Gang; Qin, Minjian

    2018-02-15

    Scutellaria baicalensis Georgi is a traditional Chinese herbal medicine mainly containing flavonoids that contribute to its bioactivities. In this study, the distributions and dynamic changes of flavonoid levels in various organs of S. baicalensis at different development stages were investigated by UHPLC-QTOF-MS/MS and HPLC-DAD methods. The results indicated that the metabolic profiles of S. baicalensis changed with growth and development. During the initial germination stage, the seeds mainly contained flavonols. With growth, the main kinds of flavonoids in S. baicalensi s changed from flavonols to flavanones and flavones. The results also revealed that the accumulation of flavonoids in S. baicalensis is organ-specific. The flavones without 4'-OH groups mainly accumulate in the root and the flavanones mainly accumulate in aerial organs. Dynamic accumulation analysis showed that the main flavonoids in the root of S. baicalensis accumulated rapidly before the full-bloom stage, then changed to a small extent. The results suggested the proper harvest time for the aerial parts was at the initial stage of reproductive growth and the flower buds should be collected before flowering. This study deepening the knowledge of S. baicalensis should provide valuable information for guiding the scientific cultivation of this plant and the development and utilization of S. baicalensis .

  14. Organ-Specific Metabolic Shifts of Flavonoids in Scutellaria baicalensis at Different Growth and Development Stages

    Directory of Open Access Journals (Sweden)

    Jingyuan Xu

    2018-02-01

    Full Text Available Scutellaria baicalensis Georgi is a traditional Chinese herbal medicine mainly containing flavonoids that contribute to its bioactivities. In this study, the distributions and dynamic changes of flavonoid levels in various organs of S. baicalensis at different development stages were investigated by UHPLC-QTOF-MS/MS and HPLC-DAD methods. The results indicated that the metabolic profiles of S. baicalensis changed with growth and development. During the initial germination stage, the seeds mainly contained flavonols. With growth, the main kinds of flavonoids in S. baicalensis changed from flavonols to flavanones and flavones. The results also revealed that the accumulation of flavonoids in S. baicalensis is organ-specific. The flavones without 4′-OH groups mainly accumulate in the root and the flavanones mainly accumulate in aerial organs. Dynamic accumulation analysis showed that the main flavonoids in the root of S. baicalensis accumulated rapidly before the full-bloom stage, then changed to a small extent. The results suggested the proper harvest time for the aerial parts was at the initial stage of reproductive growth and the flower buds should be collected before flowering. This study deepening the knowledge of S. baicalensis should provide valuable information for guiding the scientific cultivation of this plant and the development and utilization of S. baicalensis.

  15. Do Hospital Characteristics Influence Cancer-Specific Survival for Early Stage Lung Cancer?

    Science.gov (United States)

    David, Elizabeth A; Chen, Yingjia; Cooke, David T; Perry, Andrew; Canter, Robert J; Cress, Rosemary

    2015-01-01

    Background Quality of oncologic outcomes is of paramount importance in the care of patients with non-small cell lung cancer (NSCLC). We sought to evaluate the relationship of hospital volume for lobectomy on cancer-specific survival in NSCLC patients treated in California, as well as the influence of Committee on Cancer (CoC) accreditation. Methods The California Cancer Registry was queried from 2004–2011 for cases of Stage I NSCLC and 8,345 patients were identified. Statistical analysis was used to determine prognostic factors for cancer-specific survival. Results 7,587 patients were treated surgically. CoC accreditation was not significant for cancer-specific survival, but treatment in high volume centers was associated with longer survival when compared to low and medium volume centers (HR 1.77, 1.474–2.141 and HR 1.23, 1.058–1.438). Conclusions These data suggest that surgical treatment in high volume hospitals is associated with longer cancer-specific survival for early-stage NSCLC, but that CoC accreditation is not. PMID:26193801

  16. Later learning stages in procedural memory are impaired in children with Specific Language Impairment.

    Science.gov (United States)

    Desmottes, Lise; Meulemans, Thierry; Maillart, Christelle

    2016-01-01

    According to the Procedural Deficit Hypothesis (PDH), difficulties in the procedural memory system may contribute to the language difficulties encountered by children with Specific Language Impairment (SLI). Most studies investigating the PDH have used the sequence learning paradigm; however these studies have principally focused on initial sequence learning in a single practice session. The present study sought to extend these investigations by assessing the consolidation stage and longer-term retention of implicit sequence-specific knowledge in 42 children with or without SLI. Both groups of children completed a serial reaction time task and were tested 24h and one week after practice. Results showed that children with SLI succeeded as well as children with typical development (TD) in the early acquisition stage of the sequence learning task. However, as training blocks progressed, only TD children improved their sequence knowledge while children with SLI did not appear to evolve any more. Moreover, children with SLI showed a lack of the consolidation gains in sequence knowledge displayed by the TD children. Overall, these results were in line with the predictions of the PDH and suggest that later learning stages in procedural memory are impaired in SLI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells.

    Science.gov (United States)

    Zhao, Jiangang; Li, Songhui; Trilok, Suprita; Tanaka, Makoto; Jokubaitis-Jameson, Vanta; Wang, Bei; Niwa, Hitoshi; Nakayama, Naoki

    2014-10-01

    Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expression of activated β-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type I receptors, LDN193189, was able to replace Nog. Mesodermal progeny generated using such small molecules were chondrogenic in vitro, and expressed trunk paraxial mesoderm markers such as Tcf15 and Meox1, and somite markers such as Uncx, but failed to express sclerotome markers such as Pax1. Induction of the osteochondrogenically committed sclerotome from somite requires sonic hedgehog and Nog. Consistently, Pax1 and Bapx1 expression was induced when the isolated paraxial mesodermal progeny were treated with SAG1 (a hedgehog receptor agonist) and LDN193189, then Sox9 expression was induced, leading to cartilaginous nodules and particles in the presence of BMP, indicative of chondrogenesis via sclerotome specification. By contrast, treatment with TGFβ also supported chondrogenesis and stimulated Sox9 expression, but failed to induce the expression of Pax1 and Bapx1. On ectopic transplantation to immunocompromised mice, the cartilage particles developed under either condition became similarly mineralized and formed pieces of bone with marrow. Thus, the use of small molecules led to the effective generation from ESCs of paraxial mesodermal progeny, and to their further differentiation in vitro through sclerotome specification into growth plate-like chondrocytes, a mechanism resembling in vivo somitic chondrogenesis that is not recapitulated with TGFβ. © 2014. Published by The Company of Biologists Ltd.

  18. Embryonic Development In Clarias gariepinus (Buchell, 1822 ...

    African Journals Online (AJOL)

    The embryonic development in Clarias gariepinus was studied under laboratory conditions. The development stages of eggs starting from first cleavage to hatching were examined microscopically. The accurate timing and detailed description of each stage were recorded. Photomicrograph of important stages, segmentation ...

  19. Plant specification of a generic human-error data through a two-stage Bayesian approach

    International Nuclear Information System (INIS)

    Heising, C.D.; Patterson, E.I.

    1984-01-01

    Expert judgement concerning human performance in nuclear power plants is quantitatively coupled with actuarial data on such performance in order to derive plant-specific human-error rate probability distributions. The coupling procedure consists of a two-stage application of Bayes' theorem to information which is grouped by type. The first information type contains expert judgement concerning human performance at nuclear power plants in general. Data collected on human performance at a group of similar plants forms the second information type. The third information type consists of data on human performance in a specific plant which has the same characteristics as the group members. The first and second information types are coupled in the first application of Bayes' theorem to derive a probability distribution for population performance. This distribution is then combined with the third information type in a second application of Bayes' theorem to determine a plant-specific human-error rate probability distribution. The two stage Bayesian procedure thus provides a means to quantitatively couple sparse data with expert judgement in order to obtain a human performance probability distribution based upon available information. Example calculations for a group of like reactors are also given. (author)

  20. Detection of Specific Polypeptide(s Synthesized during the Sequential Stages of Differentiation in Dioscorea species

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar

    2015-10-01

    Full Text Available ABSTRACTThe present investigation was aimed to detect the specific polypeptide(s appeared during the sequential stages of differentiation. Among different explants, only nodal explants showed good results for callusing. Depending on the fresh and dry weight, best callus growth was observed on MS medium supplemented with NAA (2.5 mg/L inDioscorea alata and 2, 4-D (2.0 mg/L inD. deltoidea, respectively. This callus was used for the regeneration. Roots differentiation was observed on MS medium + NAA (2.0 mg/L + IBA (0.5 mg/L and shoots on MS medium + BAP (2.0 mg/L + NAA (0.5 mg/L in D. alata while in D. deltoidea, roots on RT medium + IAA (1.0 mg/L and shoots on RT medium + BAP (1.0 mg/L + NAA (0.5 mg/L. Continuous decrease was seen in the total soluble protein during the differentiation inD. alatawhereas inD. deltoidea, the protein content decreased upto initiation stage. Four root specific polypeptides (MW 25.56, 24.35, 19.13 and 18.2 kDa and three shoot specific polypeptides (MW 53.7, 25.12 and 19.13 kDa were synthesized during the differentiation inD. alata. Similarly, two root specific (MW 33.9 and 31.69 kDa and one shoot specific (MW 16.98 kDa polypeptide band were appeared during differentiation in D. deltoidea.

  1. Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages.

    Science.gov (United States)

    Louarn, Johann; Boniface, Marie-Claude; Pouilly, Nicolas; Velasco, Leonardo; Pérez-Vich, Begoña; Vincourt, Patrick; Muños, Stéphane

    2016-01-01

    Orobanche cumana (sunflower broomrape) is an obligatory and non-photosynthetic root parasitic plant that specifically infects the sunflower. It is located in Europe and in Asia, where it can cause yield losses of over 80%. More aggressive races have evolved, mainly around the Black Sea, and broomrape can rapidly spread to new areas. Breeding for resistance seems to be the most efficient and sustainable approach to control broomrape infestation. In our study, we used a population of 101 recombinant inbred lines (RILs), derived from a cross between the two lines HA89 and LR1 (a line derived from an interspecific cross with Helianthus debilis). Rhizotrons, pots and field experiments were used to characterize all RILs for their resistance to O. cumana race F parasitism at three post vascular connection life stages: (i) early attachment of the parasite to the sunflower roots, (ii) young tubercle and (iii) shoot emergence. In addition, RIL resistance to race G at young tubercle development stage was evaluated in pots. The entire population was genotyped, and QTLs were mapped. Different QTLs were identified for each race (F from Spain and G from Turkey) and for the three stages of broomrape development. The results indicate that there are several quantitative resistance mechanisms controlling the infection by O. cumana that can be used in sunflower breeding.

  2. Sunflower resistance to broomrape (Orobanche cumana is controlled by specific QTLs for different parasitism stages

    Directory of Open Access Journals (Sweden)

    Johann eLouarn

    2016-05-01

    Full Text Available Orobanche cumana (sunflower broomrape is an obligatory and non-photosynthetic root parasitic plant that specifically infects the sunflower. It is located in Europe and in Asia, where it can cause yield losses of over 80%. More aggressive races have evolved, mainly around the Black Sea, and broomrape can rapidly spread to new areas. Breeding for resistance seems to be the most efficient and sustainable approach to control broomrape infestation.In our study, we used a population of 101 recombinant inbred lines (RILs, derived from a cross between the two lines HA89 and LR1 (a line derived from an interspecific cross with H. debilis. Rhizotrons, pots and field experiments were used to characterize all RILs for their resistance to O. cumana race F parasitism at three post vascular connection life stages: (i early attachment of the parasite to the sunflower roots, (ii young tubercle and (iii shoot emergence. In addition, RIL resistance to race G at young tubercle development stage was evaluated in pots. The entire population was genotyped, and QTLs were mapped. Different QTLs were identified for each race (F from Spain and G from Turkey and for the three stages of broomrape development.The results indicate that there are several quantitative resistance mechanisms controlling the infection by O. cumana that can be used in sunflower breeding.

  3. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage.

    Science.gov (United States)

    Lavinsky, Alyne O; Detmann, Kelly C; Reis, Josimar V; Ávila, Rodrigo T; Sanglard, Matheus L; Pereira, Lucas F; Sanglard, Lílian M V P; Rodrigues, Fabrício A; Araújo, Wagner L; DaMatta, Fábio M

    2016-11-01

    Silicon (Si) has been recognized as a beneficial element to improve rice (Oryza sativa L.) grain yield. Despite some evidence suggesting that this positive effect is observed when Si is supplied along the reproductive growth stage (from panicle initiation to heading), it remains unclear whether its supplementation during distinct growth phases can differentially impact physiological aspects of rice and its yield and the underlying mechanisms. Here, we investigated the effects of additions/removals of Si at different growth stages and their impacts on rice yield components, photosynthetic performance, and expression of genes (Lsi1, Lsi2 and Lsi6) involved in Si distribution within rice shoots. Positive effects of Si on rice production and photosynthesis were manifested when it was specifically supplied during the reproductive growth stage, as demonstrated by: (1) a high crop yield associated with higher grain number and higher 1000-grain weight, whereas the leaf area and whole-plant biomass remained unchanged; (2) an increased sink strength which, in turn, exerted a feed-forward effect on photosynthesis that was coupled with increases in both stomatal conductance and biochemical capacity to fix CO 2 ; (3) higher Si amounts in the developing panicles (and grain husks) in good agreement with a remarkable up-regulation of Lsi6 (and to a lesser extent Lsi1). We suggest that proper levels of Si in these reproductive structures seem to play an as yet unidentified role culminating with higher grain number and size. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages

    Science.gov (United States)

    Louarn, Johann; Boniface, Marie-Claude; Pouilly, Nicolas; Velasco, Leonardo; Pérez-Vich, Begoña; Vincourt, Patrick; Muños, Stéphane

    2016-01-01

    Orobanche cumana (sunflower broomrape) is an obligatory and non-photosynthetic root parasitic plant that specifically infects the sunflower. It is located in Europe and in Asia, where it can cause yield losses of over 80%. More aggressive races have evolved, mainly around the Black Sea, and broomrape can rapidly spread to new areas. Breeding for resistance seems to be the most efficient and sustainable approach to control broomrape infestation. In our study, we used a population of 101 recombinant inbred lines (RILs), derived from a cross between the two lines HA89 and LR1 (a line derived from an interspecific cross with Helianthus debilis). Rhizotrons, pots and field experiments were used to characterize all RILs for their resistance to O. cumana race F parasitism at three post vascular connection life stages: (i) early attachment of the parasite to the sunflower roots, (ii) young tubercle and (iii) shoot emergence. In addition, RIL resistance to race G at young tubercle development stage was evaluated in pots. The entire population was genotyped, and QTLs were mapped. Different QTLs were identified for each race (F from Spain and G from Turkey) and for the three stages of broomrape development. The results indicate that there are several quantitative resistance mechanisms controlling the infection by O. cumana that can be used in sunflower breeding. PMID:27242810

  5. Gene targeting and subsequent site-specific transgenesis at the β-actin (ACTB) locus in common marmoset embryonic stem cells.

    Science.gov (United States)

    Shiozawa, Seiji; Kawai, Kenji; Okada, Yohei; Tomioka, Ikuo; Maeda, Takuji; Kanda, Akifumi; Shinohara, Haruka; Suemizu, Hiroshi; James Okano, Hirotaka; Sotomaru, Yusuke; Sasaki, Erika; Okano, Hideyuki

    2011-09-01

    Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.

  6. Identification of differentiation-stage specific molecular markers for the osteoblastic phenotype

    DEFF Research Database (Denmark)

    Twine, Natalie; Chen, Li; Wilkins, Marc

    to age-matched control (n=4). Using RNA-seq and cluster analysis, we identified a set of stage-specific molecular markers that define the progression of OB phenotype during ex vivo culture of hMSC, predict in vivo bone formation capacity of hMSC and can be employed to study the mechanisms of impaired......The phenotype of osteoblastic (OB) cells in culture is currently defined using a limited number of markers of low sensitivity and specificity which belong mostly to extracellular matrix proteins. Also, for clinical use of human skeletal (mesenchymal) stem cells (hMSC) in bone regeneration......, there is a need to identify predictive markers for in vivo bone forming capacity. Thus, we employed Illumina RNA sequencing (RNASeq) to examine changes in gene expression across 8 time points between 0-12 days of ex vivo OB differentiation of hMSC. We identified a subset of expressed genes as potentially...

  7. Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products.

    Directory of Open Access Journals (Sweden)

    Yovany Moreno

    Full Text Available INTRODUCTION: While we lack a complete understanding of the molecular mechanisms by which parasites establish and achieve protection from host immune responses, it is accepted that many of these processes are mediated by products, primarily proteins, released from the parasite. Parasitic nematodes occur in different life stages and anatomical compartments within the host. Little is known about the composition and variability of products released at different developmental stages and their contribution to parasite survival and progression of the infection. METHODOLOGY/PRINCIPAL FINDINGS: To gain a deeper understanding on these aspects, we collected and analyzed through 1D-SDS PAGE and LC-MS/MS the Excretory-Secretory Products (ESP of adult female, adult male and microfilariae of the filarial nematode Brugia malayi, one of the etiological agents of human lymphatic filariasis. This proteomic analysis led to the identification of 228 proteins. The list includes 76 proteins with unknown function as well as also proteins with potential immunoregulatory properties, such as protease inhibitors, cytokine homologues and carbohydrate-binding proteins. Larval and adult ESP differed in composition. Only 32 proteins were shared between all three stages/genders. Consistent with this observation, different gene ontology profiles were associated with the different ESP. CONCLUSIONS/SIGNIFICANCE: A comparative analysis of the proteins released in vitro by different forms of a parasitic nematode dwelling in the same host is presented. The catalog of secreted proteins reflects different stage- and gender-specific related processes and different strategies of immune evasion, providing valuable insights on the contribution of each form of the parasite for establishing the host-parasite interaction.

  8. Do symptom-specific stages of change predict eating disorder treatment outcome?

    Science.gov (United States)

    Ackard, Diann M; Cronemeyer, Catherine L; Richter, Sara; Egan, Amber

    2015-03-01

    Interview methods to assess stages of change (SOC) in eating disorders (ED) indicate that SOC are positively correlated with symptom improvement over time. However, interviews require significant time and staff training and global measures of SOC do not capture varying levels of motivation across ED symptoms. This study used a self-report, ED symptom-specific SOC measure to determine prevalence of stages across symptoms and identify if SOC predict treatment outcome. Participants [N = 182; age 13-58 years; 92% Caucasian; 96% female; average BMI 21.7 (SD = 5.9); 50% ED not otherwise specified (EDNOS), 30.8% bulimia nervosa (BN), 19.2% anorexia nervosa (AN)] seeking ED treatment at a diverse-milieu multi-disciplinary facility in the United States completed stages of change, behavioral (ED symptom use and frequency) and psychological (ED concerns, anxiety, depression) measures at intake assessment and at 3, 6 and 12 months thereafter. Descriptive summaries were generated using ANOVA or Kruskal-Wallis (continuous) and χ (2) (categorical) tests. Repeated measures linear regression models with autoregressive correlation structure predicted treatment outcome. At intake assessment, 53.3% of AN, 34.0% of BN and 18.1% of EDNOS patients were in Preparation/Action. Readiness to change specific symptoms was highest for binge-eating (57.8%) and vomiting (56.5%). Frequency of fasting and restricting behaviors, and scores on all eating disorder and psychological measures improved over time regardless of SOC at intake assessment. Symptom-specific SOC did not predict reductions in ED symptom frequency. Overall SOC predicted neither improvement in Eating Disorder Examination Questionnaire (EDE-Q) scores nor reduction in depression or trait anxiety; however, higher overall SOC predicted lower state anxiety across follow-up. Readiness to change ED behaviors varies considerably. Most patients reduced eating disorder behaviors and increased psychological functioning regardless of stages

  9. Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos.

    Directory of Open Access Journals (Sweden)

    Ryutaro Hirasawa

    Full Text Available The great majority of embryos generated by somatic cell nuclear transfer (SCNT display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts. The embryos retrieved from the uteri were separated into embryonic (epiblast and extraembryonic (extraembryonic ectoderm and ectoplacental cone tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs (>2-fold vs. controls than did the extraembryonic tissues (P<1.0 × 10(-26. In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1-5% per embryos transferred in our laboratory, because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.

  10. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Riso, Vincenzo; Cammisa, Marco; Kukreja, Harpreet

    2016-01-01

    ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi...

  11. Humanin protects against chemotherapy-induced stage-specific male germ cell apoptosis in rats.

    Science.gov (United States)

    Surampudi, P; Chang, I; Lue, Y; Doumit, T; Jia, Y; Atienza, V; Liu, P Y; Swerdloff, R S; Wang, C

    2015-05-01

    Humanin (HN) has cytoprotective action on male germ cells after testicular stress induced by heat and hormonal deprivation. To examine whether HN has protective effects on chemotherapy-induced male germ cell apoptosis, we treated four groups of adult rats with (i) vehicle (control), (ii) HN, (iii) cyclophosphamide (CP); or (iv) HN+CP. To investigate whether the protective effects of HN on germ cells require the presence of Leydig cells, another four groups of rats were pre-treated with ethane dimethanesulfonate (EDS), a Leydig cell toxicant, to eliminate Leydig cells. After 3 days, when Leydig cells were depleted by EDS, we administered: (i) vehicle, (ii) HN, (iii) CP; or (iv) HN+CP to rats. All rats were killed 12 h after the injection of HN and/or CP. Germ cell apoptosis was detected by TUNEL assay and quantified by numerical count. Compared with control and HN (alone), CP significantly increased germ cell apoptosis; HN +CP significantly reduced CP-induced apoptosis at early (I-VI) and late stages (IX-XIV) but not at middle stages (VII-VIII) of the seminiferous epithelial cycle. Pre-treatment with EDS markedly suppressed serum and intratesticular testosterone (T) levels, and significantly increased germ cell apoptosis at the middle (VII-VIII) stages. CP did not further increase germ cell apoptosis in the EDS-pre-treated rats. HN significantly attenuated germ cell apoptosis at the middle stages in EDS pre-treated rats. To investigate whether HN has any direct effects on Leydig cell function, adult Leydig cells were isolated and treated with ketoconazole (KTZ) to block testosterone synthesis. HN was not effective in preventing the reduction of T production by KTZ in vitro. We conclude that HN decreases CP and/or EDS-induced germ cell apoptosis in a stage-specific fashion. HN acts directly on germ cells to protect against EDS-induced apoptosis in the absence of Leydig cells and intratesticular testosterone levels are very low. © 2015 American Society of Andrology

  12. Humanin protects against chemotherapy-induced stage-specific male germ cell apoptosis in rats*

    Science.gov (United States)

    Lue, Y.; Doumit, T.; Jia, Y.; Atienza, V.; Liu, P. Y.; Swerdloff, R. S.; Wang, C.

    2016-01-01

    SUMMARY Humanin (HN) has cytoprotective action on male germ cells after testicular stress induced by heat and hormonal deprivation. To examine whether HN has protective effects on chemotherapy-induced male germ cell apoptosis, we treated four groups of adult rats with (i) vehicle (control), (ii) HN, (iii) cyclophosphamide (CP); or (iv) HN+CP. To investigate whether the protective effects of HN on germ cells require the presence of Leydig cells, another four groups of rats were pre-treated with ethane dimethanesulfonate (EDS), a Leydig cell toxicant, to eliminate Leydig cells. After 3 days, when Leydig cells were depleted by EDS, we administered: (i) vehicle, (ii) HN, (iii) CP; or (iv) HN+CP to rats. All rats were killed 12 h after the injection of HN and/or CP. Germ cell apoptosis was detected by TUNEL assay and quantified by numerical count. Compared with control and HN (alone), CP significantly increased germ cell apoptosis; HN +CP significantly reduced CP-induced apoptosis at early (I–VI) and late stages (IX–XIV) but not at middle stages (VII–VIII) of the seminiferous epithelial cycle. Pre-treatment with EDS markedly suppressed serum and intratesticular testosterone (T) levels, and significantly increased germ cell apoptosis at the middle (VII–VIII) stages. CP did not further increase germ cell apoptosis in the EDS-pre-treated rats. HN significantly attenuated germ cell apoptosis at the middle stages in EDS pre-treated rats. To investigate whether HN has any direct effects on Leydig cell function, adult Leydig cells were isolated and treated with ketoconazole (KTZ) to block testosterone synthesis. HN was not effective in preventing the reduction of T production by KTZ in vitro. We conclude that HN decreases CP and/or EDS-induced germ cell apoptosis in a stage-specific fashion. HN acts directly on germ cells to protect against EDS-induced apoptosis in the absence of Leydig cells and intratesticular testosterone levels are very low. PMID:25891800

  13. Adenosine-uridine-rich element is one of the required cis-elements for epimastigote form stage-specific gene expression of the congolense epimastigote specific protein.

    Science.gov (United States)

    Suganuma, Keisuke; Mochabo, Kennedy Miyoro; Hakimi, Hassan; Yamasaki, Shino; Yamagishi, Junya; Asada, Masahito; Kawazu, Shin-Ichiro; Inoue, Noboru

    2013-09-01

    It is known that gene expression in kinetoplastida is regulated post-transcriptionally. Several previous studies have shown that stage-specific gene expression in trypanosomes is regulated by cis-elements located in the 3' untranslated region (UTR) of each mRNA and also by RNA binding proteins. Our previous study revealed that gene expression of congolense epimastigote specific protein (cesp) was regulated by cis-elements located in the 3'UTR. In the present study, we identified the adenosine and uridine rich region in the cesp 3'UTR. Using transgenic trypanosome cell lines with different egfp expression cassettes, we showed that this adenosine and uridine rich region is one of the regulatory elements for epimastigote form (EMF) stage-specific gene expression via the regulatory cis-element of the eukaryotic AU rich element (ARE). Therefore this required element within the cesp 3'UTR was designated as T. congolense ARE. This required cis-element might selectively stabilize mRNA in the EMF stage and destabilize mRNA in other stages. By RNA electro mobility shift assay, unknown stage-specific RNA binding proteins (RBPs) whose sequences specifically interacted with the required cis-element were found. These results indicate that EMF stage specific cis-element and RBP complexes might specifically stabilize cesp mRNA in EMF. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata.

    Science.gov (United States)

    Krishnan, Natraj; Kodrík, Dalibor; Turanli, Ferit; Sehnal, Frantisek

    2007-01-01

    The titers of reactive oxygen species (ROS) represented by superoxide anion and general peroxides, and the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), are regulated in the midgut of the Colorado potato beetle (CPB) relative to the gut compartment, developmental stage, and food intake. ROS concentration is low in the potato leaves but it is very high in their digest in insect's anterior midgut. It is proposed that intensive ROS production in this gut region is linked to the processing of allelochemicals. SOD and CAT activities, low oxygen tension, and unidentified redox systems that maintain a slightly reducing milieu in the midgut lumen (pe+pH=6.95 declining to 5.36), obviously contribute to the decrease of ROS concentration along the gut length to a minimum in the wall of posterior midgut region. SOD and CAT activities are higher in the potato leaves than in the midgut tissues but the role of plant enzymes in ROS elimination within the gut lumen remains to be shown. A lower level of ROS and a higher antioxidant potential in the adult than in the larval midgut indicate stage specificity in the management of oxidative stress. The antioxidant defense is high in the diapausing adults that contain no detectable superoxide and about ten times less peroxides than the reproducing adults.

  15. Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium during Pregnancy in Pigs.

    Science.gov (United States)

    Kim, Mingoo; Seo, Heewon; Choi, Yohan; Yoo, Inkyu; Seo, Minseok; Lee, Chang-Kyu; Kim, Heebal; Ka, Hakhyun

    2015-01-01

    The uterine endometrium plays a critical role in regulating the estrous cycle and the establishment and maintenance of pregnancy in mammalian species. Many studies have investigated the expression and function of genes in the uterine endometrium, but the global expression pattern of genes and relationships among genes differentially expressed in the uterine endometrium during gestation in pigs remain unclear. Thus, this study investigated global gene expression profiles using microarray in pigs. Diverse transcriptome analyses including clustering, network, and differentially expressed gene (DEG) analyses were performed to detect endometrial gene expression changes during the different gestation stages. In total, 6,991 genes were found to be differentially expressed by comparing genes expressed on day (D) 12 of pregnancy with those on D15, D30, D60, D90 and D114 of pregnancy, and clustering analysis of detected DEGs distinguished 8 clusters. Furthermore, several pregnancy-related hub genes such as ALPPL2, RANBP17, NF1B, SPP1, and CST6 were discovered through network analysis. Finally, detected hub genes were technically validated by quantitative RT-PCR. These results suggest the complex network characteristics involved in uterine endometrial gene expression during pregnancy and indicate that diverse patterns of stage-specific gene expression and network connections may play a critical role in endometrial remodeling and in placental and fetal development to establish and maintenance of pregnancy in pigs.

  16. Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium during Pregnancy in Pigs.

    Directory of Open Access Journals (Sweden)

    Mingoo Kim

    Full Text Available The uterine endometrium plays a critical role in regulating the estrous cycle and the establishment and maintenance of pregnancy in mammalian species. Many studies have investigated the expression and function of genes in the uterine endometrium, but the global expression pattern of genes and relationships among genes differentially expressed in the uterine endometrium during gestation in pigs remain unclear. Thus, this study investigated global gene expression profiles using microarray in pigs. Diverse transcriptome analyses including clustering, network, and differentially expressed gene (DEG analyses were performed to detect endometrial gene expression changes during the different gestation stages. In total, 6,991 genes were found to be differentially expressed by comparing genes expressed on day (D 12 of pregnancy with those on D15, D30, D60, D90 and D114 of pregnancy, and clustering analysis of detected DEGs distinguished 8 clusters. Furthermore, several pregnancy-related hub genes such as ALPPL2, RANBP17, NF1B, SPP1, and CST6 were discovered through network analysis. Finally, detected hub genes were technically validated by quantitative RT-PCR. These results suggest the complex network characteristics involved in uterine endometrial gene expression during pregnancy and indicate that diverse patterns of stage-specific gene expression and network connections may play a critical role in endometrial remodeling and in placental and fetal development to establish and maintenance of pregnancy in pigs.

  17. Drosophila Chk2 and p53 proteins induce stage -specific cell death independently during oogenesis

    Science.gov (United States)

    Bakhrat, Anna; Pritchett, Tracy; Peretz, Gabriella; McCall, Kimberly; Abdu, Uri

    2011-01-01

    In Drosophila, the checkpoint protein-2 kinase (DmChk2) and its downstream effector protein, Dmp53, are required for DNA damage-mediated cell cycle arrest, DNA repair and apoptosis. In this study we focus on understanding the function of these two apoptosis inducing factors during ovarian development. We found that expression of Dmp53, but not DmChk2, led to loss of ovarian stem cells. We demonstrate that expression of DmChk2, but not Dmp53, induced mid-oogenesis cell death. DmChk2 induced cell death was not suppressed by Dmp53 mutant, revealing for the first time that in Drosophila, overexpression of DmChk2 can induce cell death which is independent of Dmp53. We found that over-expression of caspase inhibitors such as DIAP1, p35 and p49 did not suppress DmChk2- and Dmp53-induced cell death. Thus, our study reveals stage -specific effects of Dmp53 and DmChk2 in oogenesis. Moreover, our results demonstrate that although DmChk2 and Dmp53 affect different stages of ovarian development, loss of ovarian stem cells by p53 expression and mid-oogenesis cell death induced by DmChk2 do not require caspase activity. PMID:20838898

  18. Stage-specific effects of FGF2 on the differentiation of dental pulp cells

    Science.gov (United States)

    Sagomonyants, Karen; Mina, Mina

    2015-01-01

    Dentinogenesis is a complex and multistep process, which is regulated by various growth factors, including members of the Fibroblast Growth Factor (FGF) family. Both positive and negative effects of FGFs on dentinogenesis have been reported but the underlying mechanisms of these conflicting results are still unclear. To gain better insight into the role of FGF2 in dentinogenesis, we used dental pulp cells from various transgenic mice, in which fluorescent protein expression identifies cells at different stages of odontoblast differentiation. Our results showed that continuous exposure of pulp cells to FGF2 inhibited mineralization and revealed both stimulatory and inhibitory effects of FGF2 on expression of markers of dentinogenesis and various transgenes. During the proliferation phase of in vitro growth FGF2 increased expression of markers of dentinogenesis and the percentages of DMP1-GFP+ functional odontoblasts and DSPP-Cerulean+ odontoblasts. Additional exposure to FGF2 during the differentiation/mineralization phase of in vitro growth decreased the extent of mineralization, expression of markers of dentinogenesis, and expression of DMP1-GFP and DSPP-Cerulean transgenes. Recovery experiments showed that the inhibitory effects of FGF2 on dentinogenesis were related to the blocking of differentiation of cells into mature odontoblasts. These observations together showed stage-specific effects of FGF2 on dentinogenesis by dental pulp cells and provide critical information for the development of improved treatments for vital pulp therapy and dentin regeneration. PMID:25823776

  19. Mutations in wheat exhibiting growth-stage-specific resistance to biotrophic fungal pathogens.

    Science.gov (United States)

    Smith, Phil H; Howie, John A; Worland, Anthony J; Stratford, Rebecca; Boyd, Lesley A

    2004-11-01

    Two mutants were isolated in wheat that showed enhanced resistance towards Puccinia striiformis f. sp. tritici, the fungal causal agent of yellow rust. The altered phenotype of I3-48 is due to a minimum of two mutation events, each showing a partial, additive effect, with one mutation segregating with a deletion on the long arm of chromosome 4D. In the case of I3-54, the enhanced resistance is due to a single, dominant mutation. In both mutants, the expression of the enhanced resistance is growth-stage specific. With I3-54, the full resistance phenotype is apparent from the third seedling leaf onwards, while with I3-48, a full resistance phenotype is only seen on the tenth and subsequent leaves. In addition to the enhanced resistance towards yellow rust, I3-48 also shows enhanced resistance towards brown rust, and I3-54 shows enhanced resistance to powdery mildew.

  20. First genetic quantification of sex- and stage-specific feeding in the ubiquitous copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Ismar, Stefanie M.H.; Kottmann, Johanna Sarah; Sommer, Ulrich

    2018-01-01

    can complement classic diet quantification methods, such as stable isotope or fatty acid analyses tools. Here, we present first results of feeding experiments assessing sex- and stage-specific food intake by the ubiquitous calanoid copepod Acartia tonsa by 18S targeted qPCR and microscopic grazing......Marine copepods provide the major food-web link between primary producers and higher trophic levels, and their feeding ecology is of acute interest in light of global change impacts on food-web functioning. Recently, quantitative polymerase chain reaction (qPCR) protocols have been developed, which...... assessment. In triplicated mixed-diet feeding treatments, three suitable A. tonsa diets, the cryptophyte Rhodomonas balthica, the haptophyte Isochrysis galbana, and the diatom Thalassiosira weissflogii, were offered in equal biomass proportions under constant conditions. Prey uptake substantially varied...

  1. Single stage to orbit mass budgets derived from propellant density and specific impulse

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.C.

    1996-06-06

    The trade between specific impulse (Isp) and density is examined in view of Single Stage To Orbit (SSTO) requirements. Mass allocations for vehicle hardware are derived from these two properties, for several propellant combinations and a dual-fuel case. This comparative analysis, based on flight-proven hardware, indicates that the higher density of several alternative propellants compensates for reduced Isp, when compared with cryogenic oxygen and hydrogen. Approximately half the orbiting mass of a rocket- propelled SSTO vehicle must be allocated to propulsion hardware and residuals. Using hydrogen as the only fuel requires a slightly greater fraction of orbiting mass for propulsion, because hydrogen engines and tanks are heavier than those for denser fuels. The advantage of burning both a dense fuel and hydrogen in succession depends strongly on tripropellant engine weight. The implications of the calculations for SSTO vehicle design are discussed, especially with regard to the necessity to minimize non-tankage structure.

  2. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  3. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    NARCIS (Netherlands)

    Boudewijns, Steve; Bol, Kalijn F.; Schreibelt, Gerty; Westdorp, Harm; Textor, Johannes C.; van Rossum, Michelle M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van de Rakt, Mandy W. M. M.; Pots, Jeanne M.; van Oorschot, Tom G. M.; Duiveman-de Boer, Tjitske; Olde Nordkamp, Michel A.; van Meeteren, Wilmy S. E. C.; van der Graaf, Winette T. A.; Bonenkamp, Johannes J.; de Wilt, Johannes H. W.; Aarntzen, Erik H. J. G.; Punt, Cornelis J. A.; Gerritsen, Winald R.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with

  4. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    NARCIS (Netherlands)

    Boudewijns, S; Bol, K.F.; Schreibelt, G.; Westdorp, H.; Textor, J.C.; Rossum, M.M. van; Scharenborg, N.M.; Boer, A.J. de; Rakt, M.W.M.M. van de; Pots, J.M.; Oorschot, T.G.M. van; Boer, T. de; Nordkamp, M.A. Olde; Meeteren, W.S. van; Graaf, W.T.A. van der; Bonenkamp, J.J.; Wilt, J.H.W. de; Aarntzen, E.H.J.G.; Punt, C.J.A.; Gerritsen, W.R.; Figdor, C.G.; Vries, I.J.M. de

    2016-01-01

    PURPOSE: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. EXPERIMENTAL DESIGN: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with

  5. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  6. The Case for Stage-Specific Frailty Interventions Spanning Community Aging to Cognitive Impairment.

    Science.gov (United States)

    Chong, Mei Sian; Tay, Laura; Ismail, Noor Hafizah; Tan, Chay Hoon; Yew, Suzanne; Yeo, Audrey; Ye, Ruijing; Leung, Bernard; Ding, Yew Yoong

    2015-11-01

    To explore factors associated with frailty across the continuum of healthy aging to cognitive impairment (mild cognitive impairment [MCI], mild and moderate Alzheimer disease [AD]). Cross-sectional study. Senior activity centers and the outpatient memory clinic of a tertiary hospital. Community-dwelling and functionally independent adults aged 50 years and older and older adults attending the memory clinic with MCI, and mild and moderate AD diagnoses. We recruited 299 participants comprising 200 cognitively healthy individuals, 16 with MCI, 68 with mild AD, and 15 with moderate AD. We collected measures of comorbidities, cognitive and functional performance, physical activity level, and anthropometric and nutritional status. Frailty was defined using Buchmann criteria, and sarcopenic obesity (SO) was defined using the Asian Working Group for Sarcopenia criteria and the revised National Cholesterol and Education Panel-obesity definition of waist circumference. Multiple logistic regression was performed to identify factors associated with frailty as a whole group and separately based on cognitive subgroups. There were 16.7% of patients who met frailty criteria. Frailty prevalence was lowest in the well elderly (3.5%) and subsequently followed a U-shaped prevalence from MCI to mild and moderate AD, respectively. Specific univariate differences were noted in age, hypertension, ischemic heart disease, depressive symptoms, social differences, and functional scores. Multivariable logistic regression showed age, cognitive status, and SO to be significantly associated with frailty status. Subgroup analysis showed only SO to be significant (odds ratio [OR] 15.55, 95% confidence interval [CI] 1.63-148.42) in well elderly and only cognition to be associated with frailty (OR 0.89, 95% CI 0.80-0.99) among the cognitively impaired. Our findings lend initial support to the case for stage-specific interventions for physical frailty with the focus on SO in healthy community

  7. Effect of exogenous estradiol applied at different embryonic stages on sex determination, growth, and mortality in the leopard gecko (Eublepharis macularius).

    Science.gov (United States)

    Tousignant, A; Crews, D

    1994-01-01

    Temperature-dependent sex determination (TSD) occurs in three orders of reptiles. Several studies have examined the ability of estradiol to produce female hatchlings incubated at a male-producing temperature. The results of these experiments support the idea that estradiol could be used as a powerful tool in the conservation of endangered species with TSD by manipulating hatchling sex ratios. However, these experiments have concentrated on the mechanism of determination. This experiment was designed to test the efficacy of various dosages of estradiol applied at two different stages to alter the hatchling sex ratio as well as determining the potential use of such manipulation for conservation efforts by monitoring egg mortality and hatchling growth. The leopard gecko (Eublepharis macularius) exhibits TSD and reaches reproductive maturity in less than one year, making it an excellent model for evaluating the long-term effects of estradiol. The results demonstrate that estradiol has a dose-dependent effect on the hatchling sex ratio while only high dosages applied at the later stage of development showed increased mortality. Estrogen-determined females grew at the same rate as temperature-determined females and have produced viable hatchlings. Estradiol treatment of eggs from endangered species may provide a method of insuring female offspring when the TSD pattern is unknown or equipment for controlled incubation is unavailable.

  8. Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Cecilia L Winata

    2013-10-01

    Full Text Available Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.

  9. Distinct Regulatory Mechanisms Govern Embryonic versus Adult Adipocyte Maturation

    Science.gov (United States)

    Wang, Qiong A.; Tao, Caroline; Jiang, Lei; Shao, Mengle; Ye, Risheng; Zhu, Yi; Gordillo, Ruth; Ali, Aktar; Lian, Yun; Holland, William L.; Gupta, Rana K.; Scherer, Philipp E.

    2015-01-01

    Pathological expansion of adipose tissue contributes to the metabolic syndrome. Distinct depots develop at various times under different physiological conditions. The transcriptional cascade mediating adipogenesis is established in vitro, and centers around a core program involving PPARγ and C/EBPα. We developed an inducible, adipocyte-specific knockout system to probe the requirement of key adipogenic transcription factors at various stages of adipogenesis in vivo. C/EBPα is essential for all white adipogenic conditions in the adult stage, such as adipose tissue regeneration, adipogenesis in muscle and unhealthy expansion of white adipose tissue during high fat feeding or due to leptin deficiency. Surprisingly, terminal embryonic adipogenesis is fully C/EBPα independent, does depend however on PPARγ; cold-induced beige adipogenesis is also C/EBPα independent. Moreover, C/EBPα is not vital for adipocyte survival in the adult stage. We reveal a surprising diversity of transcriptional signals required at different stages of adipogenesis in vivo. PMID:26280538

  10. Life Cycle Stage-resolved Proteomic Analysis of the Excretome/Secretome from Strongyloides ratti—Identification of Stage-specific Proteases*

    Science.gov (United States)

    Soblik, Hanns; Younis, Abuelhassan Elshazly; Mitreva, Makedonka; Renard, Bernhard Y.; Kirchner, Marc; Geisinger, Frank; Steen, Hanno; Brattig, Norbert W.

    2011-01-01

    A wide range of biomolecules, including proteins, are excreted and secreted from helminths and contribute to the parasite's successful establishment, survival, and reproduction in an adverse habitat. Excretory and secretory proteins (ESP) are active at the interface between parasite and host and comprise potential targets for intervention. The intestinal nematode Strongyloides spp. exhibits an exceptional developmental plasticity in its life cycle characterized by parasitic and free-living generations. We investigated ESP from infective larvae, parasitic females, and free-living stages of the rat parasite Strongyloides ratti, which is genetically very similar to the human pathogen, Strongyloides stercoralis. Proteomic analysis of ESP revealed 586 proteins, with the largest number of stage-specific ESP found in infective larvae (196), followed by parasitic females (79) and free-living stages (35). One hundred and forty proteins were identified in all studied stages, including anti-oxidative enzymes, heat shock proteins, and carbohydrate-binding proteins. The stage-selective ESP of (1) infective larvae included an astacin metalloproteinase, the L3 Nie antigen, and a fatty acid retinoid-binding protein; (2) parasitic females included a prolyl oligopeptidase (prolyl serine carboxypeptidase), small heat shock proteins, and a secreted acidic protein; (3) free-living stages included a lysozyme family member, a carbohydrate-hydrolyzing enzyme, and saponin-like protein. We verified the differential expression of selected genes encoding ESP by qRT-PCR. ELISA analysis revealed the recognition of ESP by antibodies of S. ratti-infected rats. A prolyl oligopeptidase was identified as abundant parasitic female-specific ESP, and the effect of pyrrolidine-based prolyl oligopeptidase inhibitors showed concentration- and time-dependent inhibitory effects on female motility. The characterization of stage-related ESP from Strongyloides will help to further understand the interaction of

  11. Correcting bias due to missing stage data in the non-parametric estimation of stage-specific net survival for colorectal cancer using multiple imputation.

    Science.gov (United States)

    Falcaro, Milena; Carpenter, James R

    2017-06-01

    Population-based net survival by tumour stage at diagnosis is a key measure in cancer surveillance. Unfortunately, data on tumour stage are often missing for a non-negligible proportion of patients and the mechanism giving rise to the missingness is usually anything but completely at random. In this setting, restricting analysis to the subset of complete records gives typically biased results. Multiple imputation is a promising practical approach to the issues raised by the missing data, but its use in conjunction with the Pohar-Perme method for estimating net survival has not been formally evaluated. We performed a resampling study using colorectal cancer population-based registry data to evaluate the ability of multiple imputation, used along with the Pohar-Perme method, to deliver unbiased estimates of stage-specific net survival and recover missing stage information. We created 1000 independent data sets, each containing 5000 patients. Stage data were then made missing at random under two scenarios (30% and 50% missingness). Complete records analysis showed substantial bias and poor confidence interval coverage. Across both scenarios our multiple imputation strategy virtually eliminated the bias and greatly improved confidence interval coverage. In the presence of missing stage data complete records analysis often gives severely biased results. We showed that combining multiple imputation with the Pohar-Perme estimator provides a valid practical approach for the estimation of stage-specific colorectal cancer net survival. As usual, when the percentage of missing data is high the results should be interpreted cautiously and sensitivity analyses are recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Tissue and stage-specific distribution of Wolbachia in Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Kerstin Fischer

    2011-05-01

    Full Text Available BACKGROUND: Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle. METHODS/PRINCIPAL FINDINGS: A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i., a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i. Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. CONCLUSIONS: Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the

  13. Life-stage-specific physiology defines invasion extent of a riverine fish

    Science.gov (United States)

    Lawrence, David J.; Beauchamp, David A.; Olden, Julian D.

    2015-01-01

    -history stage that likely sets the distributional limits of all other life-history stages. We anticipate the framework developed here could be employed to identify how similar stage-specific environmental sensitivity determines distribution in many other ectothermic species.

  14. Solenopsis invicta virus 3: pathogenesis and stage specificity in red imported fire ants.

    Science.gov (United States)

    Valles, Steven M; Porter, Sanford D; Firth, Andrew E

    2014-07-01

    Solenopsis invicta colonies were exposed to purified preparations of Solenopsis invicta virus 3 (SINV-3) to investigate virus pathogenesis at the colony level. Time course experiments revealed an infection exhibiting specificity for the adult stage (workers). SINV-3 genome and a capsid protein were increasingly present in worker ants with time. Northern blot analysis revealed two bands in RNA preparations from worker ants infected with SINV-3 corresponding to the genomic and sub-genomic species. Conversely, larval RNA preparations from SINV-3-infected colonies showed a near-complete absence of SINV-3 genome or sub-genome. The data confirm that SINV-3 is the etiological agent causing mortality among S. invicta colonies in the laboratory. We propose that SINV-3 infection somehow alters worker ant behavior, which may prevent them from acquiring and/or distributing solid food to the larvae. Consequently, larval mortality and impaired queen health occur as a result of starvation or neglect by the worker caste. Published by Elsevier Inc.

  15. Transmission electron microscopy reveals distinct macrophage- and tick cell-specific morphological stages of Ehrlichia chaffeensis.

    Directory of Open Access Journals (Sweden)

    Sarah E Dedonder

    Full Text Available BACKGROUND: Ehrlichia chaffeensis is an emerging tick-borne rickettsial pathogen responsible for human monocytic ehrlichiosis. Despite the induction of an active host immune response, the pathogen has evolved to persist in its vertebrate and tick hosts. Understanding how the organism progresses in tick and vertebrate host cells is critical in identifying effective strategies to block the pathogen transmission. Our recent molecular and proteomic studies revealed differences in numerous expressed proteins of the organism during its growth in different host environments. METHODOLOGY/PRINCIPAL FINDINGS: Transmission electron microscopy analysis was performed to assess morphological changes in the bacterium within macrophages and tick cells. The stages of pathogen progression observed included the attachment of the organism to the host cells, its engulfment and replication within a morulae by binary fission and release of the organisms from infected host cells by complete host cell lysis or by exocytosis. E. chaffeensis grown in tick cells was highly pleomorphic and appears to replicate by both binary fission and filamentous type cell divisions. The presence of Ehrlichia-like inclusions was also observed within the nucleus of both macrophages and tick cells. This observation was confirmed by confocal microscopy and immunoblot analysis. CONCLUSIONS/SIGNIFICANCE: Morphological differences in the pathogen's progression, replication, and processing within macrophages and tick cells provide further evidence that E. chaffeensis employs unique host-cell specific strategies in support of adaptation to vertebrate and tick cell environments.

  16. The NIMA Kinase Is Required To Execute Stage-Specific Mitotic Functions after Initiation of Mitosis

    Science.gov (United States)

    Govindaraghavan, Meera; Lad, Alisha A.

    2014-01-01

    The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events. PMID:24186954

  17. Cell cycle synchronization of embryonic stem cells: Effect of serum deprivation on the differentiation of embryonic bodies in vitro

    International Nuclear Information System (INIS)

    Zhang Enming; Li Xiaolong; Zhang Shufang; Chen Liangqiang; Zheng Xiaoxiang

    2005-01-01

    Research on stem-cell transplantation has indicated that the success of transplantation largely depends on synchronizing donor cells into the G0/G1 phase. In this study, we investigated the profile of embryonic stem (ES) cell synchronization and its effect on the formation of embryonic bodies (EBs) using cell culture with serum deprivation. The D3 cell line of ES cells was used, and parameters such as cell proliferation and activity, EB formation, and expression of stage-specific embryonic antigen-1 and Oct-4 were investigated. Results showed that the percentage of G0/G1 stage in serum deprivation culture is significantly higher than that in culture with serum supplementation. Synchronized ES cells can reenter the normal cell cycle successfully after serum supply. EBs formed from synchronized ES cells have higher totipotency capability to differentiate into functional neuronal cells than EBs formed from unsynchronized ES cells. Our study provides a method for ES treatment before cell transplantation that possibly helps to decrease the rate of cell death after transplantation

  18. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting.

    Directory of Open Access Journals (Sweden)

    Alyaa M Abdel-Haleem

    2018-01-01

    Full Text Available Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1, choline, and pantothenate (vitamin B5 metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  19. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting

    KAUST Repository

    Abdel-Haleem, Alyaa M.

    2018-01-04

    Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale models (GEMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  20. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Séverine A Degrelle

    Full Text Available Somatic cell nuclear transfer (SCNT is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each; one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular "uncoupling". Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538, we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity and subsequent pregnancy loss. Finally

  1. Embryonic development during chronic acceleration

    Science.gov (United States)

    Smith, A. H.; Abbott, U. K.

    1982-01-01

    Experiments carried out on chicken eggs indicate that the embryo is affected during very early development, especially over the first four days, and during hatching. In the first four days, the brain develops as well as the anlage for all other organs. In addition, the heart commences to function and the extraembryonic membranes that compartmentalize the egg contents form. The latter require an appreciable extension and folding of tissue which may be disrupted by the mechanical load. Observations of embryonic abnormalities that occur during chronic acceleration suggest an inhibition of development of the axial skeleton, which is rarely seen otherwise, a general retardation of embryonic growth, and circulatory problems. The final stages of development (after 18 days) involve the uptake of fluids, the transition to aerial respiration, and the reorientation of the embryo into a normal hatching position. At 4 G mortality is very high during this period, with a majority of embryos failing to reorient into the normal hatching position.

  2. Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin.

    Science.gov (United States)

    Fan, Sabrina Mai-Yi; Tsai, Chia-Feng; Yen, Chien-Mei; Lin, Miao-Hsia; Wang, Wei-Hung; Chan, Chih-Chieh; Chen, Chih-Lung; Phua, Kyle K L; Pan, Szu-Hua; Plikus, Maksim V; Yu, Sung-Liang; Chen, Yu-Ju; Lin, Sung-Jan

    2018-03-13

    Organ development is a sophisticated process of self-organization. However, despite growing understanding of the developmental mechanisms, little is known about how to reactivate them postnatally for regeneration. We found that treatment of adult non-hair fibroblasts with cell-free extract from embryonic skin conferred upon them the competency to regenerate hair follicles. Proteomics analysis identified three secreted proteins enriched in the embryonic skin, apolipoprotein-A1, galectin-1 and lumican that together were essential and sufficient to induce new hair follicles. These 3 proteins show a stage-specific co-enrichment in the perifolliculogenetic embryonic dermis. Mechanistically, exposure to embryonic skin extract or to the combination of the 3 proteins altered the gene expression to an inductive hair follicle dermal papilla fibroblast-like profile and activated Igf and Wnt signaling, which are crucial for the regeneration process. Therefore, a cocktail of organ-specific extracellular proteins from the embryonic environment can render adult cells competent to re-engage in developmental interactions for organ neogenesis. Identification of factors that recreate the extracellular context of respective developing tissues can become an important strategy to promote regeneration in adult organs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast...... populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore...

  4. Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.

    Science.gov (United States)

    Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca

    2017-12-01

    Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.

  5. A Treatment Stage Specific Approach to Improving Quality of Life for Women with Ovarian Cancer

    National Research Council Canada - National Science Library

    Avis, Nancy E; Miller, Brigitte

    2005-01-01

    This study focuses on quality of life among women with ovarian cancer. The primary objective of the study is to identify the issues that are of greatest concern to women in each of three treatment stages...

  6. cDNA fingerprinting of osteoprogenitor cells to isolate differentiation stage-specific genes.

    OpenAIRE

    Candeliere, G A; Rao, Y; Floh, A; Sandler, S D; Aubin, J E

    1999-01-01

    A cDNA fingerprinting strategy was developed to identify genes based on their differential expression pattern during osteoblast development. Preliminary biological and molecular staging of cDNA pools prepared by global amplification PCR allowed discrim-inating choices to be made in selection of expressed sequence tags (ESTs) to be isolated. Sequencing of selected ESTs confirmed that both known and novel genes can be isolated from any developmental stage of interest, e.g. from primitive progen...

  7. High environmental ammonia exposure has developmental-stage specific and long-term consequences on the cortisol stress response in zebrafish.

    Science.gov (United States)

    Williams, Tegan A; Bonham, Luke A; Bernier, Nicholas J

    2017-12-01

    The capacity for early life environmental stressors to induce programming effects on the endocrine stress response in fish is largely unknown. In this study we determined the effects of high environmental ammonia (HEA) exposure on the stress response in larval zebrafish, assessed the tolerance of embryonic and larval stages to HEA, and evaluated whether early life HEA exposure has long-term consequences on the cortisol response to a novel stressor. Exposure to 500-2000μM NH 4 Cl for 16h did not affect the gene expression of corticotropin-releasing factor (CRF) system components in 1day post-fertilization (dpf) embryos, but differentially increased crfa, crfb and CRF binding protein (crfbp) expression and stimulated both dose- and time-dependent increases in the whole body cortisol of 5dpf larvae. Pre-acclimation to HEA at 1dpf did not affect the cortisol response to a subsequent NH 4 Cl exposure at 5dpf. In contrast, pre-acclimation to HEA at 5dpf caused a small but significant reduction in the cortisol response to a second NH 4 Cl exposure at 10dpf. While continuous exposure to 500-2000μM NH 4 Cl between 0 and 5dpf had a modest effect on mean survival time, exposure to 400-1000μM NH 4 Cl between 10 and 14dpf decreased mean survival time in a dose-dependent manner. Moreover, pre-acclimation to HEA at 5dpf significantly decreased the risk of mortality to continuous NH 4 Cl exposure between 10 and 14dpf. Finally, while HEA at 1dpf did not affect the cortisol stress response to a novel vortex stressor at 5dpf, the same HEA treatment at 5dpf abolished vortex stressor-induced increases in whole body cortisol at 10 and 60dpf. Together these results show that the impact of HEA on the cortisol stress response during development is life-stage specific and closely linked to ammonia tolerance. Further, we demonstrate that HEA exposure at the larval stage can have persistent effects on the capacity to respond to stressors in later life. Copyright © 2017 Elsevier Inc. All

  8. Stage-specific metabolization of triacylglycerols during seed germination of Sacha Inchi (Plukenetia volubilis L.).

    Science.gov (United States)

    Chandrasekaran, Umashankar; Liu, Aizhong

    2015-06-01

    A detailed study was carried out on Sacha Inchi (Plukenetia volubilis L.) to investigate the mobilization of storage lipids during seed germination. Thin layer chromatography analysis of the total lipids showed a rapid decline in the triacylglycerol (TAG) and diacylglycerol (DAG) contents after the early stages (3-10 days after imbibition (DAI)) followed by a steady breakdown during the later stages (20 and 30 DAI) of germination. Trace amounts of monoacylglycerols (MAG) were identified during the final stage (30 DAI). Further, gas chromatography analysis showed an increase in the major unsaturated fatty acid (linoleic and linolenic) content from 3 to 10 DAI followed by a slow decline. In addition, the major saturated fatty acid (palmitic and oleic) content showed a decrease during the early stages (3-10 DAI) and an increase during the later stages (20 and 30 DAI). The present study provides the first report on the metabolization of TAG along with fatty acid changes during the seed germination of Sacha Inchi. © 2014 Society of Chemical Industry.

  9. Microsatellite instability is associated with reduced disease specific survival in stage III colon cancer.

    Science.gov (United States)

    Mohan, H M; Ryan, E; Balasubramanian, I; Kennelly, R; Geraghty, R; Sclafani, F; Fennelly, D; McDermott, R; Ryan, E J; O'Donoghue, D; Hyland, J M P; Martin, S T; O'Connell, P R; Gibbons, D; Winter, Des; Sheahan, K

    2016-11-01

    Up to 15% of colorectal cancers exhibit microsatellite instability (MSI), where errors in replication go unchecked due to defects in the mismatch repair system. This study aimed to determine survival in a large single-centre series of 1250 consecutive colorectal cancers subjected to universal MSI testing. Clinical and pathological features of patients with colorectal cancer identified on prospectively maintained colorectal and pathology databases at St. Vincent's University Hospital from 2004 to May 2012 were examined. Mismatch repair (MMR) status was determined by immunohistochemistry. Kaplan-Meier curves, the log-rank test and Cox regression were used to associate survival with clinical and pathological characteristics. Of the 1250 colorectal cancers in the study period, 11% exhibited MSI (n = 138). Patients with MSI tumours had significantly lower rates of lymph node and distant metastases (MSI N+ rate: 24.8% compared with MSS N+ rate: 46.2%, p colon cancer. However, patients with Stage III MSI colon cancers had a worse DSS than those with MSS tumours. Stage III MSI tumours exhibited higher rates of lymphovascular invasion and perineural invasion than Stage I/II MSI tumours. MSI is associated with a reduced risk of nodal and distant metastases, with an improved DSS in Stage I/II colon cancer. However, when MSI tumours progress to Stage III these patients had worse outcomes and pathological features. New strategies for this cohort of patients may be required to improve outcomes. Copyright © 2016. Published by Elsevier Ltd.

  10. Embryonic cerebrospinal fluid in brain development: neural progenitor control.

    Science.gov (United States)

    Gato, Angel; Alonso, M Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M F; Lamus, Francisco; Desmond, Mary E

    2014-08-28

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called "embryonic CSF." Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life.

  11. Transcriptome Landscapes of Mammalian Embryonic Cells

    NARCIS (Netherlands)

    Brinkhof, B.

    2015-01-01

    This thesis describes research on gene expression profiles from different embryonic stages and cell types to identify genes involved in pluripotency or differentiation in bovine and porcine cells. The results are compared with data from other mammals. RNA expression profiles of morula and blastocyst

  12. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera

    DEFF Research Database (Denmark)

    Ono, Hajime; Rewitz, Kim; Shinoda, Tetsu

    2006-01-01

    of the ecdysone biosynthetic machinery. This hypothesis comes from the observation that Cyp307A1 is encoded by the Halloween gene spook (spo), but unlike other Halloween class genes, Dmspo is not expressed during the larval stages. In contrast, Cyp307a2, dubbed spookier (spok), is expressed primarily during...

  13. Stage and tissue-specific prognostic impact of miR-182 in NSCLC

    International Nuclear Information System (INIS)

    Stenvold, Helge; Donnem, Tom; Andersen, Sigve; Al-Saad, Samer; Busund, Lill-Tove; Bremnes, Roy M

    2014-01-01

    MicroRNA (miR)-182 is frequently upregulated in cancers, has generally been viewed as an oncogene and is possibly connected to angiogenesis. We aimed to explore what impact miR-182 has in non-small cell lung cancer (NSCLC), and more explicitly its correlation with angiogenic markers. From 335 unselected stage I to IIIA NSCLC carcinomas, duplicate tumor and tumor-associated stromal cores were collected in tissue microarray blocks (TMAs). In situ hybridization (ISH) was used to detect the expression of miR-182 in tumor cells, and immunohistochemistry (IHC) was used to detect the expression of angiogenesis related protein markers. In univariate analyses, high tumor cell expression of miR-182 was a positive prognostic factor for patients with squamous cell carcinoma (SCC, P = 0.042) and stage II patients (P = 0.003). Also in the multivariate analysis, high tumor cell miR-182 expression was associated with a good prognosis in the same groups (SCC: HR 0.57, CI 95% 0.33-0.99, P = 0.048; stage II: HR 0.50, CI 95% 0.28-0.90, P = 0.020). We found significant correlations between miR-182 and the angiogenesis related markers FGF2, HIF2α and MMP-7. In patients with SCC and in stage II patients, high tumor cell miR-182 expression is an independent positive prognostic factor

  14. Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation

    Czech Academy of Sciences Publication Activity Database

    Číčová, Z.; Dejung, M.; Skalický, Tomáš; Eisenhuth, N.; Hanselmann, S.; Morriswood, B.; Figueiredo, L.M.; Butter, F.; Janzen, C. J.

    2016-01-01

    Roč. 6, 25 October (2016), č. článku 35826. ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : variant surface glycoprotein * attachment zone filament * blood stream forms * life cycle stages * paraflagellar rod * stable transformation * cell morphogenesis * ortholog groups * psi blast * membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  15. Stage-Specific Gene Profiling of Germinal Cells Helps Delineate the Mitosis/Meiosis Transition.

    Science.gov (United States)

    Yuan, Ting-Lu; Huang, Wei-Jie; He, Juan; Zhang, Dong; Tang, Wei-Hua

    2018-02-01

    In flowering plants, germ lines are induced from somatic meristems within reproductive organs. Within anthers, germinal cell initials first undergo several rounds of mitotic proliferation before synchronously entering meiosis. Our understanding of the progression and the molecular basis of this mitosis to meiosis transition is still limited. Taking advantage of the correlation between anther length and premeiotic germinal cell development in maize ( Zea mays ), we studied the transcriptome dynamics of germinal cells at three sequential stages, mitotic archesporial cells, enlarging pollen mother cells at the premeiosis interphase, and pollen mother cells at the early prophase of meiosis, using laser microdissection-based expression profiling. Our analysis showed that cells undergoing the mitosis-meiosis switch exhibit robust transcriptional changes. The three stages are distinguished by the expression of genes encoding transcription factor subsets, meiotic chromosome recombination proteins, and distinct E3 ubiquitin ligases, respectively. The transcription level of genes encoding protein turnover machinery was significantly higher in these three stages of germinal cells than in mature pollen, parenchyma cells, or seedlings. Our experimental results further indicate that many meiotic genes are not only transcribed, but also translated prior to meiosis. We suggest that the enlarging pollen mother cells stage represents a crucial turning point from mitosis to meiosis for developing germinal cells. © 2018 American Society of Plant Biologists. All Rights Reserved.

  16. [Incidence of melanoma and changes in stage-specific incidence after implementation of skin cancer screening in Schleswig-Holstein].

    Science.gov (United States)

    Eisemann, N; Waldmann, A; Katalinic, A

    2014-01-01

    A pilot project in skin cancer screening (SCREEN) was conducted in Schleswig-Holstein from July 2003 to June 2004. Although the impact of this screening on the stage-specific incidence of melanoma is of great importance for screening evaluation, it remains unknown. In theory, an effective skin cancer screening program should result in a medium-term incidence decrease of melanomas with a prognostically unfavorable stage. This is studied on a population-based level by using cancer registry data. Based on data from the Cancer Registry of Schleswig-Holstein for 1999-2009, stage-specific (T-category of the TNM-classification system) age-standardized incidence rates were calculated. After implementation of the SCREEN project, the incidence of prognostically favorable melanomas (in situ and T1) was higher than before, while the incidence of advanced melanomas (T2, T3, and for women also T4) decreased considerably. The classification of tumor stages changed during the project period, which may have contributed to an artificial decrease of the stages with a poor prognosis. Nevertheless, the results are in agreement with the observed decrease of melanoma mortality in the screening region.

  17. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1

    DEFF Research Database (Denmark)

    Fuchs, Sebastian; Herzog, Dominik; Sumara, Grzegorz

    2009-01-01

    -renewal and proliferation of later stage, but not early migratory NCSCs. This stage-specific requirement for small Rho GTPases is due to changes in NCSCs that, during development, acquire responsiveness to mitogenic EGF acting upstream of both Cdc42 and Rac1. Thus, our data reveal distinct mechanisms for growth control......The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially...

  18. Life-stage-specific differences in exploitation of food mixtures: diet mixing enhances copepod egg production but not juvenile development

    DEFF Research Database (Denmark)

    Koski, Marja; Breteler, W.K.; Schogt, N.

    2006-01-01

    mortality were, however, independent of either nitrogen or HUFAs in the diet. Our results show that adult copepods are effective in combining their nutrition from several food sources, whereas juveniles are not. We suggest that there are species- and life-stage-specific differences in nutritional......, the copepods failed to moult past the first copepodite stage, and the mortality was high. In sharp contrast, mixing two nutritionally poor food species often resulted in egg production which was not significantly different from nutritionally high quality food, although hatching success in many mixtures was low...

  19. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells.

    Science.gov (United States)

    Györy, Ildiko; Boller, Sören; Nechanitzky, Robert; Mandel, Elizabeth; Pott, Sebastian; Liu, Edison; Grosschedl, Rudolf

    2012-04-01

    The transcription factor Ebf1 is an important determinant of early B lymphopoiesis. To gain insight into the functions of Ebf1 at distinct stages of differentiation, we conditionally inactivated Ebf1. We found that Ebf1 is required for the proliferation, survival, and signaling of pro-B cells and peripheral B-cell subsets, including B1 cells and marginal zone B cells. The proliferation defect of Ebf1-deficient pro-B cells and the impaired expression of multiple cell cycle regulators are overcome by transformation with v-Abl. The survival defect of transformed Ebf1(fl/fl) pro-B cells can be rescued by the forced expression of the Ebf1 targets c-Myb or Bcl-x(L). In mature B cells, Ebf1 deficiency interferes with signaling via the B-cell-activating factor receptor (BAFF-R)- and B-cell receptor (BCR)-dependent Akt pathways. Moreover, Ebf1 is required for germinal center formation and class switch recombination. Genome-wide analyses of Ebf1-mediated gene expression and chromatin binding indicate that Ebf1 regulates both common and distinct sets of genes in early and late stage B cells. By regulating important components of transcription factor and signaling networks, Ebf1 appears to be involved in the coordination of cell proliferation, survival, and differentiation at multiple stages of B lymphopoiesis.

  20. Localization in Oogenesis of Maternal Regulators of Embryonic Development.

    Science.gov (United States)

    Escobar-Aguirre, Matias; Elkouby, Yaniv M; Mullins, Mary C

    2017-01-01

    Cell polarity generates intracellular asymmetries and functional regionalization in tissues and morphogenetic processes. Cell polarity in development often relies on mechanisms of RNA localization to specific subcellular domains to define the identity of future developing tissues. The totipotent egg of most animals illustrates in a grand way the importance of cell polarity and RNA localization in regulating multiple crucial developmental events. The polarization of the egg arises during its development in oogenesis. RNAs localize asymmetrically in the early oocyte defining its animal-vegetal (AV) axis, which upon further elaboration in mid- and late-oogenesis stages produces a mature egg with specific localized factors along its AV axis. These localized factors will define the future anterior-posterior (AP) and dorsal-ventral (DV) axes of the embryo. Furthermore, AV polarity confines germ cell determinants to the vegetal pole, from where they redistribute to the cleavage furrows of the 2- and 4-cell stage embryo, ultimately specifying the primordial germ cells (PGCs). The sperm entry region during fertilization is also defined by the AV axis. In frogs and fish, sperm enters through the animal pole, similar to the mouse where it enters predominantly in the animal half. Thus, AV polarity establishment and RNA localization are involved in all the major events of early embryonic development. In this chapter, we will review the RNA localization mechanisms in vertebrate oocytes that are key to embryonic patterning, referring to some of the groundbreaking studies in frog oocytes and incorporating the current genetic evidence from the zebrafish.

  1. Preliminary characterisation of Toxoplasma gondii isolates from Zimbabwe, with stage-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Hove, T.; Lind, Peter; Mukaratirwa, S.

    2005-01-01

    Cell-culture-derived clones of eight Toxoplasma gondii isolates from Zimbabwe were characterised in IFAT with a panel of five monoclonal antibodies (mAb). Each clone had been established from a single murine brain cyst. The antibodies were bradyzoite-specific (4.3), tachyzoite-specific (4.25, 5...

  2. Gender-specific differences in cancer-specific survival after radical cystectomy for patients with urothelial carcinoma of the urinary bladder in pathologic tumor stage T4a.

    Science.gov (United States)

    May, Matthias; Bastian, Patrick J; Brookman-May, Sabine; Fritsche, Hans-Martin; Tilki, Derya; Otto, Wolfgang; Bolenz, Christian; Gilfrich, Christian; Trojan, Lutz; Herrmann, Edwin; Moritz, Rudolf; Tiemann, Arne; Müller, Stefan C; Ellinger, Jörg; Buchner, Alexander; Stief, Christian G; Wieland, Wolf F; Höfner, Thomas; Hohenfellner, Markus; Haferkamp, Axel; Roigas, Jan; Zacharias, Mario; Nuhn, Philipp; Burger, Maximilian

    2013-10-01

    Bladder cancer (UCB) staged pT4a show heterogeneous outcome after radical cystectomy (RC). No risk model has been established to date. Despite gender-specific differences, no comparative studies exist for this tumor stage. Cancer-specific survival (CSS) of 245 UCB patients without neoadjuvant chemotherapy staged pT4a, pN0-2, M0 after RC were analyzed in a retrospective multi-center study. Seventeen patients were excluded from further analysis due to carcinoma in situ (CIS) of the prostatic urethra and/or positive surgical margins. Average follow-up period was 30 months (IQR: 14-45). The influence of different clinical and histopathologic variables on CSS was determined through uni- and multivariate Cox regression analyses. Two risk groups were generated using factors with independent effect in multivariate models. Internal validity of the prediction model was evaluated by bootstrapping. Eighty-four percent of the patients (n = 192) were male; 72% (n = 165) showed lymphovascular invasion (LVI). The 5-year CSS rate was 31%, and significantly different between male and female (35% vs. 15%, P = 0.003). Multivariate Cox regression modeling, female gender (HR = 1.83, P = 0.008), LVI (HR = 1.92, P = 0.005), and absence of adjuvant chemotherapy (HR = 0.61, P = 0.020) significantly worsened CSS. Two risk groups were generated using these 3 criteria, which differed significantly between each other in CSS (5-year-CSS: 46% vs. 12%, P < 0.001). The c-index value of the risk model was 0.61 (95% CI: 0.53-0.68, P < 0.001). Prognosis in UCB staged pT4a is heterogeneous. Female gender and LVI are adverse factors. Adjuvant chemotherapy seems to improve outcome. The present analysis establishes the first risk model for this demanding tumor stage. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Molecular Basis of Allele-Specific Efficacy of a Blood-Stage Malaria Vaccine: Vaccine Development Implications

    Science.gov (United States)

    Ouattara, Amed; Takala-Harrison, Shannon; Thera, Mahamadou A.; Coulibaly, Drissa; Niangaly, Amadou; Saye, Renion; Tolo, Youssouf; Dutta, Sheetij; Heppner, D. Gray; Soisson, Lorraine; Diggs, Carter L.; Vekemans, Johan; Cohen, Joe; Blackwelder, William C.; Dube, Tina; Laurens, Matthew B.; Doumbo, Ogobara K.; Plowe, Christopher V.

    2013-01-01

    The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02A, a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02A had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen. PMID:23204168

  4. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells

    OpenAIRE

    Györy, Ildiko; Boller, Sören; Nechanitzky, Robert; Mandel, Elizabeth; Pott, Sebastian; Liu, Edison; Grosschedl, Rudolf

    2012-01-01

    The transcription factor Ebf1 regulates early B lymphopoiesis by acting in a network with E2A and Pax5. However, the function of Ebf1 at later stages of differentiation in unclear. In this study, Grosschedl and colleagues investigate the role of Ebf1 in B lymphopoiesis by using conditional gene inactivation. The authors show that Ebf1 is required for proliferation and survival of pro-B and mature B cells. In addition, the proliferation defect of Ebf1fl/fl pro-B cells can be overcome by transf...

  5. Impaired embryonic development in mice overexpressing the RNA-binding protein TIAR.

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    Full Text Available BACKGROUND: TIA-1-related (TIAR protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs. Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. METHODOLOGY/PRINCIPAL FINDINGS: To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2alpha that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. CONCLUSIONS/SIGNIFICANCE: This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming.

  6. The contribution of ciliary neurotrophic factor receptors to adult motor neuron survival in vivo is specific to insult type and distinct from that for embryonic motor neurons.

    Science.gov (United States)

    Lee, Nancy; Rydyznski, Carolyn E; Spearry, Rachel P; Robitz, Rachel; Maclennan, A John

    2013-10-01

    Exogenous ciliary neurotrophic factor (CNTF) promotes motor neuron (MN) survival following trauma and in genetic models of MN disease. Unconditional disruption of the mouse CNTF receptor α (CNTFRα) gene leads to MN loss, demonstrating a developmental role for endogenous CNTF receptor signaling. These data also suggest that CNTF receptors may promote adult MN survival and that appropriately manipulating the receptors could effectively treat adult MN disorders. This effort would greatly benefit from a better understanding of the roles played by CNTF receptors in adult MNs. We have previously found that adult onset disruption of CNTFRα in facial MNs of "floxed CNTFRα" mice by AAV-Cre vector injection leads to significantly more MN loss than in identically treated controls. While indicating that CNTF receptors can promote adult MN survival, the data did not distinguish between potential roles in MN maintenance versus roles in protecting MNs from the injection associated trauma or the toxicity of the chronic Cre recombinase (Cre) produced by the AAV-Cre. Here we used an inducible Cre gene construct to produce adult-onset CNTFRα disruption in facial MNs without the traumatic and toxic effects of the AAV-Cre procedure. The MNs survive without CNTFRα, even when challenged by facial nerve crush or the injection-associated trauma, thereby suggesting, in conjunction with our previous study, that endogenous CNTF receptor signaling can protect MNs against toxic insult, such as that produced by chronic Cre. The data also indicate that in vivo CNTF receptors play very different roles in adult and embryonic MNs. © 2013 Wiley Periodicals, Inc.

  7. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.

    Directory of Open Access Journals (Sweden)

    Anubhav Srivastava

    2016-12-01

    Full Text Available Malaria parasites (Plasmodium spp. encounter markedly different (nutritional environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.

  8. Conflict-Specific Aging Effects Mainly Manifest in Early Information Processing Stages?An ERP Study with Different Conflict Types

    OpenAIRE

    Korsch, Margarethe; Fr?hholz, Sascha; Herrmann, Manfred

    2016-01-01

    Aging is usually accompanied by alterations of cognitive control functions such as conflict processing. Recent research suggests that aging effects on cognitive control seem to vary with degree and source of conflict, and conflict specific aging effects on performance measures as well as neural activation patterns have been shown. However, there is sparse information whether and how aging affects different stages of conflict processing as indicated by event related potentials (ERPs) such as t...

  9. Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp tritici

    Directory of Open Access Journals (Sweden)

    Han Qingmei

    2008-05-01

    Full Text Available Abstract Background Puccinia striiformis f. sp. tritici is an obligate biotrophic pathogen that causes leaf stripe rust on wheat. Although it is critical to understand molecular mechanisms of pathogenesis in the wheat stripe rust fungus for developing novel disease management strategies, little is known about its genome and gene functions due to difficulties in molecular studies with this important pathogen. To identify genes expressed during early infection stages, in this study we constructed a cDNA library with RNA isolated from urediniospores of P. striiformis f. sp. tritici germinated for 10 h. Results A total of 4798 ESTs were sequenced from the germinated urediniospore library and assembled into 315 contigs and 803 singletons. About 23.9% and 13.3% of the resulting 1118 unisequences were homologous to functionally characterized proteins and hypothetical proteins, respectively. The rest 62.8% unisequences had no significant homologs in GenBank. Several of these ESTs shared significant homology with known fungal pathogenicity or virulence factors, such as HESP767 of the flax rust and PMK1, GAS1, and GAS2 of the rice blast fungus. We selected six ESTs (Ps28, Ps85, Ps87, Ps259, Ps261, and Ps159 for assaying their expression patterns during urediniospore germination and wheat infection by quantitative real-time PCR. All of them had the highest transcript level in germinated urediniospores and a much less transcript level in un-germinated urediniospores and infected wheat tissues (1–7 dpi. The transcript level of Ps159 increased at later infection stages (6–7 dpi. Our data indicated that these genes were highly expressed in germinated urediniospores and may play important roles in fungal-plant interactions during early infection stages in the wheat stripe rust fungus. Conclusion Genes expressed in germinated urediniospores of P. striiformis f. sp. tritici were identified by EST analysis. Six of them were confirmed by quantitative real

  10. Sex-specific changes in thyroid gland function and circulating thyroid hormones in nestling American kestrels (Falco sparverius) following embryonic exposure to polybrominated diphenyl ethers by maternal transfer.

    Science.gov (United States)

    Fernie, Kim J; Marteinson, Sarah C

    2016-08-01

    High concentrations of polybrominated diphenyl ethers (PBDEs) accumulate in predatory birds. Several PBDE congeners are considered thyroid disruptors; however, avian studies are limited. The authors examined circulating thyroid hormones and thyroid gland function of nestling American kestrels (Falco sparverius) at 17 d to 20 d of age, following embryonic exposure by maternal transfer only to environmentally relevant levels of PBDEs (DE-71 technical mixture). Nestlings were exposed to in ovo sum (Σ) PBDE concentrations of 11 301 ± 95 ng/g wet weight (high exposure), 289 ± 33 ng/g wet weight (low exposure), or 3.0 ± 0.5 ng/g wet weight (controls, background exposure). Statistical comparisons are made to controls of the respective sexes and account for the relatedness of siblings within broods. Circulating concentrations of plasma total thyroxine (TT4 ) and total triiodothyronine (TT3 ) in female nestlings were significantly influenced overall by the exposure to DE-71. Following intramuscular administration of thyroid-stimulating hormone, the temporal response of the thyroid gland in producing and/or releasing TT4 was also significantly affected by the females' exposure to DE-71. The altered availability of T4 for conversion to T3 outside of the gland and/or changes in thyroid-related enzymatic activity may explain the lower TT3 concentrations (baseline, overall) and moderately altered temporal TT3 patterns (p = 0.06) of the treatment females. Controlling for the significant effect on TT3 levels of the delayed hatching of treatment females, baseline TT3 levels were significantly and positively correlated with body mass (10 d, 15 d, 20 d), with PBDE-exposed females generally being smaller and having lower TT3 concentrations. Given that exposure concentrations were environmentally relevant, similar thyroidal changes and associated thyroid-mediated processes relating to growth may also occur in wild female nestlings. Environ Toxicol Chem 2016

  11. Caracterização histológica do desenvolvimento hepático em diferentes estágios embrionários de ratos Histological characterization of the liver development at different embryonic stages of rats

    Directory of Open Access Journals (Sweden)

    Arthur Cássio de Lima Luna

    2013-06-01

    other domestic animals and human beings, thus a valid model for scientific studies. Among them, the F344 stands out for be isogenic, facilitating the reading of the results obtained because of their genetic homogeneity. Due to the lack of histological studies concerning hepatic development in rats, the present study aimed to characterize histologically for the first time the process of developing liver in the stages of gestation of E12.5 (12.5 days of gestation, E13.5, E14.5, E15.5 and E16.5 in rats F344. Five embryos of each embryonic stage were collected, fixed in Metacarn, embedded in Paraplast and then histological stains and histochemistry were performed. The hepatic bud of embryo among 12.5-14.5 days presented themselves a cluster of hepatoblasts still disorganized and surrounded by numerous nucleated blood precursor cells. It was observed that the hepatoblasts have a large nucleus basophilic with little cytoplasm. Sinusoids with erythroblasts and Kupffer cells also have been found. At 14.5 days it was observed the coexistence of hepatoblasts and hepatocytes. In the embryos with 15.5 days began the verify distinction between the cords of hepatocytes in formation limited by capillary sinusoids. Such cords began to converge for the present centrilobular veins. At 16.5 days the parenchymal architecture was nearer found in the adult liver, being the quantity of hepatocytes greater than hepatoblasts. During this gestation period the liver also had hematopoietic function. The study brings histologically the rats F344 hepatic development between 12.5-16.5 days, evidencing the cells that comprise each gestational period generating subsidies for future studies.

  12. Specification and Estimation of Production Functions Involving Damage Control Inputs: A Two-Stage, Semiparametric Approach

    NARCIS (Netherlands)

    Kuosmanen, T.K.; Pemsl, D.; Wesseler, J.H.H.

    2006-01-01

    Productivity assessment of damage control inputs (such as pesticides) is complicated because their effect depends on the exposure to damage agents (such as pests). We discuss some open specification and estimation issues. The contribution is threefold. First, we elaborate the separability conditions

  13. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Ahmed Kamel El-Sayed

    2014-11-01

    Full Text Available Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1 and Rex-1 (ZFP-42, zinc finger protein 42. Using embryonic stem cells (ESCs conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.

  14. The Evaluation Stage of the Specific Tourism Infrastructure and Tourist Flows- Chances to Revitalize Galati City

    Directory of Open Access Journals (Sweden)

    Iulian Adrian SORCARU

    2016-04-01

    Full Text Available The tourism potential (natural or anthropic and the evolution of tourist flows are amplified or restricted by the quality of specific tourism infrastructure. Certain urban settlements have a hidden tourism potential which can contribute, especially when local economic contraction occurs, to economic revitalization of the region. The main objective of this study is to evaluate objectively and comprehensively, the specific tourism infrastructure in Galati City according to the methodology described in national legislation, and establish the annual evolution tourist flows during 2001-2014 and monthly from 2010 to 2014. Another goal was to highlight the national and international determinants of the tourist flows in Galati City during the period mentioned above.

  15. BMP signaling regulates the fate of chondro-osteoprogenitor cells in facial mesenchyme in a stage-specific manner.

    Science.gov (United States)

    Celá, Petra; Buchtová, Marcela; Veselá, Iva; Fu, Kathy; Bogardi, Jean-Philippe; Song, Yiping; Barlow, Amanda; Buxton, Paul; Medalová, Jirina; Francis-West, Philippa; Richman, Joy M

    2016-09-01

    Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Quantitative proteomics links metabolic pathways to specific developmental stages of the plant-pathogenic oomycete Phytophthora capsici.

    Science.gov (United States)

    Pang, Zhili; Srivastava, Vaibhav; Liu, Xili; Bulone, Vincent

    2017-04-01

    The oomycete Phytophthora capsici is a plant pathogen responsible for important losses to vegetable production worldwide. Its asexual reproduction plays an important role in the rapid propagation and spread of the disease in the field. A global proteomics study was conducted to compare two key asexual life stages of P. capsici, i.e. the mycelium and cysts, to identify stage-specific biochemical processes. A total of 1200 proteins was identified using qualitative and quantitative proteomics. The transcript abundance of some of the enriched proteins was also analysed by quantitative real-time polymerase chain reaction. Seventy-three proteins exhibited different levels of abundance between the mycelium and cysts. The proteins enriched in the mycelium are mainly associated with glycolysis, the tricarboxylic acid (or citric acid) cycle and the pentose phosphate pathway, providing the energy required for the biosynthesis of cellular building blocks and hyphal growth. In contrast, the proteins that are predominant in cysts are essentially involved in fatty acid degradation, suggesting that the early infection stage of the pathogen relies primarily on fatty acid degradation for energy production. The data provide a better understanding of P. capsici biology and suggest potential metabolic targets at the two different developmental stages for disease control. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Can physics help to explain embryonic development? An overview.

    Science.gov (United States)

    Fleury, V

    2013-10-01

    Recent technical advances including digital imaging and particle image velocimetry can be used to extract the full range of embryonic movements that constitute the instantaneous 'morphogenetic fields' of a developing animal. The final shape of the animal results from the sum over time (integral) of the movements that make up the velocity fields of all the tissue constituents. In vivo microscopy can be used to capture the details of vertebrate development at the earliest embryonic stages. The movements thus observed can be quantitatively compared to physical models that provide velocity fields based on simple hypotheses about the nature of living matter (a visco-elastic gel). This approach has cast new light on the interpretation of embryonic movement, folding, and organisation. It has established that several major discontinuities in development are simple physical changes in boundary conditions. In other words, with no change in biology, the physical consequences of collisions between folds largely explain the morphogenesis of the major structures (such as the head). Other discontinuities result from changes in physical conditions, such as bifurcations (changes in physical behaviour beyond specific yield points). For instance, beyond a certain level of stress, a tissue folds, without any new gene being involved. An understanding of the physical features of movement provides insights into the levers that drive evolution; the origin of animals is seen more clearly when viewed under the light of the fundamental physical laws (Newton's principle, action-reaction law, changes in symmetry breaking scale). This article describes the genesis of a vertebrate embryo from the shapeless stage (round mass of tissue) to the development of a small, elongated, bilaterally symmetric structure containing vertebral precursors, hip and shoulder enlarges, and a head. Copyright © 2013. Published by Elsevier Masson SAS.

  18. Development of physiological resistance and its stage specificity in Culex quinquefasciatus after selection with deltamethrin in Assam, India

    Directory of Open Access Journals (Sweden)

    Manas Sarkar

    2009-08-01

    Full Text Available The study investigated the development and stage specificity of physiological resistance to insecticides in a colony of Culex quinquefasciatus Say (Diptera: Culicidae mosquitoes, which are vectors of bancroftian filariasis in India, after selection with deltamethrin. Resistance was selected by exposing the larvae to the concentration of deltamethrin that caused 50% mortality in the tested population (i.e., LC50. Under continuous selection pressure, the LC50 increased steadily in subsequent generations. The estimated LC50 for the F0 generation was 0.409 μg/L; the LC50 first displayed a substantial increase in the F5 generation (5.616 μg/L and reached 121.902 μg/L in the F10 generation. The objective of this study was to establish a deltamethrin-resistant colony to develop a research programme that will study the evolution of physiological resistance patterns and stage-specific resistance responses in Cx. quinquefasciatus larvae and adults under laboratory conditions. An approximately 298-fold increase in resistance was recorded after 10 generations, as evidenced by the resistance ratio (RR50. The progress and effect of the selection pressure in the adult stage was monitored with the World Health Organisation (WHO diagnostic test. The mortality, as observed using the WHO diagnostic test, declined significantly from the F5 generation (85% onwards and the highest rate of survival (65% was observed in the F10 generation.

  19. Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig

    International Nuclear Information System (INIS)

    Nascarella, Marc A.; Stoffolano, John G.; Stanek, Edward J.; Kostecki, Paul T.; Calabrese, Edward J.

    2003-01-01

    This is the first report of a heavy metal displaying a hormetic-like biphasic response for early developmental success, while at the same time displaying stage-specific toxicity at a later developmental stage. - Hormesis is an adaptive response, commonly characterized by a biphasic dose-response that can be either directly induced, or the result of compensatory biological processes following an initial disruption in homeostasis [Calabrese and Baldwin, Hum. Exp. Toxicol., 21 (2002), 91]. Low and environmentally relevant levels of dietary cadmium significantly enhanced the pupation rate of blowfly larvae, while higher doses inhibited pupation success. However, dietary cadmium at all exposure levels adversely affected the emergence of the adult fly from the pupal case. Such findings represent the first report of a heavy metal displaying a hormetic-like biphasic response for pupation success, while at the same time displaying stage-specific toxicity at a later developmental period. These conclusions are based on substantial experimentation of over 1750 blowflies, in seven replicate experiments, involving 10 concentrations per experiment. These findings indicate the need to assess the impact of environmental stressors over a broad range of potential exposures as well as throughout the entire life cycle

  20. Early post-cleavage stages and abnormalities identified in the ...

    African Journals Online (AJOL)

    Six early, post-cleavage embryonic stages for chokka squid Loligo vulgaris reynaudii eggs that were developed in an aquarium are identified and described, expanding the embryonic stages for this species from 14 to 20. The influence of water temperature on embryonic development is described. At temperatures  ...

  1. Hap2, a novel gene in Babesia bigemina is expressed in tick stages, and specific antibodies block zygote formation

    Directory of Open Access Journals (Sweden)

    Minerva Camacho-Nuez

    2017-11-01

    Full Text Available Abstract Background Bovine babesiosis is a tick-borne disease caused by the protozoan parasites of the genus Babesia. In their host vector, Babesia spp. undergo sexual reproduction. Therefore, the development of sexual stages and the subsequent formation of the zygote are essential for the parasite to invade the intestinal cells of the vector tick and continue its life-cycle. HAP2/GCS1 is a protein identified in plants, protozoan parasites and other organisms that has an important role during membrane fusion in fertilization processes. The identification and characterization of HAP-2 protein in Babesia would be very significant to understand the biology of the parasite and to develop a transmission-blocking vaccine in the future. Results To isolate and sequence the hap2 gene DNA from an infected bovine with Babesia bigemina was purified. The hap2 gene was amplified, cloned and sequenced. The sequences of hap2 from four geographically different strains showed high conservation at the amino acid level, including the typical structure with a signal peptide and the HAP2/GSC domain. Antisera anti-HAP2 against the conserved extracellular region of the HAP2 amino acid sequence were obtained from rabbits. The expression of hap2 in the host and vector tissues was analyzed by using semi-quantitative RT-PCR, and the protein was examined by western blot and immunofluorescence. Based on the RT-PCR and WB results, HAP2 is expressed in both, sexual stages induced in vitro, and in infected ticks as well. We did not detect any expression in asexual erythrocytic stages of B. bigemina, relevantly anti-HAP2 specific antibodies were able to block zygotes formation in vitro. Conclusion Babesia bigemina HAP2 is expressed only in tick-infecting stages, and specific antibodies block zygote formation. Further studies regarding the function of HAP2 during tick infection may provide new insights into the molecular mechanisms of sexual reproduction of the parasite.

  2. Hap2, a novel gene in Babesia bigemina is expressed in tick stages, and specific antibodies block zygote formation.

    Science.gov (United States)

    Camacho-Nuez, Minerva; Hernández-Silva, Diego Josimar; Castañeda-Ortiz, Elizabeth Jacqueline; Paredes-Martínez, María Elena; Rocha-Martínez, Marisol Karina; Alvarez-Sánchez, María Elizbeth; Mercado-Curiel, Ricardo Francisco; Aguilar-Tipacamu, Gabriela; Mosqueda, Juan

    2017-11-13

    Bovine babesiosis is a tick-borne disease caused by the protozoan parasites of the genus Babesia. In their host vector, Babesia spp. undergo sexual reproduction. Therefore, the development of sexual stages and the subsequent formation of the zygote are essential for the parasite to invade the intestinal cells of the vector tick and continue its life-cycle. HAP2/GCS1 is a protein identified in plants, protozoan parasites and other organisms that has an important role during membrane fusion in fertilization processes. The identification and characterization of HAP-2 protein in Babesia would be very significant to understand the biology of the parasite and to develop a transmission-blocking vaccine in the future. To isolate and sequence the hap2 gene DNA from an infected bovine with Babesia bigemina was purified. The hap2 gene was amplified, cloned and sequenced. The sequences of hap2 from four geographically different strains showed high conservation at the amino acid level, including the typical structure with a signal peptide and the HAP2/GSC domain. Antisera anti-HAP2 against the conserved extracellular region of the HAP2 amino acid sequence were obtained from rabbits. The expression of hap2 in the host and vector tissues was analyzed by using semi-quantitative RT-PCR, and the protein was examined by western blot and immunofluorescence. Based on the RT-PCR and WB results, HAP2 is expressed in both, sexual stages induced in vitro, and in infected ticks as well. We did not detect any expression in asexual erythrocytic stages of B. bigemina, relevantly anti-HAP2 specific antibodies were able to block zygotes formation in vitro. Babesia bigemina HAP2 is expressed only in tick-infecting stages, and specific antibodies block zygote formation. Further studies regarding the function of HAP2 during tick infection may provide new insights into the molecular mechanisms of sexual reproduction of the parasite.

  3. Function of JARID2 in bovines during early embryonic development

    Directory of Open Access Journals (Sweden)

    Yao Fu

    2017-12-01

    Full Text Available Histone lysine modifications are important epigenetic modifications in early embryonic development. JARID2, which is a member of the jumonji demethylase protein family, is a regulator of early embryonic development and can regulate mouse development and embryonic stem cell (ESC differentiation by modifying histone lysines. JARID2 can affect early embryonic development by regulating the methylation level of H3K27me3, which is closely related to normal early embryonic development. To investigate the expression pattern of JARID2 and the effect of JARID2-induced H3K27 methylation in bovine oocytes and early embryonic stages, JARID2 mRNA expression and localization were detected in bovine oocytes and early embryos via qRT-PCR and immunofluorescence in the present study. The results showed that JARID2 is highly expressed in the germinal vesicle (GV, MII, 2-cell, 4-cell, 8-cell, 16-cell and blastocyst stages, but the relative expression level of JARID2 in bovine GV oocytes is significantly lower than that at other oocyte/embryonic stages (p < 0.05, and JARID2 is expressed primarily in the nucleus. We next detected the mRNA expression levels of embryonic development-related genes (OCT4, SOX2 and c-myc after JARID2 knockdown through JARID2-2830-siRNA microinjection to investigate the molecularpathwayunderlying the regulation of H3K27me3 by JARID2 during early embryonic development. The results showed that the relative expression levels of these genes in 2-cell embryos weresignificantly higher than those in the blastocyst stage, and expression levels were significantly increased after JARID2 knockdown. In summary, the present study identified the expression pattern of JARID2 in bovine oocytes and at each early embryonic stage, and the results suggest that JARID2 plays a key role in early embryonic development by regulating the expression of OCT4, SOX2 and c-myc via modification of H3K27me3 expression. This work provides new data for improvements in the

  4. Influence of specific comorbidities on survival after early-stage breast cancer

    DEFF Research Database (Denmark)

    Ewertz, Marianne; Land, Lotte Holm; Dalton, Susanne Oksbjerg

    2018-01-01

    , and effect of medical adjuvant treatment among breast cancer patients suffering from 12 major comorbidities compared with breast cancer patients without comorbidities. MATERIAL AND METHODS: The study population was identified from the Danish Breast Cancer Cooperative Group and included 59,673 women without...... were used to assess the effect of comorbidities on mortality, all-cause and breast cancer specific, using patients without comorbidity as reference. RESULTS: At breast cancer diagnosis, 16% of patients had comorbidities and 84% did not. Compared with the latter, the risk of dying from all causes...... with a greater risk of dying than comorbidities diagnosed more than 5 years before breast cancer diagnosis. With a few exceptions, the effect of adjuvant treatment on breast cancer mortality was similar among patients with and without comorbidity. CONCLUSION: Breast cancer mortality was not significantly...

  5. Estimation of age- and stage-specific Catalan breast cancer survival functions using US and Catalan survival data

    Directory of Open Access Journals (Sweden)

    Marcos-Gragera Rafael

    2009-03-01

    Full Text Available Abstract Background During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain. Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89 and after (USA and Catalonia 1990–2001. Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion Our results suggest that access to better treatments and quality of care contributed to large improvements in

  6. Cloning and stage-specific expression of CK-M1 gene during metamorphosis of Japanese flounder, Paralichthys olivaceus

    Science.gov (United States)

    Chen, Yanjie; Zhang, Quanqi; Qi, Jie; Wang, Zhigang; Wang, Xubo; Sun, Yeying; Zhong, Qiwang; Li, Shuo; Li, Chunmei

    2010-05-01

    The symmetrical body of flatfish larvae changes dramatically into an asymmetrical form after metamorphosis. The molecular mechanisms responsible for this change are poorly understood. As an initial step to clarify these mechanisms, we used representational difference analysis of cDNA for the identification of genes active during metamorphosis in the Japanese flounder, Paralichthys olicaceus. One of the up-regulated genes was identified as creatine kinase muscle type 1 (CK-M1). Sequence analysis of CK-M1 revealed that it spanned 1 708 bp and encoded a protein of 382 amino acids. The overall amino acid sequence of the CK-M1 was highly conserved with those of other organisms. CK-M1 was expressed in adult fish tissues, including skeletal muscle, intestine and gill. Whole mount in-situ hybridization showed that the enhanced expression of CK-M1 expanded from the head to the whole body of larvae as metamorphosis progressed. Quantitative analysis revealed stage-specific high expression of CK-M1 during metamorphosis. The expression level of CK-M1 increased initially and peaked at metamorphosis, decreased afterward, and finally returned to the pre-metamorphosis level. This stage-specific expression pattern suggested strongly that CK-M1 was related to metamorphosis in the Japanese flounder. Its specific role in metamorphosis requires further study.

  7. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.

    Science.gov (United States)

    Glinsky, Gennadi V

    2018-03-01

    Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both

  8. Cancer-specific Relationship Awareness, Relationship Communication, and Intimacy Among Couples Coping with Early Stage Breast Cancer

    Science.gov (United States)

    Manne, Sharon L.; Siegel, Scott; Kashy, Deborah; Heckman, Carolyn J.

    2013-01-01

    If couples can maintain normalcy and quality in their relationship during the cancer experience, they may experience greater relational intimacy. Cancer-specific relationship awareness, which is an attitude defined as partners focusing on the relationship and thinking about how they might maintain normalcy and cope with cancer as a couple or “team”, is one factor that may help couples achieve this goal. The main aim of this study was to evaluate the associations between cancer-specific relationship awareness, cancer-specific communication (i.e., talking about cancer’s impact on the relationship, disclosure, and responsiveness to partner disclosure), and relationship intimacy and evaluate whether relationship communication mediated the association between relationship awareness and intimacy. Two hundred fifty four women diagnosed with early stage breast cancer and their partners completed measures of cancer-specific relationship awareness, relationship talk, self-and perceived partner disclosure, perceived partner responsiveness, and relationship intimacy. Results indicated that patients and spouses who were higher in cancer-specific relationship awareness engaged in more relationship talk, reported higher levels of self-disclosure, and perceived that their partner disclosed more. Their partners reported that they were more responsive to disclosures. Relationship talk and perceived partner responsiveness mediated the association between cancer–specific relationship awareness and intimacy. Helping couples consider ways they can maintain normalcy and quality during the cancer experience and framing coping with cancer as a “team” effort may facilitate better communication and ultimately enhance relationship intimacy. PMID:25242854

  9. Cancer-specific Relationship Awareness, Relationship Communication, and Intimacy Among Couples Coping with Early Stage Breast Cancer.

    Science.gov (United States)

    Manne, Sharon L; Siegel, Scott; Kashy, Deborah; Heckman, Carolyn J

    2014-05-01

    If couples can maintain normalcy and quality in their relationship during the cancer experience, they may experience greater relational intimacy. Cancer-specific relationship awareness, which is an attitude defined as partners focusing on the relationship and thinking about how they might maintain normalcy and cope with cancer as a couple or "team", is one factor that may help couples achieve this goal. The main aim of this study was to evaluate the associations between cancer-specific relationship awareness, cancer-specific communication (i.e., talking about cancer's impact on the relationship, disclosure, and responsiveness to partner disclosure), and relationship intimacy and evaluate whether relationship communication mediated the association between relationship awareness and intimacy. Two hundred fifty four women diagnosed with early stage breast cancer and their partners completed measures of cancer-specific relationship awareness, relationship talk, self-and perceived partner disclosure, perceived partner responsiveness, and relationship intimacy. Results indicated that patients and spouses who were higher in cancer-specific relationship awareness engaged in more relationship talk, reported higher levels of self-disclosure, and perceived that their partner disclosed more. Their partners reported that they were more responsive to disclosures. Relationship talk and perceived partner responsiveness mediated the association between cancer-specific relationship awareness and intimacy. Helping couples consider ways they can maintain normalcy and quality during the cancer experience and framing coping with cancer as a "team" effort may facilitate better communication and ultimately enhance relationship intimacy.

  10. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci

    Directory of Open Access Journals (Sweden)

    Salvatore Loguercio

    2018-03-01

    Full Text Available CCCTC-binding factor (CTCF is largely responsible for the 3D architecture of the genome, in concert with the action of cohesin, through the creation of long-range chromatin loops. Cohesin is hypothesized to be the main driver of these long-range chromatin interactions by the process of loop extrusion. Here, we performed ChIP-seq for CTCF and cohesin in two stages each of T and B cell differentiation and examined the binding pattern in all six antigen receptor (AgR loci in these lymphocyte progenitors and in mature T and B cells, ES cells, and fibroblasts. The four large AgR loci have many bound CTCF sites, most of which are only occupied in lymphocytes, while only the CTCF sites at the end of each locus near the enhancers or J genes tend to be bound in non-lymphoid cells also. However, despite the generalized lymphocyte restriction of CTCF binding in AgR loci, the Igκ locus is the only locus that also shows significant lineage-specificity (T vs. B cells and developmental stage-specificity (pre-B vs. pro-B in CTCF binding. We show that cohesin binding shows greater lineage- and stage-specificity than CTCF at most AgR loci, providing more specificity to the loops. We also show that the culture of pro-B cells in IL7, a common practice to expand the number of cells before ChIP-seq, results in a CTCF-binding pattern resembling pre-B cells, as well as other epigenetic and transcriptional characteristics of pre-B cells. Analysis of the orientation of the CTCF sites show that all sites within the large V portions of the Igh and TCRβ loci have the same orientation. This suggests either a lack of requirement for convergent CTCF sites creating loops, or indicates an absence of any loops between CTCF sites within the V region portion of those loci but only loops to the convergent sites at the D-J-enhancer end of each locus. The V region portions of the Igκ and TCRα/δ loci, by contrast, have CTCF sites in both orientations, providing many options for

  11. Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest.

    Science.gov (United States)

    Zhang, Wei; Rudolf, Volker H W; Ma, Chun-Sen

    2015-12-01

    The frequency and duration of periods with high temperatures are expected to increase under global warming. Thus, even short-lived organisms are increasingly likely to experience periods of hot temperatures at some point of their life-cycle. Despite recent progress, it remains unclear how various temperature experiences during the life-cycle of organisms affect demographic traits. We simulated hot days (daily mean temperature of 30 °C) increasingly experienced under field conditions and investigated how the timing and duration of such hot days during the life cycle of Plutella xylostella affects adult traits. We show that hot days experienced during some life stages (but not all) altered adult lifespan, fecundity, and oviposition patterns. Importantly, the effects of hot days were contingent on which stage was affected, and these stage-specific effects were not always additive. Thus, adults that experience different temporal patterns of hot periods (i.e., changes in timing and duration) during their life-cycle often had different demographic rates and reproductive patterns. These results indicate that we cannot predict the effects of current and future climate on natural populations by simply focusing on changes in the mean temperature. Instead, we need to incorporate the temporal patterns of heat events relative to the life-cycle of organisms to describe population dynamics and how they will respond to future climate change.

  12. Efficient femtosecond driven SOX 17 delivery into mouse embryonic stem cells: differentiation studies

    Science.gov (United States)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Lemboumba, Satuurnin Ombinda; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Embryonic stem cells have great promise in regenerative medicine because of their ability to self-renew and differentiate into various cell types. Delivery of therapeutic genes into cells has already been achieved using of chemical agents and viral vectors with high transfection efficiencies. However, these methods have also been documented as toxic and in the latter case they can cause latent cell infections. In this study we use femtosecond laser pulses to optically deliver genetic material in mouse embryonic stem cells. Femtosecond laser pulses in contrast to the conventional approach, minimises the risk of unwanted side effects because photons are used to create transient pores on the membrane which allow free entry of molecules with no need for delivery agents. Using an Olympus microscope, fluorescence imaging of the samples post irradiation was performed and decreased expression of stage specific embryonic antigen one (SSEA-1) consistent with on-going cellular differentiation was observed. Our results also show that femtosecond laser pulses were effective in delivering SOX 17 plasmid DNA (pSOX17) which resulted in the differentiation of mouse embryonic stem cells into endoderm cells. We thus concluded that laser transfection of stem cells for the purpose of differentiation, holds potential for applications in tissue engineering as a method of generating new cell lines.

  13. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis

    Science.gov (United States)

    2015-01-01

    The procedure of neurogenesis has made numerous achievements in the past decades, during which various molecular biomarkers have been emerging and have been broadly utilized for the investigation of embryonic and adult neural stem cell (NSC). Nevertheless, there is not a consistent and systematic illustration to depict the functional characteristics of the specific markers expressed in distinct cell types during the different stages of neurogenesis. Here we gathered and generalized a series of NSC biomarkers emerging during the procedures of embryonic and adult neural stem cell, which may be used to identify the subpopulation cells with distinguishing characters in different timeframes of neurogenesis. The identifications of cell patterns will provide applications to the detailed investigations of diverse developmental cell stages and the extents of cell differentiation, which will facilitate the tracing of cell time-course and fate determination of specific cell types and promote the further and literal discoveries of embryonic and adult neurogenesis. Meanwhile, via the utilization of comprehensive applications under the aiding of the systematic knowledge framework, researchers may broaden their insights into the derivation and establishment of novel technologies to analyze the more detailed process of embryogenesis and adult neurogenesis. PMID:26421301

  14. Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis.

    Science.gov (United States)

    Lin, Y; Schiefelbein, J

    2001-10-01

    A position-dependent pattern of epidermal cell types is produced during the development of the Arabidopsis seedling root and hypocotyl. To understand the origin and regulation of this patterning mechanism, we have examined the embryonic expression of the GLABRA2 (GL2) gene, which encodes a cell-type-specific transcription factor. Using in situ RNA hybridization and a sensitive GL2::GFP reporter, we discovered that a position-dependent pattern of GL2 expression is established within protodermal cells at the heart stage and is maintained throughout the remainder of embryogenesis. In addition, we show that an exceptional GL2 expression character and epidermal cell pattern arises during development of the root-hypocotyl junction, which represents an anatomical transition zone. Furthermore, we find that two of the genes regulating seedling epidermal patterning, TRANSPARENT TESTA GLABRA (TTG) and WEREWOLF (WER), also control the embryonic GL2 pattern, whereas the CAPRICE (CPC) and GL2 genes are not required to establish this pattern. These results indicate that position-dependent patterning of epidermal cell types begins at an early stage of embryogenesis, before formation of the apical meristems and shortly after the cellular anatomy of the protoderm and outer ground tissue layer is established. Thus, epidermal cell specification in the Arabidopsis seedling relies on the embryonic establishment of a patterning mechanism that is perpetuated postembryonically.

  15. Embryonic epithelial membrane transporters.

    Science.gov (United States)

    Horster, M

    2000-12-01

    Embryonic epithelial membrane transporters are organized into transporter families that are functional in several epithelial organs, namely, in kidney, lung, pancreas, intestine, and salivary gland. Family members (subtypes) are developmentally expressed in plasma membranes in temporospatial patterns that are 1) similar for one subtype within different organs, like aquaporin-1 (AQP1) in lung and kidney; 2) different between subtypes within the same organ, like the amiloride-sensitive epithelial sodium channel (ENaC) in lung; and 3) apparently matched among members of different transporter families, as alpha-ENaC with AQP1 and -4 in lung and with AQP2 in kidney. Finally, comparison of temporal expression patterns in early embryonic development of transporters from different families [e.g., cystic fibrosis transmembrane conductance regulator (CFTR), ENaC, and outer medullary potassium channel] suggests regulatory activating or inactivating interactions in defined morphogenic periods. This review focuses on embryonic patterns, at the mRNA and immunoprotein level, of the following transporter entities expressed in epithelial cell plasma membranes: ENaC; the chloride transporters CFTR, ClC-2, bumetanide-sensitive Na-K-Cl cotransporter, Cl/OH, and Cl/HCO(3); the sodium glucose transporter-glucose transporter; the sodium/hydrogen exchanger; the sodium-phosphate cotransporter; the ATPases; and AQP. The purpose of this article is to relate temporal and spatial expression patterns in embryonic and in early postnatal epithelia to developmental changes in organ structure and function.

  16. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  17. Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay.

    Directory of Open Access Journals (Sweden)

    Raymond Wilson

    2010-09-01

    Full Text Available The binding of Leishmania promastigotes to the midgut epithelium is regarded as an essential part of the life-cycle in the sand fly vector, enabling the parasites to persist beyond the initial blood meal phase and establish the infection. However, the precise nature of the promastigote stage(s that mediate binding is not fully understood.To address this issue we have developed an in vitro gut binding assay in which two promastigote populations are labelled with different fluorescent dyes and compete for binding to dissected sand fly midguts. Binding of procyclic, nectomonad, leptomonad and metacyclic promastigotes of Leishmania infantum and L. mexicana to the midguts of blood-fed, female Lutzomyia longipalpis was investigated. The results show that procyclic and metacyclic promastigotes do not bind to the midgut epithelium in significant numbers, whereas nectomonad and leptomonad promastigotes both bind strongly and in similar numbers. The assay was then used to compare the binding of a range of different parasite species (L. infantum, L. mexicana, L. braziliensis, L. major, L. tropica to guts dissected from various sand flies (Lu. longipalpis, Phlebotomus papatasi, P. sergenti. The results of these comparisons were in many cases in line with expectations, the natural parasite binding most effectively to its natural vector, and no examples were found where a parasite was unable to bind to its natural vector. However, there were interesting exceptions: L. major and L. tropica being able to bind to Lu. longipalpis better than L. infantum; L. braziliensis was able to bind to P. papatasi as well as L. major; and significant binding of L. major to P. sergenti and L. tropica to P. papatasi was observed.The results demonstrate that Leishmania gut binding is strictly stage-dependent, is a property of those forms found in the middle phase of development (nectomonad and leptomonad forms, but is absent in the early blood meal and final stages (procyclic

  18. Embryonal sarcoma of the liver: case report

    International Nuclear Information System (INIS)

    Moreno, Luz A; Garzon C, Julian G; Montoya Ruben D; Murcia Susana

    2009-01-01

    Embryonal hepatic sarcoma occupies the third place in frequency among hepatic tumors in the pediatric population. Its clinical symptoms are usually non specific, and its appearance in diagnostic images is of a solid mass with a cystic component. Even though a histological confirmation is necessary, the initial management is oriented based on the imaging findings. This article presents a case report of a 9 year old girl with the diagnosis of an embryonal hepatic sarcoma; a description is done of the main clinical, histological and imaging characteristics.

  19. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage II microsatellite stable colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Sofia B Gustafsson

    Full Text Available BACKGROUND: There is good evidence in the literature that the cannabinoid system is disturbed in colorectal cancer. In the present study, we have investigated whether CB(1 receptor immunoreactive intensity (CB(1IR intensity is associated with disease severity and outcome. METHODOLOGY/PRINCIPAL FINDINGS: CB(1IR was assessed in formalin-fixed, paraffin-embedded specimens collected with a consecutive intent during primary tumour surgical resection from a series of cases diagnosed with colorectal cancer. Tumour centre (n = 483 and invasive front (n = 486 CB(1IR was scored from 0 (absent to 3 (intense staining and the data was analysed as a median split i.e. CB(1IR <2 and ≥2. In microsatellite stable, but not microsatellite instable tumours (as adjudged on the basis of immunohistochemical determination of four mismatch repair proteins, there was a significant positive association of the tumour grade with the CB(1IR intensity. The difference between the microsatellite stable and instable tumours for this association of CB(1IR was related to the CpG island methylation status of the cases. Cox proportional hazards regression analyses indicated a significant contribution of CB(1IR to disease-specific survival in the microsatellite stable tumours when adjusting for tumour stage. For the cases with stage II microsatellite stable tumours, there was a significant effect of both tumour centre and front CB(1IR upon disease specific survival. The 5 year probabilities of event-free survival were: 85±5 and 66±8%; tumour interior, 86±4% and 63±8% for the CB(1IR<2 and CB(1IR≥2 groups, respectively. CONCLUSIONS/SIGNIFICANCE: The level of CB(1 receptor expression in colorectal cancer is associated with the tumour grade in a manner dependent upon the degree of CpG hypermethylation. A high CB(1IR is indicative of a poorer prognosis in stage II microsatellite stable tumour patients.

  20. Hypoxia Inducible Factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency

    Science.gov (United States)

    Mathieu, Julie; Zhou, Wenyu; Xing, Yalan; Sperber, Henrik; Ferreccio, Amy; Agoston, Zsuzsa; Kuppusamy, Kavitha T; Moon, Randall T; Ruohola-Baker, Hannele

    2014-01-01

    SUMMARY Pluripotent stem cells have distinct metabolic requirements, and reprogramming cells to pluripotency requires a shift from oxidative to glycolytic metabolism. Here, we show that this shift occurs early during reprogramming of human cells and requires Hypoxia Inducible Factors in a stage-specific manner. HIF1α and HIF2α are both necessary to initiate this metabolic switch and for acquisition of pluripotency, and stabilization of either protein during early phases of reprogramming is sufficient to induce the switch to glycolytic metabolism. In contrast, stabilization of HIF2α during later stages represses reprogramming, due at least in part to up-regulation of TNF-related apoptosis-inducing ligand (TRAIL). TRAIL inhibits iPSC generation by repressing apoptotic caspase 3 activity specifically in cells undergoing reprogramming, but not hESCs, and inhibiting TRAIL activity enhances hiPSC generation. These results shed light on the mechanisms underlying the metabolic shifts associated with acquisition of a pluripotent identity during reprogramming. PMID:24656769

  1. Different patterns in the prognostic value of age for bladder cancer-specific survival depending on tumor stages.

    Science.gov (United States)

    Feng, Huan; Zhang, Wei; Li, Jiajun; Lu, Xiaozhe

    2015-01-01

    To compare the pathological features and long-term survival of bladder cancer (BCa) in young patients with elderly counterparts. Using the U.S. National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) population-based data, we identified 93115 patients with non-metastatic bladder cancer diagnosed between 1988 and 2003. Patients were categorized into young (50 years and under) and elderly groups (over 50 years of age). The overall and five-year bladder cancer specific survival (BCSS) data were obtained using Kaplan-Meier plots. Multivariable Cox regression models were built for the analysis of long-term survival outcomes and risk factors. There were significant differences between the two groups in primary site, pathologic grading, histologic type, AJCC stage (pstage patients. The study findings show different patterns in the prognostic value of age for determining BCSS, depending on the tumor stages. Compared with elderly patients, young patients with bladder cancer surgery appear to have unique characteristics and a higher overall and cancer specific survival rate.

  2. Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues.

    Science.gov (United States)

    Pullman, Gerald S; Buchanan, Mike

    2008-07-01

    Stage-specific analyses of starch and 18 sugars, including pentoses, hexoses, disaccharides, trisaccharides, oligosaccharides and sugar alcohols, were made throughout seed development for zygotic embryo and female gametophyte (FG) tissues of loblolly pine (Pinus taeda L.). Tissue was most often analyzed in triplicate from two open-pollinated families grown in different locations and sampled in different years. Carbohydrates were analyzed by enzymatic assay, high performance liquid chromatography or gas chromatography/mass spectrometry. For all carbohydrates quantified, peak concentrations were higher in embryo tissue than in FG tissue. Significant changes in starch and sugar concentrations occurred over time, with both seed collections showing similar trends in temporal changes. Although concentrations were not always similar, embryo and FG tissues generally showed similar patterns of change in starch and sugar concentrations over time. Total starch concentration was highest during early seed development and decreased as development progressed. The major sugars contributing to osmotic potential during early seed development were D-pinitol, sucrose, fructose and glucose. During mid-seed development, D-pinitol, sucrose, fructose, glucose, melibiose and raffinose provided major contributions to the osmotic environment. During late seed development, sucrose, raffinose, melibiose, stachyose and fructose were the major contributors to osmotic potential. These data suggest stage-specific media composition for each step in the somatic embryogenesis protocol.

  3. The autonomous cell fate specification of basal cell lineage: the initial round of cell fate specification occurs at the two-celled proembryo stage.

    Science.gov (United States)

    Qu, Liang-Huan; Zhou, Xuemei; Li, Xinbo; Li, Shi-Sheng; Zhao, Jing; Zhao, Peng; Liu, Yuan; Sun, Meng-Xiang

    2017-09-01

    In angiosperms, the first zygotic division usually gives rise to two daughter cells with distinct morphologies and developmental fates, which is critical for embryo pattern formation; however, it is still unclear when and how these distinct cell fates are specified, and whether the cell specification is related to cytoplasmic localization or polarity. Here, we demonstrated that when isolated from both maternal tissues and the apical cell, a single basal cell could only develop into a typical suspensor, but never into an embryo in vitro. Morphological, cytological and gene expression analyses confirmed that the resulting suspensor in vitro is highly similar to its undisturbed in vivo counterpart. We also demonstrated that the isolated apical cell could develop into a small globular embryo, both in vivo and in vitro, after artificial dysfunction of the basal cell; however, these growing apical cell lineages could never generate a new suspensor. These findings suggest that the initial round of cell fate specification occurs at the two-celled proembryo stage, and that the basal cell lineage is autonomously specified towards the suspensor, implying a polar distribution of cytoplasmic contents in the zygote. The cell fate transition of the basal cell lineage to the embryo in vivo is actually a conditional cell specification process, depending on the developmental signals from both the apical cell lineage and maternal tissues connected to the basal cell lineage. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    Science.gov (United States)

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  5. Does the oviparity-viviparity transition alter the partitioning of yolk in embryonic snakes?

    Science.gov (United States)

    Wu, Yan-Qing; Qu, Yan-Fu; Wang, Xue-Ji; Gao, Jian-Fang; Ji, Xiang

    2017-11-29

    The oviparity-viviparity transition is a major evolutionary event, likely altering the reproductive process of the organisms involved. Residual yolk, a portion of yolk remaining unutilized at hatching or birth as parental investment in care, has been investigated in many oviparous amniotes but remained largely unknown in viviparous species. Here, we used data from 20 (12 oviparous and 8 viviparous) species of snakes to see if the oviparity-viviparity transition alters the partitioning of yolk in embryonic snakes. We used ANCOVA to test whether offspring size, mass and components at hatching or birth differed between the sexes in each species. We used both ordinary least squares and phylogenetic generalized least squares regressions to test whether relationships between selected pairs of offspring components were significant. We used phylogenetic ANOVA to test whether offspring components differed between oviparous and viviparous species and, more specifically, the hypothesis that viviparous snakes invest more in the yolk as parental investment in embryogenesis to produce more well developed offspring that are larger in linear size. In none of the 20 species was sex a significant source of variation in any offspring component examined. Newborn viviparous snakes on average contained proportionally more water and, after accounting for body dry mass, had larger carcasses but smaller residual yolks than did newly hatched oviparous snakes. The rates at which carcass dry mass (CDM) and fat body dry mass (FDM) increased with residual yolk dry mass (YDM) did not differ between newborn oviparous and viviparous snakes. Neither CDM nor FDM differed between newborn oviparous and viviparous snakes after accounting for YDM. Our results are not consistent with the hypothesis that the partitioning of yolk between embryonic and post-embryonic stages differs between snakes that differ in parity mode, but instead show that the partitioning of yolk in embryonic snakes is species-specific

  6. Cloning and expression analyses of mouse dystroglycan gene: specific expression in maternal decidua at the peri-implantation stage.

    Science.gov (United States)

    Yotsumoto, S; Fujiwara, H; Horton, J H; Mosby, T A; Wang, X; Cui, Y; Ko, M S

    1996-09-01

    While constructing a catalog of mouse cDNAs which are expressed in the maternal-fetal interface during the peri-implantation period, we encountered a 1.6 kb cDNA clone showing a strong sequence similarity to the 3' untranslated region of the human dystroglycan gene. We cloned an additional 1.7 kb cDNA by reverse transcriptase-PCR (RT-PCR) and confirmed that this is a true mouse homolog of human dystroglycan cDNA by sequence analyses, Southern blotting, and genetic mapping of this gene on the distal region of mouse chromosome 9. Although it is well established that dystroglycan, a transmembrane protein, plays an important role in muscle tissues by bridging intracellular dystrophin to the laminin in the extracellular matrix, its role in non-muscle tissues remains elusive. To further investigate the role of the dystroglycan gene at the peri-implantation stage, we analyzed the expression patterns of this gene by in situ hybridization, which revealed that this gene is specifically expressed in decidual cells, especially in the cells surrounding the implantation site at 6.5, 7.5, and 8.5 day post conception (p.c.) stages, but not expressed in non-pregnant endometrial cells of uterus nor in the decidua at 12.5 day p.c. Further analyses by RT-PCR confirmed that the amount of dystroglycan mRNA in 8.5 day p.c. decidua was indeed 100-fold higher than that of non-pregnant uterus and 12.5 day p.c. mature placenta. These results suggest that dystroglycan may work as a mediator for adhesion between decidual cells themselves or between decidual cells and trophoblast cells, and provide a structural and functional support for maintaining pregnancy at its early stage.

  7. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sasisekhar Bennuru

    Full Text Available Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf, L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs in the available databases. Moreover, this analysis was able to confirm the presence of 274 "hypothetical" proteins inferred from gene prediction algorithms applied to the B. malayi (Bm genome. Not surprisingly, the majority (160/274 of these "hypothetical" proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase, MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host-parasite interaction.

  8. Proteome profiling in murine models of multiple sclerosis: identification of stage specific markers and culprits for tissue damage.

    Directory of Open Access Journals (Sweden)

    Ralf A Linker

    Full Text Available The identification of new biomarkers is of high interest for the prediction of the disease course and also for the identification of pathomechanisms in multiple sclerosis (MS. To specify markers of the chronic disease phase, we performed proteome profiling during the later phase of myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, day 35 after immunization as a model disease mimicking many aspects of secondary progressive MS. In comparison to healthy controls, high resolution 2 dimensional gel electrophoresis revealed a number of regulated proteins, among them glial fibrilary acidic protein (GFAP. Phase specific up-regulation of GFAP in chronic EAE was confirmed by western blotting and immunohistochemistry. Protein levels of GFAP were also increased in the cerebrospinal fluid of MS patients with specificity for the secondary progressive disease phase. In a next step, proteome profiling of an EAE model with enhanced degenerative mechanisms revealed regulation of alpha-internexin, syntaxin binding protein 1, annexin V and glutamate decarboxylase in the ciliary neurotrophic factor (CNTF knockout mouse. The identification of these proteins implicate an increased apoptosis and enhanced axonal disintegration and correlate well the described pattern of tissue injury in CNTF -/- mice which involve oligodendrocyte (OL apoptosis and axonal injury.In summary, our findings underscore the value of proteome analyses as screening method for stage specific biomarkers and for the identification of new culprits for tissue damage in chronic autoimmune demyelination.

  9. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  10. Gravity and embryonic development

    Science.gov (United States)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  11. Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi: a review

    Directory of Open Access Journals (Sweden)

    Patricia R Araújo

    2011-05-01

    Full Text Available Trypanosoma cruzi, a protozoan parasite that causes Chagas disease, exhibits unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes, RNA editing and trans-splicing. In the absence of mechanism controlling transcription initiation, organized subsets of T. cruzi genes must be post-transcriptionally co-regulated in response to extracellular signals. The mechanisms that regulate stage-specific gene expression in this parasite have become much clearer through sequencing its whole genome as well as performing various proteomic and microarray analyses, which have demonstrated that at least half of the T. cruzi genes are differentially regulated during its life cycle. In this review, we attempt to highlight the recent advances in characterising cis and trans-acting elements in the T. cruzi genome that are involved in its post-transcriptional regulatory machinery.

  12. Conflict-Specific Aging Effects Mainly Manifest in Early Information Processing Stages-An ERP Study with Different Conflict Types.

    Science.gov (United States)

    Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred

    2016-01-01

    Aging is usually accompanied by alterations of cognitive control functions such as conflict processing. Recent research suggests that aging effects on cognitive control seem to vary with degree and source of conflict, and conflict specific aging effects on performance measures as well as neural activation patterns have been shown. However, there is sparse information whether and how aging affects different stages of conflict processing as indicated by event related potentials (ERPs) such as the P2, N2 and P3 components. In the present study, 19 young and 23 elderly adults performed a combined Flanker conflict and stimulus-response-conflict (SRC) task. Analysis of the reaction times (RTs) revealed an increased SRC related conflict effect in elderly. ERP analysis furthermore demonstrated an age-related increase of the P2 amplitude in response to the SRC task. In addition, elderly adults exhibited an increased P3 amplitude modulation induced by incongruent SRC and Flanker conflict trials.

  13. A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice.

    Directory of Open Access Journals (Sweden)

    Jing He

    Full Text Available The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX, but not male (XY human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/- mouse as a model for understanding BOLL function during human oogenesis.

  14. A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice.

    Science.gov (United States)

    He, Jing; Stewart, Kayleigh; Kinnell, Hazel L; Anderson, Richard A; Childs, Andrew J

    2013-01-01

    The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL) that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX), but not male (XY) human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/-) mouse as a model for understanding BOLL function during human oogenesis.

  15. Differentiation of embryonic stem cells towards hematopoietic cells: progress and pitfalls.

    Science.gov (United States)

    Tian, Xinghui; Kaufman, Dan S

    2008-07-01

    Hematopoietic development from embryonic stem cells has been one of the most productive areas of stem cell biology. Recent studies have progressed from work with mouse to human embryonic stem cells. Strategies to produce defined blood cell populations can be used to better understand normal and abnormal hematopoiesis, as well as potentially improve the generation of hematopoietic cells with therapeutic potential. Molecular profiling, phenotypic and functional analyses have all been utilized to demonstrate that hematopoietic cells derived from embryonic stem cells most closely represent a stage of hematopoiesis that occurs at embryonic/fetal developmental stages. Generation of hematopoietic stem/progenitor cells comparable to hematopoietic stem cells found in the adult sources, such as bone marrow and cord blood, still remains challenging. However, genetic manipulation of intrinsic factors during hematopoietic differentiation has proven a suitable approach to induce adult definitive hematopoiesis from embryonic stem cells. Concrete evidence has shown that embryonic stem cells provide a powerful approach to study the early stage of hematopoiesis. Multiple hematopoietic lineages can be generated from embryonic stem cells, although most of the evidence suggests that hematopoietic development from embryonic stem cells mimics an embryonic/fetal stage of hematopoiesis.

  16. Estagiamento de embriões de Macrobrachium olfersi (Wiegman (Crustacea, Palaemonidae através de critérios morfológicos nos dias embrionários Macrobrachium olfersi (Wiegman (Crustacea, Palaemonidae embryo staging through morphological landmarks identified in each embryonic day

    Directory of Open Access Journals (Sweden)

    Marcos S. Simões-Costa

    2005-06-01

    was characterized through daily staging system. Living and fixed embryos were analyzed (48x in intervals of 24 hours (embryonic day. The eye index was calculated in each embryonic day from the appearance of the eye pigmentation. The development of M. olfersi was described in 14 embryonic days (E, where the cleavage, gastrulation, germinal disk and egg nauplius are developed from E1 to E4. The subsequent days were characterized by the growth of the egg nauplius, as well by the formation and the bent of the post-nauplius. At E7, the eye pigmentation appeared and was followed by the beginning of heartbeats at E8. From E9 to E14, more intensive organogenesis processes occurred, mainly on the nervous, cardiac and digestive systems. The daily staging of development of M. olfersi development enabled the recognition of different embryonic forms, as well as growth and differentiation rhythms of embryo, which were fundamental to the gradual formation of the body plan.

  17. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  18. Foxc2CreERT2knock-in mice mark stage-specific Foxc2-expressing cells during mouse organogenesis.

    Science.gov (United States)

    Amin, Mohammed Badrul; Miura, Naoyuki; Uddin, Mohammad Khaja Mafij; Islam, Mohammod Johirul; Yoshida, Nobuaki; Iseki, Sachiko; Kume, Tsutomu; Trainor, Paul A; Saitsu, Hirotomo; Aoto, Kazushi

    2017-01-01

    Foxc2, a member of the winged helix transcription factor family, is essential for eye, calvarial bone, cardiovascular and kidney development in mice. Nevertheless, how Foxc2-expressing cells and their descendent cells contribute to the development of these tissues and organs has not been elucidated. Here, we generated a Foxc2 knock-in (Foxc2 CreERT2 ) mouse, in which administration of estrogen receptor antagonist tamoxifen induces nuclear translocation of Cre recombinase in Foxc2-expressing cells. By crossing with ROSA-LacZ reporter mice (Foxc2 CreERT2 ; R26R), the fate of Foxc2 positive (Foxc2 + ) cells was analyzed through LacZ staining at various embryonic stages. We found Foxc2 + cell descendants in the supraoccipital and exoccipital bone in E18.5 embryos, when tamoxifen was administered at embryonic day (E) 8.5. Furthermore, Foxc2 + descendant cranial neural crest cells at E8-10 were restricted to the corneal mesenchyme, while Foxc2 + cell derived cardiac neural crest cells at E6-12 were found in the aorta, pulmonary trunk and valves, and endocardial cushions. Foxc2 + cell descendant contributions to the glomerular podocytes in the kidney were also observed following E6.5 tamoxifen treatment. Our results are consistent with previous reports of Foxc2 expression during early embryogenesis and the Foxc2 CreERT2 mouse provides a tool to investigate spatiotemporal roles of Foxc2 and contributions of Foxc2 + expressing cells during mouse embryogenesis. © 2016 Japanese Teratology Society.

  19. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Viteri Santiago

    2010-12-01

    Full Text Available Abstract Background Immunohistochemistry (IHC with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93% patients with exon 21 EGFR mutations (all with L858R but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients.

  20. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    Energy Technology Data Exchange (ETDEWEB)

    Jambaldorj, Jamiyansuren [Department of Pharmacology, Institute of Health Biosciences, Graduate School, The University of Tokushima, Tokushima 770-8503 (Japan); Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar (Mongolia); Makino, Satoshi, E-mail: smakino@genetix-h.com [Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192 (Japan); Munkhbat, Batmunkh [Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar (Mongolia); Tamiya, Gen [Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.

  1. Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division

    KAUST Repository

    An, Xiaomeng

    2017-06-21

    Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.

  2. Specific Barriers and Drivers in Different Stages of Decision-Making about Energy Efficiency Upgrades in Private Homes.

    Science.gov (United States)

    Klöckner, Christian A; Nayum, Alim

    2016-01-01

    Energy efficiency upgrades of privately owned homes like adding to the insulation layers in the walls, roof or floor, or replacing windows with more efficiently insulated versions can contribute significantly to reducing the energy impact of the building sector and thus also the CO2 footprint of a household. However, even in countries like Norway that have a rather high rate of renovation, energy upgrades are not always integrated into such a refurbishment project. This study tests which structural and internal psychological barriers hinder and which drivers foster decision-making to implement such measures, once a renovation project is planned. With a theoretical background in stage-based models of decision-making 24 barriers and drivers were tested for their specific effect in the stages of decision-making. The four stages of decision-making assumed in this study were (1) "not being in a decision mode," (2) "deciding what to do," (3) "deciding how to do it," and (4) "planning implementation." Based on an online survey of 3787 Norwegian households, it was found that the most important barriers toward deciding to implement energy efficiency upgrades were not owning the dwelling and feeling the right time had not come yet. The most important drivers of starting to decide were higher expected comfort levels, better expected living conditions, and an expected reduction of energy costs. For the transition from deciding what to do to how to do it, not managing to make a decision and feeling the right point in time has not come yet were the strongest barriers, easily accessible information and an expected reduction of energy costs were the most important drivers. The final transition from deciding how to do the upgrades to planning implementation was driven by expecting a payoff within a reasonable time frame and higher expected comfort levels; the most important barriers were time demands for supervising contractors and-again-a feeling that the right point in time has

  3. Specific barriers and drivers in different stages of decision-making about energy efficiency upgrades in private homes

    Directory of Open Access Journals (Sweden)

    Christian Andreas Klöckner

    2016-09-01

    Full Text Available Energy efficiency upgrades of privately owned homes like adding to the insulation layers in the walls, roof or floor, or replacing windows with more efficiently insulated versions can contribute significantly to reducing the energy impact of the building sector and thus also the CO2 footprint of a household. However, even in countries like Norway that have a rather high rate of renovation, energy upgrades are not always integrated into such a refurbishment project. This study tests which structural and internal psychological barriers hinder and which drivers foster decision-making to implement such measures, once a renovation project is planned. With a theoretical background in stage-based models of decision-making 24 barriers and drivers were tested for their specific effect in the stages of decision-making. The four stages of decision-making assumed in this study were (1 not being in a decision mode, (2 deciding what to do, (3 deciding how to do it, and (4 planning implementation. Based on an online survey of 3,787 Norwegian households, it was found that the most important barriers towards deciding to implement energy efficiency upgrades were not owning the dwelling and feeling the right time had not come yet. The most important drivers of starting to decide were higher expected comfort levels, better expected living conditions, and an expected reduction of energy costs. For the transition from deciding what to do to how to do it, not managing to make a decision and feeling the right point in time has not come yet were the strongest barriers, easily accessible information and an expected reduction of energy costs were the most important drivers. The final transition from deciding how to do the upgrades to planning implementation was driven by expecting a payoff within a reasonable time frame and higher expected comfort levels; the most important barriers were time demands for supervising contractors and – again – a feeling that the right

  4. Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani.

    Science.gov (United States)

    Singh, Kuljit; Singh, Krishn Pratap; Equbal, Asif; Suman, Shashi S; Zaidi, Amir; Garg, Gaurav; Pandey, Krishna; Das, Pradeep; Ali, Vahab

    2016-12-01

    Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a K m of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Proteomic Analysis of the Excretory and Secretory Proteins of Haemonchus contortus (HcESP Binding to Goat PBMCs In Vivo Revealed Stage-Specific Binding Profiles.

    Directory of Open Access Journals (Sweden)

    Javaid Ali Gadahi

    Full Text Available Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PBMCs in vivo using liquid chromatography-tandem mass spectrometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points were identified from a H. contortus protein database using SEQUEST searches. The L4 and L5 stages of H. contortus represented a higher proportion of the identified proteins compared with the early and late adult stages. Both stage-specific interacting proteins and proteins that were common to multiple stages were identified. Forty-seven interacting proteins were shared among all stages. The gene ontology (GO distributions of the identified goat PBMC-interacting proteins were nearly identical among all developmental stages, with high representation of binding and catalytic activity. Cellular, metabolic and single-organism processes were also annotated as major biological processes, but interestingly, more proteins were annotated as localization processes at the L5 stage than at the L4 and adult stages. Based on the clustering of homologous proteins, we improved the functional annotations of un-annotated proteins identified at different developmental stages. Some unnamed H. contortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-9, were identified by STRING protein clustering analysis.

  6. Pitx2 in Embryonic and Adult Myogenesis

    Directory of Open Access Journals (Sweden)

    Amelia E. Aranega

    2017-05-01

    Full Text Available Skeletal muscle is a heterogeneous tissue that represents between 30 and 38% of the human body mass and has important functions in the organism, such as maintaining posture, locomotor impulse, or pulmonary ventilation. The genesis of skeletal muscle during embryonic development is a process controlled by an elaborate regulatory network combining the interplay of extrinsic and intrinsic regulatory mechanisms that transform myogenic precursor cells into functional muscle fibers through a finely tuned differentiation program. However, the capacity of generating muscle still remains once these fibers have matured. Adult myogenesis resembles many of the embryonic morphogenetic episodes and depends on the activation of satellite cells that have the potential to differentiate into new muscle fibers. Pitx2 is a member of the bicoid family of homeodomain transcription factors that play an important role in morphogenesis. In the last decade, Pitx2 has emerged as a key element involved in the fine-tuning mechanism that regulates skeletal-muscle development as well as the differentiation and cell fate of satellite cells in adult muscle. Here we present an integrative view of all aspects of embryonic and adult myogenesis in which Pitx2 is involved, from embryonic development to satellite-cell proliferation, fate specification, and differentiation. Those new Pitx2 functions on satellite-cell biology might open new perspectives to develop therapeutic strategies for muscular disorders.

  7. Pitx2 in Embryonic and Adult Myogenesis.

    Science.gov (United States)

    Hernandez-Torres, Francisco; Rodríguez-Outeiriño, Lara; Franco, Diego; Aranega, Amelia E

    2017-01-01

    Skeletal muscle is a heterogeneous tissue that represents between 30 and 38% of the human body mass and has important functions in the organism, such as maintaining posture, locomotor impulse, or pulmonary ventilation. The genesis of skeletal muscle during embryonic development is a process controlled by an elaborate regulatory network combining the interplay of extrinsic and intrinsic regulatory mechanisms that transform myogenic precursor cells into functional muscle fibers through a finely tuned differentiation program. However, the capacity of generating muscle still remains once these fibers have matured. Adult myogenesis resembles many of the embryonic morphogenetic episodes and depends on the activation of satellite cells that have the potential to differentiate into new muscle fibers. Pitx2 is a member of the bicoid family of homeodomain transcription factors that play an important role in morphogenesis. In the last decade, Pitx2 has emerged as a key element involved in the fine-tuning mechanism that regulates skeletal-muscle development as well as the differentiation and cell fate of satellite cells in adult muscle. Here we present an integrative view of all aspects of embryonic and adult myogenesis in which Pitx2 is involved, from embryonic development to satellite-cell proliferation, fate specification, and differentiation. Those new Pitx2 functions on satellite-cell biology might open new perspectives to develop therapeutic strategies for muscular disorders.

  8. Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube

    NARCIS (Netherlands)

    Fijnvandraat, Arnoud C.; van Ginneken, Antoni C. G.; de Boer, Piet A. J.; Ruijter, Jan M.; Christoffels, Vincent M.; Moorman, Antoon F. M.; Lekanne Deprez, Ronald H.

    2003-01-01

    OBJECTIVE: After formation of the linear heart tube a chamber-specific program of gene expression becomes active that underlies the formation of the chamber myocardium. To assess whether this program is recapitulated in in vitro differentiated embryonic stem cells, we performed qualitative and

  9. Dramatic impact of blood transfusion on cancer-specific survival after radical cystectomy irrespective of tumor stage.

    Science.gov (United States)

    Buchner, Alexander; Grimm, Tobias; Schneevoigt, Birte-Swantje; Wittmann, Georg; Kretschmer, Alexander; Jokisch, Friedrich; Grabbert, Markus; Apfelbeck, Maria; Schulz, Gerald; Gratzke, Christian; Stief, Christian G; Karl, Alexander

    2017-04-01

    The aim of the present study was to determine the influence of intraoperative and postoperative blood transfusion on cancer-specific outcome. Follow-up data were collected from 722 patients undergoing radical cystectomy for urothelial carcinoma of the bladder (UCB) between 2004 and 2014. Median follow-up was 26 months (interquartile range 12-61 months). Outcome was analyzed in relation to the amount of intraoperative and postoperative blood transfusion and different tumor stages. The primary endpoint was cancer-specific survival (CSS) after cystectomy. Kaplan-Meier analysis with log-rank test and Cox regression models were used. Intraoperative blood transfusion was given in 36% (263/722) and postoperative blood transfusion in 18% (132/722). In patients with and without intraoperative blood transfusion, 5 year CSS was 48% and 67%, respectively (p blood transfusion, 5 year CSS was 48% and 63%, respectively (p transfused red blood cell (RBC) units [intraoperatively: hazard ratio (HR) = 1.08, 95% confidence interval (CI) 1.01-1.15, p = .023; postoperatively: HR = 1.14, 95% CI 1.07-1.21, p transfusions was also found in favorable subgroups (pT1 tumor, hemoglobin ≥13 mg/dl, p = .004) and in a high-volume surgeon subgroup (n = 244, p Blood transfusions during and after radical cystectomy were independent prognostic factors for CSS in this retrospective study. Therefore, efforts should be made to reduce the necessity of intraoperative and postoperative blood transfusion in cystectomy patients.

  10. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    Science.gov (United States)

    Laurens, Matthew B; Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C; Wu, Yukun; Cohen, Joe; Ballou, W Ripley; Vekemans, Johan; Lanar, David E; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D Gray; Doumbo, Ogobara K; Plowe, Christopher V; Thera, Mahamadou A

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, pvaccine group was 7.4 times the mean increase in the control group (pvaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry number NCT00460525.

  11. A Carbohydrate Moiety of Secreted Stage-Specific Glycoprotein 4 Participates in Host Cell Invasion by Trypanosoma cruzi Extracellular Amastigotes

    Directory of Open Access Journals (Sweden)

    Pilar T. V. Florentino

    2018-04-01

    Full Text Available Trypanosoma cruzi is the etiologic agent of Chagas’ disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels, it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas’ disease.

  12. Stage-Specific Fatty Acid Fluxes Play a Regulatory Role in Glycerolipid Metabolism during Seed Development in Jatropha curcas L.

    Science.gov (United States)

    Chaitanya, Bharatula Sri Krishna; Kumar, Sumit; Kaki, Shiva Shanker; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Prasad, Rachapudi Badari Narayana; Sastry, Pidaparty Seshadri; Reddy, Attipalli Ramachandra

    2015-12-23

    The present study describes the changes in lipid profile as well as fatty acid fluxes during seed development in Jatropha curcas L. Endosperm from 34, 37, and 40 days after anthesis (DAA), incubated with [(14)C]acetate, showed significant synthesis of phosphatidylcholine (PC) at seed maturation. The fatty acid methyl ester profile showed PC from 34 DAA was rich in palmitic acid (16:0), whereas PC from 37 and 40 DAA was rich in oleic acid (18:1n-9). Molecular species analysis of diacylglycerol (DAG) indicated DAG (16:0/18:2n-6) was in abundance at 34 DAA, whereas DAG (18:1n-9/18:2n-6) was significantly high at 40 DAA. Triacylglycerol (TAG) analysis revealed TAG (16:0/18:2n-6/16:0) was abundant at 34 DAA, whereas TAG (18:1n-9/18:2n-6/18:1n-9) formed the majority at 40 DAA. Expression of two types of diacylglycerol acyltransferases varied with seed maturation. These data demonstrate stage-specific distinct pools of PC and DAG synthesis during storage TAG accumulation in Jatropha seed.

  13. Stage-specific appearance of cytoplasmic microtubules around the surviving nuclei during the third prezygotic division of Paramecium.

    Science.gov (United States)

    Wang, Yi-Wen; Yuan, Jin-Qiang; Gao, Xin; Yang, Xian-Yu

    2012-12-01

    There are six micronuclear divisions during conjugation of Paramecium caudatum: three prezygotic and three postzygotic divisions. Four haploid nuclei are formed during the first two meiotic prezygotic divisions. Usually only one meiotic product is located in the paroral cone (PC) region at the completion of meiosis, which survives and divides mitotically to complete the third prezygotic division to yield a stationary and a migratory pronucleus. The remaining three located outside of the PC degenerate. The migratory pronuclei are then exchanged between two conjugants and fuse with the stationary pronuclei to form synkarya, which undergo three successive divisions (postzygotic divisions). However, little is known about the surviving mechanism of the PC nuclei. In the current study, stage-specific appearance of cytoplasmic microtubules (cMTs) was indicated during the third prezygotic division by immunofluorescence labeling with anti-alpha tubulin antibodies surrounding the surviving nuclei, including the PC nuclei and the two types of prospective pronuclei. This suggested that cMTs were involved in the formation of a physical barrier, whose function may relate to sequestering and protecting the surviving nuclei from the major cytoplasm, where degeneration of extra-meiotic products occurs, another important nuclear event during the third prezygotic division.

  14. The role of RNA-polymerase II transcription in embryonic nucleologenesis by bovine embryos

    DEFF Research Database (Denmark)

    Kovalská, Mária; Petrovicová, Ida; Strejcek, Frantisek

    2010-01-01

    The early stages of embryonic development are maternally driven. As development proceeds, maternally inherited informational molecules decay, and embryogenesis becomes dependent on de novo synthesized RNAs of embryonic genome. The aim of the present study is to investigate the role of de novo tra...

  15. Embryonic development rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management

    Science.gov (United States)

    Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...

  16. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina.

    Science.gov (United States)

    Aparicio, J G; Hopp, H; Choi, A; Mandayam Comar, J; Liao, V C; Harutyunyan, N; Lee, T C

    2017-01-01

    Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Specific passage of simian immunodeficiency virus from end-stage disease results in accelerated progression to AIDS in rhesus macaques

    NARCIS (Netherlands)

    Holterman, L.; Niphuis, H.; ten Haaft, P. J.; Goudsmit, J.; Baskin, G.; Heeney, J. L.

    1999-01-01

    To determine whether passage of late-stage variants of simian immunodeficiency virus (SIV) would lead to a more virulent infection and rapid disease progression, a study was designed to examine the effects of selective transmission of SIV from late-stage cases of AIDS in Macaca mulatta. In a uniform

  18. In vitro stimulation of stage-specific deoxyribonucleic acid synthesis in rat seminiferous tubule segments by interleukin-1 α

    International Nuclear Information System (INIS)

    Parvinen, M.; Soeder, O.M.; Mali, P.; Froeysa, B.R.; Ritzen, E.M.

    1991-01-01

    Levels of rat testicular interleukin-1-like factor (tIL-1) have been shown to correlate with DNA synthetic activity during the cycle of the rat seminiferous epithelium, suggesting its role as a spermatogonial or meiotic growth factor. To explore this further, a new in vitro model system was developed. Rat seminiferous tubule segments from stages I, V, VIIa, and VIII-IX of the cycle were isolated by transillumination-assisted microdissection, cultured in chemically defined serum-free medium supplemented with human recombinant IL-1 α, and labeled with [3H]thymidine. During incubation, spontaneous progression of spermatogenesis was noted. Inactive stage VIIa tubule segments differentiated to stage VIII and initiated DNA synthesis, and concomitantly started to secrete IL-1-like factor. DNA synthesis of stages VIII-IX ceased through differentiation of spermatocytes to leptotene-zygotene (stages XII-XIII of the cycle). IL-1 α stimulated DNA synthesis significantly in spermatogonia of stage I. Meiotic DNA synthesis at stage VIIa was stimulated (48 h/34 C) and maintained at stages VIII-IX (48 h/34 C). IL-1 α seems to act as a regulator of spermatogenic DNA synthesis in both mitotic and meiotic phases. It has mainly stimulating and maintaining effects, but it may also be inhibitory under certain conditions

  19. Classic and current opinion in embryonic organ transplantation.

    Science.gov (United States)

    Hammerman, Marc R

    2014-04-01

    Here, we review the rationale for the use of organs from embryonic donors, antecedent investigations and recent work from our own laboratory, exploring the utility for transplantation of embryonic kidney and pancreas as an organ replacement therapy. Ultrastructurally precise kidneys differentiate in situ in rats following xenotransplantation in mesentery of embryonic pig renal primordia. The developing organ attracts its blood supply from the host. Engraftment of pig renal primordia requires host immune suppression. However, beta cells originating from embryonic pig pancreas obtained very early following initiation of organogenesis [embryonic day 28 (E28)] engraft long term in nonimmune-suppressed diabetic rats or rhesus macaques. Engraftment of morphologically similar cells originating from adult porcine islets of Langerhans occurs in animals previously transplanted with E28 pig pancreatic primordia. Organ primordia engraft, attract a host vasculature and differentiate following transplantation to ectopic sites. Attempts have been made to exploit these characteristics to achieve clinically relevant endpoints for end-stage renal disease and diabetes mellitus using animal models. We and others have focused on use of the embryonic pig as a donor.

  20. Regulation of gene expression in the protozoan parasite Entamoeba invadens identification of core promoter elements and promoters with stage-specific expression patterns

    Science.gov (United States)

    Manna, Dipak; Ehrenkaufer, Gretchen M.; Singh, Upinder

    2014-01-01

    Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points . In this study RNA-Seq data was utilized to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5’ and 3’ untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3’- U-Rich Motif (Ei3’-URM) (TTTGTT) in the 5’ and 3’ flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analyzed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic

  1. Regulation of gene expression in the protozoan parasite Entamoeba invadens: identification of core promoter elements and promoters with stage-specific expression patterns.

    Science.gov (United States)

    Manna, Dipak; Ehrenkaufer, Gretchen M; Singh, Upinder

    2014-10-01

    Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points. In this study RNA-Seq data was utilised to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5' and 3' untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3'-U-Rich Motif (Ei3'-URM) (TTTGTT) in the 5' and 3' flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analysed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic manipulation of E

  2. Population-specific genotype x genotype x environment interactions in bacterial disease of early life stages of Pacific oyster larvae.

    Science.gov (United States)

    Wendling, Carolin C; Fabritzek, Armin G; Wegner, K Mathias

    2017-04-01

    The consequences of emerging marine diseases on the evolutionary trajectories of affected host populations in the marine realm are largely unexplored. Evolution in response to natural selection depends on the genetic variation of the traits under selection and the interaction of these traits with the environment (GxE). However, in the case of diseases, pathogen genotypes add another dimension to this interaction. Therefore, the study of disease resistance needs to be extended to the interaction of host genotype, pathogen genotype and environment (GxGxE). In this study, we used a full-sib breeding design crossing two genetically differentiated populations of the Pacific oyster Crassostrea gigas (Thunberg, 1793), to determine the influence of host genotype, pathogen genotype and temperature on disease resistance. Based on a controlled infection experiment on two early life stages, that is, D-larvae and Pediveliger larvae at elevated and ambient water temperatures, we estimated disease resistance to allopatric and sympatric Vibrio sp . by measuring survival and growth within and between genetically differentiated oyster populations. In both populations, survival was higher upon infection with sympatric Vibrio sp ., indicating that disease resistance has a genetic basis and is dependent on host genotype. In addition, we observed a significant GxGxE effect in D-larvae, where contrary to expectations, disease resistance was higher at warm than at cold temperatures. Using thermal reaction norms, we could further show that disease resistance is an environment dependent trait with high plasticity, which indicates the potential for a fast acclimatization to changing environmental conditions. These population-specific reaction norms disappeared in hybrid crosses between both populations which demonstrates that admixture between genetically differentiated populations can influence GxGxE interactions on larger scales.

  3. Inhibition of Host Cell Lysosome Spreading by Trypanosoma cruzi Metacyclic Stage-Specific Surface Molecule gp90 Downregulates Parasite Invasion.

    Science.gov (United States)

    Rodrigues, João Paulo Ferreira; Sant'ana, Guilherme Hideki Takahashi; Juliano, Maria Aparecida; Yoshida, Nobuko

    2017-09-01

    Successful infection by Trypanosoma cruzi , the agent of Chagas' disease, is critically dependent on host cell invasion by metacyclic trypomastigote (MT) forms. Two main metacyclic stage-specific surface molecules, gp82 and gp90, play determinant roles in target cell invasion in vitro and in oral T. cruzi infection in mice. The structure and properties of gp82, which is highly conserved among T. cruzi strains, are well known. Information on gp90 is still rather sparse. Here, we attempted to fill that gap. gp90, purified from poorly invasive G strain MT and expressing gp90 at high levels, inhibited HeLa cell lysosome spreading and the gp82-mediated internalization of a highly invasive CL strain MT expressing low levels of a diverse gp90 molecule. A recombinant protein containing the conserved C-terminal domain of gp90 exhibited the same properties as the native G strain gp90: it counteracted the host cell lysosome spreading induced by recombinant gp82 and exhibited an inhibitory effect on HeLa cell invasion by CL strain MT. Assays to identify the gp90 sequence associated with the property of downregulating MT invasion, using synthetic peptides spanning the gp90 C-terminal domain, revealed the sequence GVLYTADKEW. These data, plus the findings that lysosome spreading was induced upon HeLa cell interaction with CL strain MT, but not with G strain MT, and that in mixed infection CL strain MT internalization was inhibited by G strain MT, suggest that the inhibition of target cell lysosome spreading is the mechanism by which the gp90 molecule exerts its downregulatory role. Copyright © 2017 Rodrigues et al.

  4. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants.

    Directory of Open Access Journals (Sweden)

    Leanne E Lewis

    Full Text Available Candida albicans is a major life-threatening human fungal pathogen. Host defence against systemic Candida infection relies mainly on phagocytosis of fungal cells by cells of the innate immune system. In this study, we have employed video microscopy, coupled with sophisticated image analysis tools, to assess the contribution of distinct C. albicans cell wall components and yeast-hypha morphogenesis to specific stages of phagocytosis by macrophages. We show that macrophage migration towards C. albicans was dependent on the glycosylation status of the fungal cell wall, but not cell viability or morphogenic switching from yeast to hyphal forms. This was not a consequence of differences in maximal macrophage track velocity, but stems from a greater percentage of macrophages pursuing glycosylation deficient C. albicans during the first hour of the phagocytosis assay. The rate of engulfment of C. albicans attached to the macrophage surface was significantly delayed for glycosylation and yeast-locked morphogenetic mutant strains, but enhanced for non-viable cells. Hyphal cells were engulfed at a slower rate than yeast cells, especially those with hyphae in excess of 20 µm, but there was no correlation between hyphal length and the rate of engulfment below this threshold. We show that spatial orientation of the hypha and whether hyphal C. albicans attached to the macrophage via the yeast or hyphal end were also important determinants of the rate of engulfment. Breaking down the overall phagocytic process into its individual components revealed novel insights into what determines the speed and effectiveness of C. albicans phagocytosis by macrophages.

  5. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants.

    Science.gov (United States)

    Lewis, Leanne E; Bain, Judith M; Lowes, Christina; Gillespie, Collette; Rudkin, Fiona M; Gow, Neil A R; Erwig, Lars-Peter

    2012-01-01

    Candida albicans is a major life-threatening human fungal pathogen. Host defence against systemic Candida infection relies mainly on phagocytosis of fungal cells by cells of the innate immune system. In this study, we have employed video microscopy, coupled with sophisticated image analysis tools, to assess the contribution of distinct C. albicans cell wall components and yeast-hypha morphogenesis to specific stages of phagocytosis by macrophages. We show that macrophage migration towards C. albicans was dependent on the glycosylation status of the fungal cell wall, but not cell viability or morphogenic switching from yeast to hyphal forms. This was not a consequence of differences in maximal macrophage track velocity, but stems from a greater percentage of macrophages pursuing glycosylation deficient C. albicans during the first hour of the phagocytosis assay. The rate of engulfment of C. albicans attached to the macrophage surface was significantly delayed for glycosylation and yeast-locked morphogenetic mutant strains, but enhanced for non-viable cells. Hyphal cells were engulfed at a slower rate than yeast cells, especially those with hyphae in excess of 20 µm, but there was no correlation between hyphal length and the rate of engulfment below this threshold. We show that spatial orientation of the hypha and whether hyphal C. albicans attached to the macrophage via the yeast or hyphal end were also important determinants of the rate of engulfment. Breaking down the overall phagocytic process into its individual components revealed novel insights into what determines the speed and effectiveness of C. albicans phagocytosis by macrophages.

  6. Disease-specific survival for limited-stage small-cell lung cancer affected by statistical method of assessment

    Directory of Open Access Journals (Sweden)

    Yuan Fei

    2007-02-01

    Full Text Available Abstract Background In general, prognosis and impact of prognostic/predictive factors are assessed with Kaplan-Meier plots and/or the Cox proportional hazard model. There might be substantive differences from the results using these models for the same patients, if different statistical methods were used, for example, Boag log-normal (cure-rate model, or log-normal survival analysis. Methods Cohort of 244 limited-stage small-cell lung cancer patients, were accrued between 1981 and 1998, and followed to the end of 2005. The endpoint was death with or from lung cancer, for disease-specific survival (DSS. DSS at 1-, 3- and 5-years, with 95% confidence limits, are reported for all patients using the Boag, Kaplan-Meier, Cox, and log-normal survival analysis methods. Factors with significant effects on DSS were identified with step-wise forward multivariate Cox and log-normal survival analyses. Then, DSS was ascertained for patients with specific characteristics defined by these factors. Results The median follow-up of those alive was 9.5 years. The lack of events after 1966 days precluded comparison after 5 years. DSS assessed by the four methods in the full cohort differed by 0–2% at 1 year, 0–12% at 3 years, and 0–1% at 5 years. Log-normal survival analysis indicated DSS of 38% at 3 years, 10–12% higher than with other methods; univariate 95% confidence limits were non-overlapping. Surgical resection, hemoglobin level, lymph node involvement, and superior vena cava (SVC obstruction significantly impacted DSS. DSS assessed by the Cox and log-normal survival analysis methods for four clinical risk groups differed by 1–6% at 1 year, 15–26% at 3 years, and 0–12% at 5 years; multivariate 95% confidence limits were overlapping in all instances. Conclusion Surgical resection, hemoglobin level, lymph node involvement, and superior vena cava (SVC obstruction all significantly impacted DSS. Apparent DSS for patients was influenced by the

  7. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1 and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90 (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02. From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001. In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364 and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials

  8. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  9. Ovarian cycle and embryonic development in Gammarus fossarum: application for reproductive toxicity assessment.

    Science.gov (United States)

    Geffard, Olivier; Xuereb, Benoit; Chaumot, Arnaud; Geffard, Alain; Biagianti, Sylvie; Noël, Claire; Abbaci, Khedidja; Garric, Jeanne; Charmantier, Guy; Charmantier-Daures, Mireille

    2010-10-01

    Among freshwater invertebrates, Gammarus fossarum is an important test organism and is currently used in ecotoxicology for acute and chronic assays; nevertheless, reproductive toxicity test methods are not yet available for these species. In the present study, the reproductive cycle in Gammarus fossarum was characterized in order to propose a reproductive toxicity test encompassing molting, follicle growth, and embryonic development that will provide a better understanding of the mode of action of chemicals disrupting these hormone-regulated processes. A detailed description of the reproductive cycle in Gammarus fossarum was obtained. As in some amphipods, molt and reproductive cycles of G. fossarum females occur concurrently, lasting 30 d at 12°C. Each molt stage is characterized by a specific marsupial embryonic development stage and the size of developing follicles visible on the ovarian membrane. Based on these results, a 21-d reproductive toxicity test is proposed for this species. This new bioassay was applied to identify the specific impact of different stressors: cadmium, methomyl, nonylphenol, and a starvation diet. Good reproducibility was obtained for different endpoints under control conditions and throughout the experiments. Preliminary robust reference values or benchmarks were proposed for these endpoints. Cadmium was found to specially inhibit secondary vitellogenesis. Nonylphenol had a specific concentration-dependent effect on embryonic development, with an increase in the percent abnormality from a concentration of 0.05 µg/L. A restricted food diet led to a significant delay in the molt cycle, which in turn induced inhibition of secondary vitellogenesis. Environ. Toxicol. Chem. 2010;29:2249-2259. © 2010 SETAC.

  10. Can embryonic skipper frogs (Euphlyctis cyanophlyctis) learn to ...

    Indian Academy of Sciences (India)

    Surprisingly,larval E. cyanophlyctis could learn to recognise kairomones through association during embryonic stages evenbefore the development of a nervous system. Although larval E. cyanophlyctis lack the innate ability to recognise kairomones,they were able to recognise conspecific alarm cues on the first encounter, ...

  11. In vitro differentiation of mouse embryonic stem cells into functional ...

    African Journals Online (AJOL)

    Studies have shown that embryonic stem (ES) cells can be successfully differentiated into liver cells, which offer the potential unlimited cell source for a variety of end-stage liver disease. In our study, in order to induce mouse ES cells to differentiate into hepatocyte-like cells under chemically defined conditions, ES cells ...

  12. Can embryonic skipper frogs (Euphlyctis cyanophlyctis) learn to ...

    Indian Academy of Sciences (India)

    Swapnil C Supekar

    2017-06-12

    Jun 12, 2017 ... prisingly, larval E. cyanophlyctis could learn to recognise kairomones through association during embryonic stages even before the development of a nervous system. Although larval E. cyanophlyctis lack the innate ability to recognise kair- omones, they were able to recognise conspecific alarm cues on the ...

  13. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS).

    Science.gov (United States)

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A; Nemes, Peter

    2016-08-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS)*

    Science.gov (United States)

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A.; Nemes, Peter

    2016-01-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. PMID:27317400

  15. Cytological and transcriptional dynamics analysis of host plant revealed stage-specific biological processes related to compatible rice-Ustilaginoidea virens interaction.

    Directory of Open Access Journals (Sweden)

    Jinquan Chao

    Full Text Available Rice false smut, a fungal disease caused by Ustilaginoidea virens is becoming a severe detriment to rice production worldwide. However, little is known about the molecular response of rice to attacks by the smut pathogen. In this article, we define the initial infection process as having three stages: initial colonization on the pistil (stage 1, S1, amplification on the anther (stage 2, S2 and sporulation in the anther chambers (stage 3, S3. Based on the transcriptome of rice hosts in response to U. virens in two separate years, we identified 126, 204, and 580 specific regulated genes in their respective stages S1, S2, and S3, respectively, by excluding common expression patterns in other openly biotic/abiotic databases using bioinformatics. As the disease progresses, several stage-specific biological processes (BP terms were distinctively enriched: "Phosphorylation" in stage S1, "PCD" in S2, and "Cell wall biogenesis" in S3, implying a concise signal cascade indicative of the tactics that smut pathogens use to control host rice cells during infection. 113 regulated genes were coexpressed among the three stages. They shared highly conserved promoter cis-element in the promoters in response to the regulation of WRKY and Myb for up-regulation, and ABA and Ca2+ for down regulation, indicating their potentially critical roles in signal transduction during rice-U. virens interaction. We further analyzed seven highly regulated unique genes; four were specific to pollen development, implying that pollen-related genes play critical roles in the establishment of rice susceptibility to U. virens. To my knowledge, this is the first report about probing of molecular response of rice to smut pathogen infection, which will greatly expand our understanding of the molecular events surrounding infection by rice false smut.

  16. Implications of mechanical deformation and formaldehyde preservation for the identification of stage-specific characteristics of Baltic cod eggs

    DEFF Research Database (Denmark)

    Geldmacher, A.; Wieland, Kai

    1999-01-01

    The identification of developmental stages in fish eggs from plankton samples is often complicated by deformation of the embryos due to mechanical stress during the sampling procedure and by dehydration during formaldehyde fixation. The effects of formaldehyde fixation and mechanical stress on Ba...... mechanically deformed during handling were clearly distinguishable from those that died prior to catching; however, staging was generally less accurate for formaldehyde- preserved eggs when compared with living specimens.......The identification of developmental stages in fish eggs from plankton samples is often complicated by deformation of the embryos due to mechanical stress during the sampling procedure and by dehydration during formaldehyde fixation. The effects of formaldehyde fixation and mechanical stress...... on Baltic cod eggs (Gadus morhua callarias L.) were examined separately by visually comparing the morphological features of treated vs. live eggs of identical ontogenetic age. Microphotographs were made concurrently for documentation. In stage IA eggs, mechanical treatment resulted in scattered blastodiscs...

  17. Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development.

    Science.gov (United States)

    Schiele, Nathan R; von Flotow, Friedrich; Tochka, Zachary L; Hockaday, Laura A; Marturano, Joseph E; Thibodeau, Jeffrey J; Kuo, Catherine K

    2015-06-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Implications of mechanical deformation and formaldehyde preservation for the identification of stage-specific characteristics of Baltic cod eggs

    DEFF Research Database (Denmark)

    Geldmacher, A.; Wieland, Kai

    1999-01-01

    surrounded by single cells, while in further advanced stages the yolk membrane collapsed entirely, the yolk coagulated and the embryo extending over the yolk shrank. Formaldehyde fixation caused the yolk and the blastodisc or embryo to darken, and in some cases crystalline enclosures occurred. Eggs......The identification of developmental stages in fish eggs from plankton samples is often complicated by deformation of the embryos due to mechanical stress during the sampling procedure and by dehydration during formaldehyde fixation. The effects of formaldehyde fixation and mechanical stress...... on Baltic cod eggs (Gadus morhua callarias L.) were examined separately by visually comparing the morphological features of treated vs. live eggs of identical ontogenetic age. Microphotographs were made concurrently for documentation. In stage IA eggs, mechanical treatment resulted in scattered blastodiscs...

  19. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  20. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Hemlata [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); Gupta, Priyanka [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); IITB-Monash Research Academy, Mumbai (India); Department of Chemical Engineering, Monash University, Melbourne (Australia); Verma, Paul J. [Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia (Australia); Jadhav, Sameer; Bellare, Jayesh R. [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India)

    2014-04-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold.

  1. Tissue- and stage-specific Wnt target gene expression is controlled subsequent to beta-catenin recruitment to cis-regulatory modules

    NARCIS (Netherlands)

    Nakamura, Y.; de Paiva Alves, E.; Veenstra, G.J.C.; Hoppler, S.

    2016-01-01

    Key signalling pathways, such as canonical Wnt/beta-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear beta-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling,

  2. RETINOIC ACID INDUCTION OF CLEFT PALATE IN EGF AND TGF-ALPHA KNOCKOUT MICE: STAGE SPECIFIC INFLUENCES OF GROWTH FACTOR EXPRESSION

    Science.gov (United States)

    ABBOTT, B. D., LEFFLER, K.E. AND BUCKALEW, A.R, Reproductive Toxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, North Carolina. Retinoic acid induction of cleft palate (CP) in EGF and TGF knockout mice: Stage specific influences of growth factor expression.<...

  3. Identification and expression analysis of zebrafish glypicans during embryonic development.

    Directory of Open Access Journals (Sweden)

    Mansi Gupta

    Full Text Available Heparan sulfate Proteoglycans (HSPG are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG's, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development.

  4. Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific.

    Science.gov (United States)

    Panthee, Dilip R; Marois, James J; Wright, David L; Narváez, Dario; Yuan, Joshua S; Stewart, C Neal

    2009-01-01

    Understanding plant host response to a pathogen such as Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), under different environmental conditions and growth stages is crucial for developing a resistant plant variety. The main objective of this study was to perform global transcriptome profiling of P. pachyrhizi-exposed soybean (Glycine max) with susceptible reaction to the pathogen from two distinct developmental growth stages using whole genome Affymetrix microarrays of soybean followed by confirmation using a resistant genotype. Soybean cv. 5601T (susceptible to ASR) at the V(4) and R(1) growth stages and Glycine tomentella (resistant to ASR) plants were inoculated with P. pachyrhizi and leaf samples were collected after 72 h of inoculation for microarray analysis. Upon analyzing the data using Array Assist software at 5% false discovery rate (FDR), a total of 5,056 genes were found significantly differentially expressed at V(4) growth stage, of which 2,401 were up-regulated, whereas 579 were found differentially expressed at R(1) growth stage, of which 264 were up-regulated. There were 333 differentially expressed common genes between the V(4) and R(1) growth stages, of which 125 were up-regulated. A large difference in number of differentially expressed genes between the two growth stages indicates that the gene expression is growth-stage-specific. We performed real-time RT-PCR analysis on nine of these genes from both growth stages and both plant species and found results to be congruent with those from the microarray analysis.

  5. Haematobia irritans dataset of raw sequence reads from Illumina-based transcriptome sequencing of specific tissues and life stages

    Science.gov (United States)

    Illumina HiSeq technology was used to sequence the transcriptome from various dissected tissues and life stages from the horn fly, Haematobia irritans. These samples include eggs (0, 2, 4, and 9 hours post-oviposition), adult fly gut, adult fly legs, adult fly malpighian tubule, adult fly ovary, adu...

  6. Stage-Specific Gene Profiling of Germinal Cells Helps Delineate the Mitosis/Meiosis Transition1[OPEN

    Science.gov (United States)

    He, Juan; Zhang, Dong

    2018-01-01

    In flowering plants, germ lines are induced from somatic meristems within reproductive organs. Within anthers, germinal cell initials first undergo several rounds of mitotic proliferation before synchronously entering meiosis. Our understanding of the progression and the molecular basis of this mitosis to meiosis transition is still limited. Taking advantage of the correlation between anther length and premeiotic germinal cell development in maize (Zea mays), we studied the transcriptome dynamics of germinal cells at three sequential stages, mitotic archesporial cells, enlarging pollen mother cells at the premeiosis interphase, and pollen mother cells at the early prophase of meiosis, using laser microdissection-based expression profiling. Our analysis showed that cells undergoing the mitosis-meiosis switch exhibit robust transcriptional changes. The three stages are distinguished by the expression of genes encoding transcription factor subsets, meiotic chromosome recombination proteins, and distinct E3 ubiquitin ligases, respectively. The transcription level of genes encoding protein turnover machinery was significantly higher in these three stages of germinal cells than in mature pollen, parenchyma cells, or seedlings. Our experimental results further indicate that many meiotic genes are not only transcribed, but also translated prior to meiosis. We suggest that the enlarging pollen mother cells stage represents a crucial turning point from mitosis to meiosis for developing germinal cells. PMID:29187566

  7. Embryonic development of the cricket Gryllus bimaculatus.

    Science.gov (United States)

    Donoughe, Seth; Extavour, Cassandra G

    2016-03-01

    Extensive research into Drosophila melanogaster embryogenesis has improved our understanding of insect developmental mechanisms. However, Drosophila development is thought to be highly divergent from that of the ancestral insect and arthropod in many respects. We therefore need alternative models for arthopod development that are likely to be more representative of basally-branching clades. The cricket Gryllus bimaculatus is such a model, and currently has the most sophisticated functional genetic toolkit of any hemimetabolous insect. The existing cricket embryonic staging system is fragmentary, and it is based on morphological landmarks that are not easily visible on a live, undissected egg. To address this problem, here we present a complementary set of "egg stages" that serve as a guide for identifying the developmental progress of a cricket embryo from fertilization to hatching, based solely on the external appearance of the egg. These stages were characterized using a combination of brightfield timelapse microscopy, timed brightfield micrographs, confocal microscopy, and measurements of egg dimensions. These egg stages are particularly useful in experiments that involve egg injection (including RNA interference, targeted genome modification, and transgenesis), as injection can alter the speed of development, even in control treatments. We also use 3D reconstructions of fixed embryo preparations to provide a comprehensive description of the morphogenesis and anatomy of the cricket embryo during embryonic rudiment assembly, germ band formation, elongation, segmentation, and appendage formation. Finally, we aggregate and schematize a variety of published developmental gene expression patterns. This work will facilitate further studies on G. bimaculatus development, and serve as a useful point of reference for other studies of wild type and experimentally manipulated insect development in fields from evo-devo to disease vector and pest management. Copyright

  8. Temporal regulation of embryonic M-phases.

    Directory of Open Access Journals (Sweden)

    Franck Chesnel

    2008-02-01

    Full Text Available Temporal regulation of M-phases of the cell cycle requires precise molecular mechanisms that differ among different cells. This variable regulation is particularly clear during embryonic divisions. The first embryonic mitosis in the mouse lasts twice as long as the second one. In other species studied so far (C. elegans, Sphaerechinus granularis, Xenopus laevis, the first mitosis is also longer than the second, yet the prolongation is less pronounced than in the mouse. We have found recently that the mechanisms prolonging the first embryonic M-phase differ in the mouse and in Xenopus embryos. In the mouse, the metaphase of the first mitosis is specifically prolonged by the unknown mechanism acting similarly to the CSF present in oocytes arrested in the second meiotic division. In Xenopus, higher levels of cyclins B participate in the M-phase prolongation, however, without any cell cycle arrest. In Xenopus embryo cell-free extracts, the inactivation of the major M-phase factor, MPF, depends directly on dissociation of cyclin B from CDK1 subunit and not on cyclin B degradation as was thought before. In search for other mitotic proteins behaving in a similar way as cyclins B we made two complementary proteomic screens dedicated to identifying proteins ubiquitinated and degraded by the proteasome upon the first embryonic mitosis in Xenopus laevis. The first screen yielded 175 proteins. To validate our strategy we are verifying now which of them are really ubiquitinated. In the second one, we identified 9 novel proteins potentially degraded via the proteasome. Among them, TCTP (Translationally Controlled Tumor Protein, a 23-kDa protein, was shown to be partially degraded during mitosis (as well as during meiotic exit. We characterized the expression and the role of this protein in Xenopus, mouse and human somatic cells, Xenopus and mouse oocytes and embryos. TCTP is a mitotic spindle protein positively regulating cellular proliferation. Analysis of

  9. Generation of hematopoietic lineage cells from embryonic like cells

    Directory of Open Access Journals (Sweden)

    Gholam Reza Khamisipour

    2014-10-01

    Full Text Available Background: Epigenetic reprogramming of somatic cells into embryonic stem cells has attracted much attention, because of the potential for stem cell transplantation and compatibility with recipient. However, the therapeutic application of either nuclear transfer or nuclear fusion of somatic cell has been hindered by technical complications as well as ethical objections. Recently, a new method is reported whereby ectopic expression of embryonic specific transcription factors was shown to induce fibroblasts to become embryonic like SCs (induced pluripotent stem cells. A major limitation of this method is the use of potentially harmful genome integrating viruses such as reto- or lentivirus. The main aim of this investigation was generation of human hematopoietic stem cells from induced fibroblasts by safe adenovectors carrying embryonically active genes. Material and Methods: Isolated fibroblasts from foreskin were expanded and recombinant adenoviruses carrying human Sox2, Oct4, Klf4, cMyc genes were added to culture. After formation of embryonic like colonies and cell expansion, they were transferred to embryonic media without bFGF, and embryoid bodies were cultured on stromal and non-stromal differentiation media for 14 days. Results: Expression of CD34 gene and antigenic markers, CD34, CD38 & CD133 in stromal culture showed significant difference with non-differentiation and non-stromal media. Conclusion: These findings show high hematopoietic differentiation rate of Adeno-iPS cells in stromal culture and no need to use growth factors. While, there was no difference between non-differentiation and non-stromal media.

  10. In vitro pancreas organogenesis from dispersed mouse embryonic progenitors

    DEFF Research Database (Denmark)

    Greggio, Chiara; De Franceschi, Filippo; Figueiredo-Larsen, Evan Manuel

    2014-01-01

    The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells (1). The whole embryonic organ can be cultured at multiple stages...... expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how...... the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature...

  11. Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies in AggreWell Plates.

    Science.gov (United States)

    Kibschull, Mark

    2017-06-01

    Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. The method described here makes use of commercially available AggreWell 400 plates with prefabricated indentations that cradle each EB. Although these plates are relatively expensive, they may be suitable for some high-throughput experiments. This protocol describes the preparation of embryoid bodies of defined size and shape in a large-scale format (approximately 1200 embryoid bodies per preparation). © 2017 Cold Spring Harbor Laboratory Press.

  12. Endolymphatic potassium of the chicken vestibule during embryonic development.

    Science.gov (United States)

    Masetto, Sergio; Zucca, Giampiero; Bottà, Luisa; Valli, Paolo

    2005-08-01

    The endolymph fills the lumen of the inner ear membranous labyrinth. Its ionic composition is unique in vertebrates as an extracellular fluid for its high-K(+)/low-Na(+) concentration. The endolymph is actively secreted by specialized cells located in the vestibular and cochlear epithelia. We have investigated the early phases of endolymph secretion by measuring the endolymphatic K(+) concentration in the chicken vestibular system during pre-hatching development. Measurements were done by inserting K(+)-selective microelectrodes in chicken embryo ampullae dissected at different developmental stages from embryonic day 9 up to embryonic day 21 (day of hatching). We found that the K(+) concentration is low (<10mM/L) up to embryonic day 11, afterward it increases steeply to reach a plateau level of about 140 mM/L at embryonic day 19--21. We have developed a short-term in vitro model of endolymph secretion by culturing vestibular ampullae dissected from embryonic day 11 chicken embryos for a few days. The preparation reproduced a double compartment system where the luminal K(+) concentration increased along with the days of culturing. This model could be important for (1) investigating the development of cellular mechanisms contributing to endolymph homeostasis and (2) testing compounds that influence those mechanisms.

  13. Are there factors preventing cancer development during embryonic life

    International Nuclear Information System (INIS)

    Einhorn, L.

    1983-01-01

    On the basis of the following literature observations, a hypothesis is advanced that the development of cancer is actively inhibited during embryonic life. Although the processes of cell differentiation and proliferation are - without comparison - most pronounced during embryonic life, cancer is rarely found in the newborn and is seldom a cause of neonatal death or spontaneous abortion. Attempts to induce cancer in early-stage animal embryos by irradiation or by transplacental chemical carcinogenesis have been unsuccessful, even when exposed animals have been observed throughout their lifetime. After the period of major organogenesis, however, the embryos become susceptible to carcinogenesis. In humans, the most common embryonic tumors arise in tissues which have an unusually late ongoing development and are still partly immature at or shortly before birth. For many human embryonic tumors the survival rates are higher, and spontaneous regression more frequent, in younger children, i.e. prognosis is age-dependent. Thus, although cancer generally appears in tissues capable of proliferation and differentiation, induction of malignancy in the developmentally most active tissues seems to be beset with difficulty. One possible explanation for this paradox could be that cancer is controlled by the regulators influencing development, regulators that are most active during embryonic life. (Auth.)

  14. Molecular identification of Malaysian Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) using life stage specific mitochondrial DNA.

    Science.gov (United States)

    Kavitha, R; Tan, T C; Lee, H L; Nazni, W A; Sofian, A M

    2013-06-01

    DNA identification of blow fly species can be a very useful tool in forensic entomology. One of the potential benefits that mitochondrial DNA (mtDNA) has offered in the field of forensic entomology is species determination. Conventional identification methods have limitations for sibling and closely related species of blow fly and stage and quality of the specimen used. This could be overcome by DNA-based identification methods using mitochondrial DNA which does not demand intact or undamaged specimens. Mitochondrial DNA is usually isolated from whole blow fly and legs. Alternate sources for mitochondrial DNA isolation namely, egg, larva, puparium and empty puparium were explored in this study. The sequence of DNA obtained for each sample for every life cycle stage was 100% identical for a particular species, indicating that the egg, 1st instar, 2nd instar, 3rd instar, pupa, empty puparium and adult from the same species and obtained from same generation will exhibit similar DNA sequences. The present study also highlighted the usefulness of collecting all life cycle stages of blow fly during crime scene investigation with proper preservation and subsequent molecular analysis. Molecular identification provides a strong basis for species identification and will prove an invaluable contribution to forensic entomology as an investigative tool in Malaysia.

  15. Can the localization of primary colonic tumors be improved by staging CT without specific bowel preparation compared to optical colonoscopy?

    International Nuclear Information System (INIS)

    Feuerlein, Sebastian; Grimm, Lars J.; Davenport, Matthew S.; Haystead, Clare M.; Miller, Chad M.; Neville, Amy M.; Jaffe, Tracy A.

    2012-01-01

    Objectives: To investigate the ability of staging computed tomography (CT) without bowel preparation to accurately localize colonic tumors compared to optical colonoscopy. Methods: The local institutional review board approved this retrospective and HIPAA-compliant study. Forty-six patients with colonic adenocarcinoma, preoperative colonoscopy, and staging CT within 60 days of resection were included. Patients underwent contrast enhanced CT imaging without bowel preparation or oral contrast. The colon was divided into four segments with the operative reports used as the standard. Rectal and cecal cancers were excluded. CT scans were reviewed by 5 readers in a segmental binary fashion using a 5-point confidence scale in two sessions blinded and unblinded to the colonoscopy report. Results: At surgery 49 tumors were found in 46 patients. Readers detected 86.1%, 74.3%, and 66.9% of lesions with 92.0%, 94.1%, and 95.4% accuracy for confidence scores of ≥3, ≥4, and 5. CT interobserver agreement was good (κ = 0.82) for the unblinded and moderate (κ = 0.60) for the blinded read. Colonoscopic localization was only 78.7% accurate with 2 tumors undiscovered. Colonoscopic accuracy was low in the descending colon (57.1%) and the transverse colon (55.6%). Conclusions: Preoperative staging CT is more accurate than colonoscopy in the localization of colonic tumors

  16. Lineage specific composition of cyclin D-CDK4/CDK6-p27 complexes reveals distinct functions of CDK4, CDK6 and individual D-type cyclins in differentiating cells of embryonic origin

    Czech Academy of Sciences Publication Activity Database

    Bryja, Vítězslav; Pacherník, J.; Vondráček, Jan; Souček, Karel; Čajánek, L.; Horváth, Viktor; Holubcová, Z.; Dvořák, Petr; Hampl, Aleš

    2008-01-01

    Roč. 41, č. 6 (2008), s. 875-893 ISSN 0960-7722 R&D Projects: GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA301/05/0463; GA ČR(CZ) GA204/07/0834; GA MŠk(CZ) 1M0538 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : G1/S transition * cyclin D * embryonic cells differentiation Subject RIV: AQ - Safety, Health Protection, Human - Machine Impact factor: 2.423, year: 2008

  17. Proteotranscriptomic Analysis Reveals Stage Specific Changes in the Molecular Landscape of Clear-Cell Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Benjamin A Neely

    Full Text Available Renal cell carcinoma comprises 2 to 3% of malignancies in adults with the most prevalent subtype being clear-cell RCC (ccRCC. This type of cancer is well characterized at the genomic and transcriptomic level and is associated with a loss of VHL that results in stabilization of HIF1. The current study focused on evaluating ccRCC stage dependent changes at the proteome level to provide insight into the molecular pathogenesis of ccRCC progression. To accomplish this, label-free proteomics was used to characterize matched tumor and normal-adjacent tissues from 84 patients with stage I to IV ccRCC. Using pooled samples 1551 proteins were identified, of which 290 were differentially abundant, while 783 proteins were identified using individual samples, with 344 being differentially abundant. These 344 differentially abundant proteins were enriched in metabolic pathways and further examination revealed metabolic dysfunction consistent with the Warburg effect. Additionally, the protein data indicated activation of ESRRA and ESRRG, and HIF1A, as well as inhibition of FOXA1, MAPK1 and WISP2. A subset analysis of complementary gene expression array data on 47 pairs of these same tissues indicated similar upstream changes, such as increased HIF1A activation with stage, though ESRRA and ESRRG activation and FOXA1 inhibition were not predicted from the transcriptomic data. The activation of ESRRA and ESRRG implied that HIF2A may also be activated during later stages of ccRCC, which was confirmed in the transcriptional analysis. This combined analysis highlights the importance of HIF1A and HIF2A in developing the ccRCC molecular phenotype as well as the potential involvement of ESRRA and ESRRG in driving these changes. In addition, cofilin-1, profilin-1, nicotinamide N-methyltransferase, and fructose-bisphosphate aldolase A were identified as candidate markers of late stage ccRCC. Utilization of data collected from heterogeneous biological domains strengthened

  18. The specific role of radiotherapy in the management of prostate carcinoma at different stages of tumor development

    International Nuclear Information System (INIS)

    Huber, J.

    1987-01-01

    The study described here was based on the case reports of 135 patients of the Radiological Department at Kiel's University Hospital, who were treated for carcinomas of the prostate at any time during the period between 1965 and 1980. It was the aim of these evaluations to define the particular role of radiotherapy in the management of carcinomas of the prostate and to compare it to that of other methods of treatment (hormones, surgery). Percutaneous local irradiation of the carcinoma or irradiation of metastases were the criteria of inclusion into this retrospective study. The stage of the tumour was a decisive factor in the final analysis of the results. (orig.) [de

  19. Mechanobiology of embryonic limb development.

    Science.gov (United States)

    Nowlan, Niamh C; Murphy, Paula; Prendergast, Patrick J

    2007-04-01

    Considerable evidence exists to support the hypothesis that mechanical forces have an essential role in healthy embryonic skeletal development. Clinical observations and experimental data indicate the importance of muscle contractions for limb development. However, the influence of these forces is seldom referred to in biological descriptions of bone development, and perhaps this is due to the fact that the hypothesis that mechanical forces are essential for normal embryonic skeletal development is difficult to test and elaborate experimentally in vivo, particularly in humans. Computational modeling has the potential to address this issue by simulating embryonic growth under a range of loading conditions but the potential of such models has yet to be fully exploited. In this article, we review the literature on mechanobiology of limb development in three main sections: (a) experimental alteration of the mechanical environment, (b) mechanical properties of embryonic tissues, and (c) the use of computational models. Then we analyze the main issues, and suggest how experimental and computational fields could work closer together to enhance our understanding of mechanobiology of the embryonic skeleton.

  20. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson's disease and its progression: Disease and staging biomarkers and new drug targets.

    Science.gov (United States)

    de Farias, Carine Coneglian; Maes, Michael; Bonifácio, Kamila Landucci; Bortolasci, Chiara Cristina; de Souza Nogueira, André; Brinholi, Francis Fregonesi; Matsumoto, Andressa Keiko; do Nascimento, Matheus Amarante; de Melo, Lúcio Baena; Nixdorf, Suzana Lucy; Lavado, Edson Lopes; Moreira, Estefânia Gastaldello; Barbosa, Décio Sabbatini

    2016-03-23

    There is evidence that immune-inflammatory, stress of reactive oxygen and nitrogen species (IO&NS) processes play a role in the neurodegenerative processes observed in Parkinson's disease (PD). The aim of the present study was to investigate peripheral IO&NS biomarkers in PD. We included 56 healthy individuals and 56 PD patients divided in two groups: early PD stage and late PD stage. Plasma lipid hydroperoxides (LOOH), malondialdehyde (MDA), nitric oxide metabolites (NOx), sulfhydryl (SH) groups, catalase (CAT) activity, superoxide dismutase (SOD) activity, paraoxonase (PON)1 activity, total radical trapping antioxidant parameter (TRAP) and C-reactive protein (CRP) were measured. PD is characterized by increased LOOH, MDA and SOD activity and lowered CAT activity. A combination of five O&NS biomarkers highly significantly predicts PD with a sensitivity of 94.5% and a specificity of 86.8% (i.e., MDA, SOD activity, TRAP, SH-groups and CAT activity). The single best biomarker of PD is MDA, while LOOH and SOD activity are significantly associated with late PD stage, but not early PD stage. Antiparkinson drugs did not affect O&NS biomarkers, but levodopa+carbidopa significantly increased CRP. It is suggested that MDA may serve as a disease biomarker, while LOOH and SOD activity are associated with late PD stage characteristic. New treatments for PD should not only target dopamine but also lipid peroxidation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Tumor-Specific Fluorescent Antibody Imaging Enables Accurate Staging Laparoscopy in an Orthotopic Model of Pancreatic Cancer

    Science.gov (United States)

    Cao, Hop S Tran; Kaushal, Sharmeela; Metildi, Cristina A; Menen, Rhiana S; Lee, Claudia; Snyder, Cynthia S; Messer, Karen; Pu, Minya; Luiken, George A; Talamini, Mark A; Hoffman, Robert M; Bouvet, Michael

    2014-01-01

    Background/Aims Laparoscopy is important in staging pancreatic cancer, but false negatives remain problematic. Making tumors fluorescent has the potential to improve the accuracy of staging laparoscopy. Methodology Orthotopic and carcinomatosis models of pancreatic cancer were established with BxPC-3 human pancreatic cancer cells in nude mice. Alexa488-anti-CEA conjugates were injected via tail vein 24 hours prior to laparoscopy. Mice were examined under bright field laparoscopic (BL) and fluorescence laparoscopic (FL) modes. Outcomes measured included time to identification of primary tumor for the orthotopic model and number of metastases identified within 2 minutes for the carcinomatosis model. Results FL enabled more rapid and accurate identification and localization of primary tumors and metastases than BL. Using BL took statistically significantly longer time than FL. More metastatic lesions were detected and localized under FL compared to BL and with greater accuracy, with sensitivities of 96% vs. 40%, respectively, when compared to control. FL was sensitive enough to detect metastatic lesions laparoscopy with tumors labeled with fluorophore-conjugated anti-CEA antibody permits rapid detection and accurate localization of primary and metastatic pancreatic cancer in an orthotopic model. The results of the present report demonstrate the future clinical potential of fluorescence laparoscopy. PMID:22369743

  2. An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy

    Science.gov (United States)

    Cogswell, Alexis; Williams, David L.; Newmark, Phillip A.

    2011-01-01

    Schistosomiasis (bilharzia) is a tropical disease caused by trematode parasites (Schistosoma) that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel) is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites. PMID:21408085

  3. Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development.

    Science.gov (United States)

    Sankaran, Renuka P; Ebbs, Stephen D

    2008-01-01

    The accumulation of excess Cd in the seeds of cereal and other crops compromises their commercial value and presents a potential risk to human health. Indian mustard [Brassica juncea (L.) Czern.] is a moderate accumulator of heavy metals such as Cd and Zn, and the seeds are consumed throughout the world, particularly in the Indian subcontinent. The study here examined the transport of Cd into Indian mustard plants and to seeds as a function of external Cd and the stage of the life cycle (vegetative growth, flowering and seed set) to identify critical developmental windows where transport from roots to seeds was the greatest. Plants were also treated simultaneously with Zn to determine if Zn fertilization mitigated the transport of Cd to seeds. Plants treated with Cd during the seed set accumulated the highest concentrations of Cd, exceeding 8 mg kg(-1) dry weight in some instances. Cadmium accumulated during vegetative growth was not highly redistributed to seeds. No effects of Zn were observed with regard to Cd redistribution to seeds. This may be because of the relatively small Zn : Cd ratios tested. However, the results suggest that if Zn fertilization is to be used to reduce the Cd accumulation in seeds of this species, that plants should be treated during the seed set stage. As the seeds of Indian mustard consistently accumulated Cd to concentrations that exceed acceptable limits for food crops, additional study of Cd redistribution in this species is warranted.

  4. Grid connected integrated community energy system. Phase II: final stage 2 report. Outline specifications of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    Specifications are presented for major components of the dual-purpose power plant to be located on the University of Minnesota campus. This power plant will supply steam and electric power to a proposed grid-connected Integrated Community Energy System. The capital costs and capital budget for the power plant and specifications for auxiliary equipment, such as the interconnecting heat tunnel, are included. (LCL)

  5. Stage and cell-specific expression and intracellular localization of the small heat shock protein Hsp27 during oogenesis and spermatogenesis in the Mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Economou, Katerina; Kotsiliti, Elena; Mintzas, Anastassios C

    2017-01-01

    The cell-specific expression and intracellular distribution of the small heat protein Hsp27 was investigated in the ovaries and testes of the Mediterranean fruit fly, Ceratitis capitata (medfly), under both normal and heat shock conditions. For this study, a gfp-hsp27 strain was used to detect the chimeric protein by confocal microscopy. In unstressed ovaries, the protein was expressed throughout egg development in a stage and cell-specific pattern. In germarium, the protein was detected in the cytoplasm of the somatic cells in both unstressed and heat-shocked ovaries. In the early stages of oogenesis of unstressed ovaries, the protein was mainly located in the perinuclear region of the germ cells and in the cytoplasm of the follicle cells, while in later stages (9-10) it was distributed in the cytoplasm of the germ cells. In late stages (12-14), the protein changed localization pattern and was exclusively associated with the nuclei of the somatic cells. In heat shocked ovaries, the protein was mainly located in the nuclei of the somatic cells throughout egg chamber's development. In unstressed testes, the chimeric protein was detected in the nuclei of primary spermatocytes and in the filamentous structures of spermatid bundles, called actin cones. Interestingly, after a heat shock, the protein presented the same cell-specific localization pattern as in unstressed testes. Furthermore, the protein was also detected in the nuclei of the epithelial cells of the deferent duct, the accessory glands and the ejaculatory bulb. Our data suggest that medfly Hsp27 may have cell-specific functions, especially in the nucleus. Moreover, the association of this protein to actin cones during spermatid individualization, suggests a possible role of the protein in the formation and stabilization of actin cones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Proteome analysis of chick embryonic cerebrospinal fluid.

    Science.gov (United States)

    Parada, Carolina; Gato, Angel; Aparicio, Mariano; Bueno, David

    2006-01-01

    During early stages of embryo development, the brain cavity is filled with embryonic cerebrospinal fluid (E-CSF), a complex fluid containing different protein fractions that contributes to the regulation of the survival, proliferation and neurogenesis of the neuroectodermal stem cells. Using 2-DE, protein sequencing and database searches, we identified and analyzed the proteome of the E-CSF from chick embryos (Gallus gallus). We identified 26 different gene products, including proteins related to the extracellular matrix, proteins associated with the regulation of osmotic pressure and metal transport, proteins related to cell survival, MAP kinase activators, proteins involved in the transport of retinol and vitamin D, antioxidant and antimicrobial proteins, intracellular proteins and some unknown proteins. Most of these gene products are involved in the regulation of developmental processes during embryogenesis in systems other than E-CSF. Interestingly, 14 of them are also present in adult human CSF proteome, and it has been reported that they are altered in the CSF of patients suffering neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis is a key contribution to the general understanding of CNS development, and may also contribute to greater knowledge of these human diseases.

  7. Impaired Tax-specific T-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages.

    Science.gov (United States)

    Shimizu, Yukiko; Takamori, Ayako; Utsunomiya, Atae; Kurimura, Mayumi; Yamano, Yoshihisa; Hishizawa, Masakatsu; Hasegawa, Atsuhiko; Kondo, Fumiaki; Kurihara, Kiyoshi; Harashima, Nanae; Watanabe, Toshiki; Okamura, Jun; Masuda, Takao; Kannagi, Mari

    2009-03-01

    Human T-cell leukemia virus type-1 (HTLV-1)-specific T-cell immunity, a potential antitumor surveillance system in vivo, is impaired in adult T-cell leukemia (ATL). In this study, we aimed to clarify whether the T-cell insufficiency in ATL is present before the disease onset or occurs as a consequence of the disease. We investigated T-cell responses against Tax protein in peripheral blood mononuclear cells (PBMCs) from individuals at earlier stages of HTLV-1-infection, including 21 asymptomatic HTLV-1 carriers (ACs) and four patients with smoldering-type ATL (sATL), whose peripheral lymphocyte count was in normal range. About 30% of samples tested showed clear Tax-specific interferon (IFN)-gamma producing responses. Proviral loads in this group were significantly lower than those in the other less-specific response group. The latter group was further divided to two subgroups with or without emergence of Tax-specific responses following depletion of CC chemokine receptor 4 (CCR4)(+) cells that contained HTLV-1-infected cells. In the PBMCs with Tax-specific responses, CD8(+) cells efficiently suppressed HTLV-1 p19 production in culture. The remaining group without the emergence of Tax-specific response after CCR4(+) cell-depletion included at least two sATL and one AC samples, which spontaneously produced HTLV-1 p19 in culture, where tetramer-binding, Tax-specific cytotoxic T-lymphocytes were either undetectable or unresponsive. Our results indicated that HTLV-1-specific T-cell responsiveness widely differed among HTLV-1 carriers, and that impairment of HTLV-1-specific T-cell responses was observed not only in advanced ATL patients but also in a subpopulation at earlier stages, which was associated with insufficient control of HTLV-1.

  8. Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer.

    Science.gov (United States)

    Chen, Binbin; Platt, Manu O

    2011-07-14

    Cathepsins K, L, and S are cysteine proteases upregulated in cancer and proteolyze extracellular matrix to facilitate metastasis, but difficulty distinguishing specific cathepsin activity in complex tissue extracts confounds scientific studies and employing them for use in clinical diagnoses. Here, we have developed multiplex cathepsin zymography to profile cathepsins K, L, and S activity in 10 μg human breast, lung, and cervical tumors by exploiting unique electrophoretic mobility and renaturation properties. Frozen breast, lung, and cervix cancer tissue lysates and normal organ tissue lysates from the same human patients were obtained (28 breast tissues, 23 lung tissues, and 23 cervix tissues), minced and homogenized prior to loading for cathepsin gelatin zymography to determine enzymatic activity. Cleared bands of cathepsin activity were identified and validated in tumor extracts and detected organ- and stage-specific differences in activity. Cathepsin K was unique compared to cathepsins L and S. It was significantly higher for all cancers even at the earliest stage tested (stage I for lung and cervix (n = 6, p zymography, yielded 100% sensitivity and specificity for 20 breast tissue samples tested (10 normal; 10 tumor) in part due to the consistent absence of cathepsin K in normal breast tissue across all patients. To summarize, this sensitive assay provides quantitative outputs of cathepsins K, L, and S activities from mere micrograms of tissue and has potential use as a supplement to histological methods of clinical diagnoses of biopsied human tissue.

  9. Peculiarities of Embryonic and Post-Embryonic Development of Оesophagostomum dentatum (Nematoda, Strongylidae Larvae Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Yevstafieva V. А.

    2017-02-01

    Full Text Available Morphometric peculiarities of the development of Оesophagostomum dentatum Rudolphi, 1803 from egg to infective larva were studied under laboratory conditions at various temperatures. The determined optimum temperature for embryonic and post-embryonic development of О. dentatum larvae from domestic pig (Sus scrofa domesticus Linnaeus, 1758 is 22 °С. At this temperature, 81 % of larvae develop to the third stage (L3 on the 10th day. Temperatures of 24 °С and 20 °С are less favorable for the development of the nematode, at those temperatures only 67 and 63 % of larvae, respectively, reached infective stage by the 10th day of cultivation. Embryonic development of О. dentatum eggs is characterized by their lengthening (by 8.87-9.50 %, р < 0.01 and widening (by 6.77-9.35 %, р < 0.05-0.01, and post-embryonic larval development is associated with lengthening (by 4.59-17.33 %, р < 0.01-0.001.

  10. Initial stages of calcium uptake and mineral deposition in sea urchin embryos

    OpenAIRE

    Vidavsky, Netta; Addadi, Sefi; Mahamid, Julia; Shimoni, Eyal; Ben-Ezra, David; Shpigel, Muki; Weiner, Steve; Addadi, Lia

    2013-01-01

    With the onset of gastrulation, sea urchin embryos deposit a calcium carbonate endoskeleton consisting of two spicules. Sea water is the source for the mineral ions, but the specific stages of the transport and deposition pathway are not well understood. This study shows that the first-formed mineral is deposited inside intracellular micrometer-size vesicles as solid nanospheres. Surprisingly, the initial deposits are distributed widely inside the embryonic cells, including epithelial cells. ...

  11. Racial disparities in stage-specific gastric cancer: analysis of results from the Surveillance Epidemiology and End Results (SEER) program database.

    Science.gov (United States)

    Zhang, Gang; Zhao, Xing; Li, Jie; Yuan, Yu; Wen, Ming; Hao, Xin; Li, Ping; Zhang, Aimin

    2017-08-01

    The incidence of gastric cancer is declining in western countries but continues to represent a serious health problem worldwide, especially in Asia and among Asian Americans. This study aimed to investigate ethnic disparities in stage-specific gastric cancer, including differences in incidence, treatment and survival. The cohort study was analyzed using the data set of patients with gastric cancer registered in the Surveillance, Epidemiology, and End Results (SEER) program from 2004 to 2013. Among 54,165 patients with gastric cancer, 38,308 were whites (70.7%), 7546 were blacks (13.9%), 494 were American Indian/Alaskan Natives (0.9%) and 7817 were Asians/Pacific Islanders (14.4%). Variables were patient demographics, disease characteristics, surgery/radiation treatment, overall survival (OS) and cause specific survival (CSS). Asians/Pacific Islanders demonstrated the highest incidence rates for gastric cancer compared with other groups and had the greatest decline in incidence during the study period (13.03 to 9.28 per 100,000/year), as well as the highest percentage of patients with American Joint Committee on Cancer (AJCC) early stage gastric cancer. There were significant differences between groups in treatment across stages I-IV (all p<0.001); Asians/Pacific Islanders had the highest rate of surgery plus radiation (45.1%). Significant differences were found in OS and CSS between groups (p<0.001); OS was highest among Asians/Pacific Islanders. Multivariate analysis revealed that age, race, grade, stage, location, and second primary cancer were valid prognostic factors for survival. Marked ethnic disparities exist in age-adjusted incidence of primary gastric cancer, with significant differences between races in age, gender, histological type, grade, AJCC stage, location, second cancer, treatment and survival. Copyright © 2017 American Federation for Medical Research.

  12. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment

    Science.gov (United States)

    Arena, Vincenzo; Arena, Manuel; Arena, Goffredo Orazio

    2017-01-01

    The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells. PMID:28068409

  13. Grid connected integrated community energy system. Phase II: final stage 2 report. Outline specifications of cogeneration plant; continued

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    Specifications are presented for the electrical equipment, site preparation, building construction and mechanical systems for a dual-purpose power plant to be located on the University of Minnesota campus. This power plant will supply steam and electrical power to a grid-connected Integrated Community Energy System. (LCL)

  14. Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development.

    NARCIS (Netherlands)

    Dickstein, R.; Bisseling, T.; Reinhold, V.N.; Ausubel, F.M.

    1988-01-01

    To help dissect the molecular basis of the Rhizobium-legume symbiosis, we used in vitro translation and Northern blot analysis of nodule RNA to examine alfalfa-specific genes (nodulins) expressed in two types of developmentally defective root nodules elicited by Rhizobium meliloti. Fix- nodules were

  15. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts.

    Science.gov (United States)

    Li, Dong; Secher, Jan O; Juhl, Morten; Mashayekhi, Kaveh; Nielsen, Troels T; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Hall, Vanessa J

    2017-06-03

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig.

  16. A two- and three-dimensional approach for visualizing human embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Brøchner, Christian Beltoft; Vestentoft, Peter S; Lynnerup, Niels

    2010-01-01

    Undifferentiated human embryonic stem cells are characterized by expression of specific cell markers like the transcription factors OCT4, SOX2, and NANOG, the stage-specific embryonic antigen SSEA4, and the tumor-related antigens TRA-1-60 and TRA-1-81 and by their ability to differentiate under...... the expected markers. We describe a technique allowing paraffin embedding an entire hESC colony (e.g., 150 microm thick) and prepare 2-microm thick serial sections. Different staining procedures applied to individual sections produce a 2D survey of the developing hESC colony. Furthermore, a new and useful...... visualization of this 2D-expression pattern can be created by developing a 3D-model of the culture, based on serial paraffin sections. Individual sections are stained using individual markers. Using 3D image processing software such as Mimics or 3D-Doctor, the actual 3D-rendering of an entire colony can...

  17. Embryonic development of Anodontites trapesialis (Lamarck, 1819) (Bivalvia: Mycetopodidae).

    Science.gov (United States)

    Silva-Souza, A T; Guardia-Felipi, P; Arrebola, N R

    2011-02-01

    The phases of embryonic development of Anodontites trapesialis lasidia are described for the first time. Adult specimens were obtained from two fish farms located in Londrina, Paraná, Brazil. The internal demibranchs of 120 individuals were studied using a routine histological technique; 70 of these carried eggs and/or larvae in the marsupium and were utilized for the description of the phases of embryonic development. The demibranchs of five specimens were evaluated by scanning electron microscopy to detail the morphology of the larvae. Five phases of development were established: phase I, corresponding to the initial stage of cleavage with the formation of apical cells; phase II, including the stages of the morula and blastula; phase III, where the gastrula forms; phase IV, where the larva formed is still inside the egg envelope; and phase V, where the lasidium can still be identified immediately after eclosion.

  18. Embryonic development of Anodontites trapesialis (Lamarck, 1819 (Bivalvia: Mycetopodidae

    Directory of Open Access Journals (Sweden)

    AT. Silva-Souza

    Full Text Available The phases of embryonic development of Anodontites trapesialis lasidia are described for the first time. Adult specimens were obtained from two fish farms located in Londrina, Paraná, Brazil. The internal demibranchs of 120 individuals were studied using a routine histological technique; 70 of these carried eggs and/or larvae in the marsupium and were utilized for the description of the phases of embryonic development. The demibranchs of five specimens were evaluated by scanning electron microscopy to detail the morphology of the larvae. Five phases of development were established: phase I, corresponding to the initial stage of cleavage with the formation of apical cells; phase II, including the stages of the morula and blastula; phase III, where the gastrula forms; phase IV, where the larva formed is still inside the egg envelope; and phase V, where the lasidium can still be identified immediately after eclosion.

  19. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance

    Directory of Open Access Journals (Sweden)

    Kumari Sita

    2017-10-01

    Full Text Available Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.

  20. Characterization and staging of central bile duct stenosis—Evaluation of the hepatocyte specific contrast agent gadoxetate disodium

    International Nuclear Information System (INIS)

    Ringe, Kristina I.; Ringe, Bastian P.; Bektas, Hüseyin; Opherk, Jan P.; Reichelt, Angela; Lotz, Joachim; Wacker, Frank; Meyer, Bernhard C.

    2012-01-01

    Objective: To assess the value of gadoxetate disodium for characterization and staging of central bile duct stenosis (CBDS). Materials and methods: This prospective HIPAA-compliant study was IRB approved. 14 patients (8 male, 6 female; 36–80 years) with clinical suspicion of CBDS underwent preoperative MRI. To estimate the value of hepatocyte phase images (10, 20, 120 min p.i.), only T2w images (T2), only post-contrast images (CM), or both image datasets were assessed in three reading sessions by 3 readers. Agreement of each reading session with the intraoperative findings in terms of CBDS etiology and tumor extension (weighted kappa statistic) was calculated. Results: CBDS was caused by hilar cholangiocarcinoma (n = 9), gallbladder carcinoma (n = 4) and pancreatic carcinoma (n = 1). Characterization of CBDS etiology was correct by use of: T2w images in 57%, 64%, 50%; CM images in 64%, 57%, 50%; both in 71%, 64%, 64%. Agreement comparing reading sessions and intraoperative findings regarding tumor extension was fair up to moderate (κ-range = 0.21–0.54) as a result of common underestimation. Interobserver agreement for tumor extension was fair (κ-range = 0.31–0.33). Conclusions: By means of combined evaluation of T2 and CM images a more reliable characterization of CBDS was possible. Even though CBDS tended to be underestimated assessment of exact tumor extension was improved by contrast administration.

  1. Stage-specific damage to synaptonemal complexes and metaphase chromosomes induced by X rays in male mouse germ cells

    International Nuclear Information System (INIS)

    Backer, L.C.; Sontag, M.R.; Allen, J.W.

    1991-01-01

    Synaptonemal complexes (SCs) reveal mutagen-induced effects in germ cell meiotic chromosomes. The study was aimed at characterizing relationships between SC and metaphase I chromosome damage following radiation exposure at various stages of spermatogenesis. Male mice were irradiated with doses of 0, 2, or 4 Gy, and spermatocytes were harvested at times consistent with earlier exposures as spermatogonial stem cells, preleptotene cells (premeiotic DNA synthesis), or meiotic prophase cells. After stem-cell exposure, twice as many rearrangements were observed in SCs as in metaphase I chromosomes. Irradiation during premeiotic DNA synthesis resulted in dose-related increases in SC breakage and rearrangements (including novel forms) and in metaphase chromosomal aberrations. Following prophase exposure, various types and levels of SC and metaphase damage were observed. Irradiation of zygotene cells led to high frequencies of chromosome multivalents in metaphase I without a correspondingly high level of damage in preceding prophase SCs. Thus, irradiation of premeiotic and meiotic cells results in variable relationships between SC and metaphase chromosome damage

  2. Surgery in high-volume hospitals not commission on cancer accreditation leads to increased cancer-specific survival for early-stage lung cancer.

    Science.gov (United States)

    David, Elizabeth A; Cooke, David T; Chen, Yingjia; Perry, Andrew; Canter, Robert J; Cress, Rosemary

    2015-10-01

    Quality of oncologic outcomes is of paramount importance in the care of patients with non-small cell lung cancer (NSCLC). We sought to evaluate the relationship of hospital volume for lobectomy on cancer-specific survival in NSCLC patients treated in California, as well as the influence of Commission on Cancer (CoC) accreditation. The California Cancer Registry was queried from 2004 to 2011 for cases of Stage I NSCLC and 8,345 patients were identified. Statistical analysis was used to determine prognostic factors for cancer-specific survival. A total of 7,587 patients were treated surgically. CoC accreditation was not significant for cancer-specific survival, but treatment in high-volume centers was associated with longer survival when compared with low- and medium-volume centers (hazard ratio 1.77, 1.474 to 2.141 and hazard ratio 1.23, 1.058 to 1.438). These data suggest that surgical treatment in high-volume hospitals is associated with longer cancer-specific survival for early-stage NSCLC, but that CoC accreditation is not. Published by Elsevier Inc.

  3. Development of an in vitro assay and demonstration of Plasmodium berghei liver-stage inhibition by TRAP-specific CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Rhea J Longley

    Full Text Available The development of an efficacious vaccine against the Plasmodium parasite remains a top priority. Previous research has demonstrated the ability of a prime-boost virally vectored sub-unit vaccination regimen, delivering the liver-stage expressed malaria antigen TRAP, to produce high levels of antigen-specific T cells. The liver-stage of malaria is the main target of T cell-mediated immunity, yet a major challenge in assessing new T cell inducing vaccines has been the lack of a suitable pre-clinical assay. We have developed a flow-cytometry based in vitro T cell killing assay using a mouse hepatoma cell line, Hepa1-6, and Plasmodium berghei GFP expressing sporozoites. Using this assay, P. berghei TRAP-specific CD8+ T cell enriched splenocytes were shown to inhibit liver-stage parasites in an effector-to-target ratio dependent manner. Further development of this assay using human hepatocytes and P. falciparum would provide a new method to pre-clinically screen vaccine candidates and to elucidate mechanisms of protection in vitro.

  4. Smoc2 modulates embryonic myelopoiesis during zebrafish development.

    Science.gov (United States)

    Mommaerts, Hendrik; Esguerra, Camila V; Hartmann, Ursula; Luyten, Frank P; Tylzanowski, Przemko

    2014-11-01

    SMOC2 is a member of the BM-40 (SPARC) family of matricellular proteins, reported to influence signaling in the extracellular compartment. In mice, Smoc2 is expressed in many different tissues and was shown to enhance the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. Additionally, SMOC2 is associated with vitiligo and craniofacial and dental defects. The function of Smoc2 during early zebrafish development has not been determined to date. In pregastrula zebrafish embryos, smoc2 is expressed ubiquitously. As development progresses, the expression pattern becomes more anteriorly restricted. At the onset of blood cell circulation, smoc2 morphants presented a mild ventralization of posterior structures. Molecular analysis of the smoc2 morphants indicated myelopoietic defects in the rostral blood islands during segmentation stages. Hemangioblast development and further specification of the myeloid progenitor cells were shown to be impaired. Additional experiments indicated that Bmp target genes were down-regulated in smoc2 morphants. Our findings reveal that Smoc2 is an essential player in the development of myeloid cells of the anterior lateral plate mesoderm during embryonic zebrafish development. Furthermore, our data show that Smoc2 affects the transcription of Bmp target genes without affecting initial dorsoventral patterning or mesoderm development. Copyright © 2014 Wiley Periodicals, Inc.

  5. Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content

    Directory of Open Access Journals (Sweden)

    Ning Yan

    2016-11-01

    Full Text Available Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.. In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase (DXS, two 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, two 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD, four 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE, two 2-C-methyl-d-erythritol 2,4-cyclo-diphosphate synthase (IspF, four 1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate synthase (IspG, two 1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate reductase (IspH, six isopentenyl diphosphate isomerase (IPI, and two solanesyl diphosphate synthase (SPS candidate genes were identified in the solanesol biosynthetic pathway. Furthermore, the two N. tabacum SPS proteins (NtSPS1 and NtSPS2, which possessed two conserved aspartate-rich DDxxD domains, were highly homologous with SPS enzymes from other solanaceous plant species. In addition, the solanesol contents of three organs and of leaves from four growing stages of tobacco plants corresponded with the distribution of chlorophyll. Our findings provide a comprehensive evaluation of the correlation between the expression of different biosynthesis genes and the accumulation of solanesol, thus providing valuable insight into the regulation of solanesol biosynthesis in tobacco.

  6. Improving measurement in nutrition literacy research using Rasch modelling: examining construct validity of stage-specific 'critical nutrition literacy' scales.

    Science.gov (United States)

    Guttersrud, Oystein; Dalane, Jorån Østerholt; Pettersen, Sverre

    2014-04-01

    Critical nutrition literacy (CNL), as an increasingly important area in public health nutrition, can be defined as the ability to critically analyse nutrition information, increase awareness and participate in action to address barriers to healthy eating behaviours. Far too little attention has been paid to establishing valid instruments for measuring CNL. The aim of the present study was to assess the appropriateness of utilizing the latent scales of a newly developed instrument assessing nursing students' 'engagement in dietary habits' (the 'engagement' scale) and their level of 'taking a critical stance towards nutrition claims and their sources' (the 'claims' scale). Data were gathered by distributing a nineteen-item paper-and-pencil self-report questionnaire to university colleges offering nursing education. The study had a cross-sectional design using Rasch analysis. Data management and analysis were performed using the software packages RUMM2030 and SPSS version 20. School personnel handed out the questionnaires. Four hundred and seventy-three students at ten university colleges across Norway responded (52% response rate). Disordered thresholds were rescored, an under-discriminating item was discarded and one item showing uniform differential item functioning was split. The assumption of item locations being differentiated by stages was strengthened. The analyses demonstrated possible dimension violations of local independence in the 'claims' scale data and the 'engagement' scale could have been better targeted. The study demonstrates the usefulness of Rasch analysis in assessing the psychometric properties of scales developed to measure CNL. Qualitative research designs could further improve our understanding of CNL scales.

  7. A developmental program drives aggressive embryonal brain tumors.

    Science.gov (United States)

    Archer, Tenley C; Pomeroy, Scott L

    2014-01-01

    Embryonal tumors with multilayered rosettes (ETMRs) are primitive neuroectodermal tumors arising in infants. A new study shows that these tumors are universally driven by fusion of the promoter of a gene with brain-specific expression, TTYH1, to C19MC, the largest human microRNA cluster, activating a fetal neural development program.

  8. Innovative virtual reality measurements for embryonic growth and development

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); W.C.J. Hop (Wim); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2010-01-01

    textabstractBackground Innovative imaging techniques, using up-to-date ultrasonic equipment, necessitate specific biometry. The aim of our study was to test the possibility of detailed human embryonic biometry using a virtual reality (VR) technique. Methods In a longitudinal study, three-dimensional

  9. Management of undifferentiated embryonal sarcoma of the liver in ...

    African Journals Online (AJOL)

    Background. Undifferentiated embryonal sarcoma of the liver (UESL) is a rare neoplasm, and the third-most common paediatric hepatic malignancy. However, no treatment guidelines exist. No randomised, controlled trials support specific combinations of therapy. Objective. To compare presentation and management of ...

  10. Gametogenesis in the Pacific Oyster Crassostrea gigas: A Microarrays-Based Analysis Identifies Sex and Stage Specific Genes

    Science.gov (United States)

    Dheilly, Nolwenn M.; Lelong, Christophe; Huvet, Arnaud; Kellner, Kristell; Dubos, Marie-Pierre; Riviere, Guillaume; Boudry, Pierre; Favrel, Pascal

    2012-01-01

    Background The Pacific oyster Crassostrea gigas (Mollusca, Lophotrochozoa) is an alternative and irregular protandrous hermaphrodite: most individuals mature first as males and then change sex several times. Little is known about genetic and phenotypic basis of sex differentiation in oysters, and little more about the molecular pathways regulating reproduction. We have recently developed and validated a microarray containing 31,918 oligomers (Dheilly et al., 2011) representing the oyster transcriptome. The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key factors involved in sex differentiation and the regulation of oyster reproduction. Methodology/Principal Findings Gene expression was studied in gonads of oysters cultured over a yearly reproductive cycle. Principal component analysis and hierarchical clustering showed a significant divergence in gene expression patterns of males and females coinciding with the start of gonial mitosis. ANOVA analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The expression of 434 genes could be localized in either germ cells or somatic cells of the gonad by comparing the transcriptome of female gonads to the transcriptome of stripped oocytes and somatic tissues. Analysis of the annotated genes revealed conserved molecular mechanisms between mollusks and mammals: genes involved in chromatin condensation, DNA replication and repair, mitosis and meiosis regulation, transcription, translation and apoptosis were expressed in both male and female gonads. Most interestingly, early expressed male-specific genes included bindin and a dpy-30 homolog and female-specific genes included foxL2, nanos homolog 3, a pancreatic lipase related protein, cd63 and vitellogenin. Further functional analyses are now required in order to investigate their role in sex differentiation in oysters. Conclusions

  11. Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability.

    Directory of Open Access Journals (Sweden)

    Wai-Lok Yau

    Full Text Available BACKGROUND: Cyclosporin A (CsA has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development. METHODOLOGY/PRINCIPAL FINDINGS: Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 microM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 microM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function. CONCLUSIONS/SIGNIFICANCE: The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate

  12. The Expression of Embryonic Liver Development Genes in Hepatitis C Induced Cirrhosis and Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Martha, E-mail: mbehnke@mcvh-vcu.edu [Transplant Program Administration, Virginia Commonwealth University Health System, 1200 E. Broad St., Richmond, VA 23298 (United States); Reimers, Mark [Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, 800 E Leigh St., Richmond, VA 23298 (United States); Fisher, Robert [Department of Surgery, Virginia Commonwealth University, 1200 E. Broad St., Richmond, VA 23298 (United States)

    2012-09-18

    Hepatocellular carcinoma (HCC) remains a difficult disease to study even after a decade of genomic analysis. Patient and disease heterogeneity, differences in statistical methods and multiple testing issues have resulted in a fragmented understanding of the molecular basis of tumor biology. Some researchers have suggested that HCC appears to share pathways with embryonic development. Therefore we generated targeted hypotheses regarding changes in developmental genes specific to the liver in HCV-cirrhosis and HCV-HCC. We obtained microarray studies from 30 patients with HCV-cirrhosis and 49 patients with HCV-HCC and compared to 12 normal livers. Genes specific to non-liver development have known associations with other cancer types but none were expressed in either adult liver or tumor tissue, while 98 of 179 (55%) genes specific to liver development had differential expression between normal and cirrhotic or HCC samples. We found genes from each developmental stage dysregulated in tumors compared to normal and cirrhotic samples. Although there was no single tumor marker, we identified a set of genes (Bone Morphogenetic Protein inhibitors GPC3, GREM1, FSTL3, and FST) in which at least one gene was over-expressed in 100% of the tumor samples. Only five genes were differentially expressed exclusively in late-stage tumors, indicating that while developmental genes appear to play a profound role in cirrhosis and malignant transformation, they play a limited role in late-stage HCC.

  13. The Expression of Embryonic Liver Development Genes in Hepatitis C Induced Cirrhosis and Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Behnke, Martha; Reimers, Mark; Fisher, Robert

    2012-01-01

    Hepatocellular carcinoma (HCC) remains a difficult disease to study even after a decade of genomic analysis. Patient and disease heterogeneity, differences in statistical methods and multiple testing issues have resulted in a fragmented understanding of the molecular basis of tumor biology. Some researchers have suggested that HCC appears to share pathways with embryonic development. Therefore we generated targeted hypotheses regarding changes in developmental genes specific to the liver in HCV-cirrhosis and HCV-HCC. We obtained microarray studies from 30 patients with HCV-cirrhosis and 49 patients with HCV-HCC and compared to 12 normal livers. Genes specific to non-liver development have known associations with other cancer types but none were expressed in either adult liver or tumor tissue, while 98 of 179 (55%) genes specific to liver development had differential expression between normal and cirrhotic or HCC samples. We found genes from each developmental stage dysregulated in tumors compared to normal and cirrhotic samples. Although there was no single tumor marker, we identified a set of genes (Bone Morphogenetic Protein inhibitors GPC3, GREM1, FSTL3, and FST) in which at least one gene was over-expressed in 100% of the tumor samples. Only five genes were differentially expressed exclusively in late-stage tumors, indicating that while developmental genes appear to play a profound role in cirrhosis and malignant transformation, they play a limited role in late-stage HCC

  14. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda).

    Science.gov (United States)

    Oh, Thomas J; Wartell, Roger M; Cairney, John; Pullman, Gerald S

    2008-01-01

    MicroRNAs (miRNAs) are known to regulate plant development, but have not been studied in gymnosperm seed tissues. The presence and characteristics of several miRNAs were examined in zygotic embryos (ZEs) and female gametophytes (FGs) of Pinus taeda (loblolly pine). Evidence for miRNAs was obtained using northern analyses and quantitative reverse transcription polymerase chain reaction (qRT-PCR) mediated with poly(A) polymerase. Partial sequences of two miRNAs were verified. Three regions of putative mRNA targets were analyzed by qRT-PCR to monitor the occurrence of stage-dependent miRNA-mediated cleavage. Five miRNAs were identified in ZEs and FGs along with partial sequences of Pta-miR166 and Pta-miR167. Both miRNAs showed differing degrees of tissue-specific and stage-specific modulation. Analysis of HB15L mRNA (a potential Pta-miR166 target) suggested miRNA-guided cleavage in ZEs and FGs. Analysis of ARF8L mRNA (a potential Pta-miR167 target) implied cleavage in ZEs but not in FGs. Argonaute9-like mRNA (ptAGO9L) showed stage-specific modulation of expression in ZEs that appeared to be inverted in the corresponding FGs. MicroRNAs and argonaute genes varied spatiotemporally during seed development. The peak levels of Pta-miR166 in FGs and ptAGO9L in embryos occurred at stage 9.1, a critical transition point during embryo development and a point where somatic embryo maturation often stops. MicroRNAs identified in FG tissue may play a role in embryogenesis.

  15. Gametogenesis in the Pacific oyster Crassostrea gigas: a microarrays-based analysis identifies sex and stage specific genes.

    Directory of Open Access Journals (Sweden)

    Nolwenn M Dheilly

    Full Text Available BACKGROUND: The Pacific oyster Crassostrea gigas (Mollusca, Lophotrochozoa is an alternative and irregular protandrous hermaphrodite: most individuals mature first as males and then change sex several times. Little is known about genetic and phenotypic basis of sex differentiation in oysters, and little more about the molecular pathways regulating reproduction. We have recently developed and validated a microarray containing 31,918 oligomers (Dheilly et al., 2011 representing the oyster transcriptome. The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key factors involved in sex differentiation and the regulation of oyster reproduction. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression was studied in gonads of oysters cultured over a yearly reproductive cycle. Principal component analysis and hierarchical clustering showed a significant divergence in gene expression patterns of males and females coinciding with the start of gonial mitosis. ANOVA analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The expression of 434 genes could be localized in either germ cells or somatic cells of the gonad by comparing the transcriptome of female gonads to the transcriptome of stripped oocytes and somatic tissues. Analysis of the annotated genes revealed conserved molecular mechanisms between mollusks and mammals: genes involved in chromatin condensation, DNA replication and repair, mitosis and meiosis regulation, transcription, translation and apoptosis were expressed in both male and female gonads. Most interestingly, early expressed male-specific genes included bindin and a dpy-30 homolog and female-specific genes included foxL2, nanos homolog 3, a pancreatic lipase related protein, cd63 and vitellogenin. Further functional analyses are now required in order to investigate their role in sex differentiation in oysters

  16. The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons

    NARCIS (Netherlands)

    K. Tsarovina (Konstantina); T. Reiff (Tobias); J. Stubbusch (Jutta); D. Kurek (Dorota); F.G. Grosveld (Frank); R. Parlato (Rosanna); G. Schütz (Günther); H. Rohrer (Hermann)

    2010-01-01

    textabstractThe transcription factor Gata3 is essential for the development of sympathetic neurons and adrenal chromaffin cells. As Gata3 expression is maintained up to the adult stage, we addressed its function in differentiated sympathoadrenal cells at embryonic and adult stages by conditional

  17. Stage-specific binding profiles of cohesin in resting and activated B lymphocytes suggest a role for cohesin in immunoglobulin class switching and maturation.

    Directory of Open Access Journals (Sweden)

    Gamze Günal-Sadık

    Full Text Available The immunoglobulin heavy chain locus (Igh features higher-order chromosomal interactions to facilitate stage-specific assembly of the Ig molecule. Cohesin, a ring-like protein complex required for sister chromatid cohesion, shapes chromosome architecture and chromatin interactions important for transcriptional regulation and often acts together with CTCF. Cohesin is likely involved in B cell activation and Ig class switch recombination. Hence, binding profiles of cohesin in resting mature murine splenic B lymphocytes and at two stages after cell activation were elucidated by chromatin immunoprecipitation and deep sequencing. Comparative genomic analysis revealed cohesin extensively changes its binding to transcriptional control elements after 48 h of stimulation with LPS/IL-4. Cohesin was clearly underrepresented at switch regions regardless of their activation status, suggesting that switch regions need to be cohesin-poor. Specific binding changes of cohesin at B-cell specific gene loci Pax5 and Blimp-1 indicate new cohesin-dependent regulatory pathways. Together with conserved cohesin/CTCF sites at the Igh 3'RR, a prominent cohesin/CTCF binding site was revealed near the 3' end of Cα where PolII localizes to 3' enhancers. Our study shows that cohesin likely regulates B cell activation and maturation, including Ig class switching.

  18. Mechanisms of transcription factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cells.

    Science.gov (United States)

    Rhee, Catherine; Lee, Bum-Kyu; Beck, Samuel; LeBlanc, Lucy; Tucker, Haley O; Kim, Jonghwan

    2017-09-29

    Direct reprogramming can be achieved by forced expression of master transcription factors. Yet how such factors mediate repression of initial cell-type-specific genes while activating target cell-type-specific genes is unclear. Through embryonic stem (ES) to trophoblast stem (TS)-like cell reprogramming by introducing individual TS cell-specific 'CAG' factors (Cdx2, Arid3a and Gata3), we interrogate their chromosomal target occupancies, modulation of global transcription and chromatin accessibility at the initial stage of reprogramming. From the studies, we uncover a sequential, two-step mechanism of cellular reprogramming in which repression of pre-existing ES cell-associated gene expression program is followed by activation of TS cell-specific genes by CAG factors. Therefore, we reveal that CAG factors function as both decommission and pioneer factors during ES to TS-like cell fate conversion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Associations of Census-Tract Poverty with Subsite-Specific Colorectal Cancer Incidence Rates and Stage of Disease at Diagnosis in the United States

    Directory of Open Access Journals (Sweden)

    Kevin A. Henry

    2014-01-01

    Full Text Available Background. It remains unclear whether neighborhood poverty contributes to differences in subsite-specific colorectal cancer (CRC incidence. We examined associations between census-tract poverty and CRC incidence and stage by anatomic subsite and race/ethnicity. Methods. CRC cases diagnosed between 2005 and 2009 from 15 states and Los Angeles County (N=278,097 were assigned to 1 of 4 groups based on census-tract poverty. Age-adjusted and stage-specific CRC incidence rates (IRs and incidence rate ratios (IRRs were calculated. Analyses were stratified by subsite (proximal, distal, and rectum, sex, race/ethnicity, and poverty. Results. Compared to the lowest poverty areas, CRC IRs were significantly higher in the most impoverished areas for men (IRR = 1.14 95% CI 1.12–1.17 and women (IRR = 1.06 95% CI 1.05–1.08. Rate differences between high and low poverty were strongest for distal colon (male IRR = 1.24 95% CI 1.20–1.28; female IRR = 1.14 95% CI 1.10–1.18 and weakest for proximal colon. These rate differences were significant for non-Hispanic whites and blacks and for Asian/Pacific Islander men. Inverse associations between poverty and IRs of all CRC and proximal colon were found for Hispanics. Late-to-early stage CRC IRRs increased monotonically with increasing poverty for all race/ethnicity groups. Conclusion. There are differences in subsite-specific CRC incidence by poverty, but associations were moderated by race/ethnicity.

  20. Calcium metabolism in olive ridley turtle eggs during embryonic development.

    Science.gov (United States)

    Sahoo, G; Sahoo, R K; Mohanty-Hejmadi, P

    1998-09-01

    Analyses of calcium, magnesium, sulphur, potassium and phosphorus content of the eggshell, yolk-albumen and embryos of olive ridley turtle, Lepidochelys olivacea, have been carried out at various stages of embryonic development. Calcium is the major inorganic constituent in the egg (shell and yolk-albumen) and embryos. Other elements are present either in trace or in minute trace amounts. The egg contents (yolk and albumen) provide only 40% of the embryonic calcium requirement of the hatchling. The remaining 60% is provided by the eggshell. The eggshell also undergoes a similar reduction in its calcium content from laying to hatching. Elements other than calcium present in the yolk-albumen are sufficient for normal embryonic development. The movement of calcium from the eggshell to the embryo starts at about the 40th day of development at 29.5 degrees C. Birds, turtles and crocodiles use their eggshell as the secondary source of embryonic calcium requirement. This dependence on the eggshell varies in different groups which is highest in birds and lowest in crocodiles.

  1. Evaluation of serum prostate-specific antigen levels after postoperative radiation therapy for pathologic stage C prostate cancer

    International Nuclear Information System (INIS)

    Buskirk, S.J.; Schild, S.E.; Robinow, J.S.; Tomera, K.M.

    1991-01-01

    This paper assesses the impact of postoperative radiation therapy following radical prostatectomy on serum prostate-specific antigen (PSA) levels. From January 1988 through December 1989, 13 patients received postoperative radiation therapy within 3 months following a negative pelvic lymph node dissection and radical prostatectomy. Indications for postoperative radiation therapy included seminal vesicle involvement or positive surgical margins. Median follow-up is 27 months. Eight of the 13 patients had PSA levels ≤0.1 at their last evaluation. Of the five patients with rising PSA levels, two are being followed up with no further therapy, two have undergone orchietomy, and the remaining patient is dead of disease. Ten of the 13 patients had pre-radiation therapy PSA levels of ≤1.0, and eight of the 10 now have levels ≤0.1. The remaining three patients had pre-radiation therapy PSA levels of >1.0, and all three patients have eventually developed a rise in the PSA level following postoperative radiation therapy

  2. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors

    DEFF Research Database (Denmark)

    Seminatore, Christine; Polentes, Jerome; Ellman, Ditte

    2010-01-01

    Risk of tumorigenesis is a major obstacle to human embryonic and induced pluripotent stem cell therapy. Likely linked to the stage of differentiation of the cells at the time of implantation, formation of teratoma/tumors can also be influenced by factors released by the host tissue. We have...... analyzed the relative effects of the stage of differentiation and the postischemic environment on the formation of adverse structures by transplanted human embryonic stem cell-derived neural progenitors....

  3. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  4. Immunoglobulin Concentrations and Antigen-Specific Antibody Levels in Cervicovaginal Lavages of Rhesus Macaques Are Influenced by the Stage of the Menstrual Cycle

    Science.gov (United States)

    Lü, F. Xusheng; Ma, Zhongmin; Rourke, Tracy; Srinivasan, Seema; McChesney, Michael; Miller, Christopher J.

    1999-01-01

    The levels of antigen-specific antibodies (Abs) and immunoglobulins in the cervical mucus of women vary with the menstrual cycle; the highest levels occur during menses, and the lowest occur during the periovulatory period. The rhesus macaque is a widely used animal model of female genital tract immunity. We sought to determine whether rhesus macaques have a cyclical pattern of changing cervicovaginal Ab and immunoglobulin levels that is similar to that of the human female. This study examined the relationship of the stages of the menstrual cycle to genital mucosal and systemic immunoglobulin concentrations and Ab levels in rhesus macaques. In all seven rhesus macaques studied, the immunoglobulins G and A and some antibodies in cervicovaginal lavages varied with the stages of the menstrual cycle, and in many cases this variation reached the level of statistical significance. In a pattern similar to that of women, the highest levels of Abs and immunoglobulins occurred during menses, and the lowest levels occurred around the time of ovulation. However, the Ab and immunoglobulin levels in serum and rectal lavages did not change with the menstrual cycle stage. The results of this study are consistent with the hypothesis that the ovarian hormones that drive the menstrual cycle influence genital tract immunity in female primates. PMID:10569744

  5. Genome-wide association study reveals constant and specific loci for hematological traits at three time stages in a White Duroc × Erhualian F2 resource population.

    Directory of Open Access Journals (Sweden)

    Zhiyan Zhang

    Full Text Available Hematological traits are important indicators of immune function and have been commonly examined as biomarkers of disease and disease severity in humans. Pig is an ideal biomedical model for human diseases due to its high degree of similarity with human physiological characteristics. Here, we conducted genome-wide association studies (GWAS for 18 hematological traits at three growth stages (days 18, 46 and 240 in a White Duroc × Erhualian F2 intercross. In total, we identified 38 genome-wide significant regions containing 185 genome-wide significant SNPs by single-marker GWAS or LONG-GWAS. The significant regions are distributed on pig chromosomes (SSC 1, 4, 5, 7, 8, 10, 11, 12, 13, 17 and 18, and most of significant SNPs reside on SSC7 and SSC8. Of the 38 significant regions, 7 show constant effects on hematological traits across the whole life stages, and 6 regions have time-specific effects on the measured traits at early or late stages. The most prominent locus is the genomic region between 32.36 and 84.49 Mb on SSC8 that is associated with multiple erythroid traits. The KIT gene in this region appears to be a promising candidate gene. The findings improve our understanding of the genetic architecture of hematological traits in pigs. Further investigations are warranted to characterize the responsible gene(s and causal variant(s especially for the major loci on SSC7 and SSC8.

  6. A new computerized cognitive and social cognition training specifically designed for patients with schizophrenia/schizoaffective disorder in early stages of illness: A pilot study.

    Science.gov (United States)

    Fernandez-Gonzalo, Sol; Turon, Marc; Jodar, Merce; Pousa, Esther; Hernandez Rambla, Carla; García, Rebeca; Palao, Diego

    2015-08-30

    People with schizophrenia/schizoaffective disorders at early stages of the illness present cognitive and social cognition deficits that have a great impact in functional outcomes. Cognitive Remediation Therapy (CRT) has demonstrated consistent effect in cognitive performance, symptoms and psychosocial functioning. However, any CRT intervention or social cognition training have been specifically designed for patients in the early stages of psychosis. The aim of this pilot study is to assess the efficacy of a new computerized cognitive and social cognition program for patients with schizophrenia/schizoaffective disorder with recent diagnosis. A comprehensive assessment of clinical, social and non-social cognitive and functional measures was carried out in 53 randomized participants before and after the 4-months treatment. Significant results were observed in Spatial Span Forwards, Immediate Logical Memory and Pictures of Facial Affect (POFA) total score. None of these results were explained by medication, premorbid social functioning or psychopathological symptoms. No impact of the intervention was observed in other cognitive and social cognition outcome neither in clinical and functional outcomes. This new computerized intervention may result effective ameliorating visual attention, logical memory and emotional processing in patients in the early stages of schizophrenia/schizoaffective disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression.

    Directory of Open Access Journals (Sweden)

    Victor Y L Leung

    2011-11-01

    Full Text Available Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between

  8. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland.

    Science.gov (United States)

    Ellestad, Laura E; Porter, Tom E

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.

  9. Characterization of egg white antibacterial properties during the first half of incubation: A comparative study between embryonated and unfertilized eggs.

    Science.gov (United States)

    Guyot, N; Réhault-Godbert, S; Slugocki, C; Harichaux, G; Labas, V; Helloin, E; Nys, Y

    2016-12-01

    Egg white is an important contributor to the protection of eggs against bacterial contaminations during the first half of incubation (day zero to 12), prior to the egg white transfer into the amniotic fluid to be orally absorbed by the embryo. This protective system relies on an arsenal of antimicrobial proteins and on intrinsic physicochemical properties that are generally unfavorable for bacterial multiplication and dissemination. Some changes in these parameters can be observed in egg white during egg storage and incubation. The aim of this work was to characterize changes in the antibacterial potential of egg white in embryonated eggs (FE) during the first half of incubation using unfertilized eggs (UF) as controls. Egg white samples were collected at day zero, 4, 8, and 12 and analyzed for pH, protein concentration, and protein profile. Antibacterial properties of egg white proteins were evaluated against Listeria monocytogenes, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, and Salmonella Enteritidis. During incubation, differential variations of egg white pH and protein concentrations were observed between UF and FE. At equal protein concentrations, similar activities against L. monocytogenes and S. uberis were observed for FE and UF egg white proteins. A progressive decline in these activities, however, was observed over incubation time, regardless of the egg group (UF or FE). SDS-PAGE analysis of egg white proteins during incubation revealed discrete changes in the profile of major proteins, whereas the stability of some less abundant antimicrobial proteins seemed more affected. To conclude, the antibacterial activity of egg white proteins progressively decreased during the first half of egg incubation, possibly resulting from the alteration of specific antimicrobial proteins. This apparent decline may be partly counterbalanced in embryonated eggs by the increase in egg white protein concentration. The antibacterial potential of egg white

  10. Embryonated chicken eggs as an alternative model for mixed Clostridium perfringens and Eimeria tenella infection in chickens.

    Science.gov (United States)

    Alnassan, Alaa Aldin; Shehata, Awad Ali; Kotsch, Marianne; Lendner, Matthias; Daugschies, Arwid; Bangoura, Berit

    2013-06-01

    The chorioallantoic membrane (CAM) of chicken embryo eggs is a suitable model for viral and bacterial infections. In the present study, a new approach for testing the pathogenesis and virulence of Clostridium perfringens and Eimeria tenella dual infections as a model using the CAM of embryonated chicken eggs was developed. For this purpose, 24 specific pathogen-free (SPF) embryonated chicken eggs were divided into four groups (n = 6) and designated group E, group CP, group CPE, and NC. Sporozoites of E. tenella (20,000 sporozoites) were inoculated into 10-day-old embryonated SPF chicken eggs (groups E and CPE) via allantoic sac route. At 15-day-old, eggs of groups CP and CPE were infected with 10 (4)  cfu C. perfringens via the same route. Assessment of pathogenicity was assessed using gross and histopathological lesions. Embryo mortality reached 17 % after mono-infection with C. perfringens and/or E. tenella and 50 % in the mixed-infected group. Lesions in the CAMs were most numerous and most severe in co-infected eggs (group CPE), reaching the maximum score of 3 in 50 % of the inoculated eggs (P < 0.01). In Eimeria spp.-infected eggs (group E), lesions of score were between 1 and 2. Mono-infection with C. perfringens did not lead to a significant occurrence of lesions. Histopathological investigations of the CAM revealed clusters of Gram-positive bacteria, infiltration with leukocytes, lymphocytes, and developmental stages of E. tenella in the co-infected group. These data suggest that embryonated eggs could be an in ovo model for studying the pathogenesis of mixed infection with Eimeria and C. perfringens.

  11. Electroporation of Embryonic Kidney Explants

    Science.gov (United States)

    Haddad, Nicholas; Houle, Daniel; Gupta, Indra R.

    Metanephric kidney development in the mouse begins at embryonic day (E) 10.5, when the ureteric bud (UB), an outgrowth of the epithelial nephric duct, invades the neighboring metanephric mesenchyme (MM). The ureteric bud then undergoes a series of branching events to form the collecting duct network of the adult kidney (Fig. 19.1). As each ureteric bud tip forms, the adjacent undifferentiated mesenchyme is induced to epithelialize and form a nephron, the functional unit of the adult kidney that filters waste. Rodent embryonic kidneys can be dissected and cultured as explants such that branching morphogenesis and nephrogenesis can be observed ex vivo (Rothenpieler and Dressler, 1993; Vega et al., 1996; Piscione et al., 1997; Gupta et al., 2003).

  12. Color photographic index of fall Chinook salmon embryonic development and accumulated thermal units.

    Directory of Open Access Journals (Sweden)

    James W Boyd

    Full Text Available BACKGROUND: Knowledge of the relationship between accumulated thermal units and developmental stages of Chinook salmon embryos can be used to determine the approximate date of egg fertilization in natural redds, thus providing insight into oviposition timing of wild salmonids. However, few studies have documented time to different developmental stages of embryonic Chinook salmon and no reference color photographs are available. The objectives of this study were to construct an index relating developmental stages of hatchery-reared fall Chinook salmon embryos to time and temperature (e.g., degree days and provide high-quality color photographs of each identified developmental stage. METHODOLOGY/PRINCIPAL FINDINGS: Fall Chinook salmon eggs were fertilized in a hatchery environment and sampled approximately every 72 h post-fertilization until 50% hatch. Known embryonic developmental features described for sockeye salmon were used to describe development of Chinook salmon embryos. A thermal sums model was used to describe the relationship between embryonic development rate and water temperature. Mean water temperature was 8.0 degrees C (range; 3.9-11.7 degrees C during the study period. Nineteen stages of embryonic development were identified for fall Chinook salmon; two stages in the cleavage phase, one stage in the gastrulation phase, and sixteen stages in the organogenesis phase. The thermal sums model used in this study provided similar estimates of fall Chinook salmon embryonic development rate in water temperatures varying from 3.9-11.7 degrees C (mean=8 degrees C to those from several other studies rearing embryos in constant 8 degrees C water temperature. CONCLUSIONS/SIGNIFICANCE: The developmental index provides a reasonable description of timing to known developmental stages of Chinook salmon embryos and was useful in determining developmental stages of wild fall Chinook salmon embryos excavated from redds in the Columbia River. This index

  13. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation.

    Science.gov (United States)

    Langer, Diana; Martianov, Igor; Alpern, Daniel; Rhinn, Muriel; Keime, Céline; Dollé, Pascal; Mengus, Gabrielle; Davidson, Irwin

    2016-03-30

    TAF4 (TATA-binding protein-associated factor 4) and its paralogue TAF4b are components of the TFIID core module. We inactivated the murine Taf4a gene to address Taf4 function during embryogenesis. Here we show that Taf4a(-/-) embryos survive until E9.5 where primary germ layers and many embryonic structures are identified showing Taf4 is dispensable for their specification. In contrast, Taf4 is required for correct patterning of the trunk and anterior structures, ventral morphogenesis and proper heart positioning. Overlapping expression of Taf4a and Taf4b during embryogenesis suggests their redundancy at early stages. In agreement with this, Taf4a(-/-) embryonic stem cells (ESCs) are viable and comprise Taf4b-containing TFIID. Nevertheless, Taf4a(-/-) ESCs do not complete differentiation into glutamatergic neurons and cardiomyocytes in vitro due to impaired preinitiation complex formation at the promoters of critical differentiation genes. We define an essential role of a core TFIID TAF in differentiation events during mammalian embryogenesis.

  14. Fruit-specific overexpression of wound-induced tap1 under E8 promoter in tomato confers resistance to fungal pathogens at ripening stage.

    Science.gov (United States)

    Kesanakurti, Divya; Kolattukudy, Pappachan E; Kirti, Pulugurtha Bhardwaja

    2012-10-01

    Based on high economic importance and nutritious value of tomato fruits and as previous studies employed E8 promoter in fruit ripening-specific gene expression, we have developed transgenic tomato plants overexpressing tomato anionic peroxidase cDNA (tap1) under E8 promoter. Stable transgene integration was confirmed by polymerase chain reaction (PCR) and Southern analysis for nptII. Northern blotting confirmed elevated tap1 levels in the breaker- and red-ripe stages of T(1) transgenic fruits, whereas wild-type (WT) plants did not show tap1 expression in these developmental stages. Further, tap1 expression levels were significantly enhanced in response to wounding in breaker- and red-ripe stages of transgenic fruits, whereas wound-induced expression of tap1 was not detected in WT fruits. Confocal microscopy revealed high accumulation of phenolic compounds at the wound site in transgenic fruits suggesting a role of tap1 in wound-induced phenolic polymerization. Total peroxidase activity has increased remarkably in transgenic pericarp tissues in response to wounding, while very less or minimal levels were recorded in WT pericarp tissues. Transgenic fruits also displayed reduced post-harvest decay and increased resistance toward Alternaria alternata and Fusarium solani infection with noticeable inhibition in lesion formation. Conidiospore germination and mycelial growth of F. solani were severely inhibited when treated with E8-tap1 fruit extracts compared to WT fruits. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed reduced spore viability when incubated in E8-tap1 fruit extracts. Thus, fruit-specific expression of tap1 using E8 promoter is associated with enhanced total peroxidase activity and high phenolic accumulation in fruits with minimized post-harvest deterioration caused by wounding and fungal attack in tomato fruits. Copyright © Physiologia Plantarum 2012.

  15. Trunk anomalies in the centipede Stigmatogaster subterranea provide insight into late-embryonic segmentation.

    Science.gov (United States)

    Leśniewska, Małgorzata; Bonato, Lucio; Minelli, Alessandro; Fusco, Giuseppe

    2009-09-01

    We describe and analyze naturally occurring anomalies in the segmental structures of the trunk in an isolated population of the geophilomorph centipede Stigmatogaster subterranea. Recorded anomalies include mispaired tergites, shrunk segments, variously deformed sclerites, bifurcated trunk, and defects of spiracles and sternal pore areas. One specimen has a perfect segmentally patterned trunk, but with an even number of leg-bearing segments, representing the first record of such a phenotype in adult centipedes. We interpret these anomalies as the effects of perturbation of specific morphogenetic processes in trunk segmentation, occurring at different embryonic stages. The variety of segmental anomalies found in this population provides insights into the developmental process of segmentation and its evolution in geophilomorph centipedes. Variation in dorsal mispairing anomalies demonstrates that segments, as traditionally defined in arthropod morphology, are not the effective developmental units throughout embryogenesis.

  16. Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus.

    Science.gov (United States)

    Chesebro, John; Hrycaj, Steven; Mahfooz, Najmus; Popadić, Aleksandar

    2009-05-01

    Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.

  17. Bioelectric patterning during oogenesis: stage-specific distribution of membrane potentials, intracellular pH and ion-transport mechanisms in Drosophila ovarian follicles.

    Science.gov (United States)

    Krüger, Julia; Bohrmann, Johannes

    2015-01-16

    Bioelectric phenomena have been found to exert influence on various developmental and regenerative processes. Little is known about their possible functions and the cellular mechanisms by which they might act during Drosophila oogenesis. In developing follicles, characteristic extracellular current patterns and membrane-potential changes in oocyte and nurse cells have been observed that partly depend on the exchange of protons, potassium ions and sodium ions. These bioelectric properties have been supposed to be related to various processes during oogenesis, e. g. pH-regulation, osmoregulation, cell communication, cell migration, cell proliferation, cell death, vitellogenesis and follicle growth. Analysing in detail the spatial distribution and activity of the relevant ion-transport mechanisms is expected to elucidate the roles that bioelectric phenomena play during oogenesis. To obtain an overview of bioelectric patterning along the longitudinal and transversal axes of the developing follicle, the spatial distributions of membrane potentials (Vmem), intracellular pH (pHi) and various membrane-channel proteins were studied systematically using fluorescent indicators, fluorescent inhibitors and antisera. During mid-vitellogenic stages 9 to 10B, characteristic, stage-specific Vmem-patterns in the follicle-cell epithelium as well as anteroposterior pHi-gradients in follicle cells and nurse cells were observed. Corresponding distribution patterns of proton pumps (V-ATPases), voltage-dependent L-type Ca(2+)-channels, amiloride-sensitive Na(+)-channels and Na(+),H(+)-exchangers (NHE) and gap-junction proteins (innexin 3) were detected. In particular, six morphologically distinguishable follicle-cell types are characterized on the bioelectric level by differences concerning Vmem and pHi as well as specific compositions of ion channels and carriers. Striking similarities between Vmem-patterns and activity patterns of voltage-dependent Ca(2+)-channels were found, suggesting

  18. Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage

    Science.gov (United States)

    Cabarrocas, Julie; Cassan, Cécile; Magnusson, Fay; Piaggio, Eliane; Mars, Lennart; Derbinski, Jens; Kyewski, Bruno; Gross, David-Alexandre; Salomon, Benoit L.; Khazaie, Khashayarsha; Saoudi, Abdelhadi; Liblau, Roland S.

    2006-01-01

    Thymus-derived regulatory T cells (Tregs) expressing CD4, CD25, and the transcription factor Foxp3 play major roles in preventing autoimmunity. The Treg population is enriched in T cells expressing high-avidity self-reactive T cell receptors, and thymic epithelial cells expressing self-antigens (Ag) have been implicated in their induction and/or selection. However, the thymic selection events leading to Treg lineage commitment remain unclear. We followed the thymic development of self-Ag-specific Tregs in double-transgenic mice coexpressing a neo-self-Ag, hemagglutinin (HA) under the control of a neural tissue-specific promoter, and a transgenic class II-restricted T cell antigen receptor specific for HA111-119. Our data show that the promiscuous expression of the HA transgene in thymic epithelial cells is involved in the selective induction and/or expansion of HA-specific Foxp3+ Treg thymic precursors as early as the double-positive stage. PMID:16709665

  19. In vitro generation and characterization of chicken long-term germ cells from different embryonic origins.

    Science.gov (United States)

    Raucci, Franca; Fuet, Aurelie; Pain, Bertrand

    2015-09-15

    Primordial germ cells (PGCs) are the precursors of differentiated germ cells. Located in the epiblast of a stage X (EG&K) embryo, the PGCs translocate anteriorly to the germinal crescent and migrate, within 48 to 56 hours of development, through the blood vascular system to the germinal ridges where they become the gonadal germ cells (GGCs). We aim to generate, compare, and determine the basic characters of the in vitro long-term cultured PGCs derived from (1) the chicken blastodermal cells (at stages IX-XII); (2) the chicken blood of a 2-day old embryo (stages 14-17 Hamburger Hamilton [HH]); and (3) the long-term cultured gonocytes taken from male gonads of a 5- to 6-day-old embryo (stages 29-30 HH). In presence of fibroblast growth factor, chicken blastodermal cells are able to long-term proliferate and generate small, round, alkaline phosphatase-positive cell clusters. Molecular characterization shows that these selected and amplified clusters show a PGC-like cell profile, as they express cPOUV (a pluripotent-associated marker), NR6A1/GCNF and DDX4/CVH (germ cell-specific genes). Both chicken PGCs and GGCs, obtained from embryonic blood and gonads, at 14 to 17 HH and 29 to 30 HH, respectively, generate long-term germ cell cultures and positively react in vitro to periodic acid-Schiff. Immunochemical analyses reveal that these cell lines are specifically recognized by anti-SSEA-1, anti-EMA-1, anti-CVH, anti-β1-integrin, and anti-CEACAM antibodies. The presence of surrounding cells may suggest a stronger dependency toward the niche process for the GGCs. The reactivity of chicken embryonic germ cells obtained from the two different sources to the specific markers used in this study was not altered through the culture. In conclusion, the morphologic analysis specific for chicken PGCs and GGCs will further contribute to quick and reliable characterization of long-term cultured in vitro chicken germ cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Overexpression and cosuppression of xylem-related genes in an early xylem differentiation stage-specific manner by the AtTED4 promoter.

    Science.gov (United States)

    Endo, Satoshi; Iwamoto, Kuninori; Fukuda, Hiroo

    2018-02-01

    Tissue-specific overexpression of useful genes, which we can design according to their cause-and-effect relationships, often gives valuable gain-of-function phenotypes. To develop genetic tools in woody biomass engineering, we produced a collection of Arabidopsis lines that possess chimeric genes of a promoter of an early xylem differentiation stage-specific gene, Arabidopsis Tracheary Element Differentiation-related 4 (AtTED4) and late xylem development-associated genes, many of which are uncharacterized. The AtTED4 promoter directed the expected expression of transgenes in developing vascular tissues from young to mature stage. Of T2 lines examined, 42%, 49% and 9% were judged as lines with the nonrepeat type insertion, the simple repeat type insertion and the other repeat type insertion of transgenes. In 174 T3 lines, overexpression lines were confirmed for 37 genes, whereas only cosuppression lines were produced for eight genes. The AtTED4 promoter activity was high enough to overexpress a wide range of genes over wild-type expression levels, even though the wild-type expression is much higher than AtTED4 expression for several genes. As a typical example, we investigated phenotypes of pAtTED4::At5g60490 plants, in which both overexpression and cosuppression lines were included. Overexpression but not cosuppression lines showed accelerated xylem development, suggesting the positive role of At5g60490 in xylem development. Taken together, this study provides valuable results about behaviours of various genes expressed under an early xylem-specific promoter and about usefulness of their lines as genetic tools in woody biomass engineering. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Breast cancer normalization induced by embryonic mesenchyme is mediated by extracellular matrix biglycan.

    Science.gov (United States)

    Bischof, Ashley G; Yüksel, Deniz; Mammoto, Tadanori; Mammoto, Akiko; Krause, Silva; Ingber, Donald E

    2013-08-01

    Some epithelial cancers can be induced to revert to quiescent differentiated tissue when combined with embryonic mesenchyme; however, the mechanism of this induction is unknown. Here we combine tissue engineering, developmental biology, biochemistry and proteomics approaches to attack this problem. Using a synthetic reconstitution system, we show that co-culture of breast cancer cells with embryonic mesenchyme from early stage (E12.5-13.5) mammary glands decreases tumor cell proliferation while stimulating acinus differentiation, whereas cancer-associated fibroblasts (CAFs) fail to produce these normalizing effects. When insoluble extracellular matrices (ECMs) were isolated from cultured early stage (E12.5-13.5) embryonic mammary mesenchyme cells or E10 tooth mesenchyme and recombined with mammary tumor cells, they were found to be sufficient to induce breast cancer normalization including enhanced expression of estrogen receptor-α (ER-α). In contrast, ECM from later stage (E14.5) mammary mesenchyme and conditioned medium isolated from mesenchymal cell cultures were ineffective. Importantly, when the inductive ECMs produced by early stage embryonic mammary mesenchyme were scraped from dishes and injected into fast-growing breast tumors in mice, they significantly inhibited cancer expansion. Proteomics analysis of the detergent insoluble ECM material revealed several matrix components that were preferentially expressed in the embryonic ECMs. Analysis of two of these molecules previously implicated in cancer regulation--biglycan and tenascin C--revealed that addition of biglyan can mimic the tumor normalization response, and that siRNA knockdown of its expression in cultured embryonic mesenchyme results in loss of the ECM's inductive activity. These studies confirm that embryonic mesenchyme retains the ability to induce partial breast cancer reversion, and that its inductive capability resides at least in part in the ECM protein biglycan that it produces.

  2. Compartmentalization of SIV Replication Within Secondary Lymphoid Tissues of Rhesus Macaques is Linked to Disease Stage and Inversely Related to Localization of Virus-Specific CTL1 2

    Science.gov (United States)

    Connick, Elizabeth; Folkvord, Joy M.; Lind, Katherine T.; Rakasz, Eva G.; Miles, Brodie; Wilson, Nancy A.; Santiago, Mario L.; Schmitt, Kimberly; Stephens, Edward B.; Kim, Hyeon O.; Wagstaff, Reece; Li, Shengbin; Abdelaal, Hadia M.; Kemp, Nathan; Watkins, David I.; MaWhinney, Samantha; Skinner, Pamela J.

    2014-01-01

    We previously demonstrated that HIV replication is concentrated in lymph node B cell follicles during chronic infection and that HIV-specific CTL fail to accumulate in large numbers at those sites. It is unknown whether these observations can be generalized to other secondary lymphoid tissues, or whether virus compartmentalization occurs in the absence of CTL. We evaluated these questions in SIVmac239-infected rhesus macaques by quantifying SIV RNA+ cells and SIV-specific CTL in situ in spleen, lymph nodes and intestinal tissues obtained at several stages of infection. During chronic asymptomatic infection prior to simian AIDS (SAIDS), SIV-producing cells were more concentrated in follicular compared to extrafollicular regions of secondary lymphoid tissues. At day 14 of infection, when CTL have minimal impact on virus replication, there was no compartmentalization of SIV-producing cells. Virus compartmentalization was diminished in animals with SAIDS, which often have low frequency CTL responses. SIV-specific CTL were consistently more concentrated within extrafollicular regions of lymph node and spleen in chronically infected animals regardless of epitope specificity. Frequencies of SIV-specific CTL within follicular and extrafollicular compartments predicted SIV RNA+ cells within these compartments in a mixed model. Few SIV-specific CTL expressed the follicular homing molecule CXCR5 in the absence of the extrafollicular retention molecule CCR7, possibly accounting for the paucity of follicular CTL. These findings bolster the hypothesis that B cell follicles are immune privileged sites and suggest that strategies to augment CTL in B cell follicles could lead to improved viral control and possibly a functional cure for HIV infection. PMID:25362178

  3. Establishing the Embryonic Axes: Prime Time for Teratogenic Insults

    Directory of Open Access Journals (Sweden)

    Thomas W. Sadler

    2017-09-01

    Full Text Available A long standing axiom in the field of teratology states that the teratogenic period, when most birth defects are produced, occurs during the third to eighth weeks of development post-fertilization. Any insults prior to this time are thought to result in a slowing of embryonic growth from which the conceptus recovers or death of the embryo followed by spontaneous abortion. However, new insights into embryonic development during the first two weeks, including formation of the anterior-posterior, dorsal-ventral, and left-right axes, suggests that signaling pathways regulating these processes are prime targets for genetic and toxic insults. Establishment of the left-right (laterality axis is particularly sensitive to disruption at very early stages of development and these perturbations result in a wide variety of congenital malformations, especially heart defects. Thus, the time for teratogenic insults resulting in birth defects should be reset to include the first two weeks of development.

  4. Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages.

    Science.gov (United States)

    Liang, Yuh-Jin; Yang, Bei-Chia; Chen, Jin-Mei; Lin, Yu-Hsing; Huang, Chia-Lin; Cheng, Yuan-Yuan; Hsu, Chi-Yen; Khoo, Kay-Hooi; Shen, Chia-Ning; Yu, John

    2011-12-01

    Glycosphingolipids (GSLs) are ubiquitous components of cell membranes that can act as mediators of cell adhesion and signal transduction and can possibly be used as cell type-specific markers. Our previous study indicated that there was a striking switch in the core structures of GSLs during differentiation of human embryonic stem cells (hESCs) into embryoid body (EB), suggesting a close association of GSLs with cell differentiation. In this study, to further clarify if alterations in GSL patterns are correlated with lineage-specific differentiation of hESCs, we analyzed changes in GSLs as hESCs were differentiated into neural progenitors or endodermal cells by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and tandem mass spectrometry (MS/MS) analyses. During hESC differentiation into neural progenitor cells, we found that the core structures of GSLs switched from globo- and lacto- to mostly ganglio-series dominated by GD3. On the other hand, when hESCs were differentiated into endodermal cells, patterns of GSLs totally differed from those observed in EB outgrowth and neural progenitors. The most prominent GSL identified by the MALDI-MS and MS/MS analysis was Gb(4) Ceramide, with no appreciable amount of stage-specific embryonic antigens 3 or 4, or GD3, in endodermal cells. These changes in GSL profiling were accompanied by alterations in the biosynthetic pathways of expressions of key glycosyltransferases. Our findings suggest that changes in GSLs are closely associated with lineage specificity and differentiation of hESCs. Copyright © 2011 AlphaMed Press.

  5. Glycosphingolipid dynamics in human embryonic stem cell and cancer: their characterization and biomedical implications.

    Science.gov (United States)

    Ho, Ming-Yi; Yu, Alice L; Yu, John

    2017-12-01

    Glycosphingolipids (GSLs) are composed of complex glycans linked to sphingosines and various fatty acid chains. Antibodies against several GSLs designated as stage-specific embryonic antigens (SSEAs), have been widely used to characterize differentiation of embryonic stem (ES) cells. In view of the cross-reactivities of these antibodies with multiple glycans, a few laboratories have employed advanced mass spectrometry (MS) technologies to define the dynamic changes of surface GSLs upon ES differentiation. However, the amphiphilic nature and heterogeneity of GSLs make them difficult to decipher. In our studies, systematic survey of GSL expression profiles in human ES cells and differentiated derivatives was conducted, primarily with matrix-assisted laser desorption/ionization MS (MALDI-MS) and MS/MS analyses. In addition to the well-known ES-specific markers, SSEA-3 and SSEA-4, several previously undisclosed globo- and lacto-series GSLs, including Gb4Cer, Lc4Cer, fucosyl Lc4Cer, Globo H, and disialyl Gb5Cer were identified in the undifferentiated human ES and induced pluripotent stem cells. Furthermore, during differentiation to embryoid body outgrowth, the core structures of GSLs switched from globo- and lacto- to ganglio-series. Lineage-specific differentiation was also marked by alterations of specific GSLs. During differentiation into neural progenitors, core structures shifted to primarily ganglio-series dominated by GD3. GSL patterns shifted to prominent expression of Gb4Cer with little SSEA-3 and- 4 or GD3 during endodermal differentiation. Several issues relevant to MS analysis and novel GSLs in ES cells were discussed. Finally, unique GSL signatures in ES and cancer cells are exploited in glycan-targeted anti-cancer immunotherapy and their mechanistic investigations were discussed using anti-GD2 mAb and Globo H as examples.

  6. Optimizing patient selection for dose escalation techniques using the prostate-specific antigen level, biopsy gleason score, and clinical T-stage

    International Nuclear Information System (INIS)

    D'Amico, Anthony V.; Whittington, Richard; Malkowicz, S. Bruce; Schultz, Delray; Renshaw, Andrew A.; Tomaszewski, John E.; Richie, Jerome P.; Wein, Alan

    1999-01-01

    Purpose: Ideal candidates for 3D dose escalation conformal radiation or external beam + implant therapy are identified on the basis of the prostate-specific antigen (PSA) level, biopsy Gleason score, and the 1992 American Joint Commission Cancer (AJCC) clinical T-stage. Methods and Materials: The pathologic findings of 1742 men with clinical stage T1c,2 prostate cancer managed with a radical prostatectomy (RP) between 1990 and 1998 were subjected to a logistic regression multivariable analysis. The endpoints examined included pathologic organ-confined (OC), specimen-confined (SC), and margin (M) or seminal vesicle (SV) positive disease. SC disease was defined as extracapsular extension (ECE) with a negative surgical margin. The clinical factors tested included PSA level, biopsy Gleason score, and the 1992 AJCC clinical T-stage. PSA failure-free (bNED) survival was calculated according to the method of Kaplan and Meier. Results: Significant negative predictors of pathologic OC-disease or positive predictors of M + or SV + disease included a PSA > 10 ng/ml (p + or SV + disease respectively. Conclusions: Patients most likely to derive a survival benefit from the improved local control possible using dose escalation techniques were those who had both a low risk of having occult micrometastatic disease ( + or SV + ) and a reasonable likelihood of remaining disease-free after RP (>50% 5-year bNED). These patients included those having T1c, 2a, PSA > 10-15 ng/ml, and biopsy Gleason ≤6 or T1c, 2a, 2b, PSA ≤ 10 ng/ml, and biopsy Gleason ≤ 7 prostate cancer

  7. lncRNA Functional Networks in Oligodendrocytes Reveal Stage-Specific Myelination Control by an lncOL1/Suz12 Complex in the CNS.

    Science.gov (United States)

    He, Danyang; Wang, Jincheng; Lu, Yulan; Deng, Yaqi; Zhao, Chuntao; Xu, Lingli; Chen, Yinhuai; Hu, Yueh-Chiang; Zhou, Wenhao; Lu, Q Richard

    2017-01-18

    Long noncoding RNAs (lncRNAs) are emerging as important regulators of cellular functions, but their roles in oligodendrocyte myelination remain undefined. Through de novo transcriptome reconstruction, we establish dynamic expression profiles of lncRNAs at different stages of oligodendrocyte development and uncover a cohort of stage-specific oligodendrocyte-restricted lncRNAs, including a conserved chromatin-associated lncOL1. Co-expression network analyses further define the association of distinct oligodendrocyte-expressing lncRNA clusters with protein-coding genes and predict lncRNA functions in oligodendrocyte myelination. Overexpression of lncOL1 promotes precocious oligodendrocyte differentiation in the developing brain, whereas genetic inactivation of lncOL1 causes defects in CNS myelination and remyelination following injury. Functional analyses illustrate that lncOL1 interacts with Suz12, a component of polycomb repressive complex 2, to promote oligodendrocyte maturation, in part, through Suz12-mediated repression of a differentiation inhibitory network that maintains the precursor state. Together, our findings reveal a key lncRNA epigenetic circuitry through interaction with chromatin-modifying complexes in control of CNS myelination and myelin repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye.

    Science.gov (United States)

    Rodrigues, Paulo M G; Grigaravicius, Paulius; Remus, Martina; Cavalheiro, Gabriel R; Gomes, Anielle L; Rocha-Martins, Maurício; Martins, Mauricio R; Frappart, Lucien; Reuss, David; McKinnon, Peter J; von Deimling, Andreas; Martins, Rodrigo A P; Frappart, Pierre-Olivier

    2013-01-01

    Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.

  9. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector.

    Science.gov (United States)

    Schneweis, Derek J; Whitfield, Anna E; Rotenberg, Dorith

    2017-01-01

    Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a circulative-propagative manner. Little is known about thrips vector response to TSWV during the infection process from larval acquisition to adult inoculation of plants. Whole-body transcriptome response to virus infection was determined for first-instar larval, pre-pupal and adult thrips using RNA-Seq. TSWV responsive genes were identified using preliminary sequence of a draft genome of F. occidentalis as a reference and three developmental-stage transcriptomes were assembled. Processes and functions associated with host defense, insect cuticle structure and development, metabolism and transport were perturbed by TSWV infection as inferred by ontologies of responsive genes. The repertoire of genes responsive to TSWV varied between developmental stages, possibly reflecting the link between thrips development and the virus dissemination route in the vector. This study provides the foundation for exploration of tissue-specific expression in response to TSWV and functional analysis of thrips gene function. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain.

    Science.gov (United States)

    Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A

    2011-05-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.

  11. Ca2+ signalling and early embryonic patterning during zebrafish development.

    Science.gov (United States)

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  12. Radiation dose response in patients with favorable localized prostate cancer (Stage T1-T2, biopsy Gleason ≤6, and pretreatment prostate-specific antigen ≤10)

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Buchsbaum, Jeffrey C.; Reddy, Chandana A.; Klein, Eric A.

    2001-01-01

    Purpose: To study the radiation dose response as determined by biochemical relapse-free survival in patients with favorable localized prostate cancers, i.e., Stage T1-T2, biopsy Gleason score (bGS) ≤6, and pretreatment prostate-specific antigen (iPSA) ≤10 ng/mL. Methods and Materials: A total of 292 patients with favorable localized prostate cancer were treated with radiotherapy alone between 1986 and 1999. The median age was 69 years. Sixteen percent of cases (n=46) were African-American. The distribution by clinical T stage was as follows: T1/T2A, 243 (83%); and T2B/T2C, 49 (17%). The distribution by iPSA was as follows: ≤4 ng/mL, 49 (17%); and >4 ng/mL, 243 (83%). The mean iPSA level was 6.2 (median, 6.4). The distribution by bGS was as follows: ≤5 in 89 cases (30%) and 6 in 203 cases (70%). The median radiation dose was 70.0 Gy (range, 63.0-78.0 Gy). Doses of ≤70.0 Gy were delivered in 175 cases, 70.2-72.0 Gy in 24 cases, 74 Gy in 30 cases, and 78 Gy in 63 cases. For patients receiving 2 =5.7), and radiation dose (p=0.021, χ 2 =5.3) were independent predictors of outcome. Age (p=0.94), race (p=0.89), stage (p=0.45), biopsy GS (p=0.40), and radiation technique (p=0.45) were not. Conclusion: There is a clear radiation dose response in patients with favorable localized prostate cancers (i.e., Stage T1-T2, biopsy Gleason score ≤6, and iPSA ≤10 ng/mL). At least 74 Gy should be delivered to the prostate and periprostatic tissues. With our cohort of patients, longer follow-up will be needed to assess the importance of doses exceeding 74 Gy

  13. The role of the pupal determinant broad during embryonic development of a direct-developing insect

    Science.gov (United States)

    Rynerson, Melody R.; Truman, James W.; Riddiford, Lynn M.

    2010-01-01

    Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects. PMID:20127251

  14. Stage selection and restricted oviposition period improves cryopreservation of dipteran embryos.

    Science.gov (United States)

    Rajamohan, Arun; Rinehart, Joseph P; Leopold, Roger A

    2015-04-01

    Embryos of two dipteran species (Musca domestica and Lucilia sericata) were assessed for an effective sampling time that would result in the highest post-cryopreservation hatch rate, with a primary goal to define species-specific egg collection periods and the effects of manual stage selection on post cryopreservation yield. The effects of the time taken to collect eggs on, (a) the proportion of embryos reaching a specific developmental stage between 17 and 20 h of development, and (b) the post-cryopreservation hatch rate were assessed. Permeabilization treatment applied at any stage of embryonic development did not significantly reduce embryo viability. Eggs collected over longer durations significantly reduced the number of embryos available in a specific developmental stage amenable to cryopreservation. Hatch percentage after cryopreservation of the embryos of M. domestica collected over a 60 min period was 10.7 ± 8.7% compared to 31 ± 5% for the eggs collected for just 15 min. Similarly, percent hatch in L. sericata resulted in 17.0 ± 3.9 and cryopreservation after manual selection of specific embryonic developmental stages from the dechorionated samples. Post-cryopreservation hatching rate for stage-selected M. domestica embryos was 86.5 ± 5.5% compared to 33.3 ± 4.5% for embryos staged only by an overall visual confirmation. In the case of L. sericata, the hatching percentage was 79.0 ± 11.1 for stage-selected embryos compared to 17.0 ± 3.9% without individual selection. Published by Elsevier Inc.

  15. Adenine nucleotide translocase 4 is expressed within embryonic ovaries and dispensable during oogenesis.

    Science.gov (United States)

    Lim, Chae Ho; Brower, Jeffrey V; Resnick, James L; Oh, S Paul; Terada, Naohiro

    2015-02-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene. © The Author(s) 2014.

  16. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation

    International Nuclear Information System (INIS)

    Ouyang, Liliang; Yao, Rui; Mao, Shuangshuang; Sun, Wei; Chen, Xi; Na, Jie

    2015-01-01

    With the ability to manipulate cells temporarily and spatially into three-dimensional (3D) tissue-like construct, 3D bioprinting technology was used in many studies to facilitate the recreation of complex cell niche and/or to better understand the regulation of stem cell proliferation and differentiation by cellular microenvironment factors. Embryonic stem cells (ESCs) have the capacity to differentiate into any specialized cell type of the animal body, generally via the formation of embryoid body (EB), which mimics the early stages of embryogenesis. In this study, extrusion-based 3D bioprinting technology was utilized for biofabricating ESCs into 3D cell-laden construct. The influence of 3D printing parameters on ESC viability, proliferation, maintenance of pluripotency and the rule of EB formation was systematically studied in this work. Results demonstrated that ESCs were successfully printed with hydrogel into 3D macroporous construct. Upon process optimization, about 90% ESCs remained alive after the process of bioprinting and cell-laden construct formation. ESCs continued proliferating into spheroid EBs in the hydrogel construct, while retaining the protein expression and gene expression of pluripotent markers, like octamer binding transcription factor 4, stage specific embryonic antigen 1 and Nanog. In this novel technology, EBs were formed through cell proliferation instead of aggregation, and the quantity of EBs was tuned by the initial cell density in the 3D bioprinting process. This study introduces the 3D bioprinting of ESCs into a 3D cell-laden hydrogel construct for the first time and showed the production of uniform, pluripotent, high-throughput and size-controllable EBs, which indicated strong potential in ESC large scale expansion, stem cell regulation and fabrication of tissue-like structure and drug screening studies. (paper)

  17. Gene and protein expressions of vimentin and desmin during embryonic development of the mylohyoid muscle.

    Science.gov (United States)

    Kishi, Asuka; Yamamoto, Masahito; Kikuchi, Akihito; Iwanuma, Osamu; Watanabe, Yutaka; Ide, Yoshinobu; Abe, Shinichi

    2012-09-01

    Meckel's cartilage is known to be involved in formation of the prenatal mandible. However, the relationship between Meckel's cartilage and the embryonic mylohyoid muscle during growth and development has been investigated only rarely. This study examined the expression of intermediate filaments in Meckel's cartilage and the embryonic mylohyoid muscle in fetal mice during morphological development. Specimens of E12-16 ICR mice sectioned in the frontal direction were subjected to immunohistochemistry for vimentin and desmin. Hematoxylin and eosin sections showed that the immature mylohyoid muscle began to grow along Meckel's cartilage during fetal development. Weak vimentin expression was detected in the mylohyoid muscle and surrounding tissues at E12. Desmin expression was detected specifically in the mylohyoid, and strong expression was evident after E13, and increased with age. It was inferred that the mylohyoid muscle is one the tissues developing from Meckel's cartilage, the latter exerting a continuous influence on the growth of the former. In the early stage, the surrounding mesenchymal tissues expressing vimentin formed a scaffold for the developing mylohyoid muscle. Muscle attachment at E13 showed steady desmin expression, which continued until maturity. This study suggested the possibility that Meckel's cartilage has an influence not only on the mandibular bone, but also on the development of the mylohyoid muscle attached to the mandibular bone. Furthermore, it revealed a stage of the developmental process of the mylohyoid muscle in which the expression of vimentin, which is a common protein in the surrounding tissue such as muscle and bone, induces the morphological formation of the mylohyoid muscle, cooperating with the surrounding structures.

  18. Morphogenesis and three-dimensional movement of the stomach during the human embryonic period.

    Science.gov (United States)

    Kaigai, N; Nako, A; Yamada, S; Uwabe, C; Kose, K; Takakuwa, T

    2014-05-01

    The stomach develops as the local widening of the foregut after Carnegie stage (CS) 13 that moves in a dramatic and dynamic manner during the embryonic period. Using the magnetic resonance images of 377 human embryos, we present the morphology, morphometry, and three-dimensional movement of the stomach during CS16 and CS23. The stomach morphology revealed stage-specific features. The angular incisura and the cardia were formed at CS18. The change in the angular incisura angle was approximately 90° during CS19 and CS20, and was stomach revealed that the stomach gradually becomes "deflected" during development. The stomach may appear to move to the left laterally and caudally due to its deflection and differential growth. The track of the reference points in the stomach may reflect the visual three-dimensional movement. The movement of point M, representing the movement of the greater curvature, was different from that of points C (cardia) and P (pyloric antrum). The P and C were located just around the midsagittal plane in all the stages observed. Point M moved in the caudal-left lateral direction until CS22. Moreover, the vector CP does not rotate around the dorsoventral axis, as widely believed, but around the transverse axis. The plane CPM rotated mainly around the longitudinal axis. The data obtained will be useful for prenatal diagnosis in the near future. Copyright © 2013 Wiley Periodicals, Inc.

  19. Stage-Specific Inhibition of TrkB Activity Leads to Long-Lasting and Sexually Dimorphic Effects on Body Weight and Hypothalamic Gene Expression

    Science.gov (United States)

    Byerly, Mardi S.; Swanson, Roy D.; Wong, G. William; Blackshaw, Seth

    2013-01-01

    During development, prenatal and postnatal factors program homeostatic set points to regulate food intake and body weight in the adult. Combinations of genetic and environmental factors contribute to the development of neural circuitry that regulates whole-body energy homeostasis. Brain-derived neurotrophic factor (Bdnf) and its receptor, Tyrosine kinase receptor B (TrkB), are strong candidates for mediating the reshaping of hypothalamic neural circuitry, given their well-characterized role in the central regulation of feeding and body weight. Here, we employ a chemical-genetic approach using the TrkBF616A/F616A knock-in mouse model to define the critical developmental period in which TrkB inhibition contributes to increased adult fat mass. Surprisingly, transient TrkB inhibition in embryos, preweaning pups, and adults all resulted in long-lasting increases in body weight and fat content. Moreover, sex-specific differences in the effects of TrkB inhibition on both body weight and hypothalamic gene expression were observed at multiple developmental stages. Our results highlight both the importance of the Bdnf/TrkB pathway in maintaining normal body weight throughout life and the role of sex-specific differences in the organization of hypothalamic neural circuitry that regulates body weight. PMID:24312242

  20. First report of adelphophagy in flatworms during the embryonic development of the planarian Schmidtea mediterranea (Benazzi, Baguñà, Ballester, Puccinelli & Del Papa, 1975) (Platyhelminthes, Tricladida)

    NARCIS (Netherlands)

    Harrath, A.H.; Sluys, R.; Zghal, F.; Tekaya, S.

    2009-01-01

    This paper details the embryonic development of the triclad flatworm Schmidtea mediterranea and describes, for the first time in flatworms, the phenomenon of adelphophagy. Embryonic development, which takes 23 days at 18-20°C, basically corresponds with the developmental stages documented in other

  1. Effect of temperature on embryonic development of Melanotaenia boesemani (Allen and Cross, 1982).

    Science.gov (United States)

    Radael, Marcella Costa; Cardoso, Leonardo Demier; de Andrade, Dalcio Ricardo; Ferreira, André Veloso; da Cruz Mattos, Douglas; Vidal, Manuel Vazquez

    2016-04-01

    The present study aimed to provide data on the time required for Melanotaenia boesemani to complete embryonic development, and to investigate the influence that incubation at different temperatures caused in this species. The effects of temperature on the time and hatching rate are presented, as well as information related to embryonic development stages. After fertilization, the eggs were kept in incubators at 23, 26, 29 or 32°C and observed at predetermined times until the moment of hatching. Stages of development were identified and classified according to morphological and physiological characteristics. Oil droplets were visualized inside the eggs as well as filament adhesion present at the chorion. Embryonic development was similar to that observed in other species of the genus Melanotaenia with hatching and faster development in higher temperatures.

  2. Formation of the hindgut cuticular lining during embryonic development of Porcellio scaber (Crustacea, Isopoda

    Directory of Open Access Journals (Sweden)

    Polona Mrak

    2015-07-01

    Full Text Available The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stagestage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial

  3. Formation of the hindgut cuticular lining during embryonic development of Porcellioscaber (Crustacea, Isopoda).

    Science.gov (United States)

    Mrak, Polona; Bogataj, Urban; Štrus, Jasna; Žnidaršič, Nada

    2015-01-01

    The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellioscaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage - stage 18 - an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial manca, possibly related also

  4. Cryopreservation of embryonic axes of groundnut ( Arachis ...

    African Journals Online (AJOL)

    An efficient cryopreservation protocol was developed for groundnut embryonic axes using vitrification technique. Embryonic axes obtained from seeds of four groundnut genotypes were dehydrated in Plant Vitrification Solution (PVS2) solution for different durations (0, 1, 2, 3, 4 and 5 h) before plunged into liquid nitrogen ...

  5. the production of mouse embryonic stem cells

    Indian Academy of Sciences (India)

    MADU

    result of the anarchic development of early embryonic cells left behind during development. However, their localization in the genital organs supported an alternative hypothesis: they were the result of an anarchic multiplication of the. Series. What history tells us. VII. Twenty-five years ago: the production of mouse embryonic ...

  6. Microglia Modulate Wiring of the Embryonic Forebrain

    Directory of Open Access Journals (Sweden)

    Paola Squarzoni

    2014-09-01

    Full Text Available Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1−/−, CR3−/−, and DAP12−/− mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.

  7. Design of problem-specific evolutionary algorithm/mixed-integer programming hybrids: two-stage stochastic integer programming applied to chemical batch scheduling

    Science.gov (United States)

    Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian

    2007-07-01

    Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the

  8. Stage-specific excretory-secretory small heat shock proteins from the parasitic nematode Strongyloides ratti--putative links to host's intestinal mucosal defense system.

    Science.gov (United States)

    Younis, Abuelhassan Elshazly; Geisinger, Frank; Ajonina-Ekoti, Irene; Soblik, Hanns; Steen, Hanno; Mitreva, Makedonka; Erttmann, Klaus D; Perbandt, Markus; Liebau, Eva; Brattig, Norbert W

    2011-09-01

    In a search for molecules involved in the interaction between intestinal nematodes and mammalian mucosal host cells, we performed MS to identify excretory-secretory proteins from Strongyloides ratti. In the excretory-secretory proteins of the parasitic female stage, we detected, in addition to other peptides, peptides homologous with the Caenorhabditis elegans heat shock protein (HSP)-17, named Sra-HSP-17.1 (∼ 19 kDa) and Sra-HSP-17.2 (∼ 18 kDa), with 49% amino acid identity. The full-length cDNAs (483 bp and 474 bp, respectively) were identified, and the genomic organization was analyzed. To allow further characterization, the proteins were recombinantly expressed and purified. Profiling of transcription by quantitative real-time-PCR and of protein by ELISA in various developmental stages revealed parasitic female-specific expression. Sequence analyses of both the DNA and amino acid sequences showed that the two proteins share a conserved α-crystallin domain and variable N-terminals. The Sra-HSP-17s showed the highest homology with the deduced small HSP sequence of the human pathogen Strongyloides stercoralis. We observed strong immunogenicity of both proteins, leading to strong IgG responses following infection of rats. Flow cytometric analysis indicated the binding of Sra-HSP-17s to the monocyte-macrophage lineage but not to peripheral lymphocytes or neutrophils. A rat intestinal epithelial cell line showed dose-dependent binding to Sra-HSP-17.1, but not to Sra-HSP-17.2. Exposed monocytes released interleukin-10 but not tumor necrosis factor-α in response to Sra-HSP-17s, suggesting the possible involvement of secreted female proteins in host immune responses. © 2011 The Authors Journal compilation © 2011 FEBS.

  9. Nuclear and cellular expression data from the whole 16-cell stage Arabidopsis thaliana embryo and a cell type-specific expression atlas of the early Arabidopsis embryo

    NARCIS (Netherlands)

    Palovaara, J.P.J.

    2017-01-01

    SuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA

  10. Chicken globin gene transcription is cell lineage specific during the time of the switch

    International Nuclear Information System (INIS)

    Lois, R.; Martinson, H.G.

    1989-01-01

    Posttranscriptional silencing of embryonic globin gene expression occurs during hemoglobin switching in chickens. Here the authors use Percoll density gradients to fractionate the red blood cells of 5-9 day embryos in order to determine the cellular source and the timing of this posttranscriptional process. By means of nuclear run-on transcription in vitro they show that it is within mature primitive cells that production of embryonic globin mRNA is terminated posttranscriptionally. In contrast, young definitive cells produce little (or no) embryonic globin mRNA because of regulation at the transcriptional level. Thus the lineage specificity of embryonic and adult globin gene expression is determined transcriptionally, and the posttranscriptional process described by Landes et al. is a property of the senescing primitive cells, not a mechanism operative in the hemoglobin switch. This conclusion is supported by [ 3 H]leucine incorporation experiments on Percoll-fractionated cells which reveal no posttranscriptional silencing of the embryonic genes during the early stages of the switch. In the course of these studies they have noticed a strong transcriptional pause near the second exon of the globin genes which is induced by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) and which resembles a natural pause near that position

  11. In vitro pancreas organogenesis from dispersed mouse embryonic progenitors.

    Science.gov (United States)

    Greggio, Chiara; De Franceschi, Filippo; Figueiredo-Larsen, Manuel; Grapin-Botton, Anne

    2014-07-19

    The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells (1). The whole embryonic organ can be cultured at multiple stages of development (2-4). These culture methods have been useful to test drugs and to image developmental processes. However the expansion of the organ is very limited and morphogenesis is not faithfully recapitulated since the organ flattens. We propose three-dimensional (3D) culture conditions that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess the response to mechanical cues of the niche such as stiffness and the effects on cell´s tensegrity.

  12. Effects of embryonic cyclosporine exposures on brain development and behavior.

    Science.gov (United States)

    Clift, Danielle E; Thorn, Robert J; Passarelli, Emily A; Kapoor, Mrinal; LoPiccolo, Mary K; Richendrfer, Holly A; Colwill, Ruth M; Creton, Robbert

    2015-04-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High-throughput identification of small molecules that affect human embryonic vascular development

    Science.gov (United States)

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; de Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H. A.; Pereira, Carlos F.; Mercader, Nadia; Ferreira, Lino

    2017-01-01

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature. PMID:28348206

  14. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme.

    Science.gov (United States)

    Sneddon, Julie B; Borowiak, Malgorzata; Melton, Douglas A

    2012-11-29

    One goal of regenerative medicine, to use stem cells to replace cells lost by injury or disease, depends on producing an excess of the relevant cell for study or transplantation. To this end, the stepwise differentiation of stem cells into specialized derivatives has been successful for some cell types, but a major problem remains the inefficient conversion of cells from one stage of differentiation to the next. If specialized cells are to be produced in large numbers it will be necessary to expand progenitor cells, without differentiation, at some steps of the process. Using the pancreatic lineage as a model for embryonic-stem-cell differentiation, we demonstrate that this is a solvable problem. Co-culture with organ-matched mesenchyme permits proliferation and self-renewal of progenitors, without differentiation, and enables an expansion of more than a million-fold for human endodermal cells with full retention of their developmental potential. This effect is specific both to the mesenchymal cell and to the progenitor being amplified. Progenitors that have been serially expanded on mesenchyme give rise to glucose-sensing, insulin-secreting cells when transplanted in vivo. Theoretically, the identification of stage-specific renewal signals can be incorporated into any scheme for the efficient production of large numbers of differentiated cells from stem cells and may therefore have wide application in regenerative biology.

  15. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

    Directory of Open Access Journals (Sweden)

    Silvia Mazzotta

    2016-10-01

    Full Text Available Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A, via FZD7 and canonical signaling, regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B, via ROR2 and noncanonical signaling, regulate MESP1 expression and cardiovascular development; and that later in development WNT2, WNT5A/5B, and WNT11, via FZD4 and FZD6, regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis, and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.

  16. Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.

    Science.gov (United States)

    Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras

    2016-12-01

    Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.

  17. Stepwise Embryonic Toxicity of Silver Nanoparticles on Oryzias latipes

    Science.gov (United States)

    Cho, Jae-Gu; Kim, Kyung-Tae; Lee, Jae-woo; Kim, Ji-Eun; Kim, Jungkon; Lee, Byoung-Cheun; Jo, Eun-Hye; Yoon, Junheon; Eom, Ig-chun; Choi, Kyunghee; Kim, Pilje

    2013-01-01

    The developmental toxicity of silver nanoparticles (AgNPs) was investigated following exposure of Oryzias latipes (medaka) embryos to 0.1−1 mg/L of homogeneously dispersed AgNPs for 14 days. During this period, developmental endpoints, including lethality, heart rate, and hatching rate, were evaluated by microscopy for different stages of medaka embryonic development. To compare toxic sensitivity, acute adult toxicity was assessed. There was no difference in acute lethal toxicity between embryo and adult medaka. Interestingly, we found that the increase in stepwise toxicity was dependent on the developmental stage of the embryo. Lethal embryonic toxicity increased from exposure days 1 to 3 and exposure days 5 to 8, whereas there was no change from exposure days 3 to 5. In addition, 7 d exposure to 0.8 mg/L AgNPs resulted in significant heart beat retardation in medaka embryos. AgNPs also caused a dose-dependent decrease in the hatching rate and body length of larvae. These results indicate that AgNP exposure causes severe developmental toxicity to medaka embryos and that toxicity levels are enhanced at certain developmental stages, which should be taken into consideration in assessments of metallic NPs toxicity to embryos. PMID:23984374

  18. Stepwise Embryonic Toxicity of Silver Nanoparticles on Oryzias latipes

    Directory of Open Access Journals (Sweden)

    Jae-Gu Cho

    2013-01-01

    Full Text Available The developmental toxicity of silver nanoparticles (AgNPs was investigated following exposure of Oryzias latipes (medaka embryos to 0.1−1 mg/L of homogeneously dispersed AgNPs for 14 days. During this period, developmental endpoints, including lethality, heart rate, and hatching rate, were evaluated by microscopy for different stages of medaka embryonic development. To compare toxic sensitivity, acute adult toxicity was assessed. There was no difference in acute lethal toxicity between embryo and adult medaka. Interestingly, we found that the increase in stepwise toxicity was dependent on the developmental stage of the embryo. Lethal embryonic toxicity increased from exposure days 1 to 3 and exposure days 5 to 8, whereas there was no change from exposure days 3 to 5. In addition, 7 d exposure to 0.8 mg/L AgNPs resulted in significant heart beat retardation in medaka embryos. AgNPs also caused a dose-dependent decrease in the hatching rate and body length of larvae. These results indicate that AgNP exposure causes severe developmental toxicity to medaka embryos and that toxicity levels are enhanced at certain developmental stages, which should be taken into consideration in assessments of metallic NPs toxicity to embryos.

  19. Effect of radiation on the embryonic midgut of the silkworm

    International Nuclear Information System (INIS)

    Miki, Mutsuo; Ohtuki, Yoshiki; Murakami, Akio.

    1979-01-01

    In order to determine the effect of X-rays on embryonic midguts of the silkworm (Bombyx mori L.), embryos of C108 strain were X-irradiated (180 kVp, 25 mA, 1.0 mm Al filter and a dose-rate at 300 R/min) at different stages ranging from 44 to 128 hours after oviposition to the stage organogenesis. Histological observation was made on the midguts from treated or nontreated embryos which had grown up to the stage of abdominal pigmentation. The midgut of embryos younger than 80 hours was remarkably damaged following X-irradiations with Ld 50 dose-range (1.5 KR). The midgut of embryos from 44 to 68 hours after oviposition or in the very early phase of organogenesis was most radiosensitive the midgut of embryos older than 92 hours was almost completed and X-irradiation caused slight damage. No significant histological damage was observed in the midgut of embryos older than 104 hours even after the treatment with a high dose of X-rays (4.0 or 6.0 KR). The sensitivity of the midgut to X-rays correlated with the embryonic lethality. Whether the midgut is a principal target of radiation was discussed. (author)

  20. Microanatomical Study of Embryonic Gonadal Development in Japanese Quail (Coturnix japonica

    Directory of Open Access Journals (Sweden)

    Sittipon Intarapat

    2014-01-01

    Full Text Available Gonadal development of quail embryos was examined histologically using histological and histochemical methods. In the present study, quail embryos were studied at various stages of incubation period based on phases of gonadogenesis. Germ cell migration was observed on day 3-4 but gonadal differentiation and gonadal function were observed on day 6–8 and day 11–14, respectively. During germ cell migration, quail primordial germ cells (qPGCs were successfully detected in both left and right genital ridges as well as the dorsal mesentery by lectin histochemistry. Unexpectedly, qPGCs-like cells were found next to the neural tube by Mallory-AZAN stain. During gonadal differentiation, embryonic sex can be distinguished histologically since day 8 of incubation. Embryonic testis exhibited a thin cortex, whereas embryonic ovary exhibited a thick cortex. Testicular cord formation was found in the medulla of embryonic testes while the lacunae and fat-laden cells were found in the medulla of embryonic ovary during gonadal function. This is the first report on a comparison of phases of gonadogenesis and histochemical study of quail embryonic gonads in both sexes.

  1. Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle.

    Directory of Open Access Journals (Sweden)

    Nathan P Croft

    2009-06-01

    Full Text Available The gamma-herpesvirus Epstein-Barr virus (EBV persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (DeltaBNLF2a and compared the ability of DeltaBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by DeltaBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and DeltaBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet DeltaBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and

  2. Integration of embryonic stem cells in metanephric kidney organ culture.

    Science.gov (United States)

    Steenhard, Brooke M; Isom, Kathryn S; Cazcarro, Patricia; Dunmore, Judy H; Godwin, Alan R; St John, Patricia L; Abrahamson, Dale R

    2005-06-01

    Many stages of nephrogenesis can be studied using cultured embryonic kidneys, but there is no efficient technique available to readily knockdown or overexpress transgenes for rapid evaluation of resulting phenotypes. Embryonic stem (ES) cells have unlimited developmental potential and can be manipulated at the molecular genetic level by a variety of methods. The aim of this study was to determine if ES cells could respond to developmental signals within the mouse embryonic day 12 to embryonic day 13 (E12 to E13) kidney microenvironment and incorporate into kidney structures. ROSA26 ES cells were shown to express beta-galactosidase ubiquitously when cultured in the presence of leukemia inhibitory factor to suppress differentiation. When these cells were microinjected into E12 to E13 metanephroi and then placed in transwell organ culture, ES cell-derived, beta-galactosidase-positive cells were identified in epithelial structures resembling tubules. On rare occasions, individual ES cells were observed in structures resembling glomerular tufts. Electron microscopy showed that the ES cell-derived tubules were surrounded by basement membrane and had apical microvilli and junctional complexes. Marker analysis revealed that a subset of these epithelial tubules bound Lotus tetragonolobus and expressed alpha(1) Na(+)/K(+) ATPase. ES cells were infected before injection with a cytomegalovirus promoter-green fluorescence protein (GFP) adenovirus and GFP expression was found as early as 18 h, persisting for up to 48 h in cultured kidneys. This ES cell technology may achieve the objective of obtaining a versatile cell culture system in which molecular interventions can be used in vitro and consequences of these perturbations on the normal kidney development program in vivo can be studied.

  3. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  4. Undifferentiated embryonal sarcoma of liver

    Directory of Open Access Journals (Sweden)

    Avyakta Kallam

    2015-12-01

    Full Text Available Undifferentiated embryonal sarcoma of the liver (UESL is a rare malignant hepatic tumor. A 47 year old male presented with symptoms of sour taste in his mouth, occasional nausea, indigestion and 15-pound weight loss over two months. He had an unremarkable upper gastrointestinal endoscopy. Imaging showed a large liver mass in the left hepatic lobe that was resected and then reported as UESL. He went on to develop lung metastases and was initially treated with doxorubicin and ifosfamide followed by switching of therapy to gemcitabine and docetaxel due to progression of disease. He had a good response after two cycles and went on to receive four more cycles, achieving stable disease. We can therefore conclude that the combination of gemcitabine and docetaxel is a potential therapeutic option for patients with UESL.

  5. Undifferentiated Embryonal Sarcoma of Liver.

    Science.gov (United States)

    Kallam, Avyakta; Krishnamurthy, Jairam; Kozel, Jessica; Shonka, Nicole

    2015-12-29

    Undifferentiated embryonal sarcoma of the liver (UESL) is a rare malignant hepatic tumor. A 47 year old male presented with symptoms of sour taste in his mouth, occasional nausea, indigestion and 15-pound weight loss over two months. He had an unremarkable upper gastrointestinal endoscopy. Imaging showed a large liver mass in the left hepatic lobe that was resected and then reported as UESL. He went on to develop lung metastases and was initially treated with doxorubicin and ifosfamide followed by switching of therapy to gemcitabine and docetaxel due to progression of disease. He had a good response after two cycles and went on to receive four more cycles, achieving stable disease. We can therefore conclude that the combination of gemcitabine and docetaxel is a potential therapeutic option for patients with UESL.

  6. Embryonic mobilization of calcium in a viviparous reptile: evidence for a novel pattern of placental calcium secretion.

    Science.gov (United States)

    Fregoso, Santiago P; Stewart, James R; Ecay, Tom W

    2010-05-01

    Yolk reserves supply the majority of embryonic nutrition in squamate reptiles, including calcium. Embryos of oviparous squamates exploit the eggshell for supplemental calcium, while embryos of viviparous species may receive additional calcium via the placenta. Developmental uptake of calcium in oviparous snakes increases during the interval of greatest embryonic growth (stage 35 to parturition). However, the pattern of embryonic calcium acquisition is unknown for viviparous snakes. Furthermore, while the uterus of oviparous species transports calcium early in embryonic development during mineralization of the eggshell, the timing of uterine calcium secretion in viviparous snakes is unknown. We studied a viviparous snake, Virginia striatula, to determine the ontogenetic pattern of yolk and embryonic calcium content. The pattern of embryonic calcium uptake of V. striatula is similar to that of oviparous snakes but the sources of calcium differ. In contrast to oviparous species, embryos of V. striatula acquire half of total neonatal calcium via placental provision, of which 71% is mobilized between stage 35 and parturition. Furthermore, we report for the first time in a viviparous squamate an increase in yolk calcium content during early stages of embryonic development, indicating that uterine secretion of calcium occurs in V. striatula coincident with shelling in oviparous squamates. Thus, uterine calcium secretion in this viviparous species may either occur continuously or in two phases, coincident with the timing of shelling in oviparous species and again during the last stages of development. Whereas, the pattern of embryonic calcium acquisition in V. striatula is plesiomorphic for squamates, the pattern of uterine calcium secretion includes both retention of a plesiomorphic trait and the evolution of a novel trait. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Anxiety After Diagnosis Predicts Lung Cancer-Specific and Overall Survival in Patients With Stage III Non-Small Cell Lung Cancer: A Population-Based Cohort Study.

    Science.gov (United States)

    Vodermaier, Andrea; Lucas, Sarah; Linden, Wolfgang; Olson, Robert

    2017-06-01

    The question as to whether anxiety and depression are related to mortality in patients with lung cancer is inconclusive. Therefore, the present study is examining associations of anxiety and depression in a large representative sample of patients with Stage III non-small cell lung cancer. Patients (n = 684) were routinely assessed for anxiety and depression with the PsychoSocial Screen for Cancer questionnaire after diagnosis of lung cancer and before treatment initiation between 2004 and 2010. Survival data were retrieved in May 2012. Cox proportional hazards regression analyses had been used as statistical procedures allowing adjustment for demographic, biomedical, and treatment variables. In analyses controlling for demographic, biomedical, and treatment prognosticators, anxiety but not depression was associated with increased lung cancer-specific (hazard ratio 1.04; 95% confidence interval 1.01-1.07; P = 0.035) and all-cause (hazard ratio 1.04; 95% confidence interval 1.01-1.07; P = 0.005) mortality. Secondary analyses revealed a confounder effect of performance status on the association between depression and mortality, such that the removal of performance status identified a significant relationship of depression on lung cancer-specific and all-cause mortality. In a large population-based sample of patients with non-small cell lung cancer analyses demonstrated associations of anxiety with mortality, adding to the evidence that psychosocial factors might play a role in disease progression in this patient group. Because emotional distress is associated with continued smoking and lack of success of smoking cessation attempts, psychological interventions potentially could influence length of survival in lung cancer patients. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  8. Novel mutations in genes encoding subcortical maternal complex proteins may cause human embryonic developmental arrest.

    Science.gov (United States)

    Wang, Xueqian; Song, Di; Mykytenko, Dmytro; Kuang, Yanping; Lv, Qifeng; Li, Bin; Chen, Biaobang; Mao, Xiaoyan; Xu, Yao; Zukin, Valery; Mazur, Pavlo; Mu, Jian; Yan, Zheng; Zhou, Zhou; Li, Qiaoli; Liu, Suying; Jin, Li; He, Lin; Sang, Qing; Sun, Zhaogui; Dong, Xi; Wang, Lei

    2018-03-21

    Successful human reproduction initiates from normal gamete formation, fertilization and early embryonic development. Abnormalities in any of these steps will lead to infertility. Many infertile patients undergo several failures of IVF and intracytoplasmic sperm injection (ICSI) cycles, and embryonic developmental arrest is a common phenotype in cases of recurrent failure of IVF/ICSI attempts. However, the genetic basis for this phenotype is poorly understood. The subcortical maternal complex (SCMC) genes play important roles during embryonic development, and using whole-exome sequencing novel biallelic mutations in the SCMC genes TLE6, PADI6 and KHDC3L were identified in four patients with embryonic developmental arrest. A mutation in TLE6 was found in a patient with cleaved embryos that arrested on day 3 and failed to form blastocysts. Two patients with embryos that arrested at the cleavage stage had mutations in PADI6, and a mutation in KHDC3L was found in a patient with embryos arrested at the morula stage. No mutations were identified in these genes in an additional 80 patients. These findings provide further evidence for the important roles of TLE6, PADI6 and KHDC3L in embryonic development. This work lays the foundation for the genetic diagnosis of patients with recurrent IVF/ICSI failure. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Virtual reality imaging techniques in the study of embryonic and early placental health.

    Science.gov (United States)

    Rousian, Melek; Koster, Maria P H; Mulders, Annemarie G M G J; Koning, Anton H J; Steegers-Theunissen, Régine P M; Steegers, Eric A P

    2018-04-01

    Embryonic and placental growth and development in the first trimester of pregnancy have impact on the health of the fetus, newborn, child and even the adult. This emphasizes the importance of this often neglected period in life. The development of three-dimensional transvaginal ultrasonography in combination with virtual reality (VR) opens the possibility of accurate and reliable visualization of embryonic and placental structures with real depth perception. These techniques enable new biometry and volumetry measurements that contribute to the knowledge of the (patho)physiology of embryonic and early placental health. Examples of such measurements are the length of complex structures like the umbilical cord, vitelline duct, limbs and cerebellum or the volume of the whole embryo and brain cavities. Moreover, for the first time, embryos can now be staged in vivo (Carnegie stages) and vasculature volumes of both the embryo and the early placenta can be measured when VR is combined with power Doppler signals. These innovative developments have already been used to study associations between periconceptional maternal factors, such as age, smoking, alcohol use, diet and vitamin status, and embryonic and early placental growth and development. Future studies will also focus on the identification of abnormal embryonic and early placental development already in the earliest weeks of pregnancy, which provides opportunities for early prevention of pregnancy complications. Copyright © 2018 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.

  10. Ultrastructure of the intrauterine eggs of the microphallid trematode Maritrema feliui: evidence of early embryonic development.

    Science.gov (United States)

    Swiderski, Zdzisław; Miquel, Jordi; Montoliu, Isabel; Feliu, Carlos; Gibson, David I

    2013-09-01

    Intrauterine embryonic development in the microphallid trematode Maritrema feliui is examined by means of transmission electron microscopy. Both fertilization and eggshell formation take place in the ootype. The eggshell is formed from a shell globule material derived from the vitelline cells combined with secretions of Mehlis' gland. The proximal uterus is packed with unembryonated eggs of the oligolecithal type, each composed of a fertilized oocyte and several vitelline cells, all surrounded by the shell. Intrauterine embryonic development of the egg is followed to the early stage of outer embryonic envelope formation, resulting in an embryo of ~20 blastomeres of three different types: macromeres, mesomeres and micromeres. The first equal cleavage division of the zygote produces two macromeres. The outer envelope is of cellular origin and formed by the cytoplasmic fusion of two macromeres, which become situated at opposite poles in the peripheral layer of the embryo just beneath the eggshell. Simultaneously, other blastomeres multiply and differentiate, whereas several micromeres exhibit clear signs of degeneration or apoptosis. These results show that the embryonic development of M. feliui starts in utero and represents an example of early stage ovoviviparity. A reduction in the number of blastomeres results from a continued degeneration of micromeres, which after autolysis and re-absorption, appear to represent an important source of nutritive reserves for the embryo. The embryonic development of this digenean is discussed in relation to its life cycle.

  11. A glutaredoxin in the mitochondrial intermembrane space has stage-specific functions in the thermo-tolerance and proliferation of African trypanosomes

    Directory of Open Access Journals (Sweden)

    Samantha Ebersoll

    2018-05-01

    Full Text Available Trypanosoma brucei glutaredoxin 2 (Grx2 is a dithiol glutaredoxin that is specifically located in the mitochondrial intermembrane space. Bloodstream form parasites lacking Grx2 or both, Grx2 and the cytosolic Grx1, are viable in vitro and infectious to mice suggesting that neither oxidoreductase is needed for survival or infectivity to mammals. A 37 °C to 39 °C shift changes the cellular redox milieu of bloodstream cells to more oxidizing conditions and induces a significantly stronger growth arrest in wildtype parasites compared to the mutant cells. Grx2-deficient cells ectopically expressing the wildtype form of Grx2 with its C31QFC34 active site, but not the C34S mutant, regain the sensitivity of the parental strain, indicating that the physiological role of Grx2 requires both active site cysteines. In the procyclic insect stage of the parasite, Grx2 is essential. Both alleles can be replaced if procyclic cells ectopically express authentic or C34S, but not C31S/C34S Grx2, pointing to a redox role that relies on a monothiol mechanism. RNA-interference against Grx2 causes a virtually irreversible proliferation defect. The cells adopt an elongated morphology but do not show any significant alteration in the cell cycle. The growth retardation is attenuated by high glucose concentrations. Under these conditions, procyclic cells obtain ATP by substrate level phosphorylation suggesting that Grx2 might regulate a respiratory chain component.

  12. Effects of exogenous melatonin on human pituitary and adrenal secretions. Hormonal responses to specific stimuli after acute administration of different doses at two opposite circadian stages in men.

    Science.gov (United States)

    Paccotti, P; Terzolo, M; Piovesan, A; Torta, M; Vignani, A; Angeli, A

    1988-01-01

    We evaluated the effect of an acute oral administration of 2 dosages (100 and 1 mg) of melatonin (MT) vs placebo (PL) on pituitary release of LH, FSH, TSH and PRL after GnRH + TRH and on the adrenocortical release of cortisol, aldosterone and progesterone after ACTH in healthy adult males. We carried out a double blind study on 6 volunteers in winter-early spring, at 2 opposite phases of the circadian cycle: 08(00) and 20(00). Injection of GnRH (100 micrograms), TRH (200 micrograms) and ACTH (10 micrograms of the synthetic analogue ACTH 1-17, alsactide) was performed 1 h after MT or PL ingestion. The measurement of plasma MT levels confirmed its effective gastrointestinal absorption after both doses. The hormonal patterns were superimposable after MT and PL. A higher response of FSH, PRL, cortisol and aldosterone was observed in the evening vs morning protocols independently of previous treatment (MT or PL). Our data demonstrate that the acute oral administration of 2 different doses of MT at 2 opposite circadian stages is ineffective as to the modification of a variety of pituitary and adrenocortical responses in human male subjects. The circadian chronosusceptibility of pituitary and adrenocortical cells to specific stimuli deserves interest to future investigation.

  13. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Tsuji-Takayama, Kazue; Inoue, Toshiya; Ijiri, Yoshihiro; Otani, Takeshi; Motoda, Ryuichi; Nakamura, Shuji; Orita, Kunzo

    2004-01-01

    The de novo methylation activity is essential for embryonic development as well as embryonic stem (ES) cell differentiation, where the intensive and extensive DNA methylation was detected. In this study, we investigated the effects of a demethylating agent, 5-azacytidine (5-AzaC), on differentiated ES cells in order to study the possibility of reversing the differentiation process. We first induced differentiation of ES cells by forming embryoid bodies, and then the cells were treated with 5-AzaC. The cells showed some undifferentiated features such as stem cell-like morphology with unclear cell-to-cell boundary and proliferative responsiveness to LIF. Moreover, 5-AzaC increased the expressions of ES specific markers, SSEA-1, and alkaline phosphatase activity as well as ES specific genes, Oct4, Nanog, and Sox2. We also found that 5-AzaC demethylated the promoter region of H19 gene, a typical methylated gene during embryonic differentiation. These results indicate that 5-AzaC reverses differentiation state of ES cells through its DNA demethylating activity to differentiation related genes

  14. Regulated expression of transgenes in embryonic stem cell-derived neural cells.

    Science.gov (United States)

    Lorberbaum, David S; Gottlieb, David

    2011-02-01

    Discovery and characterization of gene promoters, enhancers and repressor binding elements is an important research area in neuroscience. Here, the suitability of embryonic stem cells and their neural derivatives as a model system for this research is investigated. Three neural transgenic constructs (from the Mnx1, Fabp7, and tuba1a genes) that have been validated in transgenic mice were inserted into embryonic stem cells as stable transgenes. These transgenic embryonic stem cells were differentiated into neural cultures and the pattern of transgene expression across a series of inducing conditions determined. The pattern of expression matched that predicted from transgenic mouse experiments for each of the three transgenes. The results show that embryonic stem cells and their neural derivatives comprise a promising model for investigating the mechanisms that control cell- and temporal-specific neural gene transcription. Copyright © 2010 Wiley-Liss, Inc.

  15. Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus

    Directory of Open Access Journals (Sweden)

    Futahashi Ryo

    2012-05-01

    Full Text Available Abstract Background Body coloration is an ecologically important trait that is often involved in prey-predator interactions through mimicry and crypsis. Although this subject has attracted the interest of biologists and the general public, our scientific knowledge on the subject remains fragmentary. In the caterpillar of the swallowtail butterfly Papilio xuthus, spectacular changes in the color pattern are observed; the insect mimics bird droppings (mimetic pattern as a young larva, and switches to a green camouflage coloration (cryptic pattern in the final instar. Despite the wide variety and significance of larval color patterns, few studies have been conducted at a molecular level compared with the number of studies on adult butterfly wing patterns. Results To obtain a catalog of genes involved in larval mimetic and cryptic pattern formation, we constructed expressed sequence tag (EST libraries of larval epidermis for P. xuthus, and P. polytes that contained 20,736 and 5,376 clones, respectively, representing one of the largest collections available in butterflies. A comparison with silkworm epidermal EST information revealed the high expression of putative blue and yellow pigment-binding proteins in Papilio species. We also designed a microarray from the EST dataset information, analyzed more than five stages each for six markings, and confirmed spatial expression patterns by whole-mount in situ hybridization. Hence, we succeeded in elucidating many novel marking-specific genes for mimetic and cryptic pattern formation, including pigment-binding protein genes, the melanin-associated gene yellow-h3, the ecdysteroid synthesis enzyme gene 3-dehydroecdysone 3b-reductase, and Papilio-specific genes. We also found many cuticular protein genes with marking specificity that may be associated with the unique surface nanostructure of the markings. Furthermore, we identified two transcription factors, spalt and ecdysteroid signal-related E75, as genes

  16. Embryonic death is linked to maternal identity in the leatherback turtle (Dermochelys coriacea.

    Directory of Open Access Journals (Sweden)

    Anthony R Rafferty

    Full Text Available Leatherback turtles have an average global hatching success rate of ~50%, lower than other marine turtle species. Embryonic death has been linked to environmental factors such as precipitation and temperature, although, there is still a lot of variability that remains to be explained. We examined how nesting season, the time of nesting each season, the relative position of each clutch laid by each female each season, maternal identity and associated factors such as reproductive experience of the female (new nester versus remigrant and period of egg retention between clutches (interclutch interval affected hatching success and stage of embryonic death in failed eggs of leatherback turtles nesting at Playa Grande, Costa Rica. Data were collected during five nesting seasons from 2004/05 to 2008/09. Mean hatching success was 50.4%. Nesting season significantly influenced hatching success in addition to early and late stage embryonic death. Neither clutch position nor nesting time during the season had a significant affect on hatching success or the stage of embryonic death. Some leatherback females consistently produced nests with higher hatching success rates than others. Remigrant females arrived earlier to nest, produced more clutches and had higher rates of hatching success than new nesters. Reproductive experience did not affect stage of death or the duration of the interclutch interval. The length of interclutch interval had a significant affect on the proportion of eggs that failed in each clutch and the developmental stage they died at. Intrinsic factors such as maternal identity are playing a role in affecting embryonic death in the leatherback turtle.

  17. Embryonic Death Is Linked to Maternal Identity in the Leatherback Turtle (Dermochelys coriacea)

    Science.gov (United States)

    Rafferty, Anthony R.; Santidrián Tomillo, Pilar; Spotila, James R.; Paladino, Frank V.; Reina, Richard D.

    2011-01-01

    Leatherback turtles have an average global hatching success rate of ∼50%, lower than other marine turtle species. Embryonic death has been linked to environmental factors such as precipitation and temperature, although, there is still a lot of variability that remains to be explained. We examined how nesting season, the time of nesting each season, the relative position of each clutch laid by each female each season, maternal identity and associated factors such as reproductive experience of the female (new nester versus remigrant) and period of egg retention between clutches (interclutch interval) affected hatching success and stage of embryonic death in failed eggs of leatherback turtles nesting at Playa Grande, Costa Rica. Data were collected during five nesting seasons from 2004/05 to 2008/09. Mean hatching success was 50.4%. Nesting season significantly influenced hatching success in addition to early and late stage embryonic death. Neither clutch position nor nesting time during the season had a significant affect on hatching success or the stage of embryonic death. Some leatherback females consistently produced nests with higher hatching success rates than others. Remigrant females arrived earlier to nest, produced more clutches and had higher rates of hatching success than new nesters. Reproductive experience did not affect stage of death or the duration of the interclutch interval. The length of interclutch interval had a significant affect on the proportion of eggs that failed in each clutch and the developmental stage they died at. Intrinsic factors such as maternal identity are playing a role in affecting embryonic death in the leatherback turtle. PMID:21695086

  18. Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo.

    Science.gov (United States)

    Kowalski, William J; Teslovich, Nikola C; Dur, Onur; Keller, Bradley B; Pekkan, Kerem

    2012-09-01

    In the early embryo, a series of symmetric, paired vessels, the aortic arches, surround the foregut and distribute cardiac output to the growing embryo and fetus. During embryonic development, the arch vessels undergo large-scale asymmetric morphogenesis to form species-specific adult great vessel patterns. These transformations occur within a dynamic biomechanical environment, which can play an important role in the development of normal arch configurations or the aberrant arch morphologies associated with congenital cardiac defects. Arrested migration and rotation of the embryonic outflow tract during late stages of cardiac looping has been shown to produce both outflow tract and several arch abnormalities. Here, we investigate how changes in flow distribution due to a perturbation in the angular orientation of the embryonic outflow tract impact the morphogenesis and growth of the aortic arches. Using a combination of in vivo arch morphometry with fluorescent dye injection and hemodynamics-driven bioengineering optimization-based vascular growth modeling, we demonstrate that outflow tract orientation significantly changes during development and that the associated changes in hemodynamic load can dramatically influence downstream aortic arch patterning. Optimization reveals that balancing energy expenditure with diffusive capacity leads to multiple arch vessel patterns as seen in the embryo, while minimizing energy alone led to the single arch configuration seen in the mature arch of aorta. Our model further shows the critical importance of the orientation of the outflow tract in dictating morphogenesis to the adult single arch and accurately predicts arch IV as the dominant mature arch of aorta. These results support the hypothesis that abnormal positioning of the outflow tract during early cardiac morphogenesis may lead to congenital defects of the great vessels due to altered hemodynamic loading.

  19. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle

    2014-01-01

    . Here, we show that TET2 expression is low in human embryonic stem (ES) cell lines and increases during hematopoietic differentiation. ShRNA-mediated TET2 knockdown had no effect on the pluripotency of various ES cells. However, it skewed their differentiation into neuroectoderm at the expense...... profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm...... and hematopoietic differentiation. Stem Cells 2014....

  20. [Acceleration of Embryonic Development of Pinus sibirica Trees with a One-Year Reproductive Cycle].

    Science.gov (United States)

    Tret'yakova, I N; Lukina, N V

    2016-01-01

    The study of the formation of embryonic structures in Pinus sibirica forms with a one-year reproductive cycle showed that the acceleration of the embryonic process manifested itself as a reduction of the coenocytic stage of the female gametophyte development (1.5 months instead of 1 year). The egg was not fertilized because of the asynchronous maturation of male and female gametophytes. Seeds without embryos were formed. We assumed that the acceleration of the reproductive process in Pinus sibirica was caused by a mutation in the female generative organs.

  1. MKP1-dependent PTH modulation of bone matrix mineralization in female mice is osteoblast maturation stage specific and involves P-ERK and P-p38 MAPKs.

    Science.gov (United States)

    Mahalingam, Chandrika D; Sampathi, Bharat Reddy; Sharma, Sonali; Datta, Tanuka; Das, Varsha; Abou-Samra, Abdul B; Datta, Nabanita S

    2013-03-01

    Limited information is available on the role of MAPK phosphatase 1 (MKP1) signaling in osteoblasts. We have recently reported distinct roles for MKP1 during osteoblast proliferation, differentiation, and skeletal responsiveness to parathyroid hormone (PTH). As MKP1 regulates the phosphorylation status of MAPKs, we investigated the involvement of P-ERK and P-p38 MAPKs in MKP1 knockout (KO) early and mature osteoblasts with respect to mineralization and PTH response. Calvarial osteoblasts from 9-14-week-old WT and MKP1 KO male and female mice were examined. Western blot analysis revealed downregulation and sustained expressions of P-ERK and P-p38 with PTH treatment in differentiated osteoblasts derived from KO males and females respectively. Exposure of early osteoblasts to p38 inhibitor, SB203580 (S), markedly inhibited mineralization in WT and KO osteoblasts from both genders as determined by von Kossa assay. In osteoblasts from males, ERK inhibitor U0126 (U), not p38 inhibitor (S), prevented the inhibitory effects of PTH on mineralization in early or mature osteoblasts. In osteoblasts from KO females, PTH sustained mineralization in early osteoblasts and decreased mineralization in mature cells. This effect of PTH was attenuated by S in early osteoblasts and by U in mature KO cells. Changes in matrix Gla protein expression with PTH in KO osteoblasts did not correlate with mineralization, indicative of MKP1-dependent additional mechanisms essential for PTH action on osteoblast mineralization. We conclude that PTH regulation of osteoblast mineralization in female mice is maturation stage specific and involves MKP1 modulation of P-ERK and P-p38 MAPKs.

  2. Impact of pathological tumor stage for salvage radiotherapy after radical prostatectomy in patients with prostate-specific antigen < 1.0 ng/ml

    International Nuclear Information System (INIS)

    Umezawa, Rei; Kubozono, Masaki; Narazaki, Kakutaro; Shimizu, Eiji; Takai, Yoshihiro; Yamada, Shogo; Ariga, Hisanori; Ogawa, Yoshihiro; Jingu, Keiichi; Takeda, Ken; Matsushita, Haruo; Fujimoto, Keisuke; Sakayauchi, Toru; Sugawara, Toshiyuki

    2011-01-01

    To evaluate prognostic factors in salvage radiotherapy (RT) for patients with pre-RT prostate-specific antigen (PSA) < 1.0 ng/ml. Between January 2000 and December 2009, 102 patients underwent salvage RT for biochemical failure after radical prostatectomy (RP). Re-failure of PSA after salvage RT was defined as a serum PSA value of 0.2 ng/ml or more above the postradiotherapy nadir followed by another higher value, a continued rise in serum PSA despite salvage RT, or initiation of systemic therapy after completion of salvage RT. Biochemical relapse-free survival (bRFS) was estimated using the Kaplan-Meier method. Multivariate analysis was performed using the Cox proportional hazards regression model. The median follow-up period was 44 months (range, 11-103 months). Forty-three patients experienced PSA re-failure after salvage RT. The 4-year bRFS was 50.9% (95% confidence interval [95% CI]: 39.4-62.5%). In the log-rank test, pT3-4 (p < 0.001) and preoperative PSA (p = 0.037) were selected as significant factors. In multivariate analysis, only pT3-4 was a prognostic factor (hazard ratio: 3.512 [95% CI: 1.535-8.037], p = 0.001). The 4-year bRFS rates for pT1-2 and pT3-4 were 79.2% (95% CI: 66.0-92.3%) and 31.7% (95% CI: 17.0-46.4%), respectively. In patients who have received salvage RT after RP with PSA < 1.0 ng/ml, pT stage and preoperative PSA were prognostic factors of bRFS. In particular, pT3-4 had a high risk for biochemical recurrence after salvage RT

  3. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    2010-12-01

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  4. Primordial germ cell development in the marmoset monkey as revealed by pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation.

    Science.gov (United States)

    Aeckerle, N; Drummer, C; Debowski, K; Viebahn, C; Behr, R

    2015-01-01

    Primordial germ cells (PGCs) are the embryonic progenitors of sperm and egg cells. Mammalian PGCs are thought to actively migrate from the yolk sac endoderm over long distances across the embryo to reach the somatic genital ridges. The general principles of mammalian PGC development were discovered in mice. In contrast, little is known about PGC development in primates due to extremely limited access to primate embryos. Here, we analyzed 12 well preserved marmoset monkey (Callithrix jacchus) embryos covering the phase from PGC emergence in the endoderm to the formation of the sexually differentiated gonad (embryonic day (E) 50 to E95). We show using immunohistochemistry that the pluripotency factors OCT4A and NANOG specifically mark PGCs throughout the period studied. In contrast, SALL4 and LIN28 were first expressed ubiquitously and only later down-regulated in somatic tissues. We further show, for the first time, that PGCs are located in the endoderm in E50 embryos in close spatial proximity to the prospective genital ridge, making a long-range migration of PGCs dispensable. At E65, PGCs are already present in the primitive gonad, while significantly later embryonic stages still exhibit PGCs at their original endodermal site, revealing a wide spatio-temporal window of PGC distribution. Our findings challenge the 'dogma' of active long-range PGC migration from the endoderm to the gonads. We therefore favor an alternative model based primarily on passive translocation of PGCs from the mesenchyme that surrounds the gut to the prospective gonad through the intercalar expansion of mesenchymal tissue which contains the PGCs. In summary, we (i) show differential pluripotency factor expression during primate embryo development and (ii) provide a schematic model for embryonic PGC translocation. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  5. Chorionic villi derived mesenchymal like stem cells and expression of embryonic stem cells markers during long-term culturing.

    Science.gov (United States)

    Katsiani, E; Garas, A; Skentou, C; Tsezou, A; Messini, C I; Dafopoulos, K; Daponte, A; Messinis, I E

    2016-09-01

    Mesenchymal stem cells (MSCs) can be obtained from a variety of human tissues. MSCs derived from placental chorionic villi of the first trimester are likely to resemble, biologically, embryonic stem cells (ESC), due to the earlier development stage of placenta. In the present study long-term cultures of MSC-like cells were assessed in order to evaluate MSCs multipotent characteristics and molecular features during the period of culture. CV-cells obtained from 10 samples of chorionic villus displayed typical fibroblastoid morphology, undergone 20 passages during a period of 120 days, maintaining a stable karyotype throughout long term expansion. The cells were positive, for CD90, CD73, CD105, CD29, CD44, HLA ABC antigens and negative for CD14, CD34, AC133, and HLA DR antigens as resulted from the flow cytometry analysis. CV-cells were differentiated in adipocytes, osteoblasts, chondrocytes and neuronal cells under specific culture conditions. The expression of the ESC-gene markers POU5F1 (Oct-4) and NANOG was observed at earliest stages (4-12 passages) and not at the late stages (14-20 passages) by RT-PCR analysis. ZFP42 and SOX2 expression were not detected. Moreover, CV-cells were found to express GATA4 but not NES (Nestin). Chorionic villi-derived cells possess multipotent properties, display high proliferation rate and self-renew capacity, share common surface antigens with adult MSCs and express certain embryonics stem cells gene markers. These characteristics highlight chorionic villi as an attractive source of MSCs for the needs of regenerative medicine.

  6. Childhood Central Nervous System Embryonal Tumors Treatment

    Science.gov (United States)

    ... Reporting & Auditing Grant Transfer Grant Closeout Contracts & Small Business Training Cancer Training at NCI (Intramural) Funding for ... are open only to patients who have not started treatment. Children who have CNS embryonal tumors should ...

  7. NO-β-catenin crosstalk modulates primitive streak formation prior to embryonic stem cell osteogenic differentiation.

    Science.gov (United States)

    Ding, Huawen; Keller, Kevin C; Martinez, Ivann K C; Geransar, Rose M; zur Nieden, Kai O; Nishikawa, Sandra G; Rancourt, Derrick E; zur Nieden, Nicole I

    2012-11-15

    Nitric oxide (NO) has been shown to play a crucial role in bone formation in vivo. We sought to determine the temporal effect of NO on murine embryonic stem cells (ESCs) under culture conditions that promote osteogenesis. Expression profiles of NO pathway members and osteoblast-specific markers were analyzed using appropriate assays. We found that NO was supportive of osteogenesis specifically during an early phase of in vitro development (days 3-5). Furthermore, ESCs stably overexpressing the inducible NO synthase showed accelerated and enhanced osteogenesis in vitro and in bone explant cultures. To determine the role of NO in early lineage commitment, a stage in ESC differentiation equivalent to primitive streak formation in vivo, ESCs were transfected with a T-brachyury-GFP reporter. Expression levels of T-brachyury and one of its upstream regulators, β-catenin, the major effector in the canonical Wnt pathway, were responsive to NO levels in differentiating primitive streak-like cells. Our results indicate that NO may be involved in early differentiation through regulation of β-catenin and T-brachyury, controlling the specification of primitive-streak-like cells, which may continue through differentiation to later become osteoblasts.

  8. The effects of neonicotinoid exposure on embryonic development and organ mass in northern bobwhite quail (Colinus virginianus).

    Science.gov (United States)

    Gobeli, Amanda; Crossley, Dane; Johnson, Jeff; Reyna, Kelly

    2017-05-01

    Since their emergence in the early 1990s, neonicotinoid use has increased exponentially to make them the world's most prevalent insecticides. Although there has been considerable research concerning the lethality of neonicotinoids, their sub-lethal and developmental effects are still being explored, especially with regard to non-mammalian species. The goal of this research was to investigate the effects of the neonicotinoid imidacloprid on the morphological and physiological development of northern bobwhite quail (Colinus virginianus). Bobwhite eggs (n=390) were injected with imidacloprid concentrations of 0 (sham), 10, 50, 100, and 150mg/kg of egg mass, which was administered at day 0 (pre-incubation), 3, 6, 9, or 12 of growth. Embryos were dissected, weighed, staged, and examined for any overt structural deformities after 19days of incubation. The mass of the embryonic heart, liver, lungs and kidneys was also recorded. The majority of treatments produced no discernible differences in embryo morphology; however, in some instances, embryos were subject to increased frequency of anatomical deformity and altered organ masses. Some impacts were more pronounced in specific dosing periods, implying that there may be critical windows of development when embryos are more susceptible to neonicotinoid exposure. This investigation suggests that imidacloprid has the potential to impact bobwhite quail embryonic development and chick survival. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Directory of Open Access Journals (Sweden)

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  10. Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: application for phenotyping analysis of early embryonic lethality in mutant animals.

    Science.gov (United States)

    Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P

    2018-04-01

    In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.

  11. Evolution of embryonic development in nematodes

    Directory of Open Access Journals (Sweden)

    Schulze Jens

    2011-09-01

    Full Text Available Abstract Background Nematodes can be subdivided into basal Enoplea (clades 1 and 2 and more derived Chromadorea (clades 3 to 12. Embryogenesis of Caenorhabditis elegans (clade 9 has been analyzed in most detail. Their establishment of polarity and asymmetric cleavage requires the differential localization of PAR proteins. Earlier studies on selected other nematodes revealed that embryonic development of nematodes is more diverse than the essentially invariant development of C. elegans and the classic study object Ascaris had suggested. To obtain a more detailed picture of variations and evolutionary trends we compared embryonic cell lineages and pattern formation in embryos of all 12 nematode clades. Methods The study was conducted using 4-D microscopy and 3-D modeling of developing embryos. Results We found dramatic differences compared to C. elegans in Enoplea but also considerable variations among Chromadorea. We discovered 'Polarity Organizing Centers' (POCs that orient cleavage spindles along the anterior-posterior axis in distinct cells over consecutive cell generations. The resulting lineally arranged blastomeres represent a starting point for the establishment of bilateral symmetry within individual lineages. We can discern six different early cleavage types and suggest that these variations are due to modifications in the activity of the POCs in conjunction with changes in the distribution of PAR proteins. In addition, our studies indicate that lineage complexity advanced considerably during evolution, that is we observe trends towards an increase of somatic founder cells, from monoclonal to polyclonal lineages and from a variable (position-dependent to an invariable (lineage-dependent way of cell fate specification. In contrast to the early phase of embryogenesis, the second half ('morphogenesis' appears similar in all studied nematodes. Comparison of early cleavage between the basal nematode Tobrilus stefanskii and the tardigrade

  12. The epigenomics of embryonic stem cell differentiation.

    Science.gov (United States)

    Kraushaar, Daniel C; Zhao, Keji

    2013-01-01

    Embryonic stem cells (ESCs) possess an open and highly dynamic chromatin landscape, which underlies their plasticity and ultimately maintains ESC pluripotency. The ESC epigenome must not only maintain the transcription of pluripotency-associated genes but must also, through gene priming, facilitate rapid and cell type-specific activation of developmental genes upon lineage commitment. Trans-generational inheritance ensures that the ESC chromatin state is stably transmitted from one generation to the next; yet at the same time, epigenetic marks are highly dynamic, reversible and responsive to extracellular cues. Once committed to differentiation, the ESC epigenome is remodeled and resolves into a more compact chromatin state. A thorough understanding of the role of chromatin modifiers in ESC fate and differentiation will be important if they are to be used for therapeutic purposes. Recent technical advances, particularly in next-generation sequencing technologies, have provided a genome-scale view of epigenetic marks and chromatin modifiers. More affordable and faster sequencing platforms have led to a comprehensive characterization of the ESC epigenome and epigenomes of differentiated cell types. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone modifications, histone variants, DNA methylation and chromatin modifiers in ESC pluripotency and ESC fate. We provide a detailed and comprehensive discussion of genome-wide studies that are pertinent to our understanding of mammalian development.

  13. Targeting embryonic signaling pathways in cancer therapy.

    Science.gov (United States)

    Harris, Pamela Jo; Speranza, Giovanna; Dansky Ullmann, Claudio

    2012-01-01

    The embryonic signaling pathways (ESP), Hedgehog, Notch and Wnt, are critical for the regulation of normal stem cells and cellular development processes. They are also activated in the majority of cancers. ESP are operational in putative cancer stem cells (CSC), which drive initial tumorigenesis and sustain cancer progression and recurrence in non-CSC bulk subpopulations. ESP represent novel therapeutic targets. A variety of inhibitors and targeting strategies are being developed. This review discusses the rationale for targeting ESP for cancer treatment, as well as specific inhibitors under development; mainly focusing on those approaching clinical use and the challenges that lie ahead. The data sources utilized are several database search engines (PubMed, Google, Clinicaltrials.gov), and the authors' involvement in the field. CSC research is rapidly evolving. Expectations regarding their therapeutic targeting are rising quickly. Further definition of what constitutes a true CSC, proper validation of CSC markers, a better understanding of cross-talk among ESP and other pathways, and interactions with tumor non-CSC and the tumor microenvironment are needed. The appropriate patient population, the right clinical setting and combination strategies to test these therapies, as well as the proper pharmacodynamic markers to measure, need to be further established.

  14. Monoclonal antibodies to carcino-embryonic antigen

    International Nuclear Information System (INIS)

    Teh, Jinghee; McKenzie, I.F.C.

    1990-01-01

    With the aim of producing new MoAb to colorectal carcinoma, immunization with cell suspensions of a fresh colonic tumour was performed and MoAb 17C4 was obtained. To produce other MoAb to colon cancer, an immunization protocol using fresh tumour, colonic cell lines and sera from patients with colonic tumours was employed and resulted in MoAb JGT-13, LK-4 and XPX-13. MoAb I-1 and O-1 were raised against sera from patients with colon cancer to produce MoAb directed against circulating tumour associated antigens. The six antibodies gave a range of reactions with normal and malignant tissues, indicating that they most likely reacted with different epitopes. Thus, apart from the reactions of 17C4, LK-4 and XPX-13 with fresh and formalin-fixed granulocytes, none of the antibodies reacted with formalin-fixed normal tissues. Despite the apparent specificity of these MoAb for colon cancer, serum testing using MoAb gave similar results to carcino-embryonic antigen polyclonal antibodies, that is the MoAb gave no obvious advantage. 9 refs., 1 tab., 3 figs

  15. Embryonic diapause is conserved across mammals.

    Directory of Open Access Journals (Sweden)

    Grazyna E Ptak

    Full Text Available Embryonic diapause (ED is a temporary arrest of embryo development and is characterized by delayed implantation in the uterus. ED occurs in blastocysts of less than 2% of mammalian species, including the mouse (Mus musculus. If ED were an evolutionarily conserved phenomenon, then it should be inducible in blastocysts of normally non-diapausing mammals, such as domestic species. To prove this hypothesis, we examined whether blastocysts from domestic sheep (Ovis aries could enter into diapause following their transfer into mouse uteri in which diapause conditions were induced. Sheep blastocysts entered into diapause, as demonstrated by growth arrest, viability maintenance and their ED-specific pattern of gene expression. Seven days after transfer, diapausing ovine bla