WorldWideScience

Sample records for stage forecasting precipitation-dependent

  1. Staged decision making based on probabilistic forecasting

    Science.gov (United States)

    Booister, Nikéh; Verkade, Jan; Werner, Micha; Cranston, Michael; Cumiskey, Lydia; Zevenbergen, Chris

    2016-04-01

    flood event management, the more damage can be reduced. And with decisions based on probabilistic forecasts, partial decisions can be made earlier in time (with a lower probability) and can be scaled up or down later in time when there is more certainty; whether the event takes place or not. Partial decisions are often more cheap, or shorten the final mitigation-time at the moment when there is more certainty. The proposed method is tested on Stonehaven, on the Carron River in Scotland. Decisions to implement demountable defences in the town are currently made based on a very short lead-time due to the absence of certainty. Application showed that staged decision making is possible and gives the decision maker more time to respond to a situation. The decision maker is able to take a lower regret decision with higher uncertainty and less related negative consequences. Although it is not possible to quantify intangible effects, it is part of the analysis to reduce these effects. Above all, the proposed approach has shown to be a possible improvement in economic terms and opens up possibilities of more flexible and robust decision making.

  2. Uncertainty assessment through a precipitation dependent HUP: an application to a small Southern Italy catchment

    Science.gov (United States)

    Biondi, D.; Versace, P.; Sirangelo, B.

    2009-04-01

    The present study focuses on the application of a precipitation dependent HUP (Hydrologic Uncertainty Processor) to assess the predictive uncertainty on water discharge predictions for a small headwater catchment located in Calabria (South Italy) through a complete example of the estimation procedure, modelling assumptions and results. The applied HUP was proposed by Krzysztofowicz in 1999, and is a component of the Bayesian forecasting system (BFS) which provides a general methodology for probabilistic forecasting via any deterministic hydrologic model. Within the BFS framework, the task of the HUP is to quantify the effects of various uncertainty sources on the forecasts, e.g. of river discharges, under the hypothesis that there is no precipitation uncertainty. According to the principle of Bayesian revision of a probability distribution, the general formulation of the HUP supplies the hydrologic uncertainty in terms of a family,g°(×|s,h0), of posterior densities of discharge H, for every possible realization s of the model river discharge process S and observation H0 = h0 of river discharge up to the forecast time. This result is obtained through the revision of a prior distribution g of the predictand, which exists before the preparation of a forecast, on the basis of a likelihood function f estimated from past evidence on model performance against observations. The implemented HUP rests on the following assumptions: precipitation dependent structure; nonstationarity of both actual river stage and model river stage process with lead time n; meta-gaussian formulation for all the conditional distributions. The study watershed is the test site of the Turbolo Creek catchment (29 km2), a tributary of the Crati River, located in Southern Italy. The hydro-meteorological database used within this study comprises rainfall, temperature, and discharge values sampled with a 20 minutes temporal resolution. The hydrologic response in the HUP is simulated by the RISE

  3. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xing Yan

    2015-01-01

    Full Text Available Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP, but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM based midterm forecasting model of the electricity MCP is proposed in this paper. The first stage is utilized to separate the input data into corresponding price zones by using a single SVM. Then, the second stage is applied utilizing four parallel designed SVMs to forecast the electricity price in four different price zones. Compared to the forecasting model using a single SVM, the proposed model showed improved forecasting accuracy in both peak prices and overall system. PJM interconnection data are used to test the proposed model.

  4. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    OpenAIRE

    Yan, Xing; Chowdhury, Nurul A.

    2015-01-01

    Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP), but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM) based midterm forecasting model of the electricity MCP is proposed in t...

  5. The transport forecast - an important stage of transport management

    Science.gov (United States)

    Dragu, Vasile; Dinu, Oana; Oprea, Cristina; Alina Roman, Eugenia

    2017-10-01

    The transport system is a powerful system with varying loads in operation coming from changes in freight and passenger traffic in different time periods. The variations are due to the specific conditions of organization and development of socio-economic activities. The causes of varying loads can be included in three groups: economic, technical and organizational. The assessing of transport demand variability leads to proper forecast and development of the transport system, knowing that the market price is determined on equilibrium between supply and demand. The reduction of transport demand variability through different technical solutions, organizational, administrative, legislative leads to an increase in the efficiency and effectiveness of transport. The paper presents a new way of assessing the future needs of transport through dynamic series. Both researchers and practitioners in transport planning can benefit from the research results. This paper aims to analyze in an original approach how a good transport forecast can lead to a better management in transport, with significant effects on transport demand full meeting in quality terms. The case study shows how dynamic series of statistics can be used to identify the size of future demand addressed to the transport system.

  6. A New Two-Stage Approach to Short Term Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Dragan Tasić

    2013-04-01

    Full Text Available In the deregulated energy market, the accuracy of load forecasting has a significant effect on the planning and operational decision making of utility companies. Electric load is a random non-stationary process influenced by a number of factors which make it difficult to model. To achieve better forecasting accuracy, a wide variety of models have been proposed. These models are based on different mathematical methods and offer different features. This paper presents a new two-stage approach for short-term electrical load forecasting based on least-squares support vector machines. With the aim of improving forecasting accuracy, one more feature was added to the model feature set, the next day average load demand. As this feature is unknown for one day ahead, in the first stage, forecasting of the next day average load demand is done and then used in the model in the second stage for next day hourly load forecasting. The effectiveness of the presented model is shown on the real data of the ISO New England electricity market. The obtained results confirm the validity advantage of the proposed approach.

  7. A Four-Stage Hybrid Model for Hydrological Time Series Forecasting

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782

  8. Multi-Stage Optimization-Based Automatic Voltage Control Systems Considering Wind Power Forecasting Errors

    DEFF Research Database (Denmark)

    Qin, Nan; Bak, Claus Leth; Abildgaard, Hans

    2017-01-01

    cost and the generator reactive power output cost. The problem is formulated in a multi-stage optimal reactive power flow (MORPF) framework, solved by the nonlinear programming techniques via a rolling process. The voltage uncertainty caused by wind power forecasting errors is considered in the optimal...

  9. Forecasting long memory series subject to structural change: A two-stage approach

    DEFF Research Database (Denmark)

    Papailias, Fotis; Dias, Gustavo Fruet

    2015-01-01

    A two-stage forecasting approach for long memory time series is introduced. In the first step, we estimate the fractional exponent and, by applying the fractional differencing operator, obtain the underlying weakly dependent series. In the second step, we produce multi-step-ahead forecasts...... for the weakly dependent series and obtain their long memory counterparts by applying the fractional cumulation operator. The methodology applies to both stationary and nonstationary cases. Simulations and an application to seven time series provide evidence that the new methodology is more robust to structural...

  10. New Techniques for Real-Time Stage Forecasting for Tributaries in the Nashville Area

    Science.gov (United States)

    Charley, W.; Moran, B.; LaRosa, J.

    2011-12-01

    On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley, Tennessee, and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. This intensity of rainfall quickly overwhelmed tributaries to the Cumberland in the Nashville area, causing wide-spread and serious flooding. Tractor-trailers and houses were seen floating down Mill Creek, a primary tributary in the south eastern area of Nashville. Twenty-six people died and over 2 billion dollars in damage occurred as a result of the flood. Since that time, several other significant rainfall events have occurred in the area. As a result of the flood, agencies in the Nashville area want better capabilities to forecast stages for the local tributaries. Better stage forecasting will help local agencies close roads, evacuate homes and businesses and similar actions. An interagency group, consisting of Metro Nashville Water Services and Office of Emergency Management, the National Weather Service, the US Geological Survey and the US Army Corps of Engineers, has been established to seek ways to better forecast short-term events in the region. It should be noted that the National Weather Service has the official responsibility of forecasting stages. This paper examines techniques and algorithms that are being developed to meet this need and the practical aspects of integrating them into a usable product that can quickly and accurately forecast stages in the short-time frame of the tributaries. This includes not only the forecasting procedure, but also the procedure to acquire the latest precipitation and stage data to make the forecasts. These procedures are integrated into the program HEC-RTS, the US Army Corps of Engineers Real-Time Simulation program. HEC-RTS is a Java-based integration tool that

  11. Short-Term Wind Electric Power Forecasting Using a Novel Multi-Stage Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    Full Text Available As the most efficient renewable energy source for generating electricity in a modern electricity network, wind power has the potential to realize sustainable energy supply. However, owing to its random and intermittent instincts, a high permeability of wind power into a power network demands accurate and effective wind energy prediction models. This study proposes a multi-stage intelligent algorithm for wind electric power prediction, which combines the Beveridge–Nelson (B-N decomposition approach, the Least Square Support Vector Machine (LSSVM, and a newly proposed intelligent optimization approach called the Grasshopper Optimization Algorithm (GOA. For data preprocessing, the B-N decomposition approach was employed to disintegrate the hourly wind electric power data into a deterministic trend, a cyclic term, and a random component. Then, the LSSVM optimized by the GOA (denoted GOA-LSSVM was applied to forecast the future 168 h of the deterministic trend, the cyclic term, and the stochastic component, respectively. Finally, the future hourly wind electric power values can be obtained by multiplying the forecasted values of these three trends. Through comparing the forecasting performance of this proposed method with the LSSVM, the LSSVM optimized by the Fruit-fly Optimization Algorithm (FOA-LSSVM, and the LSSVM optimized by Particle Swarm Optimization (PSO-LSSVM, it is verified that the established multi-stage approach is superior to other models and can increase the precision of wind electric power prediction effectively.

  12. Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment

    Directory of Open Access Journals (Sweden)

    Jaime Lloret

    2013-08-01

    Full Text Available Short-Term Load Forecasting plays a significant role in energy generation planning, and is specially gaining momentum in the emerging Smart Grids environment, which usually presents highly disaggregated scenarios where detailed real-time information is available thanks to Communications and Information Technologies, as it happens for example in the case of microgrids. This paper presents a two stage prediction model based on an Artificial Neural Network in order to allow Short-Term Load Forecasting of the following day in microgrid environment, which first estimates peak and valley values of the demand curve of the day to be forecasted. Those, together with other variables, will make the second stage, forecast of the entire demand curve, more precise than a direct, single-stage forecast. The whole architecture of the model will be presented and the results compared with recent work on the same set of data, and on the same location, obtaining a Mean Absolute Percentage Error of 1.62% against the original 2.47% of the single stage model.

  13. Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression

    International Nuclear Information System (INIS)

    Guo, Yin; Nazarian, Ehsan; Ko, Jeonghan; Rajurkar, Kamlakar

    2014-01-01

    Highlights: • Developed hourly-indexed ARX models for robust cooling-load forecasting. • Proposed a two-stage weighted least-squares regression approach. • Considered the effect of outliers as well as trend of cooling load and weather patterns. • Included higher order terms and day type patterns in the forecasting models. • Demonstrated better accuracy compared with some ARX and ANN models. - Abstract: This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set

  14. Simultaneous Estimation of Model State Variables and Observation and Forecast Biases Using a Two-Stage Hybrid Kalman Filter

    Science.gov (United States)

    Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-01-01

    In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  15. Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter

    Directory of Open Access Journals (Sweden)

    V. R. N. Pauwels

    2013-09-01

    Full Text Available In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  16. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

    Directory of Open Access Journals (Sweden)

    Dehua Zheng

    2017-12-01

    Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

  17. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    Science.gov (United States)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  18. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    Science.gov (United States)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2017-12-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  19. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  20. Forecasting the Incidence and Prevalence of Patients with End-Stage Renal Disease in Malaysia up to the Year 2040

    Directory of Open Access Journals (Sweden)

    Mohamad Adam Bujang

    2017-01-01

    Full Text Available Background. The incidence of patients with end-stage renal disease (ESRD requiring dialysis has been growing rapidly in Malaysia from 18 per million population (pmp in 1993 to 231 pmp in 2013. Objective. To forecast the incidence and prevalence of ESRD patients who will require dialysis treatment in Malaysia until 2040. Methodology. Univariate forecasting models using the number of new and current dialysis patients, by the Malaysian Dialysis and Transplant Registry from 1993 to 2013 were used. Four forecasting models were evaluated, and the model with the smallest error was selected for the prediction. Result. ARIMA (0, 2, 1 modeling with the lowest error was selected to predict both the incidence (RMSE = 135.50, MAPE = 2.85, and MAE = 87.71 and the prevalence (RMSE = 158.79, MAPE = 1.29, and MAE = 117.21 of dialysis patients. The estimated incidences of new dialysis patients in 2020 and 2040 are 10,208 and 19,418 cases, respectively, while the estimated prevalence is 51,269 and 106,249 cases. Conclusion. The growth of ESRD patients on dialysis in Malaysia can be expected to continue at an alarming rate. Effective steps to address and curb further increase in new patients requiring dialysis are urgently needed, in order to mitigate the expected financial and health catastrophes associated with the projected increase of such patients.

  1. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    Science.gov (United States)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  2. Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks.

    Directory of Open Access Journals (Sweden)

    Robin N Thompson

    2016-04-01

    Full Text Available We assess how presymptomatic infection affects predictability of infectious disease epidemics. We focus on whether or not a major outbreak (i.e. an epidemic that will go on to infect a large number of individuals can be predicted reliably soon after initial cases of disease have appeared within a population. For emerging epidemics, significant time and effort is spent recording symptomatic cases. Scientific attention has often focused on improving statistical methodologies to estimate disease transmission parameters from these data. Here we show that, even if symptomatic cases are recorded perfectly, and disease spread parameters are estimated exactly, it is impossible to estimate the probability of a major outbreak without ambiguity. Our results therefore provide an upper bound on the accuracy of forecasts of major outbreaks that are constructed using data on symptomatic cases alone. Accurate prediction of whether or not an epidemic will occur requires records of symptomatic individuals to be supplemented with data concerning the true infection status of apparently uninfected individuals. To forecast likely future behavior in the earliest stages of an emerging outbreak, it is therefore vital to develop and deploy accurate diagnostic tests that can determine whether asymptomatic individuals are actually uninfected, or instead are infected but just do not yet show detectable symptoms.

  3. Demand Forecasting in the Early Stage of the Technology’s Life Cycle Using a Bayesian Update

    Directory of Open Access Journals (Sweden)

    Chul-Yong Lee

    2017-08-01

    Full Text Available The forecasting demand for new technology for which few historical data observations are available is difficult but essential to sustainable development. The current study suggests an alternative forecasting methodology based on a hazard rate model using stated and revealed preferences of consumers. In estimating the hazard rate, information is initially derived through conjoint analysis based on a consumer survey and then updated using Bayes’ theorem with available market data. To compare the proposed models’ performance with benchmark models, the Bass model, the logistic growth model, and a Bayesian approach based on analogy are adopted. The results show that the proposed model outperforms the benchmark models in terms of pre-launch and post-launch forecasting performances.

  4. Forecasting cracked collectors on anticlinal type structures at late stage of exploration in oil and gas area

    Science.gov (United States)

    Hasanov, M. A.; Aleksandrov, B. L.; Eljayev, A. S.; Ezirbaev, T. B.; Gatsaeva, S. S.

    2017-10-01

    The possibility of using complex information on morphological parameters of structures, block porosity and the reservoir pressure gradient over previously explored deposits for the development of a multidimensional equation for estimating secondary porosity is considered. This is examined by the example of reservoirs with secondary (fractured) porosity of the Upper Cretaceous carbonate deposits of the Tersko-Sunzhenskaya oil and gas bearing region of the Ciscaucasia. The use of this equation makes it possible to predict the magnitude of the secondary porosity on the anticlinal structures, which are newly discovered by seismic methods at a later stage of exploration in the relevant oil and gas region, as a quantitative criterion that predicts the presence of a trap.

  5. Gas-exchange patterns of Mediterranean fruit fly Pupae (Diptera: Tephritidae): A tool to forecast developmental stage

    International Nuclear Information System (INIS)

    Nestel, D.; Nemny-Lavy, E.; Alchanatis, V.

    2007-01-01

    The pattern of gas-exchange (CO 2 emission) was investigated for developing Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) pupae incubated at different temperatures. This study was undertaken to explore the usefulness of gas-exchange systems in the determination of physiological age in developing pupae that are mass produced for sterile insect technique projects. The rate of CO 2 emission was measured in a closed flow-through system connected to commercial infrared gas analysis equipment. Metabolic activity (rate of CO 2 emission) was related to pupal eye-color, which is the current technique used to determine physiological age. Eye-color was characterized digitally with 3 variables (Hue, Saturation and Intensity), and color separated by discriminant analysis. The rate of CO 2 emission throughout pupal development followed a U-shape, with high levels of emission during pupariation, pupal transformation and final pharate adult stages. Temperature affected the development time of pupae, but not the basic CO 2 emission patterns during development. In all temperatures, rates of CO 2 emission 1 and 2 d before adult emergence were very similar. After mid larval-adult transition (e.g., phanerocephalic pupa), digital eye-color was significantly correlated with CO 2 emission. Results support the suggestion that gas-exchange should be explored further as a system to determine pupal physiological age in mass production of fruit flies. (author) [es

  6. Forecasting Skill

    Science.gov (United States)

    1981-01-01

    indicated that forecasting experience has little relationship to forecasting performance. In the latter three studies, neophyte forecasters became... Europe . Within a few months after a new commander was assigned, this unit’s performance rose to first place in the theater and remained there

  7. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  8. Spatial load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Willis, H.L.; Engel, M.V.; Buri, M.J.

    1995-04-01

    The reliability, efficiency, and economy of a power delivery system depend mainly on how well its substations, transmission lines, and distribution feeders are located within the utility service area, and how well their capacities match power needs in their respective localities. Often, utility planners are forced to commit to sites, rights of way, and equipment capacities year in advance. A necessary element of effective expansion planning is a forecast of where and how much demand must be served by the future T and D system. This article reports that a three-stage method forecasts with accuracy and detail, allowing meaningful determination of sties and sizes for future substation, transmission, and distribution facilities.

  9. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  10. A multi-stage intelligent approach based on an ensemble of two-way interaction model for forecasting the global horizontal radiation of India

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao; Xiao, Ling

    2017-01-01

    Highlights: • Ensemble learning system is proposed to forecast the global solar radiation. • LASSO is utilized as feature selection method for subset model. • GSO is used to select the weight vector aggregating the response of subset model. • A simple and efficient algorithm is designed based on thresholding function. • Theoretical analysis focusing on error rate is provided. - Abstract: Forecasting of effective solar irradiation has developed a huge interest in recent decades, mainly due to its various applications in grid connect photovoltaic installations. This paper develops and investigates an ensemble learning based multistage intelligent approach to forecast 5 days global horizontal radiation at four given locations of India. The two-way interaction model is considered with purpose of detecting the associated correlation between the features. The main structure of the novel method is the ensemble learning, which is based on Divide and Conquer principle, is applied to enhance the forecasting accuracy and model stability. An efficient feature selection method LASSO is performed in the input space with the regularization parameter selected by Cross-Validation. A weight vector which best represents the importance of each individual model in ensemble system is provided by glowworm swarm optimization. The combination of feature selection and parameter selection are helpful in creating the diversity of the ensemble learning. In order to illustrate the validity of the proposed method, the datasets at four different locations of the India are split into training and test datasets. The results of the real data experiments demonstrate the efficiency and efficacy of the proposed method comparing with other competitors.

  11. Strategic Forecasting

    DEFF Research Database (Denmark)

    Duus, Henrik Johannsen

    2016-01-01

    as a rebirth of long range planning, albeit with new methods and theories. Firms should make the building of strategic forecasting capability a priority. Research limitations/implications: The article subdivides strategic forecasting into three research avenues and suggests avenues for further research efforts......Purpose: The purpose of this article is to present an overview of the area of strategic forecasting and its research directions and to put forward some ideas for improving management decisions. Design/methodology/approach: This article is conceptual but also informed by the author’s long contact...... and collaboration with various business firms. It starts by presenting an overview of the area and argues that the area is as much a way of thinking as a toolbox of theories and methodologies. It then spells out a number of research directions and ideas for management. Findings: Strategic forecasting is seen...

  12. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  13. Forecasting metal prices: Do forecasters herd?

    DEFF Research Database (Denmark)

    Pierdzioch, C.; Rulke, J. C.; Stadtmann, G.

    2013-01-01

    We analyze more than 20,000 forecasts of nine metal prices at four different forecast horizons. We document that forecasts are heterogeneous and report that anti-herding appears to be a source of this heterogeneity. Forecaster anti-herding reflects strategic interactions among forecasters...

  14. An investigation of forecast horizon and observation fit's influence on an econometric rate forecast model in the liner shipping industry

    DEFF Research Database (Denmark)

    Nielsen, P.; Jiang, L. P.; Rytter, N. G. M.

    2014-01-01

    This paper evaluates the influence of forecast horizon and observation fit on the robustness and performance of a specific freight rate forecast model used in the liner shipping industry. In the first stage of the research, a forecast model used to predict container freight rate development is pr...

  15. ktup Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ktop Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kfxe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kmsy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kroc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kacv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. katw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. klax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kprc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. katl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kmcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kogb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kama Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kbjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. klch Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kpkb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. ptkk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. konp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kiwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kbwi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kavp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kdca Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kyng Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kdfw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kssi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. pahn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. nstu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. ksrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kbfi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. pamc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kpvd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kisp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kttd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. pmdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. koxr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kggg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. panc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kswf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kmsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpih Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. khot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kmhk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kcxo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. katy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. krdd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kabq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kjfk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kbna Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kbvi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kiah Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kbzn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kfnt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kbpt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. koun Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kilm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kspi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kclm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kipl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kgdv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. krdg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kbgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kdls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. krhi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kbpk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kcwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kgfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. pgwt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. khuf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. pabr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kewn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kipt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kpeq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. klbt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kcys Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. khio Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kflo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kmlu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kact Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. khob Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. ktcs Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kmgw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kryy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kgtf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kjax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. ktvf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kfat Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kink Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kshv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. pajn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kpna Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. ktph Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ksux Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kcon Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kpnc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kgsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kgpt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kgcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kart Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. pagk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. korf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kpsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kcre Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. krsw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. papg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kblf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. krdu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kluk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. keed Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kiwd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kttn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kagc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbmi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kapn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kgon Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. Improving the Model for Energy Consumption Load Demand Forecasting

    Science.gov (United States)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    This paper proposes an application of a filter method in preprocessing stage for mid-term load demand forecasting to improve electricity load forecasting and to guarantee satisfactory forecasting accuracy. Case study employs the historical electricity consumption demand data in Thailand which were recorded in the 12 years of 1997 through to 2007. The load demand forecasted value is used for unit commitment and fuel reserve planning in the power system. This method consists of a trend component and a cyclical component decomposed from the original load demand using the Hodrick-Prescott (HP) filter in the preprocessing stage and the forecasting of each component using Double Neural Networks (DNNs) in the forecasting stage. Experimental results show that with preprocessing before forecasting can predict the load demand better than that without preprocessing.

  4. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  5. Empirical testing of forecast update procedure forseasonal products

    DEFF Research Database (Denmark)

    Wong, Chee Yew; Johansen, John

    2008-01-01

    of a toy supply chain. The theoretical simulation involves historical weekly consumer demand data for 122 toy products. The empirical test is then carried out in real-time with 291 toy products. The results show that the proposed forecast updating procedure: 1) reduced forecast errors of the annual......Updating of forecasts is essential for successful collaborative forecasting, especially for seasonal products. This paper discusses the results of a theoretical simulation and an empirical test of a proposed time-series forecast updating procedure. It involves a two-stage longitudinal case study...

  6. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  7. Fuel cycle forecasting - there are forecasts and there are forecasts

    International Nuclear Information System (INIS)

    Puechl, K.H.

    1975-01-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis. (author)

  8. Improving Software Reliability Forecasting

    NARCIS (Netherlands)

    Burtsy, Bernard; Albeanu, Grigore; Boros, Dragos N.; Popentiu, Florin; Nicola, V.F.

    1996-01-01

    This work investigates some methods for software reliability forecasting. A supermodel is presented as a suited tool for prediction of reliability in software project development. Also, times series forecasting for cumulative interfailure time is proposed and illustrated.

  9. Global Energy Forecasting Competition 2012

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2014-01-01

    The Global Energy Forecasting Competition (GEFCom2012) attracted hundreds of participants worldwide, who contributed many novel ideas to the energy forecasting field. This paper introduces both tracks of GEFCom2012, hierarchical load forecasting and wind power forecasting, with details...

  10. Inaccuracy in traffic forecasts

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent; Holm, Mette K. Skamris; Buhl, Søren Ladegaard

    2006-01-01

    , the difference between actual and forecasted traffic is more than +-20%; for 25% of road projects, the difference is larger than +-40%. Forecasts for roads are more accurate and more balanced than for rail, with no significant difference between the frequency of inflated versus deflated forecasts. But for both...

  11. Managing Sales Forecasters

    NARCIS (Netherlands)

    L.P. de Bruijn (Bert); Ph.H.B.F. Franses (Philip Hans)

    2012-01-01

    textabstractA Forecast Support System (FSS), which generates sales forecasts, is a sophisticated business analytical tool that can help to improve targeted business decisions. Many companies use such a tool, although at the same time they may allow managers to quote their own forecasts. These sales

  12. Inaccuracy in traffic forecasts

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent; Holm, Mette K. Skamris; Buhl, Søren Ladegaard

    2006-01-01

    that forecasters generally do a poor job of estimating the demand for transportation infrastructure projects. The result is substantial downside financial and economic risk. Forecasts have not become more accurate over the 30-year period studied. If techniques and skills for arriving at accurate demand forecasts...... forecasting. Highly inaccurate traffic forecasts combined with large standard deviations translate into large financial and economic risks. But such risks are typically ignored or downplayed by planners and decision-makers, to the detriment of social and economic welfare. The paper presents the data...

  13. Electricity demand forecasting techniques

    International Nuclear Information System (INIS)

    Gnanalingam, K.

    1994-01-01

    Electricity demand forecasting plays an important role in power generation. The two areas of data that have to be forecasted in a power system are peak demand which determines the capacity (MW) of the plant required and annual energy demand (GWH). Methods used in electricity demand forecasting include time trend analysis and econometric methods. In forecasting, identification of manpower demand, identification of key planning factors, decision on planning horizon, differentiation between prediction and projection (i.e. development of different scenarios) and choosing from different forecasting techniques are important

  14. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Ruelke

    2013-01-01

    We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-)herding of forecasters. Forecasts are consistent with herding (anti-herding) of forecasters if forecasts are biased towards (away from...

  15. Forecasting in Planning

    OpenAIRE

    Ike, P.; Voogd, Henk; Voogd, Henk; Linden, Gerard

    2004-01-01

    This chapter begins with a discussion of qualitative forecasting by describing a number of methods that depend on judgements made by stakeholders, experts or other interested parties to arrive at forecasts. Two qualitative approaches are illuminated, the Delphi and scenario methods respectively. Quantitative forecasting is illustrated with a brief overview of time series methods. Both qualitative and quantitative methods are illustrated by an example. The role and relative importance of forec...

  16. Commuter Airline Forecasts,

    Science.gov (United States)

    1981-05-01

    conterminous United States (48 contiguous states and the District of Columbia), for the State of Hawaii, and for the U.S. Carribean areas, Puerto Rico and U.S...FAA 15. Supplementary Notes I Abstract This publication presents forecasts of cammuter air carrier activity and describes the models designed for...forecasting Contenninous United States, Puerto Rico and the Virgin Islands, Hawaii, and individual airport activity. These forecasts take into account the

  17. Online short-term solar power forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2009-01-01

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 hours. The data used is fifteen-minute obser......This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 hours. The data used is fifteen......-minute observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques....... Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to two hours...

  18. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    Energy Technology Data Exchange (ETDEWEB)

    Porter, K.; Rogers, J.

    2012-04-01

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  19. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    Directory of Open Access Journals (Sweden)

    Christian Pierdzioch

    2012-11-01

    Full Text Available We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-herding of forecasters. Forecasts are consistent with herding (anti-herding of forecasters if forecasts are biased towards (away from the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time.

  20. Uncertainty Analysis of Multi-Model Flood Forecasts

    Directory of Open Access Journals (Sweden)

    Erich J. Plate

    2015-12-01

    Full Text Available This paper demonstrates, by means of a systematic uncertainty analysis, that the use of outputs from more than one model can significantly improve conditional forecasts of discharges or water stages, provided the models are structurally different. Discharge forecasts from two models and the actual forecasted discharge are assumed to form a three-dimensional joint probability density distribution (jpdf, calibrated on long time series of data. The jpdf is decomposed into conditional probability density distributions (cpdf by means of Bayes formula, as suggested and explored by Krzysztofowicz in a series of papers. In this paper his approach is simplified to optimize conditional forecasts for any set of two forecast models. Its application is demonstrated by means of models developed in a study of flood forecasting for station Stung Treng on the middle reach of the Mekong River in South-East Asia. Four different forecast models were used and pairwise combined: forecast with no model, with persistence model, with a regression model, and with a rainfall-runoff model. Working with cpdfs requires determination of dependency among variables, for which linear regressions are required, as was done by Krzysztofowicz. His Bayesian approach based on transforming observed probability distributions of discharges and forecasts into normal distributions is also explored. Results obtained with his method for normal prior and likelihood distributions are identical to results from direct multiple regressions. Furthermore, it is shown that in the present case forecast accuracy is only marginally improved, if Weibull distributed basic data were converted into normally distributed variables.

  1. World Area Forecast System (WAFS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Area Forecast System (WAFS) is a worldwide system by which world area forecast centers provide aeronautical meteorological en-route forecasts in uniform...

  2. Forecasting in Planning

    NARCIS (Netherlands)

    Ike, P.; Voogd, Henk; Voogd, Henk; Linden, Gerard

    2004-01-01

    This chapter begins with a discussion of qualitative forecasting by describing a number of methods that depend on judgements made by stakeholders, experts or other interested parties to arrive at forecasts. Two qualitative approaches are illuminated, the Delphi and scenario methods respectively.

  3. The strategy of professional forecasting

    DEFF Research Database (Denmark)

    Ottaviani, Marco; Sørensen, Peter Norman

    2006-01-01

    We develop and compare two theories of professional forecasters’ strategic behavior. The first theory, reputational cheap talk, posits that forecasters endeavor to convince the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts and the ......We develop and compare two theories of professional forecasters’ strategic behavior. The first theory, reputational cheap talk, posits that forecasters endeavor to convince the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts...... and the realized state. If the market expects forecasters to report their posterior expectations honestly, then forecasts are shaded toward the prior mean. With correct market expectations, equilibrium forecasts are imprecise but not shaded. The second theory posits that forecasters compete in a forecasting...

  4. Towards reliable seasonal ensemble streamflow forecasts for ephemeral rivers

    Science.gov (United States)

    Bennett, James; Wang, Qj; Li, Ming; Robertson, David

    2016-04-01

    Despite their inherently variable nature, ephemeral rivers are an important water resource in many dry regions. Water managers are likely benefit considerably from even mildly skilful ensemble forecasts of streamflow in ephemeral rivers. As with any ensemble forecast, forecast uncertainty - i.e., the spread of the ensemble - must be reliably quantified to allow users of the forecasts to make well-founded decisions. Correctly quantifying uncertainty in ephemeral rivers is particularly challenging because of the high incidence of zero flows, which are difficult to handle with conventional statistical techniques. Here we apply a seasonal streamflow forecasting system, the model for generating Forecast Guided Stochastic Scenarios (FoGSS), to 26 Australian ephemeral rivers. FoGSS uses post-processed ensemble rainfall forecasts from a coupled ocean-atmosphere prediction system to force an initialised monthly rainfall runoff model, and then applies a staged hydrological error model to describe and propagate hydrological uncertainty in the forecast. FoGSS produces 12-month streamflow forecasts; as forecast skill declines with lead time, the forecasts are designed to transit seamlessly to stochastic scenarios. The ensemble rainfall forecasts used in FoGSS are known to be unbiased and reliable, and we concentrate here on the hydrological error model. The FoGSS error model has several features that make it well suited to forecasting ephemeral rivers. First, FoGSS models the error after data is transformed with a log-sinh transformation. The log-sinh transformation is able to normalise even highly skewed data and homogenise its variance, allowing us to assume that errors are Gaussian. Second, FoGSS handles zero values using data censoring. Data censoring allows streamflow in ephemeral rivers to be treated as a continuous variable, rather than having to model the occurrence of non-zero values and the distribution of non-zero values separately. This greatly simplifies parameter

  5. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  6. FORECASTING OF PERFORMANCE EVALUATION OF NEW VEHICLES

    Directory of Open Access Journals (Sweden)

    O. S. Krasheninin

    2016-12-01

    Full Text Available Purpose. The research work focuses on forecasting of performance evaluation of the tractive and non-tractive vehicles that will satisfy and meet the needs and requirements of the railway industry, which is constantly evolving. Methodology. Analysis of the technical condition of the existing fleet of rolling stock (tractive and non-tractive of Ukrainian Railways shows a substantial reduction that occurs in connection with its moral and physical wear and tear, as well as insufficient and limited purchase of new units of the tractive and non-tractive rolling stock in the desired quantity. In this situation there is a necessity of search of the methods for determination of rolling stock technical characteristics. One of such urgent and effective measures is to conduct forecasting of the defining characteristics of the vehicles based on the processes of their reproduction in conditions of limited resources using a continuous exponential function. The function of the growth rate of the projected figure degree for the vehicle determines the logistic characteristic that with unlimited resources has the form of an exponent, and with low ones – that of a line. Findings. The data obtained according to the proposed method allowed determining the expected (future value, that is the ratio of load to volume of the body for non-tractive rolling stock (gondola cars and weight-to-power for tractive rolling stock, the degree of forecast reliability and the standard forecast error, which show high prediction accuracy for the completed procedure. As a result, this will allow estimating the required characteristics of vehicles in the forecast year with high accuracy. Originality. The concept of forecasting the characteristics of the vehicles for decision-making on the evaluation of their prospects was proposed. Practical value. The forecasting methodology will reliably determine the technical parameters of tractive and non-tractive rolling stock, which will meet

  7. NYHOPS Forecast Model Results

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 3D Marine Nowcast/Forecast System for the New York Bight NYHOPS subdomain. Currents, waves, surface meteorology, and water conditions.

  8. Assessment of an ensemble seasonal streamflow forecasting system for Australia

    Directory of Open Access Journals (Sweden)

    J. C. Bennett

    2017-11-01

    Full Text Available Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios (FoGSS as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean–land–atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall–runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( <  4 months, and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months, sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i ESP rainfall forcings, (ii different rainfall–runoff models, and (iii a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall–runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some

  9. Judgmental Forecasting of Operational Capabilities

    DEFF Research Database (Denmark)

    Hallin, Carina Antonia; Tveterås, Sigbjørn; Andersen, Torben Juul

    This paper explores a new judgmental forecasting indicator, the Employee Sensed Operational Capabilities (ESOC). The purpose of the ESOC is to establish a practical prediction tool that can provide early signals about changes in financial performance by gauging frontline employees’ sensing of cha...... can predict financial performance. Monthly data were collected from frontline employees in three different companies during an 18-month period, and the initial results indicate that the ESOChas predictive power.......This paper explores a new judgmental forecasting indicator, the Employee Sensed Operational Capabilities (ESOC). The purpose of the ESOC is to establish a practical prediction tool that can provide early signals about changes in financial performance by gauging frontline employees’ sensing...... of changes in the firm’s operational capabilities. We present the first stage of the development of ESOC by applying a formative measurement approach to test the index in relation to financial performance and against an organizational commitment scale. We use distributed lag models to test whether the ESOC...

  10. Ensemble-based Probabilistic Forecasting at Horns Rev

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    2009-01-01

    forecasting methodology. In a first stage, ensemble forecasts of meteorological variables are converted to power through a suitable power curve model. This modelemploys local polynomial regression, and is adoptively estimated with an orthogonal fitting method. The obtained ensemble forecasts of wind power...... are then converted into predictive distributions with an original adaptive kernel dressing method. The shape of the kernels is driven by a mean-variance model, the parameters of which ore recursively estimated in order to maximize the overall skill of obtained predictive distributions. Such a methodology has...

  11. Space Weather Forecasting at IZMIRAN

    Science.gov (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.

    2017-12-01

    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  12. Financial Analysts’ Forecasts

    DEFF Research Database (Denmark)

    Stæhr, Simone

    in the decision making and the magnitude of these constraints does sometimes vary with personal traits. Therefore, to the extent that financial analysts are subjects to behavioral biases their outputs to the investors are likely to be biased by their interpretation of information. Because investors need accuracy....... The primary focus is on financial analysts in the task of conducting earnings forecasts while a secondary focus is on investors’ abilities to interpret and make use of these forecasts. Simply put, financial analysts can be seen as information intermediators receiving inputs to their analyses from firm...... management and providing outputs to the investors. Amongst various outputs from the analysts are forecasts of earnings. According to decision theories mostly from the literature in psychology all humans are affected by cognitive constraints to some degree. These constraints may lead to unintentional biases...

  13. Forecast of auroral activity

    International Nuclear Information System (INIS)

    Lui, A.T.Y.

    2004-01-01

    A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting, namely, the area, the power, and the rates of change in area and power. This new technique is quite accurate, as indicated by the high true skill scores for forecasting three different levels of auroral dissipation during the activity lifetime. The corresponding advanced warning time ranges from 22 to 79 min from low to high dissipation levels

  14. Combining forecasts in short term load forecasting: Empirical ...

    Indian Academy of Sciences (India)

    We present an empirical analysis to show that combination of short term load forecasts leads to better accuracy. We also discuss other aspects of combination, i.e.,distribution of weights, effect of variation in the historical window and distribution of forecast errors. The distribution of forecast errors is analyzed in order to get a ...

  15. Forecasting Housing Approvals in Australia: Do Forecasters Herd?

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Rülke

    2012-01-01

    Price trends in housing markets may reflect herding of market participants. A natural question is whether such herding, to the extent that it occurred, reflects herding in forecasts of professional forecasters. Using more than 6,000 forecasts of housing approvals for Australia, we did not find...

  16. MODELING PRECIPITATION DEPENDENT FOREST RESILIENCE IN INDIA

    Directory of Open Access Journals (Sweden)

    P. Das

    2018-04-01

    Full Text Available The impact of long term climate change that imparts stress on forest could be perceived by studying the regime shift of forest ecosystem. With the change of significant precipitation, forest may go through density change around globe at different spatial and temporal scale. The 100 class high resolution (60 meter spatial resolution Indian vegetation type map was used in this study recoded into four broad categories depending on phrenology as (i forest, (ii scrubland, (iii grassland and (iv treeless area. The percentage occupancy of forest, scrub, grass and treeless were observed as 19.9 %, 5.05 %, 1.89 % and 7.79 % respectively. Rest of the 65.37 % land area was occupied by the cropland, built-up, water body and snow covers. The majority forest cover were appended into a 5 km × 5 km grid, along with the mean annual precipitation taken from Bioclim data. The binary presence and absence of different vegetation categories in relates to the annual precipitation was analyzed to calculate their resilience expressed in probability values ranging from 0 to 1. Forest cover observed having resilience probability (Pr < 0.3 in only 0.3 % (200 km2 of total forest cover in India, which was 4.3 % < 0.5 Pr. Majority of the scrubs and grass (64.92 % Pr < 0.5 from North East India which were the shifting cultivation lands showing low resilience, having their high tendency to be transform to forest. These results have spatial explicitness to highlight the resilient and non-resilient distribution of forest, scrub and grass, and treeless areas in India.

  17. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  18. Battlescale Forecast Model Sensitivity Study

    National Research Council Canada - National Science Library

    Sauter, Barbara

    2003-01-01

    .... Changes to the surface observations used in the Battlescale Forecast Model initialization led to no significant changes in the resulting forecast values of temperature, relative humidity, wind speed, or wind direction...

  19. Challenges of operational river forecasting

    NARCIS (Netherlands)

    Pagano, T.C.; Wood, A.W.; Ramos, M.H.; Cloke, H.L.; Pappenbreger, F.; Verkade, J.S.

    2014-01-01

    Skillful and timely streamflow forecasts are critically important to water managers and emergency protection services. To provide these forecasts, hydrologists must predict the behavior of complex coupled human–natural systems using incomplete and uncertain information and imperfect models.

  20. Are demand forecasting techniques applicable to libraries?

    OpenAIRE

    Sridhar, M. S.

    1984-01-01

    Examines the nature and limitations of demand forecasting, discuses plausible methods of forecasting demand for information, suggests some useful hints for demand forecasting and concludes by emphasizing unified approach to demand forecasting.

  1. Forecasting inbound tourists in Cambodia

    OpenAIRE

    Tanaka, Kiyoyasu

    2016-01-01

    Forecasting tourism demand is crucial for management decisions in the tourism sector. Estimating a vector autoregressive (VAR) model for monthly visitor arrivals disaggregated by three entry points in Cambodia for the years 2006–2015, I forecast the number of arrivals for years 2016 and 2017. The results show that the VAR model fits well with the data on visitor arrivals for each entry point. Ex post forecasting shows that the forecasts closely match the observed data for visitor arrivals, th...

  2. Forecasters' Objectives and Strategies

    DEFF Research Database (Denmark)

    Marinovic, Iván; Ottaviani, Marco; Sørensen, Peter Norman

    2013-01-01

    This chapter develops a unified modeling framework for analyzing the strategic behavior of forecasters. The theoretical model encompasses reputational objectives, competition for the best accuracy, and bias. Also drawing from the extensive lit- erature on analysts, we review the empirical evidenc...

  3. Housing Price Forecastability

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2016-01-01

    We examine U.S. housing price forecastability using principal component analysis (PCA), partial least squares (PLS), and sparse PLS (SPLS). We incorporate information from a large panel of 128 economic time series and show that macroeconomic fundamentals have strong predictive power for future mo...

  4. Hydrology and flow forecasting

    NARCIS (Netherlands)

    Vrijling, J.K.; Kwadijk, J.; Van Duivendijk, J.; Van Gelder, P.; Pang, H.; Rao, S.Q.; Wang, G.Q.; Huang, X.Q.

    2002-01-01

    We have studied and applied the statistic model (i.e. MMC) and hydrological models to Upper Yellow River. This report introduces the results and some conclusions from the model. The three models, MMC, MWBM and NAM, have be applied in the research area. The forecasted discharge by the three models

  5. Reference class forecasting

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    Underbudgettering og budgetoverskridelser forekommer i et flertal af større bygge- og anlægsprojekter. Problemet skyldes optimisme og/eller strategisk misinformation i budgetteringsprocessen. Reference class forecasting (RCF) er en prognosemetode, som er udviklet for at reducere eller eliminere...

  6. Air Pollution Forecasts: An Overview

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2018-04-01

    Full Text Available Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  7. GEOS-5 seasonal forecast system

    Science.gov (United States)

    Borovikov, Anna; Cullather, Richard; Kovach, Robin; Marshak, Jelena; Vernieres, Guillaume; Vikhliaev, Yury; Zhao, Bin; Li, Zhao

    2017-09-01

    Ensembles of numerical forecasts based on perturbed initial conditions have long been used to improve estimates of both weather and climate forecasts. The Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model, Version 5 (GEOS-5 AOGCM) Seasonal-to-Interannual Forecast System has been used routinely by the GMAO since 2008, the current version since 2012. A coupled reanalysis starting in 1980 provides the initial conditions for the 9-month experimental forecasts. Once a month, sea surface temperature from a suite of 11 ensemble forecasts is contributed to the North American Multi-Model Ensemble (NMME) consensus project, which compares and distributes seasonal forecasts of ENSO events. Since June 2013, GEOS-5 forecasts of the Arctic sea-ice distribution were provided to the Sea-Ice Outlook project. The seasonal forecast output data includes surface fields, atmospheric and ocean fields, as well as sea ice thickness and area, and soil moisture variables. The current paper aims to document the characteristics of the GEOS-5 seasonal forecast system and to highlight forecast biases and skills of selected variables (sea surface temperature, air temperature at 2 m, precipitation and sea ice extent) to be used as a benchmark for the future GMAO seasonal forecast systems and to facilitate comparison with other global seasonal forecast systems.

  8. Air Pollution Forecasts: An Overview.

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  9. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...... the hourly load for refrigeration for the following 42 hours is forecasted. The forecast models are adaptive linear time-series models which are fitted with a computationally efficient recursive least squares scheme. The dynamic relations between the inputs and the load is modeled by simple transfer...

  10. Methodical bases of geodemographic forecasting

    Directory of Open Access Journals (Sweden)

    Катерина Сегіда

    2016-10-01

    Full Text Available The article deals with methodological features of the forecast of population size and composition. The essence and features of probabilistic demographic forecasting, methods, a component and dynamic ranks are considered; requirements to initial indicators for each type of the forecast are provided. It is noted that geo-demographic forecast is an important component of regional geo-demographic characteristic. Features of the demographic forecast development by component method (recursors of age are given, basic formulae of calculation, including the equation of demographic balance, a formula recursors taking into account gender and age indicators, survival coefficient are presented. The basic methodical principles of the demographic forecast are given by an extrapolation method (dynamic ranks, calculation features by means of the generalized indicators, such as extrapolation on the basis of indicators of an average pure gain, average growth rate and average rate of a gain are presented. To develop population forecast, the method of retrospective extrapolation (for the short-term forecast and a component method (for the mid-term forecast are mostly used. The example of such development by component method for gender and age structure of the population of Kharkiv region with step-by-step explanation of calculation is provided. The example of Kharkiv region’s population forecast development is provided by the method of dynamic ranks. Having carried out calculations of the main forecast indicators by administrative units, it is possible to determine features of further regional demographic development, to reveal internal territorial distinctions in demographic development. Application of separate forecasting methods allows to develop the forecast for certain indicators, however essential a variety, nonlinearity and not stationarity of the processes constituting demographic development forces to look +for new approaches and

  11. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  12. Forecasting Infectious Disease Outbreaks

    Science.gov (United States)

    Shaman, J. L.

    2015-12-01

    Dynamic models of infectious disease systems abound and are used to study the epidemiological characteristics of disease outbreaks, the ecological mechanisms affecting transmission, and the suitability of various control and intervention strategies. The dynamics of disease transmission are non-linear and consequently difficult to forecast. Here, we describe combined model-inference frameworks developed for the prediction of infectious diseases. We show that accurate and reliable predictions of seasonal influenza outbreaks can be made using a mathematical model representing population-level influenza transmission dynamics that has been recursively optimized using ensemble data assimilation techniques and real-time estimates of influenza incidence. Operational real-time forecasts of influenza and other infectious diseases have been and are currently being generated.

  13. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Uranium price forecasting methods

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1994-01-01

    This article reviews a number of forecasting methods that have been applied to uranium prices and compares their relative strengths and weaknesses. The methods reviewed are: (1) judgemental methods, (2) technical analysis, (3) time-series methods, (4) fundamental analysis, and (5) econometric methods. Historically, none of these methods has performed very well, but a well-thought-out model is still useful as a basis from which to adjust to new circumstances and try again

  15. Statistical methods for forecasting

    CERN Document Server

    Abraham, Bovas

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists."This book, it must be said, lives up to the words on its advertising cover: ''Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.'' It does just that!"-Journal of the Royal Statistical Society"A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series ...

  16. PyForecastTools

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-22

    The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient of variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.

  17. Evolving forecasting classifications and applications in health forecasting

    Directory of Open Access Journals (Sweden)

    Soyiri IN

    2012-05-01

    Full Text Available Ireneous N Soyiri1,2, Daniel D Reidpath11Global Public Health, JCSMHS, MONASH University, Selangor, Malaysia; 2School of Public Health, University of Ghana, Legon, Accra, GhanaAbstract: Health forecasting forewarns the health community about future health situations and disease episodes so that health systems can better allocate resources and manage demand. The tools used for developing and measuring the accuracy and validity of health forecasts commonly are not defined although they are usually adapted forms of statistical procedures. This review identifies previous typologies used in classifying the forecasting methods commonly used in forecasting health conditions or situations. It then discusses the strengths and weaknesses of these methods and presents the choices available for measuring the accuracy of health-forecasting models, including a note on the discrepancies in the modes of validation.Keywords: health forecast, health data, electronic health records, accuracy, cross validation, method, strengths and limitations

  18. Analysing UK real estate market forecast disagreement

    OpenAIRE

    McAllister, Patrick; Newell, G.; Matysiak, George

    2005-01-01

    Given the significance of forecasting in real estate investment decisions, this paper investigates forecast uncertainty and disagreement in real estate market forecasts. Using the Investment Property Forum (IPF) quarterly survey amongst UK independent real estate forecasters, these real estate forecasts are compared with actual real estate performance to assess a number of real estate forecasting issues in the UK over 1999-2004, including real estate forecast error, bias and consensus. The re...

  19. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2009-01-01

    With the introduction of restructuring into the electric power industry, the price of electricity has become the focus of all activities in the power market. Electricity price forecast is key information for electricity market managers and participants. However, electricity price is a complex signal due to its non-linear, non-stationary, and time variant behavior. In spite of performed research in this area, more accurate and robust price forecast methods are still required. In this paper, a new forecast strategy is proposed for day-ahead price forecasting of electricity markets. Our forecast strategy is composed of a new two stage feature selection technique and cascaded neural networks. The proposed feature selection technique comprises modified Relief algorithm for the first stage and correlation analysis for the second stage. The modified Relief algorithm selects candidate inputs with maximum relevancy with the target variable. Then among the selected candidates, the correlation analysis eliminates redundant inputs. Selected features by the two stage feature selection technique are used for the forecast engine, which is composed of 24 consecutive forecasters. Each of these 24 forecasters is a neural network allocated to predict the price of 1 h of the next day. The whole proposed forecast strategy is examined on the Spanish and Australia's National Electricity Markets Management Company (NEMMCO) and compared with some of the most recent price forecast methods. (author)

  20. Ensemble hydromoeteorological forecasting in Denmark

    DEFF Research Database (Denmark)

    Lucatero Villasenor, Diana

    of the main sources of uncertainty in hydrological forecasts. This is the reason why substantiated efforts to include information from Numerical Weather Predictors (NWP) or General Circulation Models (GCM) have been made over the last couple of decades. The present thesis expects to advance the field...... forecasts only about 15% and ET0 being the lowest at 15% for some months. The lowest skill of ET0 can be attributable to the combination of both T and incoming shortwave radiation (ISWR) bias from the GCM in addition to the added uncertainty for the model of the ET0 chosen (Makkink formula). Attempts...... steps. First, GCM-based streamflow forecasts exhibit biases that increase with lead time and, although these forecasts are sharper than the ESP forecasts, these biases lead to lower accuracy relative to ESP forecasts, especially at lead times larger than two months. Corrected GCM-based streamflow...

  1. Evaluation of Probabilistic Disease Forecasts.

    Science.gov (United States)

    Hughes, Gareth; Burnett, Fiona J

    2017-10-01

    The statistical evaluation of probabilistic disease forecasts often involves calculation of metrics defined conditionally on disease status, such as sensitivity and specificity. However, for the purpose of disease management decision making, metrics defined conditionally on the result of the forecast-predictive values-are also important, although less frequently reported. In this context, the application of scoring rules in the evaluation of probabilistic disease forecasts is discussed. An index of separation with application in the evaluation of probabilistic disease forecasts, described in the clinical literature, is also considered and its relation to scoring rules illustrated. Scoring rules provide a principled basis for the evaluation of probabilistic forecasts used in plant disease management. In particular, the decomposition of scoring rules into interpretable components is an advantageous feature of their application in the evaluation of disease forecasts.

  2. IEA Wind Task 36 Forecasting

    Science.gov (United States)

    Giebel, Gregor; Cline, Joel; Frank, Helmut; Shaw, Will; Pinson, Pierre; Hodge, Bri-Mathias; Kariniotakis, Georges; Sempreviva, Anna Maria; Draxl, Caroline

    2017-04-01

    Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Wind Power Forecasting tries to organise international collaboration, among national weather centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, UK MetOffice, …) and operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets for verification. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts aiming at industry and forecasters alike. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions, especially probabilistic ones. The Operating Agent is Gregor Giebel of DTU, Co-Operating Agent is Joel Cline of the US Department of Energy. Collaboration in the task is solicited from everyone interested in the forecasting business. We will collaborate with IEA Task 31 Wakebench, which developed the Windbench benchmarking platform, which this task will use for forecasting benchmarks. The task runs for three years, 2016-2018. Main deliverables are an up-to-date list of current projects and main project results, including datasets which can be used by researchers around the world to improve their own models, an IEA Recommended Practice on performance evaluation of probabilistic forecasts, a position paper regarding the use of probabilistic forecasts

  3. Earthquake forecasting and its verification

    Directory of Open Access Journals (Sweden)

    J. R. Holliday

    2005-01-01

    Full Text Available No proven method is currently available for the reliable short time prediction of earthquakes (minutes to months. However, it is possible to make probabilistic hazard assessments for earthquake risk. In this paper we discuss a new approach to earthquake forecasting based on a pattern informatics (PI method which quantifies temporal variations in seismicity. The output, which is based on an association of small earthquakes with future large earthquakes, is a map of areas in a seismogenic region ('hotspots'' where earthquakes are forecast to occur in a future 10-year time span. This approach has been successfully applied to California, to Japan, and on a worldwide basis. Because a sharp decision threshold is used, these forecasts are binary--an earthquake is forecast either to occur or to not occur. The standard approach to the evaluation of a binary forecast is the use of the relative (or receiver operating characteristic (ROC diagram, which is a more restrictive test and less subject to bias than maximum likelihood tests. To test our PI method, we made two types of retrospective forecasts for California. The first is the PI method and the second is a relative intensity (RI forecast based on the hypothesis that future large earthquakes will occur where most smaller earthquakes have occurred in the recent past. While both retrospective forecasts are for the ten year period 1 January 2000 to 31 December 2009, we performed an interim analysis 5 years into the forecast. The PI method out performs the RI method under most circumstances.

  4. Forecasting the international diffusion of innovations: An adaptive estimation approach

    NARCIS (Netherlands)

    Y.M. van Everdingen (Yvonne); W.B. Aghina (Wouter)

    2003-01-01

    textabstractWe introduce an international, adaptive diffusion model that can be used to forecast the cross-national diffusion of an innovation at early stages of the diffusion curve. We model the mutual influence between the diffusion processes in the different social systems (countries) by mixing

  5. Medium-range fire weather forecasts

    Science.gov (United States)

    J.O. Roads; K. Ueyoshi; S.C. Chen; J. Alpert; F. Fujioka

    1991-01-01

    The forecast skill of theNational Meteorological Center's medium range forecast (MRF) numerical forecasts of fire weather variables is assessed for the period June 1,1988 to May 31,1990. Near-surface virtual temperature, relative humidity, wind speed and a derived fire weather index (FWI) are forecast well by the MRF model. However, forecast relative humidity has...

  6. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    model. The analysis uses a structural relationship to explain the structure of the exchange of the goods—a relationship that can be used in the year of forecast. This article also provides a new methodology for converting monetary aggregates into quantity aggregates. The resulting commodity growth rates....... This article models long-term dynamic physical trade flows and estimates a dynamic panel data model for foreign trade for the EU15 and two countries from the EFTA (European Free Trade Association) 1967–2002. The analysis suggests that a dynamic three-way-effects gravity equation is the best-fitted econometric...

  7. Utility usage forecasting

    Science.gov (United States)

    Hosking, Jonathan R. M.; Natarajan, Ramesh

    2017-08-22

    The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.

  8. On the Influence of Weather Forecast Errors in Short-Term Load Forecasting Models

    OpenAIRE

    Fay, D.; Ringwood, John; Condon, M.

    2004-01-01

    Weather information is an important factor in load forecasting models. This weather information usually takes the form of actual weather readings. However, online operation of load forecasting models requires the use of weather forecasts, with associated weather forecast errors. A technique is proposed to model weather forecast errors to reflect current accuracy. A load forecasting model is then proposed which combines the forecasts of several load forecasting models. This approach allows the...

  9. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  10. Interactive Forecasting with the National Weather Service River Forecast System

    Science.gov (United States)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  11. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2016-01-01

    The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged fundamenta...... competition with four tracks on load, price, wind and solar forecasting, which attracted 581 participants from 61 countries. We conclude the paper with 12 predictions for the next decade of energy forecasting.......The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged...... fundamentally. In this competitive and dynamic environment, many decision-making processes rely on probabilistic forecasts to quantify the uncertain future. Although most of the papers in the energy forecasting literature focus on point or singlevalued forecasts, the research interest in probabilistic energy...

  12. Issues in Forecasting CMEs

    Science.gov (United States)

    Pizzo, V. J.

    2017-12-01

    I will present my view of the current status of space weather forecasting abilities related to CMEs. This talk will address the large-scale aspects, but specifically not energetic particle phenomena. A key point is that all models, whether sophisticated numerical contraptions or quasi-empirical ones, are only as good as the data you feed them. Hence the emphasis will be on observations and analysis methods. First I will review where we stand with regard to the near-Sun quantitative data needed to drive any model, no matter how complex or simple-minded, and I will discuss technological roadblocks that suggest it may be some time before we see any meaningful improvements beyond what we have today. Then I cover issues related to characterizing CME propagation out through the corona and into interplanetary space, as well as to observational limitations in the vicinity of 1 AU. Since none of these observational constraints are likely to be resolved anytime soon, the real challenge is to make more informed use of what is available. Thus, this talk will focus on how we may identify and pursue the most profitable approaches, for both forecast and research applications. The discussion will highlight a number of promising leads, including those related to inclusion of solar backside information, joint magnetograph observations from L5 and Earth, how to use (not just run) ensembles, more rational use of HI observations, and suggestions for using cube-sats for deep space observations of CMEs and MCs.

  13. Global warming forecasts unreliability

    International Nuclear Information System (INIS)

    Baker, A.B.

    1993-01-01

    This paper reports the opinions of a series of experts who have recently commented on the reliability of predictions of global warning in relation to observed and forecasted increases in carbon dioxide emissions. One of the more difficult to explain observations, evidenced through the analysis of past meteorological data, was the rapid increase in global temperature that took place during the period preceding 1940 and which was followed by a gradual decrease, during a thirty year period of heightened industrialization and consumption of fossil fuels, up to 1970 when global temperatures began again to rise rapidly. Variations in solar activity was suggested to explain this apparently anomalous trend in global temperatures. This question as to the existence of a strict correlation between global warming and rises in carbon dioxide emissions, as well as, forecasted increases in concentrations of atmospheric carbon dioxide due to the expected population growth in China are putting a strain on attempts by OECD (Organization for Economic Co-operation and Development) environmental policy makers to gain support for energy tax proposals

  14. Container Throughput Forecasting Using Dynamic Factor Analysis and ARIMAX Model

    Directory of Open Access Journals (Sweden)

    Marko Intihar

    2017-11-01

    Full Text Available The paper examines the impact of integration of macroeconomic indicators on the accuracy of container throughput time series forecasting model. For this purpose, a Dynamic factor analysis and AutoRegressive Integrated Moving-Average model with eXogenous inputs (ARIMAX are used. Both methodologies are integrated into a novel four-stage heuristic procedure. Firstly, dynamic factors are extracted from external macroeconomic indicators influencing the observed throughput. Secondly, the family of ARIMAX models of different orders is generated based on the derived factors. In the third stage, the diagnostic and goodness-of-fit testing is applied, which includes statistical criteria such as fit performance, information criteria, and parsimony. Finally, the best model is heuristically selected and tested on the real data of the Port of Koper. The results show that by applying macroeconomic indicators into the forecasting model, more accurate future throughput forecasts can be achieved. The model is also used to produce future forecasts for the next four years indicating a more oscillatory behaviour in (2018-2020. Hence, care must be taken concerning any bigger investment decisions initiated from the management side. It is believed that the proposed model might be a useful reinforcement of the existing forecasting module in the observed port.

  15. Location specific forecasting of maximum and minimum ...

    Indian Academy of Sciences (India)

    . The global NWP models, though able to provide reasonably good short- to medium-range weather forecasts, have comparatively less skill in forecasting surface parameters. It is well known that NWP model forecasts contain systematic biases ...

  16. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  17. Improving Local Weather Forecasts for Agricultural Applications

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    For controlling agricultural systems, weather forecasts can be of substantial importance. Studies have shown that forecast errors can be reduced in terms of bias and standard deviation using forecasts and meteorological measurements from one specific meteorological station. For agricultural systems

  18. Guidelines for forecasting energy demand

    International Nuclear Information System (INIS)

    Sonino, T.

    1976-11-01

    Four methodologies for forecasting energy demand are reviewed here after considering the role of energy in the economy and the analysis of energy use in different economic sectors. The special case of Israel is considered throughout, and some forecasts for energy demands in the year 2000 are presented. An energy supply mix that may be considered feasible is proposed. (author)

  19. Forecasting the future of biodiversity

    DEFF Research Database (Denmark)

    Fitzpatrick, M. C.; Sanders, Nate; Ferrier, Simon

    2011-01-01

    , but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single-species models to those from a multi-species modeling approach, Generalized Dissimilarity Modeling (GDM...... climate change impacts on biodiversity....

  20. Forecasting Using Random Subspace Methods

    NARCIS (Netherlands)

    T. Boot (Tom); D. Nibbering (Didier)

    2016-01-01

    textabstractRandom subspace methods are a novel approach to obtain accurate forecasts in high-dimensional regression settings. We provide a theoretical justification of the use of random subspace methods and show their usefulness when forecasting monthly macroeconomic variables. We focus on two

  1. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  2. Forecasting Macroeconomic Labour Market Flows

    DEFF Research Database (Denmark)

    Wilke, Ralf

    2017-01-01

    Forecasting labour market flows is important for budgeting and decision-making in government departments and public administration. Macroeconomic forecasts are normally obtained from time series data. In this article, we follow another approach that uses individual-level statistical analysis...

  3. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  4. Effective Feature Preprocessing for Time Series Forecasting

    DEFF Research Database (Denmark)

    Zhao, Junhua; Dong, Zhaoyang; Xu, Zhao

    2006-01-01

    Time series forecasting is an important area in data mining research. Feature preprocessing techniques have significant influence on forecasting accuracy, therefore are essential in a forecasting model. Although several feature preprocessing techniques have been applied in time series forecasting...... performance in time series forecasting. It is demonstrated in our experiment that, effective feature preprocessing can significantly enhance forecasting accuracy. This research can be a useful guidance for researchers on effectively selecting feature preprocessing techniques and integrating them with time...

  5. Method of forecasting power distribution

    International Nuclear Information System (INIS)

    Kaneto, Kunikazu.

    1981-01-01

    Purpose: To obtain forecasting results at high accuracy by reflecting the signals from neutron detectors disposed in the reactor core on the forecasting results. Method: An on-line computer transfers, to a simulator, those process data such as temperature and flow rate for coolants in each of the sections and various measuring signals such as control rod positions from the nuclear reactor. The simulator calculates the present power distribution before the control operation. The signals from the neutron detectors at each of the positions in the reactor core are estimated from the power distribution and errors are determined based on the estimated values and the measured values to determine the smooth error distribution in the axial direction. Then, input conditions at the time to be forecast are set by a data setter. The simulator calculates the forecast power distribution after the control operation based on the set conditions. The forecast power distribution is corrected using the error distribution. (Yoshino, Y.)

  6. Stochastic model of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-01-01

    hypothesis of the existence of phenomenon change trends, the next step in the methodology of forecasting is the determination of a specific growth curve that describes the regularity of the development in time. These curves of growth are obtained by the analytical representation (expression of dynamic lines. There are two basic stages in the process of expression and they are: - The choice of the type of curve the shape of which corresponds to the character of the dynamic order variation - the determination of the number of values (evaluation of the curve parameters. The most widespread method of forecasting is the trend extrapolation. The basis of the trend extrapolation is the continuing of past trends in the future. The simplicity of the trend extrapolation process, on the one hand, and the absence of other information on the other hand, are the main reasons why the trend extrapolation is used for forecasting. The trend extrapolation is founded on the following assumptions: - The phenomenon development can be presented as an evolutionary trajectory or trend, - General conditions that influenced the trend development in the past will not undergo substantial changes in the future. Spare parts demand forecasting is constantly being done in all warehouses, workshops, and at all levels. Without demand forecasting, neither planning nor decision making can be done. Demand forecasting is the input for determining the level of reserve, size of the order, ordering cycles, etc. The question that arises is the one of the reliability and accuracy of a forecast and its effects. Forecasting 'by feeling' is not to be dismissed if there is nothing better, but in this case, one must be prepared for forecasting failures that cause unnecessary accumulation of certain spare parts, and also a chronic shortage of other spare parts. All this significantly increases costs and does not provide a satisfactory supply of spare parts. The main problem of the application of this model is that each

  7. Forecasting Long Memory Series Subject to Structural Change

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Papailias, Fotis

    A two-stage forecasting approach for long memory time series is introduced. In the first step we estimate the fractional exponent and, applying the fractional differencing operator, we obtain the underlying weakly dependent series. In the second step, we perform the multi-step ahead forecasts...... for the weakly dependent series and obtain their long memory counterparts by applying the fractional cumulation operator. The methodology applies to stationary and nonstationary cases. Simulations and an application to seven time series provide evidence that the new methodology is more robust to structural...

  8. Assessment of storm forecast

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Hahmann, Andrea N.; Huus Bjerge, Martin

    at analysing the ability of existing forecast tools to predict storms at the Horns Rev 2 wind farm. The focus will be on predicting the time where the wind turbine will need to shut down to protect itself, e.g. the time where wind speed exceeds 25 m/s. At the same time, the planned shut-down should cost...... storms was analysed based on historical meteorological data available at Risø DTU and dynamically down-scaled to the Horns Rev 2 wind farm level. This solution was chosen due to the lack of measurements. Moreover, since the project started, there were four events during which Horns Rev 2 wind farm...

  9. Forecasting of Market Clearing Price by Using GA Based Neural Network

    Science.gov (United States)

    Yang, Bo; Chen, Yun-Ping; Zhao, Zun-Lian; Han, Qi-Ye

    Forecasting of Market Clearing Price (MCP) is important to economic benefits of electricity market participants. To accurately forecast MCP, a novel two-stage GA-based neural network model (GA-NN) is proposed. In the first stage, GA chromosome is designed into two parts: boolean coding part for neural network topology and real coding part for connection weights. By hybrid genetic operation of selection, crossover and mutation under the criterion of error minimization between the actual output and the desired output, optimal architecture of neural network is obtained. In the second stage, gradient learning algorithm with momentum rate is imposed on neural network with optimal architecture. After learning process, optimal connection weights are obtained. The proposed model is tested on MCP forecasting in California electricity market. The test results show that GA-NN has self-adaptive ability in its topology and connection weights and can obtain more accurate MCP forecasting values than BP neural network.

  10. Climate Forecast System Version 2 (CFSv2) Operational Forecasts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  11. Stage design

    International Nuclear Information System (INIS)

    Shacter, J.

    1975-01-01

    A method is described of cycling gases through a plurality of diffusion stages comprising the steps of admitting the diffused gases from a first diffusion stage into an axial compressor, simultaneously admitting the undiffused gases from a second diffusion stage into an intermediate pressure zone of said compressor corresponding in pressure to the pressure of said undiffused gases, and then admitting the resulting compressed mixture of diffused and undiffused gases into a third diffusion stage

  12. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  13. Forecasts: uncertain, inaccurate and biased?

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Ambrasaite, Inga; Salling, Kim Bang

    2012-01-01

    Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts of cons....... It is recommended that more attention is given to monitoring completed projects so future forecasts can benefit from better data availability through systematic ex-post evaluations, and an example of how to utilize such data in practice is presented....

  14. A new cascade NN based method to short-term load forecast in deregulated electricity market

    International Nuclear Information System (INIS)

    Kouhi, Sajjad; Keynia, Farshid

    2013-01-01

    Highlights: • We are proposed a new hybrid cascaded NN based method and WT to short-term load forecast in deregulated electricity market. • An efficient preprocessor consist of normalization and shuffling of signals is presented. • In order to select the best inputs, a two-stage feature selection is presented. • A new cascaded structure consist of three cascaded NNs is used as forecaster. - Abstract: Short-term load forecasting (STLF) is a major discussion in efficient operation of power systems. The electricity load is a nonlinear signal with time dependent behavior. The area of electricity load forecasting has still essential need for more accurate and stable load forecast algorithm. To improve the accuracy of prediction, a new hybrid forecast strategy based on cascaded neural network is proposed for STLF. This method is consists of wavelet transform, an intelligent two-stage feature selection, and cascaded neural network. The feature selection is used to remove the irrelevant and redundant inputs. The forecast engine is composed of three cascaded neural network (CNN) structure. This cascaded structure can be efficiently extract input/output mapping function of the nonlinear electricity load data. Adjustable parameters of the intelligent feature selection and CNN is fine-tuned by a kind of cross-validation technique. The proposed STLF is tested on PJM and New York electricity markets. It is concluded from the result, the proposed algorithm is a robust forecast method

  15. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    Science.gov (United States)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  16. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  17. Can we use Earth Observations to improve monthly water level forecasts?

    Science.gov (United States)

    Slater, L. J.; Villarini, G.

    2017-12-01

    Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.

  18. Sharing wind power forecasts in electricity markets: A numerical analysis

    International Nuclear Information System (INIS)

    Exizidis, Lazaros; Kazempour, S. Jalal; Pinson, Pierre; Greve, Zacharie de; Vallée, François

    2016-01-01

    Highlights: • Information sharing among different agents can be beneficial for electricity markets. • System cost decreases by sharing wind power forecasts between different agents. • Market power of wind producer may increase by sharing forecasts with market operator. • Extensive out-of-sample analysis is employed to draw reliable conclusions. - Abstract: In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making more informed day-ahead schedules, which reduces the need for balancing resources in real-time operation. This paper numerically evaluates the potential value of sharing forecasts for the whole system in terms of system cost reduction. Besides, its impact on each market player’s profit is analyzed. The framework of this study is based on a stochastic two-stage market setup and complementarity modeling, which allows us to gain further insights into information sharing impacts.

  19. Hierarchical Estimation as Basis for Hierarchical Forecasting

    NARCIS (Netherlands)

    Strijbosch, L.W.G.; Heuts, R.M.J.; Moors, J.J.A.

    2006-01-01

    In inventory management, hierarchical forecasting (HF) is a hot issue : families of items are formed for which total demand is forecasted; total forecast then is broken up to produce forecasts for the individual items.Since HF is a complicated procedure, analytical results are hard to obtain;

  20. Recurrent networks for wave forecasting

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    The tremendous increase in offshore operational activities demands improved wave forecasting techniques. With the knowledge of accurate wave conditions, it is possible to carry out the marine activities such as offshore drilling, naval operations...

  1. Load forecasting of supermarket refrigeration

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Buth; Bacher, Peder; Madsen, Henrik

    2016-01-01

    This paper presents a novel study of models for forecasting the electrical load for supermarket refrigeration. The data used for building the models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. Every hour the hourly electrical load for refrigeration is forecasted for the following 42 h. The forecast models are adaptive linear time series models. The model has two regimes; one for opening hours and one for closing hours, this is modeled by a regime switching model and two different...... methods for predicting the regimes are tested. The dynamic relation between the weather and the load is modeled by simple transfer functions and the non-linearities are described using spline functions. The results are thoroughly evaluated and it is shown that the spline functions are suitable...

  2. Forecasting and management of technology

    National Research Council Canada - National Science Library

    Roper, A. T

    2011-01-01

    .... The scope of this edition has broadened to include management of technology content that is relevant to now to executives in organizations while updating and strengthening the technology forecasting...

  3. Measuring inaccuracy in travel demand forecasting

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2005-01-01

    Project promoters, forecasters, and managers sometimes object to two things in measuring inaccuracy in travel demand forecasting: (1)using the forecast made at the time of making the decision to build as the basis for measuring inaccuracy and (2)using traffic during the first year of operations...... in travel demand forecasts are likely to be conservatively biased, i.e., accuracy in travel demand forecasts estimated from such samples would likely be higher than accuracy in travel demand forecasts in the project population. This bias must be taken into account when interpreting the results from...... statistical analyses of inaccuracy in travel demand forecasting....

  4. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  5. Forecasting Interest Rates and Inflation

    DEFF Research Database (Denmark)

    Chun, Albert Lee

    This study examines the performance of the professional analysts in the Blue Chip Financial Forecasts vis-à-vis set of competing econometric benchmarks, including shrinkage versions that adjust for in-sample over-fit in improving out-of-sample performance. The individual participants perform...... document predictability in the survey forecast errors, which exhibit substantial variability across different economic episodes, and propose a new adjustment that can substantially improve the performance of the survey participants....

  6. Decomposition of Sources of Errors in Seasonal Streamflow Forecasts in a Rainfall-Runoff Dominated Basin

    Science.gov (United States)

    Sinha, T.; Arumugam, S.

    2012-12-01

    Seasonal streamflow forecasts contingent on climate forecasts can be effectively utilized in updating water management plans and optimize generation of hydroelectric power. Streamflow in the rainfall-runoff dominated basins critically depend on forecasted precipitation in contrast to snow dominated basins, where initial hydrological conditions (IHCs) are more important. Since precipitation forecasts from Atmosphere-Ocean-General Circulation Models are available at coarse scale (~2.8° by 2.8°), spatial and temporal downscaling of such forecasts are required to implement land surface models, which typically runs on finer spatial and temporal scales. Consequently, multiple sources are introduced at various stages in predicting seasonal streamflow. Therefore, in this study, we addresses the following science questions: 1) How do we attribute the errors in monthly streamflow forecasts to various sources - (i) model errors, (ii) spatio-temporal downscaling, (iii) imprecise initial conditions, iv) no forecasts, and (iv) imprecise forecasts? and 2) How does monthly streamflow forecast errors propagate with different lead time over various seasons? In this study, the Variable Infiltration Capacity (VIC) model is calibrated over Apalachicola River at Chattahoochee, FL in the southeastern US and implemented with observed 1/8° daily forcings to estimate reference streamflow during 1981 to 2010. The VIC model is then forced with different schemes under updated IHCs prior to forecasting period to estimate relative mean square errors due to: a) temporally disaggregation, b) spatial downscaling, c) Reverse Ensemble Streamflow Prediction (imprecise IHCs), d) ESP (no forecasts), and e) ECHAM4.5 precipitation forecasts. Finally, error propagation under different schemes are analyzed with different lead time over different seasons.

  7. Municipal water consumption forecast accuracy

    Science.gov (United States)

    Fullerton, Thomas M.; Molina, Angel L.

    2010-06-01

    Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.

  8. A production throughput forecasting system in an automated hard disk drive test operation using GRNN

    Energy Technology Data Exchange (ETDEWEB)

    Samattapapong, N.; Afzulpurkar, N.

    2016-07-01

    The goal of this paper is to develop a pragmatic system of a production throughput forecasting system for an automated test operation in a hard drive manufacturing plant. The accurate forecasting result is necessary for the management team to response to any changes in the production processes and the resources allocations. In this study, we design a production throughput forecasting system in an automated test operation in hard drive manufacturing plant. In the proposed system, consists of three main stages. In the first stage, a mutual information method was adopted for selecting the relevant inputs into the forecasting model. In the second stage, a generalized regression neural network (GRNN) was implemented in the forecasting model development phase. Finally, forecasting accuracy was improved by searching the optimal smoothing parameter which selected from comparisons result among three optimization algorithms: particle swarm optimization (PSO), unrestricted search optimization (USO) and interval halving optimization (IHO). The experimental result shows that (1) the developed production throughput forecasting system using GRNN is able to provide forecasted results close to actual values, and to projected the future trends of production throughput in an automated hard disk drive test operation; (2) An IHO algorithm performed as superiority appropriate optimization method than the other two algorithms. (3) Compared with current forecasting system in manufacturing, the results show that the proposed system’s performance is superior to the current system in prediction accuracy and suitable for real-world application. The production throughput volume is a key performance index of hard disk drive manufacturing systems that need to be forecast. Because of the production throughput forecasting result is useful information for management team to respond to any changing in production processes and resources allocation. However, a practically forecasting system for

  9. Trading stages

    DEFF Research Database (Denmark)

    Steiner, Uli; Tuljapurkar, Shripad; Coulson, Tim

    2012-01-01

    because they are hard to use and interpret, and tools for age and stage structured populations are missing. We present easily interpretable expressions for the sensitivities and elasticities of life expectancy to vital rates in age-stage models, and illustrate their application with two biological......Interest in stage-and age structured models has recently increased because they can describe quantitative traits such as size that are left out of age-only demography. Available methods for the analysis of effects of vital rates on lifespan in stage-structured models have not been widely applied...... examples. Much of our approach relies on trading of time and mortality risk in one stage for time and risk in others. Our approach contributes to the new framework of the study of age- and stage-structured biodemography....

  10. Solar Radiation Forecasting, Accounting for Daily Variability

    Directory of Open Access Journals (Sweden)

    Roberto Langella

    2016-03-01

    Full Text Available Radiation forecast accounting for daily and instantaneous variability was pursued by means of a new bi-parametric statistical model that builds on a model previously proposed by the same authors. The statistical model is developed with direct reference to the Liu-Jordan clear sky theoretical expression but is not bound by a specific clear sky model; it accounts separately for the mean daily variability and for the variation of solar irradiance during the day by means of two corrective parameters. This new proposal allows for a better understanding of the physical phenomena and improves the effectiveness of statistical characterization and subsequent simulation of the introduced parameters to generate a synthetic solar irradiance time series. Furthermore, the analysis of the experimental distributions of the two parameters’ data was developed, obtaining opportune fittings by means of parametric analytical distributions or mixtures of more than one distribution. Finally, the model was further improved toward the inclusion of weather prediction information in the solar irradiance forecasting stage, from the perspective of overcoming the limitations of purely statistical approaches and implementing a new tool in the frame of solar irradiance prediction accounting for weather predictions over different time horizons.

  11. Development of a downed woody debris forecasting tool using strategic-scale multiresource forest inventories

    Science.gov (United States)

    Matthew B. Russell; Christopher W. Woodall

    2017-01-01

    The increasing interest in forest biomass for energy or carbon cycle purposes has raised the need for forest resource managers to refine their understanding of downed woody debris (DWD) dynamics. We developed a DWD forecasting tool using field measurements (mean size and stage of stage of decay) for three common forest types across the eastern United States using field...

  12. Short-term Inundation Forecasting for Tsunamis Version 4.0 Brings Forecasting Speed, Accuracy, and Capability Improvements to NOAA's Tsunami Warning Centers

    Science.gov (United States)

    Sterling, K.; Denbo, D. W.; Eble, M. C.

    2016-12-01

    Short-term Inundation Forecasting for Tsunamis (SIFT) software was developed by NOAA's Pacific Marine Environmental Laboratory (PMEL) for use in tsunami forecasting and has been used by both U.S. Tsunami Warning Centers (TWCs) since 2012, when SIFTv3.1 was operationally accepted. Since then, advancements in research and modeling have resulted in several new features being incorporated into SIFT forecasting. Following the priorities and needs of the TWCs, upgrades to SIFT forecasting were implemented into SIFTv4.0, scheduled to become operational in October 2016. Because every minute counts in the early warning process, two major time saving features were implemented in SIFT 4.0. To increase processing speeds and generate high-resolution flooding forecasts more quickly, the tsunami propagation and inundation codes were modified to run on Graphics Processing Units (GPUs). To reduce time demand on duty scientists during an event, an automated DART inversion (or fitting) process was implemented. To increase forecasting accuracy, the forecasted amplitudes and inundations were adjusted to include dynamic tidal oscillations, thereby reducing the over-estimates of flooding common in SIFTv3.1 due to the static tide stage conservatively set at Mean High Water. Further improvements to forecasts were gained through the assimilation of additional real-time observations. Cabled array measurements from Bottom Pressure Recorders (BPRs) in the Oceans Canada NEPTUNE network are now available to SIFT for use in the inversion process. To better meet the needs of harbor masters and emergency managers, SIFTv4.0 adds a tsunami currents graphical product to the suite of disseminated forecast results. When delivered, these new features in SIFTv4.0 will improve the operational tsunami forecasting speed, accuracy, and capabilities at NOAA's Tsunami Warning Centers.

  13. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  14. Dynamic SEP event probability forecasts

    Science.gov (United States)

    Kahler, S. W.; Ling, A.

    2015-10-01

    The forecasting of solar energetic particle (SEP) event probabilities at Earth has been based primarily on the estimates of magnetic free energy in active regions and on the observations of peak fluxes and fluences of large (≥ M2) solar X-ray flares. These forecasts are typically issued for the next 24 h or with no definite expiration time, which can be deficient for time-critical operations when no SEP event appears following a large X-ray flare. It is therefore important to decrease the event probability forecast with time as a SEP event fails to appear. We use the NOAA listing of major (≥10 pfu) SEP events from 1976 to 2014 to plot the delay times from X-ray peaks to SEP threshold onsets as a function of solar source longitude. An algorithm is derived to decrease the SEP event probabilities with time when no event is observed to reach the 10 pfu threshold. In addition, we use known SEP event size distributions to modify probability forecasts when SEP intensity increases occur below the 10 pfu event threshold. An algorithm to provide a dynamic SEP event forecast, Pd, for both situations of SEP intensities following a large flare is derived.

  15. Automation of energy demand forecasting

    Science.gov (United States)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  16. Quantile forecast discrimination ability and value

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Pinson, Pierre; Friederichs, Petra

    2015-01-01

    While probabilistic forecast verification for categorical forecasts is well established, some of the existing concepts and methods have not found their equivalent for the case of continuous variables. New tools dedicated to the assessment of forecast discrimination ability and forecast value......-based discrimination tool and the quantile value plot translates forecast discrimination ability in terms of economic value. The relationship between the overall value of a quantile forecast and the respective quantile skill score is also discussed. The application of these new verification approaches and tools...

  17. Economic impact analysis of load forecasting

    International Nuclear Information System (INIS)

    Ranaweera, D.K.; Karady, G.G.; Farmer, R.G.

    1997-01-01

    Short term load forecasting is an essential function in electric power system operations and planning. Forecasts are needed for a variety of utility activities such as generation scheduling, scheduling of fuel purchases, maintenance scheduling and security analysis. Depending on power system characteristics, significant forecasting errors can lead to either excessively conservative scheduling or very marginal scheduling. Either can induce heavy economic penalties. This paper examines the economic impact of inaccurate load forecasts. Monte Carlo simulations were used to study the effect of different load forecasting accuracy. Investigations into the effect of improving the daily peak load forecasts, effect of different seasons of the year and effect of utilization factors are presented

  18. Urban runoff forecasting with ensemble weather predictions

    DEFF Research Database (Denmark)

    Pedersen, Jonas Wied; Courdent, Vianney Augustin Thomas; Vezzaro, Luca

    This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice.......This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice....

  19. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  20. Price forecast in the competitive electricity market by support vector machine

    Science.gov (United States)

    Gao, Ciwei; Bompard, Ettore; Napoli, Roberto; Cheng, Haozhong

    2007-08-01

    The electricity market has been widely introduced in many countries all over the world and the study on electricity price forecast technology has drawn a lot of attention. In this paper, with different parameter C i and ε i assigned to each training data, the flexible C i Support Vector Regression (SVR) model is developed in terms of the particularity of the price forecast in electricity market. For Day Ahead Market (DAM) price forecast, the load, time of use index and index of day type are taken as the major factors to characterize the market price, therefore, they are selected as the inputs for the flexible SVR forecast model. For the long-term price forecast, we take the reserve margin Rm, HHI and the fuel price index as the inputs, since they are the major factors that drive the market price variation in long run. For short-term price forecast, besides the detailed analysis with the young Italian electricity market, the new model is tested on the experimental stage of the Spanish market, the New York market and the New England market. The long-term forecast with the SVR model presented is justified by the forecast with the data from the Long Run Market Simulator (LREMS).

  1. Medium Range Forecasts Representation (and Long Range Forecasts?)

    Science.gov (United States)

    Vincendon, J.-C.

    2009-09-01

    The progress of the numerical forecasts urges us to interest us in more and more distant ranges. We thus supply more and more forecasts with term of some days. Nevertheless, precautions of use are necessary to give the most reliable and the most relevant possible information. Available in a TV bulletin or on quite other support (Internet, mobile phone), the interpretation and the representation of a medium range forecast (5 - 15 days) must be different from those of a short range forecast. Indeed, the "foresee-ability” of a meteorological phenomenon decreases gradually in the course of the ranges, it decreases all the more quickly that the phenomenon is of small scale. So, at the end of some days, the probability character of a forecast becomes very widely dominating. That is why in Meteo-France the forecasts of D+4 to D+7 are accompanied with a confidence index since around ten years. It is a figure between 1 and 5: the more we approach 5, the more the confidence in the supplied forecast is good. In the practice, an indication is supplied for period D+4 / D+5, the other one for period D+6 / D+7, every day being able to benefit from a different forecast, that is be represented in a independent way. We thus supply a global tendency over 24 hours with less and less precise symbols as the range goes away. Concrete examples will be presented. From now on two years, we also publish forecasts to D+8 / J+9, accompanied with a sign of confidence (" good reliability " or " to confirm "). These two days are grouped together on a single map because for us, the described tendency to this term is relevant on a duration about 48 hours with a spatial scale slightly superior to the synoptic scale. So, we avoid producing more than two zones of types of weather over France and we content with giving an evolution for the temperatures (still, in increase or in decline). Newspapers began to publish this information, it should soon be the case of televisions. It is particularly

  2. Development of a Multi-Model Ensemble Scheme for the Tropical Cyclone Forecast

    Science.gov (United States)

    Jun, S.; Lee, W. J.; Kang, K.; Shin, D. H.

    2015-12-01

    A Multi-Model Ensemble (MME) prediction scheme using selected and weighted method was developed and evaluated for tropical cyclone forecast. The analyzed tropical cyclone track and intensity data set provided by Korea Meteorological Administration and 11 numerical model outputs - GDAPS, GEPS, GFS (data resolution; 50 and 100 km), GFES, HWRF, IFS(data resolution; 50 and 100 km), IFS EPS, JGSM, and TEPS - during 2011-2014 were used for this study. The procedure suggested in this study was divided into two stages: selecting and weighting process. First several numerical models were chosen based on the past model's performances in the selecting stage. Next, weights, referred to as regression coefficients, for each model forecasts were calculated by applying the linear and nonlinear regression technique to past model forecast data in the weighting stage. Finally, tropical cyclone forecasts were determined by using both selected and weighted multi-model values at that forecast time. The preliminary result showed that selected MME's improvement rate (%) was more than 5% comparing with non-selected MME at 72 h track forecast.

  3. Uncertainties in Forecasting Streamflow using Entropy Theory

    Science.gov (United States)

    Cui, H.; Singh, V. P.

    2017-12-01

    Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.

  4. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  5. Forecasts on service life by fracture mechanics methods

    International Nuclear Information System (INIS)

    Munz, D.

    1985-01-01

    The service life of many component parts can frequently be divided into the stages up to the formation of a crack and of crack propagation. This holds good of fatigue crack, stress corrosion crack, and also in many cases of creep. But often the crack propagation stage is the only one of interest for service life forecasts if cracks must be reckoned with already on putting parts into service. Cracks in welding constructions are typical examples. Crack- and -fracture mechanics deal with the laws underlying crack propagation and provide quantitative information on crack propagation behaviour. (orig./DG) [de

  6. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    Science.gov (United States)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that

  7. The Use of Operational Short and Long Lead-time Hydrologic Forecasts by Water Resources Decision Makers in the Ohio River Valley

    Science.gov (United States)

    Adams, T. E.

    2012-12-01

    The need for hydroclimatic forecasts for water resources systems operations is significant and is clearly growing. Hydroclimatic forecasts consist of two components: first, forecasts of hydrometeorological forcings used to drive hydrologic models and, second, the resulting streamflow and stage forecasts or derivative quantities, such as reservoir inflow volumes or time above (or below) some threshold value. These forecast range from hourly to annual lead-times and include both deterministic and probabilistic formats. In the Ohio River Valley, forecasts are made available by the NOAA/NWS Ohio River Forecast Center to decision makers. These include the general public, local and state emergency managers and other officials, federal agencies, utilities, the navigation industry, and agricultural sector, and others. Hydrologic forecasts are utilized by end-users for widely varying purposes including flood warning and mitigation, reservoir management, and decision making for construction projects, to name a few. This paper will illustrate the range of NWS hydrologic streamflow and stage products that are made publicly available and how some of the forecasts are used during drought or low-flow periods and during episodes of flooding. The methodologies used to generate hydroclimatic forecasts and the complexities found in large-scale operational systems and their impact on forecast robustness will also be discussed.

  8. Forecast communication through the newspaper Part 1: Framing the forecaster

    Science.gov (United States)

    Harris, Andrew J. L.

    2015-04-01

    This review is split into two parts both of which address issues of forecast communication of an environmental disaster through the newspaper during a period of crisis. The first part explores the process by which information passes from the scientist or forecaster, through the media filter, to the public. As part of this filter preference, omission, selection of data, source, quote and story, as well as placement of the same information within an individual piece or within the newspaper itself, can serve to distort the message. The result is the introduction of bias and slant—that is, the message becomes distorted so as to favor one side of the argument against another as it passes through the filter. Bias can be used to support spin or agenda setting, so that a particular emphasis becomes placed on the story which exerts an influence on the reader's judgment. The net result of the filter components is either a negative (contrary) or positive (supportive) frame. Tabloidization of the news has also resulted in the use of strong, evocative, exaggerated words, headlines and images to support a frame. I illustrate these various elements of the media filter using coverage of the air space closure due to the April 2010 eruption of Eyjafjallajökull (Iceland). Using the British press coverage of this event it is not difficult to find examples of all media filter elements, application of which resulted in bias against the forecast and forecaster. These actors then became named and blamed. Within this logic, it becomes only too easy for forecasters and scientists to be framed in a negative way through blame culture. The result is that forecast is framed in such a way so as to cause the forecaster to be blamed for all losses associated with the loss-causing event. Within the social amplification of risk framework (SARF), this can amplify a negative impression of the risk, the event and the response. However, actions can be taken to avoid such an outcome. These actions

  9. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    Science.gov (United States)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i

  10. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    2011-01-01

    This paper proposes a methodology for dynamic modelling and forecasting of realized covariance matrices based on fractionally integrated processes. The approach allows for flexible dependence patterns and automatically guarantees positive definiteness of the forecast. We provide an empirical appl...

  11. Global Forecast System (GFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and...

  12. Road weather forecast quality analysis : project summary

    Science.gov (United States)

    2006-03-01

    The purpose of this research is to enhance the use of KDOTs Roadway Weather : Information System by improving the weather forecasts themselves and raising the level of : confidence in these forecasts.

  13. Meteorologically Driven Dengue and Chikungunya Forecasts

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to incorporate weather forecasts and reported DF and ChikV case data into a disease transmission model to forecast disease case numbers...

  14. WPC's Short Range Forecast Coded Bulletin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Short Range Forecast Coded Bulletin. The Short Range Forecast Coded Bulletin describes the expected locations of high and low pressure centers, surface frontal...

  15. Estimation of analysis and forecast error variances

    Directory of Open Access Journals (Sweden)

    Malaquias Peña

    2014-11-01

    Full Text Available Accurate estimates of error variances in numerical analyses and forecasts (i.e. difference between analysis or forecast fields and nature on the resolved scales are critical for the evaluation of forecasting systems, the tuning of data assimilation (DA systems and the proper initialisation of ensemble forecasts. Errors in observations and the difficulty in their estimation, the fact that estimates of analysis errors derived via DA schemes, are influenced by the same assumptions as those used to create the analysis fields themselves, and the presumed but unknown correlation between analysis and forecast errors make the problem difficult. In this paper, an approach is introduced for the unbiased estimation of analysis and forecast errors. The method is independent of any assumption or tuning parameter used in DA schemes. The method combines information from differences between forecast and analysis fields (‘perceived forecast errors’ with prior knowledge regarding the time evolution of (1 forecast error variance and (2 correlation between errors in analyses and forecasts. The quality of the error estimates, given the validity of the prior relationships, depends on the sample size of independent measurements of perceived errors. In a simulated forecast environment, the method is demonstrated to reproduce the true analysis and forecast error within predicted error bounds. The method is then applied to forecasts from four leading numerical weather prediction centres to assess the performance of their corresponding DA and modelling systems. Error variance estimates are qualitatively consistent with earlier studies regarding the performance of the forecast systems compared. The estimated correlation between forecast and analysis errors is found to be a useful diagnostic of the performance of observing and DA systems. In case of significant model-related errors, a methodology to decompose initial value and model-related forecast errors is also

  16. A Delphi forecast of technology in education

    Science.gov (United States)

    Robinson, B. E.

    1973-01-01

    The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.

  17. Defensive Forecasting: How to Use Similarity to Make Forecasts That Pass Statistical Tests

    Science.gov (United States)

    Shafer, Glenn

    Defensive forecasting first identifies a betting strategy that succeeds if probabilistic forecasts are inaccurate and then makes forecasts that will defeat this strategy. Both the strategy and the forecasts are based on the similarity of the current situation to previous situations.

  18. Earthquake Forecasting System in Italy

    Science.gov (United States)

    Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.

    2017-12-01

    In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).

  19. Forecasting College and University Revenues.

    Science.gov (United States)

    Primary Research Group, Inc., New York, NY.

    This report examines issues and trends in college and university revenues. An introduction describes the study's organization and identifies data sources. An overview chapter summarizes major findings, including a forecast of college and university revenues from 1997 through 2001; trends in consumer spending on higher education; trends in tuition…

  20. Forecasting Cryptocurrencies Financial Time Series

    DEFF Research Database (Denmark)

    Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco

    2018-01-01

    This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely...

  1. Forecasting phenology under global warming.

    Science.gov (United States)

    Ibáñez, Inés; Primack, Richard B; Miller-Rushing, Abraham J; Ellwood, Elizabeth; Higuchi, Hiroyoshi; Lee, Sang Don; Kobori, Hiromi; Silander, John A

    2010-10-12

    As a consequence of warming temperatures around the world, spring and autumn phenologies have been shifting, with corresponding changes in the length of the growing season. Our understanding of the spatial and interspecific variation of these changes, however, is limited. Not all species are responding similarly, and there is significant spatial variation in responses even within species. This spatial and interspecific variation complicates efforts to predict phenological responses to ongoing climate change, but must be incorporated in order to build reliable forecasts. Here, we use a long-term dataset (1953-2005) of plant phenological events in spring (flowering and leaf out) and autumn (leaf colouring and leaf fall) throughout Japan and South Korea to build forecasts that account for these sources of variability. Specifically, we used hierarchical models to incorporate the spatial variability in phenological responses to temperature to then forecast species' overall and site-specific responses to global warming. We found that for most species, spring phenology is advancing and autumn phenology is getting later, with the timing of events changing more quickly in autumn compared with the spring. Temporal trends and phenological responses to temperature in East Asia contrasted with results from comparable studies in Europe, where spring events are changing more rapidly than are autumn events. Our results emphasize the need to study multiple species at many sites to understand and forecast regional changes in phenology.

  2. Macroeconomic models, forecasting, and policymaking

    OpenAIRE

    Pescatori, Andrea; Zaman, Saeed

    2011-01-01

    Models of the macroeconomy have gotten quite sophisticated, thanks to decades of development and advances in computing power. Such models have also become indispensable tools for monetary policymakers, useful both for forecasting and comparing different policy options. Their failure to predict the recent financial crisis does not negate their use, it only points to some areas that can be improved.

  3. Forecasting phenology under global warming

    Science.gov (United States)

    Ibáñez, Inés; Primack, Richard B.; Miller-Rushing, Abraham J.; Ellwood, Elizabeth; Higuchi, Hiroyoshi; Lee, Sang Don; Kobori, Hiromi; Silander, John A.

    2010-01-01

    As a consequence of warming temperatures around the world, spring and autumn phenologies have been shifting, with corresponding changes in the length of the growing season. Our understanding of the spatial and interspecific variation of these changes, however, is limited. Not all species are responding similarly, and there is significant spatial variation in responses even within species. This spatial and interspecific variation complicates efforts to predict phenological responses to ongoing climate change, but must be incorporated in order to build reliable forecasts. Here, we use a long-term dataset (1953–2005) of plant phenological events in spring (flowering and leaf out) and autumn (leaf colouring and leaf fall) throughout Japan and South Korea to build forecasts that account for these sources of variability. Specifically, we used hierarchical models to incorporate the spatial variability in phenological responses to temperature to then forecast species' overall and site-specific responses to global warming. We found that for most species, spring phenology is advancing and autumn phenology is getting later, with the timing of events changing more quickly in autumn compared with the spring. Temporal trends and phenological responses to temperature in East Asia contrasted with results from comparable studies in Europe, where spring events are changing more rapidly than are autumn events. Our results emphasize the need to study multiple species at many sites to understand and forecast regional changes in phenology. PMID:20819816

  4. Operational models for forecasting Dst

    Science.gov (United States)

    Watanabe, S.; Sagawa, E.; Ohtaka, K.; Shimazu, H.

    We have constructed operational models for forecasting the geomagnetic storm index (Dst) two hours in advance from six parameters: the velocity and density of the solar wind, the magnitude of the interplanetary magnetic field (IMF), and the x, y, and z components of the IMF. Our models use an Elman-type neural network, and we forecast space weather by using real-time solar-wind data from the Advanced Composition Explorer spacecraft.The models have worked well since April of 1998 and the Dst values forecast using them have been made available to the public at http://www.crl.go.jp/uk/uk223/service/nnw/index.html. From February to October 1998 there were 11 storms with minimum Dst values below -80 nT, and for ten the difference between the forecast minimum Dst and the Dst calculated from data measured by ground stations was less than 23%.For the storm starting on 19 October, however, the difference was 40% because of the weak correlation between the ACE environment and the earth's environment during this event.The Dst depends on the orientation of the IMF relative to the solar magnetospheric x-y plane and seems to be relatively large when the y component of the IMF is positive and perhaps also when the x component is positive.

  5. Forecasting the space weather impact

    DEFF Research Database (Denmark)

    Crosby, N. B.; Veronig, A.; Robbrecht, E.

    2012-01-01

    The FP7 COronal Mass Ejections and Solar Energetic Particles (COMESEP) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. By analysis of historical data, complemented by the extensive data coverage of solar cycle 23, the key ingredi...

  6. Severe Weather Forecast Decision Aid

    Science.gov (United States)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  7. Dust forecasting system in JMA

    International Nuclear Information System (INIS)

    Mikami, M; Tanaka, T Y; Maki, T

    2009-01-01

    JMAs dust forecasting information, which is based on a GCM dust model, is presented through the JMA website coupled with nowcast information. The website was updated recently and JMA and MOE joint 'KOSA' website was open from April 2008. Data assimilation technique will be introduced for improvement of the 'KOSA' information.

  8. Opportunities to improve marine forecasting

    National Research Council Canada - National Science Library

    Committee on Opportunities to Improve Marine Obser; Marine Board; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council

    1989-01-01

    ... and Forecasting Marine Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1989 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publication files other XML and from thi...

  9. Sense and Nonsense of Forecasting

    Czech Academy of Sciences Publication Activity Database

    Novák, Mirko; Pelikán, Emil; Pecen, Ladislav

    1999-01-01

    Roč. 9, č. 1-2 (1999), s. 91-101 ISSN 1210-0552 Grant - others:MŠMT(CZ) VS96038 Institutional research plan: AV0Z1030915 Keywords : forecasting * prediction * time series * marker * model Subject RIV: BB - Applied Statistics, Operational Research

  10. Forecasting Interest Rates and Inflation

    DEFF Research Database (Denmark)

    Chun, Albert Lee

    the best overall for short horizon forecasts of short to medium term yields and inflation. Econometric models with shrinkage perform the best over longer horizons and maturities. Aggregating over a larger set of analysts improves inflation surveys while generally degrading interest rates surveys. We...

  11. In Brief: Forecasting meningitis threats

    Science.gov (United States)

    Showstack, Randy

    2008-12-01

    The University Corporation for Atmospheric Research (UCAR), in conjunction with a team of health and weather organizations, has launched a project to provide weather forecasts to medical officials in Africa to help reduce outbreaks of meningitis. The forecasts will enable local health care providers to target vaccination programs more effectively. In 2009, meteorologists with the National Center for Atmospheric Research, which is managed by UCAR, will begin issuing 14-day forecasts of atmospheric conditions in Ghana. Later, UCAR plans to work closely with health experts from several African countries to design and test a decision support system to provide health officials with useful meteorological information. ``By targeting forecasts in regions where meningitis is a threat, we may be able to help vulnerable populations. Ultimately, we hope to build on this project and provide information to public health programs battling weather-related diseases in other parts of the world,'' said Rajul Pandya, director of UCAR's Community Building Program. Funding for the project comes from a $900,000 grant from Google.org, the philanthropic arm of the Internet search company.

  12. Adaptive correction of ensemble forecasts

    Science.gov (United States)

    Pelosi, Anna; Battista Chirico, Giovanni; Van den Bergh, Joris; Vannitsem, Stephane

    2017-04-01

    Forecasts from numerical weather prediction (NWP) models often suffer from both systematic and non-systematic errors. These are present in both deterministic and ensemble forecasts, and originate from various sources such as model error and subgrid variability. Statistical post-processing techniques can partly remove such errors, which is particularly important when NWP outputs concerning surface weather variables are employed for site specific applications. Many different post-processing techniques have been developed. For deterministic forecasts, adaptive methods such as the Kalman filter are often used, which sequentially post-process the forecasts by continuously updating the correction parameters as new ground observations become available. These methods are especially valuable when long training data sets do not exist. For ensemble forecasts, well-known techniques are ensemble model output statistics (EMOS), and so-called "member-by-member" approaches (MBM). Here, we introduce a new adaptive post-processing technique for ensemble predictions. The proposed method is a sequential Kalman filtering technique that fully exploits the information content of the ensemble. One correction equation is retrieved and applied to all members, however the parameters of the regression equations are retrieved by exploiting the second order statistics of the forecast ensemble. We compare our new method with two other techniques: a simple method that makes use of a running bias correction of the ensemble mean, and an MBM post-processing approach that rescales the ensemble mean and spread, based on minimization of the Continuous Ranked Probability Score (CRPS). We perform a verification study for the region of Campania in southern Italy. We use two years (2014-2015) of daily meteorological observations of 2-meter temperature and 10-meter wind speed from 18 ground-based automatic weather stations distributed across the region, comparing them with the corresponding COSMO

  13. Seasonal Streamflow Forecasts for African Basins

    Science.gov (United States)

    Serrat-Capdevila, A.; Valdes, J. B.; Wi, S.; Roy, T.; Roberts, J. B.; Robertson, F. R.; Demaria, E. M.

    2015-12-01

    Using high resolution downscaled seasonal meteorological forecasts we present the development and evaluation of seasonal hydrologic forecasts with Stakeholder Agencies for selected African basins. The meteorological forecasts are produced using the Bias Correction and Spatial Disaggregation (BCSD) methodology applied to NMME hindcasts (North American Multi-Model Ensemble prediction system) to generate a bootstrap resampling of plausible weather forecasts from historical observational data. This set of downscaled forecasts is then used to drive hydrologic models to produce a range of forecasts with uncertainty estimates suitable for water resources planning in African pilot basins (i.e. Upper Zambezi, Mara Basin). In an effort to characterize the utility of these forecasts, we will present an evaluation of these forecast ensembles over the pilot basins, and discuss insights as to their operational applicability by regional actors. Further, these forecasts will be contrasted with those from a standard Ensemble Streamflow Prediction (ESP) approach to seasonal forecasting. The case studies presented here have been developed in the setting of the NASA SERVIR Applied Sciences Team and within the broader context of operational seasonal forecasting in Africa. These efforts are part of a dialogue with relevant planning and management agencies and institutions in Africa, which are in turn exploring how to best use uncertain forecasts for decision making.

  14. Interval Forecast for Smooth Transition Autoregressive Model ...

    African Journals Online (AJOL)

    In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...

  15. New interval forecast for stationary autoregressive models ...

    African Journals Online (AJOL)

    In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...

  16. Mesoscale model forecast verification during monsoon 2008

    Indian Academy of Sciences (India)

    The systematic error in the 850 hPa temperature indicates that largely the WRF model forecasts feature warm bias and the MM5 model forecasts feature cold bias. Features common to all the three models include warm bias over northwest India and cold bias over southeast peninsula. The 850 hPa specific humidity forecast ...

  17. Forecasting Market Shares from Models for Sales

    NARCIS (Netherlands)

    D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)

    2000-01-01

    textabstractDividing forecasts of brand sales by a forecast of category sales, when they are generated from brand specific sales-response models, renders biased forecasts of the brands' market shares. In this paper we therefore propose an easy-to-apply simulation-based method which results in

  18. Forecasting nuclear power supply with Bayesian autoregression

    International Nuclear Information System (INIS)

    Beck, R.; Solow, J.L.

    1994-01-01

    We explore the possibility of forecasting the quarterly US generation of electricity from nuclear power using a Bayesian autoregression model. In terms of forecasting accuracy, this approach compares favorably with both the Department of Energy's current forecasting methodology and their more recent efforts using ARIMA models, and it is extremely easy and inexpensive to implement. (author)

  19. A New Reference for Wind Power Forecasting

    DEFF Research Database (Denmark)

    Nielsen, Torben Skov; Joensen, Alfred K.; Madsen, Henrik

    1998-01-01

    In recent years some research towards developing forecasting models for wind power or energy has been carried out. In order to evaluate the prediction ability of these models, the forecasts are usually compared with those of the persistence forecast model. As shown in this article, however...

  20. Intermittent demand : Linking forecasting to inventory obsolescence

    NARCIS (Netherlands)

    Teunter, Ruud H.; Syntetos, Aris A.; Babai, M. Zied

    2011-01-01

    The standard method to forecast intermittent demand is that by Croston. This method is available in ERP-type solutions such as SAP and specialised forecasting software packages (e.g. Forecast Pro), and often applied in practice. It uses exponential smoothing to separately update the estimated demand

  1. Application of probabilistic precipitation forecasts from a ...

    African Journals Online (AJOL)

    Application of probabilistic precipitation forecasts from a deterministic model towards increasing the lead-time of flash flood forecasts in South Africa. ... The procedure is applied to a real flash flood event and the ensemble-based rainfall forecasts are verified against rainfall estimated by the SAFFG system. The approach ...

  2. Richardson's Barotropic Forecast: A Reappraisal.

    Science.gov (United States)

    Lynch, Peter

    1992-01-01

    To elucidate his numerical technique and to examine the effectiveness of geostrophic initial winds, Lewis Fry Richardson carried out an idealized forecast using the linear shallow-water equations and simple analytical pressure and velocity fields. This barotropic forecast has been repeated and extended using a global numerical model, and the results are presented in this paper. Richardson's conclusions regarding the use of geostrophic winds as initial data are reconsidered.An analysis of Richardson's data into normal modes shows that almost 85% of the energy is accounted for by a single eigenmode, the gravest symmetric rotational Hough mode, which travels westward with a period of about five days. This five-day wave has been detected in analyses of stratospheric data. It is striking that the fields chosen by Richardson on considerations of smoothness should so closely resemble a natural oscillation of the atmosphere.The numerical model employed in this study uses an implicit differencing technique, which is stable for large time steps. The numerical instability that would have destroyed Richardson's barotropic forecast, had it been extended, is thereby circumvented. It is sometimes said that computational instability was the cause of the failure of Richardson's baroclinic forecast, for which he obtained a pressure tendency value two orders of magnitude too large. However, the initial tendency is independent of the time step (at least for the explicit scheme used by Richardson). In fact, the spurious tendency resulted from the presence of unrealistically large high-frequency gravity-wave components in the initial fields.High-frequency oscillations are also found in the evolution starting from the idealized data in the barotropic forecast. They are shown to be due to the gravity-wave components of the initial data. These oscillations may be removed by a slight modification of the initial fields. This initialization is effected by means of a simple digital filtering

  3. A Wind Forecasting System for Energy Application

    Science.gov (United States)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  4. METHODS OF FORECASTING OF SOCIAL AND ECONOMIC DEVELOPMENT OF THE MARKET OF SANATORIUM SERVICES

    Directory of Open Access Journals (Sweden)

    Oborin M. S.

    2015-12-01

    Full Text Available The role of predictive science at a present stage of development is defined. Features of forecasting in relation to difficult social and economic systems are specified. Need of increase of attention of the state to a problem of preservation of health of the nation is proved. Decrease in a role of health resort in the state health system and the decrease in public financing of this area accompanying it is established and proved. Need of studying of current state and development for the future of separate parameters of sanatorium systems and markets is proved. Current state of a question and degree of its study is presented: general condition of a readiness of scope of research; degree of a readiness of scope of research in relation to recreational and improving and sanatorium systems. Terminological components of research are expanded, including concepts methods of forecasting and model of forecasting are opened. The conditions and factors defining specifics of forecasting in the market of sanatorium services as difficult social and economic system are considered. Influence on specifics of forecasting of a factor of the hierarchical structure of the market of sanatorium services is opened. Influence of object and parameters of forecasting for the used forecasting methods is defined. The characteristic of influence on use of methods of forecasting of degree of availability of information is given. On the basis of the analysis of special and scientific literature classification and degree of applicability and priority of methods of forecasting to specifics of the market of sanatorium services, depending on the hierarchical level of the analysis is presented. The matrix of applicability and priority of use of methods of forecasting of the market of sanatorium services as one of components of methodology of the system analysis of current state and development in the future of the sanatorium industry at various hierarchical levels is offered.

  5. Verification of cloud cover forecast with INSAT observation over ...

    Indian Academy of Sciences (India)

    Forecast verification serves many important purposes. These purposes include assessing the state-of-the-art forecasting and recent trends in forecast quality, improving forecasting procedures and ultimately the forecast themselves, and providing users with information needed to make effective use of the forecasts. Table 2.

  6. Exploring the interactions between forecast accuracy, risk perception and perceived forecast reliability in reservoir operator's decision to use forecast

    Science.gov (United States)

    Shafiee-Jood, M.; Cai, X.

    2017-12-01

    Advances in streamflow forecasts at different time scales offer a promise for proactive flood management and improved risk management. Despite the huge potential, previous studies have found that water resources managers are often not willing to incorporate streamflow forecasts information in decisions making, particularly in risky situations. While low accuracy of forecasts information is often cited as the main reason, some studies have found that implementation of streamflow forecasts sometimes is impeded by institutional obstacles and behavioral factors (e.g., risk perception). In fact, a seminal study by O'Connor et al. (2005) found that risk perception is the strongest determinant of forecast use while managers' perception about forecast reliability is not significant. In this study, we aim to address this issue again. However, instead of using survey data and regression analysis, we develop a theoretical framework to assess the user-perceived value of streamflow forecasts. The framework includes a novel behavioral component which incorporates both risk perception and perceived forecast reliability. The framework is then used in a hypothetical problem where reservoir operator should react to probabilistic flood forecasts with different reliabilities. The framework will allow us to explore the interactions among risk perception and perceived forecast reliability, and among the behavioral components and information accuracy. The findings will provide insights to improve the usability of flood forecasts information through better communication and education.

  7. Relating Tropical Cyclone Track Forecast Error Distributions with Measurements of Forecast Uncertainty

    Science.gov (United States)

    2016-03-01

    multi -model ensembles (consensus models), both of which NHC has access to. 1. European Centre for Medium-Range Weather Forecasts Ensemble The...still greatly aid NHC forecasters . By running the MC method on the ECMWF EMN forecast , the already superior ECMWF model output can be further...CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS WITH MEASUREMENTS OF FORECAST UNCERTAINTY by Nicholas M. Chisler March 2016 Thesis Advisor

  8. A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2016-08-01

    Full Text Available The day-ahead electricity market is closely related to other commodity markets such as the fuel and emission markets and is increasingly playing a significant role in human life. Thus, in the electricity markets, accurate electricity price forecasting plays significant role for power producers and consumers. Although many studies developing and proposing highly accurate forecasting models exist in the literature, there have been few investigations on improving the forecasting effectiveness of electricity price from the perspective of reducing the volatility of data with satisfactory accuracy. Based on reducing the volatility of the electricity price and the forecasting nature of the radial basis function network (RBFN, this paper successfully develops a two-stage model to forecast the day-ahead electricity price, of which the first stage is particle swarm optimization (PSO-core mapping (CM with self-organizing-map and fuzzy set (PCMwSF, and the second stage is selection rule (SR. The PCMwSF stage applies CM, fuzzy set and optimized weights to obtain the future price, and the SR stage is inspired by the forecasting nature of RBFN and effectively selects the best forecast during the test period. The proposed model, i.e., CM-PCMwSF-SR, not only overcomes the difficulty of reducing the high volatility of the electricity price but also leads to a superior forecasting effectiveness than benchmarks.

  9. On the validity of cosmological Fisher matrix forecasts

    International Nuclear Information System (INIS)

    Wolz, Laura; Kilbinger, Martin; Weller, Jochen; Giannantonio, Tommaso

    2012-01-01

    We present a comparison of Fisher matrix forecasts for cosmological probes with Monte Carlo Markov Chain (MCMC) posterior likelihood estimation methods. We analyse the performance of future Dark Energy Task Force (DETF) stage-III and stage-IV dark-energy surveys using supernovae, baryon acoustic oscillations and weak lensing as probes. We concentrate in particular on the dark-energy equation of state parameters w 0 and w a . For purely geometrical probes, and especially when marginalising over w a , we find considerable disagreement between the two methods, since in this case the Fisher matrix can not reproduce the highly non-elliptical shape of the likelihood function. More quantitatively, the Fisher method underestimates the marginalized errors for purely geometrical probes between 30%-70%. For cases including structure formation such as weak lensing, we find that the posterior probability contours from the Fisher matrix estimation are in good agreement with the MCMC contours and the forecasted errors only changing on the 5% level. We then explore non-linear transformations resulting in physically-motivated parameters and investigate whether these parameterisations exhibit a Gaussian behaviour. We conclude that for the purely geometrical probes and, more generally, in cases where it is not known whether the likelihood is close to Gaussian, the Fisher matrix is not the appropriate tool to produce reliable forecasts

  10. Forecast Collaboration in Grocery Supply Chains

    DEFF Research Database (Denmark)

    Aastrup, Jesper; Gammelgaard, Britta

    -requisites, degree of forecast collaboration, demand related contingency factors and outcomes/KPIs based. The hypotheses are tested in a survey among Danish grocery suppliers. The survey findings provide evidence of a positive effect of collaborative orientation and retailer competencies and trustworthiness...... on the degress of forecast collaboration. Also, campaign frequency as a demand related contingency variable is found to positively affect degree of forecast collaboration. Finally, the survey findings provide evidence of a positive effect of degree of forecast collaboration on inventory levels and forecast...

  11. Forecasting Interest Rates Using Geostatistical Techniques

    Directory of Open Access Journals (Sweden)

    Giuseppe Arbia

    2015-11-01

    Full Text Available Geostatistical spatial models are widely used in many applied fields to forecast data observed on continuous three-dimensional surfaces. We propose to extend their use to finance and, in particular, to forecasting yield curves. We present the results of an empirical application where we apply the proposed method to forecast Euro Zero Rates (2003–2014 using the Ordinary Kriging method based on the anisotropic variogram. Furthermore, a comparison with other recent methods for forecasting yield curves is proposed. The results show that the model is characterized by good levels of predictions’ accuracy and it is competitive with the other forecasting models considered.

  12. Online load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    This paper presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. Every hour the hourly load for refrigeration for the following 42 hours is forecasted. The forecast models are time adaptive linear time-series models. The dynamic relations between the inputs and the load is modeled by simple transfer functions. The system operates in two regimes: one...

  13. Short-term natural gas consumption forecasting

    International Nuclear Information System (INIS)

    Potocnik, P.; Govekar, E.; Grabec, I.

    2007-01-01

    Energy forecasting requirements for Slovenia's natural gas market were investigated along with the cycles of natural gas consumption. This paper presented a short-term natural gas forecasting approach where the daily, weekly and yearly gas consumption were analyzed and the information obtained was incorporated into the forecasting model for hourly forecasting for the next day. The natural gas market depends on forecasting in order to optimize the leasing of storage capacities. As such, natural gas distribution companies have an economic incentive to accurately forecast their future gas consumption. The authors proposed a forecasting model with the following properties: two submodels for the winter and summer seasons; input variables including past consumption data, weather data, weather forecasts and basic cycle indexes; and, a hierarchical forecasting structure in which a daily model was used as the basis, with the hourly forecast obtained by modeling the relative daily profile. This proposed method was illustrated by a forecasting example for Slovenia's natural gas market. 11 refs., 11 figs

  14. Forecasting winds over nuclear power plants statistics

    International Nuclear Information System (INIS)

    Marais, Ch.

    1997-01-01

    In the event of an accident at nuclear power plant, it is essential to forecast the wind velocity at the level where the efflux occurs (about 100 m). At present meteorologists refine the wind forecast from the coarse grid of numerical weather prediction (NWP) models. The purpose of this study is to improve the forecasts by developing a statistical adaptation method which corrects the NWP forecasts by using statistical comparisons between wind forecasts and observations. The Multiple Linear Regression method is used here to forecast the 100 m wind at 12 and 24 hours range for three Electricite de France (EDF) sites. It turns out that this approach gives better forecasts than the NWP model alone and is worthy of operational use. (author)

  15. SHORT-TERM SOLAR RADIATION FORECASTING BY USING AN ITERATIVE COMBINATION OF WAVELET ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Julio Cesar Royer

    2016-03-01

    Full Text Available The information provided by accurate forecasts of solar energy time series are considered essential for performing an appropriate prediction of the electrical power that will be available in an electric system, as pointed out in Zhou et al. (2011. However, since the underlying data are highly non-stationary, it follows that to produce their accurate predictions is a very difficult assignment. In order to accomplish it, this paper proposes an iterative Combination of Wavelet Artificial Neural Networks (CWANN which is aimed to produce short-term solar radiation time series forecasting. Basically, the CWANN method can be split into three stages: at first one, a decomposition of level p, defined in terms of a wavelet basis, of a given solar radiation time series is performed, generating r+1 Wavelet Components (WC; at second one, these r+1 WCs are individually modeled by the k different ANNs, where k>5, and the 5 best forecasts of each WC are combined by means of another ANN, producing the combined forecasts of WC; and, at third one, the combined forecasts WC are simply added, generating the forecasts of the underlying solar radiation data. An iterative algorithm is proposed for iteratively searching for the optimal values for the CWANN parameters, as we will see. In order to evaluate it, ten real solar radiation time series of Brazilian system were modeled here. In all statistical results, the CWANN method has achieved remarkable greater forecasting performances when compared with a traditional ANN (described in Section 2.1.

  16. Evaluation of NU-WRF Rainfall Forecasts for IFloodS

    Science.gov (United States)

    Wu, Di; Peters-Lidard, Christa; Tao, Wei-Kuo; Petersen, Walter

    2016-01-01

    The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre- GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 kilometer forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.

  17. Tsunami Forecast for Galapagos Islands

    Science.gov (United States)

    Renteria, W.

    2012-04-01

    The objective of this study is to present a model for the short-term and long-term tsunami forecast for Galapagos Islands. For both cases the ComMIT/MOST(Titov,et al 2011) numerical model and methodology have been used. The results for the short-term model has been compared with the data from Lynett et al, 2011 surveyed from the impacts of the March/11 in the Galapagos Islands. For the case of long-term forecast, several scenarios have run along the Pacific, an extreme flooding map is obtained, the method is considered suitable for places with poor or without tsunami impact information, but under tsunami risk geographic location.

  18. Evaluating information in multiple horizon forecasts. The DOE's energy price forecasts

    International Nuclear Information System (INIS)

    Sanders, Dwight R.; Manfredo, Mark R.; Boris, Keith

    2009-01-01

    The United States Department of Energy's (DOE) quarterly price forecasts for energy commodities are examined to determine the incremental information provided at the one-through four-quarter forecast horizons. A direct test for determining information content at alternative forecast horizons, developed by Vuchelen and Gutierrez [Vuchelen, J. and Gutierrez, M.-I. 'A Direct Test of the Information Content of the OECD Growth Forecasts.' International Journal of Forecasting. 21(2005):103-117.], is used. The results suggest that the DOE's price forecasts for crude oil, gasoline, and diesel fuel do indeed provide incremental information out to three-quarters ahead, while natural gas and electricity forecasts are informative out to the four-quarter horizon. In contrast, the DOE's coal price forecasts at two-, three-, and four-quarters ahead provide no incremental information beyond that provided for the one-quarter horizon. Recommendations of how to use these results for making forecast adjustments is also provided. (author)

  19. Short-term wind power combined forecasting based on error forecast correction

    International Nuclear Information System (INIS)

    Liang, Zhengtang; Liang, Jun; Wang, Chengfu; Dong, Xiaoming; Miao, Xiaofeng

    2016-01-01

    Highlights: • The correlation relationships of short-term wind power forecast errors are studied. • The correlation analysis method of the multi-step forecast errors is proposed. • A strategy selecting the input variables for the error forecast models is proposed. • Several novel combined models based on error forecast correction are proposed. • The combined models have improved the short-term wind power forecasting accuracy. - Abstract: With the increasing contribution of wind power to electric power grids, accurate forecasting of short-term wind power has become particularly valuable for wind farm operators, utility operators and customers. The aim of this study is to investigate the interdependence structure of errors in short-term wind power forecasting that is crucial for building error forecast models with regression learning algorithms to correct predictions and improve final forecasting accuracy. In this paper, several novel short-term wind power combined forecasting models based on error forecast correction are proposed in the one-step ahead, continuous and discontinuous multi-step ahead forecasting modes. First, the correlation relationships of forecast errors of the autoregressive model, the persistence method and the support vector machine model in various forecasting modes have been investigated to determine whether the error forecast models can be established by regression learning algorithms. Second, according to the results of the correlation analysis, the range of input variables is defined and an efficient strategy for selecting the input variables for the error forecast models is proposed. Finally, several combined forecasting models are proposed, in which the error forecast models are based on support vector machine/extreme learning machine, and correct the short-term wind power forecast values. The data collected from a wind farm in Hebei Province, China, are selected as a case study to demonstrate the effectiveness of the proposed

  20. Staging Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    In recent years, the social sciences have taken a “mobilities turn.” There has been a developing realisation that mobilities do not “just happen.” Mobilities are carefully and meticulously designed, planned and staged (from above). However, they are equally importantly acted out, performed and li......, the book asks: what are the physical, social, technical, and cultural conditions to the staging of contemporary urban mobilities?...... that mobility is more than movement between point A and B. It explores how the movement of people, goods, information, and signs influences human understandings of self, other and the built environment. Moving towards a new understanding of the relationship between movement, interaction and environments...

  1. Forecasting of the energy consumption

    International Nuclear Information System (INIS)

    Hill, Z.

    1996-01-01

    Urged by earlier continuous failures in forecasting the consumption of energy in the world, essentially characterized by megalomania, the author presents his views on causes of such occurrences. Fundamental cause is considered - logic of a circle - insensitive to social and economic effects on the humanity in general and particularly to the energy consumption. Besides, a lethal influence of voluntarism has been specially studied as well. (author)

  2. Forecasting Nutrition Research in 2020

    Science.gov (United States)

    2014-01-01

    how they utilize foods, their susceptibility to nutritional deficiencies and toxicities, their response to xenobiotics, and their risk for many food...pass and other forms of bariatric surgery . Given that a growing number of adolescents are obese, the population of bypass pa- tients will...JUL 2014 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Forecasting Nutrition Research in 2020. 5a. CONTRACT NUMBER 5b

  3. Improving Ecological Forecasting: Data Assimilation Enhances the Ecological Forecast Horizon of a Complex Food Web

    Science.gov (United States)

    Massoud, E. C.; Huisman, J.; Benincà, E.; Bouten, W.; Vrugt, J. A.

    2017-12-01

    Species abundances in ecological communities can display chaotic non-equilibrium dynamics. A characteristic feature of chaotic systems is that long-term prediction of the system's trajectory is fundamentally impossible. How then should we make predictions for complex multi-species communities? We explore data assimilation (DA) with the Ensemble Kalman Filter (EnKF) to fuse a two-predator-two-prey model with abundance data from a long term experiment of a plankton community which displays chaotic dynamics. The results show that DA improves substantially the predictability and ecological forecast horizon of complex community dynamics. In addition, we show that DA helps provide guidance on measurement design, for instance on defining the frequency of observations. The study presented here is highly innovative, because DA methods at the current stage are almost unknown in ecology.

  4. Communicating uncertainty in hydrological forecasts: mission impossible?

    Science.gov (United States)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted

  5. Probabilistic Solar Forecasting Using Quantile Regression Models

    Directory of Open Access Journals (Sweden)

    Philippe Lauret

    2017-10-01

    Full Text Available In this work, we assess the performance of three probabilistic models for intra-day solar forecasting. More precisely, a linear quantile regression method is used to build three models for generating 1 h–6 h-ahead probabilistic forecasts. Our approach is applied to forecasting solar irradiance at a site experiencing highly variable sky conditions using the historical ground observations of solar irradiance as endogenous inputs and day-ahead forecasts as exogenous inputs. Day-ahead irradiance forecasts are obtained from the Integrated Forecast System (IFS, a Numerical Weather Prediction (NWP model maintained by the European Center for Medium-Range Weather Forecast (ECMWF. Several metrics, mainly originated from the weather forecasting community, are used to evaluate the performance of the probabilistic forecasts. The results demonstrated that the NWP exogenous inputs improve the quality of the intra-day probabilistic forecasts. The analysis considered two locations with very dissimilar solar variability. Comparison between the two locations highlighted that the statistical performance of the probabilistic models depends on the local sky conditions.

  6. Daily value-at-risk modeling and forecast evaluation: The realized volatility approach

    Directory of Open Access Journals (Sweden)

    Zhen Yao Wong

    2016-09-01

    Full Text Available One of the main applications of conditional volatility modeling and forecasting of financial assets is the value-at-risk (VaR estimation that is used by financial institutions for reporting the daily capital in risk. It remains a question on whether realized volatility (RV models that incorporate the use of intraday data produce better VaR forecasts compared to methodologies that are based solely on daily returns. This study provides extensive comparison of out-of-sample volatility and VaR forecast performance on three equity market indices: S&P500, FTSE100, and DAX30 using 13 risk models that consist of 5 GARCH specifications, 4 ARFIMAX specifications and 4 HARX specifications. The out-of-sample volatility forecasts are evaluated by various loss functions and simple scoring procedures in order to identity the model that produces the overall best volatility forecasts. For VaR forecasts, the models are evaluated using a two-stage backtesting procedure where the models undergo unconditional and conditional coverage tests to eliminate underperforming models and the qualified models are then evaluated using the quadratic probability score (QPS function that is computed based on various VaR loss functions. The results showed that RV models outperform GARCH models for volatility forecasts, but a simple EGARCH model outperforms the rest models for most of the VaR forecasts. The results also indicated that capturing the asymmetric behavior of volatility dynamics is essential for accurate volatility and VaR forecasts. The findings of this study provide useful information for market risk regulation, financial risk management and further investigations such as extension to derivative markets and options pricing.

  7. Introduction to time series analysis and forecasting

    CERN Document Server

    Montgomery, Douglas C; Kulahci, Murat

    2008-01-01

    An accessible introduction to the most current thinking in and practicality of forecasting techniques in the context of time-oriented data. Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts.

  8. A methodology for Electric Power Load Forecasting

    Directory of Open Access Journals (Sweden)

    Eisa Almeshaiei

    2011-06-01

    Full Text Available Electricity demand forecasting is a central and integral process for planning periodical operations and facility expansion in the electricity sector. Demand pattern is almost very complex due to the deregulation of energy markets. Therefore, finding an appropriate forecasting model for a specific electricity network is not an easy task. Although many forecasting methods were developed, none can be generalized for all demand patterns. Therefore, this paper presents a pragmatic methodology that can be used as a guide to construct Electric Power Load Forecasting models. This methodology is mainly based on decomposition and segmentation of the load time series. Several statistical analyses are involved to study the load features and forecasting precision such as moving average and probability plots of load noise. Real daily load data from Kuwaiti electric network are used as a case study. Some results are reported to guide forecasting future needs of this network.

  9. On Long Memory Origins and Forecast Horizons

    DEFF Research Database (Denmark)

    Vera-Valdés, J. Eduardo

    Most long memory forecasting studies assume that the memory is generated by the fractional difference operator. We argue that the most cited theoretical arguments for the presence of long memory do not imply the fractional difference operator, and assess the performance of the autoregressive...... for, among others, Climate Econometrics and Financial Econometrics models dealing with long memory series at different forecast horizons. We show in an example that while a short memory autoregressive moving average (ARMA) model gives the best performance when forecasting the Realized Variance...... fractionally integrated moving average (ARFIMA) model when forecasting series with long memory generated by nonfractional processes. We find that high-order autoregressive (AR) models produce similar or superior forecast performance than ARFIMA models at short horizons. Nonetheless, as the forecast horizon...

  10. Forecasting resource-allocation decisions under climate uncertainty: fire suppression with assessment of net benefits of research

    Science.gov (United States)

    Jeffrey P. Prestemon; Geoffrey H. Donovan

    2008-01-01

    Making input decisions under climate uncertainty often involves two-stage methods that use expensive and opaque transfer functions. This article describes an alternative, single-stage approach to such decisions using forecasting methods. The example shown is for preseason fire suppression resource contracting decisions faced by the United States Forest Service. Two-...

  11. How rolling forecasting facilitates dynamic, agile planning.

    Science.gov (United States)

    Miller, Debra; Allen, Michael; Schnittger, Stephanie; Hackman, Theresa

    2013-11-01

    Rolling forecasting may be used to replace or supplement the annual budget process. The rolling forecast typically builds on the organization's strategic financial plan, focusing on the first three years of plan projections and comparing the strategic financial plan assumptions with the organization's expected trajectory. Leaders can then identify and respond to gaps between the rolling forecast and the strategic financial plan on an ongoing basis.

  12. Ozone ensemble forecast with machine learning algorithms

    OpenAIRE

    Mallet , Vivien; Stoltz , Gilles; Mauricette , Boris

    2009-01-01

    International audience; We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrati...

  13. SHORT-TERM FORECASTING OF MORTGAGE LENDING

    Directory of Open Access Journals (Sweden)

    Irina V. Orlova

    2013-01-01

    Full Text Available The article considers the methodological and algorithmic problems arising in modeling and forecasting of time series of mortgage loans. Focuses on the processes of formation of the levels of time series of mortgage loans and the problem of choice and identification of models in the conditions of small samples. For forecasting options are selected and implemented a model of autoregressive and moving average, which allowed to obtain reliable forecasts.

  14. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) Precipitation Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast precipitation data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near real-time...

  15. 72-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  16. 24-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  17. 48-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  18. Online Short-term Solar Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours.......This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours....

  19. Solid low-level waste forecasting guide

    International Nuclear Information System (INIS)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford's experience within the last six years. Hanford's forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford's annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford's forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data

  20. On the Economic Evaluation of Volatility Forecasts

    DEFF Research Database (Denmark)

    Voev, Valeri

    We analyze the applicability of economic criteria for volatility forecast evaluation based on unconditional measures of portfolio performance. The main theoretical finding is that such unconditional measures generally fail to rank conditional forecasts correctly due to the presence of a bias term...... driven by the variability of the conditional mean and portfolio weights. Simulations and a small empirical study suggest that the bias can be empirically substantial and lead to distortions in forecast evaluation. An important implication is that forecasting superiority of models using high frequency...

  1. Probabilistic Forecasting of the Wave Energy Flux

    DEFF Research Database (Denmark)

    Pinson, Pierre; Reikard, G.; Bidlot, J.-R.

    2012-01-01

    Wave energy will certainly have a significant role to play in the deployment of renewable energy generation capacities. As with wind and solar, probabilistic forecasts of wave power over horizons of a few hours to a few days are required for power system operation as well as trading in electricity...... markets. A methodology for the probabilistic forecasting of the wave energy flux is introduced, based on a log-Normal assumption for the shape of predictive densities. It uses meteorological forecasts (from the European Centre for Medium-range Weather Forecasts – ECMWF) and local wave measurements...

  2. Four methodologies to improve healthcare demand forecasting.

    Science.gov (United States)

    Côté, M J; Tucker, S L

    2001-05-01

    Forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. This task, which often is assumed by financial managers, first requires the compilation and examination of historical information. Although many quantitative forecasting methods exist, four common methods of forecasting are percent adjustment, 12-month moving average, trendline, and seasonalized forecast. These four methods are all based upon the organization's recent historical demand. Healthcare financial managers who want to project demand for healthcare services in their facility should understand the advantages and disadvantages of each method and then select the method that will best meet the organization's needs.

  3. Forecasting effects of global warming on biodiversity

    DEFF Research Database (Denmark)

    Botkin, D.B.; Saxe, H.; Araújo, M.B.

    2007-01-01

    The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche...... and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions...

  4. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  5. Voluntary Management Earnings Forecasts and Discretionary Accruals

    DEFF Research Database (Denmark)

    Gramlich, Jeffrey; Sørensen, Ole Vagn

    2004-01-01

    . Journal of Accounting Research, 37: pp. 57–81 ) results related to voluntarily forecasting American firms, managers of Danish firms exercise discretionary accruals to mitigate earnings forecast errors regardless of whether pre-managed earnings are less, or greater, than the IPO forecast amount.......This paper seeks to determine whether Danish managers exercise discretionary accruals to reach earnings forecast targets they voluntarily specify in conjunction with initial public offerings (IPOs). Because the Danish accounting and legal environment is more permissive than the US, we use Denmark...

  6. Empirical seasonal forecasts of the NAO

    Science.gov (United States)

    Sanchezgomez, E.; Ortizbevia, M.

    2003-04-01

    We present here seasonal forecasts of the North Atlantic Oscillation (NAO) issued from ocean predictors with an empirical procedure. The Singular Values Decomposition (SVD) of the cross-correlation matrix between predictor and predictand fields at the lag used for the forecast lead is at the core of the empirical model. The main predictor field are sea surface temperature anomalies, although sea ice cover anomalies are also used. Forecasts are issued in probabilistic form. The model is an improvement over a previous version (1), where Sea Level Pressure Anomalies were first forecast, and the NAO Index built from this forecast field. Both correlation skill between forecast and observed field, and number of forecasts that hit the correct NAO sign, are used to assess the forecast performance , usually above those values found in the case of forecasts issued assuming persistence. For certain seasons and/or leads, values of the skill are above the .7 usefulness treshold. References (1) SanchezGomez, E. and Ortiz Bevia M., 2002, Estimacion de la evolucion pluviometrica de la Espana Seca atendiendo a diversos pronosticos empiricos de la NAO, in 'El Agua y el Clima', Publicaciones de la AEC, Serie A, N 3, pp 63-73, Palma de Mallorca, Spain

  7. Concerning the justiciability of demand forecasts

    International Nuclear Information System (INIS)

    Nierhaus, M.

    1977-01-01

    This subject plays at present in particular a role in the course of judicial examinations of immediately enforceable orders for the partial construction licences of nuclear power plants. The author distinguishes beween three kinds of forecast decisions: 1. Appraising forecast decisions with standards of judgment taken mainly from the fields of the art, culture, morality, religion are, according to the author, only legally verifyable to a limited extent. 2. With regard to forecast decisions not arguable, e.g. where the future behaviour of persons is concerned, the same should be applied basically. 3. In contrast to this, the following is applicable for programmatic, proceedingslike, or creative forecast decisions, in particular in economics: 'An administrative estimation privilege in a prognostic sense with the consequence that the court has to accept the forecast decision which lies within the forecast margins and which cannot be disproved, and that the court may not replace this forecast decision by its own probability judgment. In these cases, administration has the right to create its own forecast standards.' Judicial control in these cases was limited to certain substantive and procedural mistakes made by the administration in the course of forecast decision finding. (orig./HP) [de

  8. Combining forecast weights: Why and how?

    Science.gov (United States)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  9. Online Short-term Solar Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2011-01-01

    This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours.......This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours....

  10. Visualization of ocean forecast in BYTHOS

    Science.gov (United States)

    Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.

    2016-08-01

    The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.

  11. Description of historical crop calendar data bases developed to support foreign commodity production forecasting project experiments

    Science.gov (United States)

    West, W. L., III (Principal Investigator)

    1981-01-01

    The content, format, and storage of data bases developed for the Foreign Commodity Production Forecasting project and used to produce normal crop calendars are described. In addition, the data bases may be used for agricultural meteorology, modeling of stage sequences and planting dates, and as indicators of possible drought and famine.

  12. Combining SKU-level sales forecasts from models and experts

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Legerstee (Rianne)

    2009-01-01

    textabstractWe study the performance of SKU-level sales forecasts which linearly combine statistical model forecasts and expert forecasts. Using a large and unique database containing model forecasts for monthly sales of various pharmaceutical products and forecasts given by about fifty experts, we

  13. Automated Aircraft Icing Forecast Technique.

    Science.gov (United States)

    1984-05-31

    an Air Weather Service detachment forecaster. Many thanks are due to Lt Col Robert G. Feddes who alerted me to this opportunity to automate and test...Safety Board, Washington, DC, Report No. NTSB-SR-81-1, 16 pp. Feddes, Robert G., 1974: A Synoptic-Scale Model for Simulating Condensed Atmospheric...AFOSR/TR-80/1279, 9pp. Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze , Jr., 1980b: The Mesoscale and Microscale

  14. Energy reference forecast for 2014

    International Nuclear Information System (INIS)

    Schlesinger, Michael; Lutz, Christian

    2014-01-01

    The German Federal Ministry for Economic Affairs and Energy has commissioned three reputed institutions to prepare an energy reference forecast as well as a target scenario up to the year 2050. The results of this survey evidence a substantial need for political action if the goals of the Federal Government's energy concept are to be achieved as planned. In view of the wide range of interests among the players involved as well as the complexity of the demands facing the political leadership from diverse areas of life it appears unlikely that the targets laid down in the energy concept can be realised.

  15. Forecast Mekong: navigating changing waters

    Science.gov (United States)

    Powell, Janine

    2011-01-01

    The U.S. Geological Survey (USGS) is using research and data from the Mekong River Delta in Southeast Asia to compare restoration, conservation, and management efforts there with those done in other major river deltas, such as the Mississippi River Delta in the United States. The project provides a forum to engage regional partners in the Mekong Basin countries to share data and support local research efforts. Ultimately, Forecast Mekong will lead to more informed decisions about how to make the Mekong and Mississippi Deltas resilient in the face of climate change, economic stresses, and other impacts.

  16. A Smart Forecasting Approach to District Energy Management

    Directory of Open Access Journals (Sweden)

    Baris Yuce

    2017-07-01

    Full Text Available This study presents a model for district-level electricity demand forecasting using a set of Artificial Neural Networks (ANNs (parallel ANNs based on current energy loads and social parameters such as occupancy. A comprehensive sensitivity analysis is conducted to select the inputs of the ANN by considering external weather conditions, occupancy type, main income providers’ employment status and related variables for the fuel poverty index. Moreover, a detailed parameter tuning is conducted using various configurations for each individual ANN. The study also demonstrates the strength of the parallel ANN models in different seasons of the years. In the proposed district level energy forecasting model, the training and testing stages of parallel ANNs utilise dataset of a group of six buildings. The aim of each individual ANN is to predict electricity consumption and the aggregated demand in sub-hourly time-steps. The inputs of each ANN are determined using Principal Component Analysis (PCA and Multiple Regression Analysis (MRA methods. The accuracy and consistency of ANN predictions are evaluated using Pearson coefficient and average percentage error, and against four seasons: winter, spring, summer, and autumn. The lowest prediction error for the aggregated demand is about 4.51% for winter season and the largest prediction error is found as 8.82% for spring season. The results demonstrate that peak demand can be predicted successfully, and utilised to forecast and provide demand-side flexibility to the aggregators for effective management of district energy systems.

  17. Forecasting daily urban electric load profiles using artificial neural networks

    International Nuclear Information System (INIS)

    Beccali, M.; Cellura, M.; Lo Brano, V.; Marvuglia, A.

    2004-01-01

    The paper illustrates a combined approach based on unsupervised and supervised neural networks for the electric energy demand forecasting of a suburban area with a prediction time of 24 h. A preventive classification of the historical load data is performed during the unsupervised stage by means of a Kohonen's self organizing map (SOM). The actual forecast is obtained using a two layered feed forward neural network, trained with the back propagation with momentum learning algorithm. In order to investigate the influence of climate variability on the electricity consumption, the neural network is trained using weather data (temperature, relative humidity, global solar radiation) along with historical load data available for a part of the electric grid of the town of Palermo (Italy) from 2001 to 2003. The model validation is performed by comparing model predictions with load data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short term load forecasting (STLF) problem also at so small a spatial scale as the suburban one

  18. Short-term residential load forecasting: Impact of calendar effects and forecast granularity

    DEFF Research Database (Denmark)

    Lusis, Peter; Khalilpour, Kaveh Rajab; Andrew, Lachlan

    2017-01-01

    forecasting for a single-customer or even down at an appliance level. Access to high resolution data from smart meters has enabled the research community to assess conventional load forecasting techniques and develop new forecasting strategies suitable for demand-side disaggregated loads. This paper studies...

  19. Perturbation of convection-permitting NWP forecasts for flash-flood ensemble forecasting

    Directory of Open Access Journals (Sweden)

    B. Vincendon

    2011-05-01

    Full Text Available Mediterranean intense weather events often lead to devastating flash-floods. Extending the forecasting lead times further than the watershed response times, implies the use of numerical weather prediction (NWP to drive hydrological models. However, the nature of the precipitating events and the temporal and spatial scales of the watershed response make them difficult to forecast, even using a high-resolution convection-permitting NWP deterministic forecasting. This study proposes a new method to sample the uncertainties of high-resolution NWP precipitation forecasts in order to quantify the predictability of the streamflow forecasts. We have developed a perturbation method based on convection-permitting NWP-model error statistics. It produces short-term precipitation ensemble forecasts from single-value meteorological forecasts. These rainfall ensemble forecasts are then fed into a hydrological model dedicated to flash-flood forecasting to produce ensemble streamflow forecasts. The verification on two flash-flood events shows that this forecasting ensemble performs better than the deterministic forecast. The performance of the precipitation perturbation method has also been found to be broadly as good as that obtained using a state-of-the-art research convection-permitting NWP ensemble, while requiring less computing time.

  20. Experts' adjustment to model-based forecasts: Does the forecast horizon matter?

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Legerstee (Rianne)

    2007-01-01

    textabstractExperts may have domain-specific knowledge that is not included in a statistical model and that can improve forecasts. While one-step-ahead forecasts address the conditional mean of the variable, model-based forecasts for longer horizons have a tendency to convert to the unconditional

  1. An Application of the Short-Term Forecasting with Limited Data in the Healthcare Traveling Industry

    Directory of Open Access Journals (Sweden)

    Hoang-Sa Dang

    2016-10-01

    Full Text Available In real practice, forecasting under the limited data has attracted more attention in business activities, especially in the healthcare traveling industry in its current stage. However, there are only a few research studies focusing on this issue. Thus, the purposes of this paper were to determine the forecasted performance of several current forecasting methods as well as to examine their applications. Taking advantage of the small data requirement for model construction, three models including the exponential smoothing model, the Grey model GM(1,1, and the modified Lotka-Volterra model (L.V., were used to conduct forecasting analyses based on the data of foreign patients from 2001 to 2013 in six destinations. The results indicated that the L.V. model had higher prediction power than the other two models, and it obtained the best forecasting performance with an 89.7% precision rate. In conclusion, the L.V. model is the best model for estimating the market size of the healthcare traveling industry, followed by the GM(1,1 model. The contribution of this study is to offer a useful statistical tool for short-term planning, which can be applied to the healthcare traveling industry in particular, and for other business forecasting under the conditions of limited data in general.

  2. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  3. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    Science.gov (United States)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  4. Using inferred probabilities to measure the accuracy of imprecise forecasts

    Directory of Open Access Journals (Sweden)

    Paul Lehner

    2012-11-01

    Full Text Available Research on forecasting is effectively limited to forecasts that are expressed with clarity; which is to say that the forecasted event must be sufficiently well-defined so that it can be clearly resolved whether or not the event occurred and forecasts certainties are expressed as quantitative probabilities. When forecasts are expressed with clarity, then quantitative measures (scoring rules, calibration, discrimination, etc. can be used to measure forecast accuracy, which in turn can be used to measure the comparative accuracy of different forecasting methods. Unfortunately most real world forecasts are not expressed clearly. This lack of clarity extends to both the description of the forecast event and to the use of vague language to express forecast certainty. It is thus difficult to assess the accuracy of most real world forecasts, and consequently the accuracy the methods used to generate real world forecasts. This paper addresses this deficiency by presenting an approach to measuring the accuracy of imprecise real world forecasts using the same quantitative metrics routinely used to measure the accuracy of well-defined forecasts. To demonstrate applicability, the Inferred Probability Method is applied to measure the accuracy of forecasts in fourteen documents examining complex political domains. Key words: inferred probability, imputed probability, judgment-based forecasting, forecast accuracy, imprecise forecasts, political forecasting, verbal probability, probability calibration.

  5. Crop Insurance Inaccurate FCIC Price Forecasts Increase Program Costs

    National Research Council Canada - National Science Library

    1991-01-01

    ...) how FCIC can improve its forecast accuracy. We found that FCIC's corn, wheat, and soybeans price forecasts exhibit large bias errors that exceed those of other available alternative forecasts and that FCIC would have spent...

  6. Forecasting Hurricane Tracks Using a Complex Adaptive System

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  7. A Complex Adaptive System Approach to Forecasting Hurricane Tracks

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  8. Global Ensemble Forecast System (GEFS) [2.5 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  9. Quantifying forecast quality of IT business value

    NARCIS (Netherlands)

    Eveleens, J.L.; van der Pas, M.; Verhoef, C.

    2012-01-01

    This article discusses how to quantify the forecasting quality of IT business value. We address a common economic indicator often used to determine the business value of project proposals, the Net Present Value (NPV). To quantify the forecasting quality of IT business value, we develop a generalized

  10. Validating quantitative precipitation forecast for the Flood ...

    Indian Academy of Sciences (India)

    In order to issue an accurate warning for flood, a better or appropriate quantitative forecasting of pre- cipitation is required. In view of this, the present study intends to validate the quantitative precipita- tion forecast (QPF) issued during southwest monsoon season for six river catchments (basin) under the flood meteorological ...

  11. Forecasting with Option-Implied Information

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Chang, Bo Young

    2013-01-01

    This chapter surveys the methods available for extracting information from option prices that can be used in forecasting. We consider option-implied volatilities, skewness, kurtosis, and densities. More generally, we discuss how any forecasting object that is a twice differentiable function of th...

  12. Seasonal fire danger forecasts for the USA

    Science.gov (United States)

    J. Roads; F. Fujioka; S. Chen; R. Burgan

    2005-01-01

    The Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (DFDRS), which include the ignition component (IC), energy release component (ER), burning...

  13. Analog forecasting with dynamics-adapted kernels

    Science.gov (United States)

    Zhao, Zhizhen; Giannakis, Dimitrios

    2016-09-01

    Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.

  14. Seasonal precipitation forecast skill over Iran

    CSIR Research Space (South Africa)

    Shirvani, A

    2015-07-01

    Full Text Available Model version 3 (ECHAM4.5-MOM3-DC2) and the ECHAM4.5-GML-NCEP Coupled Forecast System (CFSSST). The precipitation and 850 hPa geopotential height fields of the forecast models are statistically downscaling to the 0.5° × 0.5° spatial resolution...

  15. Methods and Techniques of Enrollment Forecasting.

    Science.gov (United States)

    Brinkman, Paul T.; McIntyre, Chuck

    1997-01-01

    There is no right way to forecast college enrollments; in many instances, it will be prudent to use both qualitative and quantitative methods. Methods chosen must be relevant to questions addressed, policies and decisions at stake, and time and talent required. While it is tempting to start quickly, enrollment forecasting is an area in which…

  16. Forecasting Workload for Defense Logistics Agency Distribution

    Science.gov (United States)

    2014-12-01

    forecast results (Syntetos, Boylan, & Disney , 2009). The inevitable errors in mathematical models can be ameliorated by decisions managers make. The...www.dtic.mil/dtic/tr/fulltext/u2/a211935.pdf. Syntetos, A. A., Boylan, J. E., & Disney , S. M. (2009). Forecasting for inventory planning: A 50-year review. The

  17. Analysts' earnings forecasts and international asset allocation

    NARCIS (Netherlands)

    Huijgen, Carel; Plantinga, Auke

    1999-01-01

    The aim of this paper is to investigate whether financial analysts’ earnings forecasts are informative from the viewpoint of allocating investments across different stock markets. Therefore we develop a country forecast indicator reflecting the analysts’ prospects for specific stock markets. The

  18. Does Disagreement Amongst Forecasters have Predictive Value?

    NARCIS (Netherlands)

    R. Legerstee (Rianne); Ph.H.B.F. Franses (Philip Hans)

    2010-01-01

    textabstractForecasts from various experts are often used in macroeconomic forecasting models. Usually the focus is on the mean or median of the survey data. In the present study we adopt a different perspective on the survey data as we examine the predictive power of disagreement amongst

  19. Resources and Long-Range Forecasts

    Science.gov (United States)

    Smith, Waldo E.

    1973-01-01

    The author argues that forecasts of quick depletion of resources in the environment as a result of overpopulation and increased usage may not be free from error. Ignorance still exists in understanding the recovery mechanisms of nature. Long-range forecasts are likely to be wrong in such situations. (PS)

  20. Why preferring parametric forecasting to nonparametric methods?

    Science.gov (United States)

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ensemble forecasts of road surface temperatures

    Science.gov (United States)

    Sokol, Zbyněk; Bližňák, Vojtěch; Sedlák, Pavel; Zacharov, Petr; Pešice, Petr; Škuthan, Miroslav

    2017-05-01

    This paper describes a new ensemble technique for road surface temperature (RST) forecasting using an energy balance and heat conduction model. Compared to currently used deterministic forecasts, the proposed technique allows the estimation of forecast uncertainty and probabilistic forecasts. The ensemble technique is applied to the METRo-CZ model and stems from error covariance analyses of the forecasted air temperature and humidity 2 m above the ground, wind speed at 10 m and total cloud cover N in octas by the numerical weather prediction (NWP) model. N is used to estimate the shortwave and longwave radiation fluxes. These variables are used to calculate the boundary conditions in the METRo-CZ model. We found that the variable N is crucial for generating the ensembles. Nevertheless, the ensemble spread is too small and underestimates the uncertainty in the RST forecast. One of the reasons is not considering errors in the rain and snow forecast by the NWP model when generating ensembles. Technical issues, such as incorrect sky view factors and the current state of road surface conditions also contribute to errors. Although the ensemble technique underestimates the uncertainty in the RST forecasts, it provides additional information to road authorities who provide winter road maintenance.

  2. Forecasting differences in life expectancy by education

    NARCIS (Netherlands)

    P.H.M. Van Baal (Pieter); F. Peters (Frederik); J.P. Mackenbach (Johan); W.J. Nusselder (Wilma)

    2016-01-01

    textabstractForecasts of life expectancy (LE) have fuelled debates about the sustainability and dependability of pension and healthcare systems. Of relevance to these debates are inequalities in LE by education. In this paper, we present a method of forecasting LE for different educational groups

  3. School Science Inspired by Improving Weather Forecasts

    Science.gov (United States)

    Reid, Heather; Renfrew, Ian A.; Vaughan, Geraint

    2014-01-01

    High winds and heavy rain are regular features of the British weather, and forecasting these events accurately is a major priority for the Met Office and other forecast providers. This is the challenge facing DIAMET, a project involving university groups from Manchester, Leeds, Reading, and East Anglia, together with the Met Office. DIAMET is part…

  4. A Forecast Model for Unemployment by Education

    DEFF Research Database (Denmark)

    Tranæs, Torben; Larsen, Anders Holm; Groes, Niels

    1994-01-01

    We present a dynamic forecast model for the labour market: demand for labour by education and the distribution of labour by education among industries are determined endogenously with overall demand by industry given exogenously. The model is derived from a simple behavioural equation based on a ...... for educational groups, where the initial forecast year is a change point for unemployment....

  5. Forecasting the demand for new telecommunication services

    DEFF Research Database (Denmark)

    Skouby, Knud Erik; Veiro, Bjørn

    1991-01-01

    A forecasting method that is applicable for new services, where little historical data have been recorded, is proposed. The method uses estimators based on economical, demographic and traffic data. Compared to traditional forecasting procedures that are built upon a solid historical record of dat...

  6. Evaluation of the Intern Forecasting System.

    Science.gov (United States)

    1992-03-01

    The Operations Research Center (ORCEN), a United States Military Academy Center of Excellence, conducted an analysis of the Intern Forecasting System...have not designed an appropriate solution that performs well in the user’s environment and assures user satisfaction. The Intern Forecasting System

  7. Econometric Models for Forecasting of Macroeconomic Indices

    Science.gov (United States)

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  8. Climate forecasts for corn producer decision making

    Science.gov (United States)

    Corn is the most widely grown crop in the Americas, with annual production in the United States of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision tools for corn producers based on these improved forecasts, could substantially reduce uncertai...

  9. Data Assimilation and Air Quality Forecasting

    NARCIS (Netherlands)

    Eskes, H.; Timmermans, R.; Curier, L.; Ruyter de Wildt, M. de; Segers, A.; Sauter, F.; Schaap, M.

    2014-01-01

    Lotos-Euros is a chemistry transportmodel developed in the Netherlands, and is used for air quality assessments and forecasts. Operational air quality forecasts for the Netherlands concerning ozone and PM10 are made available on the RIVM webpage (http://www.lml.rivm.nl/verw.html) and are used to

  10. Recent Advances in Energy Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Francisco Martínez-Álvarez

    2017-06-01

    Full Text Available This editorial summarizes the performance of the special issue entitled Energy Time Series Forecasting, which was published in MDPI’s Energies journal. The special issue took place in 2016 and accepted a total of 21 papers from twelve different countries. Electrical, solar, or wind energy forecasting were the most analyzed topics, introducing brand new methods with very sound results.

  11. Gambling scores for earthquake predictions and forecasts

    Science.gov (United States)

    Zhuang, Jiancang

    2010-04-01

    This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  12. Application of probabilistic precipitation forecasts from a ...

    African Journals Online (AJOL)

    2014-02-14

    Feb 14, 2014 ... Application of probabilistic precipitation forecasts from a deterministic model ... aim of this paper is to investigate the increase in the lead-time of flash flood warnings of the SAFFG using probabilistic precipitation forecasts ... The procedure is applied to a real flash flood event and the ensemble-based.

  13. Precipitation Ensembles from Single-Value Forecasts for Hydrological Ensemble Forecasting

    Science.gov (United States)

    Demargne, J.; Schaake, J.; Wu, L.; Welles, E.; Herr, H.; Seo, D.

    2005-05-01

    An ensemble pre-processor was developed to produce short-term precipitation ensembles using operational single-value forecasts. The methodology attempts to quantify the uncertainty in the single-value forecast and to capture the skill therein. These precipitation ensemble forecasts could be then ingested in the NOAA/National Weather Service (NWS) Ensemble Streamflow Prediction (ESP) system to produce probabilistic hydrological forecasts that reflect the uncertainty in forecast precipitation. The procedure constructs the joint distribution of forecast and observed precipitation from historical pairs of forecast and observed values. The probability distribution function of the future events that may occur given a particular single-value forecast is then the conditional distribution of observed precipitation given the forecast. To generate individual ensemble members for each lead time and each location, the historical observed values are replaced with values sampled from the conditional distribution given the single-value forecast. The replacement procedure matches the ranks of historical and rescaled values to preserve the space-time properties of observed precipitation in the ensemble traces. Currently, the ensemble pre-processor is being tested and evaluated at four NOAA/NWS River Forecast Centers (RFCs) in the U.S.A. In this contribution, we present the results thus far from the field and retrospective evaluations, and key science issues that must be addressed toward national operational implementation.

  14. Demand forecast model based on CRM

    Science.gov (United States)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  15. International Workshop on Industry Practices for Forecasting

    CERN Document Server

    Poggi, Jean-Michel; Brossat, Xavier

    2015-01-01

    The chapters in this volume stress the need for advances in theoretical understanding to go hand-in-hand with the widespread practical application of forecasting in industry. Forecasting and time series prediction have enjoyed considerable attention over the last few decades, fostered by impressive advances in observational capabilities and measurement procedures. On June 5-7, 2013, an international Workshop on Industry Practices for FORecasting was held in Paris, France, organized and supported by the OSIRIS Department of Electricité de France Research and Development Division. In keeping with tradition, both theoretical statistical results and practical contributions on this active field of statistical research and on forecasting issues in a rapidly evolving industrial environment are presented. The volume reflects the broad spectrum of the conference, including 16 articles contributed by specialists in various areas. The material compiled is broad in scope and ranges from new findings on forecasting in in...

  16. Do probabilistic forecasts lead to better decisions?

    Science.gov (United States)

    Ramos, M. H.; van Andel, S. J.; Pappenberger, F.

    2013-06-01

    The last decade has seen growing research in producing probabilistic hydro-meteorological forecasts and increasing their reliability. This followed the promise that, supplied with information about uncertainty, people would take better risk-based decisions. In recent years, therefore, research and operational developments have also started focusing attention on ways of communicating the probabilistic forecasts to decision-makers. Communicating probabilistic forecasts includes preparing tools and products for visualisation, but also requires understanding how decision-makers perceive and use uncertainty information in real time. At the EGU General Assembly 2012, we conducted a laboratory-style experiment in which several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision-makers. Answers were collected and analysed. In this paper, we present the results of this exercise and discuss if we indeed make better decisions on the basis of probabilistic forecasts.

  17. Skilful seasonal forecasts of streamflow over Europe?

    Science.gov (United States)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate

  18. Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts

    National Research Council Canada - National Science Library

    Berrocal, Veronica J; Raftery, Adrian E; Gneiting, Tilmann

    2006-01-01

    .... Bayesian model averaging (BMA) is a statistical postprocessing method for forecast ensembles that generates calibrated probabilistic forecast products for weather quantities at individual sites...

  19. Forecasting for dynamic line rating

    DEFF Research Database (Denmark)

    Michiorri, Andrea; Nguyen, Huu-Minh; Alessandrini, Stefano

    2015-01-01

    This paper presents an overview of the state of the art on the research on Dynamic Line Rating forecasting. It is directed at researchers and decision-makers in the renewable energy and smart grids domain, and in particular at members of both the power system and meteorological community. Its aim...... on environmental conditions such as the value of ambient temperature, solar radiation, and wind speed and direction. Currently, conservative static seasonal estimations of meteorological values are used to determine ampacity. In a DLR framework, the ampacity is estimated in real time or quasi-real time using...... sensors on the line that measure conductor temperature, tension, sag or environmental parameters such as wind speed and air temperature. Because of the conservative assumptions used to calculate static seasonal ampacity limits and the variability of weather parameters, DLRs are considerably higher than...

  20. Gas deliverability forecasting - why bother?

    International Nuclear Information System (INIS)

    Trick, M.

    1996-01-01

    According to the author the answer to the question is an unequivocal 'yes' because gas production forecasting is extremely useful for the management and development of a gas field. To model a gas field, one must take into account reservoir performance, sandface inflow performance, wellbore pressure losses, gathering system pressure losses, and field facility performance. The integration of all these factors in a single computer-based model that incorporates proven technology will facilitate the evaluation of various development strategies. A good computer model can help to predict the most cost effective improvement methods, determine economic viability, estimate how much gas is available, evaluate whether drilling wells or adding compression will produce the most reserves, determine optimum placement of compression, evaluate changes to the gathering system, and determine if production from existing wells can be increased by wellbore modifications

  1. Prospective Tests of Southern California Earthquake Forecasts

    Science.gov (United States)

    Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.; Kagan, Y. Y.; Helmstetter, A.; Wiemer, S.; Field, N.

    2004-12-01

    We are testing earthquake forecast models prospectively using likelihood ratios. Several investigators have developed such models as part of the Southern California Earthquake Center's project called Regional Earthquake Likelihood Models (RELM). Various models are based on fault geometry and slip rates, seismicity, geodetic strain, and stress interactions. Here we describe the testing procedure and present preliminary results. Forecasts are expressed as the yearly rate of earthquakes within pre-specified bins of longitude, latitude, magnitude, and focal mechanism parameters. We test models against each other in pairs, which requires that both forecasts in a pair be defined over the same set of bins. For this reason we specify a standard "menu" of bins and ground rules to guide forecasters in using common descriptions. One menu category includes five-year forecasts of magnitude 5.0 and larger. Contributors will be requested to submit forecasts in the form of a vector of yearly earthquake rates on a 0.1 degree grid at the beginning of the test. Focal mechanism forecasts, when available, are also archived and used in the tests. Interim progress will be evaluated yearly, but final conclusions would be made on the basis of cumulative five-year performance. The second category includes forecasts of earthquakes above magnitude 4.0 on a 0.1 degree grid, evaluated and renewed daily. Final evaluation would be based on cumulative performance over five years. Other types of forecasts with different magnitude, space, and time sampling are welcome and will be tested against other models with shared characteristics. Tests are based on the log likelihood scores derived from the probability that future earthquakes would occur where they do if a given forecast were true [Kagan and Jackson, J. Geophys. Res.,100, 3,943-3,959, 1995]. For each pair of forecasts, we compute alpha, the probability that the first would be wrongly rejected in favor of the second, and beta, the probability

  2. Load forecasting method considering temperature effect for distribution network

    Directory of Open Access Journals (Sweden)

    Meng Xiao Fang

    2016-01-01

    Full Text Available To improve the accuracy of load forecasting, the temperature factor was introduced into the load forecasting in this paper. This paper analyzed the characteristics of power load variation, and researched the rule of the load with the temperature change. Based on the linear regression analysis, the mathematical model of load forecasting was presented with considering the temperature effect, and the steps of load forecasting were given. Used MATLAB, the temperature regression coefficient was calculated. Using the load forecasting model, the full-day load forecasting and time-sharing load forecasting were carried out. By comparing and analyzing the forecast error, the results showed that the error of time-sharing load forecasting method was small in this paper. The forecasting method is an effective method to improve the accuracy of load forecasting.

  3. Flare forecasting at the Met Office Space Weather Operations Centre

    Science.gov (United States)

    Murray, S. A.; Bingham, S.; Sharpe, M.; Jackson, D. R.

    2017-04-01

    The Met Office Space Weather Operations Centre produces 24/7/365 space weather guidance, alerts, and forecasts to a wide range of government and commercial end-users across the United Kingdom. Solar flare forecasts are one of its products, which are issued multiple times a day in two forms: forecasts for each active region on the solar disk over the next 24 h and full-disk forecasts for the next 4 days. Here the forecasting process is described in detail, as well as first verification of archived forecasts using methods commonly used in operational weather prediction. Real-time verification available for operational flare forecasting use is also described. The influence of human forecasters is highlighted, with human-edited forecasts outperforming original model results and forecasting skill decreasing over longer forecast lead times.

  4. Forecasting Canadian nuclear power station construction costs

    International Nuclear Information System (INIS)

    Keng, C.W.K.

    1985-01-01

    Because of the huge volume of capital required to construct a modern electric power generating station, investment decisions have to be made with as complete an understanding of the consequences of the decision as possible. This understanding must be provided by the evaluation of future situations. A key consideration in an evaluation is the financial component. This paper attempts to use an econometric method to forecast the construction costs escalation of a standard Canadian nuclear generating station (NGS). A brief review of the history of Canadian nuclear electric power is provided. The major components of the construction costs of a Canadian NGS are studied and summarized. A database is built and indexes are prepared. Based on these indexes, an econometric forecasting model is constructed using an apparently new econometric methodology of forecasting modelling. Forecasts for a period of 40 years are generated and applications (such as alternative scenario forecasts and range forecasts) to uncertainty assessment and/or decision-making are demonstrated. The indexes, the model, and the forecasts and their applications, to the best of the author's knowledge, are the first for Canadian NGS constructions. (author)

  5. Use and Communication of Probabilistic Forecasts.

    Science.gov (United States)

    Raftery, Adrian E

    2016-12-01

    Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don't need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications.

  6. Use and Communication of Probabilistic Forecasts

    Science.gov (United States)

    Raftery, Adrian E.

    2015-01-01

    Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don’t need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications. PMID:28446941

  7. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  8. Toward Improving Streamflow Forecasts Using SNODAS Products

    Science.gov (United States)

    Barth, C.; Boyle, D. P.; Lamorey, G. W.; Bassett, S. D.

    2007-12-01

    As part of the Water 2025 initiative, researchers at the Desert Research Institute in collaboration with the U.S. Bureau of Reclamation are developing and improving water decision support system (DSS) tools to make seasonal streamflow forecasts for management and operations of water resources in the mountainous western United States. Streamflow forecasts in these areas may have errors that are directly related to uncertainties resulting from the lack of direct high resolution snow water equivalent (SWE) measurements. The purpose of this study is to investigate the possibility of improving the accuracy of streamflow forecasts through the use of Snow Data Assimilation System (SNODAS) products, which are high-resolution daily estimates of snow cover and associated hydrologic variables such as SWE and snowmelt runoff that are available for the coterminous United States. To evaluate the benefit of incorporating the SNODAS product into streamflow forecasts, a variety of Ensemble Streamflow Predictions (ESP) are generated using the Precipitation-Runoff Modeling System (PRMS). A series of manual and automatic calibrations of PRMS to different combinations of measured (streamflow) and estimated (SNODAS SWE) hydrologic variables is performed for several watersheds at various scales of spatial resolution. This study, which is embedded in the constant effort to improve streamflow forecasts and hence water operations DSS, shows the potential of using a product such as SNODAS SWE estimates to decrease parameter uncertainty related to snow variables and enhance forecast skills early in the forecast season.

  9. Forecasting of Currency Crises in East Asia

    Directory of Open Access Journals (Sweden)

    Chi-Young Song

    2005-06-01

    Full Text Available In this paper, we have developed a forecasting system for currency crisis in East Asia based on a signaling approach. Our system uses 15 monthly indicators of five East Asian countries including Indonesia, Korea, Malaysia, the Philippines and Thailand that were severely hit by the currency crisis in 1997. We investigate the performance of the system through deploying out-of-sample forecasting for the periods both before and after the 1997 East Asian currency crisis. Unlike the existing research based on the signaling approach, our out-of-sample forecasting does not fix the in-sample period. The out-of-sample forecasting between July 1995 and June 1997 shows that prior to breakout of the crisis, several indicators including real exchange rates and exports sent frequent warnings to all crisis-hit East Asian countries except the Philippines. This may indicate that a signaling-based early warning system for currency crisis could have been an useful method of forecasting the East Asian crisis. On the other hand, we also find that our forecasting system often generates warning signals during the out-of-sample period between July 1999 and June 2001. Since we have not observed any currency crisis in this region after 1998, these are all false alarms, indicating that our system may be seriously exposed to the type II error. We can, however, mitigate this problem if we adjust the optimal critical values of indicators depending on the preferences of forecasting system manager.

  10. Uses and applications of climate forecasts for power utilities

    Energy Technology Data Exchange (ETDEWEB)

    Changnon, S.A.; Changnon, J.M.; Changnon, D. [Changnon Climatologist, Mahomet, IL (United States)

    1995-05-01

    The uses and potential applications of climate forecasts for electric and gas utilities were assessed: (1) to discern needs for improving climate forecasts and guiding future research, and (2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector. 17 refs., 1 fig., 9 tabs.

  11. Improving weather forecasts for wind energy applications

    Science.gov (United States)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  12. Improving weather forecasts for wind energy applications

    International Nuclear Information System (INIS)

    Kay, Merlinde; MacGill, Iain

    2010-01-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms -1 and around 25 ms -1 . A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  13. Call Forecasting for Inbound Call Center

    Directory of Open Access Journals (Sweden)

    Peter Vinje

    2009-01-01

    Full Text Available In a scenario of inbound call center customer service, the ability to forecast calls is a key element and advantage. By forecasting the correct number of calls a company can predict staffing needs, meet service level requirements, improve customer satisfaction, and benefit from many other optimizations. This project will show how elementary statistics can be used to predict calls for a specific company, forecast the rate at which calls are increasing/decreasing, and determine if the calls may stop at some point.

  14. Sub-Seasonal Climate Forecast Rodeo

    Science.gov (United States)

    Webb, R. S.; Nowak, K.; Cifelli, R.; Brekke, L. D.

    2017-12-01

    The Bureau of Reclamation, as the largest water wholesaler and the second largest producer of hydropower in the United States, benefits from skillful forecasts of future water availability. Researchers, water managers from local, regional, and federal agencies, and groups such as the Western States Water Council agree that improved precipitation and temperature forecast information at the sub-seasonal to seasonal (S2S) timescale is an area with significant potential benefit to water management. In response, and recognizing NOAA's leadership in forecasting, Reclamation has partnered with NOAA to develop and implement a real-time S2S forecasting competition. For a year, solvers are submitting forecasts of temperature and precipitation for weeks 3&4 and 5&6 every two weeks on a 1x1 degree grid for the 17 western state domain where Reclamation operates. The competition began on April 18, 2017 and the final real-time forecast is due April 3, 2018. Forecasts are evaluated once observational data become available using spatial anomaly correlation. Scores are posted on a competition leaderboard hosted by the National Integrated Drought Information System (NIDIS). The leaderboard can be accessed at: https://www.drought.gov/drought/sub-seasonal-climate-forecast-rodeo. To be eligible for cash prizes - which total $800,000 - solvers must outperform two benchmark forecasts during the real-time competition as well as in a required 11-year hind-cast. To receive a prize, competitors must grant a non-exclusive license to practice their forecast technique and make it available as open source software. At approximately one quarter complete, there are teams outperforming the benchmarks in three of the four competition categories. With prestige and monetary incentives on the line, it is hoped that the competition will spur innovation of improved S2S forecasts through novel approaches, enhancements to established models, or otherwise. Additionally, the competition aims to raise

  15. How MAG4 Improves Space Weather Forecasting

    Science.gov (United States)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  16. Forecasting elections in Europe: Synthetic models

    Directory of Open Access Journals (Sweden)

    Michael S. Lewis-Beck

    2015-01-01

    Full Text Available Scientific work on national election forecasting has become most developed for the United States case, where three dominant approaches can be identified: Structuralists, Aggregators, and Synthesizers. For European cases, election forecasting models remain almost exclusively Structuralist. Here we join together structural modeling and aggregate polling results, to form a hybrid, which we label a Synthetic Model. This model contains a political economy core, to which poll numbers are added (to tap omitted variables. We apply this model to a sample of three Western European countries: Germany, Ireland, and the United Kingdom. This combinatory strategy appears to offer clear forecasting gains, in terms of lead and accuracy.

  17. Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Antonio Candelieri

    2017-03-01

    Full Text Available This paper presents a completely data-driven and machine-learning-based approach, in two stages, to first characterize and then forecast hourly water demand in the short term with applications of two different data sources: urban water demand (SCADA data and individual customer water consumption (AMR data. In the first case, reliable forecasting can be used to optimize operations, particularly the pumping schedule, in order to reduce energy-related costs, while in the second case, the comparison between forecast and actual values may support the online detection of anomalies, such as smart meter faults, fraud or possible cyber-physical attacks. Results are presented for a real case: the water distribution network in Milan.

  18. Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: a flash flood case study in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    M. Zampieri

    2005-01-01

    Full Text Available The 'Montserrat-2000' severe flash flood event which occurred over Catalonia on 9 and 10 June 2000 is analyzed. Strong precipitation was generated by a mesoscale convective system associated with the development of a cyclone. The location of heavy precipitation depends on the position of the cyclone, which, in turn, is found to be very sensitive to various model characteristics and initial conditions. Numerical simulations of this case study using the hydrostatic BOLAM and the non-hydrostatic MOLOCH models are performed in order to test the effects of different formulations of the boundary layer parameterization: a modified version of the Louis (order 1 model and a custom version of the E-ℓ (order 1.5 model. Both of them require a diagnostic formulation of the mixing length, but the use of the turbulent kinetic energy equation in the E-ℓ model allows to represent turbulence history and non-locality effects and to formulate a more physically based mixing length. The impact of the two schemes is different in the two models. The hydrostatic model, run at 1/5 degree resolution, is less sensitive, but the quantitative precipitation forecast is in any case unsatisfactory in terms of localization and amount. Conversely, the non-hydrostatic model, run at 1/50 degree resolution, is capable of realistically simulate timing, position and amount of precipitation, with the apparently superior results obtained with the E-ℓ parameterization model.

  19. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  20. Understanding cancer staging

    Science.gov (United States)

    ... detailed information about the cancer stage. TNM Staging System The most common system for staging cancer in the form of solid tumor is the TNM system. Most providers and cancer centers use it to stage ...

  1. Sol-Terra - AN Operational Space Weather Forecasting Model Framework

    Science.gov (United States)

    Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.

    2015-12-01

    The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within

  2. Epidemic Forecasting is Messier Than Weather Forecasting: The Role of Human Behavior and Internet Data Streams in Epidemic Forecast.

    Science.gov (United States)

    Moran, Kelly R; Fairchild, Geoffrey; Generous, Nicholas; Hickmann, Kyle; Osthus, Dave; Priedhorsky, Reid; Hyman, James; Del Valle, Sara Y

    2016-12-01

    Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Toward Improved Reliability of Seasonal Hydrologic Forecast: Accounting for Initial Condition and State-Parameter Uncertainties

    Science.gov (United States)

    DeChant, C. M.; Moradkhani, H.

    2012-12-01

    Providing reliable estimates of seasonal water supply is a primary goal in operational hydro-meteorological prediction. In order to achieve this goal, it is accepted that hydrologists must accurately estimate forecast initial conditions (land surface states prior to forecast) and the future climate conditions, and quantify the uncertainty in these two forecast stages to provide a full estimation of the uncertainty in a given forecast. Recent work has highlighted the benefits of such a framework through advancing both land surface state estimation techniques and future climate estimation/modeling, within the operational Ensemble Streamflow Prediction (ESP) methodology. Often overlooked in this framework, the uncertainty in land surface state estimates play a key role in providing reliable seasonal forecasts. In order to quantify and reduce this uncertainty, land surface state-parameter estimation, through ensemble data assimilation, is performed with observations of snow and streamflow in a mountainous basin. Through incorporation of both snow and streamflow data for estimation of land surface states and parameters, the quantity of water stored at the land surface can be estimated, and parameter uncertainty can be estimated for seasonal simulations. With the inclusion of parameter uncertainty in the hydrologic forecasting framework, more robust quantification of hydrologic uncertainty is possible, leading to more useful forecasts for end users. This study seeks to examine the role of combined state-parameter estimation for characterization of initial conditions with the potential to be formally adopted in operational ESP framework, and validates results with probabilistic verification of both ESP and ESP with state-parameter estimation.

  4. Medium-term hydrologic forecasting in mountain basins using forecasting of a mesoscale numerical weather model

    Science.gov (United States)

    Castro Heredia, L. M.; Suarez, F. I.; Fernandez, B.; Maass, T.

    2016-12-01

    For forecasting of water resources, weather outputs provide a valuable source of information which is available online. Compared to traditional ground-based meteorological gauges, weather forecasts data offer spatially and temporally continuous data not yet evaluated and used in the forecasting of water resources in mountainous regions in Chile. Nevertheless, the use of this non-conventional data has been limited or null in developing countries, basically because of the spatial resolution, despite the high potential in the management of water resources. The adequate incorporation of these data in hydrological models requires its evaluation while taking into account the features of river basins in mountainous regions. This work presents an integrated forecasting system which represents a radical change in the way of making the streamflow forecasts in Chile, where the snowmelt forecast is the principal component of water resources management. The integrated system is composed of a physically based hydrological model, which is the prediction tool itself, together with a methodology for remote sensing data gathering that allows feed the hydrological model in real time, and meteorological forecasts from NCEP-CFSv2. Previous to incorporation of meteorological forecasts into the hydrological model, the weather outputs were evaluated and downscaling using statistical downscaling methods. The hydrological forecasts were evaluated in two mountain basins in Chile for a term of six months for the snowmelt period. In every month an assimilation process was performed, and the hydrological forecast was improved. Each month, the snow cover area (from remote sensing) and the streamflow observed were used to assimilate the model parameters in order to improve the next hydrological forecast using meteorological forecasts. The operation of the system in real time shows a good agreement between the streamflow and the snow cover area observed. The hydrological model and the weather

  5. Evaluation of official tropical cyclone track forecast over north Indian ...

    Indian Academy of Sciences (India)

    information on overall forecast performance and the relative .... pret the track forecast properly and decide effec- tive cyclone management response actions by the disaster managers. To determine the COU in track forecast, it is essential to know the track forecast ..... ing 140 km based on the latest technology includ-.

  6. Evaluation of official tropical cyclone track forecast over north Indian ...

    Indian Academy of Sciences (India)

    algorithms, techniques and observing systems;. • Evaluation of value addition by forecasters to guidance .... IMD Global Forecast system (GFS), European cen- tre for Medium range Weather forecast (ECMWF), ...... NHC USA 2012 Forecast verification report, National. Oceanic and Atmospheric Administration, http://www.

  7. Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts

    Science.gov (United States)

    Dhekale, B. S.; Nageswararao, M. M.; Nair, Archana; Mohanty, U. C.; Swain, D. K.; Singh, K. K.; Arunbabu, T.

    2017-08-01

    yield prediction. The findings also recommend that the normal and above normal yields are predicted well in advance using the ERFS forecasts. The outcomes of this study are useful to farmers for taking appropriate decisions well in advance for climate risk management in rice production during different stages of the crop growing season at Kharagpur.

  8. The New Barbary Wars: Forecasting Maritime Piracy

    NARCIS (Netherlands)

    Daxecker, U.E.; Prins, B.C.

    2015-01-01

    This paper extends systematic analyses of maritime piracy by verifying the robustness of empirical results and examining the forecasting ability of empirical models. Recent research by Ward, Greenhill and Bakke (2010) finds that statistically significant relationships frequently offer poor guidance

  9. Groundwater Forecasting Optimization Pertain to Dam Removal

    Science.gov (United States)

    Brown, L.; Berthelote, A. R.

    2011-12-01

    There is increasing interest in removing dams due to changing ecological and societal values. Groundwater recharge rate is closely connected to reservoir presence or absence. With the removal of dams and their associated reservoirs, reductions in groundwater levels are likely to impact water supplies for domestic, industrial and agricultural use. Therefore accessible economic and time effective tools to forecast groundwater level declines with acceptable uncertainty following dam removals are critical for public welfare and healthy regional economies. These tools are also vital to project planning and provide beneficial information for restoration and remediation managements. The standard tool for groundwater forecasting is 3D Numerical modeling. Artificial Neural Networks (ANNs) may be an alternative tool for groundwater forecasting pertain to dam removal. This project compared these two tools throughout the Milltown Dam removal in Western Montana over a five year period. It was determined that ANN modeling had equal or greater accuracy for groundwater forecasting with far less effort and cost involved.

  10. The intersections between TRIZ and forecasting methodology

    Directory of Open Access Journals (Sweden)

    Georgeta BARBULESCU

    2010-12-01

    Full Text Available The authors’ intention is to correlate the basic knowledge in using the TRIZ methodology (Theory of Inventive Problem Solving or in Russian: Teoriya Resheniya Izobretatelskikh Zadatch as a problem solving tools meant to help the decision makers to perform more significant forecasting exercises. The idea is to identify the TRIZ features and instruments (40 inventive principles, i.e. for putting in evidence the noise and signal problem, for trend identification (qualitative and quantitative tendencies and support tools in technological forecasting, to make the decision-makers able to refine and to increase the level of confidence in the forecasting results. The interest in connecting TRIZ to forecasting methodology, nowadays, relates to the massive application of TRIZ methods and techniques for engineering system development world-wide and in growing application of TRIZ’s concepts and paradigms for improvements of non-engineering systems (including the business and economic applications.

  11. Status of mineral resources evaluation and forecast

    International Nuclear Information System (INIS)

    Ma Hanfeng; Li Ziying; Luo Yi; Li Shengxiang; Sun Wenpeng

    2007-01-01

    The work of resources evaluation and forecast is a focus to the governments of every country in the world, it is related to the establishment of strategic policy on the national mineral resources. In order to quantitatively evaluate the general potential of uranium resources in China and better forecast uranium deposits, this paper briefly introduces the method of evaluating total amount of mineral resources, especially 6 usual prospective methods which are recommended in international geology comparison programs, as well as principle of usual mineral resources quantitative prediction and its steps. The work history of mineral resources evaluation and forecast is reviewed concisely. Advantages and disadvantages of each method, their application field and condition are also explained briefly. At last, the history of uranium resources evaluation and forecast in China and its status are concisely outlined. (authors)

  12. Forecasting residential electricity demand in provincial China.

    Science.gov (United States)

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  13. AIR QUALITY FORECAST VERIFICATION USING SATELLITE DATA

    Science.gov (United States)

    NOAA 's operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service (NWS) experimental (research mode) particulate matter (PM2.5) forecast guidance issued during the summer 2004 International Consortium for Atmosp...

  14. Enhanced road weather forecasting : Clarus regional demonstrations.

    Science.gov (United States)

    2011-01-01

    The quality of road weather forecasts : has major impacts on users of surface : transportation systems and managers : of those systems. Improving the quality : involves the ability to provide accurate, : route-specific road weather information : (e.g...

  15. Description of the Battlescale Forecast Model

    National Research Council Canada - National Science Library

    Henmi, Teizi

    1998-01-01

    .... Army Integrated Meteorological System Block II software. The Battlescale Forecast Model can be used operationally over any part of the world by using meteorological data obtained through the Automated Weather Distribution System...

  16. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  17. A Hybrid Approach on Tourism Demand Forecasting

    Science.gov (United States)

    Nor, M. E.; Nurul, A. I. M.; Rusiman, M. S.

    2018-04-01

    Tourism has become one of the important industries that contributes to the country’s economy. Tourism demand forecasting gives valuable information to policy makers, decision makers and organizations related to tourism industry in order to make crucial decision and planning. However, it is challenging to produce an accurate forecast since economic data such as the tourism data is affected by social, economic and environmental factors. In this study, an equally-weighted hybrid method, which is a combination of Box-Jenkins and Artificial Neural Networks, was applied to forecast Malaysia’s tourism demand. The forecasting performance was assessed by taking the each individual method as a benchmark. The results showed that this hybrid approach outperformed the other two models

  18. Freeway travel-time estimation and forecasting.

    Science.gov (United States)

    2012-09-01

    This project presents a microsimulation-based framework for generating short-term forecasts of travel time on freeway corridors. The microsimulation model that is developed (GTsim), replicates freeway capacity drop and relaxation phenomena critical f...

  19. NAVO NCOM Relocatable Model: Fukushima Regional Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary NCOM Relocatable 1km forecast model for Fukushima Region. USERS ARE REMINDED TO USE THE FUKUSHIMA 1KM NCOM DATA WITH CAUTION. THE MODEL WAS INITIATED ON...

  20. Operational forecasting of human-biometeorological conditions

    Science.gov (United States)

    Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.; Matzarakis, A.

    2018-03-01

    This paper presents the development of an operational forecasting service focusing on human-biometeorological conditions. The service is based on the coupling of numerical weather prediction models with an advanced human-biometeorological model. Human thermal perception and stress forecasts are issued on a daily basis for Greece, in both point and gridded format. A user-friendly presentation approach is adopted for communicating the forecasts to the public via the worldwide web. The development of the presented service highlights the feasibility of replacing standard meteorological parameters and/or indices used in operational weather forecasting activities for assessing the thermal environment. This is of particular significance for providing effective, human-biometeorology-oriented, warnings for both heat waves and cold outbreaks.

  1. From short term power forecasting to nowcasting - Benefiting from meteorological forecasts and measurements

    Science.gov (United States)

    Mey, Britta; Braun, Axel; Good, Garrett; Vogt, Stephan; Wessel, Arne; Dobschinski, Jan

    2016-04-01

    Today, wind and solar power forecasts with time horizons from zero to about three hours are essential for the reliable grid and market integration of wind and solar energy. With respect to closure times of German intra-day markets, power forecasts with time horizons of about one to two hours and an update frequency of 15 minutes are required for final trading activities, reducing the uncertainty of the day-ahead forecast of the previous day. Regarding grid security aspects, grid operators utilize such forecasts to create continuous intra-day grid congestion forecasts. In addition to these preventive measures, wind and solar power become more and more important for the provision of ancillary services by wind and solar farm operators. This use case mainly requires power forecasts with time horizons of less than one hour. In general, forecasts with time horizons below three hours are investigated within the nowcasting research area. Nowcasting models are mainly based on current observations and extrapolation methods. With respect to wind and solar power forecasts with horizons of up to three hours, it has been shown in studies that real-time power measurements have the highest information content as compared to other potential model input parameters. We will present results from studies focusing on the benefit of meteorological data (forecasts and/or measurements) in the field of solar and wind power forecasts with time horizons of up to a few hours. Wind farm forecast errors are for example reduced by using numerical weather prediction (NWP) data in the wind power prediction model along with real-time wind farm power measurements. Furthermore, spatially distributed NWP data in combination with German total wind power measurements helped in the reduction of extreme forecast errors. By using global radiation forecasts as an input for wind power forecasts, forecast error during sunrise and sunset could be reduced. In the field of German total solar power, nowcasting

  2. Ensemble Forecasts with Useful Skill-Spread Relationships for African meningitis and Asia Streamflow Forecasting

    Science.gov (United States)

    Hopson, T. M.

    2014-12-01

    One potential benefit of an ensemble prediction system (EPS) is its capacity to forecast its own forecast error through the ensemble spread-error relationship. In practice, an EPS is often quite limited in its ability to represent the variable expectation of forecast error through the variable dispersion of the ensemble, and perhaps more fundamentally, in its ability to provide enough variability in the ensembles dispersion to make the skill-spread relationship even potentially useful (irrespective of whether the EPS is well-calibrated or not). In this paper we examine the ensemble skill-spread relationship of an ensemble constructed from the TIGGE (THORPEX Interactive Grand Global Ensemble) dataset of global forecasts and a combination of multi-model and post-processing approaches. Both of the multi-model and post-processing techniques are based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. The methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. A context for these concepts is provided by assessing the constructed ensemble in forecasting district-level humidity impacting the incidence of meningitis in the meningitis belt of Africa, and in forecasting flooding events in the Brahmaputra and Ganges basins of South Asia.

  3. Radiation belt electron flux forecasts: Driving VERB using NARMAX GSO flux forecasts

    Science.gov (United States)

    Walker, S. N.; Balikhin, M. A.; Boynton, R.; Drozdov, A.; Pakhotin, I.; Shprits, Y. Y.

    2016-12-01

    Physics based models, such as VERB, are capable of achieving excellent past-cast and now-cast models of the dynamics of electron fluxes throughout the radiation belt region. Their ability to forecast, however, is strongly dependant upon the accurate forecast of their driving parameters. In contrast, data based models, generated using Systems Science methodologies such as NARMAX, have been shown to achieve highly accurate forecasts over limited spatial domains such as GSO. This paper outlines the use of NARMAX forecasts to drive VERB. Example past-casts are discussed and compared to observations from the Van Allen Probe MagEIS instrument.

  4. Assessing flood forecast uncertainty with fuzzy arithmetic

    Directory of Open Access Journals (Sweden)

    de Bruyn Bertrand

    2016-01-01

    Full Text Available Providing forecasts for flow rates and water levels during floods have to be associated with uncertainty estimates. The forecast sources of uncertainty are plural. For hydrological forecasts (rainfall-runoff performed using a deterministic hydrological model with basic physics, two main sources can be identified. The first obvious source is the forcing data: rainfall forecast data are supplied in real time by meteorological forecasting services to the Flood Forecasting Service within a range between a lowest and a highest predicted discharge. These two values define an uncertainty interval for the rainfall variable provided on a given watershed. The second source of uncertainty is related to the complexity of the modeled system (the catchment impacted by the hydro-meteorological phenomenon, the number of variables that may describe the problem and their spatial and time variability. The model simplifies the system by reducing the number of variables to a few parameters. Thus it contains an intrinsic uncertainty. This model uncertainty is assessed by comparing simulated and observed rates for a large number of hydro-meteorological events. We propose a method based on fuzzy arithmetic to estimate the possible range of flow rates (and levels of water making a forecast based on possible rainfalls provided by forcing and uncertainty model. The model uncertainty is here expressed as a range of possible values. Both rainfall and model uncertainties are combined with fuzzy arithmetic. This method allows to evaluate the prediction uncertainty range. The Flood Forecasting Service of Oise and Aisne rivers, in particular, monitors the upstream watershed of the Oise at Hirson. This watershed’s area is 310 km2. Its response time is about 10 hours. Several hydrological models are calibrated for flood forecasting in this watershed and use the rainfall forecast. This method presents the advantage to be easily implemented. Moreover, it permits to be carried out

  5. A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting

    Science.gov (United States)

    Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle

    2017-10-01

    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.

  6. A Time Series Forecasting Method

    Directory of Open Access Journals (Sweden)

    Wang Zhao-Yu

    2017-01-01

    Full Text Available This paper proposes a novel time series forecasting method based on a weighted self-constructing clustering technique. The weighted self-constructing clustering processes all the data patterns incrementally. If a data pattern is not similar enough to an existing cluster, it forms a new cluster of its own. However, if a data pattern is similar enough to an existing cluster, it is removed from the cluster it currently belongs to and added to the most similar cluster. During the clustering process, weights are learned for each cluster. Given a series of time-stamped data up to time t, we divide it into a set of training patterns. By using the weighted self-constructing clustering, the training patterns are grouped into a set of clusters. To estimate the value at time t + 1, we find the k nearest neighbors of the input pattern and use these k neighbors to decide the estimation. Experimental results are shown to demonstrate the effectiveness of the proposed approach.

  7. Canadian natural gas price forecast

    International Nuclear Information System (INIS)

    Jones, D.

    1998-01-01

    The basic factors that influenced NYMEX gas prices during the winter of 1997/1998 - warm temperatures, low fuel prices, new production in the Gulf of Mexico, and the fact that forecasters had predicted a mild spring due to El Nino - were reviewed. However, it was noted that for the last 18 months the basic factors had less of an impact on market direction because of an increase in Fund and technical trader participation. Overall, gas prices were strong through most of the year. For the winter of 1998-1999 the prediction was that NYMEX gas prices will remain below $2.00 through to the end of October 1998 because of high U.S. storage levels and moderate temperatures. NYMEX gas prices are expected to peak in January 1999 at $3.25. AECO natural gas prices were predicted to decrease in the short term because of increasing levels of Canadian storage, and because of delays in Northern Border pipeline expansions. It was also predicted that AECO prices will peak in January 1999 and will remain relatively strong through the summer of 1999. tabs., figs

  8. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine th...

  9. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probabil...

  10. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  11. Influenza forecasting with Google Flu Trends.

    Science.gov (United States)

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by

  12. Influenza forecasting with Google Flu Trends.

    Directory of Open Access Journals (Sweden)

    Andrea Freyer Dugas

    Full Text Available BACKGROUND: We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. METHODS: Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011 divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM, and generalized linear autoregressive moving average (GARMA methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. RESULTS: A GARMA(3,0 forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. CONCLUSIONS: Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This

  13. Empirical heuristics for improving Intermittent Demand Forecasting

    OpenAIRE

    Petropoulos, Fotios; Nikolopoulos, Konstantinos; Spithourakis, George; Assimakopoulos, Vassilios

    2013-01-01

    Purpose– Intermittent demand appears sporadically, with some time periods not even displaying any demand at all. Even so, such patterns constitute considerable proportions of the total stock in many industrial settings. Forecasting intermittent demand is a rather difficult task but of critical importance for corresponding cost savings. The current study aims to examine the empirical outcomes of three heuristics towards the modification of established intermittent demand forecasting approaches...

  14. Forecasting Diabetes Prevalence in California: A Microsimulation

    OpenAIRE

    Shi, Lu; van Meijgaard, Jeroen; Fielding, Jonathan

    2011-01-01

    Introduction Setting a goal for controlling type 2 diabetes is important for planning health interventions. The purpose of this study was to explore what may be a feasible goal for type 2 diabetes prevention in California. Methods We used the UCLA Health Forecasting Tool, a microsimulation model that simulates individual life courses in the population, to forecast the prevalence of type 2 diabetes in California's adult population in 2020. The first scenario assumes no further increases in ave...

  15. Econometric models for forecasting of macroeconomic indices

    OpenAIRE

    Sukhanova, E. I.; Shirnaeva, S. Y.; Mokronosov, A. G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices development in the past and their cause and effect interrelations. The aim of the article is to build econometric models for macroeconomic indices forec...

  16. Improved Forecasting Methods for Naval Manpower Studies

    Science.gov (United States)

    2015-03-25

    Structural Change Models, Journal of Applied Econometrics 18: 1-22. [10] Caporale T., Grier K. 2005, How Smart is my Dummy? Time Series Test for the...Tennessee 38055-1000  www.nprst.navy.mil NPRST-TR-15-3 March 2015 Improved Forecasting Methods for Naval Manpower Studies Ping Ying Bellamy...Ph.D. Tanja F. Blackstone, Ph.D. Navy Personnel Research, Studies, and Technology NPRST-TR-15-3 March 2015 Improved Forecasting Methods

  17. Data mining for wind power forecasting

    OpenAIRE

    Fugon, Lionel; Juban, Jérémie; Kariniotakis, Georges

    2008-01-01

    International audience; Short-term forecasting of wind energy production up to 2-3 days ahead is recognized as a major contribution for reliable large-scale wind power integration. Increasing the value of wind generation through the improvement of prediction systems performance is recognised as one of the priorities in wind energy research needs for the coming years. This paper aims to evaluate Data Mining type of models for wind power forecasting. Models that are examined include neural netw...

  18. Clear Air Turbulence Forecasting Techniques

    Science.gov (United States)

    1984-02-01

    For these boxes, both Ponitive and ne ti.vO AP are used; that is, the absolute value of AP is used in Piqure 13. -30- ACCEPTABLE WIND LOWEST PRESSURE...maximum. -36- .1 a. Early stage. Potential is greatest between surface wave cre t/ triple point and upper \\ _ level thermal trough. This holds for all

  19. Space-based solar power generation: staged scenario

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, P.E. [Arthur D. Little, Inc., Cambridge, MA (United States); Davidson, F.P. [Massachusetts Inst. of Technology, Macro-Engineering Research Group, Cambridge, MA (United States); Csigi, K.I. [ERIC International, Cambridge, MA (United States)

    1998-06-01

    Despite forecasts of increased global energy demand and warnings of environmental degradation associated with fossil fuel use, the idea of solar power satellites (SPS) generating power for microwave transmission to the Earth`s surface, has met widespread opposition or simply apathy. The authors urge a staged approach to the ultimate goal of developing SPS technology and infrastructure to meet global energy forecasts. The ``terracing`` idea means that technologies applicable to SPS will be developed to meet existing or planned projects to known scientific and economic value. A forty year growth plan for the ``terraced`` evolution of the solar power satellite is set out to illustrate this idea. (UK)

  20. Oil and Australia: forecasts 1995-2004

    International Nuclear Information System (INIS)

    1995-01-01

    This edition of Oil and Australia summarises the industry's forecasts of demand for petroleum products to the year 2004 and estimates the extent to which demand can be met from domestic production of crude oil, condensate and naturally occurring liquefied petroleum gas (LPG). The demand forecasts represent the average of forecasts prepared for forward planning purposes, of the five refining and marketing company members of the Australian Institute of Petroleum Ltd - Ampol Ltd, BP Australia Limited, Caltex Australia Limited, Mobil Oil Australia Ltd and The Shell Company of Australia Limited. The assumptions underlying the forecasts are also presented. The forecasts are a long term, directional view and assume no major policy changes will occur over the forecast period. A section on natural gas is included to provide a broader picture of the outlook for hydrocarbon energy needs, supply and export potential for Australia. natural gas is an important and growing energy source, and provides an opportunity for Australia to increase its exports and improve its balance of payments situation. 26 tabs., 14 figs

  1. Nambe Pueblo Water Budget and Forecasting model.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  2. Forecasting Renewable Energy Consumption under Zero Assumptions

    Directory of Open Access Journals (Sweden)

    Jie Ma

    2018-02-01

    Full Text Available Renewable energy, as an environmentally friendly and sustainable source of energy, is key to realizing the nationally determined contributions of the United States (US to the December 2015 Paris agreement. Policymakers in the US rely on energy forecasts to draft and implement cost-minimizing, efficient and realistic renewable and sustainable energy policies but the inaccuracies in past projections are considerably high. The inaccuracies and inconsistencies in forecasts are due to the numerous factors considered, massive assumptions and modeling flaws in the underlying model. Here, we propose and apply a machine learning forecasting algorithm devoid of massive independent variables and assumptions to model and forecast renewable energy consumption (REC in the US. We employ the forecasting technique to make projections on REC from biomass (REC-BMs and hydroelectric (HE-EC sources for the 2009–2016 period. We find that, relative to reference case projections in Energy Information Administration’s Annual Energy Outlook 2008, projections based on our proposed technique present an enormous improvement up to ~138.26-fold on REC-BMs and ~24.67-fold on HE-EC; and that applying our technique saves the US ~2692.62PJ petajoules(PJ on HE-EC and ~9695.09PJ on REC-BMs for the 8-year forecast period. The achieved high-accuracy is also replicable to other regions.

  3. Forecasting winter wheat yields using MODIS NDVI data for the Central Free State region

    Directory of Open Access Journals (Sweden)

    Zinhle Mashaba

    2017-11-01

    Full Text Available Consumption of wheat is widespread and increasing in South Africa. However, global wheat production is projected to decline. Wheat yield forecasting is therefore crucial for ensuring food security for the country. The objective of this study was to investigate whether the anthesis wheat growth stage is suitable for forecasting dryland wheat yields in the Central Free State region using satellite imagery and linear predictive modelling. A period of 10 years of Normalized Difference Vegetation Index data smoothed with a Savitzky–Golay filter and 10 years of wheat yield data were used for model calibration. Diagnostic plots and statistical procedures were used for model validation and assessment of model adequacy. The period 30 days before harvest during the anthesis stage was established to be the best period during which to use the linear regression model. The calibrated model had a coefficient of determination of 0.73, a p-value of 0.00161 and a root mean squared error of 0.41 tons/ha. Residual plots confirmed that a linear model had a good fit for the data. The quantile-quantile plot provided evidence that the residuals were normally distributed, which means that assumptions of linear regression were fulfilled and the model can be used as a forecasting tool. Model validation showed high levels of accuracy. The evidence indicates that use of Moderate Resolution Imaging Spectroradiometer data during the anthesis growth stage is a reliable, cost-effective and potentially time-saving alternative to ground-based surveys when forecasting dryland wheat yields in the Central Free State. Significance: Developing a cost-effective technique based on satellite imagery for wheat yield forecasting is vital for food security planning in South Africa.

  4. Forecast Of International Security Threat Of Russia In 2017

    Directory of Open Access Journals (Sweden)

    A. O. Bezrukov

    2017-01-01

    Full Text Available The article analyzes the threats to international security of Russia in 2017. It presents the analysis of the twelve situations, the development of which could have a significant effect on the interests of Russia in the field of international security. There is the most probable scenario for every situation and a list of conditions of its occurrence. The objective of the forecast is reduction of uncertainty of the future and the promotion of reasonable hypotheses about its likely scenarios. The forecast task is to help decision-makers, mentally put yourself in a situation in which realized one of the scenarios for the future and to encourage them to calculate their possible actions. In the preparation of the forecast two scenario analysis tools were used: the allocation of two key variables, the ratio of which determines the spectrum of the analyzed scenarios, and the key events method, which consists of several stages and allows to evaluate the prospect of implementing the scenario observed in real time. Authors conclude that the USA with the new president will be forced to choose between maintaining global posture and keeping order at home, and the EU will be absorbed by internal issues. In 2017 for Russia is important to keep the positive dynamics in the Transatlantic and Grand Eurasia regions, and in the Middle East. For this purpose it is necessary to ignore the provocations – mainly in Europe. The source of a new crisis may be NATO members discouraged by lack of attention to them by the USA or allies of Russia.

  5. Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5

    Science.gov (United States)

    Park, Sangwook; Kim, Dong-Joon; Lee, Seung-Woo; Lee, Kie-Woung; Kim, Jongkhun; Song, Eun-Ji; Seo, Kyong-Hwan

    2017-08-01

    This article describes a three way inter-comparison of forecast skill on an extended medium-range time scale using the Korea Meteorological Administration (KMA) operational ensemble numerical weather prediction (NWP) systems (i.e., atmosphere-only global ensemble prediction system (EPSG) and ocean-atmosphere coupledEPSG) and KMA operational seasonal prediction system, the Global Seasonal forecast system version 5 (GloSea5). The main motivation is to investigate whether the ensemble NWP system can provide advantage over the existing seasonal prediction system for the extended medium-range forecast (30 days) even with putting extra resources in extended integration or coupling with ocean with NWP system. Two types of evaluation statistics are examined: the basic verification statistics - the anomaly correlation and RMSE of 500-hPa geopotential height and 1.5-meter surface temperature for the global and East Asia area, and the other is the Real-time Multivariate Madden and Julian Oscillation (MJO) indices (RMM1 and RMM2) - which is used to examine the MJO prediction skill. The MJO is regarded as a main source of forecast skill in the tropics linked to the mid-latitude weather on monthly time scale. Under limited number of experiment cases, the coupled NWP extends the forecast skill of the NWP by a few more days, and thereafter such forecast skill is overtaken by that of the seasonal prediction system. At present stage, it seems there is little gain from the coupled NWP even though more resources are put into it. Considering this, the best combination of numerical product guidance for operational forecasters for an extended medium-range is extension of the forecast lead time of the current ensemble NWP (EPSG) up to 20 days and use of the seasonal prediction system (GloSea5) forecast thereafter, though there exists a matter of consistency between the two systems.

  6. FORECASTING THE NUMBER OF SPORT TOURISM ARRIVALS IN SOUTHWEST BULGARIA

    Directory of Open Access Journals (Sweden)

    Preslav Mihaylov Dimitrov

    2016-12-01

    Full Text Available This paper presents an application of some forecasting methods concerning sport tourism arrivals in Southwest Bulgaria: linear trend forecasting, double exponential forecasting (Holt’s method, triple exponential forecasting (the Holt-Winters Method, and the ARIMA method. A specially designed model for estimating the weight coefficient needed for determining the size of the sport tourism’s sector in the time series of the available data and in the forecast values is presented. In order to test the forecasting methods and produce forecasts up to the year 2030, a time series and past period predictions have been constructed based on statistical records since 1964. Several major problems in the application of the exponential smoothing methods for the purpose of the long-run forecasting and the needs of the sport tourism subsector of Bulgaria tourism industry are addressed. These problems include (a finding a suitable general indicator, (b calculating short-term and long-term forecasts, (c comparing the results of the forecast techniques on the basis of the errors in the forecasts, (d estimating the size of the sport tourism in Southwest Bulgaria in certain terms so that the forecast(s of the above-mentioned general indicator could be particularized especially for examined sub-sector and region. The results from the different forecasting methods and techniques are presented and conclusions are drawn regarding the reliability of the forecasts.

  7. Generalized martingale model of the uncertainty evolution of streamflow forecasts

    Science.gov (United States)

    Zhao, Tongtiegang; Zhao, Jianshi; Yang, Dawen; Wang, Hao

    2013-07-01

    Streamflow forecasts are dynamically updated in real-time, thus facilitating a process of forecast uncertainty evolution. Forecast uncertainty generally decreases over time and as more hydrologic information becomes available. The process of forecasting and uncertainty updating can be described by the martingale model of forecast evolution (MMFE), which formulates the total forecast uncertainty of a streamflow in one future period as the sum of forecast improvements in the intermediate periods. This study tests the assumptions, i.e., unbiasedness, Gaussianity, temporal independence, and stationarity, of MMFE using real-world streamflow forecast data. The results show that (1) real-world forecasts can be biased and tend to underestimate the actual streamflow, and (2) real-world forecast uncertainty is non-Gaussian and heavy-tailed. Based on these statistical tests, this study proposes a generalized martingale model GMMFE for the simulation of biased and non-Gaussian forecast uncertainties. The new model combines the normal quantile transform (NQT) with MMFE to formulate the uncertainty evolution of real-world streamflow forecasts. Reservoir operations based on a synthetic forecast by GMMFE illustrates that applications of streamflow forecasting facilitate utility improvements and that special attention should be focused on the statistical distribution of forecast uncertainty.

  8. Forecasting tourist arrivals in South Africa

    Directory of Open Access Journals (Sweden)

    Andrea Saayman

    2010-12-01

    Full Text Available Purpose: The aim of this paper is to model and forecast tourism to South Africa from the country's main intercontinental tourism markets. These include Great Britain, Germany, the Netherlands, the United States of America and France. Problem investigated: Tourism to South Africa has grown substantially since the first democratic elections in 1994. It is currently the third largest industry in the country and a vital source of foreign exchange earnings. Tourist arrivals continue to grow annually, and have shown some resilience to a number of emerging market crises, including the terrorist attacks in the USA. Business success, marketing decisions, government's investment policy as well as macroeconomic policy are influenced by the accuracy of tourism forecasts, since the tourism product comprises a number of services that cannot be accumulated. Accurate forecasts of tourism demand are paramount to ensure the availability of such services when demanded. In addition, the seasonal nature of tourism leads to a pattern of excess capacity followed by shortage in capacity. Method: Since univariate time series modelling has proved to be a very successful method for forecasting tourist arrivals, it is also the method employed in this paper. The naïve model is tested against a standard ARIMA model, as well as the Holt-Winters exponential smoothing and seasonal-non-seasonal ARIMA models. Forecasting accuracy is assessed using the mean absolute percentage error, root mean square error and Theill's U of the various models. Monthly tourist arrivals from 1994 to 2006 are used in the analysis, and arrivals are forecasted for 2007. Findings: The results show that seasonal ARIMA models deliver the most accurate predictions of arrivals over three time horizons, namely three months, six months and 12 months. Value: This paper is the first tourist arrivals forecast using South African data for the country as a whole, and therefore it forms an interesting case study

  9. Monitoring and seasonal forecasting of meteorological droughts

    Science.gov (United States)

    Dutra, Emanuel; Pozzi, Will; Wetterhall, Fredrik; Di Giuseppe, Francesca; Magnusson, Linus; Naumann, Gustavo; Barbosa, Paulo; Vogt, Jurgen; Pappenberger, Florian

    2015-04-01

    Near-real time drought monitoring can provide decision makers valuable information for use in several areas, such as water resources management, or international aid. Unfortunately, a major constraint in current drought outlooks is the lack of reliable monitoring capability for observed precipitation globally in near-real time. Furthermore, drought monitoring systems requires a long record of past observations to provide mean climatological conditions. We address these constraints by developing a novel drought monitoring approach in which monthly mean precipitation is derived from short-range using ECMWF probabilistic forecasts and then merged with the long term precipitation climatology of the Global Precipitation Climatology Centre (GPCC) dataset. Merging the two makes available a real-time global precipitation product out of which the Standardized Precipitation Index (SPI) can be estimated and used for global or regional drought monitoring work. This approach provides stability in that by-passes problems of latency (lags) in having local rain-gauge measurements available in real time or lags in satellite precipitation products. Seasonal drought forecasts can also be prepared using the common methodology and based upon two data sources used to provide initial conditions (GPCC and the ECMWF ERA-Interim reanalysis (ERAI) combined with either the current ECMWF seasonal forecast or a climatology based upon ensemble forecasts. Verification of the forecasts as a function of lead time revealed a reduced impact on skill for: (i) long lead times using different initial conditions, and (ii) short lead times using different precipitation forecasts. The memory effect of initial conditions was found to be 1 month lead time for the SPI-3, 3 to 4 months for the SPI-6 and 5 months for the SPI-12. Results show that dynamical forecasts of precipitation provide added value, a skill similar to or better than climatological forecasts. In some cases, particularly for long SPI time

  10. Pollen Forecast and Dispersion Modelling

    Science.gov (United States)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  11. The Invasive Species Forecasting System

    Science.gov (United States)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  12. A forecast of energy requirements in South Africa

    International Nuclear Information System (INIS)

    Kotze, D.J.

    1975-01-01

    The aim of this paper is to evaluate the adequacy of South Africa's energy resources relative to projected demands. The forecasting procedure embraces the construction of suitable energy balances and the development of econometric demand models. An energy balance is employed which integrates supply and demand data on all forms of energy for a particular year. The demand side of the balance is divided into both final demand and demand by the conversion sector. Useful energy consumption in each sector is estimated by applying utilisation efficiency co-efficients to the physics energy content of each energy form. Total final demand is determined by developing sub-models for each sector of final demand including households, industry, mining and transport. In these sub-models, economic series representing the type of activity in the particular sub-sector, are used as explanatory variables. Further relationships, quantifying the contributions of each form of energy to the sectorial totals, are constructed. Having established the future value of final useful energy demand, total future production and final consumption is obtained. The forecast of primary energy requirements is therefore made via a reversed calculation from the final energy demand through all conversion processes to the primary energy stage. Once the future distribution of energy by source, form and end use sector is known it is possible to plan the optimum allocation of energy resources in the country. It is also possible to evaluate the life of indigenous energy resources, their adequacy, and import requirements

  13. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2016-02-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy.

  14. Uncertainty Forecasts Improve Weather-Related Decisions and Attenuate the Effects of Forecast Error

    Science.gov (United States)

    Joslyn, Susan L.; LeClerc, Jared E.

    2012-01-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather…

  15. Grey Forecast Rainfall with Flow Updating Algorithm for Real-Time Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jui-Yi Ho

    2015-04-01

    Full Text Available The dynamic relationship between watershed characteristics and rainfall-runoff has been widely studied in recent decades. Since watershed rainfall-runoff is a non-stationary process, most deterministic flood forecasting approaches are ineffective without the assistance of adaptive algorithms. The purpose of this paper is to propose an effective flow forecasting system that integrates a rainfall forecasting model, watershed runoff model, and real-time updating algorithm. This study adopted a grey rainfall forecasting technique, based on existing hourly rainfall data. A geomorphology-based runoff model can be used for simulating impacts of the changing geo-climatic conditions on the hydrologic response of unsteady and non-linear watershed system, and flow updating algorithm were combined to estimate watershed runoff according to measured flow data. The proposed flood forecasting system was applied to three watersheds; one in the United States and two in Northern Taiwan. Four sets of rainfall-runoff simulations were performed to test the accuracy of the proposed flow forecasting technique. The results indicated that the forecast and observed hydrographs are in good agreement for all three watersheds. The proposed flow forecasting system could assist authorities in minimizing loss of life and property during flood events.

  16. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    Directory of Open Access Journals (Sweden)

    Laila A. Puntel

    2018-04-01

    Full Text Available Historically crop models have been used to evaluate crop yield responses to nitrogen (N rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1 evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages; (2 determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3 quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77 using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81. Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively. At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR in 62% of the cases examined (n = 31 with an average error range of ±38 kg N ha−1 (22% of the average N rate. Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  17. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate.

    Science.gov (United States)

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Thorburn, Peter J; Castellano, Michael J; Moore, Kenneth J; VanLoocke, Andrew; Heaton, Emily A; Archontoulis, Sotirios V

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time ( R 2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity ( R 2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined ( n = 31) with an average error range of ±38 kg N ha -1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  18. WOD - Weather On Demand forecasting system

    Science.gov (United States)

    Rognvaldsson, Olafur; Ragnarsson, Logi; Stanislawska, Karolina

    2017-04-01

    The backbone of the Belgingur forecasting system (called WOD - Weather On Demand) is the WRF-Chem atmospheric model, with a number of in-house customisations. Initial and boundary data are taken from the Global Forecasting System, operated by the National Oceanic and Atmospheric Administration (NOAA). Operational forecasts use cycling of a number of parameters, mainly deep soil and surface fields. This is done to minimise spin-up effects and to ensure proper book-keeping of hydrological fields such as snow accumulation and runoff, as well as the constituents of various chemical parameters. The WOD system can be used to create conventional short- to medium-range weather forecasts for any location on the globe. The WOD system can also be used for air quality purposes (e.g. dispersion forecasts from volcanic eruptions) and as a tool to provide input to other modelling systems, such as hydrological models. A wide variety of post-processing options are also available, making WOD an ideal tool for creating highly customised output that can be tailored to the specific needs of individual end-users. The most recent addition to the WOD system is an integrated verification system where forecasts can be compared to surface observations from chosen locations. Forecast visualisation, such as weather charts, meteograms, weather icons and tables, is done via number of web components that can be configured to serve the varying needs of different end-users. The WOD system itself can be installed in an automatic way on hardware running a range of Linux based OS. System upgrades can also be done in semi-automatic fashion, i.e. upgrades and/or bug-fixes can be pushed to the end-user hardware without system downtime. Importantly, the WOD system requires only rudimentary knowledge of the WRF modelling, and the Linux operating systems on behalf of the end-user, making it an ideal NWP tool in locations with limited IT infrastructure.

  19. Improving operational flood forecasting through data assimilation

    Science.gov (United States)

    Rakovec, Oldrich; Weerts, Albrecht; Uijlenhoet, Remko; Hazenberg, Pieter; Torfs, Paul

    2010-05-01

    Accurate flood forecasts have been a challenging topic in hydrology for decades. Uncertainty in hydrological forecasts is due to errors in initial state (e.g. forcing errors in historical mode), errors in model structure and parameters and last but not least the errors in model forcings (weather forecasts) during the forecast mode. More accurate flood forecasts can be obtained through data assimilation by merging observations with model simulations. This enables to identify the sources of uncertainties in the flood forecasting system. Our aim is to assess the different sources of error that affect the initial state and to investigate how they propagate through hydrological models with different levels of spatial variation, starting from lumped models. The knowledge thus obtained can then be used in a data assimilation scheme to improve the flood forecasts. This study presents the first results of this framework and focuses on quantifying precipitation errors and its effect on discharge simulations within the Ourthe catchment (1600 km2), which is situated in the Belgian Ardennes and is one of the larger subbasins of the Meuse River. Inside the catchment, hourly rain gauge information from 10 different locations is available over a period of 15 years. Based on these time series, the bootstrap method has been applied to generate precipitation ensembles. These were then used to simulate the catchment's discharges at the outlet. The corresponding streamflow ensembles were further assimilated with observed river discharges to update the model states of lumped hydrological models (R-PDM, HBV) through Residual Resampling. This particle filtering technique is a sequential data assimilation method and takes no prior assumption of the probability density function for the model states, which in contrast to the Ensemble Kalman filter does not have to be Gaussian. Our further research will be aimed at quantifying and reducing the sources of uncertainty that affect the initial

  20. Automated time series forecasting for biosurveillance.

    Science.gov (United States)

    Burkom, Howard S; Murphy, Sean Patrick; Shmueli, Galit

    2007-09-30

    For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.