WorldWideScience

Sample records for stacked micro-optics system

  1. Micro-optical-mechanical system photoacoustic spectrometer

    Science.gov (United States)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  2. Micro optical sensor systems for sunsensing applications

    Science.gov (United States)

    Leijtens, Johan; de Boom, Kees

    2017-11-01

    Optimum application of micro system technologies allows building small sensor systems that will alter procurement strategies for spacecraft manufacturers. One example is the decreased size and cost for state of the art sunsensors. Integrated sensor systems are being designed which, through use of microsystem technology, are an order of magnitutde smaller than most current sunsensors and which hold due to the large reproducibility through batch manufacturing the promise of drastic price reduction. If the Commercial Of The Shelf (COTS) approach is adopted by satellite manufacturers, this will drastically decrease mass and cost budgets associated with sunsensing applications.

  3. Ray-based calibration for the micro optical metrology system

    Science.gov (United States)

    Yin, Yongkai; Wang, Meng; Li, Ameng; Liu, Xiaoli; Peng, Xiang

    2014-05-01

    Fringe projection 3D microscopy (FP-3DM) plays an important role in micro-machining and micro-fabrication. FP-3DM may be realized with quite different arrangements and principles, which make people confused to select an appropriate one for their specific application. This paper introduces the ray-based general imaging model to describe the FP-3DM, which has the potential to get a unified expression for different system arrangements. Meanwhile the dedicated calibration procedure is also presented to realize quantitative 3D imaging. The validity and accuracy of proposed calibration approach is demonstrated with experiments.

  4. Design, fabrication and testing of hierarchical micro-optical structures and systems

    Science.gov (United States)

    Cannistra, Aaron Thomas

    Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist

  5. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  6. Toolchain concept for the automated assembly of micro-optical systems

    Science.gov (United States)

    Haag, Sebastian; Müller, Tobias; Brecher, Christian

    2014-05-01

    In micro-optical assembly, the mastering of the steps of passive and active alignment, bonding, and part feeding as well as their interdependencies are crucial to the success of an automation solution. Process development is therefore complex and time consuming. Separation of assembly process planning and assembly execution decouples both phases so that production and process development can take place in parallel and even in spatially separated stations. The work presented in this paper refines the concept of flexible assembly systems by separating the phases of assembly process planning and assembly execution by providing a dedicated process development platform on the one hand and by providing automatisms regarding the transfer from the development platform into industrial production on the other. For this purpose, two key concepts are being developed by the research carried out at Fraunhofer IPT. The paper introduces the overall approach and formalisms as well as a form of notation based on part lists, product features and key characteristics and it shows industrial use cases the approach has been applied to. Key characteristics are constraints on spatial relations and they are expressed in terms of optical functions or geometric constraints which need to be fulfilled. In the paper, special attention is paid to the illustration of the end-user perspective.

  7. Recent developments in wafer-level fabrication of micro-optical multi-aperture imaging systems

    Science.gov (United States)

    Leitel, R.; Dannberg, P.; Brückner, A.; Bräuer, A.

    2011-10-01

    Micro-optical systems, that utilize multiple channels for imaging instead of a single one, are frequently discussed for ultra-compact applications such as digital cameras. The strategy of their fabrication differs due to different concepts of image formation. Illustrated by recently implemented systems for multi-aperture imaging, typical steps of wafer-level fabrication are discussed in detail. In turn, the made progress may allow for additional degrees of freedom in optical design. Pressing ahead with very short overall lengths and multiple diaphragm array layers, results in the use of extremely thin glass substrates down to 100 microns in thickness. The desire for a wide field of view for imaging has led to chirped arrays of microlenses and diaphragms. Focusing on imaging quality, aberrations were corrected by introducing toroidal lenslets and elliptical apertures. Such lenslets had been generated by thermal reflow of lithographic patterned photoresist and subsequent molding. Where useful, the system's performance can be further increased by applying aspheric microlenses from reactive ion etching (RIE) transfer or by achromatic doublets from superimposing two moldings with different polymers. Multiple diaphragm arrays prevent channel crosstalk. But using simple metal layers may lead to multiple reflections and an increased appearance of ghost images. A way out are low reflecting black matrix polymers that can be directly patterned by lithography. But in case of environmental stability and high resolution, organic coatings should be replaced by patterned metal coatings that exhibit matched antireflective layers like the prominent black chromium. The mentioned components give an insight into the fabrication process of multi-aperture imaging systems. Finally, the competence in each step decides on the overall image quality.

  8. Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems.

    Science.gov (United States)

    Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik

    2015-08-01

    This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.

  9. Micro-optics for microfluidic analytical applications.

    Science.gov (United States)

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  10. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    Science.gov (United States)

    Beer, Neil Reginald; Kennedy, Ian

    2013-02-05

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  11. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  12. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    Science.gov (United States)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  13. System for inspection of stacked cargo containers

    Science.gov (United States)

    Derenzo, Stephen [Pinole, CA

    2011-08-16

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. The invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.

  14. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  15. Stacking Analysis of Binary Systems with HAWC

    Science.gov (United States)

    Brisbois, Chad; HAWC Collaboration

    2017-01-01

    Detecting binary systems at TeV energies is an important problem because only a handful of such systems are currently known. The nature of such systems is typically thought to be composed of a compact object and a massive star. The TeV emission from these systems does not obviously correspond to emission in GeV or X-ray, where many binary systems have previously been found. This study focuses on a stacking method to detect TeV emission from LS 5039, a known TeV binary, to test its efficacy in HAWC data. Stacking is a widely employed method for increasing signal to noise ratio in optical astronomy, but has never been attempted previously with HAWC. HAWC is an ideal instrument to search for TeV binaries, because of its wide field of view and high uptime. Applying this method to the entire sky may allow HAWC to detect binary sources of very short or very long periods not sensitive to current analyses. NSF, DOE, Los Alamos, Michigan Tech, CONACyt, UNAM, BUAP.

  16. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  17. Design and development of an automated uranium pellet stacking system

    International Nuclear Information System (INIS)

    Reiss, B.S.; Nokleby, S.B.

    2010-01-01

    A novel design for an automated uranium pellet stacking system is presented. This system is designed as a drop-in solution to the current production line to enhance the fuel pellet stacking process. The three main goals of this system are to reduce worker exposure to radiation to as low as reasonable achievable (ALARA), improve product quality, and increase productivity. The proposed system will reduce the potential for human error. This single automated system will replace the two existing pellet stacking stations while increasing the total output, eliminating pellet stacking as a bottleneck in the fuel bundle assembly process. (author)

  18. Wafer-scale micro-optics fabrication

    Science.gov (United States)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  19. Micro-optics: manufacturing and characterization

    Science.gov (United States)

    Voelkel, R.; Eisner, M.; Weible, K. J.

    2005-10-01

    Wafer-based manufacturing of Micro-Optics is based on standard technologies from Semiconductor Industry, like resist coating, lithography, reactive ion etching, deposition, sputtering, and lift-off. These well-established technologies allow the manufacturing of almost any Micro-Optics' structure shape. The excellence of the Micro-Optics component depends much on the proper choice of the manufacturing equipment and the process control. As all processes are standard Semiconductor technology, the quality is merely a question of the budget and the optimization effort. For characterization and testing, the current situation is different. Neither the test equipment from Semiconductor industry nor the test equipment from classical optics manufacturing is suitable to for Micro-Optics. Most of test instruments Micro-Optics industry is using today have been developed by research institutes or by the manufacturing companies themselves. As Micro-Optics is still a niche market, all instruments are built in small series. This lack of suitable test equipment is a major problem for the Micro-Optics industry today. All process optimization in manufacturing is closely related to the capability to measure the quality of the products. We report on the state of the art in wafer-based manufacturing and summarize the standard characterization tools for Micro-Optics.

  20. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications

    Science.gov (United States)

    Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan

    2012-11-01

    Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.

  1. A Software Managed Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Jordan, Alexander; Abbaspourseyedi, Sahar; Schoeberl, Martin

    2016-01-01

    In a real-time system, the use of a scratchpad memory can mitigate the difficulties related to analyzing data caches, whose behavior is inherently hard to predict. We propose to use a scratchpad memory for stack allocated data. While statically allocating stack frames for individual functions to ...

  2. Consolidity: Stack-based systems change pathway theory elaborated

    Directory of Open Access Journals (Sweden)

    Hassen Taher Dorrah

    2014-06-01

    Full Text Available This paper presents an elaborated analysis for investigating the stack-based layering processes during the systems change pathway. The system change pathway is defined as the path resulting from the combinations of all successive changes induced on the system when subjected to varying environments, activities, events, or any excessive internal or external influences and happenings “on and above” its normal stands, situations or set-points during its course of life. The analysis is essentially based on the important overall system paradigm of “Time driven-event driven-parameters change”. Based on this paradigm, it is considered that any affected activity, event or varying environment is intelligently self-recorded inside the system through an incremental consolidity-scaled change in system parameters of the stack-based layering types. Various joint stack-based mathematical and graphical approaches supported by representable case studies are suggested for the identification, extraction, and processing of various stack-based systems changes layering of different classifications and categorizations. Moreover, some selected real life illustrative applications are provided to demonstrate the (infinite stack-based identification and recognition of the change pathway process in the areas of geology, archeology, life sciences, ecology, environmental science, engineering, materials, medicine, biology, sociology, humanities, and other important fields. These case studies and selected applications revealed that there are general similarities of the stack-based layering structures and formations among all the various research fields. Such general similarities clearly demonstrate the global concept of the “fractals-general stacking behavior” of real life systems during their change pathways. Therefore, it is recommended that concentrated efforts should be expedited toward building generic modular stack-based systems or blocks for the mathematical

  3. MEMS: A new approach to micro-optics

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlights polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.

  4. A Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Nielsen, Carsten

    2016-01-01

    Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related to local......Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related...... to locality, lifetime, and static analyzability of access addresses comparedto static or heap allocated data. Therefore, caching of stack allocateddata benefits from having its own cache. In this paper we present a cache architecture optimized for stack allocateddata. This cache is additional to the normal...

  5. Micro-optical instrumentation for process spectroscopy

    Science.gov (United States)

    Crocombe, Richard A.; Flanders, Dale C.; Atia, Walid

    2004-12-01

    Traditional laboratory ultraviolet/visible/near-infrared spectroscopy instruments are tabletop-sized pieces of equipment that exhibit very high performance, but are generally too large and costly to be widely distributed for process control applications or used as spectroscopic sensors. Utilizing a unique, and proven, micro-optical technology platform origi-nally developed, qualified and deployed in the telecommunications industry, we have developed a new class of spectro-scopic micro-instrumentation that has laboratory quality resolution and spectral range, with superior speed and robust-ness. The fundamentally lower cost and small form factor of the technology will enable widespread use in process moni-toring and control. This disruption in the ground rules of spectroscopic analysis in these processes is enabled by the re-placement of large optics and detector arrays with a high-finesse, high-speed micro electro mechanical system (MEMS) tunable filter and a single detector, that enable the manufacture of a high performance and extremely rugged spectrome-ter in the footprint of a credit card. Specific process monitoring and control applications discussed in the paper include pharmaceutical, gas sensing and chemical processing applications.

  6. Availability Analysis of the Ventilation Stack CAM Interlock System

    CERN Document Server

    Young, J

    2000-01-01

    Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies, and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability.

  7. From optics testing to micro optics testing

    Science.gov (United States)

    Brock, Christian; Dorn, Ralf; Pfund, Johannes

    2017-10-01

    Testing micro optics, i.e. lenses with dimensions down to 0.1mm and less, with high precision requires a dedicated design of the testing device, taking into account propagation and wave-optical effects. In this paper, we discuss testing methods based on Shack-Hartmann wavefront technology for functional testing in transmission and for the measurement of surface shape in reflection. As a first example of more conventional optics testing, i.e. optics in the millimeter range, we present the measurement of binoculars in transmission, and discuss the measured wave aberrations and imaging quality. By repeating the measurement at different wavelengths, information on chromatic effects is retrieved. A task that is often tackled using Shack-Hartman wavefront sensors is the alignment of collimation optics in front of a light source. In case of a micro-optical collimation unit with a 1/e² beam diameter of ca. 1mm, we need adapted relay optics for suitable beam expansion and well-defined imaging conditions. In this example, we will discuss the alignment process and effects of the relay optics magnification, as well as typical performance data. Oftentimes, micro optics are fabricated not as single pieces, but as mass optics, e.g. by lithographic processes. Thus, in order to reduce tooling and alignment time, an automated test procedure is necessary. We present an approach for the automated testing of wafer- or tray-based micro optics, and discuss transmission and reflection measurement capabilities. Exemplary performance data is shown for a sample type with 30 microns in diameter, where typical repeatabilities of a few nanometers (rms) are reached.

  8. Consolidity: Stack-based systems change pathway theory elaborated

    OpenAIRE

    Dorrah, Hassen Taher

    2014-01-01

    This paper presents an elaborated analysis for investigating the stack-based layering processes during the systems change pathway. The system change pathway is defined as the path resulting from the combinations of all successive changes induced on the system when subjected to varying environments, activities, events, or any excessive internal or external influences and happenings “on and above” its normal stands, situations or set-points during its course of life. The analysis is essentially...

  9. 296-B-5 Stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-02-01

    The B Plant Administration Manual requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 296-B-5 at B Plant. The sampling and monitoring system associated with stack 296-B-5 is functional and performing satisfactorily. This document is an annual assessment report of the systems associated with the 296-B-5 stack

  10. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  11. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  12. Availability Analysis of the Ventilation Stack CAM Interlock System

    International Nuclear Information System (INIS)

    YOUNG, J.

    2000-01-01

    Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability. Further, requiring an alarm to actuate upon CAM failure is not necessary to maintain the availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability. However, if CAM failures were only detected by the 92-day functional tests required in the Authorization Basis (AB), CAM availability would be much less than that credited in the safety analysis. Therefore it is recommended that the current surveillance practice of daily simple system checks, 30-day source checks and 92-day functional tests be continued in order to maintain CAM availability

  13. Preloading Piezoelectric Stack Actuator in High-speed Nanopositioning Systems

    Directory of Open Access Journals (Sweden)

    Yuen Yong

    2016-10-01

    Full Text Available Recent development in high-speed nanotechnology applications such as scanning probe microscopy and nanofabrication has increased interest on the advancement of high-bandwidth flexure-guided nanopositioning systems. These systems are capable of providing motions with sub-nanometer resolution over a positioning bandwidth of a few kilohertz or more. High-speed nanopositioning devices are commonly driven by compact and stiff piezoelectric stack actuators. However, these actuators are highly sensitive to tensile and lateral forces. During high-speed operations, excessive inertia force due to the effective mass of nanopositioning system could potentially damage the actuator. To protect the piezoelectric actuator, preload is often applied to compensate for these inertial forces. This article surveys key challenges in existing preload techniques in the context of high-speed nanopositioning designs, and explores how these challenges can be overcome.

  14. 296-B-10 stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-01-01

    B Plant Administration Manual, requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with stack 296-B-10 at B Plant. The ventilation system of WESF (Waste Encapsulation and Storage Facility) is designed to provide airflow patterns so that air movement throughout the building is from areas of lesser radioactivity to areas of greater radioactivity. All potentially contaminated areas are maintained at a negative pressure with respect to the atmosphere so that air flows into the building at all times. The exhaust discharging through the 296-B-10 stack is continuously monitored and sampled using a sampling and monitoring probe assembly located approximately 17.4 meters (57 feet) above the base of the stack. The probe assembly consists of 5 nozzles for the sampling probe and 2 nozzles to monitor the flow. The sampling and monitoring system associated with Stack 296-B-10 is functional and performing satisfactorily

  15. 3D stacked chips from emerging processes to heterogeneous systems

    CERN Document Server

    Fettweis, Gerhard

    2016-01-01

    This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size.  The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.   •Provides single-source reference to the latest research in 3D optoelectronic integration: process, devices, and systems; •Explains the use of wireless 3D integration to improve 3D IC reliability and yield; •Describes techniques for monitoring and mitigating thermal behavior in 3D I...

  16. Research and Development of Fully Automatic Alien Smoke Stack and Packaging System

    Science.gov (United States)

    Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu

    2017-12-01

    The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.

  17. Micro-optical components assembly for the fabrication of a miniaturized optoelectronic transducer

    Science.gov (United States)

    Corradi, P.; Ascari, L.; Menciassi, A.; Laschi, C.

    2007-10-01

    This paper describes the fabrication and, in particular, the assembly processes of a miniaturized micro-optical system, to be integrated on a hybrid flexible module, which hosts also electronics and microsensors. The whole module was conceived to be mass-produced in order to be distributed in skin-like structures for robotic tactile applications. Nevertheless, it is generally suitable for sensing applications where the flexibility and the thickness of the sensing network are primary requirements. The micro-optical system works as a part of an optoelectronic transducer where electric signals, generated by tactile MEMS sensors, are computed by a microcontroller that drives the micro-optical system. This consequently generates optical radiation, by means of integrated light emitting diodes (LEDs), to be coupled into optical fibers, which waveguide signals to a CMOS optical sensor. Micro-machining and micro-assembly processes of miniaturized components are critical steps in order to fabricate many of these modules according to the application requirements.

  18. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  19. 291-B-1 stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1994-01-01

    The B Plant 291-B-1 main stack exhausts gaseous effluents to the atmosphere from the 221-B Building canyon and cells, the No. 1 Vessel Ventilation System (VVS1), the 212-B Cask Station cell ventilation system, and, to a limited capacity, the 224-B Building. VVS1 collects offgases from various process tanks in 221-B Building, while the 224-B system maintains a negative pressure in out-of-service, sealed process tanks. B Plant Administration Manual, WHC-CM-7-5, Section 5.30 requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 291-B-1 (System Number B977A) at B Plant. The system is functional and performing satisfactorily

  20. Stack and area tritium monitoring systems for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Pearson, G.G.; Meixler, L.D.; Sirsingh, R.A.P.

    1992-01-01

    This paper reports on the TFTR Tritium Stack and Area Monitoring Systems which have been developed to provide the required level of reliability in a cost effective manner consistent with the mission of the Tritium Handling System on TFTR. Personnel protection, environmental responsibility, and tritium containing system integrity have been the considerations in system design. During the Deuterium-Tritium (D-T) experiments on TFTR, tritium will be used for the first time as one of the fuels. Area monitors provide surveillance of the air in various rooms at TFTR. Stack monitors monitor the air at the TFTR test site that is exhausted through the HVAC systems, from the room exhaust stacks and the tritium systems process vents. The philosophies for the implementation of the Stack and Area Tritium Monitoring Systems at TFTR are to use hardwired controls wherever personnel protection is involved, and to take advantage of modern intelligent controllers to provide a distributed system to support the functions of tracking, displaying, and archiving concentration levels of tritium for all of the monitored areas and stacks

  1. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  2. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    Science.gov (United States)

    Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  3. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  4. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  5. Diamond machining of micro-optical components and structures

    Science.gov (United States)

    Gläbe, Ralf; Riemer, Oltmann

    2010-05-01

    Diamond machining originates from the 1950s to 1970s in the USA. This technology was originally designed for machining of metal optics at macroscopic dimensions with so far unreached tolerances. During the following decades the machine tools, the monocrystalline diamond cutting tools, the workpiece materials and the machining processes advanced to even higher precision and flexibility. For this reason also the fabrication of small functional components like micro optics at a large spectrum of geometries became technologically and economically feasible. Today, several kinds of fast tool machining and multi axis machining operations can be applied for diamond machining of micro optical components as well as diffractive optical elements. These parts can either be machined directly as single or individual component or as mold insert for mass production by plastic replication. Examples are multi lens arrays, micro mirror arrays and fiber coupling lenses. This paper will give an overview about the potentials and limits of the current diamond machining technology with respect to micro optical components.

  6. Fundamental stack and system issues in molten carbonate fuel cell development

    Science.gov (United States)

    Williams, M. C.; Parsons, E. L., Jr.; Mayfield, M. J.

    Stack research and system issues in molten carbonate fuel cell (MCFC) technology development and commercialization are discussed within context of status of MCFC development and commercialization in US. Status of MCFC development is addressed. Major known fundamental stack research issues remaining for the MCFC technology are identified and discussed. The cathode remains a focal point of performance improvement and cost reduction. The various aspects of MCFC power plant network and systems issues are also addressed and discussed. These include cost, heat loss management, startup and shutdown modes, dynamic response, footprint, packaging and integration, parasitic power losses, pressurization, and reforming. Potential of MCFC networks is discussed. With the initial demonstration of full-area, full-height 250-kW to 2-MW MCFC power plants, the spatial configuration of the MCFC stacks into networks in the fuel cell power plant takes on importance for the first time.

  7. Prototype particulate stack sampler with single-cut nozzle and microcomputer calculating/display system

    International Nuclear Information System (INIS)

    Eler, J.C.; Littlefield, L.G.; Tillery, M.I.

    1979-01-01

    A prototype particulate stack sampler (PPSS) has been developed to improve on the existing EPA Method 5 sampling apparatus. Its primary features are (1) higher sampling rate (56 1/min); (2) display (on demand) of all required variables and calculated values by a microcomputer-based calculating and display system; (3) continuous stack gas moisture determination; (4) a virtual impactor nozzle with 3 μm mass median diameter cutpoint which collects fine and coarse particle fractions on separate glass fiber filters; (5) a variable-area inlet to maintain isokinetic sampling conditions; and (6) conversion to stainless steel components from the glass specified by EPA Method 5. The basic sampling techniques of EPA Method 5 have been retained; however, versatility in the form of optional in-stack filters and general modernization of the stack sampler have been provided in the prototype design. Laboratory testing with monodisperse dye aerosols has shown the present variable inlet, virtual impactor nozzle to have a collection efficiency which is less than 77% and significant wall losses. This is primarily due to lack of symmetry in this rectangular jet impactor and short transition lengths dictated by physical design constraints (required passage of the nozzle through a 7.6 cm (3 in) diameter stack port). Electronic components have shown acceptable service in laboratory testing although no field testing of the prototype under a broad range of temperature, humidity, and SO 2 concentration has been undertaken

  8. Entropy and biological systems: experimentally-investigated entropy-driven stacking of plant photosynthetic membranes.

    Science.gov (United States)

    Jia, Husen; Liggins, John R; Chow, Wah Soon

    2014-02-24

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg(2+)-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl₂ with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components.

  9. Security Analysis of Permission-Based Systems using Static Analysis: An Application to the Android Stack

    OpenAIRE

    Bartel, Alexandre

    2014-01-01

    In recent years, mobile devices, such as smart phones, have spread at an exponential rate. The most used system running on these devices, accounting for almost 80% of market share for smart phones world-wide, is the Android software stack. This system runs Android applications that users download from an application market. The system is called a permission-based system since it limits access to protected resources by checking that applications have the required permission(s). Users store an...

  10. Modeling and measurement of a micro-optic beam deflector

    Science.gov (United States)

    Milster, Tom D.; Wong, J. Nan

    1992-01-01

    The use is studied of a unity-magnification micro-optic beam deflector. The defelector consists of two arrays of positively powered lenslets. The lenslets on each array are arranged in a square grid. Design criteria are based on usefulness in optical data storage devices. The deflector is designed to operate over a + or - 1.6 range of deflection angles. Modeling results are compared with interferometric analysis of the wavefront from a single lenslet pair. The results indicate that the device is nearly diffraction limited, but there are substantial wavefront errors at the edges and corners of the lenslets.

  11. Computerized method and system for designing an aerodynamic focusing lens stack

    Science.gov (United States)

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  12. Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.

    Science.gov (United States)

    Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen

    2012-01-01

    An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Structural Optimization of a Laterally Driven Electromagnetic Micro Optical Switch

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sam; Kwak, Byung Man [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Ko, Jong Soo [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2002-11-15

    This paper presents structural optimization for a micro optical switch based on the concept of a laterally driven electromagnetic microactuator (LaDEM). This utilizes a nonlinear behavior of a snap-through buckling occurring in two arch-shaped leaf springs of the switch, when actuated by a distributed Lorentz force induced along the leaf springs. An important objective in the design of the micro optical switch is to achieve a large displacement with low actuation force. For this purpose, a parametric study is first made. The most important parameters are found the initial rise and two sizes of the meander and chosen as design variables. The nonlinear displacement-load response is calculated by a modified Riks method in ABAQUS. Two formulations of structural optimization were studied. In the first formulation, the load needed for the micro mirror to reach a specific displacement is minimized subject to natural frequency and stress constraints. In the other optimization, the displacement was maximized for an applied load subject to the same constraints in the first approach. Nonlinear FE techniques and optimizations are found to be valuable tools for analysis and design of microactuators which utilize a complex nonlinear snap-through buckling behavior.

  14. Novel vehicle detection system based on stacked DoG kernel and AdaBoost

    Science.gov (United States)

    Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun

    2018-01-01

    This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727

  15. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...... the degradation caused by these phenomena, is suggested. Using the proposed model, information about optimum operational temperatures is derived. To investigate how the degradation propagates on stack level, a simplified stack model is developed. The model is 1-dimensional, non-isothermal, and semi......-transient (considering degradation with time). The model shows that the degradation in a stack will not progress uniformly, but occurs faster in the hot end of the stack. Furthermore, the model shows that the degradation is very dependent on stack temperature control scheme. Two experiments were conducted; a 500 hours...

  16. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Hedemann Jensen, P.; Lauridsen, B.

    1984-06-01

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131 I. The collection efficiency for iodine in form of elementary iodine (I 2 ) and methyliodide (CH 3 I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41 Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  17. Assessment of a reclamation cover system for phosphogypsum stacks in Central Alberta, Canada.

    Science.gov (United States)

    Hallin, Ingrid L; Naeth, M Anne; Chanasyk, David S; Nichol, Connie K

    2010-01-01

    Phosphogypsum (PG), a byproduct of the phosphate fertilizer industry, was produced and stockpiled at the Agrium Fort Saskatchewan facility from 1965 to 1991. Upon decommissioning, the outer slopes of the PG stacks were reclaimed by applying 15 cm of topsoil and planting a non-native seed mix. Physical, chemical, and hydrologic evaluations of the cover system confirmed that plants were successfully growing in various soil capping depths and were often rooting more than 200 mm into the PG. Percolation past the substrate into PG during a typical storm event was low (< 10 mm), and runoff from the stacks was negligible. Runoff quality met most guidelines, but some parameters, including fluoride, were up to 18 times higher than provincial or federal guidelines for soil and water quality. However, the cover system, when applied appropriately, does meet basic reclamation objectives. The exceedances are found in areas where the cover system has been compromised by erosion or mixing or in areas where the cover system has not been fully applied, such as roads or the inner basin. In areas where the cover system has been applied successfully, basic reclamation requirements are met.

  18. Porous Silicon Gradient Refractive Index Micro-Optics.

    Science.gov (United States)

    Krueger, Neil A; Holsteen, Aaron L; Kang, Seung-Kyun; Ocier, Christian R; Zhou, Weijun; Mensing, Glennys; Rogers, John A; Brongersma, Mark L; Braun, Paul V

    2016-12-14

    The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.

  19. Using the Retrograde Internal Mammary System for Stacked Perforator Flap Breast Reconstruction: 71 Breast Reconstructions in 53 Consecutive Patients.

    Science.gov (United States)

    Stalder, Mark W; Lam, Jonathan; Allen, Robert J; Sadeghi, Alireza

    2016-02-01

    Abdominal tissue is the preferred donor source for autologous breast reconstruction, but in select patients with inadequate tissue, additional volume must be recruited to achieve optimal outcomes. Stacked flaps are an effective approach in these cases, but can be limited by the need for adequate recipient vessels. This article reports outcomes for the use of the retrograde internal mammary system for stacked flap breast reconstruction in a large number of consecutive patients. Fifty-three patients underwent stacked autologous tissue breast reconstruction with a total of 142 free flaps. Thirty patients underwent unilateral stacked deep inferior epigastric perforator (DIEP) flap reconstruction, five had unilateral stacked profunda artery perforator flap reconstruction, one had bilateral stacked DIEP/superior gluteal artery perforator flap reconstruction, and 17 underwent bilateral stacked DIEP/profunda artery perforator flap reconstruction. In all cases, the antegrade and retrograde internal mammary vessels were used for anastomoses. In situ manometry studies were also conducted comparing the retrograde internal mammary arteries in 10 patients to the corresponding systemic pressures. There were three total flap losses (97.9 percent flap survival rate), two partial flap losses, four reexplorations for venous congestion, and three patients with operable fat necrosis. The mean weight of the stacked flaps for each reconstructed breast was 622.8 g. The retrograde internal mammary mean arterial pressures were on average 76.6 percent of the systemic mean arterial pressures. The results demonstrate that the retrograde internal mammary system is capable of independently supporting free tissue transfer. These vessels provide for convenient dissection and improved efficiency of these cases, with successful postsurgical outcomes. Therapeutic, IV.

  20. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  1. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  2. THERMOACOUSTIC REFRIGERATOR SYSTEM PERFORMANCE USING THE PVC (POLYVINYL CHLORIDE STACK BY POWER INPUT VARIATION

    Directory of Open Access Journals (Sweden)

    Indah Kharismawati

    2017-04-01

    Full Text Available The thermoacoustic refrigerator is an innovative alternative and did not use substances that had a negative impact on the environment such as freon, but using air as the working substance. The materials used the refrigerator were easily obtained and the construction components were simple so that made this refrigerator was cheap, easy to make and easy to maintain. Stack was used in the thermoacoustic refrigerator system used PVC (Polyvinyl chloride which is parallel cylindrical shape and diameter (1.50 ± 0.05 mm and length of 8 cm. Variations of loudspeaker input power that used were 20 watt, 30 watt, 40 watt, 50 watt and 60 watt. Variations of the input power that used to determine the effect of loudspeaker input power to decreasing temperature in the operating of the thermoacoustic refrigerator system using  PVC stack. From the result, loudspeaker input power influenced on the decreasing temperature that was 6.0 °C for 20 watts, 6.7 °C for 30 watts, 7.2 °C for 40 watts, 8.0 °C for 50 watts and 9.0 °C for 60 watts. From these results indicated optimum decreasing temperature depended on the amount of loudspeaker power that was directly proportional to the decreasing temperature obtained.

  3. Deploying OpenStack

    CERN Document Server

    Pepple, Ken

    2011-01-01

    OpenStack was created with the audacious goal of being the ubiquitous software choice for building public and private cloud infrastructures. In just over a year, it's become the most talked-about project in open source. This concise book introduces OpenStack's general design and primary software components in detail, and shows you how to start using it to build cloud infrastructures. If you're a developer, technologist, or system administrator familiar with cloud offerings such as Rackspace Cloud or Amazon Web Services, Deploying OpenStack shows you how to obtain and deploy OpenStack softwar

  4. Layer-component-based communication stack framework for wireless residential control systems

    DEFF Research Database (Denmark)

    Torbensen, Rune; Hjorth, Theis

    2010-01-01

    This paper describes methods to lower the entry barrier for creating products that interoperate in the emerging heterogeneous residential control network domain. For designing reconfigurable, layer-component-based communication stacks, a flexible framework is proposed that supports several types ...... shown how the framework facilitates fast prototyping and makes developing secure wireless control systems less complex....... of nodes such as bridges, controllers, sensor/actuators - as well as secure communication between them. A special messaging system facilitates inter-component communication, and a Virtual Port Service protocol enables resource addressing. The end-devices in the heterogeneous network are made accessible...... on a common IP infrastructure, regardless of individual wireless technology. Legacy home automation devices are also supported. A prototype has been implemented on multiple resource-constrained hardware platforms, to demonstrate that the solution is both feasible for low-cost devices and portable. It has been...

  5. Layer-component-based communication stack framework for wireless residential control systems

    DEFF Research Database (Denmark)

    Torbensen, R.; Hjorth, Theis S.

    2011-01-01

    This paper describes methods to lower the entry barrier for creating products that interoperate in the emerging heterogeneous residential control network domain. For designing reconfigurable, layer-component-based communication stacks, a flexible framework is proposed that supports several types ...... shown how the framework facilitates fast prototyping and makes developing secure wireless control systems less complex....... of nodes such as bridges, controllers, sensor/actuators – as well as secure communication between them. A special messaging system facilitates inter-component communication, and a Virtual Port Service protocol enables resource addressing. The end-devices in the heterogeneous network are made accessible...... on a common IP infrastructure, regardless of individual wireless technology. Legacy home automation devices are also supported. A prototype has been implemented on multiple resource-constrained hardware platforms, to demonstrate that the solution is both feasible for low-cost devices and portable. It has been...

  6. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Guillen-Alonso, Yvonne; Morales-Morales, Cornelio; García-Sánchez, Liliana; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Loyola-Morales, Félix

    2017-07-01

    Two different air-cathode stacked microbial fuel cell (MFC) configurations were evaluated under continuous flow during the treatment of municipal wastewater and electricity production at a hydraulic retention time (HRT) of 3, 1, and 0.5 d. Stacked MFC 1 was formed by 20 individual air-cathode MFC units. The second stacked MFC (stacked MFC 2) consisted of 40 air-cathode MFC units placed in a shared reactor. The maximum voltages produced at closed circuit (1,000 Ω) were 170 mV for stacked MFC 1 and 94 mV for stacked MFC 2. Different power densities in each MFC unit were obtained due to a potential drop phenomenon and to a change in chemical oxygen demand (COD) concentrations inside reactors. The maximum power densities from individual MFC units were up to 1,107 mW/m 2 for stacked MFC 1 and up to 472 mW/m 2 for stacked MFC 2. The maximum power densities in stacked MFC 1 and MFC 2 connected in series were 79 mW/m 2 and 4 mW/m 2 , respectively. Electricity generation and COD removal efficiencies were reduced when the HRT was decreased. High removal efficiencies of 84% of COD, 47% of total nitrogen, and 30% of total phosphorus were obtained during municipal wastewater treatment.

  7. Recent advancements in robotic micro-optical assembly at the Lockheed Martin Optical Payload Center of Excellence

    Science.gov (United States)

    Hwang, David; Larson, Thomas M.

    2017-08-01

    Lockheed Martin Space Systems Company Optical Payloads Center of Excellence is in process of standing up the Robotic Optical Assembly System (ROAS) capability at Lockheed Martin Coherent Technologies in Colorado. This currently implemented Robotic Optical Assembly has enabled Lockheed Martin to create world-leading, ultra-lowSWAP photonic devices using a closed-loop control robot to precisely position and align micro-optics with a potential fill factor of >25 optics per square inch. This paper will discuss the anticipated applications and optical capability when ROAS is fully operational, as well as challenge the audience to update their "rules of thumb" and best practices when designing low-SWAP optical-mechanical systems that take advantage of Lockheed Martin's ROAS capability. This paper will reveal demonstrated optical pointing and stability performance achievable with ROAS and why we believe these optical specifications are relevant for the majority of anticipated applications. After a high level overview of the ROAS current state, this paper will focus in on recent results of the "Reworkable Micro-Optics Mounting IRAD". Results from this IRAD will correlate to the anticipated optical specifications required for relevant applications.

  8. Fast-sol-gel synthesis and characterization of glasses for micro-optics

    International Nuclear Information System (INIS)

    Haruvy, Y.; Gilath, I.

    1998-01-01

    The Fast-Sol-Gel Group at Soreq NRC is engaged in the research and development of novel materials based on the Fast-Sol-Gel synthetic route and devices made therefrom. The primary objective of these efforts is the development of a novel fabrication route for both passive and optically active optical and micro-optical components. We expect that, as compared with the existing art, the components thus made will be highly advantageous in terms of technology and cost. Our work is focused on facile replication of micro-optical elements (MOEs) and arrays in Fast-Sol-Gel prepared resins. These resins are made from mixtures of alkyl-alkoxy silane monomers, via hydrolysis and polymerization within 10-20 min, followed by curing that takes a few days. Single-step reproducible fabrication of large crack-free elements, 12 mm thick and 5 cm in diameter, and highly accurate replication of micro-optical arrays comprising elements in the 10-500 mm range, have been demonstrated. Among the wide variety of feasible applications of this technology are device-tailored micro-optical-arrays, aspheric, diffractive or optically active micro-optical elements and arrays

  9. Planar air-breathing micro-direct methanol fuel cell stacks based on micro-electronic-mechanical-system technology

    Science.gov (United States)

    Cao, Jianyu; Zou, Zhiqing; Huang, Qinghong; Yuan, Ting; Li, Zhilin; Xia, Baojia; Yang, Hui

    To meet the demands for high power micro-electronic devices, two silicon-based micro-direct methanol fuel cell (μDMFC) stacks consisting of six individual cells with two different anode flow fields were designed, fabricated and evaluated. Micro-electronic-mechanical-system (MEMS) technology was used to fabricate both flow field plate and fuel distribution plate on the silicon wafer. Experimental results show that either an individual cell or a stack with double serpentine-type flow fields presents better cell performance than those with pin-type flow fields. A μDMFC stack with double serpentine-type flow fields generates a peak output power of ca. 151 mW at a working voltage of 1.5 V, corresponding to an average power density of ca. 17.5 mW cm -2, which is ca. 20.7% higher than that with pin-type flow fields. The volume and weight of the stacks are only 5.3 cm 3 and 10.7 g, respectively. Such small stacks could be used as power sources for micro-electronic devices.

  10. Miniaturization of a micro-optics array for highly sensitive and parallel detection on an injection moulded lab-on-a-chip

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Sun, Yi; Poulsen, Carl Esben

    2015-01-01

    A miniaturised array of supercritical angle fluorescence (SAF) micro-optics embedded in a microfluidic chamber was fabricated by injection moulding. The fabricated chip could enhance the fluorescence signal around 46 times compared to a conventional microscope. Collection of the fluorescence sign...... from the SAF array is almost independent of the numerical aperture, and the limit of detection was improved 36-fold using a simple and inexpensive optical detection system....

  11. Algebraic stacks

    Indian Academy of Sciences (India)

    generally, any fiber product) is not uniquely defined: it is only defined up to unique isomorphism. ..... Fiber product. Given two morphisms f1 : F1 ! G, f2 : F2 ! G, we define a new stack. F1 آG F2 (with projections to F1 and F2) as follows. The objects are triples ًX1; X2; ق ..... In fact, any Artin stack F can be defined in this fashion.

  12. Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

    Directory of Open Access Journals (Sweden)

    Shoudong Gu

    2016-06-01

    Full Text Available To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT (Surface Mount Technology production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process. Here, the critical jet ejection velocity is discussed through theoretical analysis. The relations between ejection velocity and needle structure, needle velocity, and nozzle diameter were obtained by FLUENT software. Then, the prototype of the solder paste jetting system was fabricated, and the performance was verified by experiments. The effects of the gap between nozzle and needle, the driving voltage, and the nozzle diameter on the jetting performance and droplet diameter were obtained. Solder paste droplets 0.85 mm in diameter were produced when the gap between the nozzle and needle was adjusted to 10 μm, the driving voltage to 80 V, the nozzle diameter to 0.1 mm, and the variation of the droplet diameter was within ±3%.

  13. ORELA data acquisition system hardware. Vol. 6. Eight-stage stacking buffer memory (Q-5066)

    International Nuclear Information System (INIS)

    Wintenberg, R.E.; Reynolds, J.W.

    1977-01-01

    A Stacking Buffer Memory for de-randomizing data on high data rate experiments at ORELA is documented by a description of operation, mechanical details of design, and a detailed theory of operation illustrated through six examples of operation

  14. Dynamic modeling of a methanol reformer-PEMFC stack system for analysis and design

    Science.gov (United States)

    Stamps, Andrew T.; Gatzke, Edward P.

    Considerable effort has been devoted to the modeling of proton exchange membrane fuel cells (PEMFCs) as well as fuel processing units (FPUs). Many of these models consider only steady state analysis; the available dynamic models typically operate only in simple open loop configurations. However, a liquid fuel processor/PEMFC stack power unit for vehicular application will require tight integration and regulation of multiple units in order to function economically and reliably. Moreover, vehicular operation is inherently dynamic in nature, so traditional steady state process design approaches will be of limited value. This work addresses a minimum set of subcomponents necessary for modeling an overall vehicular power system. Additionally, the integration and control of these sub-units is addressed so that the unit can be operated as needed in a vehicular application by following a reference power trajectory. A number of design and operational parameters can be adjusted and the impact on system performance studied. Based on this preliminary analysis, heuristics are developed for optimal operation and design.

  15. Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack

    International Nuclear Information System (INIS)

    Huang, Zhen-Ming; Su, Ay; Liu, Ying-Chieh

    2014-01-01

    In this study, the performance of a polymer electrolyte membrane fuel cell stack has been evaluated for a hybrid power system test platform. To simulate vehicle acceleration, the stack was operated under dynamic-loading, and to demonstrate the exchange of power flow between two power sources the hybrid power system was tested under three different modes. A unit cell was fabricated for high stack performance and the stack was constructed with 18 open-cathode type fuel cells. Air which acts as a coolant as well as an oxidant for electrochemical reactions is provided by a pair of fans. The capabilities of the stack for hybrid power system test platform were validated by successful dynamic-loading tests. The performance of the stack for various air fan voltage was evaluated and an optimal value was concluded. The conditions like inlet temperature of H 2 and the stack current were established for maximum power. It was also found that humidification of hydrogen at anode inlet degrades the stack performance and stability due to flooding. Evidence shows that for the higher overall performance, the fuel cell acts continuously on constant current output. The study contributes to the design of mobility hybrid system to get better performance and reliability. - Highlights: • An open-cathode type PEMFC (polymer electrolyte membrane fuel cell) stack (rated output 300 W) was fabricated. • The open-cathode configuration simplifies the design of a stack system. • Assess the feasibility of combining a fuel cell stack in a hybrid system. • The study contributes to the design of mobility hybrid system to get better performance and reliability

  16. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack

    KAUST Repository

    Hatzell, Marta C.

    2013-11-01

    Ammonium bicarbonate has recently been demonstrated to be an excellent thermolytic solution for energy generation in reverse electrodialysis (RED) stacks. However, operating RED stacks at room temperatures can promote gaseous bubble (CO2, NH3) accumulation within the stack, reducing overall system performance. The management and minimization of bubbles formed in RED flow fields is an important operational issue which has yet to be addressed. Flow fields with and without spacers in RED stacks were analyzed to determine how both fluid flow and the buildup and removal of bubbles affected performance. In the presence of a spacer, the membrane resistance increased by ~50Ω, resulting in a decrease in power density by 30% from 0.140Wm-2 to 0.093Wm-2. Shorter channels reduced concentration polarization affects, and resulted in 3-23% higher limiting current density. Gas accumulation was minimized through the use of short vertically aligned channels, and consequently the amount of the membrane area covered by bubbles was reduced from ~20% to 7% which caused a 12% increase in power density. As ammonium bicarbonate RED systems are scaled up, attention to channel aspect ratio, length, and alignment will enable more stable performance. © 2013 Elsevier B.V.

  17. Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.

    2011-01-01

    Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.

  18. A new multiphasic buffer system for benzyldimethyl-n-hexadecylammonium chloride polyacrylamide gel electrophoresis of proteins providing efficient stacking.

    Science.gov (United States)

    Kramer, Michael L

    2006-02-01

    Acidic PAGE systems using cationic detergents such as benzyldimethyl-n-hexadecylammonium chloride (16-BAC) or CTAB have proven useful for the detection of methoxy esters sensitive to alkaline pH, resolving basic proteins such as histones and membrane proteins. However, the interesting phosphate-based system suffered from poor stacking, resulting in broadened bands and long running times. Therefore, a new 16-BAC PAGE system based on the theory of moving boundary electrophoresis with properties comparable to the classical SDS-PAGE system was designed. As a result a new multiphasic analytical 16-BAC PAGE system providing efficient stacking and significantly shorter running times is presented here. It is based on acetic acid and methoxyacetic acid as common ion constituents. This PAGE system takes advantage of the additional counter stacking effect due to a cross boundary electrophoresis system resulting from the selected buffer constituents. Furthermore, the concentration of 16-BAC was optimized by determining its previously unknown CMC. Due to efficient focusing of the introduced tracking dye, methyl green, termination of electrophoresis can now be more easily followed as compared to the Schlieren line.

  19. A micro-optic study on Leadership in The Danish Public School

    DEFF Research Database (Denmark)

    Hall, Lonni

    This abstract refers to a micro-optic study on transition from state government into leadership in the Danish public school Folkeskolen. Research question The question is how leaders makes transition between expectations from state government and municipals and into their leadership. An imperative...

  20. NEMO educational kit on micro-optics at the secondary school

    Science.gov (United States)

    Flores-Arias, M. T.; Bao-Varela, Carmen

    2014-07-01

    NEMO was the "Network of Excellence in Micro-Optics" granted in the "Sixth Framework Program" of the European Union. It aimed at providing Europe with a complete Micro-Optics food-chain, by setting up centers for optical modeling and design; measurement and instrumentation; mastering, prototyping and replication; integration and packaging and reliability and standardization. More than 300 researchers from 30 groups in 12 countries participated in the project. One of the objectives of NEMO was to spread excellence and disseminate knowledge on micro-optics and micro-photonics. To convince pupils, already from secondary school level on, about the crucial role of light and micro-optics and the opportunities this combination holds, several partners of NEMO had collaborate to create this Educational Kit. In Spain the partner involved in this aim was the "Microoptics and GRIN Optics Group" at the University of Santiago of Compostela (USC). The educational kits provided to the Secondary School were composed by two plastic cards with the following microoptical element: different kinds of diffractive optical elements or DOES and refractive optical elements or ROEs namely arrays of micro-lenses. The kit also included a DVD with a handbook for performing the experiments as well as a laser pointer source. This kit was distributed free of charge in the countries with partners in NEMO. In particular in Spain was offered to around 200 Secondary School Centers and only 80 answered accepting evaluate the kit.

  1. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  2. Development of cost innovative BPs for a PEMFC stack for a 1 kW-class residential power generator (RPG) system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gil-yong; Jung, Min-kyung; Ryoo, Sung-nam; Ha, Sam-chul [Digital Appliance R and D, LG Electronics, Seoul 153-801 (Korea, Republic of); Park, Myung-seok [LG Solar Energy, Seoul 150-721 (Korea, Republic of); Kim, Sunhoe [Department of New Energy and Resource Engineering, Sangji University, Wonju, Gangwon 220-702 (Korea, Republic of)

    2010-12-15

    In order to satisfy the demands of customers, cost innovation of fuel cell systems is required for the commercialization of the fuel cell. Since the stack is one of the most expensive parts in a fuel cell system, cost reduction of stack is required for fuel cell commercialization. For this effort stainless steel 304 sheets were etched for the flow field and then coated for corrosion resistance. This enables the development of highly cost-effective bipolar plates (BPs) for a Proton Exchange Membrane Fuel Cell (PEMFC) stack of a 1 kW-class for Residential Power Generator (RPG). LG Electronics (LGE) developed a metal stack of 64 cells with the developed BPs and achieved a performance rating of 0.75 V/cell at 200 mA/cm{sup 2}. LGE also achieved a stack volume reduction of 20% compared to a stack of the same specifications consisting of graphite material BPs. The volume decrease can be represented as a cost reduction. LGE achieved the very low cost innovation to 1 USD per cell with cells developed from etched metal BPs. LGE also achieved 500 h of operation with LGE's RPG system; this test is still ongoing. The degradation rate of the stack was 27 {mu}V/hr. The end of life of the stack was estimated at approximately 17,000 h. (author)

  3. Integration of optoelectronics and MEMS by free-space micro-optics

    Energy Technology Data Exchange (ETDEWEB)

    WARREN,MIAL E.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; SHUL,RANDY J.; WENDT,JOEL R.; VAWTER,GREGORY A.; KRYGOWSKI,TOM W.; REYES,DAVID NMN; RODGERS,M. STEVEN; SNIEGOWSKI,JEFFRY J.

    2000-06-01

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate combining microelectromechanical systems (MEMS) with optoelectronic components as a means of realizing compact optomechanical subsystems. Some examples of possible applications are laser beam scanning, switching and routing and active focusing, spectral filtering or shattering of optical sources. The two technologies use dissimilar materials with significant compatibility problems for a common process line. This project emphasized a hybrid approach to integrating optoelectronics and MEMS. Significant progress was made in developing processing capabilities for adding optical function to MEMS components, such as metal mirror coatings and through-vias in the substrate. These processes were used to demonstrate two integration examples, a MEMS discriminator driven by laser illuminated photovoltaic cells and a MEMS shutter or chopper. Another major difficulty with direct integration is providing the optical path for the MEMS components to interact with the light. The authors explored using folded optical paths in a transparent substrate to provide the interconnection route between the components of the system. The components can be surface-mounted by flip-chip bonding to the substrate. Micro-optics can be fabricated into the substrate to reflect and refocus the light so that it can propagate from one device to another and them be directed out of the substrate into free space. The MEMS components do not require the development of transparent optics and can be completely compatible with the current 5-level polysilicon process. They report progress on a MEMS-based laser scanner using these concepts.

  4. Algebraic stacks

    Indian Academy of Sciences (India)

    truct the 'moduli stack', that captures all the information that we would like in a fine moduli space. ..... the fine moduli space), it has the property that for any family W of vector bundles (i.e. W is a vector bundle over B ...... the etale topology is finer: V is a 'small enough open subset' because the square root can be defined on it.

  5. Preliminary evaluation of the gaseous effluent sampling system at the 296-S-18 stack, 242-S evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.; Schwendiman, L.C.

    1977-04-01

    This evaluation of the 296-S-18 stack sampling system is part of a larger study, sponsored by ARHCO and conducted by Battelle-Northwest, of gaseous effluent sampling systems in ARHCO facilities. It is the fourth and last in a series of evaluations of tank farm stack sampling systems. The objectives of this study are: Evaluate the compliance of the existing effluent particulate sampling system with ARHCO`s Interim Criteria for such systems by using sampling theory and radioactivity counting statistics; and make recommendations for corrective action which will lead to a particulate sampling system in compliance with the Interim Criteria. This study is considered preliminary because no experiments have been conducted to verify the sampling system`s performance. The following report includes a brief summary, a detailed description and evaluation of the sampling system, conclusions about satisfactory or deficient areas of the sampling system and recommendations for corrective action. The appendices contain a copy of the Interim Criteria and the applicable ARHCO Emergency Procedure for radioactive gaseous discharges.

  6. Preliminary evaluation of the gaseous effluent sampling system at the 296-S-18 stack, 242-S evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.; Schwendiman, L.C.

    1977-04-01

    This evaluation of the 296-S-18 stack sampling system is part of a larger study, sponsored by ARHCO and conducted by Battelle-Northwest, of gaseous effluent sampling systems in ARHCO facilities. It is the fourth and last in a series of evaluations of tank farm stack sampling systems. The objectives of this study are: Evaluate the compliance of the existing effluent particulate sampling system with ARHCO's Interim Criteria for such systems by using sampling theory and radioactivity counting statistics; and make recommendations for corrective action which will lead to a particulate sampling system in compliance with the Interim Criteria. This study is considered preliminary because no experiments have been conducted to verify the sampling system's performance. The following report includes a brief summary, a detailed description and evaluation of the sampling system, conclusions about satisfactory or deficient areas of the sampling system and recommendations for corrective action. The appendices contain a copy of the Interim Criteria and the applicable ARHCO Emergency Procedure for radioactive gaseous discharges.

  7. Energy Efficient Clustering Based Network Protocol Stack for 3D Airborne Monitoring System

    Directory of Open Access Journals (Sweden)

    Abhishek Joshi

    2017-01-01

    Full Text Available Wireless Sensor Network consists of large number of nodes densely deployed in ad hoc manner. Usually, most of the application areas of WSNs require two-dimensional (2D topology. Various emerging application areas such as airborne networks and underwater wireless sensor networks are usually deployed using three-dimensional (3D network topology. In this paper, a static 3D cluster-based network topology has been proposed for airborne networks. A network protocol stack consisting of various protocols such as TDMA MAC and dynamic routing along with services such as time synchronization, Cluster Head rotation, and power level management has been proposed for this airborne network. The proposed protocol stack has been implemented on the hardware platform consisting of number of TelosB nodes. This 3D airborne network architecture can be used to measure Air Quality Index (AQI in an area. Various parameters of network such as energy consumption, Cluster Head rotation, time synchronization, and Packet Delivery Ratio (PDR have been analyzed. Detailed description of the implementation of the protocol stack along with results of implementation has been provided in this paper.

  8. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  9. High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal management

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.; Colclasure, A. M.; Goldin, G.

    Effective thermal integration of system components is critical to the performance of small-scale (design and simulation tool for a highly-integrated tubular SOFC system. The SOFC is modeled using a high fidelity, one-dimensional tube model coupled to a three-dimensional computational fluid dynamics (CFD) model. Recuperative heat exchange between SOFC tail-gas and inlet cathode air and reformer air/fuel preheat processes are captured within the CFD model. Quasi one-dimensional thermal resistance models of the tail-gas combustor (TGC) and catalytic partial oxidation (CPOx) complete the balance of plant (BoP) and SOFC coupling. The simulation tool is demonstrated on a prototype 66-tube SOFC system with 650 W of nominal gross power. Stack cooling predominately occurs at the external surface of the tubes where radiation accounts for 66-92% of heat transfer. A strong relationship develops between the power output of a tube and its view factor to the relatively cold cylinder wall surrounding the bundle. The bundle geometry yields seven view factor groupings which correspond to seven power groupings with tube powers ranging from 7.6-10.8 W. Furthermore, the low effectiveness of the co-flow recuperator contributes to lower tube powers at the bundle outer periphery.

  10. Development of a dynamic CT system for neutron radiography and consecutive visualization of three-dimensional water behavior in a PEFC stack

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Hashimoto, Michinori; Sugimoto, Katsumi; Asano, Hitoshi; Takenaka, Nobuyuki; Mochiki, Koh-ichi; Yasuda, Ryo

    2011-01-01

    A dynamic CT system was developed for visualization of consecutive three-dimensional water behavior in a PEFC stack for neutron radiography. The system is composed of a neutron image intensifier and a C-MOS high speed video camera. An operating stack with three cells based on the Japan Automobile Research Institute standard was visualized using the neutron radiography system at a research reactor JRR-3 in Japan Atomic Energy Agency. The dynamic water behavior in channels in the operating PEFC stack was clearly visualized every 15 seconds by using the system. The water amount in each cell was evaluated by the CT reconstructed images. It was shown that a cell voltage decreased gradually when the water increased and increased rapidly when the water was evacuated. It was estimated that the power generation stopped when the channel of a cell was partly filled with the water because the air supply was blocked to a cell in the stack. (author)

  11. Femtosecond laser fabrication of hybrid micro-optical elements and their integration on the fiber tip

    Science.gov (United States)

    Malinauskas, Mangirdas; Gilbergs, Holger; Zukauskas, Albertas; Belazaras, Kastytis; Purlys, Vytautas; Rutkauskas, Marius; Bickauskaite, Gabija; Momot, Andrej; Paipulas, Domas; Gadonas, Roaldas; Juodkazis, Saulius; Piskarskas, Algis

    2010-05-01

    Femtosecond laser photo-polymerization of zirconium-silicon based sol-gel photopolymer SZ2080 is used to fabricate micro-optical elements with a single and hybrid optical functions. We demonstrate photo-polymerization of the solid immersion and Fresnel lenses. Gratings can be added onto the surface of lenses. The effective refractive index of polymerized structures can be controlled via the volume fraction of polymer. We used woodpile structure with volume fraction of 0.65-0.8. Tailoring of dispersion properties of micro-optical elements by changing filling ratio of polymer are discussed. Direct write approach is used to form such structures on a cover glass and on the tip of an optical fiber. Close matching of refractive indices between the polymer and substrate in visible and near infra red spectral regions (nSZ2080 = 1.504, nglass = 1.52) is favorable for such integration. The surface roughness of laser-polymerized resits was ~30 nm (min-max value), which is acceptable for optical applications in the visible range. For the bulk micro-optical elements the efficiency of 3D laser polymerization is increased by a factor ~ (2 - 4) × 102 times (depends on the design) by the shell-formation polymerization: (i) contour scanning for definition of shell-surface, (ii) development for removal of nonfunctional resist, and (iii) UV exposure for the final volumetric polymerization of an enclosed volume.

  12. Design of Stack Monitoring System for PET Medical Cyclotron Facilities with Isotope Identification and Released Activity Concentration Measurement

    International Nuclear Information System (INIS)

    Osovizky, A.; Ginzburg, D.; Pushkarsky, V.; Shmidov, D.; Vax, E.; Knafo, Y.; Semyonov, N.; Kaplan, L.; Kadmon, Y.; Cohen, Y.; Mazor, T.

    2014-01-01

    Cyclotrons are commonly used for production of radioactive isotopes utilized for Positron Emission Tomography (PET) imaging and other purposes(1). During the isotopes production process there are routine releases of nonhazardous amounts of radioactive isotopes into the atmosphere. The activity concentration of radioactive effluents, released into the atmosphere are subjected to restrictions by national regulations based on international recommendations(2). Uncontrolled isotopes emission through the ventilation system would increase the radiation hazard potential to nearby population. In order to control and prevent such emissions, monitoring and assessment of the released activity concentration is required. For this purpose, a radiation detection system is required to be installed in the ventilation stack. The design of such a monitoring system should cope with two main difficulties: the capability to detect low concentration level and the capability to accurately assess the emitted activity per released isotope. In this work, we present innovative stack monitoring detection system that combines new detector design, electronics, friendly interface software and unique algorithms that provide a comprehensive solution for the above-mentioned requirements. Activity releases measured by the system are discussed along with calculation for the system sensitivity, detectable level and isotope identification algorithm

  13. The Direct FuelCell™ stack engineering

    Science.gov (United States)

    Doyon, J.; Farooque, M.; Maru, H.

    FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.

  14. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  15. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system

    International Nuclear Information System (INIS)

    Toor, S; Eerola, P; Kraemer, O; Lindén, T; Osmani, L; Tarkoma, S; White, J

    2014-01-01

    The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.

  16. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    Science.gov (United States)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  17. Pressurized electrolysis stack with thermal expansion capability

    Science.gov (United States)

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  18. A real-time stack radioactivity monitoring system and dose projection program

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.P.; Michael, P.A. [Brookhaven National Laboratory, Upton, NY (United States); Bernstein, H.J. [Bernstein & Sons, Bellport, NY (United States)

    1995-02-01

    At Brookhaven National Laboratory, a commercial Low- and High-Range Air Effluent Monitor has become operational at the 60 Mw (t) High Flux Beam Reactor. Its output data is combined with that from ground-level and elevated meteorological sensors to provide a real-time projection of the down-wind dose rates from noble gases and radioiodines released from the HFBR`s 100 m stack. The output of the monitor, and the meteorological sensors and the dose projections can be viewed at emergency response terminals located in the Reactor Control Room, its Technical Support Center and at the laboratory`s separately located Meteorological Station and Monitoring and Assessment Center.

  19. The micro-optic photovoltaic behavior of solar cell along with microlens curved glass substrate

    International Nuclear Information System (INIS)

    Xie, Jin; Wu, Keke; Cheng, Jian; Li, Ping; Zheng, Jiahua

    2015-01-01

    Highlights: • A microlens array may be micro-ground on curved photovoltaic glass substrate. • Its micro-optical structure absorbs and scatters the inclined light to solar cell. • It increases conversion efficiency and fill factor in weak and inclined lights. • It improves electricity generation by about 4 times in scattered cloudy daylight. • It produces stronger electricity generation in cloudy day than in sunny day. - Abstract: A hybrid of microlens structure and curved surface may produce high value-added micro-optic performance. Hence, the microlens array is proposed on macro curved glass substrate of thin film solar cell. The objective is to understand how the micro-optic behavior of microlens curved array influences indoor power conversion efficiency and outdoor electricity generation. First, the absorptivities of visible light and infrared light were analyzed in connection with the curved microlens sizes; then the microlens curved glass substrate was fabricated by a Computer Numerical Control (CNC) micro-grinding with micro diamond wheel V-tip; finally, its photovoltaic properties and electricity generation were measured, respectively. It is shown that the microlens curved surface may strongly absorb and scatter light to solar cell. It increases the absorptivity of visible light against plane surface, but it decreases the one of infrared light against microlens surface. When it is applied to solar cell, it enhances the power conversion efficiency by 3.4–10.6% under oblique illumination. When it is applied to solar device, it increases the electricity generation of daylight by 119–106% against microlens surface and by 260–419% against traditional plane surface, respectively. The surprising finding is that it produces much larger electricity generation during cloudy day than during sunny day, but traditional plane surface does not so

  20. High-throughput Three-dimensional Gel Electrophoresis for Versatile Utilities: A Stacked Slice-gel System for Separation and Reactions (4SR)

    OpenAIRE

    Salimullah, Md.; Mori, Masaki; Nishigaki, Koichi

    2006-01-01

    A novel high-throughput system, called the stacked slice-gel system for separation and reactions (4SR), was developed for the analysis of DNA/RNA and protein/peptide. The system provides a novel three-dimensional gel electrophoresis approach that exploits the property of stacked slice gels. It allows multiple samples simultaneously to react as well as to be separated, offering a two-dimensional (m ? n) sample loading system. For this purpose, high-throughput multi-micro vessels (MMVs) contain...

  1. Development of "Purple Endosperm Rice" by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System.

    Science.gov (United States)

    Zhu, Qinlong; Yu, Suize; Zeng, Dongchang; Liu, Hongmei; Wang, Huicong; Yang, Zhongfang; Xie, Xianrong; Shen, Rongxin; Tan, Jiantao; Li, Heying; Zhao, Xiucai; Zhang, Qunyu; Chen, Yuanling; Guo, Jingxing; Chen, Letian; Liu, Yao-Guang

    2017-07-05

    Anthocyanins have high antioxidant activities, and engineering of anthocyanin biosynthesis in staple crops, such as rice (Oryza sativa L.), could provide health-promoting foods for improving human health. However, engineering metabolic pathways for biofortification remains difficult, and previous attempts to engineer anthocyanin production in rice endosperm failed because of the sophisticated genetic regulatory network of its biosynthetic pathway. In this study, we developed a high-efficiency vector system for transgene stacking and used it to engineer anthocyanin biosynthesis in rice endosperm. We made a construct containing eight anthocyanin-related genes (two regulatory genes from maize and six structural genes from Coleus) driven by the endosperm-specific promoters,plus a selectable marker and a gene for marker excision. Transformation of rice with this construct generated a novel biofortified germplasm "Purple Endosperm Rice" (called "Zijingmi" in Chinese), which has high anthocyanin contents and antioxidant activity in the endosperm. This anthocyanin production results from expression of the transgenes and the resulting activation (or enhancement) of expression of 13 endogenous anthocyanin biosynthesis genes that are silenced or expressed at low levels in wild-type rice endosperm. This study provides an efficient, versatile toolkit for transgene stacking and demonstrates its use for successful engineering of a sophisticated biological pathway, suggesting the potential utility of this toolkit for synthetic biology and improvement of agronomic traits in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  2. Development of fast data processing electronics for a stacked x-ray detector system with application as a polarimeter

    Science.gov (United States)

    Maier, Daniel; Dick, Jürgen; Distratis, Giuseppe; Kendziorra, Eckhard; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph; Warth, Gabriele

    2012-09-01

    We have assembled a stacked setup consisting of a soft and hard X-ray detector with cooling capability and control-, readout-, and data processing electronics at the Institut für Astronomie und Astrophysik Tübingen (IAAT). The detector system is a 64 ×64 DePFET-Matrix in front of a CdTe-Caliste module. The detectors were developed at the Max-Planck Institute Semiconductor Laboratory (HLL) in Neuperlach and the Commissariat a l'Energie Atomique (CEA) in Saclay, respectively. In this combined structure the DePFET detector works as Low Energy Detector (LED) while the Caliste module (HED) only detects the high energy photons that have passed through the LED. In this work we present the current status of the setup. Furthermore, an intended application of the detector system as a polarimeter is described.

  3. Development and durability of SOFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Beeaff, D.; Dinesen, A.R.; Mikkelsen, Lars; Nielsen, Karsten A.; Solvang, M.; Hendriksen, Peter V.

    2004-12-01

    The present project is a part of the Danish SOFC programme, which has the overall aim of establishing a Danish production of SOFC - cells, stacks and systems for economical and environmentally friendly power production. The aim of the present project was to develop and demonstrate (on a small scale, few cells, few thousand hours) a durable, thermally cyclable stack with high performance at 750 deg. C. Good progress towards this target has been made and demonstrated at the level of stack-elements (one cell between two interconnects) or small stacks (3 5 cells). Three different stacks or stack-elements have been operated for periods exceeding 3000 hr. The work has covered development of stack-components (seals, interconnects, coatings, contact layers), establishment of procedures for stack assembly and initiation, and detailed electrical characterisation with the aims of identifying performance limiting factors as well as long term durability. Further, post test investigations have been carried out to identify possible degradation mechanisms. (BA)

  4. Micro optical fiber light source and sensor and method of fabrication thereof

    Science.gov (United States)

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  5. Potential applications of micro-optic technology for next-generation fibre optic connectivity solutions exploitable in access networks

    Science.gov (United States)

    Watté, Jan; Petersen, Rainer

    2010-05-01

    The potential of fibre-optic connectivity based on micro-optical components for deployment at particular nodes of telecom access networks will be addressed. Low-cost micro-optic components which can be manufactured by high volume replication techniques can provide new functionalities or lead to optical performance improvements of permanent or demateable fibre connections. Some of the most interesting applications involving refractive micro lenses and new fibre alignment structures will be highlighted. Numerical simulations will be presented showing that expanded beam connectors are more robust to pollution than physical contact ferrule-based connectors. The advantages and drawbacks of expanded beam fibre coupling versus physical contact connectivity based on existing and micro-optical structures are discussed.

  6. Fabrication of Micro-Optics Elements with Arbitrary Surface Profiles Based on One-Step Maskless Grayscale Lithography

    Directory of Open Access Journals (Sweden)

    Qinyuan Deng

    2017-10-01

    Full Text Available A maskless lithography method to realize the rapid and cost-effective fabrication of micro-optics elements with arbitrary surface profiles is reported. A digital micro-mirror device (DMD is applied to flexibly modulate that the exposure dose according to the surface profile of the structure to be fabricated. Due to the fact that not only the relationship between the grayscale levels of the DMD and the exposure dose on the surface of the photoresist, but also the dependence of the exposure depth on the exposure dose, deviate from a linear relationship arising from the DMD and photoresist, respectively, and cannot be systemically eliminated, complicated fabrication art and large fabrication error will results. A method of compensating the two nonlinear effects is proposed that can be used to accurately design the digital grayscale mask and ensure a precise control of the surface profile of the structure to be fabricated. To testify to the reliability of this approach, several typical array elements with a spherical surface, aspherical surface, and conic surface have been fabricated and tested. The root-mean-square (RMS between the test and design value of the surface height is about 0.1 μm. The proposed method of compensating the nonlinear effect in maskless lithography can be directly used to control the grayscale levels of the DMD for fabricating the structure with an arbitrary surface profile.

  7. A generic-tee-plenum mixing system for application to single point aerosol sampling in stacks and ducts.

    Science.gov (United States)

    Han, Taewon; O'Neal, Dennis L; Ortiz, Carlos A

    2007-01-01

    The ANSI/HPS-N13.1-1999 standard is based on the concept of obtaining a single point representative sample from a location where the velocity and contaminant profiles are relatively uniform. It is difficult to predict the level of mixing in an arbitrary stack or duct without experimental data to meet the ANSI/HPS N13.1-1999 requirements. The goal of this study was to develop experimental data for a range of conditions in "S" (S-shaped configuration) duct systems with different mixing elements and "S" systems having one or two mixing elements. Results were presented in terms of the coefficients of variation (COVs) for velocity, tracer gas, and 10-mum aerodynamic diameter (AD) aerosol particle profiles at different downstream locations for each mixing element. Five mixing elements were tested, including a 90 degrees elbow, a commercial static mixer, a Small-Horizontal Generic-Tee-Plenum (SH-GTP), a Small-Vertical Generic-Tee-Plenum (SV-GTP), and a Large-Horizontal Generic-Tee-Plenum (LH-GTP) system. The COVs for velocity, gas concentration, and aerosol particles for the three GTP systems were all determined to be less than 8%. Tests with two different sizes of GTPs were conducted, and the results showed the performance of the GTPs was relatively unaffected by either size or velocity as reflected by the Reynolds number. The pressure coefficients were 0.59, 0.57, and 0.65, respectively, for the SH-GTP, SV-GTP, and LH-GTP. The pressure drop for the GTPs was approximately twice that of the round elbow, but a factor of 5 less than a Type IV Air Blender. The GTP was developed to provide a sampling location less than 4-duct diameters downstream of a mixing element with low pressure drop condition. The object of the developmental effort was to provide a system that could be employed in new stack; however, the concept of GTPs could also be retrofitted onto existing system applications as well. Results from these tests show that the system performance is well within the ANSI

  8. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m Class System

    Science.gov (United States)

    Cheatwood, F. McNeil; Swanson, Gregory T.; Johnson, R. Keith; Hughes, Stephen; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and

  9. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  10. Resonant micro optic gyro using tens of centimeters long optical fiber coil

    Science.gov (United States)

    Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe

    2015-02-01

    A resonant micro optic gyro (RMOG) is a promising candidate for applications requiring small, light and robust gyros. A high-performance RMOG requires a low-loss micro-ring resonator, and thus a resonator having a high finesse. We experimentally create a new record for high-finesse micro-ring resonators by using 30-cm long low-loss fiber coils laid into the V-groove on a silicon substrate. Both the simulation and experimental results indicate that the 30-cm long micro-ring resonator is sufficient to build a tactical-grade RMOG. Experimentally, a bias stability of 0.046°/s in 1800 s with an integration time of 1 s is successfully demonstrated.

  11. Label-free brainwide visualization of senile plaque using cryo-micro-optical sectioning tomography.

    Science.gov (United States)

    Luo, Yilin; Wang, Anle; Liu, Mengmeng; Lei, Tian; Zhang, Xiaochuan; Gao, Zhaobing; Jiang, Hualiang; Gong, Hui; Yuan, Jing

    2017-11-01

    Optical visualization of pathological changes in Alzheimer's disease (AD) can facilitate exploration of disease mechanisms and treatments. However, existing optical imaging methods have limitations on mapping pathological evolution in the whole mouse brain. Previous research indicated endogenous fluorescence contrast of senile plaques. Therefore, we develop cryo-micro-optical sectioning tomography (cryo-MOST) to capture intrinsic fluorescence distribution of senile plaques at a micrometer-level resolution in the whole brain. Validation using immunofluorescence demonstrates the capacity of cryo-MOST to visualize and distinguish senile plaques with competent sensitivity and spatial resolution. Compared with imaging in room temperature, cryo-MOST provides better signal intensity and signal-to-noise ratio. Using cryo-MOST, we obtained whole-brain coronal distribution of senile plaques in a transgenic mouse without exogenous dye. Capable of label-free brainwide visualization of Alzheimer's pathology, cryo-MOST may be potentially useful for understanding neurodegenerative disease mechanisms and evaluating drug efficacy.

  12. PEM fuel stack dynamics, constraining supervisory control for propulsion systems in fuel cell busses

    NARCIS (Netherlands)

    Edwin Tazelaar; E. Middelman; P. van den Bosch; Bram Veenhuizen

    2013-01-01

    The last decade several prototypes of fuel cell busses have been presented [1, 2]. A closer observation of these prototypes shows remarkable differences in both sizing and control of the system components. Some busses are essentially electric vehicles with a relative low power fuel cell system used

  13. A comparison of approximate and exact modes in few-mode micro-optical fibers

    Science.gov (United States)

    Flores-Bravo, J. A.; Martínez-Piñón, F.; Pérez-Sánchez, G. G.

    2017-08-01

    An analysis of different cases of few-mode micro-optical fibers from 10 to 1 microns in diameter is performed based on solving the eigenvalue equation using both the weak guidance approximation (scalar LP modes) when the refractive index difference is small, and the exact full eigenvalue equation (vector TE, TM, HE and EH modes), when the refractive index difference is large, for example having air or a gas as the surrounding medium. One of the objectives of this analysis is to show at what point the propagation constant and optical field intensity of the fundamental modes LP01 and HE11 differ significantly depending of the refractive index difference, the other objective is to find out the evolution of the other modes along the final tapered section in a few mode fiber taper. The graphical behavior of the solutions of the eigenvalue equation is presented and the optical intensity distributions are calculated for different sizes, as for example in adiabatic tapers to evaluate the extent of the evanescent field. In general, the propagation constant and effective refractive index depends on the size of the core waveguide diameter, the refractive index difference and the wavelength. This analysis is useful to calculate the extension of the evanescent field in liquids or gases for optical fiber sensors that can be used to model, for example, fluorescent optical fiber sensors for biological or industrial applications. Additionally, the propagation characteristics of the few-mode micro optical fiber could be controlled or tuned by changing the refractive index of the surrounding media by changing, for example, its temperature.

  14. A New Non-Destructive TDR System Combined with a Piezoelectric Stack for Measuring Properties of Geomaterials

    Directory of Open Access Journals (Sweden)

    Chanyong Choi

    2016-06-01

    Full Text Available Dry density and water content are two important factors affecting the degree of soil compaction. Conventional methods such as the sand cone test and the plate load test are used to measure such properties for evaluating the degree of compaction and the stiffness of soil in the field. However, these tests are generally very time-consuming and are inherent with some errors depending on the operator (in particular for the sand cone test. Elastic modulus is an indicator to describe the stress-strain behavior of soil and in some cases is used as a design input parameter. Although a rod type TDR (Time Domain Reflectometry system has been recently proposed to overcome some shortcomings of the conventional methods (particularly the sand cone test, it requires driving the probes into the ground, thus implying that it is still a time-consuming and destructive testing method. This study aims to develop a new non-destructive TDR system that can rapidly measure the dry density, water content, and elastic modulus of soil on the surface of compacted soil, without disturbing the ground. In this study, the Piezoelectric Stack, which is an instrument for measuring the elastic modulus of soil, has been added to the TDR system with a flat type probe, leading to a non-destructive TDR system that is capable of measuring the dry density, water content, and elastic modulus of soil. The new TDR system developed is light enough for an engineer to carry. Results of the standard compaction and TDR tests on sand showed that the dry densities and the moisture contents measured with the new TDR system were in good agreement with those measured with the standard compaction test, respectively. Consequently, it appears that the new TDR system developed will be very useful to advance the current practice of compaction quality control.

  15. Start-Stop Test Procedures on the PEMFC Stack Level

    DEFF Research Database (Denmark)

    Mitzel, Jens; Nygaard, Frederik; Veltzé, Sune

    The test is addressed to investigate the influence on stack durability of a long stop followed by a restart of a stack. Long stop should be defined as a stop in which the anodic compartment is fully filled by air due to stack leakages. In systems, leakage level of the stack is low and time to fil...

  16. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin

    2015-01-01

    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  17. Exhaust-stack nozzle area and shape for individual cylinder exhaust-gas jet-propulsion system

    Science.gov (United States)

    Pinkel, Benjamin; Turner, Richard; Voss, Fred; Humble, Leroy V

    1943-01-01

    This report presents the results of an investigation conducted on the effect of exhaust-stack nozzle area, shape, and length on engine power, jet thrust, and gain in net thrust (engine propeller plus jet). Single-cylinder engine data were obtained using three straight stacks 25, 44, and 108 inches in length; an S-shaped stack, a 90 degree bend, a 180 degree bend, and a short straight stack having a closed branch faired into it. Each stack was fitted with nozzles varying in exit area from 0.91 square inch to the unrestricted area of the stack of 4.20 square inches. The engine was generally operated over a range of engine speeds from 1300 to 2100 r.p.m, inlet-manifold pressures from 22 to 30 inches of mercury absolute, and a fuel-air ratio of 0.08. The loss in engine power, the jet thrust, and the gain in net thrust are correlated in terms of several simple parameters. An example is given for determining the optimum nozzle area and the overall net thrust.

  18. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...... way for estimating the hydration status and the temperature of its membrane before the system is started up. A summarizing table with the complete characterization of the fuel cell stack is included in this article....

  19. Using an ontology pattern stack to engineer a core ontology of Accounting Information Systems

    NARCIS (Netherlands)

    Blums, Ivar; Weigand, Hans

    Although the field of Accounting Information Systems (AIS) has a long tradition, there is still a lack of a widely adopted conceptualization. In this paper, The UFO ontology patterns are regarded for application by analogy and extension in the engineering of a core ontology for AIS. The new IASB

  20. Fluxons and their interactions in a system of three stacked Josephson junctions

    DEFF Research Database (Denmark)

    Corria, Carlos; Christiansen, Peter Leth; Gaididei, Yuri Borisovich

    2003-01-01

    Fluxon dynamics in a system of three coupled driven damped sine-Gordon equations is investigated. Bunching of fluxons is observed. It is shown that fluxon-fluxon-fluxon bound states exist in a certain interval of the fluxon velocity. Attraction between fluxons occurs as a result of indirect fluxo...

  1. Finding diversity for building one-day ahead Hydrological Ensemble Prediction System based on artificial neural network stacks

    Science.gov (United States)

    Brochero, Darwin; Anctil, Francois; Gagné, Christian; López, Karol

    2013-04-01

    In this study, we addressed the application of Artificial Neural Networks (ANN) in the context of Hydrological Ensemble Prediction Systems (HEPS). Such systems have become popular in the past years as a tool to include the forecast uncertainty in the decision making process. HEPS considers fundamentally the uncertainty cascade model [4] for uncertainty representation. Analogously, the machine learning community has proposed models of multiple classifier systems that take into account the variability in datasets, input space, model structures, and parametric configuration [3]. This approach is based primarily on the well-known "no free lunch theorem" [1]. Consequently, we propose a framework based on two separate but complementary topics: data stratification and input variable selection (IVS). Thus, we promote an ANN prediction stack in which each predictor is trained based on input spaces defined by the IVS application on different stratified sub-samples. All this, added to the inherent variability of classical ANN optimization, leads us to our ultimate goal: diversity in the prediction, defined as the complementarity of the individual predictors. The stratification application on the 12 basins used in this study, which originate from the second and third workshop of the MOPEX project [2], shows that the informativeness of the data is far more important than the quantity used for ANN training. Additionally, the input space variability leads to ANN stacks that outperform an ANN stack model trained with 100% of the available information but with a random selection of dataset used in the early stopping method (scenario R100P). The results show that from a deterministic view, the main advantage focuses on the efficient selection of the training information, which is an equally important concept for the calibration of conceptual hydrological models. On the other hand, the diversity achieved is reflected in a substantial improvement in the scores that define the

  2. Manufacturing Challenges and Benefits When Scaling the HIAD Stacked-Torus Aeroshell to a 15 Meter Class System

    Science.gov (United States)

    Swanson, G. T.; Cheatwood, F. M.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6 meters, with cone angles of 60 and 70 degrees. To meet NASA and commercial near-term objectives, the HIAD team must scale the current technology up to 12-15 meters in diameter. Therefore, the HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6-meter to a 15-meter class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15-meter-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6-meter aeroshell (the largest HIAD built to date), a 12-meter aeroshell has four times the cross-sectional area, and a 15-meter one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the

  3. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m-Class System

    Science.gov (United States)

    Swanson, Gregory; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. Therefore, the HIAD projects experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m-class system will introduce many new structural and logistical challenges to an already complicated manufacturing process.Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to ac-count for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori

  4. Generalized data stacking programming model with applications

    Directory of Open Access Journals (Sweden)

    Hala Samir Elhadidy

    2016-09-01

    Full Text Available Recent researches have shown that, everywhere in various sciences the systems are following stacked-based stored change behavior when subjected to events or varying environments “on and above” their normal situations. This paper presents a generalized data stack programming (GDSP model which is developed to describe the system changes under varying environment. These changes which are captured with different ways such as sensor reading are stored in matrices. Extraction algorithm and identification technique are proposed to extract the different layers between images and identify the stack class the object follows; respectively. The general multi-stacking network is presented including the interaction between various stack-based layering of some applications. The experiments prove that the concept of stack matrix gives average accuracy of 99.45%.

  5. Research and development of molten carbonate fuel cell power generation systems. ; Development of stacks and peripheral systems. Yoyu tansan'engata nenryo denchi hatsuden system no kenkyu kaihatsu. ; Sutakku oyobi shuhen system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This paper reports research and development of molten carbonate fuel cell power generation systems of composite large-capacity type, variation large-capacity type, and internal reforming type. Development works on the composite large-capacity type stacks included trial fabrication of basic modules and composite large-capacity cells, development of high-performance long-life electrodes, electrolyte plates, and high corrosion resistant cell constitutive materials, heat resistant cycling tests and life tests, and development of a technology to use higher pressures in fuel cells, and a technology to cool and seal laminar cells. Development works on the variation large-capacity stacks have performed studies on electrode life extension, pressurized operation technologies, tightening methods, fabrication of thin plate processed separators, electrodes, and electrolyte plates, power generation tests on large-area cells, and cooling characteristics analysis. In order to establish an internal reforming fuel cell technology, elucidation has been given on deactivation mechanisms in internal reforming catalysts, as well as discussions on structures of internal reforming fuel cells. As stack operational researches, evaluation tests have been given on 10-kW and 100-kW class stacks. Discussions have been given on heat exchange type and two-step catalyst combustion type reformers as peripheral devices. 26 figs., 6 tabs.

  6. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules.

    Science.gov (United States)

    Ahn, Geunseon; Min, Kyung-Hyun; Kim, Changhwan; Lee, Jeong-Seok; Kang, Donggu; Won, Joo-Yun; Cho, Dong-Woo; Kim, Jun-Young; Jin, Songwan; Yun, Won-Soo; Shim, Jin-Hyung

    2017-08-17

    Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 °C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.

  7. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    completely. Thus, in systems with hard deadlines the worst-case execution time (WCET) of the real-time software running on them needs to be bounded. Modern architectures use features such as pipelining and caches for improving the average performance. These features, however, make the WCET analysis more...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore...

  8. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    Science.gov (United States)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and

  9. Silica waveguide-type ring resonators for resonant micro-optic gyroscopes

    Science.gov (United States)

    Lin, Yi; Zhang, Jianjie; Li, Hanzhao; Ma, Huilian; Jin, Zhonghe

    2017-10-01

    The resonant micro-optic gyroscope (RMOG) is an attractive candidate for inertial rotation sensors requiring small, light and robust gyros. A high-performance RMOG needs a low-loss and high finesse waveguide-type ring resonator (WRR). Two general configurations of the WRRs which are made of Ge-doped silica core waveguides based on plasma enhanced chemical vapor deposition including the reflector-type and the transmitter-type are introduced. The reflector-type WRR with a length of 7.9 cm and a diameter of 2.5 cm has a finesse of 196.7 and a resonant depth of 98%. In addition, it's pigtailed with single-polarization fiber to reduce the polarization error. The transmitter-type WRR with a length of 15.9 cm and a diameter of 5.06 cm has a finesse of 128 and a resonant depth of 95%. The waveguide loss low as 0.007 dB/cm has been measured, leading to the shot-noise limited sensitivity of 1.0°/h when the average optical power at the input of the photodetector is 1 mW and the detecting bandwidth is 1 Hz.

  10. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  11. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  12. System effects in sample self-stacking CZE: Single analyte peak splitting of salt-containing samples

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2009-01-01

    Roč. 30, č. 5 (2009), s. 866-874 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA AV ČR IAA400310609; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : CZE * peak splitting * self-stacking Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.077, year: 2009

  13. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  14. Tunable electro-optic filter stack

    Energy Technology Data Exchange (ETDEWEB)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  15. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  16. Imaging neutrophil migration dynamics using micro-optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Chu, Kengyeh K.; Yonker, Lael; Som, Avira; Pazos, Michael; Kusek, Mark E.; Hurley, Bryan P.; Tearney, Guillermo J.

    2016-03-01

    Neutrophils are immune cells that undergo chemotaxis, detecting and migrating towards a chemical signal gradient. Neutrophils actively migrate across epithelial boundaries, interacting with the epithelium to selectively permit passage without compromising the epithelial barrier. In many inflammatory disorders, excessive neutrophil migration can cause damage to the epithelium itself. The signaling pathways and mechanisms that facilitate trans-epithelial migration are not fully characterized. Our laboratory has developed micro-optical coherence tomography (μOCT), which has 2 μm lateral resolution and 1 μm axial resolution. As a high-resolution native contrast modality, μOCT can directly visualize individual neutrophils as they interact with a cell layer cultured on a transwell filter. A chemoattractant can be applied to the apical side of inverted monolayer, and human neutrophils placed in the basolateral compartment, while μOCT captures 3D images of the chemotaxis. μOCT images can also generate quantitative metrics of migration volume to study the dependence of chemotaxis on monolayer cell type, chemoattractant type, and disease state of the neutrophils. For example, a disease known as leukocyte adhesion deficiency (LAD) can be simulated by treating neutrophils with antibodies that interfere with the CD18 receptor, a facilitator of trans-epithelial migration. We conducted a migration study of anti-CD18 treated and control neutrophils using T84 intestinal epithelium as a barrier. After one hour, μOCT time-lapse imaging indicated a strong difference in the fraction of neutrophils that remain attached to the epithelium after migration (0.67 +/- 0.12 attached anti-CD18 neutrophils, 0.23 +/- 0.08 attached control neutrophils, n = 6, p < 0.05), as well as a modest but non-significant decrease in total migration volume for treated neutrophils. We can now integrate μOCT-derived migration metrics with simultaneously acquired measurements of transepithelial electrical

  17. DEVS Models of Palletized Ground Stacking in Storeyed Grain Warehouse

    Directory of Open Access Journals (Sweden)

    Hou Shu-Yi

    2016-01-01

    Full Text Available Processed grain stored in storeyed warehouse is generally stacked on the ground without pallets. However, in order to improve the storing way, we developed a new stacking method, palletized ground stacking. Simulation should be used to present this new storing way. DEVS provides a formalized way to describe the system model. In this paper, DEVS models of palletized ground stacking in storeyed grain warehouse are given and a simulation model is developed by AutoMod.

  18. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    Science.gov (United States)

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  19. Generalized data stacking programming model with applications

    OpenAIRE

    Hala Samir Elhadidy; Rawya Yehia Rizk; Hassen Taher Dorrah

    2016-01-01

    Recent researches have shown that, everywhere in various sciences the systems are following stacked-based stored change behavior when subjected to events or varying environments “on and above” their normal situations. This paper presents a generalized data stack programming (GDSP) model which is developed to describe the system changes under varying environment. These changes which are captured with different ways such as sensor reading are stored in matrices. Extraction algorithm and identif...

  20. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  1. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems...... fed with air whose temperature and relative humidity were controlled, and its complex impedance was measured at different frequencies and for different values of relative humidity. After showing that the experiment was repeatable, the fuel cell stack was characterized, a power regression model...... was applied, and the relationship between module of impedance and relative humidity was found. The results showed that measuring the impedance of a fuel cell during standby can be a viable way for estimating the hydration status of its membrane....

  2. Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator

    Science.gov (United States)

    Nowak, Krzysztof M.; Baker, Howard J.; Hall, Denis R.

    2003-04-01

    Laser ablation and laser smoothing of silica is investigated as a method of manufacturing custom micro-optics for use with high-power, diode laser arrays. A highly flexible machining regime has been identified that uses 30 to 60 microseconds square pulses, generated from a stabilized CO2 laser by an acousto-optical modulator (AOM). Refractive optical surfaces with apertures of 1 mm x 1 mm have been generated by the multi-pulse, raster scanning method with cut depths in the range of 10 to 30 μm controlled to an accuracy of better than 150 nm. A subsequent laser "fire polishing" step to smooth out the surface, using the same laser system as for machining, but in a long pulse mode at an energy fluence that just avoids further ablation of the surface. The objective of the research is to produce rapid prototyping of arrays of refractive elements, to avoid the tooling or mask-writing steps of alternative methods. A particular interest is in the generation of corrective optical elements to improve the beam quality of arrays of diode laser bars.

  3. Environmental Modeling Framework using Stacked Gaussian Processes

    OpenAIRE

    Abdelfatah, Kareem; Bao, Junshu; Terejanu, Gabriel

    2016-01-01

    A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of quantities of interest with quantified uncertainties. The main applications of the StackedGP framework are to integrate different datasets through model composition, enhance predictions of quantities of interest through a cascade of intermediate predictions, and to propagate uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first an...

  4. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  5. On Stack Reconstruction Problem

    Directory of Open Access Journals (Sweden)

    V. D. Аkeliev

    2009-01-01

    Full Text Available The paper describes analytical investigations that study relation of fuel combustion regimes with concentration values of sulphur anhydride in flue gases and acid dew point. Coefficients of convective heat transfer at internal and external surfaces of stacks have been determined in the paper. The paper reveals the possibility to reconstruct stacks while using gas discharging channel made of composite material on the basis of glass-reinforced plastic which permits to reduce thermo-stressed actions on reinforced concrete and increase volume of released gases due to practically two-fold reduction of gas-dynamic pressure losses along the pipe length.

  6. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  7. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  8. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to le...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures.......Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...

  9. po_stack_movie

    DEFF Research Database (Denmark)

    2009-01-01

    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  10. Investigation of an optical method for determining the average radius of curvature of micro-optical lenticular lens arrays

    DEFF Research Database (Denmark)

    Iversen, Theis Faber Quist; Hanson, Steen Grüner; Kirkegaard, Peter

    2009-01-01

    variations that have arisen in the moulding process. The experimental results are compared with a model, based on the Fraunhofer approximation to the Huygens-Fresnel principle. Furthermore, the optical elements under investigation are probed using a scanning probe microscope. Hence, access to accurate......Micro-optical elements are of great importance in areas of optoelectronics and information processing. Establishing fast, reliable methods for characterization and quality control of these elements is important in order to maintain the optical performance in a high volume production process. We...... investigate an optical technique, applied to a polymer-based, injection moulded, lenticular array, but the method is also applicable for the tooling for these elements. The cylindrical lenses have feature sizes of 1-15 mu m. The method is based on observation of the intensity distribution, which can...

  11. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, determination of the limits of safe operation and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires applica...... out at a range of ac perturbation amplitudes in order to investigate linearity of the response and the signal-to-noise ratio. Separation of the measured impedance into series and polarisation resistances was possible....... to analyse in detail. Today one is forced to use mathematical modelling to extract information about existing gradients and cell resistances in operating stacks, as mature techniques for local probing are not available. This type of spatially resolved information is essential for model refinement...... and validation, and helps to further the technological stack development. Further, more detailed information obtained from operating stacks is essential for developing appropriate process monitoring and control protocols for stack and system developers. An experimental stack with low ohmic resistance from Topsoe...

  12. Energy Expenditure of Sport Stacking

    Science.gov (United States)

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.

    2009-01-01

    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  13. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  14. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  15. From Multi to Single Stack Automata

    Science.gov (United States)

    Atig, Mohamed Faouzi

    We investigate the issue of reducing the verification problem of multi-stack machines to the one for single-stack machines. For instance, elegant (and practically efficient) algorithms for bounded-context switch analysis of multi-pushdown systems have been recently defined based on reductions to the reachability problem of (single-stack) pushdown systems [10,18]. In this paper, we extend this view to both bounded-phase visibly pushdown automata (BVMPA) [16] and ordered multi-pushdown automata (OMPA) [1] by showing that each of their emptiness problem can be reduced to the one for a class of single-stack machines. For these reductions, we introduce effective generalized pushdown automata (EGPA) where operations on stacks are (1) pop the top symbol of the stack, and (2) push a word in some (effectively) given set of words L over the stack alphabet, assuming that L is in some class of languages for which checking whether L intersects regular languages is decidable. We show that the automata-based saturation procedure for computing the set of predecessors in standard pushdown automata can be extended to prove that for EGPA too the set of all predecessors of a regular set of configurations is an effectively constructible regular set. Our reductions from OMPA and BVMPA to EGPA, together with the reachability analysis procedure for EGPA, allow to provide conceptually simple algorithms for checking the emptiness problem for each of these models, and to significantly simplify the proofs for their 2ETIME upper bounds (matching their lower-bounds).

  16. The phase equilibria and thermal stability of the long-period stacking ordered phase in the Mg–Cu–Y system

    International Nuclear Information System (INIS)

    Jiang, Min; Su, Xiulan; Li, Hongxiao; Ren, Yuping; Qin, Gaowu

    2014-01-01

    Highlights: • 14H LPSO structure has been confirmed to be stable in the Mg–Cu–Y system. • Partial isothermal sections of the Mg–Cu–Y system from 300 to 450 °C have been established. • Reaction L + α-Mg ↔ 14H + Mg 2 Cu has been determined in the Mg–Cu–Y system. • The thermal stability of the 14H phase in the Mg–Cu–Y system has been well studied. - Abstract: Phase equilibria in the Mg-rich Mg–Cu–Y system at 300, 400 and 450 °C have been experimentally investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), electron probe micro-analyzer (EPMA) and transmission electron microscope (TEM). The results show that a long-period stacking ordered (LPSO) phase 14H is stable in the Mg–Cu–Y system, which is the only one ternary intermetallic compound that gets a thermodynamic equilibrium with the a-Mg phase. The equilibrium 14H phase has a very limited solid solution range, and can be nearly regarded as a ternary stoichiometric compound with a formulae as Mg 91 Cu 4 Y 5 . The thermal stability of the 14H phase in the Mg–Cu–Y system has been well studied, which shows that the 14H phase disappears varying from 442 °C to 490 °C depending on the alloy composition. The isothermal sections of the Mg-rich Mg–Cu–Y system at 300, 400 and 450 °C have been finally established, and moreover, a quasi-peritectic reaction L + α-Mg ↔ 14H + Mg 2 Cu has been determined occurring at 442 °C with an estimated liquid composition of Mg 77 Cu 18 Y 5

  17. Sampled-time control of a microbial fuel cell stack

    Science.gov (United States)

    Boghani, Hitesh C.; Dinsdale, Richard M.; Guwy, Alan J.; Premier, Giuliano C.

    2017-07-01

    Research into microbial fuel cells (MFCs) has reached the point where cubic metre-scale systems and stacks are being built and tested. Apart from performance enhancement through catalysis, materials and design, an important research area for industrial applicability is stack control, which can enhance MFCs stack power output. An MFC stack is controlled using a sampled-time digital control strategy, which has the advantage of intermittent operation with consequent power saving, and when used in a hybrid series stack connectivity, can avoid voltage reversals. A MFC stack comprising four tubular MFCs was operated hydraulically in series. Each MFC was connected to an independent controller and the stack was connected electrically in series, creating a hybrid-series connectivity. The voltage of each MFC in the stack was controlled such that the overall series stack voltage generated was the algebraic sum (1.26 V) of the individual MFC voltages (0.32, 0.32, 0.32 and 0.3). The controllers were able to control the individual voltages to the point where 2.52 mA was drawn from the stack at a load of 499.9 Ω (delivering 3.18 mW). The controllers were able to reject the disturbances and perturbations caused by electrical loading, temperature and substrate concentration.

  18. Stack Caching Using Split Data Caches

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Schoeberl, Martin

    2015-01-01

    In most embedded and general purpose architectures, stack data and non-stack data is cached together, meaning that writing to or loading from the stack may expel non-stack data from the data cache. Manipulation of the stack has a different memory access pattern than that of non-stack data, showing...... higher temporal and spatial locality. We propose caching stack and non-stack data separately and develop four different stack caches that allow this separation without requiring compiler support. These are the simple, window, and prefilling with and without tag stack caches. The performance of the stack...

  19. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  20. Use of impedance tagging to monitor fuel cell stack performance

    Science.gov (United States)

    Silva, Gregory

    Fuel cells are electrochemical device that are traditionally assembled in stacks to perform meaningful work. Monitoring the state of the stack is vitally important to ensure that it is operating efficiently and that constituent cells are not failing for one of a several common reasons including membrane dehydration, gas diffusion layer flooding, reactant starvation, and physical damage. Current state-of-the-art monitoring systems are costly and require at least one connection per cell on the stack, which introduces reliability concerns for stacks consisting of hundreds of cells. This thesis presents a novel approach for diagnosing problems in a fuel cell stack that attempts to reduce the cost and complexity of monitoring cells in a stack. The proposed solution modifies the electrochemical impedance spectroscopy (EIS) response of each cell in the stack by connecting an electrical tag in parallel with each cell. This approach allows the EIS response of the entire stack to identify and locate problems in the stack. Capacitors were chosen as tags because they do not interfere with normal stack operation and because they can generate distinct stack EIS responses. An experiment was performed in the Center for Automation Technologies an Systems (CATS) fuel cell laboratory at Rensselaer Polytechnic Institute (RPI) to perform EIS measurements on a single cell with and without capacitor tags to investigate the proposed solution. The EIS data collected from this experiment was used to create a fuel cell model to investigate the proposed solution under ideal conditions. This thesis found that, although the concept shows some promise in simulations, significant obstacles to implementing the proposed solution. Observed EIS response when the capacitor tags were connected did not match the expected EIS response. Constraints on the capacitor tags found by the model impose significant manufacturing challenges to the proposed solution. Further development of the proposed solution is

  1. Towards PLDA-RBM based speaker recognition in mobile environment: Designing stacked/deep PLDA-RBM systems

    DEFF Research Database (Denmark)

    Nautsch, Andreas; Hao, Hong; Stafylakis, Themos

    2016-01-01

    The vast majority of text-independent speaker recognition systems rely on intermediate-sized vectors (i-vectors), which are compared by probabilistic linear discriminant analysis (PLDA). This paper proposes a PLDA-alike approach with restricted Boltzmann machines for i-vector based speaker...... for mobile speaker recognition with limited amounts of training data. The experiments show that the proposed system outperforms the baseline i-vector/PLDA approach by relative gains of 31% on female and 9% on male speakers in terms of half total error rate....

  2. Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Andreasen, Søren Juhl; Rasmussen, Peder Lund

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modeling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing the d...

  3. A novel configuration for direct internal reforming stacks

    Science.gov (United States)

    Fellows, Richard

    This paper presents a stack concept that can be applied to both molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) internal reforming stacks. It employs anode recycle and allows the design of very simple system configurations, while giving enhanced efficiencies and high specific power densities. The recycle of anode exit gas to the anode inlet has previously been proposed as a means of preventing carbon deposition in direct internal reforming (DIR) stacks. When applied to a normal stack this reduces the Nernst voltages because the recycle stream is relatively depleted in hydrogen. In the concept proposed here, known as the `Smarter' stack, there are two anode exit streams, one of which is depleted, while the other is relatively undepleted. The depleted stream passes directly to the burner, and the undepleted stream is recycled to the stack inlet. By this means high Nernst voltages are achieved in the stack. The concept has been simulated and assessed for parallel-flow and cross-flow MCFC and SOFC stacks and graphs are presented showing temperature distributions. The `Smarter' stacks employ a high recycle rate resulting in a reduced natural gas concentration at the stack inlet, and this reduces or eliminates the unfavourable temperature dip. Catalyst grading can further improve the temperature distribution. The concept allows simple system configurations in which the need for fuel pre-heat is eliminated. Efficiencies are up to 10 percentage points higher than for conventional stacks with the same cell area and maximum stack temperature. The concept presented here was devised in a project part-funded by the EU, and has been adopted by the European Advanced DIR-MCFC development programme led by BCN.

  4. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  5. Passive stack ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.; Parkins, L.; Shaw, P.; Watkins, R. [Databuild, Birmingham (United Kingdom)

    1994-12-31

    The adequate ventilation of houses is essential for both the occupants and the building fabric. As air-tightness standards increase, background infiltration levels decrease and extra ventilation has to be designed into the building. Passive stack ventilation has many advantages - particularly when employed in low cost housing schemes -but it is essential that it performs satisfactorily. This paper give the results from monitoring two passive stack ventilation schemes. One scheme was a retrofit into refurbished local authority houses in which a package of energy efficiency measures had been taken and condensation had been a problem. The other series of tests were conducted on a new installation in a Housing Association development. Nine houses were monitored each of which had at least two passive vents. The results show air flow rates by the passive ducts equivalent to approximately 1 room air change per hour. The air flow in the ducts was influenced by both, internal to external temperature difference and wind speed and direction. (author)

  6. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  7. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  8. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    Science.gov (United States)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  9. 3D laser printing by ultra-short laser pulses for micro-optical applications: towards telecom wavelengths

    Science.gov (United States)

    Ryu, Meguya; Mizeikis, Vygantas; Morikawa, Junko; Magallanes, Hernando; Brasselet, Etienne; Varapnickas, Simonas; Malinauskas, Mangirdas; Juodkazis, Saulius

    2017-08-01

    Three dimensional (3D) fast (printing of micro-optical elements down to sub-wavelength resolution over 100 μm footprint areas using femtosecond (fs-)laser oscillator is presented. Using sub-1 nJ pulse energies, optical vortex generators made of polymerised grating segments with an azimuthally changing orientation have been fabricated in SZ2080 resist; width of polymerised rods was 150 nm and period 0.6-1 μm. Detailed phase retardance analysis was carried out manually with Berek compensator (under a white light illumination) and using an equivalent principle by an automated Abrio implementation at 546 nm. Direct experimental measurements of retardance was required since the period of the grating was comparable (or larger) than the wavelength of visible light. By gold sputtering, transmissive optical vortex generators were turned into reflective ones with augmented retardance, Δn × h defined by the form birefringence, Δn, and the height h = 2d where d is the thickness of the polymerised structure. Retardance reached 315 nm as measured with Berek compensator at visible wavelengths. Birefringent phase delays of π (or λ/2 in wavelength) required for high purity vortex generators can be made based on the proposed approach. Optical vortex generators for telecom wavelengths with sub-wavelength patterns of azimuthally oriented gratings are amenable by direct laser polymerisation.

  10. OpenStack cloud computing cookbook

    CERN Document Server

    Jackson, Kevin

    2013-01-01

    A Cookbook full of practical and applicable recipes that will enable you to use the full capabilities of OpenStack like never before.This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments with familiarity of cloud computing platforms. Knowledge of virtualization and managing linux environments is expected.

  11. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  12. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  13. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  14. Fringe patterns generated by micro-optical sensors for pattern recognition.

    Science.gov (United States)

    Tamee, Kreangsak; Chaiwong, Khomyuth; Yothapakdee, Kriengsak; Yupapin, Preecha P

    2015-01-01

    We present a new result of pattern recognition generation scheme using a small-scale optical muscle sensing system, which consisted of an optical add-drop filter incorporating two nonlinear optical side ring resonators. When light from laser source enters into the system, the device is stimulated by an external physical parameter that introduces a change in the phase of light propagation within the sensing device, which can be formed by the interference fringe patterns. Results obtained have shown that the fringe patterns can be used to form the relationship between signal patterns and fringe pattern recognitions.

  15. HPC Software Stack Testing Framework

    Energy Technology Data Exchange (ETDEWEB)

    2017-07-27

    The HPC Software stack testing framework (hpcswtest) is used in the INL Scientific Computing Department to test the basic sanity and integrity of the HPC Software stack (Compilers, MPI, Numerical libraries and Applications) and to quickly discover hard failures, and as a by-product it will indirectly check the HPC infrastructure (network, PBS and licensing servers).

  16. Alignment and fabrication of micro-optic assemblies using fiber fusion

    Science.gov (United States)

    Florence, James M.; Hoggins, James T.

    2003-01-01

    Considerable time for alignment is typically spent in the assembly of fiber optic components and subsystems. Presented here is a process that allows for pick-and-place assembly and automated alignment of these components. Fibers that are normally pre-attached to collimating or coupling lenses are left free in this process. The fiber position can then be re-located at the point of optimum performance by actively monitoring system performance. The fiber alignment can compensate for misalignment of the primary assembly components. Once the optimum fiber position is achieved the fiber is fused to the collimating or coupling lens element to provide the best mechanical and thermal stability of the finished assembly.

  17. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2008-03-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  18. PieceStack: Toward Better Understanding of Stacked Graphs.

    Science.gov (United States)

    Wu, Tongshuang; Wu, Yingcai; Shi, Conglei; Qu, Huamin; Cui, Weiwei

    2016-02-24

    Stacked graphs have been widely adopted in various fields, because they are capable of hierarchically visualizing a set of temporal sequences as well as their aggregation. However, because of visual illusion issues, connections between overly-detailed individual layers and overly-generalized aggregation are intercepted. Consequently, information in this area has yet to be fully excavated. Thus, we present PieceStack in this paper, to reveal the relevance of stacked graphs in understanding intrinsic details of their displayed shapes. This new visual analytic design interprets the ways through which aggregations are generated with individual layers by interactively splitting and re-constructing the stacked graphs. A clustering algorithm is designed to partition stacked graphs into sub-aggregated pieces based on trend similarities of layers. We then visualize the pieces with augmented encoding to help analysts decompose and explore the graphs with respect to their interests. Case studies and a user study are conducted to demonstrate the usefulness of our technique in understanding the formation of stacked graphs.

  19. Efficiency of Polymer Electrolyte Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hans Bosma

    2011-08-01

    Full Text Available This paper applies a feedforward control of optimal oxygen excess ratio that maximize net power (improve efficiency of a NedStack P8.0-64 PEM fuel cell stack (FCS system. Net powers profile as a function of oxygen excess ratio for some points of operation are analyzed by using FCS model. The relationships between stack current and the corresponding control input voltage that gives an optimal oxygen excess ratio are used to design a feedforward control scheme. The results of this scheme are compared to the results of a feedforward control using a constant oxygen excess ratio. Simulation results show that optimal oxygen excess ratio improves fuel cell performance compared to the results of constant oxygen excess ratio. The same procedures are performed experimentally for the FCS system. The behaviour of the net power of the fuel cell stack with respect to the variation of oxygen excess ratio is analyzed to obtain optimal values. Data of stack current and the corresponding voltage input to the compressor that gives optimal values of oxygen excess ratio are used to develop a feedforward control. Feedforward control based on constant and optimal oxygen excess ratio control, are implemented in the NedStack P8.0-64 PEM fuel cell stack system by using LabVIEW. Implementation results shows that optimal oxygen excess ratio control improves the fuel cell performance compared to the constant oxygen excess ratio control.

  20. CAM and stack air sampler design guide

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1994-01-01

    About 128 air samplers and CAMs presently in service to detect and document potential radioactive release from 'H' and 'F' area tank farm ventilation stacks are scheduled for replacement and/or upgrade by Projects S-5764, S-2081, S-3603, and S-4516. The seven CAMs scheduled to be upgraded by Project S-4516 during 1995 are expected to provide valuable experience for the three remaining projects. The attached document provides design guidance for the standardized High Level Waste air sampling system

  1. Simulation of magnetization and levitation characteristics of HTS tape stacks

    Science.gov (United States)

    Anischenko, I. V.; Pokrovskii, S. V.; Mineev, N. A.

    2017-12-01

    In this work it is presented a computational model of a magnetic levitation system based on stacks of high-temperature second generation superconducting tapes (HTS) GdBa2Cu3O7-x. Calculated magnetic field and the current distributions in the system for different stacks geometries in the zero-field cooling mode are also presented. The magnetization curves of the stacks in the external field of a permanent NdFeB magnet and the levitation force dependence on the gap between the magnet and the HTS tapes stack were obtained. A model of the magnetic system, oriented to levitation application, is given. Results of modeling were compared with the experimental data.

  2. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  3. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  4. Experiments towards model-based testing using Plan 9: Labelled transition file systems, stacking file systems, on-the-fly coverage measuring

    NARCIS (Netherlands)

    Belinfante, Axel; Guardiola, G.; Soriano, E.; Ballesteros, F.J.

    2006-01-01

    We report on experiments that we did on Plan 9/Inferno to gain more experience with the file-system-as-tool-interface approach. We reimplemented functionality that we earlier worked on in Unix, trying to use Plan 9 file system interfaces. The application domain for those experiments was model-based

  5. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  6. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...... segmentations that capture different structural elements of the image. We also apply the method to collections of images with identical pixel dimensions, which we call image stacks. Here it turns out that the method is able to both identify groups of similar images in the stack, and to provide segmentations...

  7. The stack calculus

    Directory of Open Access Journals (Sweden)

    Alberto Carraro

    2013-03-01

    Full Text Available We introduce a functional calculus with simple syntax and operational semantics in which the calculi introduced so far in the Curry-Howard correspondence for Classical Logic can be faithfully encoded. Our calculus enjoys confluence without any restriction. Its type system enforces strong normalization of expressions and it is a sound and complete system for full implicational Classical Logic. We give a very simple denotational semantics which allows easy calculations of the interpretation of expressions.

  8. Static analysis of worst-case stack cache behavior

    DEFF Research Database (Denmark)

    Jordan, Alexander; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Utilizing a stack cache in a real-time system can aid predictability by avoiding interference that heap memory traffic causes on the data cache. While loads and stores are guaranteed cache hits, explicit operations are responsible for managing the stack cache. The behavior of these operations can......-graph, the worst-case bounds can be efficiently yet precisely determined. Our evaluation using the MiBench benchmark suite shows that only 37% and 21% of potential stack cache operations actually store to and load from memory, respectively. Analysis times are modest, on average running between 0.46s and 1.30s per...... be analyzed statically. We present algorithms that derive worst-case bounds on the latency-inducing operations of the stack cache. Their results can be used by a static WCET tool. By breaking the analysis down into subproblems that solve intra-procedural data-flow analysis and path searches on the call...

  9. Stack semantics of type theory

    DEFF Research Database (Denmark)

    Coquand, Thierry; Mannaa, Bassel; Ruch, Fabian

    2017-01-01

    We give a model of dependent type theory with one univalent universe and propositional truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we show that countable choice cannot be proved in dependent type theory with one univalent universe...

  10. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  11. Adding large EM stack support

    KAUST Repository

    Holst, Glendon

    2016-12-01

    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  12. Testing and Evaluation of an Advanced High Performance Planar SOFC Stack

    National Research Council Canada - National Science Library

    Elangovan, S

    1999-01-01

    .... SOFCo has conducted several programs which synergistically address this objective: an internally funded program focusing on stack development and system integration for pipeline natural gas (PNG...

  13. User Driven Image Stacking for ODI Data and Beyond via a Highly Customizable Web Interface

    Science.gov (United States)

    Hayashi, S.; Gopu, A.; Young, M. D.; Kotulla, R.

    2015-09-01

    While some astronomical archives have begun serving standard calibrated data products, the process of producing stacked images remains a challenge left to the end-user. The benefits of astronomical image stacking are well established, and dither patterns are recommended for almost all observing targets. Some archives automatically produce stacks of limited scientific usefulness without any fine-grained user or operator configurability. In this paper, we present PPA Stack, a web based stacking framework within the ODI - Portal, Pipeline, and Archive system. PPA Stack offers a web user interface with built-in heuristics (based on pointing, filter, and other metadata information) to pre-sort images into a set of likely stacks while still allowing the user or operator complete control over the images and parameters for each of the stacks they wish to produce. The user interface, designed using AngularJS, provides multiple views of the input dataset and parameters, all of which are synchronized in real time. A backend consisting of a Python application optimized for ODI data, wrapped around the SWarp software, handles the execution of stacking workflow jobs on Indiana University's Big Red II supercomputer, and the subsequent ingestion of the combined images back into the PPA archive. PPA Stack is designed to enable seamless integration of other stacking applications in the future, so users can select the most appropriate option for their science.

  14. Measurements of proton energy spectra using a radiochromic film stack

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  15. Effects of combustible stacking in large compartments

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    This paper focuses on the modelling of fire in case of various distributions of combustible materials in a large compartment. Large compartments often represent a challenge for structural fire safety, because of lack of prescriptive rules to follow and difficulties of taking into account the effect...... to different stacking configurations of the pallets with the avail of a CFD code. The results in term of temperatures of the hot gasses and of the steel elements composing the structural system are compared with simplified analytical model of localized and post-flashover fires, with the aim of highlighting...

  16. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug.

    Science.gov (United States)

    Šesták, Jozef; Thormann, Wolfgang

    2017-08-25

    Part I on head-column field-amplified sample stacking comprised a detailed study of the electrokinetic injection of a weak base across a short water plug into a phosphate buffer at low pH. The water plug is converted into a low conductive acidic zone and cationic analytes become stacked at the interface between this and a newly formed phosphoric acid zone. The fundamentals of electrokinetic processes occurring thereafter were studied experimentally and with computer simulation and are presented as part II. The configuration analyzed represents a discontinuous buffer system. Computer simulation revealed that the phosphoric acid zone at the plug-buffer interface becomes converted into a migrating phosphate buffer plug which corresponds to the cationically migrating system zone of the phosphate buffer system. Its mobility is higher than that of the analytes such that they migrate behind the system zone in a phosphate buffer comparable to the applied background electrolyte. The temporal behaviour of the current and the conductivity across the water plug were monitored and found to reflect the changes in the low conductivity plug. Determination of the buffer flow in the capillary revealed increased pumping caused by the mismatch of electroosmosis within the low conductivity plug and the buffer. This effect becomes elevated with increasing water plug length. For plug lengths up to 1% of the total column length the flow quickly drops to the electroosmotic flow of the buffer and simulations with experimentally determined current and flow values predict negligible band dispersion and no loss of resolution for both low and large molecular mass components. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lightweight Stacks of Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  18. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible to separate the loss...... in the hydrogen fuel gas supplied to the stack. EIS was used to examine the long-term behavior and monitor the evolution of the impedance of each of the repeating units and the whole stack. The observed impedance was analyzed in detail for one of the repeating units and the whole stack and the losses reported...

  19. Simulation of Collective Excitations in Long Josephson Junction Stacks

    Science.gov (United States)

    Rahmonov, Ilhom; Shukrinov, Yury; Atanasova, Pavlina; Zemlyanaya, Elena; Streltsova, Oksana; Zuev, Maxim; Plecenik, Andrej; Irie, Akinobu

    2018-02-01

    The phase dynamics of a stack of long Josephson junctions has been studied. Both inductive and capacitive couplings between Josephson junctions have been taken into account in the calculations. The IV-curve, the dependence on the bias current of the radiation power and dynamics of each JJs of the stack have been investigated. The coexistence of the charge traveling wave and fluxon states has been observed. This state can be considered as a new collective excitation in the system of coupled Josephson junctions. We demonstrate that the observed collective excitation leads to the decrease of radiation power from the system.

  20. Electric toy vehicle powered by a PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Beneito, Ruben; Vilaplana, Joaquin; Gisbert, Santiago [Technological Institute for Toy (AIJU), 03440 Ibi (Spain)

    2007-07-15

    The article describes the design and development of an electric toy vehicle powered by a fuel cell stack. The system consisted of a 150 W PEMFC stack powered by hydrogen/air, a tank of metal hydrides of AB (TiFe) alloy type with a capacity of 300 standard litres, for storing hydrogen, and an electronic power device based on electrolytic capacitors, to supply peak power demands during acceleration and start up of the vehicle. The air supply was provided by a fan preceded by a filter, and in a similar manner the stack was cooled by an air ventilation system. An electrovalve was used to supply H{sub 2} in dead-ended mode. All the components were integrated in the vehicle, and the prototype was tested in real working conditions, in a test bench and by children. (author)

  1. Power sources involving ~ 300W PEMFC fuel cell stacks cooled by different media

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2017-01-01

    Full Text Available Two constructions of ~300W PEMFC stacks, cooled by different media, were analysed. An open-cathode ~300W PEMFC stack cooled by air (Horizon, Singapore and a PEMFC F-42 stack cooled by a liquid medium (Schunk, Germany were chosen for all of the investigations described in this paper. The potential for the design and construction of power sources involving fuel cells, as well as of a hybrid system (fuel cell-lithium battery for mobile and stationary applications, is presented and discussed. The impact of certain experimental parameters on PEMFC stack performance is analysed and discussed.

  2. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2010-10-15

    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  3. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10 4 loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  4. From the components to the stack. Developing and designing 5kW HT-PEFC stacks; Von der Komponente zum Stack. Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klasse

    Energy Technology Data Exchange (ETDEWEB)

    Bendzulla, Anne

    2010-12-22

    The aim of the present project is to develop a stack design for a 5-kW HTPEFC system. First, the state of the art of potential materials and process designs will be discussed for each component. Then, using this as a basis, three potential stack designs with typical attributes will be developed and assessed in terms of practicality with the aid of a specially derived evaluation method. Two stack designs classified as promising will be discussed in detail, constructed and then characterized using short stack tests. Comparing the stack designs reveals that both designs are fundamentally suitable for application in a HT-PEFC system with on-board supply. However, some of the performance data differ significantly for the two stack designs. The preferred stack design for application in a HT-PEFC system is characterized by robust operating behaviour and reproducible high-level performance data. Moreover, in compact constructions (120 W/l at 60 W/kg), the stack design allows flexible cooling with thermal oil or air, which can be adapted to suit specific applications. Furthermore, a defined temperature gradient can be set during operation, allowing the CO tolerance to be increased by up to 10 mV. The short stack design developed within the scope of the present work therefore represents an ideal basis for developing a 5-kW HT-PEFC system. Topics for further research activities include improving the performance by reducing weight and/or volume, as well as optimizing the heat management. The results achieved within the framework of this work clearly show that HTPEFC stacks have the potential to play a decisive role in increasing efficiency in the future, particularly when combined with an on-board supply system. (orig.) [German] Ziel der vorliegenden Arbeit ist die Entwicklung eines Stackkonzeptes fuer ein 5 kW-HT-PEFC System. Dazu wird zunaechst fuer jede Komponente der Stand der Technik moeglicher Materialien und Prozesskonzepte diskutiert. Darauf aufbauend werden drei

  5. Edge-edge interactions in stacked graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Silva, Eduardo [ORNL; Terrones Maldonado, Humberto [ORNL; Terrones Maldonado, Mauricio [ORNL; Jia, Xiaoting [Massachusetts Institute of Technology (MIT); Sumpter, Bobby G [ORNL; Dresselhaus, M [Massachusetts Institute of Technology (MIT); Meunier, V. [Rensselaer Polytechnic Institute (RPI)

    2013-01-01

    High-resolution transmission electron microscopy (HRTEM) studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs by via edge-edge interactions of the platelet and the graphene surface located underneath. Here we quantitatively study this behavior using van der Waals density functional calculations. Local interactions at the open edges are found to dictate stacking configurations that are different from Bernal (AB) stacking. These stacking configurations are known to be otherwise absent in edge-free two-dimensional (2D) graphene. The results explain the experimentally observed platelet dynamics and provide a detailed account of the new electronic properties of these combined systems.

  6. Thermoacoustic design using stem of goose down stack

    Science.gov (United States)

    Farikhah, Irna; Ristanto, Sigit; Idrus, Hadiyati; Kaltsum, Ummi; Faisal, Affandi; Setiawan, Ihsan; Setio Utomo, Agung Bambang

    2012-09-01

    Many refrigerators using CFC as a refrigerant are seen as the cause of the depletion of ozone. Hence, thermoacoustic was chosen as an alternative refrigerator that safe for environment. There are many variable that influenced the optimization of thermoacoustic design. One of them is thermal conductivity of material of stack. The Stack material must have a low thermal conductivity. In this research we used organic stack made of stem of goose down. It has superior thermal insulating. It means that they have the lowest thermal conductivity. The system uses no refrigerant or compressor, and the only mechanical moving part is the loudspeaker connected to a signal generator that produces the acoustic. The working fluid is air and the material of resonator is stainless steel. A series test on the laboratory found that there is a decrease of 5°C in temperature for about 2 minutes.

  7. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    KAUST Repository

    Geise, Geoffrey M.

    2014-01-14

    Membrane ionic resistance is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt concentration is known to affect membrane resistance when the same concentration is used on both sides of the membrane, little is known about membrane resistance when the membrane is placed between solutions of different concentrations, such as in a reverse electrodialysis (RED) stack. Ionic resistance measurements obtained using Selemion CMV and AMV that separated sodium chloride and ammonium bicarbonate solutions of different concentrations were greater than those measured using only the high-concentration solution. Measured RED stack resistances showed good agreement with resistances calculated using an equivalent series resistance model, where the membranes accounted for 46% of the total stack resistance. The high area resistance of the membranes separating different salt concentration solutions has implications for modeling and optimizing membranes used in RED systems.

  8. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Marmy, C.A.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M. [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  9. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.

    1979-06-01

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  10. Hydrogen Embrittlement And Stacking-Fault Energies

    Science.gov (United States)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  11. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li

    2014-07-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  12. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  13. Emitting far-field multicolor patterns and characters through plastic diffractive micro-optics elements illuminated by common Gaussian lasers in the visible range.

    Science.gov (United States)

    Zhang, Xinyu; Li, Hui; Liu, Kan; Luo, Jun; Xie, Changsheng; Ji, An; Zhang, Tianxu

    2011-04-01

    Far-field multicolor patterns and characters are emitted effectively in a relatively wide and deep spatial region by plastic diffractive micro-optics elements (DMOEs), which are illuminated directly by common Gaussian lasers in the visible range. Phase-only DMOEs are composed of a large number of fine step-shaped phase microstructures distributed sequentially over the plastic wafer selected. The initial DMOEs in silicon wafer are fabricated by an innovative technique with a combination of a single-mask ultraviolet photolithography and low-cost and rapid wet KOH etching. The fabricated silicon DMOEs are further converted into a nickel mask by the conventional electrochemical method, and they are finally transferred onto the surface of the plastic wafer through mature hot embossing. Morphological measurements show that the surface roughness of the plastic DMOEs is in the nanometer range, and the feature height of the phase steps in diffractive elements is in the submicrometer scale, which can be designed and adjusted flexibly according to requirements. The dimensions of the DMOEs can be changed from the order of millimeters to centimeters. A large number of pixel phase microstructures with a square microappearance employed to construct the phase-only DMOEs are created by the Gerchberg-Saxton algorithm, according to the target patterns and characters and common Gaussian lasers manipulated by the DMOEs fabricated. © 2011 Optical Society of America

  14. Directive Stacked Patch Antenna for UWB Applications

    Directory of Open Access Journals (Sweden)

    Sharif I. Mitu Sheikh

    2013-01-01

    Full Text Available Directional ultrawideband (UWB antennas are popular in wireless signal-tracking and body-area networks. This paper presents a stacked microstrip antenna with an ultrawide impedance bandwidth of 114%, implemented by introducing defects on the radiating patches and the ground plane. The compact (20×34 mm antenna exhibits a directive radiation patterns for all frequencies of the 3–10.6 GHz band. The optimized reflection response and the radiation pattern are experimentally verified. The designed UWB antenna is used to maximize the received power of a software-defined radio (SDR platform. For an ultrawideband impulse radio system, this class of antennas is essential to improve the performance of the communication channels.

  15. ATLAS software stack on ARM64

    Science.gov (United States)

    Smith, Joshua Wyatt; Stewart, Graeme A.; Seuster, Rolf; Quadt, Arnulf; ATLAS Collaboration

    2017-10-01

    This paper reports on the port of the ATLAS software stack onto new prototype ARM64 servers. This included building the “external” packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adjustments. A few additional modifications were needed to account for the different operating system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive benchmarks using ATLAS specific environment and infrastructure have been performed, with a particular emphasis on the performance vs. energy consumption.

  16. ATLAS software stack on ARM64

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00529764; The ATLAS collaboration; Stewart, Graeme; Seuster, Rolf; Quadt, Arnulf

    2017-01-01

    This paper reports on the port of the ATLAS software stack onto new prototype ARM64 servers. This included building the “external” packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adjustments. A few additional modifications were needed to account for the different operating system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive benchmarks using ATLAS specific environment and infrastructure have been performed, with a particular emphasis on the performance vs. energy consumption.

  17. Seismic evidence for the preservation of several stacked Pleistocene coastal barrier/lagoon systems on the Gulf of Valencia continental shelf (western Mediterranean)

    Science.gov (United States)

    Albarracín, Silvia; Alcántara-Carrió, Javier; Barranco, Andrés; Sánchez García, María José; Fontán Bouzas, Ángela; Rey Salgado, Jorge

    2013-04-01

    The focus of this study is the analysis of coastal sand barriers and associated coastal lagoons on the inner continental shelf of the Gulf of Valencia (western Mediterranean), based on two W-E seismic profiles recorded seaward of the Albufera de Valencia coastal lagoon. Seismic facies identified include a number of coastal sand barriers with landward lagoons draped by contemporary continental shelf deposits. The barrier systems have been grouped into two sedimentary systems tracts, the older one corresponding to a prograding/aggrading highstand systems tract involving at least four paleo-coastal sand barrier/lagoon systems, followed landward by a transgressive systems tract comprising three such systems. All the systems have been allocated a Tyrrhenian age, the formation of individual barrier systems having been associated with successive sea-level stillstands, and their present-day position being explained by the very high regional subsidence rate. In summary, this study demonstrates that the Quaternary stratigraphic record of the Gulf of Valencia inner continental shelf is composed of littoral sand facies, in particular coastal sand barrier and lagoon deposits. These findings are in agreement with corresponding observations on other continental shelves of the western Mediterranean, showing that the formation of coastal sand barriers was a characteristic feature of this region during the Quaternary.

  18. Optimization of a fuel cell system based on empirical data of a PEM fuel cell stack and the generalized electrochemical model. Paper no. IGEC-1-126

    International Nuclear Information System (INIS)

    Wishart, J.; Secanell, M.; Dong, Z.; Wang, G.

    2005-01-01

    A fuel cell system model is implemented in MATLAB in order to optimize the system operating conditions. The implemented fuel cell model is a modified version of the semi-empirical model introduced by researchers at the Royal Military College of Canada. In addition, in order to model the whole fuel cell system, heat transfer and gas flow considerations and the associated Balance of Plant (BOP) components are incorporated into the model. System design optimizations are carried out using three different methods, including the sequential quadratic programming (SQP) local optimization algorithm and simulated annealing (SA) and genetic algorithm (GA) global optimization algorithms. Using the operating conditions of the fuel cell system as the design variables, the net output power of the system is optimized. The three methods are used in order to gain some insight into the nature of the objective function and the performance of the different algorithms. The optimization results show a good agreement and provide useful information on the design optimization problem. This study prepares us for more complex modeling and system optimization research. (author)

  19. Optimization of a fuel cell system based on empirical data of a PEM fuel cell stack and the generalized electrochemical model. Paper no. IGEC-1-126

    Energy Technology Data Exchange (ETDEWEB)

    Wishart, J.; Secanell, M.; Dong, Z. [Univ. of Victoria, Dept. of Mechanical Engineering and Institute for Integrated Energy Systems (IESVic), Victoria, British Columbia (Canada)]. E-mail: zdong@me.uvic.ca; Wang, G. [Jilin Univ., School of Mechanical Science and Engineering, Changchun (China)

    2005-07-01

    A fuel cell system model is implemented in MATLAB in order to optimize the system operating conditions. The implemented fuel cell model is a modified version of the semi-empirical model introduced by researchers at the Royal Military College of Canada. In addition, in order to model the whole fuel cell system, heat transfer and gas flow considerations and the associated Balance of Plant (BOP) components are incorporated into the model. System design optimizations are carried out using three different methods, including the sequential quadratic programming (SQP) local optimization algorithm and simulated annealing (SA) and genetic algorithm (GA) global optimization algorithms. Using the operating conditions of the fuel cell system as the design variables, the net output power of the system is optimized. The three methods are used in order to gain some insight into the nature of the objective function and the performance of the different algorithms. The optimization results show a good agreement and provide useful information on the design optimization problem. This study prepares us for more complex modeling and system optimization research. (author)

  20. A Lightweight Compact Multi-Spectral Imager Using Novel Computer-Generated Micro-Optics and Spectral-Extraction Algorithms

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Early-stage research proposal is to demonstrate an ultra-compact, lightweight broadband hyper- and multi-spectral imaging system that is...

  1. Up-to-Date Materials of Gas Ducts and Smoke Stacks

    Directory of Open Access Journals (Sweden)

    V. D. Sizov

    2012-01-01

    Full Text Available The paper considers existing systems of smoke removal from heat-generating plants of various heat power. Advantages and disadvantages of every system are specified in the paper. The paper analyzes properties of fiberglass smoke stacks.

  2. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  3. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  4. 40 CFR 61.44 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.44 Section 61.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Firing § 61.44 Stack sampling. (a) Sources subject to § 61.42(b) shall be continuously sampled, during...

  5. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  6. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  7. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  8. Tunable infrared plasmonic devices using graphene/insulator stacks

    Science.gov (United States)

    Yan, Hugen; Li, Xuesong; Chandra, Bhupesh; Tulevski, George; Wu, Yanqing; Freitag, Marcus; Zhu, Wenjuan; Avouris, Phaedon; Xia, Fengnian

    2012-05-01

    The collective oscillation of carriers--the plasmon--in graphene has many desirable properties, including tunability and low loss. However, in single-layer graphene, the dependence on carrier concentration of both the plasmonic resonance frequency and magnitude is relatively weak, limiting its applications in photonics. Here, we demonstrate transparent photonic devices based on graphene/insulator stacks, which are formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, then patterning them together into photonic-crystal-like structures. We show experimentally that the plasmon in such stacks is unambiguously non-classical. Compared with doping in single-layer graphene, distributing carriers into multiple graphene layers effectively enhances the plasmonic resonance frequency and magnitude, which is different from the effect in a conventional semiconductor superlattice and is a direct consequence of the unique carrier density scaling law of the plasmonic resonance of Dirac fermions. Using patterned graphene/insulator stacks, we demonstrate widely tunable far-infrared notch filters with 8.2 dB rejection ratios and terahertz linear polarizers with 9.5 dB extinction ratios. An unpatterned stack consisting of five graphene layers shields 97.5% of electromagnetic radiation at frequencies below 1.2 THz. This work could lead to the development of transparent mid- and far-infrared photonic devices such as detectors, modulators and three-dimensional metamaterial systems.

  9. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  10. Some important results from the air pollution distribution model STACKS (1988-1992)

    International Nuclear Information System (INIS)

    Erbrink, J.J.

    1993-01-01

    Attention is paid to the results of the study on the distribution of air pollutants by high chimney-stacks of electric power plants. An important product of the study is the integrated distribution model STACKS (Short Term Air-pollutant Concentrations Kema modelling System). The improvements and the extensions of STACKS are described in relation to the National Model, which has been used to estimate the environmental effects of individual chimney-stacks. The National Model shows unacceptable variations for high pollutant sources. Based on the results of STACKS revision of the National model has been taken into consideration. By means of the revised National Model a more realistic estimation of the environmental effects of electric power plants can be carried out

  11. Weyl magnons in noncoplanar stacked kagome antiferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-03-01

    Weyl nodes have been experimentally realized in photonic, electronic, and phononic crystals. However, magnonic Weyl nodes are yet to be seen experimentally. In this paper, we propose Weyl magnon nodes in noncoplanar stacked frustrated kagome antiferromagnets, naturally available in various real materials. Most crucially, the Weyl nodes in the current system occur at the lowest excitation and possess a topological thermal Hall effect, therefore they are experimentally accessible at low temperatures due to the population effect of bosonic quasiparticles. In stark contrast to other magnetic systems, the current Weyl nodes do not rely on time-reversal symmetry breaking by the magnetic order. Rather, they result from explicit macroscopically broken time reversal symmetry by the scalar spin chirality of noncoplanar spin textures and can be generalized to chiral spin liquid states. Moreover, the scalar spin chirality gives a real space Berry curvature which is not available in previously studied magnetic Weyl systems. We show the existence of magnon arc surface states connecting projected Weyl magnon nodes on the surface Brillouin zone. We also uncover the first realization of triply-degenerate nodal magnon point in the noncollinear regime with zero scalar spin chirality.

  12. Detailed experimental characterization of a reformate fuelled PEM stack

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    Increasing attention is given to fuel cells for micro combined heat and power systems for local households. Currently, mainly three different types of fuel cells are commercially competitive: SOFC, low- and high-temperature PEM fuel cells. In the present paper the Low Temperature PEM technology...... is in focus. To be able to design highly efficient micro CHP systems, it is critical to have a reliable performance map of not only the stack performance in the nominal operating point but also at system part load.  Issues like parasitic power consumption of the balance of plant components, dynamic...... with electric power output from 1-3-kW. All process inputs for the stack can be altered to provide realistic performance analyses, corresponding to those encountered in field applications. These include cathode/anode dew point control, cathode flow rate, cooling water temperature control as well as synthesis...

  13. Wearable solar cells by stacking textile electrodes.

    Science.gov (United States)

    Pan, Shaowu; Yang, Zhibin; Chen, Peining; Deng, Jue; Li, Houpu; Peng, Huisheng

    2014-06-10

    A new and general method to produce flexible, wearable dye-sensitized solar cell (DSC) textiles by the stacking of two textile electrodes has been developed. A metal-textile electrode that was made from micrometer-sized metal wires was used as a working electrode, while the textile counter electrode was woven from highly aligned carbon nanotube fibers with high mechanical strengths and electrical conductivities. The resulting DSC textile exhibited a high energy conversion efficiency that was well maintained under bending. Compared with the woven DSC textiles that are based on wire-shaped devices, this stacked DSC textile unexpectedly exhibited a unique deformation from a rectangle to a parallelogram, which is highly desired in portable electronics. This lightweight and wearable stacked DSC textile is superior to conventional planar DSCs because the energy conversion efficiency of the stacked DSC textile was independent of the angle of incident light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. STACKING FAULT ENERGY IN HIGH MANGANESE ALLOYS

    Directory of Open Access Journals (Sweden)

    Eva Mazancová

    2009-04-01

    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  15. Stack-Based Typed Assembly Language

    National Research Council Canada - National Science Library

    Morrisett, Greg

    1998-01-01

    .... This paper also formalizes the typing connection between CPS based compilation and stack based compilation and illustrates how STAL can formally model calling conventions by specifying them as formal translations of source function types to STAL types.

  16. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H

    2016-01-01

    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  17. Stacking for Cosmic Magnetism with SKA Surveys

    OpenAIRE

    Stil, J. M.; Keller, B. W.

    2015-01-01

    Stacking polarized radio emission in SKA surveys provides statistical information on large samples that is not accessible otherwise due to limitations in sensitivity, source statistics in small fields, and averaging over frequency (including Faraday synthesis). Polarization is a special case because one obvious source of stacking targets is the Stokes I source catalog, possibly in combination with external catalogs, for example an SKA HI survey or a non-radio survey. We point out the signific...

  18. Representations of stack triangulations in the plane

    OpenAIRE

    Selig, Thomas

    2013-01-01

    Stack triangulations appear as natural objects when defining an increasing family of triangulations by successive additions of vertices. We consider two different probability distributions for such objects. We represent, or "draw" these random stack triangulations in the plane $\\R^2$ and study the asymptotic properties of these drawings, viewed as random compact metric spaces. We also look at the occupation measure of the vertices, and show that for these two distributions it converges to som...

  19. Micro-optics for imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Robert R.

    2010-09-01

    This project investigates the fundamental imaging capability of an optic with a physical thickness substantially less than 1 mm. The analysis assumes that post-processing can overcome certain restrictions such as detector pixel size and image degradation due to aberrations. A first order optical analysis quickly reveals the limitations of even an ideal thin lens to provide sufficient image resolution and provides the justification for pursuing an annular design. Some straightforward examples clearly show the potential of this approach. The tradeoffs associated with annular designs, specifically field of view limitations and reduced mid-level spatial frequencies, are discussed and their impact on the imaging performance evaluated using several imaging examples. Additionally, issues such as detector acceptance angle and the need to balance aberrations with resolution are included in the analysis. With these restrictions, the final results present an excellent approximation of the expected performance of the lens designs presented.

  20. Unvented single stack sanitary drainage system I

    DEFF Research Database (Denmark)

    Najman, Z.

    This report forms the basis of the preparation of design recommendations. In the observation tables all single results from 147 tests of charging are dispersed on 53 test set-ups. At test set-ups in 1 till 4 floors height discharge pipes with dimensions of 100, 125, and 150 mm were tested with di...

  1. Review of the stack discharge active particle contamination problem

    Energy Technology Data Exchange (ETDEWEB)

    Parker, H M

    1948-03-22

    Quantities of the order of ten million to 100 million radioactive particles per month were emitted from the stacks over a period of several months. High activity in the range 0.1 to 3..mu..c was probably confined to large carrier particles of corrosion debris from iron ductwork in the separations plant ventilation air system. This report discusses chemical, physical and radiochemical properties of the particles, and possible biological and health effects of exposure to them. (ACR)

  2. Classifier Subset Selection for the Stacked Generalization Method Applied to Emotion Recognition in Speech

    Science.gov (United States)

    Álvarez, Aitor; Sierra, Basilio; Arruti, Andoni; López-Gil, Juan-Miguel; Garay-Vitoria, Nestor

    2015-01-01

    In this paper, a new supervised classification paradigm, called classifier subset selection for stacked generalization (CSS stacking), is presented to deal with speech emotion recognition. The new approach consists of an improvement of a bi-level multi-classifier system known as stacking generalization by means of an integration of an estimation of distribution algorithm (EDA) in the first layer to select the optimal subset from the standard base classifiers. The good performance of the proposed new paradigm was demonstrated over different configurations and datasets. First, several CSS stacking classifiers were constructed on the RekEmozio dataset, using some specific standard base classifiers and a total of 123 spectral, quality and prosodic features computed using in-house feature extraction algorithms. These initial CSS stacking classifiers were compared to other multi-classifier systems and the employed standard classifiers built on the same set of speech features. Then, new CSS stacking classifiers were built on RekEmozio using a different set of both acoustic parameters (extended version of the Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)) and standard classifiers and employing the best meta-classifier of the initial experiments. The performance of these two CSS stacking classifiers was evaluated and compared. Finally, the new paradigm was tested on the well-known Berlin Emotional Speech database. We compared the performance of single, standard stacking and CSS stacking systems using the same parametrization of the second phase. All of the classifications were performed at the categorical level, including the six primary emotions plus the neutral one. PMID:26712757

  3. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system....... The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  4. ATLAS software stack on ARM64

    CERN Document Server

    Smith, Joshua Wyatt; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment explores new hardware and software platforms that, in the future, may be more suited to its data intensive workloads. One such alternative hardware platform is the ARM architecture, which is designed to be extremely power efficient and is found in most smartphones and tablets. CERN openlab recently installed a small cluster of ARM 64-bit evaluation prototype servers. Each server is based on a single-socket ARM 64-bit system on a chip, with 32 Cortex-A57 cores. In total, each server has 128 GB RAM connected with four fast memory channels. This paper reports on the port of the ATLAS software stack onto these new prototype ARM64 servers. This included building the "external" packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adj...

  5. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.

    2015-01-01

    The market penetration of fuel and electrolysis cell energy systems in Europe requires the development of reliable assessment, testing and prediction of performance and durability of solid oxide cells and stacks (SOC). To advance in this field the EU-project “SOCTESQA” was launched in May 2014....... Partners from different countries in Europe and one external party from Singapore are working together to develop uniform and industry wide test procedures and protocols for SOC cell/stack assembly. In this project new application fields which are based on the operation of the SOC cell/stack assembly...

  6. Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field

    Science.gov (United States)

    Žukovič, M.; Borovský, M.; Bobák, A.

    2018-05-01

    We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.

  7. Quantitative review of degradation and lifetime of solid oxide cells and stacks

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Hjelm, Johan; Blennow, Peter

    2016-01-01

    A comprehensive review of degradation and lifetime for solid oxide cells and stacks hasbeen conducted. Based on more than 50 parameters from 150 publications and 1 000 000hours of accumulated testing, this paper presents a quantitative analysis of the currentinternational status of degradation...... updating by thecommunity is encouraged. Furthermore, the commonly reported test parameters anddegradation indicators are discussed. The difficulty in standardizing testing due tovariations in cell and stack design, materials and intended purpose of the system isacknowledged. A standardization of reporting...... of long-term single-cell- and stack-tests isproposed....

  8. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Thormann, W.

    2017-01-01

    Roč. 1512, AUG (2017), s. 124-132 ISSN 0021-9673 Institutional support: RVO:68081715 Keywords : head- column field-amplified sample stacking * capillary electrophoresis * water plug Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  9. Stack monitor for the Proof-of-Breeding Project

    International Nuclear Information System (INIS)

    Fergus, R.W.

    1985-01-01

    This stack monitor system is a coordinated arrangement of hardware and software to monitor four hot cells (8 stacks) during the fuel dissection for the Proof-of-Breeding Project. The cell monitors, which are located in fan lofts, contain a microprocessor, radiation detectors, air flow sensors, and air flow control equipment. Design criteria included maximizing microprocessor control while minimizing the hardware complexity. The monitors have been programmed to produce concentration and total activity release data based on several detector measurements and flow rates. Although each monitor can function independently, a microcomputer can also be used to control each cell monitor including reprogramming if necessary. All programming is software, as opposed to firmware, with machine language for compactness in the cell monitors and Basic language for adaptability in the microcomputer controller

  10. Development of a Three Dimensional Neural Sensing Device by a Stacking Method

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chang

    2010-04-01

    Full Text Available This study reports a new stacking method for assembling a 3-D microprobe array. To date, 3-D array structures have usually been assembled with vertical spacers, snap fasteners and a supporting platform. Such methods have achieved 3-D structures but suffer from complex assembly steps, vertical interconnection for 3-D signal transmission, low structure strength and large implantable opening. By applying the proposed stacking method, the previous techniques could be replaced by 2-D wire bonding. In this way, supporting platforms with slots and vertical spacers were no longer needed. Furthermore, ASIC chips can be substituted for the spacers in the stacked arrays to achieve system integration, design flexibility and volume usage efficiency. To avoid overflow of the adhesive fluid during assembly, an anti-overflow design which made use of capillary action force was applied in the stacking method as well. Moreover, presented stacking procedure consumes only 35 minutes in average for a 4 × 4 3-D microprobe array without requiring other specially made assembly tools. To summarize, the advantages of the proposed stacking method for 3-D array assembly include simplified assembly process, high structure strength, smaller opening area and integration ability with active circuits. This stacking assembly technique allows an alternative method to create 3-D structures from planar components.

  11. Assessment for potential radionuclide emissions from stacks and diffuse and fugitive sources on the Hanford Site

    International Nuclear Information System (INIS)

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-06-01

    By using the six EPA-approved methods, instead of only the original back calculation method for assessing the 84 WHC registered stacks, the number of stacks requiring continuous monitoring was reduced from 32 to 19 stacks. The intercomparison between results showed that no correlation existed between back calculations and release fractions. Also the NDA, upstream air samples, and powder release fraction method results were at least three orders of magnitude lower then the back calculations results. The most surprising results of the assessment came from NDA. NDA was found to be an easy method for assessing potential emissions. For the nine stacks assessed by NDA, all nine of the stacks would have required continuous monitoring when assessed by back calculations. However, when NDA was applied all stacks had potential emissions that would cause an EDE below the > 0.1 mrem/y standard. Apparent DFs for the HEPA filter systems were calculated for eight nondesignated stacks with emissions above the detection limit. These apparent DFs ranged from 0.5 to 250. The EDE dose to the MEI was calculated to be 0.028 mrem/y for diffuse and fugitive emissions from the Hanford Sited. This is well below the > 0.1 mrem/y standard

  12. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft 2 ) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft 2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft 2 ) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  13. EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN, is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

  14. Contemporary sample stacking in analytical electrophoresis.

    Science.gov (United States)

    Malá, Zdena; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    This contribution is a methodological review of the publications about the topic from the last 2 years. Therefore, it is primarily organized according to the methods and procedures used in surveyed papers and the origin and type of sample and specification of analytes form the secondary structure. The introductory part about navigation in the architecture of stacking brings a brief characterization of the various stacking methods, with the description of mutual links to each other and important differences among them. The main body of the article brings a survey of publications organized according to main principles of stacking and then according to the origin and type of the sample. Provided that the paper cited gave explicitly the relevant data, information about the BGE(s) used, procedure, detector employed, and reached LOD and/or concentration effect is given. The papers where the procedure used is a combination of diverse fragments and parts of various stacking techniques are mentioned in a special section on combined techniques. The concluding remarks in the final part of the review evaluate present state of art and the trends of sample stacking in CE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced dynamical stability with harmonic slip stacking

    Directory of Open Access Journals (Sweden)

    Jeffrey Eldred

    2016-10-01

    Full Text Available We develop a configuration of radio-frequency (rf cavities to dramatically improve the performance of slip stacking. Slip stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out the resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99% slip stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip stacking simulation. We demonstrate that the harmonic rf cavity can not only reduce particle loss during slip stacking, but also reduce the final longitudinal emittance.

  16. Limestone/adipic acid FGD and stack opacity reduction pilot plant tests at Big Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Laslo, D.; Bakke, E.; Chisholm, E.

    1984-01-01

    Big Rivers Electric Corporation (BREC) contracted Peabody Process Systems, Inc. (PPSI) to install a flue gas cleaning (FGC) pilot plant at the BREC R.D. Green Station Unit No. 2 located at Sebree, KY. A six month test program was completed demonstrating technology for: alternatives to using lime as an alkali; methods for improving cake dewatering; identification of the causes of high stack opacity; and methods for the reduction of high stack opacity. This paper presents highlights extracted from the reports submitted by PPSI to BREC on this test program. BREC was primarily interested in reduction of operating costs, if possible, by using an alkali less expensive than lime, and by improving the poor dewatering characteristic inherent in a dolomitic lime system. BREC was also within compliance for particulate emissions and opacity in the duct after the dry electrostatic precipitator, but not in compliance with the stack opacity regulation, and therefore wanted to investigate methods for stack opacity reduction.

  17. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    Science.gov (United States)

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  18. Another trip to the wall: how much will stacked DRAM benefit HPC?

    OpenAIRE

    Radulovic, Milan; Zivanovic, Darko; Ruiz, Daniel; De Supinski, Bronis; McKee, Sally; Radojkovic, Petar; Ayguadé Parra, Eduard

    2015-01-01

    First defined two decades ago, the memory wall remains a fundamental limitation to system performance. Recent innovations in 3D-stacking technology enable DRAM devices with much higher bandwidths than traditional DIMMs. The first such products will soon hit the market, and some of the publicity claims that they will break through the memory wall. Here we summarize our analysis and expectations of how such 3D-stacked DRAMs will affect the memory wall for a set of representative HPC application...

  19. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  20. Design Handbook for a Stack Foundation

    OpenAIRE

    Tuominen, Vilma

    2011-01-01

    This thesis was made for Citec Engineering Oy Ab as a handbook and as a design tool for concrete structure designers. Handbook is about the Wärtsilä Power Plant stack structure, which is a base for about 40 meters high stack pipe. The purpose is to make a calculation base to support the design work, which helps the designer to check the right dimensions of the structure. Thesis is about to be for the concrete designers and also other designers and authorities. As an example I have used an...

  1. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel

    1993-01-01

    A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local-density ......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...

  2. On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle

    Science.gov (United States)

    Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol

    2016-09-01

    The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.

  3. Simulation Of Networking Protocols On Software Emulated Network Stack

    Directory of Open Access Journals (Sweden)

    Hrushikesh Nimkar

    2015-08-01

    Full Text Available With the increasing number and complexity of network based applications the need to easy configuration development and integration of network applications has taken a high precedence. Trivial activities such as configuration can be carried out efficiently if network services are software based rather than hardware based. Project aims at enabling the network engineers to easily include network functionalities into hisher configuration and define hisher own network stack without using the kernel network stack. Having thought of this we have implemented two functionalities UPNP and MDNS. The multicast Domain Name System MDNS resolves host names to IP addresses within small ad-hoc networks and without having need of special DNS server and its configuration. MDNS application provides every host with functionality to register itself to the router make a multicast DNS request and its resolution. To make adding network devices and networked programs to a network as easy as it is to plug in a piece of hardware into a PC we make use of UPnP. The devices and programs find out about the network setup and other networked devices and programs through discovery and advertisements of services and configure themselves accordingly. UPNP application provides every host with functionality of discovering services of other hosts and serving requests on demand. To implement these applications we have used snabbswitch framework which an open source virtualized ethernet networking stack.

  4. Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules.

    Science.gov (United States)

    Sundholm, Dage; Rauhalahti, Markus; Özcan, Nergiz; Mera-Adasme, Raúl; Kussmann, Jörg; Luenser, Arne; Ochsenfeld, Christian

    2017-05-09

    Nuclear magnetic shieldings have been calculated at the density functional theory (DFT) level for stacks of benzene, hexadehydro[12]annulene, dodecadehydro[18]annulene, and hexabenzocoronene. The magnetic shieldings due to the ring currents in the adjacent molecules have been estimated by calculating nucleus independent molecular shieldings for the monomer in the atomic positions of neighbor molecules. The calculations show that the independent shielding model works reasonably well for the 1 H NMR shieldings of benzene and hexadehydro[12]annulene, whereas for the larger molecules and for the 13 C NMR shieldings the interaction between the molecules leads to shielding effects that are at least of the same size as the ring current contributions from the adjacent molecules. A better agreement is obtained when the nearest neighbors are also considered at full quantum mechanical (QM) level. The calculations suggest that the nearest solvent molecules must be included in the quantum mechanical system, at least when estimating solvent shifts at the molecular mechanics (MM) level. Current density calculations show that the stacking does not significantly affect the ring current strengths of the individual molecules, whereas the shape of the ring current for a single molecule differs from that of the stacked molecules.

  5. Stack Memory Implementation and Analysis of Timing Constraint, Power and Memory using FPGA

    DEFF Research Database (Denmark)

    Pandey, Nisha; Pandey, Bishwajeet; Thind, Vandana

    2017-01-01

    Abstract— in this work of analysis, stack memory algorithm is implemented on a number of FPGA platforms like virtex4, virtex5, virtex6, virtex6 low power and virtex7 low voltage and very detailed observations/investigations were made about timing constraint, memory and power dissipation. The main...... real-time output, so that source used to realize the project is not wasted and get an energy efficient design. However, Stack memory is an approach in which information is entered and deleted from the stack memory segment in the pattern of last in first out mechanism. There are several ways...... of implementation of stack memory algorithm but virtex4 and virtex7 low voltage were considered to be the most efficient platforms for its operation. The developed system is energy efficient as the algorim ensures less memory utilization, less power consumption and short time for signal travel....

  6. Stack Memory Implementation and Analysis of Timing Constraint, Power and Memory using FPGA

    DEFF Research Database (Denmark)

    Thind, Vandana; Pandey, Nisha; Pandey, Bishwajeet

    2017-01-01

    of implementation of stack memory algorithm but virtex4 and virtex7 low voltage were considered to be the most efficient platforms for its operation. The developed system is energy efficient as the algorim ensures less memory utilization, less power consumption and short time for signal travel.......Abstract— in this work of analysis, stack memory algorithm is implemented on a number of FPGA platforms like virtex4, virtex5, virtex6, virtex6 low power and virtex7 low voltage and very detailed observations/investigations were made about timing constraint, memory and power dissipation. The main...... real-time output, so that source used to realize the project is not wasted and get an energy efficient design. However, Stack memory is an approach in which information is entered and deleted from the stack memory segment in the pattern of last in first out mechanism. There are several ways...

  7. Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Giboyeaux, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-19

    The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stack discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.

  8. Segmentation of RGB-D indoor scenes by stacking random forests and conditional random fields

    DEFF Research Database (Denmark)

    Thøgersen, Mikkel; Guerrero, Sergio Escalera; Gonzàlez, Jordi

    2016-01-01

    on stacked classifiers; the benefits are two fold: on one hand, the system scales well to consider different types of complex features and, on the other hand, the use of stacked classifiers makes the performance of the proposed technique more accurate. The proposed method consists of a random forest using...... a stacked random forest which gives the final predictions. The model is tested on the renown NYU-v2 dataset and the recently available SUNRGBD dataset. The approach shows that simple multimodal features with the power of using multi-class multi-scale stacked sequential learners (MMSSL) can achieve slight...... better performance than state of the art methods on the same dataset. The results show an improvement of 2.3% over the base model by using MMSSL and displays that the method is effective in this problem domain....

  9. Stacking fault domains as sources of a-type threading dislocations in III-nitride heterostructures

    Science.gov (United States)

    Smalc-Koziorowska, J.; Bazioti, C.; Albrecht, M.; Dimitrakopulos, G. P.

    2016-02-01

    A mechanism for the nucleation of a-type threading dislocation half-loops from basal stacking faults in wurtzite III-nitride heterostructures is presented. Transmission electron microscopy observations, in conjunction with topological and strain analysis, show that there are two possible configurations of closed domains comprising basal stacking faults of I1 type. It is shown that the lattice dislocation may emanate when the sphalerite structural units of the stacking faults in the closed domain are oriented in a parallel manner. The closed domain configurations do not introduce any shift on the basal planes, resulting in zero defect content along the growth direction. The stacking fault domains are hexagonal, with sides along the ⟨ 10 1 ¯ 0 ⟩ directions, and the threading dislocation half loops nucleate at the line nodes. The mechanism was found to be operational in multiple III-nitride systems.

  10. Measurements of the LHCb software stack on the ARM architecture

    International Nuclear Information System (INIS)

    Kartik, S Vijay; Couturier, Ben; Clemencic, Marco; Neufeld, Niko

    2014-01-01

    The ARM architecture is a power-efficient design that is used in most processors in mobile devices all around the world today since they provide reasonable compute performance per watt. The current LHCb software stack is designed (and thus expected) to build and run on machines with the x86/x86 6 4 architecture. This paper outlines the process of measuring the performance of the LHCb software stack on the ARM architecture – specifically, the ARMv7 architecture on Cortex-A9 processors from NVIDIA and on full-fledged ARM servers with chipsets from Calxeda – and makes comparisons with the performance on x86 6 4 architectures on the Intel Xeon L5520/X5650 and AMD Opteron 6272. The paper emphasises the aspects of performance per core with respect to the power drawn by the compute nodes for the given performance – this ensures a fair real-world comparison with much more 'powerful' Intel/AMD processors. The comparisons of these real workloads in the context of LHCb are also complemented with the standard synthetic benchmarks HEPSPEC and Coremark. The pitfalls and solutions for the non-trivial task of porting the source code to build for the ARMv7 instruction set are presented. The specific changes in the build process needed for ARM-specific portions of the software stack are described, to serve as pointers for further attempts taken up by other groups in this direction. Cases where architecture-specific tweaks at the assembler lever (both in ROOT and the LHCb software stack) were needed for a successful compile are detailed – these cases are good indicators of where/how the software stack as well as the build system can be made more portable and multi-arch friendly. The experience gained from the tasks described in this paper are intended to i) assist in making an informed choice about ARM-based server solutions as a feasible low-power alternative to the current compute nodes, and ii) revisit the software design and build system for portability and

  11. ejIP: A TCP/IP Stack for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2011-01-01

    To enable Java on resource constraint embedded devices, the whole system should be implemented in a single programming language to avoid overheads on language boundaries. However, most of the functionality that is dedicated to the operating system layer is usually written in C. In this paper we...... present the design and implementation of a network stack written entirely in Java. This implementation serves as an example how to implement system functions in a safe language and gives evidence that Java can be used for operating system related functionality. The described TCP/IP stack ejIP has already...... been successfully used in industrial projects on pure Java embedded systems....

  12. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  13. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  14. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  15. Testing of Electrodes, Cells and Short Stacks

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg

    2017-01-01

    The present contribution describes the electrochemical testing and characterization of electrodes, cells, and short stacks. To achieve the maximum insight and results from testing of electrodes and cells, it is obviously necessary to have a good understanding of the fundamental principles...

  16. Stack Gas Scrubber Makes the Grade

    Science.gov (United States)

    Chemical and Engineering News, 1975

    1975-01-01

    Describes a year long test of successful sulfur dioxide removal from stack gas with a calcium oxide slurry. Sludge disposal problems are discussed. Cost is estimated at 0.6 mill per kwh not including sludge removal. A flow diagram and equations are included. (GH)

  17. OpenStack Object Storage (Swift) essentials

    CERN Document Server

    Kapadia, Amar; Varma, Sreedhar

    2015-01-01

    If you are an IT administrator and you want to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Basic knowledge of Linux and server technology is beneficial to get the most out of the book.

  18. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  19. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  20. The data type variety of stack algebras

    NARCIS (Netherlands)

    Bergstra, J.A.; Tucker, J.V.

    1995-01-01

    We define and study the class of all stack algebras as the class of all minimal algebras in a variety defined by an infinite recursively enumerable set of equations. Among a number of results, we show that the initial model of the variety is computable, that its equational theory is decidable,

  1. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  2. 40 CFR 61.53 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under...

  3. 40 CFR 61.33 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or operator...

  4. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a

  5. Power station stack gas emissions

    International Nuclear Information System (INIS)

    Hunwick, Richard J.

    2006-01-01

    There are increasing awareness and pressure to reduce emissions of acid rain and photochemical smog. There is a need to produce new control system and equipment to capture those emissions. The most visible form of pollutions are the chimney smoke, dust and particles of fly ash from mineral matter in the fuel. Acid gases are hard on structures and objects containing limestone. Coal fired power generation is likely to be able to sustain its competitive advantage as a clean source of electricity in comparison with nuclear power and natural gas

  6. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  7. A high-performance aluminum-feed microfluidic fuel cell stack

    Science.gov (United States)

    Wang, Yifei; Leung, Dennis Y. C.

    2016-12-01

    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  8. Stacked spaces: Mapping digital infrastructures

    Directory of Open Access Journals (Sweden)

    Till Straube

    2016-09-01

    Full Text Available This article turns towards the spatial life of ‘digital infrastructures’, i.e. code, protocols, standards, and data formats that are hidden from view in everyday applications of computational technologies. It does so by drawing on the version control system Git as a case study, and telling the story of its initial development in order to reconstruct the circumstances and technical considerations surrounding its conception. This account engages with computational infrastructures on their own terms by adopting the figure of the ‘stack’ to frame a technically informed analysis, and exploring its implications for a different kind of geographic inquiry. Drawing on topology as employed by Law and Mol, attention is given to the multiplicity of spatialities and temporalities enrolled in digital infrastructures in general, and Git specifically. Along the lines of the case study and by reading it against other literatures, this notion of topology is expanded to include the material performation of fundamentally arbitrary, more-than-human topologies, as well as their nested articulation, translation and negotiation within digital infrastructures.

  9. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...

  10. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    2006-01-01

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...

  11. Pressurized Operation of a Planar Solid Oxide Cell Stack

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune Dalgaard

    2016-01-01

    Solid oxide cells (SOCs) can be operated either as fuel cells (SOFC) to convert fuels to electricity or as electrolyzers (SOEC) to convert electricity to fuels such as hydrogen or methane. Pressurized operation of SOCs provide several benefits on both cell and system level. If successfully matured...... (electrode performance) increases for thermodynamic and kinetic reasons, respectively. Further, the summit frequency of the gas concentration impedance arc and the pressure difference across the stack and heat exchangers is seen to decrease with increasing pressure following a power-law expression. Finally...

  12. Improved DNA clamps by stacking to adjacent nucleobases

    DEFF Research Database (Denmark)

    Fatthalla, M.I.; Pedersen, Erik Bjerregaard

    2012-01-01

    Three or four aromatic rings interconnected by acetylene bridges form a stiff conjugated system with sufficient conformational freedom to make it useful to link together the two strands of a DNA clamp. Upon targeting a ssDNA, the conformational flexibility allows better stacking of the linker...... to the underlying non-planar base triplet in the formed triplex. This type of triplexes has a substantially higher thermal melting temperature which can be further improved by inserting locked nucleic acids (LNAs) in the Hoogsteen part of the clamp. An extremely high sensitivity to mismatches is observed...

  13. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  14. Stack Flow Rate Changes and the ANSI/N13.1-1999 Qualification Criteria: Application to the Hanford Canister Storage Building Stack

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Canister Storage Building (CSB), located in the 200-East Area of the Hanford Site, is a 42,000 square foot facility used to store spent nuclear fuel from past activities at the Hanford Site. Because the facility has the potential to emit radionuclides into the environment, its ventilation exhaust stack has been equipped with an air monitoring system. Subpart H of the National Emissions Standards for Hazardous Air Pollutants requires that a sampling probe be located in the exhaust stack in accordance with criteria established by the American National Standards Institute/Health Physics Society Standard N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities.

  15. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.

    Science.gov (United States)

    Meng, Fei; Estruga, Marc; Forticaux, Audrey; Morin, Stephen A; Wu, Qiang; Hu, Zheng; Jin, Song

    2013-12-23

    Stacking faults are an important class of crystal defects commonly observed in nanostructures of close packed crystal structures. They can bridge the transition between hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases, with the most known example represented by the "nanowire (NW) twinning superlattice". Understanding the formation mechanisms of stacking faults is crucial to better control them and thus enhance the capability of tailoring physical properties of nanomaterials through defect engineering. Here we provide a different perspective to the formation of stacking faults associated with the screw dislocation-driven growth mechanism of nanomaterials. With the use of NWs of WZ aluminum nitride (AlN) grown by a high-temperature nitridation method as the model system, dislocation-driven growth was first confirmed by transmission electron microscopy (TEM). Meanwhile numerous stacking faults and associated partial dislocations were also observed and identified to be the Type I stacking faults and the Frank partial dislocations, respectively, using high-resolution TEM. In contrast, AlN NWs obtained by rapid quenching after growth displayed no stacking faults or partial dislocations; instead many of them had voids that were associated with the dislocation-driven growth. On the basis of these observations, we suggest a formation mechanism of stacking faults that originate from dislocation voids during the cooling process in the syntheses. Similar stacking fault features were also observed in other NWs with WZ structure, such as cadmium sulfide (CdS) and zinc oxide (ZnO).

  16. Sport stacking motor intervention programme for children with ...

    African Journals Online (AJOL)

    The purpose of this study was to explore sport stacking as an alternative intervention approach with typically developing children and in addition to improve DCD. Sport stacking consists of participants stacking and unstacking 12 specially designed plastic cups in predetermined sequences in as little time as possible.

  17. Notes on G-theory of Deligne-Mumford stacks

    OpenAIRE

    Toen, B.

    1999-01-01

    Based on the methods used by the author to prove the Riemann-Roch formula for algebraic stacks, this paper contains a description of the rationnal G-theory of Deligne-Mumford stacks over general bases. We will use these results to study equivariant K-theory, and also to define new filtrations on K-theory of algebraic stacks.

  18. Learning algorithms for stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory; Zimmer, Beate G [TEXAS A& M

    2009-01-01

    Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.

  19. Industrial stacks design; Diseno de chimeneas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Cacheux, Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The Instituto de Investigaciones Electricas (IIE) though its Civil Works Department, develops, under contract with CFE`s Gerencia de Proyectos Termoelectricos (Management of Fossil Power Plant Projects), a series of methods for the design of stacks, which pretends to solve the a present day problem: the stack design of the fossil power plants that will go into operation during the next coming years in the country. [Espanol] El Instituto de Investigaciones Electricas (IIE), a traves del Departamento de Ingenieria Civil, desarrolla, bajo contrato con la Gerencia de Proyectos Termoelectricos, de la Comision Federal de Electricidad (CFE), un conjunto de metodos para el diseno de chimeneas, con el que se pretende resolver un problema inmediato: el diseno de las chimeneas de las centrales termoelectricas que entraran en operacion durante los proximos anos, en el pais.

  20. Annular feed air breathing fuel cell stack

    Science.gov (United States)

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  1. Multistage Force Amplification of Piezoelectric Stacks

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  2. Radiation-Tolerant Intelligent Memory Stack - RTIMS

    Science.gov (United States)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2011-01-01

    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  3. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  4. Physical methods for investigating structural colours in biological systems

    NARCIS (Netherlands)

    Vukusic, P.; Stavenga, D. G.

    2009-01-01

    Many biological systems are known to use structural colour effects to generate aspects of their appearance and visibility. The study of these phenomena has informed an eclectic group of fields ranging, for example, from evolutionary processes in behavioural biology to micro-optical devices in

  5. Introduction of a stack-phantom for PET

    International Nuclear Information System (INIS)

    Jonsson, C.; Schnell, P.O.; Jacobsson, H.; Engelin, L.; Danielsson, A.M.; Johansson, L.; Larsson, S.A.; Pagani, M.; Stone-Elander, S.

    2002-01-01

    Aim: We have previously developed a new flexible phantom system for SPECT, i.e. 'the stack phantom' (Eur. J. Nucl. Med. 27, No.2, 131-139, 2000). The unique feature of this phantom system is that it allows studies with, as well as without major degrading impacts from photon attenuation and Compton scattering. The specific aim of this work was to further develop the system with special reference to PET. Material and methods: The principle of the phantom concept is discrete sampling of 3D objects by a series of equidistant 2D planes. The 2D planes are a digitised set of 2D sections, representing the radioactivity distribution in the object of interest. Using a grey scale related to the radioactivity concentration, selected images are printed by radioactive ink on thin paper sheets and stacked into the 3D structure with low-density or with tissue equivalent material in between. Using positron emitting radionuclides, the paper sheets alone may not be sufficiently thick to avoid annihilation losses due to escaping positrons. In order to investigate the amount of additional material needed, a spot of radioactivity ( 18 F) was printed out and subsequently covered by adding thin plastic films (0.055mm) on both sides of the paper. Short PET scans (ECAT 921) were performed and the count-rate was registered after each additional layer of plastic cover. A first prototype, a cylindrical cold-spot phantom was constructed on the basis of these results. Nine identical sheets were printed out and first mounted in between 4 mm plates of polystyrene (density 1.04 g/cm 3 ). After a PET-scan, the paper sheets were re-mounted in between a low-density material (Divinycell, H30, density 0.03 g/cm 3 ) before repeating the PET scan. Results: For 18 F, the number of registered annihilation photons increased with increasing number of plastic sheets from 70% for the pure paper sheet to about 100% with 0.5 mm plastic cover on each side. PET of the low-density stacked cold spot phantom

  6. Real-time Stack Monitoring at the BaTek Medical Isotope Production Facility

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Justin I.; Agusbudiman, A.; Cameron, Ian M.; Dumais, Johannes R.; Eslinger, Paul W.; Gheddou, A.; Khrustalev, Kirill; Marsoem, Pujadi; Miley, Harry S.; Nikkinen, Mika; Prinke, Amanda M.; Ripplinger, Mike D.; Schrom, Brian T.; Sliger, William A.; Stoehlker, Ulrich; Suhariyono, G.; Warren, Glen A.; Widodo, Susilo; Woods, Vincent T.

    2016-04-01

    Radioxenon emissions from radiopharmaceutical production are a major source of background concentrations affecting the radioxenon detection systems of the International Monitoring System (IMS). Collection of real-time emissions data from production facilities makes it possible to screen out some medical isotope signatures from the IMS radioxenon data sets. This paper describes an effort to obtain and analyze real-time stack emissions data with the design, construction and installation of a small stack monitoring system developed by a joint CTBTO-IDC, BATAN, and PNNL team at the BaTek medical isotope production facility near Jakarta, Indonesia.

  7. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  8. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2011-01-01

    Roč. 32, č. 1 (2011), s. 116-126 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA ČR GAP206/10/1219; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  9. Stacked Switched Capacitor Energy Buffer Architecture

    OpenAIRE

    Chen, Minjie; Perreault, David J.; Afridi, Khurram

    2012-01-01

    Electrolytic capacitors are often used for energy buffering applications, including buffering between single-phase ac and dc. While these capacitors have high energy density compared to film and ceramic capacitors, their life is limited. This paper presents a stacked switched capacitor (SSC) energy buffer architecture and some of its topological embodiments, which when used with longer life film capacitors overcome this limitation while achieving effective energy densities comparable to elect...

  10. When is stacking confusing? The impact of confusion on stacking in deep H I galaxy surveys

    Science.gov (United States)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Papastergis, Emmanouil

    2016-01-01

    We present an analytic model to predict the H I mass contributed by confused sources to a stacked spectrum in a generic H I survey. Based on the ALFALFA (Arecibo Legacy Fast ALFA) correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest Square Kilometre Array precursor H I surveys. Stacking with LADUMA (Looking At the Distant Universe with MeerKAT) and DINGO UDEEP (Deep Investigation of Neutral Gas Origins - Ultra Deep) data will only be mildly impacted by confusion if their target synthesized beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES (COSMOS H I Large Extragalactic Survey) 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST (Five hundred metre Aperture Spherical Telescope) will be the most impeded by confusion, with H I surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the redshift evolution of the H I density of the Universe and the H I correlation function. However, we argue that the two idealized cases we adopt should bracket the true evolution, and the qualitative conclusions are unchanged regardless of the model choice. The profile shape of the signal due to confusion (in the absence of any detection) was also modelled, revealing that it can take the form of a double Gaussian with a narrow and wide component.

  11. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  12. Guanine base stacking in G-quadruplex nucleic acids

    Science.gov (United States)

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  13. The SBOL Stack: A Platform for Storing, Publishing, and Sharing Synthetic Biology Designs.

    Science.gov (United States)

    Madsen, Curtis; McLaughlin, James Alastair; Mısırlı, Göksel; Pocock, Matthew; Flanagan, Keith; Hallinan, Jennifer; Wipat, Anil

    2016-06-17

    Recently, synthetic biologists have developed the Synthetic Biology Open Language (SBOL), a data exchange standard for descriptions of genetic parts, devices, modules, and systems. The goals of this standard are to allow scientists to exchange designs of biological parts and systems, to facilitate the storage of genetic designs in repositories, and to facilitate the description of genetic designs in publications. In order to achieve these goals, the development of an infrastructure to store, retrieve, and exchange SBOL data is necessary. To address this problem, we have developed the SBOL Stack, a Resource Description Framework (RDF) database specifically designed for the storage, integration, and publication of SBOL data. This database allows users to define a library of synthetic parts and designs as a service, to share SBOL data with collaborators, and to store designs of biological systems locally. The database also allows external data sources to be integrated by mapping them to the SBOL data model. The SBOL Stack includes two Web interfaces: the SBOL Stack API and SynBioHub. While the former is designed for developers, the latter allows users to upload new SBOL biological designs, download SBOL documents, search by keyword, and visualize SBOL data. Since the SBOL Stack is based on semantic Web technology, the inherent distributed querying functionality of RDF databases can be used to allow different SBOL stack databases to be queried simultaneously, and therefore, data can be shared between different institutes, centers, or other users.

  14. Uniqueness of magnetotomography for fuel cells and fuel cell stacks

    International Nuclear Information System (INIS)

    Lustfeld, H; Hirschfeld, J; Reissel, M; Steffen, B

    2009-01-01

    The criterion for the applicability of any tomographic method is its ability to construct the desired inner structure of a system from external measurements, i.e. to solve the inverse problem. Magnetotomography applied to fuel cells and fuel cell stacks aims at determining the inner current densities from measurements of the external magnetic field. This is an interesting idea since in those systems the inner electric current densities are large, several hundred mA per cm 2 and therefore relatively high external magnetic fields can be expected. Still the question remains how uniquely the inverse problem can be solved. Here we present a proof that by exploiting Maxwell's equations extensively the inverse problem of magnetotomography becomes unique under rather mild assumptions and we show that these assumptions are fulfilled in fuel cells and fuel cell stacks. Moreover, our proof holds true for any other device fulfilling the assumptions listed here. Admittedly, our proof has one caveat: it does not contain an estimate of the precision requirements the measurements need to fulfil for enabling reconstruction of the inner current densities from external magnetic fields.

  15. About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Matinyan, G K; Harutyunyan, M Z

    2014-01-01

    The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. The influence of: the CLC sublayer thicknesses; incidence angle; local dielectric (magnetic) anisotropy of the CLC layers; refraction indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.

  16. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  17. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  18. Dose assessment from potential radionuclide emissions from stacks on the Hanford Site

    International Nuclear Information System (INIS)

    Davis, W.E.; Barnett, J.M.

    1995-04-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order required RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which points are subject to the continuous emission sampling requirements of Title 40, Code of Federal Regulations, Part 61 (40 CFR 61), Subpart H, and (2) continuously sample radionuclide emissions in accordance with requirements in 40 CFR 61.93. The Information Request required RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. A Compliance Plan was submitted to EPA, Region 10, on April 30, 1993. The Compliance Plan specified that a dose assessment would be performed for 84 Westinghouse Hanford Company (WHC) stacks registered with the Washington State Department of Health on the Hanford Site. Any stack identified in the assessment as having potential emissions to cause an effective dose equivalent (EDE) to a maximum exposed individual (MEI) greater than 0.1 mrem y -1 must have a compliant sampling system. In addition, a Federal Facility Compliance Agreement (FFCA) was signed on. February 7, 1994. The FFCA required that all unregistered stacks on the Hanford Site be assessed. This requirement increased the number of stacks to be assessed to 123 stacks. Six methods for performing the assessments are described. An initial assessment using only the HEPA filtration factor for back calculations identified 32 stacks that would have emissions which would cause an EDE to the MEI greater than 0.1 mrem y -1 . When the other methods were applied the number was reduced to 20 stacks. The paper discusses reasons for these overestimates

  19. Improved Direct Methanol Fuel Cell Stack

    Science.gov (United States)

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  20. NSF tandem stack support structure deflection characteristics

    International Nuclear Information System (INIS)

    Cook, J.

    1979-12-01

    Results are reported of load tests carried out on the glass legs of the insulating stack of the 30 MV tandem Van de Graaff accelerator now under construction at Daresbury Laboratory. The tests to investigate the vulnerability of the legs when subjected to tensile stresses were designed to; establish the angle of rotation of the pads from which the stresses in the glass legs may be calculated, proof-test the structure and at the same time reveal any asymmetry in pad rotations or deflections, and to confirm the validity of the computer design analysis. (UK)

  1. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  2. Displacive phase transformations and generalized stacking faults

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Ostapovets, Andriy; Duparc, O. H.; Khalfallah, O.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 490-492 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : ab-initio calculations * close-packed structures * generalized stacking faults * homogeneous deformation * lattice deformation * many-body potentials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  3. Longitudinal ultrasonic vibration assisted guillotining of stacked paper.

    Science.gov (United States)

    Deibel, Karl-Robert; Kaiser, Fabian; Zimmermann, Remo; Meier, Linus; Bolt, Peter; Wegener, Konrad

    2014-08-01

    Ultrasonic vibration assisted cutting is a complex process with high dynamics. The interaction between cutting tool and workpiece is of key interest to understand the entire process. Experimental investigations are limited by the dynamics of the measurement system, and thus appropriately modeling of the ultrasonic vibration assisted cutting process is essential. In this investigation, a dynamic model regarding the ultrasonic vibration assisted guillotining of stacked paper sheets is developed. A Kelvin-Voigt material model, representing the individual sheets, is chosen, with its stiffness and damping parameters being empirically determined. A novel measurement strategy for studying the contact time and interaction between cutting tool and workpiece is introduced. It allows the verification of the highly dynamic behavior of the developed model. With the dynamic model, the experimentally observed cutting forces can be calculated. It is found that the dynamic forces cause a quicker failure of the material, which leads to a lower compression of the stack prior to reaching the critical cutting force. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Low hydrostatic head electrolyte addition to fuel cell stacks

    Science.gov (United States)

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  5. Complete intrinsic coincident polarimetry using stacked organic photovoltaics

    Science.gov (United States)

    Gupta Roy, S.; Awartani, O. M.; Sen, P.; O'Connor, B. T.; Kudenov, M. W.

    2015-09-01

    Measuring the 2 dimensional Stokes vector, to determine the polarization state of light, finds application in multiple areas, including the characterization of aerosol size distributions, target identification, quality control by evaluating the distribution of stress birefringence, resolving data channels in telecommunications, and for evaluating biological tissues in medical imaging. Conventional methods, such as channeled and division of focal plane polarimeters, usually limit spatial resolution, while others, like division of aperture or division of amplitude polarimeters, have higher complexity and less compactness. To help solve these issues, we have developed a system that uses semitransparent organic photovoltaics (OPVs) as photodetectors. The active area of the devices consist of biaxially oriented polymer films, which enables the device to preferentially absorb certain polarized states of incident light, depending on the orientation of the polymer chains. Taking advantage of the cells' transparency and ease of processing, compared to inorganic materials, enables multiple devices to be "stacked" along the optical axis. Presently, experiments have been conducted to detect linear polarization states of light. We use three stacked OPVs, where each device can measure one of the first three Stokes parameters simultaneously, thereby ensuring high spatial and temporal resolution with inherent spatial registration. In this paper, the fabrication of the OPVs and the design and calibration technique is documented, along with experimental data, supporting the hypothesis.

  6. The use of Graphic User Interface for development of a user-friendly CRS-Stack software

    Science.gov (United States)

    Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah

    2017-04-01

    The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the

  7. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  8. AC impedance diagnosis of a 500 W PEM fuel cell stack . Part I: Stack impedance

    Science.gov (United States)

    Yuan, Xiaozi; Sun, Jian Colin; Blanco, Mauricio; Wang, Haijiang; Zhang, Jiujun; Wilkinson, David P.

    Diagnosis of stack performance is of importance to proton exchange membrane (PEM) fuel cell research. This paper presents the diagnostic testing results of a 500 W Ballard Mark V PEM fuel cell stack with an active area of 280 cm 2 by electrochemical impedance spectroscopy (EIS). The EIS was measured using a combination of a FuelCon test station, a TDI loadbank, and a Solartron 1260 Impedance/Gain-Phase Analyzer operating in the galvanostatic mode. The method described in this work can obtain the impedance spectra of fuel cells with a larger geometric surface area and power, which are normally difficult to measure due to the limitations on commercial load banks operating at high currents. By using this method, the effects of temperature, flow rate, and humidity on the stack impedance spectra were examined. The results of the electrochemical impedance analysis show that with increasing temperature, the charge transfer resistance decreases due to the slow oxygen reduction reaction (ORR) process at low temperature. If the stack is operated at a fixed air flow rate, a low frequency arc appears and grows with increasing current due to the shortage of air. The anode humidification cut-off does not affect the spectra compared to the cut-off for cathode humidification.

  9. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  10. Stray field interaction of stacked amorphous tapes

    International Nuclear Information System (INIS)

    Guenther, Wulf; Flohrer, Sybille

    2008-01-01

    In this study, magnetic cores made of amorphous rectangular tape layers are investigated. The quality factor Q of the tape material decreases rapidly, however, when stacking at least two tape layers. The hysteresis loop becomes non-linear, and the coercivity increases. These effects are principally independent of the frequency and occur whether tape layers are insulated or not. The Kerr-microscopy was used to monitor local hysteresis loops by varying the distance of two tape layers. The magnetization direction of each magnetic domain is influenced by the anisotropy axis, the external magnetic field and the stray field of magnetic domains of the neighboring tape layers. We found that crossed easy axes (as the extreme case for inclined axes) of congruent domains retain the remagnetization and induce a plateau of the local loop. Summarizing local loops leads to the observed increase of coercivity and non-linearity of the inductively measured loop. A high Q-factor can be preserved if the easy axes of stacked tape layers are identical within the interaction range in the order of mm

  11. Annular feed air breathing fuel cell stack

    Science.gov (United States)

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  12. High performance zinc air fuel cell stack

    Science.gov (United States)

    Pei, Pucheng; Ma, Ze; Wang, Keliang; Wang, Xizhong; Song, Mancun; Xu, Huachi

    2014-03-01

    A zinc air fuel cell (ZAFC) stack with inexpensive manganese dioxide (MnO2) as the catalyst is designed, in which the circulation flowing potassium hydroxide (KOH) electrolyte carries the reaction product away and acts as a coolant. Experiments are carried out to investigate the characteristics of polarization, constant current discharge and dynamic response, as well as the factors affecting the performance and uniformity of individual cells in the stack. The results reveal that the peak power density can be as high as 435 mW cm-2 according to the area of the air cathode sheet, and the influence factors on cell performance and uniformity are cell locations, filled state of zinc pellets, contact resistance, flow rates of electrolyte and air. It is also shown that the time needed for voltages to reach steady state and that for current step-up or current step-down are both in milliseconds, indicating the ZAFC can be excellently applied to vehicles with rapid dynamic response demands.

  13. Generalized stacking fault energies of alloys.

    Science.gov (United States)

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  14. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  15. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol.

    Science.gov (United States)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-02-01

    Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community compositions were nearly stable. Comparatively, after changing parallel to series connection, there was a lag period for the system to get stable again and the microbial community compositions became greatly different. This study is the first attempt to elucidate the influence of short-term changes in connection on the performance of MFC stack, and could provide insight to the practical utilization of MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  17. Quadratic forms and Clifford algebras on derived stacks

    OpenAIRE

    Vezzosi, Gabriele

    2013-01-01

    In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the associated notion of derived Clifford algebra, in all these contexts, and compare it with its classical version, when they both apply. Finally, we prove three main existence results for derived shifted quadratic forms over derived stacks, define ...

  18. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  19. Status of Slip Stacking at Fermilab Main Injector

    CERN Document Server

    Seiya, Kiyomi; Chase, Brian; Dey, Joseph; Kourbanis, Ioanis; MacLachlan, James A; Meisner, Keith G; Pasquinelli, Ralph J; Reid, John; Rivetta, Claudio H; Steimel, Jim

    2005-01-01

    In order to increase proton intensity on anti proton production cycle of the Main Injector we are going to use the technique of 'slip stacking' and doing machine studies. In slip stacking, one bunch train is injected at slightly lower energy and second train is at slightly higher energy. Afterwards they are aligned longitudinally and captured with one rf bucket. This longitudinal stacking process is expected to double the bunch intensity. The required intensity for anti proton production is 8·1012

  20. A novel design for solid oxide fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qattan, A.M.; Chmielewski, D.J.; Al-Hallaj, S.; Selman, J.R. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Environmental Engineering

    2004-01-01

    Conventional fuel cell stack designs suffer from severe spatial nonuniformity in both temperature and current density. Such variations are known to create damaging thermal stresses within the stack and thus, impact overall lifespan. In this work, we propose a novel stack design aimed at reducing spatial variations at the source. We propose a mechanism of distributed fuel feed in which the heat generation profile can be influenced directly. Simulation results are presented to illustrate the potential of the proposed scheme. (author)

  1. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  2. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge

    International Nuclear Information System (INIS)

    Liu, Rui; Chen, Jixin; Xun, Jingzhi; Jiao, Kui; Du, Qing

    2014-01-01

    Highlights: • The thermal behaviors of a Li-ion battery stack have been investigated by modeling. • Parametric studies have been performed focusing on three different cooling materials. • Effects of discharge rate, ambient temperature and Reynolds number are examined. • General guidelines are proposed for the thermal management of a Li-ion battery stack. - Abstract: Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors

  3. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  4. Modelling the protocol stack in NCS with deterministic and stochastic petri net

    Science.gov (United States)

    Hui, Chen; Chunjie, Zhou; Weifeng, Zhu

    2011-06-01

    Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.

  5. The convection stack - a device for ridding pit toilets of bad odor

    Science.gov (United States)

    J. Alan Wagar

    1962-01-01

    One of the common problems on outdoor recreation areas is that pit toilets smell bad. Flush plumbing is one answer to the problem. But pit toilets are needed in many places where modern sewage systems are economically or physically impractical. To reduce the smell of the pit toilet, one simple, safe, and inexpensive device that can be used is the convection stack....

  6. Serendipity in the Stacks: Libraries, Information Architecture, and the Problems of Accidental Discovery

    Science.gov (United States)

    Carr, Patrick L.

    2015-01-01

    Serendipity in the library stacks is generally regarded as a positive occurrence. While acknowledging its benefits, this essay draws on research in library science, information systems, and other fields to argue that, in two important respects, this form of discovery can be usefully framed as a problem. To make this argument, the essay examines…

  7. Probe-Fed Stacked Microstrip Patch Antenna for High-Resolution Polarimetric C-Band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes a C-band, dual-linear polarization wideband antenna for use in the next-generation of the Danish high-resolution, airborne polarimetric synthetic aperture radar (SAR) system, EMISAR. The design and performance of a probe-fed, stacked microstrip patch element, operating from 4...

  8. Stacked, filtered multi-channel X-ray diode array

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, Lawrence [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Dutra, Eric [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Raphaelian, Mark [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Compton, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jacoby, Barry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  9. Manifold seal structure for fuel cell stack

    Science.gov (United States)

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  10. Stacked generalization: an introduction to super learning.

    Science.gov (United States)

    Naimi, Ashley I; Balzer, Laura B

    2018-04-10

    Stacked generalization is an ensemble method that allows researchers to combine several different prediction algorithms into one. Since its introduction in the early 1990s, the method has evolved several times into a host of methods among which is the "Super Learner". Super Learner uses V-fold cross-validation to build the optimal weighted combination of predictions from a library of candidate algorithms. Optimality is defined by a user-specified objective function, such as minimizing mean squared error or maximizing the area under the receiver operating characteristic curve. Although relatively simple in nature, use of Super Learner by epidemiologists has been hampered by limitations in understanding conceptual and technical details. We work step-by-step through two examples to illustrate concepts and address common concerns.

  11. The Beam Characteristics of High Power Diode Laser Stack

    Science.gov (United States)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  12. Actuators Using Piezoelectric Stacks and Displacement Enhancers

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Lee, Hyeong Jae; Walkenmeyer, Phillip; Lih, Shyh-Shiuh

    2015-01-01

    Actuators are used to drive all active mechanisms including machines, robots, and manipulators to name a few. The actuators are responsible for moving, manipulating, displacing, pushing and executing any action that is needed by the mechanism. There are many types and principles of actuation that are responsible for these movements ranging from electromagnetic, electroactive, thermo-mechanic, piezoelectric, electrostrictive etc. Actuators are readily available from commercial producers but there is a great need for reducing their size, increasing their efficiency and reducing their weight. Studies at JPL’s Non Destructive Evaluation and Advanced Actuators (NDEAA) Laboratory have been focused on the use of piezoelectric stacks and novel designs taking advantage of piezoelectric’s potential to provide high torque/force density actuation and high electromechanical conversion efficiency. The actuators/motors that have been developed and reviewed in this paper are operated by various horn configurations as well as the use of pre-stress flexures that make them thermally stable and increases their coupling efficiency. The use of monolithic designs that pre-stress the piezoelectric stack eliminates the use of compression stress bolt. These designs enable the embedding of developed solid-state motors/actuators in any structure with the only macroscopically moving parts are the rotor or the linear translator. Finite element modeling and design tools were used to determine the requirements and operation parameters and the results were used to simulate, design and fabricate novel actuators/motors. The developed actuators and performance will be described and discussed in this paper.

  13. Plume trajectory formation under stack tip self-enveloping

    Science.gov (United States)

    Gribkov, A. M.; Zroichikov, N. A.; Prokhorov, V. B.

    2017-10-01

    The phenomenon of stack tip self-enveloping and its influence upon the conditions of plume formation and on the trajectory of its motion are considered. Processes are described occurring in the initial part of the plume while the interaction between vertically directed flue gases outflowing from the stack and a horizontally directed moving air flow at high wind velocities that lead to the formation of a flag-like plume. Conditions responsible for the origin and evolution of interaction between these flows are demonstrated. For the first time, a plume formed under these conditions without bifurcation is registered. A photo image thereof is presented. A scheme for the calculation of the motion of a plume trajectory is proposed, the quantitative characteristics of which are obtained based on field observations. The wind velocity and direction, air temperature, and atmospheric turbulence at the level of the initial part of the trajectory have been obtained based on data obtained from an automatic meteorological system (mounted on the outer parts of a 250 m high stack no. 1 at the Naberezhnye Chelny TEPP plant) as well as based on the results of photographing and theodolite sighting of smoke puffs' trajectory taking into account their velocity within its initial part. The calculation scheme is supplemented with a new acting force—the force of self-enveloping. Based on the comparison of the new calculation scheme with the previous one, a significant contribution of this force to the development of the trajectory is revealed. A comparison of the natural full-scale data with the results of the calculation according to the proposed new scheme is made. The proposed calculation scheme has allowed us to extend the application of the existing technique to the range of high wind velocities. This approach would make it possible to simulate and investigate the trajectory and full rising height of the calculated the length above the mouth of flue-pipes, depending on various modal

  14. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  15. Calculation of AC losses in large HTS stacks and coils

    DEFF Research Database (Denmark)

    Zermeno, Victor; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2012-01-01

    In this work, we present a homogenization method to model a stack of HTS tapes under AC applied transport current or magnetic field. The idea is to find an anisotropic bulk equivalent for the stack of tapes, where the internal alternating structures of insulating, metallic, superconducting and su...

  16. Efficient Context Switching for the Stack Cache: Implementation and Analysis

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar; Brandner, Florian; Naji, Amine

    2015-01-01

    , the analysis of the stack cache was limited to individual tasks, ignoring aspects related to multitasking. A major drawback of the original stack cache design is that, due to its simplicity, it cannot hold the data of multiple tasks at the same time. Consequently, the entire cache content needs to be saved...

  17. Pocket concept provides more degrees of freedom. Modular stacks with exchangeable wear parts; Taschenkonzept schafft neue Freiheitsgrade. Modulare Stacks mit austauschbaren Verschleissteilen

    Energy Technology Data Exchange (ETDEWEB)

    Brodmann, Michael; Greda, Martin [Westfaelische Hochschule, Gelsenkirchen (Germany)

    2012-04-15

    In view of the central role of fuel cell systems in future power supply, scientists are working hard on improvements. One big step towards simplification is the pocket concept developed at Westfaelische Hochschule university at Gelsenkirchen. This concept divides up fuel cell stacks into individual modules whose wear components can be exchanged easily and safely without impairing the functionality of the fuel cell. This will make facilitate servicing and maintenance. (orig.)

  18. The behaviour of stacking fault energy upon interstitial alloying.

    Science.gov (United States)

    Lee, Jee-Yong; Koo, Yang Mo; Lu, Song; Vitos, Levente; Kwon, Se Kyun

    2017-09-11

    Stacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established. Here, we propose a simple model for determining the effect of interstitial alloying on the stacking fault energy. We derive a volumetric behaviour of stacking fault energy from the harmonic approximation to the energy-lattice curve and relate it to the contents of interstitials. The stacking fault energy is found to change linearly with the interstitial content in the usual low concentration domain. This is in good agreement with previously reported experimental and theoretical data.

  19. Direct methanol fuel cell stack based on MEMS technology

    Science.gov (United States)

    Zhang, Yufeng; Tang, Xiaochuan; Yuan, Zhenyu; Liu, Xiaowei

    2008-10-01

    This paper presents a design configuration of silicon-based micro direct methanol fuel cell (DMFC) stack in a planar array. The integrated series connection is oriented in a "flip-flop" configuration with electrical interconnections made by thin-film metal layers that coat the flow channels etched in the silicon substrate. The configuration features small connection space and low contact resistance. The MEMS fabrication process was utilized to fabricate the silicon plates of DMFC stack. This DMFC stack with an active area of 64mm x 11mm was characterized at room temperature and normal atmosphere. Experimental results show that the prototype stack is able to generate an open-circuit voltage of 2.7V and a maximum power density of 2.2mW/cm2, which demonstrate the feasibility of this new DMFC stack configuration.

  20. Deformation Induced Microtwins and Stacking Faults in Aluminum Single Crystal

    Science.gov (United States)

    Han, W. Z.; Cheng, G. M.; Li, S. X.; Wu, S. D.; Zhang, Z. F.

    2008-09-01

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  1. Physical Sciences Laboratory 1 Rooftop Stack Mixing Study

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    To address concerns about worker exposures on the Physical Science Laboratory (PSL) rooftop, a tracer study was conducted to measure gaseous tracer concentrations downwind of six stacks on the southern half of the PSL building (PSL-1). These concerns were raised, in part, due to the non-standard configuration of the stacks on this building. Five of the six stacks were only about 8 feet tall, with one shorter stack that was essentially level with the roof deck. These stacks were reconfigured in August 2016, and these exhaust points on PSL-1 are now 18 feet tall. This report describes the objectives of the tracer tests performed on PSL-1, provides an overview of how the tests were executed, and presents results of the tests. The tests on the PSL rooftop were a follow-on project from a similar study performed on the LSL-II ventilation exhaust (Flaherty and Antonio, 2016).

  2. Parsing of the free energy of aromatic-aromatic stacking interactions in solution

    Energy Technology Data Exchange (ETDEWEB)

    Kostjukov, Viktor V.; Khomytova, Nina M. [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine); Hernandez Santiago, Adrian A.; Tavera, Anna-Maria Cervantes; Alvarado, Julieta Salas [Faculty of Chemical Sciences, Autonomous University of Puebla, Puebla (Mexico); Evstigneev, Maxim P., E-mail: max_evstigneev@mail.ru [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine)

    2011-10-15

    Graphical abstract: Highlights: > A protocol for decomposition of the free energy of aromatic stacking is developed. > The factors stabilizing/destabilizing stacking of aromatic molecules are defined. > Hydrophobic contribution is found to be dominant. - Abstract: We report an analysis of the energetics of aromatic-aromatic stacking interactions for 39 non-covalent reactions of self- and hetero-association of 12 aromatic molecules with different structures and charge states. A protocol for computation of the contributions to the total energy from various energetic terms has been developed and the results are consistent with experiment in 92% of all the systems studied. It is found that the contributions from hydrogen bonds and entropic factors are always unfavorable, whereas contributions from van-der-Waals, electrostatic and/or hydrophobic effects may lead to stabilizing or destabilizing factors depending on the system studied. The analysis carried out in this work provides an answer to the questions 'What forces stabilize/destabilize the stacking of aromatic molecules in aqueous-salt solution and what are their relative importance?'

  3. Parsing of the free energy of aromatic-aromatic stacking interactions in solution

    International Nuclear Information System (INIS)

    Kostjukov, Viktor V.; Khomytova, Nina M.; Hernandez Santiago, Adrian A.; Tavera, Anna-Maria Cervantes; Alvarado, Julieta Salas; Evstigneev, Maxim P.

    2011-01-01

    Graphical abstract: Highlights: → A protocol for decomposition of the free energy of aromatic stacking is developed. → The factors stabilizing/destabilizing stacking of aromatic molecules are defined. → Hydrophobic contribution is found to be dominant. - Abstract: We report an analysis of the energetics of aromatic-aromatic stacking interactions for 39 non-covalent reactions of self- and hetero-association of 12 aromatic molecules with different structures and charge states. A protocol for computation of the contributions to the total energy from various energetic terms has been developed and the results are consistent with experiment in 92% of all the systems studied. It is found that the contributions from hydrogen bonds and entropic factors are always unfavorable, whereas contributions from van-der-Waals, electrostatic and/or hydrophobic effects may lead to stabilizing or destabilizing factors depending on the system studied. The analysis carried out in this work provides an answer to the questions 'What forces stabilize/destabilize the stacking of aromatic molecules in aqueous-salt solution and what are their relative importance?'

  4. Reflector imaging by diffraction stacking with stacking velocity analysis; Jugo sokudo kaiseki wo tomonau sanran jugoho ni yoru hanshamen imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J.; Rokugawa, S.; Kato, Y. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yokota, T. [Japan National Oil Corp., Tokyo (Japan); Miyazaki, T. [Geological Survey of Japan, Tsukuba (Japan)

    1997-10-22

    Concerning seismic reflection survey for geometrical arrangement between pits, the scattering stacking method with stacking velocity analysis is compared with the CDP (common depth point horizontal stacking method). The advantages of the CDP supposedly include the following. Since it presumes an average velocity field, it can determine velocities having stacking effects. The method presumes stratification and, since such enables the division of huge quantities of observed data into smaller groups, more data can be calculated in a shorter time period. The method has disadvantages, attributable to its presuming an average velocity field, that accuracy in processing is lower when the velocity field contrast is higher, that accuracy in processing is low unless stratification is employed, and that velocities obtained from stacking velocity analysis are affected by dipped structures. Such shortcomings may be remedied in the scattering stacking method with stacking velocity analysis. Possibilities are that, as far as the horizontal reflection plane is concerned, it may yield stack records higher in S/N ratio than the CDP. Findings relative to dipped reflection planes will be introduced at the presentation. 6 refs., 12 figs.

  5. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  6. Stacking faults in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Hermida, J.D. [CNEA, San Martin (Argentina). Dept. de Materiales

    1996-06-01

    During last decade, Austempered Ductile Iron (ADI) has been successfully used as an acceptable replacement material for steel in many applications, due to the relatively high strength and reasonable ductility obtained. These properties are the result of the special microstructure exhibited by this material at the end of the upper bainite reaction: ferrite platelets surrounded by high carbon stabilized austenite. However, at the beginning of the austempering treatment, the existence of interdendritic low carbon austenite is revealed by its transformation to martensite when cooling the sample or during subsequent deformation. The completion of the upper bainite reaction is of decisive importance to mechanical properties because the remaining martensite reduces ductility. It was observed that the rate of the upper bainite reaction is governed by the carbon content difference between the low and high carbon austenites. The carbon content is obtained by the lattice parameter measurement, because there exists a known expression that relates both magnitudes. Several works have used X-ray diffraction to measure the lattice parameter and phase concentrations as a function of austempering time. In these works, the lattice parameters were obtained directly from the {l_brace}220{r_brace} and {l_brace}311{r_brace} peaks position. The purpose of this work is to show more precise lattice parameters measurement and, very closely related to this, the existence of stacking faults in austenite, even at times within the processing window.

  7. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  8. Lithiation-induced shuffling of atomic stacks

    KAUST Repository

    Nie, Anmin

    2014-09-10

    In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.

  9. Independent determination of the accuracy of the OSTR stack gas monitor and its operational application

    International Nuclear Information System (INIS)

    Pickett, B.D.; Johnson, A.G.

    1982-01-01

    This study was undertaken to determine the accuracy of the stack gas monitor, using techniques which were independent of the monitoring system itself. Samples of argon-41 to be used as the standards in this study were carefully produced in the thermal column of the OSTR and counted on a Ge(Li) detector which was connected to a multichannel analyzer (MCA). As the argon-41 standard in the gas sample flask decayed, the concentration of the argon-41 was compared to the output of the Ge(Li)/MCA system. This established a calibration curve for the counting system, whereby a sample with an unknown concentration of argon-41 could be counted and the subsequent count rate from the sample converted to a concentration expressed in mCi per milliliter. Gas samples were extracted from various points in the reactor exhaust system and the concentrations of argon-41 were determined by counting on the Ge(Li)/MCA system. Each sample concentration was then compared to the argon-41 concentration indicated by the stack gas monitor. The initial results indicated that, although possibly intermittent, the argon-41 concentrations displayed by the stack gas monitor were often approximately 50% of those predicted by analysis of individual samples from the exhaust system. Several possible sources for the discrepancy were checked, including the method of SGM calibration, uneven mixing of exhaust air and argon-41 in the reactor building exhaust stream, and dilution of the gas concentration in the SGM system by air leakage into the system. After considerable effort, the latter cause was found to be the culprit, due to an aging gasket around the stack monitor's moving particulate-filter-paper housing

  10. Phase displacement acceleration of high intensity stacks in the CERN ISR

    International Nuclear Information System (INIS)

    Ciapala, E.; Myers, S.; Wyss, C.

    1977-01-01

    In the ISR high intensity stacks of more than 25 A are accelerated by phase displacement from 26.6 to 31.4 GeV/c. Phase displacement is the only known means of accelerating stacks of such large momentum spread (Δp/p = 3%) with the existing low power rf system. Acceleration in this way may produce loss of intensity due to rf and power supply magnet noise, momentum blowup of the stack, closed orbit and working line variations, and changes in the rf bucket size while traversing the stack. The existing instrumentation allows close control of all relevant parameters during acceleration and has resulted in reducing the intensity losses to as little as 10%. In this way, luminosities significantly in excess of the ISR design luminosity are achieved in an operational way, making 31.4 GeV/c one of the standard ISR momenta for physics data taking and giving an equivalent momentum of greater than 2,000 GeV/c when related to stationary target machines

  11. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.

    Science.gov (United States)

    Zhuang, Li; Zheng, Yu; Zhou, Shungui; Yuan, Yong; Yuan, Haoran; Chen, Yong

    2012-02-01

    A tubular air-cathode microbial fuel cell (MFC) stack with high scalability and low material cost was constructed and the ability of simultaneous real wastewater treatment and bioelectricity generation was investigated under continuous flow mode. At the two organic loading rates (ORLs) tested (1.2 and 4.9kg COD/m(3)d), five non-Pt MFCs connected in series and parallel circuit modes treating swine wastewater can enable an increase of the voltage and the current. The parallel stack retained high power output and the series connection underwent energy loss due to the substrate cross-conduction effect. With continuous electricity production, the parallel stack achieved 83.8% of COD removal and 90.8% of NH(4)(+)-N removal at 1.2kg COD/m(3)d, and 77.1% COD removal and 80.7% NH(4)(+)-N removal at 4.9kg COD/m(3)d. The MFC stack system in this study was demonstrated to be able to treat real wastewater with the added benefit of harvesting electricity energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Stacking machine learning classifiers to identify Higgs bosons at the LHC

    International Nuclear Information System (INIS)

    Alves, A.

    2017-01-01

    Machine learning (ML) algorithms have been employed in the problem of classifying signal and background events with high accuracy in particle physics. In this paper, we compare the performance of a widespread ML technique, namely, stacked generalization , against the results of two state-of-art algorithms: (1) a deep neural network (DNN) in the task of discovering a new neutral Higgs boson and (2) a scalable machine learning system for tree boosting, in the Standard Model Higgs to tau leptons channel, both at the 8 TeV LHC. In a cut-and-count analysis, stacking three algorithms performed around 16% worse than DNN but demanding far less computation efforts, however, the same stacking outperforms boosted decision trees. Using the stacked classifiers in a multivariate statistical analysis (MVA), on the other hand, significantly enhances the statistical significance compared to cut-and-count in both Higgs processes, suggesting that combining an ensemble of simpler and faster ML algorithms with MVA tools is a better approach than building a complex state-of-art algorithm for cut-and-count.

  13. Coherent stacking of picosecond laser pulses in a high-Q optical cavity for accelerator applications

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Telegin, Yu.N.

    2007-01-01

    We have performed the harmonic analysis of the steady-state coherent pulse-stacking process in a high-Q Fabry-Perot cavity. The expression for the stacked pulse shape is obtained as a function of both the laser cavity and pulse-stacking cavity parameters. We have also estimated the pulse power gains attainable in the laser-optical system of NESTOR storage ring, which is under development at Kharkov Institute of Physics and Technology. It is shown that high power gains (∼10 4 ) can be, in principle, achieved in a cavity, formed with low-absorption, high reflectivity (R ∼ 0.9999) mirrors, if the laser cavity length will differ exactly by half wavelength from the pulse-stacking cavity length. It implies development of the sophisticated frequency stabilization loop for maintaining the cavity length constant within a sub-nanometer range. At the same time, power gains of ∼10 3 can be obtained with medium reflectivity mirrors (R ∼ 0.999) at considerably lower cost

  14. Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions.

    Science.gov (United States)

    Vuong, A; Trevethan, T; Latham, C D; Ewels, C P; Erbahar, D; Briddon, P R; Rayson, M J; Heggie, M I

    2017-04-20

    AA-stacked graphite and closely related structures, where carbon atoms are located in registry in adjacent graphene layers, are a feature of graphitic systems including twisted and folded bilayer graphene, and turbostratic graphite. We present the results of ab initio density functional theory calculations performed to investigate the complexes that are formed from the binding of vacancy defects across neighbouring layers in AA-stacked bilayers. As with AB stacking, the carbon atoms surrounding lattice vacancies can form interlayer structures with sp 2 bonding that are lower in energy than in-plane reconstructions. The sp 2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp 2 bonded 'wormhole' or tunnel defect between the layers. We also identify a new class of 'mezzanine' structure characterised by sp 3 interlayer bonding, resembling a prismatic vacancy loop. The V 6 hexavacancy variant, where six sp 3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA-stacked layers. Our focus is on vacancy generation and aggregation in the absence of extreme temperatures or intense beams.

  15. A Development of 2 kW Molten Carbonate Fuel Cell Stack

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hee Chun [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jung, Jong Soo [SAMSUNG HEAVY INDUSTRY (Korea, Republic of); Hong, Sung Ahn [Korea Institute of science and Technology, Seoul (Korea, Republic of)

    1997-12-31

    The molten carbonate fuel cell (MCFC) has been under intensive development during the last decade as the second generation fuel cell, since it has high efficiency at its operating temperature of 650 deg. C and coal gas can be utilized as the fuel. A 2 kW MCFC stack, consisted of 20 cells, was fabricated with 1,000 cm{sup 2}-area electrode and showed 16 volt at 150 A, producing stable power more than 2.4 kW. The test facility was constructed for the evaluation of the stack. The followings are included in this study : 1. Establishment of the scale-up technology of MCFC components. 2. Settling of the unit cell technology and its long term operation. 3. Manufacturing of a small scale stack and establishment of the stack operation. The feasibility study was carried out for the 100 kW class MCFC pilot plant system through the concept design. (author). 12 refs., figs. tabs.

  16. Evaluation of field emission properties from multiple-stacked Si quantum dots

    International Nuclear Information System (INIS)

    Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.

  17. Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions

    Science.gov (United States)

    Vuong, A.; Trevethan, T.; Latham, C. D.; Ewels, C. P.; Erbahar, D.; Briddon, P. R.; Rayson, M. J.; Heggie, M. I.

    2017-04-01

    AA-stacked graphite and closely related structures, where carbon atoms are located in registry in adjacent graphene layers, are a feature of graphitic systems including twisted and folded bilayer graphene, and turbostratic graphite. We present the results of ab initio density functional theory calculations performed to investigate the complexes that are formed from the binding of vacancy defects across neighbouring layers in AA-stacked bilayers. As with AB stacking, the carbon atoms surrounding lattice vacancies can form interlayer structures with sp 2 bonding that are lower in energy than in-plane reconstructions. The sp 2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp 2 bonded ‘wormhole’ or tunnel defect between the layers. We also identify a new class of ‘mezzanine’ structure characterised by sp 3 interlayer bonding, resembling a prismatic vacancy loop. The V 6 hexavacancy variant, where six sp 3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA-stacked layers. Our focus is on vacancy generation and aggregation in the absence of extreme temperatures or intense beams.

  18. Thermal conductivity measurement of HTS tapes and stacks for current lead applications

    International Nuclear Information System (INIS)

    Schwarz, Michael; Weiss, Klaus-Peter; Heller, Reinhard; Fietz, Walter H.

    2009-01-01

    The use of high-temperature-superconductors (HTS) within current leads offers a high potential to save cooling-power. The principle of HTS current leads is well established, e.g. for particle accelerators (LHC-CERN) but also on the commercial sector, which offer HTS current leads ready for use in small scale magnets and magnets systems. Future fusion machines currently under construction like ITER, W7-X or JT-60SA also will use HTS current leads. At the moment the standard material for HTS current leads is a Bi 2 Sr 2 Ca 2 Cu 3 O x (BSCCO)-AgAu composite tape. The common way to receive high current capacity current leads is to form stacks by sintering or soldering these tapes together. The solder changes the thermal conductivity of the stacks compared to the single tape in the temperature range from 4 K to 60 K. To estimate the heat flux from the warm environment to the cold application the measurement of the thermal conductivity of the soldered stack is mandatory. Therefore the thermal conductivity of stacks with different number of tapes is investigated. To measure the thermal conduction in the current flow direction, the axial heat flow method is used. Combining these results with FEM simulations gives the possibility to estimate the thermal conductivity normal to the flat tape plane. The resulting anisotropic thermal conductivity can be used to model the behaviour of the HTS tape under thermal disturbances more accurately.

  19. Viewpoint-independent 3D object segmentation for randomly stacked objects using optical object detection

    International Nuclear Information System (INIS)

    Chen, Liang-Chia; Nguyen, Thanh-Hung; Lin, Shyh-Tsong

    2015-01-01

    This work proposes a novel approach to segmenting randomly stacked objects in unstructured 3D point clouds, which are acquired by a random-speckle 3D imaging system for the purpose of automated object detection and reconstruction. An innovative algorithm is proposed; it is based on a novel concept of 3D watershed segmentation and the strategies for resolving over-segmentation and under-segmentation problems. Acquired 3D point clouds are first transformed into a corresponding orthogonally projected depth map along the optical imaging axis of the 3D sensor. A 3D watershed algorithm based on the process of distance transformation is then performed to detect the boundary, called the edge dam, between stacked objects and thereby to segment point clouds individually belonging to two stacked objects. Most importantly, an object-matching algorithm is developed to solve the over- and under-segmentation problems that may arise during the watershed segmentation. The feasibility and effectiveness of the method are confirmed experimentally. The results reveal that the proposed method is a fast and effective scheme for the detection and reconstruction of a 3D object in a random stack of such objects. In the experiments, the precision of the segmentation exceeds 95% and the recall exceeds 80%. (paper)

  20. Linear identification and model adjustment of a PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, C.; Puleston, P.F.; More, J.J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Husar, A. [Institut de Robotica i Informatica Industrial (CSIC-UPC), c/ Llorens i Artigas 4-6, 08028 Barcelona (Spain); Mayosky, M.A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Comision de Investigaciones Cientificas (CIC), Provincia de Buenos Aires (Argentina)

    2008-07-15

    In the context of fuel cell stack control a mayor challenge is modeling the interdependence of various complex subsystem dynamics. In many cases, the states interaction is usually modeled through several look-up tables, decision blocks and piecewise continuous functions. Many internal variables are inaccessible for measurement and cannot be used in control algorithms. To make significant contributions in this area, it is necessary to develop reliable models for control and design purposes. In this paper, a linear model based on experimental identification of a 7-cell stack was developed. The procedure followed to obtain a linear model of the system consisted in performing spectroscopy tests of four different single-input single-output subsystems. The considered inputs for the tests were the stack current and the cathode oxygen flow rate, while the measured outputs were the stack voltage and the cathode total pressure. The resulting model can be used either for model-based control design or for on-line analysis and errors detection. (author)

  1. An evaluation of parallel optimization for OpenSolaris Network Stack

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hongbo; Wu, Wenji; /Fermilab; Sun, Xian-He; /IIT, Chicago; DeMar, Phil; Crawford, Matt; /Fermilab

    2010-10-01

    Computing is now shifting towards multiprocessing. The fundamental goal of multiprocessing is improved performance through the introduction of additional hardware threads or cores (referred to as 'cores' for simplicity). Modern network stacks can exploit parallel cores to allow either message-based parallelism or connection-based parallelism as a means to enhance performance. OpenSolaris has redesigned and parallelized to better utilize additional cores. Three special technologies, named Softring Set, Soft ring and Squeue are introduced in OpenSolaris for stack parallelization. In this paper, we study the OpenSolaris packet receiving process and its core parallelism optimization techniques. Experiment results show that these techniques allow OpenSolaris to achieve better network I/O performance in multiprocessing environments; however, network stack parallelization has also brought extra overheads for system. An effective and efficient network I/O optimization in multiprocessing environments is required to cross all levers of the network stack from network interface to application.

  2. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    Science.gov (United States)

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  3. The use of low cost compact cameras with focus stacking functionality in entomological digitization projects

    Directory of Open Access Journals (Sweden)

    Jan Mertens

    2017-10-01

    Full Text Available Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens.

  4. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts

    2011-11-01

    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  5. Mixed Mechanism of Lubrication by Lipid Bilayer Stacks.

    Science.gov (United States)

    Boţan, Alexandru; Joly, Laurent; Fillot, Nicolas; Loison, Claire

    2015-11-10

    Although the key role of lipid bilayer stacks in biological lubrication is generally accepted, the mechanisms underlying their extreme efficiency remain elusive. In this article, we report molecular dynamics simulations of lipid bilayer stacks undergoing load and shear. When the hydration level is reduced, the velocity accommodation mechanism changes from viscous shear in hydration water to interlayer sliding in the bilayers. This enables stacks of hydrated lipid bilayers to act as efficient boundary lubricants for various hydration conditions, structures, and mechanical loads. We also propose an estimation for the friction coefficient; thanks to the strong hydration forces between lipid bilayers, the high local viscosity is not in contradiction with low friction coefficients.

  6. On $k$-stellated and $k$-stacked spheres

    OpenAIRE

    Bagchi, Bhaskar; Datta, Basudeb

    2012-01-01

    We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...

  7. Stacking by electroinjection with discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Zak K

    2002-08-01

    The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.

  8. Optimized stacked RADFETs for milli-rad dose measurement

    International Nuclear Information System (INIS)

    O'Connell, B.; Lane, B.; Mohammadzadeh, A.

    1999-01-01

    This paper details the improvements in the design of stacked RADFETs for increased radiation sensitivity. The issues of high read-out voltage has been shown to be a draw-back. It is the body (bulk)effect factor that is responsible for the increased overall stack Threshold voltage (V T ), which is greater than the sum of the individual devices V T . From extensive process and device simulation and resultant circuit simulation, modified stack structures have been proposed and designed. New and exciting result of lower initial (pre-irradiation) output voltage as well as increased radiation sensitivity will be presented. (author)

  9. Exhaust stack monitoring issues at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1987-11-01

    This report outlines the problems of obtaining valid, representative samples of, and continuously monitoring for, radioactive particulates in the discharge air from the underground disposal facilities at WIPP. There appears to be serious problems with the presently installed systems. Chapter 1 of the report provides an overview of current perspective on the major issues. Principal conclusions of the overview are that the present sampling locations are not optimum for the intended purpose; that the chosen probe design is not capable of meeting requirements for delivery of a representative sample to the detectors; and that the proposed test plan for the flow conditioning and monitoring system is seriously flawed. Chapter 2 is a summary of the major findings and recommendations of a peer review. The review suggested that the proposed flow conditioning concepts were likely to be an unworkable substitute for having adequate duct length between major disturbances in flow and the sampling or monitoring locations; that the use of probes of simpler design with large diameter inlet nozzles feeding short transmission lines would provide superior performance; and that conditions for monitoring discharge air would be far better ahead of the collar in the exhaust shaft than any location downstream. Chapter 3 contains the detailed technical basis for a conceptual design, and a proposed sample extraction system for the stack discharge location. 36 refs., 23 figs., 4 tabs

  10. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies.

    Science.gov (United States)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew; Gautier, Laurent; Willis, Scooter; Fields, Christopher; Katayama, Toshiaki

    2012-01-01

    Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java Virtual Machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often. Here, we present cross-language examples for sequence translation, and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux.

  11. Manufacturing of cells and stacks for SOFC development, test and demonstration projects and SOFC hotbox design development

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    The purpose of this project is to support the continued SOFC development through manufacturing process optimization and manufacturing of SOFC cells and stacks. These cells and stacks will serve as a necessary base for the development activities and for the establishment of a number of test and demonstration activities. The manufacture will also help provide operating experience and reduce manufacturing cost. Another main focus of the manufacturing is to assure technical improvements and reliability. It is imperative to the eventual success of the technology that test and demonstration is carried out in the pre-market conditions that will exist for the next years in the three market segments targeted by TOFC (Distributed generation, micro CHP and APU incl. marine APU). Finally, the project also includes development activities focusing on the stack-system interface (hotbox design development) and on dealing with transients and start up and shut down times, which is of particular importance for APU and micro CHP applications. Three topics are addressed:1) Cell manufacture, including production development, capacity lift and manuf. of cells for test and demonstration; 2) Stack manufacture and test, including a test facility, stack manuf. and test of stacks in a system at HCV; 3) Hotbox design development, including design, prototype construction and testing. The progress of this project is documented. Major achievements are successful manufacture of adequate amounts of cells and stacks according to the application. Furthermore significant over-performance in design, construction and test of a methanol based hotbox prototype as well as publication of this. (au)

  12. Fuel flow distribution in SOFC stacks revealed by impedance spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, Rasmus

    2014-01-01

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. An experimental stack with low ohmic resistance from Topsoe Fuel Cell A/S was characterized using Electrochemical...... Impedance Spectroscopy (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible...... to separate the loss contributions in an ohmic and a polarization part and that the low frequency response is useful in detecting mass transfer limitations. This methodology can be used to detect possible minor changes in the supply of gas to the individual cells, which is important when going to high fuel...

  13. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  14. DBaaS with OpenStack Trove

    CERN Document Server

    Giardini, Andrea

    2013-01-01

    The purpose of the project was to evaluate the Trove component for OpenStack, understand if it can be used with the CERN infrastructure and report the benefits and disadvantages of this software. Currently, databases for CERN projects are provided by a DbaaS software developed inside the IT-DB group. This solution works well with the actual infrastructure but it is not easy to maintain. With the migration of the CERN infrastructure to OpenStack the Database group started to evaluate the Trove component. Instead of mantaining an own DbaaS service it can be interesting to migrate everything to OpenStack and replace the actual DbaaS software with Trove. This way both virtual machines and databases will be managed by OpenStack itself.

  15. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    Science.gov (United States)

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  16. SEE on Different Layers of Stacked-SRAMs

    CERN Document Server

    Gupta, V; Tsiligiannis, G; Rousselet, M; Mohammadzadeh, A; Javanainen, A; Virtanen, A; Puchner, H; Saigné, F; Wrobel, F; Dilillo, L

    2015-01-01

    This paper presents heavy-ion and proton radiation test results of a 90 nm COTS SRAM with stacked structure. Radiation tests were made using high penetration heavy-ion cocktails at the HIF (Belgium) and at RADEF (Finland) as well as low energy protons at RADEF. The heavy-ion SEU cross-section showed an unusual profile with a peak at the lowest LET (heavy-ion with the highest penetration range). The discrepancy is due to the fact that the SRAM is constituted of two vertically stacked dice. The impact of proton testing on the response of both stacked dice is presented. The results are discussed and the SEU cross-sections of the upper and lower layers are compared. The impact of the stacked structure on the proton SEE rate is investigated.

  17. Modeling of a Stacked Power Module for Parasitic Inductance Extraction

    Science.gov (United States)

    2017-09-15

    ARL-TR-8138 ● SEP 2017 US Army Research Laboratory Modeling of a Stacked Power Module for Parasitic Inductance Extraction by...not return it to the originator. ARL-TR-8138 ● SEP 2017 US Army Research Laboratory Modeling of a Stacked Power Module for...aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if

  18. National Spherical Torus Experiment (NSTX) Center Stack Upgrade

    International Nuclear Information System (INIS)

    Neumeyer, C.; Avasarala, S.; Chrzanowski, J.; Dudek, L.; Fan, H.; Hatcher, H.; Heitzenroeder, P.; Menard, J.; Ono, M.; Ramakrishnan, S.; Titus, P.; Woolley, R.; Zhan, H.

    2009-01-01

    The purpose of the NSTX Center Stack Upgrade project is to expand the NSTX operational space and thereby the physics basis for next-step ST facilities. The plasma aspect ratio (ratio of plasma major to minor radius) of the upgrade is increased to 1.5 from the original value of 1.26, which increases the cross sectional area of the center stack by a factor of ∼ 3 and makes possible higher levels of performance and pulse duration.

  19. A new method for beam stacking in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2008-06-01

    Recently, I developed a new beam stacking scheme for synchrotron storage rings called 'longitudinal phase-space coating' (LPSC). This scheme has been convincingly validated by multi-particle beam dynamics simulations and has been demonstrated with beam experiments at the Fermilab Recycler. Here, I present the results from both simulations and experiments. The beam stacking scheme presented here is the first of its kind.

  20. Stacking faults and phase transformations in silicon nitride

    Science.gov (United States)

    Milhet, X.; Demenet, J.-L.; Rabier, J.

    1998-11-01

    From observations of extended dislocation nodes in β silicon nitride, possible stacking fault structures in the basal plane of this compound have been investigated. It has been found that stacking fault structure is locally analogous to α silicon nitride. A phase transformation α to β or β to α can also be achieved by cooperative shear of partial dislocations with 1/3<~ngle1bar{1}00rangle Burgers vectors.

  1. LOFT diesel generator ''A'' exhaust stack seismic analysis

    International Nuclear Information System (INIS)

    Blandford, R.K.

    1978-01-01

    A stress analysis of the LOFT Diesel Generator ''A'' Exhaust Stack was performed to determine its reaction to Safe-Shutdown Earthquake loads. The exhaust stack silencer and supporting foundation was found to be inadequate for the postulated seismic accelerations. Lateral support is required to prevent overturning of the silencer pedestal and reinforcement of the 4'' x 0.5'' silencer base straps is necessary. Basic requirements for this additional support are discussed

  2. Field-induced stacking transition of biofunctionalized trilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Masato Nakano, C. [Flintridge Preparatory School, La Canada, California 91011 (United States); Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  3. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z.; Scherer, G.G.; Marmy, Ch.; Glaus, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  4. Standoff Stack Emissions Monitoring Using Short Range Lidar

    Science.gov (United States)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin

    2016-06-01

    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  5. Standoff Stack Emissions Monitoring Using Short Range Lidar

    Directory of Open Access Journals (Sweden)

    Gravel Jean-Francois Y.

    2016-01-01

    Full Text Available There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  6. Studies on complex π-π and T-stacking features of imidazole and phenyl/p-halophenyl units in series of 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation

    Science.gov (United States)

    Das, Aniruddha

    2017-11-01

    5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.

  7. Review of the Physical Science Facility Stack Air Sampling Probe Locations

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.

    2007-09-30

    This letter report reviews compliance of the current design of the Physical Science Facility (PSF) stack air sampling locations with the ANSI/HPS N13.1-1999 standard. The review was based on performance criteria used for locating air sampling probes, the design documents provided and available information on systems previously tested for compliance with the criteria. Recommendations are presented for ways to bring the design into compliance with the requirements for the sampling probe placement.

  8. Interfacing HTCondor-CE with OpenStack

    Science.gov (United States)

    Bockelman, B.; Caballero Bejar, J.; Hover, J.

    2017-10-01

    Over the past few years, Grid Computing technologies have reached a high level of maturity. One key aspect of this success has been the development and adoption of newer Compute Elements to interface the external Grid users with local batch systems. These new Compute Elements allow for better handling of jobs requirements and a more precise management of diverse local resources. However, despite this level of maturity, the Grid Computing world is lacking diversity in local execution platforms. As Grid Computing technologies have historically been driven by the needs of the High Energy Physics community, most resource providers run the platform (operating system version and architecture) that best suits the needs of their particular users. In parallel, the development of virtualization and cloud technologies has accelerated recently, making available a variety of solutions, both commercial and academic, proprietary and open source. Virtualization facilitates performing computational tasks on platforms not available at most computing sites. This work attempts to join the technologies, allowing users to interact with computing sites through one of the standard Computing Elements, HTCondor-CE, but running their jobs within VMs on a local cloud platform, OpenStack, when needed. The system will re-route, in a transparent way, end user jobs into dynamically-launched VM worker nodes when they have requirements that cannot be satisfied by the static local batch system nodes. Also, once the automated mechanisms are in place, it becomes straightforward to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud resources to be used without requiring the user to establish a separate account. Both scenarios are described in this work.

  9. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  10. Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting

    Directory of Open Access Journals (Sweden)

    Federico Divina

    2018-04-01

    Full Text Available The ability to predict short-term electric energy demand would provide several benefits, both at the economic and environmental level. For example, it would allow for an efficient use of resources in order to face the actual demand, reducing the costs associated to the production as well as the emission of CO 2 . To this aim, in this paper we propose a strategy based on ensemble learning in order to tackle the short-term load forecasting problem. In particular, our approach is based on a stacking ensemble learning scheme, where the predictions produced by three base learning methods are used by a top level method in order to produce final predictions. We tested the proposed scheme on a dataset reporting the energy consumption in Spain over more than nine years. The obtained experimental results show that an approach for short-term electricity consumption forecasting based on ensemble learning can help in combining predictions produced by weaker learning methods in order to obtain superior results. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that using an ensemble scheme can achieve very accurate predictions, and thus that it is a suitable approach for addressing the short-term load forecasting problem.

  11. Novel variable structure control for the temperature of PEM fuel cell stack based on the dynamic thermal affine model

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: → The affine state space control-oriented model is designed and realized for the variant structure control (VSC) strategy. → The VSC with rapid-smooth reaching law and rapid-convergent sliding mode is presented for the PEMFC stack temperature. → Numerical results show that the method can control the operating temperature to reach the target value satisfactorily. - Abstract: Dynamic thermal management of proton exchange membrane fuel cell stack (PEMFC) is a very important aspect, which plays an important role on electro-reaction. Its variation also has a significant influence on the performance and lifespan of PEMFC stack. The temperature of stack should be controlled efficiently, which has great impacts on the performance of PEMFC due to the thermal variation. Based on the control-oriented dynamic thermal affine model identified by optimization algorithm, a novel variable structures control (VSC) with rapid-smooth reaching law (RSRL) and rapid-convergent sliding mode (FCSM) is presented for the temperature control system of PEMFC stack. Numerical test results show that the method can control the operating temperature to reach the target value satisfactorily, which proves the effectiveness and robustness of the algorithm.

  12. The Impact of 3D Stacking and Technology Scaling on the Power and Area of Stereo Matching Processors

    Directory of Open Access Journals (Sweden)

    Seung-Ho Ok

    2017-02-01

    Full Text Available Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV, three-dimensional (3D stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs.

  13. The Impact of 3D Stacking and Technology Scaling on the Power and Area of Stereo Matching Processors.

    Science.gov (United States)

    Ok, Seung-Ho; Lee, Yong-Hwan; Shim, Jae Hoon; Lim, Sung Kyu; Moon, Byungin

    2017-02-22

    Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV), three-dimensional (3D) stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D) counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC) and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs.

  14. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-21

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  15. Post-Stack Seismic Data Enhancement of Thrust-Belt Area, Sabah Basin

    Science.gov (United States)

    Latiff, A. H. Abdul; Jamaludin, S. N. F.; Zakariah, M. N. A.

    2016-02-01

    In this paper, an integrated post-stack seismic data processing and interpretation for a complex thrust-belt area was proposed. The sequence was suggested due to poor seismic data quality of the Sabah basin area that was obtained after a pre-stack data processing sequences. This basin consists of a complex geological setting such as thrust-belt with steep dip reflector which is the main features of the region. In this paper, we outlined several methods used in the seismic data processing and interpretation such as amplitude recovery and frequency filtering for enhancing seismic data quality, and relative acoustic impedance, structural smoothing and wavelet coherency were used for attribute analysis. The outcome from this research aims at illuminating the hidden structures such as proper beds termination and faults systems that was heavily affected by low signal-to-noise ratio.

  16. Tracer gas experiment to verify the dispersion from a tall stack

    International Nuclear Information System (INIS)

    Sivertsen, B.; Irwin, J.S.

    1996-01-01

    At the request of the Ministerios de Obras Publicas y Urbanismo (MOPU) in Madrid, the Norwegian Institute for Air Research (NILU) planned and carried out a comprehensive field experiment at the Andorra (Teruel) power plant in Spain. All together, eleven releases of sulfur hexafluoride (SF6) tracer were carried out at the 1,200 MW electric coal fired power plant. The tracer was emitted into the atmosphere from the 343 m high stack, stack exit diameter of 9 m. The stack gas emission characteristics were nearly constant during the period having an exit temperature of 175.1 C (1.9), exit velocity of 35.5 m/s (0.14) and sulfur dioxide (SO 2 ) emission rate of 46.1 x 10 3 kg/hr (5.15 x 10 3 ); standard deviations are listed in parentheses. Samples were taken at the surface along sampling arcs located approximately 8, 23, 43 and 75 km downwind. The releases were undertaken during typical late spring daytime conditions. The synoptic weather conditions were dominated by a large high pressure system on the Atlantic, west of Spain. Fronts were passing the area from the north and a low pressure system was developing over central Europe (Germany). Winds at the surface were generally brisk from the northwest at 7 to 12 m/s

  17. DBADOSE: a PC program for stack design and the PRR-1 design basis accident

    International Nuclear Information System (INIS)

    Leopando, L.S.

    1994-01-01

    DBA D OSE is a program written to be used as a tool to verify the adequacy of the design of the stack of the Philippine Research Reactor-1 (PRR-1) under design basis accident conditions. DBA D OSE runs on IBM-compatible personal computers. In the design basis accident, a substantial amount of fission products is released into the air inside the reactor building. The emergency ventilation system is assumed to function, creating a negative air pressure inside the building that will prevent the uncontrolled release of fission products into the atmosphere. The emergency ventilation system will drive filtered building air through a stack to create the negative pressure. Unavoidably, some of the fission products will pass through the filter and will be discharged. The fission products will be carried by the wind beyond the reactor site and will cause some exposure of the public to radiation. DBA D OSE may be used to calculate the amounts of exposure dose for various stack configurations and meteorological conditions at given distances from the reactor. The exposure doses may be compared with acceptable limits. The source code of DBA D OSE contains approximately 3000 lines of FORTRAN-77 (written for the Microsoft Fortran 4.10 compiler) and 300 lines of assembler. DBA D OSE.EXE is only 58 kB in size and needs only about 71 kB of RAM to run. A math-coprocessor is not needed but will speed up runs considerably. (author). 8 refs., 8 tabs

  18. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production

    Directory of Open Access Journals (Sweden)

    Mauro Francesco Sgroi

    2016-11-01

    Full Text Available Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs. The concept of a direct methanol fuel cell (DMFC is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs. In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.

  19. Three-Dimensional Modeling of the Detonation of a Munitions Stack and the Loading on an Adjacent Stack Protected by a Water Barricade

    National Research Council Canada - National Science Library

    Lottero, Richard

    2001-01-01

    This report describes the results of three-dimensional (3-D) hydrocode computations modeling the detonation of a donor munitions stack and the loading on and response of a protective water barricade and a nearby acceptor munitions stack...

  20. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    Science.gov (United States)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  1. Generalized diffraction-stack migration and filtering of coherent noise

    KAUST Repository

    Zhan, Ge

    2014-01-27

    We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.

  2. Effect of flow parameters on flare stack generator noise

    International Nuclear Information System (INIS)

    Dinn, T.S.

    1998-01-01

    The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs

  3. Estimation of stacking fault and twin energies in transition metals

    International Nuclear Information System (INIS)

    Papon, Anne-Marie

    1979-01-01

    As twins and stacking faults play an important role in the plastic deformation of metals, the objective of this research thesis is, by using an as correct as possible description of band d state density, to assess the internal energy of twins and stacking faults in metals with a CFC, HC or CC crystal structure. If, in transition metals, cohesion mainly results from d electron attraction, other terms intervening in crystal equilibrium must also be taken into account. Thus, the author proposes a decomposition of cohesion energy. The geometry of twins and stacking faults in compact phases is defined, and energy calculations are presented and discussed. Alloying effects are then addressed, as well as a general comparison with available experimental results. After a geometric description of twins and stacking faults in CC structures, their energies are calculated for a Gaussian distribution of state density. For higher order moments, defect energy due to d orbital anisotropy is assessed, and then applied to energy and stability calculations in twins and stacking faults for various relaxed atomic configurations

  4. Construction and application of Red5 cluster based on OpenStack

    Science.gov (United States)

    Wang, Jiaqing; Song, Jianxin

    2017-08-01

    With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.

  5. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kordatos, Apostolis [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); Kelaidis, Nikolaos, E-mail: n.kelaidis@inn.demokritos.gr [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); Giamini, Sigiava Aminalragia [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); University of Athens, Department of Physics, Section of Solid State Physics, Athens, 15684 Greece (Greece); Marquez-Velasco, Jose [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); National Technical University of Athens, Department of Physics, Athens, 15784 Greece (Greece); Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece)

    2016-04-30

    Highlights: • Growth of non-defective few layer graphene on Rh(1 1 1) substrates using an ambient- pressure CVD method. • Control of graphene stacking order via the cool-down rate. • Graphene is grown with a mainly AB-stacking geometry on single-crystalline Rhodium for a slow cool-down rate and non-AB for a very fast cool-down. • Good epitaxial orientation of the surface is presented through the RHEED data and confirmed with ARPES characterization for the lower cool-down rate, where graphene's ΓK direction a perfectly aligned with the ΓK direction of the Rh(1 1 1) single crystal. - Abstract: Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  6. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    International Nuclear Information System (INIS)

    Kordatos, Apostolis; Kelaidis, Nikolaos; Giamini, Sigiava Aminalragia; Marquez-Velasco, Jose; Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios

    2016-01-01

    Highlights: • Growth of non-defective few layer graphene on Rh(1 1 1) substrates using an ambient- pressure CVD method. • Control of graphene stacking order via the cool-down rate. • Graphene is grown with a mainly AB-stacking geometry on single-crystalline Rhodium for a slow cool-down rate and non-AB for a very fast cool-down. • Good epitaxial orientation of the surface is presented through the RHEED data and confirmed with ARPES characterization for the lower cool-down rate, where graphene's ΓK direction a perfectly aligned with the ΓK direction of the Rh(1 1 1) single crystal. - Abstract: Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  7. Communication: Thermodynamics of stacking disorder in ice nuclei

    Science.gov (United States)

    Quigley, D.

    2014-09-01

    A simple Ising-like model for the stacking thermodynamics of ice 1 is constructed for nuclei in supercooled water, and combined with classical nucleation theory. For relative stabilities of cubic and hexagonal ice I within the range of experimental estimates, this predicts critical nuclei are stacking disordered at strong sub-cooling, consistent with recent experiments. At higher temperatures nucleation of pure hexagonal ice is recovered. Lattice-switching Monte-Carlo is applied to accurately compute the relative stability of cubic and hexagonal ice for the popular mW model of water. Results demonstrate that this model fails to adequately capture the relative energetics of the two polytypes, leading to stacking disorder at all temperatures.

  8. Reliability assessment of germanium gate stacks with promising initial characteristics

    Science.gov (United States)

    Lu, Cimang; Lee, Choong Hyun; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira

    2015-02-01

    This work reports on the reliability assessment of germanium (Ge) gate stacks with promising initial electrical properties, with focus on trap generation under a constant electric stress field (Estress). Initial Ge gate stack properties do not necessarily mean highly robust reliability when it is considered that traps are newly generated under high Estress. A small amount of yttrium- or scandium oxide-doped GeO2 (Y-GeO2 or Sc-GeO2, respectively) significantly reduces trap generation in Ge gate stacks without deterioration of the interface. This is explained by the increase in the average coordination number (Nav) of the modified GeO2 network that results from the doping.

  9. Magneto-optical properties of ABC-stacked trilayer graphene.

    Science.gov (United States)

    Lin, Yi-Ping; Lin, Chiun-Yan; Ho, Yen-Hung; Do, Thi-Nga; Lin, Ming-Fa

    2015-06-28

    The generalized tight-binding model is developed to investigate the magneto-optical absorption spectra of ABC-stacked trilayer graphene. The absorption peaks can be classified into nine categories of inter-Landau-level optical excitations, including three intra-group and six inter-group ones. Most of them belong to the twin-peak structures because of the asymmetric Landau level spectrum. The threshold absorption peak alone comes from a certain excitation channel, and its frequency is associated with a specific interlayer atomic interaction. The Landau-level anticrossings cause extra absorption peaks. Moreover, a simple relationship between the absorption frequency and the field strength is absent. The magneto-optical properties of ABC-stacked trilayer graphene are totally different from those of AAA- and ABA-stacked ones, such as the number, intensity and frequency of absorption peaks.

  10. The measurement of power reactor stack releases under accident conditions

    International Nuclear Information System (INIS)

    Stroem, L.

    1989-01-01

    The performance of a typical Swedish monitor for ventilation stack radioactivity releases is examined critically with respect to accident generated radioactive particles. The conditions in the stack, particle character, and the monitor design are considered. A large LOCA outside the containment leads to high relative humidity, and high temperature, or mist in the stack. A small external LOCA results in a moderate increase in temperature and humidity, and condensing conditions only with reduced ventilation. Particle size and stickiness are estimated for different types of accident. A particle is sticky if it adheres after contact with a solid, smooth, dry, and clean surface. The monitor performance is concluded to be poor for large, sticky particles, like mist droplets. Dense aerosols, like fire smoke, will plug the sampling filter. Non-sticky particles are generally sampled with acceptable accuracy. (au)

  11. Piezoelectric stack actuator parameter extraction with hysteresis compensation

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Mangeot, Charles; Andersen, Michael A. E.

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is a type of rotary motor that transforms the linear motion of piezoelectric stack actuators into a precise rotational motion. The very high stiffness of the actuators employed make this type of motor suited for open-loop control, but the inherent hysteresis...... exhibited by piezoelectric ceramics causes losses. Therefore, this paper presents a straightforward method to measure piezoelectric stack actuator equiv- alent parameters that includes nonlinearities. By folding the nonlinearities into a newly-defined cou- pling coefficient, the inherent hysteretic behavior...... of piezoelectric stack actuators can be greatly reduced through precompensation. Experimental results show a fitting accuracy of 98.8 % between the model and measurements and a peak absolute error reduction by a factor of 10 compared to the manufacturer- provided parameter. This method improves both the static...

  12. Stacking and discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Z K

    2000-08-01

    Discontinuous buffers for capillary zone electrophoresis (CZE) can be used under less rigid conditions compared to those for isotachophoresis for stacking. They can be prepared simply by modifying the sample itself, either by addition of small inorganic ions, low conductivity diluents, or both, and also by adjusting its pH, meanwhile injecting a large volume on the capillary. Zwitterionic and organic-based buffers such as triethanolamine and tris(hydroxymethyl)aminomethane (Tris) are well suited for stacking due to their low conductivity, provided the buffer is discontinuous as demonstrated here. A simple mechanism based on discontinuous buffers is described to explain many of the observed stacking types in CZE, pointing out the many similarities to transient isotachophoresis.

  13. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  14. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    2017-12-04

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, prevent Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be

  15. Multipole Stack for the 800 MeV PS Booster

    CERN Multimedia

    1975-01-01

    The 800 MeV PS Booster had seen first beam in its 4 superposed rings in 1972, routine operation began in 1973. In the strive for ever higher beam intensities, the need for additional multipole lenses became evident. After detailed studies, the manufacture of 8 stacks of multipoles was launched in 1974. Each stack consists of 4 superposed multipoles and each multipole has 4 concentric shells. From the innermost to the outermost shell, Type A contains octupole, skew-octupole, sextupole, skew-sextupole. Type B contains skew-octupole, skew-sextupole, vertical dipole, horizontal dipole. Completion of installation in 1976 opened the way to higher beam intensities. M. Battiaz is seen here with a multipole stack and its many electrical connections.

  16. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Xiang, Jing

    2014-01-01

    Highlights: • Two microgrids with different structure are simulated. • Their performance are comprehensively evaluated and compared. • The one with DES and a FC stack has high environmental and quality indexes. - Abstract: In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance

  17. Assessment of the Revised 3410 Building Filtered Exhaust Stack Sampling Probe Location

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Ying [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Recknagle, Kurtis P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    In order to support the air emissions permit for the 3410 Building, Pacific Northwest National Laboratory performed a series of tests in the exhaust air discharge from the reconfigured 3410 Building Filtered Exhaust Stack. The objective was to determine whether the location of the air sampling probe for emissions monitoring meets the applicable regulatory criteria governing such effluent monitoring systems. In particular, the capability of the air sampling probe location to meet the acceptance criteria of ANSI/HPS N13.1-2011 , Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities was determined. The qualification criteria for these types of stacks address 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity of tracer particle concentration. Testing was performed to conform to the quality requirements of NQA-1-2000. Fan configurations tested included all fan combinations of any two fans at a time. Most of the tests were conducted at the normal flow rate, while a small subset of tests was performed at a slightly higher flow rate achieved with the laboratory hood sashes fully open. The qualification criteria for an air monitoring probe location are taken from ANSI/HPS N13.1-2011 and are paraphrased as follows with key results summarized: 1. Angular Flow—The average air velocity angle must not deviate from the axis of the stack or duct by more than 20°. Our test results show that the mean angular flow angles at the center two-thirds of the ducts are smaller than 4.5% for all testing conditions. 2. Uniform Air Velocity—The acceptance criterion is that the COV of the air velocity must be ≤ 20% across the center two thirds of the area of the stack. Our results show that the COVs of the air velocity across the center two-thirds of the stack are smaller than 2.9% for all testing conditions. 3

  18. Nuclear fuel rod with retainer for pellet stack

    International Nuclear Information System (INIS)

    Cloue, J.M.

    1986-01-01

    The rod, usable in pressurized water reactors, comprises a stack of fuel pellets and means holding the stack against an end plug of the fuel can during handling operations. These means include a radially expansive element (retainer) of which the shape is so that when it is free at ambient temperature it is gripping the inside of the casing, and a temperature sensitive spacer which contracts the retainer to release it from the casing at a temperature between the ambient and the operating temperature of a reactor [fr

  19. Implementing cloud storage with OpenStack Swift

    CERN Document Server

    Rajana, Kris; Varma, Sreedhar

    2014-01-01

    This tutorial-based book has a step-by-step approach for each topic, ensuring it is thoroughly covered and easy to follow. If you are an IT administrator who wants to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Whether your job is to build, manage, or use OpenStack Swift, this book is an ideal way to move your career ahead. Only basic Linux and server technology skills are expected, to take advantage of this book.

  20. Exact Solutions to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Archetti, Claudia; Madsen, Oli B.G.

    In the Double Travelling Salesman Problem with Multiple Stacks (DTSPMS) a set of orders is given, each one requiring transportation of one item from a customer in a pickup region to a customer in a delivery region. The vehicle available for the transportation in each region carries a container......, which is organised in rows of given length. Each row is handled independently from the others according to a LIFO stack policy. The DTSPMS consists in determining the pickup tour, the loading plan of the container and the delivery tour in such a way that the total length of the two tours is minimised...

  1. Hardware Evaluation of the Horizontal Exercise Fixture with Weight Stack

    Science.gov (United States)

    Newby, Nate; Leach, Mark; Fincke, Renita; Sharp, Carwyn

    2009-01-01

    HEF with weight stack seems to be a very sturdy and reliable exercise device that should function well in a bed rest training setting. A few improvements should be made to both the hardware and software to improve usage efficiency, but largely, this evaluation has demonstrated HEF's robustness. The hardware offers loading to muscles, bones, and joints, potentially sufficient to mitigate the loss of muscle mass and bone mineral density during long-duration bed rest campaigns. With some minor modifications, the HEF with weight stack equipment provides the best currently available means of performing squat, heel raise, prone row, bench press, and hip flexion/extension exercise in a supine orientation.

  2. Second Generation Small Pixel Technology Using Hybrid Bond Stacking

    Science.gov (United States)

    Venezia, Vincent C.; Hsiung, Alan Chih-Wei; Yang, Wu-Zang; Zhang, Yuying; Zhao, Cheng; Lin, Zhiqiang; Grant, Lindsay A.

    2018-01-01

    In this work, OmniVision’s second generation (Gen2) of small-pixel BSI stacking technologies is reviewed. The key features of this technology are hybrid-bond stacking, deeper back-side, deep-trench isolation, new back-side composite metal-oxide grid, and improved gate oxide quality. This Gen2 technology achieves state-of-the-art low-light image-sensor performance for 1.1, 1.0, and 0.9 µm pixel products. Additional improvements on this technology include less than 100 ppm white-pixel process and a high near-infrared (NIR) QE technology. PMID:29495272

  3. Second Generation Small Pixel Technology Using Hybrid Bond Stacking

    OpenAIRE

    Vincent C. Venezia; Alan Chih-Wei Hsiung; Wu-Zang Yang; Yuying Zhang; Cheng Zhao; Zhiqiang Lin; Lindsay A. Grant

    2018-01-01

    In this work, OmniVision’s second generation (Gen2) of small-pixel BSI stacking technologies is reviewed. The key features of this technology are hybrid-bond stacking, deeper back-side, deep-trench isolation, new back-side composite metal-oxide grid, and improved gate oxide quality. This Gen2 technology achieves state-of-the-art low-light image-sensor performance for 1.1, 1.0, and 0.9 µm pixel products. Additional improvements on this technology include less than 100 ppm white-pixel process a...

  4. Second Generation Small Pixel Technology Using Hybrid Bond Stacking

    Directory of Open Access Journals (Sweden)

    Vincent C. Venezia

    2018-02-01

    Full Text Available In this work, OmniVision’s second generation (Gen2 of small-pixel BSI stacking technologies is reviewed. The key features of this technology are hybrid-bond stacking, deeper back-side, deep-trench isolation, new back-side composite metal-oxide grid, and improved gate oxide quality. This Gen2 technology achieves state-of-the-art low-light image-sensor performance for 1.1, 1.0, and 0.9 µm pixel products. Additional improvements on this technology include less than 100 ppm white-pixel process and a high near-infrared (NIR QE technology.

  5. Second Generation Small Pixel Technology Using Hybrid Bond Stacking.

    Science.gov (United States)

    Venezia, Vincent C; Hsiung, Alan Chih-Wei; Yang, Wu-Zang; Zhang, Yuying; Zhao, Cheng; Lin, Zhiqiang; Grant, Lindsay A

    2018-02-24

    In this work, OmniVision's second generation (Gen2) of small-pixel BSI stacking technologies is reviewed. The key features of this technology are hybrid-bond stacking, deeper back-side, deep-trench isolation, new back-side composite metal-oxide grid, and improved gate oxide quality. This Gen2 technology achieves state-of-the-art low-light image-sensor performance for 1.1, 1.0, and 0.9 µm pixel products. Additional improvements on this technology include less than 100 ppm white-pixel process and a high near-infrared (NIR) QE technology.

  6. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures

    International Nuclear Information System (INIS)

    Guo, Yuzheng; Robertson, John

    2016-01-01

    We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.

  7. Spectrally tunable linear polarization rotation using stacked metallic metamaterials

    Science.gov (United States)

    Romain, Xavier; Baida, Fadi I.; Boyer, Philippe

    2017-08-01

    We make a theoretical study of the transmission properties of a stack of metallic metamaterials and show that is able to achieve a perfect transmission selectively exhibiting broadband (Q {10}5) polarization rotation. We especially highlight how the arrangement of the stacked structure, as well as the metamaterial unit cell geometry, has a large influence on transmission in the spectral domain. For this purpose, we use an extended analytical Jones formalism that allows us to obtain a rigorous and analytical expression of the transmission. Such versatile structures could find potential applications in polarimetry or in the control of light polarization for THz waves.

  8. Exposure of CR39 Stacks to Oxygen and Sulphur Beams at the CERN-SPS

    CERN Multimedia

    2002-01-01

    We plan to expose 8 stacks of CR39 sheets to oxygen and sulphur ions of 60 and 200~GeV at the CERN-SPS.\\\\ \\\\ The main purpose of the exposures is the calibration of the CR39 sheets used for a large area experimental search for magnetic monopoles at the Gran Sasso Laboratory (experiment MACRO). \\\\ \\\\ The stacks have 20~layers of CR39, each layer 13~cm~x~7~cm and 1.4~mm thick. A copper absorber is located after the first 6 layers. \\\\ \\\\ We require exposures of about 2000 tracks per cm$^2$ over the entire area of the stack with a uniform illumination. The standard beam used for the emulsion experiments is normally adequate for this purpose.\\\\ \\\\ We have performed one exposure to sulphur ions. The etched tracks have been measured automatically with the Elbeck image analyser system. We measured the incoming sulphur ions as well as the nuclear fragments produced in the copper absorber. Clean separation among the peaks due to the various fragments is obtained (there is no indication of nuclei with fractional electri...

  9. Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence

    International Nuclear Information System (INIS)

    Bludov, Yu V; Peres, N M R; Vasilevskiy, M I

    2013-01-01

    We study the interaction of electromagnetic (EM) radiation with single-layer graphene and a stack of parallel graphene sheets at arbitrary angles of incidence. It is found that the behavior is qualitatively different for transverse magnetic (or p-polarized) and transverse electric (or s-polarized) waves. In particular, the absorbance of single-layer graphene attains a minimum (maximum) for the p (s)-polarization at the angle of total internal reflection when the light comes from a medium with a higher dielectric constant. In the case of equal dielectric constants of the media above and beneath graphene, for grazing incidence graphene is almost 100% transparent to p-polarized waves and acts as a tunable mirror for the s-polarization. These effects are enhanced for a stack of graphene sheets, so the system can work as a broad band polarizer. It is shown further that a periodic stack of graphene layers has the properties of a one-dimensional photonic crystal, with gaps (or stop bands) at certain frequencies. When an incident EM wave is reflected from this photonic crystal, the tunability of the graphene conductivity renders the possibility of controlling the gaps, and the structure can operate as a tunable spectral-selective mirror. (paper)

  10. A miniaturized human-motion energy harvester using flux-guided magnet stacks

    International Nuclear Information System (INIS)

    Halim, M A; Park, J Y

    2016-01-01

    We present a miniaturized electromagnetic energy harvester (EMEH) using two flux-guided magnet stacks to harvest energy from human-generated vibration such as handshaking. Each flux-guided magnet stack increases (40%) the magnetic flux density by guiding the flux lines through a soft magnetic material. The EMEH has been designed to up-convert the applied human-motion vibration to a high-frequency oscillation by mechanical impact of a spring-less structure. The high-frequency oscillator consists of the analyzed 2-magnet stack and a customized helical compression spring. A standard AAA battery sized prototype (3.9 cm 3 ) can generate maximum 203 μW average power from human hand-shaking vibration. It has a maximum average power density of 52 μWcm -3 which is significantly higher than the current state-of-the-art devices. A 6-stage multiplier and rectifier circuit interfaces the harvester with a wearable electronic load (wrist watch) to demonstrate its capability of powering small- scale electronic systems from human-generated vibration. (paper)

  11. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  12. Anisotropic electrical conduction in relation to the stacking disorder in graphite

    International Nuclear Information System (INIS)

    Tsuzuku, T.

    1979-01-01

    The in-plane and c-axis conduction behaviours of Kish graphite and of hot-worked pyrolytic graphite are discussed in relation to their structural perfection, special interest being focused onto the stacking fault disorder which appears in the form of extended basal dislocation ribbons. Analysis of the two-dimensional magneto-conductivity indicates that the carrier density of faulted specimens increases slowly with temperature (T) even below the degeneracy point of the carrier system, whereas the unfaulted ones do not. the c-axis resistivity (psub(c)) has been found to decrease with diminishing stacking disorder for a well-defined specimen group not containing such irregularities as microcracks. This verifies the applicability of the band model to the intrinsic psub(c) 's, in connection with the success of Ono's theory accounting for the wide-range scattering of past data. The discrepancy still remaining between the theoretical and experimental psub(c) vs T relationship, as well as the increase of the in-plane conduction carrier density with temperature, seems to be removed by assuming thermal liberation of the localized Tamm-state electrons from the stacking fault planes. (author)

  13. Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.

    Science.gov (United States)

    Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V

    2018-04-19

    Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.

  14. Solid oxide fuel cell short stack performance testing - Part A: Experimental analysis and μ-combined heat and power unit comparison

    Science.gov (United States)

    Mastropasqua, L.; Campanari, S.; Brouwer, J.

    2017-12-01

    The need to experimentally understand the detailed performance of SOFC stacks under operating conditions typical of commercial SOFC systems has prompted this two-part study. The steady state performance of a 6-cell short stack of yttria (Y2O3) stabilised zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped lanthanum manganite (LaMnO3, LSM)/YSZ cathodes is experimentally evaluated. In Part A, the stack characterisation is carried out by means of sensitivity analyses on the fuel utilisation factor and the steam-to-carbon ratio. Electrical and environmental performances are assessed and the results are compared with a commercial full-scale micro-CHP system, which comprises the same cells. The results show that the measured temperature dynamics of the short stack in a test stand environment are on the order of many minutes; therefore, one cannot neglect temperature dynamics for a precise measurement of the steady state polarisation behaviour. The overall polarisation performance is comparable to that of the full stack employed in the micro-CHP system, confirming the good representation that short-stack analyses can give of the entire SOFC module. The environmental performance is measured verifying the negligible values of NO emissions (<10 ppb) across the whole polarisation curve.

  15. Electronic States of High-k Oxides in Gate Stack Structures

    Science.gov (United States)

    Zhu, Chiyu

    In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate stack structures have been prepared using a reactive electron beam system and a plasma enhanced atomic layer deposition system. Three interrelated issues represent the central themes of the research: 1) the interface band alignment, 2) candidate high-k materials, and 3) band bending, internal electric fields, and charge transfer. 1) The most highlighted issue is the band alignment of specific high-k structures. Band alignment relationships were deduced by analysis of XPS and UPS spectra for three different structures: a) HfO2/VO2/SiO2/Si, b) HfO 2-La2O3/ZnO/SiO2/Si, and c) HfO 2/VO2/ HfO2/SiO2/Si. The valence band offset of HfO2/VO2, ZnO/SiO2 and HfO 2/SiO2 are determined to be 3.4 +/- 0.1, 1.5 +/- 0.1, and 0.7 +/- 0.1 eV. The valence band offset between HfO2-La2O3 and ZnO was almost negligible. Two band alignment models, the electron affinity model and the charge neutrality level model, are discussed. The results show the charge neutrality model is preferred to describe these structures. 2) High-k candidate materials were studied through comparison of pure Hf oxide, pure La oxide, and alloyed Hf-La oxide films. An issue with the application of pure HfO2 is crystallization which may increase the leakage current in gate stack structures. An issue with the application of pure La2O3 is the presence of carbon contamination in the film. Our study shows that the alloyed Hf-La oxide films exhibit an amorphous structure along with reduced carbon contamination. 3) Band bending and internal electric fields in the gate stack structure were observed by XPS and UPS and indicate the charge transfer during the growth and process. The oxygen

  16. An Exact Method for the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Larsen, Jesper; Lusby, Richard Martin; Ehrgott, Matthias

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem in which all pickups must be completed before any deliveries can be made. The problem originates from a real-life application where a 40 foot container (configured as 3 columns of 11 rows) is used...

  17. An Exact Method for the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias

    2010-01-01

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem in which all pickups must be completed before any deliveries can be made. The problem originates from a real-life application where a 40 foot container (configured as 3 columns of 11 rows) is used...

  18. Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures.

    Science.gov (United States)

    Xing, Yan; Zhang, Hongjie; Song, Shuyan; Feng, Jing; Lei, Yongqian; Zhao, Lijun; Li, Meiye

    2008-03-28

    Unusual hierarchical stacked superstructures of cubic beta-In2S3 were fabricated via a facile hydrothermal process in the presence of a surfactant cetyltrimethylammonium bromide CTAB; the 3D superstructures were developed by helical propagation of surface steps from microflakes of 10-20 nm thickness.

  19. Phase locked fluxon-antifluxon states in stacked Josephson junctions

    DEFF Research Database (Denmark)

    Carapella, Giovanni; Constabile, Giovanni; Petraglia, Antonio

    1996-01-01

    Measurements were made on a two-stack long Josephson junction with very similar parameters and electrical access to the thin middle electrode. Mutually phase-locked fluxon-antifluxon states were observed. The observed propagation velocity is in agreement with the theoretical prediction. The I-V c...... in the junctions coexist with fluxons. (C) 1996 American Institute of Physics....

  20. Compactifications of reductive groups as moduli stacks of bundles

    DEFF Research Database (Denmark)

    Martens, Johan; Thaddeus, Michael

    Let G be a reductive group. We introduce the moduli problem of "bundle chains" parametrizing framed principal G-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack provides an equivariant toroidal compactification of G...

  1. Stacking faults and microstructural parameters in non-mulberry silk ...

    Indian Academy of Sciences (India)

    Then the whole pattern fitting was done by introducing weight factors for the individual profiles and also taking into account the average stacking faults derived using eqs (4) and (5) in the final stage of refinement with the whole experimental diffraction data of the sample. Computational procedure is given in the flow chart ...

  2. Rhythmic ring–ring stacking drives the circadian oscillator clockwise

    Science.gov (United States)

    Chang, Yong-Gang; Tseng, Roger; Kuo, Nai-Wei; LiWang, Andy

    2012-01-01

    The oscillator of the circadian clock of cyanobacteria is composed of three proteins, KaiA, KaiB, and KaiC, which together generate a self-sustained ∼24-h rhythm of phosphorylation of KaiC. The mechanism propelling this oscillator has remained elusive, however. We show that stacking interactions between the CI and CII rings of KaiC drive the transition from the phosphorylation-specific KaiC–KaiA interaction to the dephosphorylation-specific KaiC–KaiB interaction. We have identified the KaiB-binding site, which is on the CI domain. This site is hidden when CI domains are associated as a hexameric ring. However, stacking of the CI and CII rings exposes the KaiB-binding site. Because the clock output protein SasA also binds to CI and competes with KaiB for binding, ring stacking likely regulates clock output. We demonstrate that ADP can expose the KaiB-binding site in the absence of ring stacking, providing an explanation for how it can reset the clock. PMID:22967510

  3. Rhythmic ring-ring stacking drives the circadian oscillator clockwise.

    Science.gov (United States)

    Chang, Yong-Gang; Tseng, Roger; Kuo, Nai-Wei; LiWang, Andy

    2012-10-16

    The oscillator of the circadian clock of cyanobacteria is composed of three proteins, KaiA, KaiB, and KaiC, which together generate a self-sustained ∼24-h rhythm of phosphorylation of KaiC. The mechanism propelling this oscillator has remained elusive, however. We show that stacking interactions between the CI and CII rings of KaiC drive the transition from the phosphorylation-specific KaiC-KaiA interaction to the dephosphorylation-specific KaiC-KaiB interaction. We have identified the KaiB-binding site, which is on the CI domain. This site is hidden when CI domains are associated as a hexameric ring. However, stacking of the CI and CII rings exposes the KaiB-binding site. Because the clock output protein SasA also binds to CI and competes with KaiB for binding, ring stacking likely regulates clock output. We demonstrate that ADP can expose the KaiB-binding site in the absence of ring stacking, providing an explanation for how it can reset the clock.

  4. Revisiting the Fundamentals and Capabilities of the Stack Compression Test

    DEFF Research Database (Denmark)

    Alves, L.M.; Nielsen, Chris Valentin; Martin, P.A.F.

    2011-01-01

    performance by comparing the flow curves obtained from its utilisation with those determined by means of compressive testing carried out on solid cylinder specimens of the same material. Results show that mechanical testing of materials by means of the stack compression test is capable of meeting...... the increasing demand of accurate and reliable flow curves for sheet metals....

  5. Stacked-Bloch-wave electron diffraction simulations using GPU acceleration

    International Nuclear Information System (INIS)

    Pennington, Robert S.; Wang, Feng; Koch, Christoph T.

    2014-01-01

    In this paper, we discuss the advantages for Bloch-wave simulations performed using graphics processing units (GPUs), based on approximating the matrix exponential directly instead of performing a matrix diagonalization. Our direct matrix-exponential algorithm yields a functionally identical electron scattering matrix to that generated with matrix diagonalization. Using the matrix-exponential scaling-and-squaring method with a Padé approximation, direct GPU-based matrix-exponential double-precision calculations are up to 20× faster than CPU-based calculations and up to approximately 70× faster than matrix diagonalization. We compare precision and runtime of scaling and squaring methods with either the Padé approximation or a Taylor expansion. We also discuss the stacked-Bloch-wave method, and show that our stacked-Bloch-wave implementation yields the same electron scattering matrix as traditional Bloch-wave matrix diagonalization. - Highlights: • Bloch-wave and stacked-Bloch-wave calculations can be accelerated with GPUs. • Direct approximation of the matrix exponential can be faster than diagonalization. • GPU-based direct approximation can be ≈70× faster than CPU diagonalization. • Larger matrices benefit more from this approach than smaller ones. • Stacked-Bloch-wave scattering results are functionally identical to diagonalization

  6. Do Identical Polar Diatomic Molecules Form Stacked or Linear ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Do Identical Polar Diatomic Molecules Form Stacked or Linear Dimers?: Hydrogen Bonding is Not Just Dipole-Dipole Interactions. C W Williams Richard N Zare E Arunan. General Article Volume 19 Issue 8 August 2014 pp 704-712 ...

  7. 7. Data Structures: Lists, Queues, Stacks and Arrays

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. Algorithms - Data Structures: Lists, Queues, Stacks and Arrays. R K Shyamasundar ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  8. Seismic fragility of ventilation stack of nuclear power plant

    International Nuclear Information System (INIS)

    Nefedov, S.S.; Yugai, T.Z.; Kalinkin, I.V.; Vizir, P.L.

    2003-01-01

    Fragility study of safety related elements is necessary step in seismic PSA of nuclear power plant (NPP). In present work fragility was analyzed after the example of the ventilation stack of NPP. Ventilation stack, considered in present work, is a separately erected construction with height of 100 m made of cast-in-place reinforced concrete. In accordance with IAEA terminology fragility of element is defined as conditional probability of its failure at given level of seismic loading. Failure of a ventilation stack was considered as development of the plastic hinge in some section of a shaft. Seismic ground acceleration a, which corresponds to failure, could be defined as limit seismic acceleration of ventilation stack [a]. Limit seismic acceleration [a] was considered as random value. Sources of its variation are connected with stochastic nature of factors determining it (properties of construction materials, soils etc.), and also with uncertainties of existing analytical techniques. Random value [a] was assumed to be distributed lognormally. Median m[a] and logarithmically standard deviation β of this distribution were defined by 'scaling method' developed by R.P. Kennedy et al. Using this values fragility curves were plotted for different levels of confidence probability. (author)

  9. Thermal entrance effects in a thermoacoustic stacked screen regenerator

    NARCIS (Netherlands)

    Bühler, Simon; wilcox, D; Oosterhuis, Joris; van der Meer, Theodorus H.

    2014-01-01

    Thermoacoustic cryocoolers are of raising interest because they are cost effective and reliable. The underlying heat pumping process occurs in the regenerator, where a sound wave interacts with a solid matrix material. Stacked screens are frequently used to build regenerators for thermoacoustic

  10. Proposal of stack Effect technology for predicted future years

    Science.gov (United States)

    Teddy Badai Samodra, FX; Adi Indrawan, Iwan

    2017-12-01

    Recently, stack effect is a general problem solver in providing vertical ventilation for urban environmental issues. However, study on resilient technology of stack effect for future years as predicted by climate trend should be conducted. Therefore, this research proposes a design of new technology on operable and adaptable vertical ventilation to the environmental change. The research method is conducted by comprehensive simulation of Ecotect Analysis, ANSYS Fluent and Matlab. Urban environment of Surabaya, as the research location, is the representative of tropical region. The results showed that the stack effect height and area could be modified instantly adjusting the environmental condition time by time in the future years. With 1.8 m of stack width, the proposed technology could capture 40 m3 of vertical air flow which is useful for physiological cooling and its dimension could be modified depending on the environmental condition. By providing resilient technology, predictable and sustainable ventilation method is offered to anticipate an unpredicted global warming and environmental change.

  11. Multipole stack for the 4 rings of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The PS Booster (originally 800 MeV, now 1.4 GeV) saw first beam in 1972, routine operation began in 1973. The strive for ever higher intensities required the addition of multipoles. Manufacture of 8 stacks of multipoles was launched in 1974, for installation in 1976. For details, see 7511120X.

  12. Consolidation process model for film stacking glass/PPS laminates

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Akkerman, Remko

    2010-01-01

    A model is proposed to optimise the processing parameters for the consolidation of glass/polyphenylene sulphide (PPS) laminates using a film stacking procedure. In a split approach, the heating and consolidation phase are treated separately. The heating phase is modelled using the one-dimensional

  13. 7. Data Structures: Lists, Queues, Stacks and Arrays

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. Algorithms - Data Structures: Lists, Queues, Stacks and Arrays. R K Shyamasundar. Series Article Volume 2 Issue 6 June 1997 pp 39-46. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Calculating the output distribution of stack filters that are erosion ...

    African Journals Online (AJOL)

    Two procedures to compute the output distribution ϕs of certain stack filters S (so called erosion-dilation cascades) are given. One rests on the disjunctive normal form of S and also yields the rank selection probabilities. The other is based on inclusion-exclusion and e.g. yields ϕs for some important LULU-operators S.

  15. Precise stacking and bonding technology for RDDS structure

    International Nuclear Information System (INIS)

    Higo, T; Toge, N.; Suzuki, T.

    2000-01-01

    The X-band accelerating structures called RDDS1 (Rounded Dumped Detuned Structure) for the linear collider have been developed. The main body of RDDS1 was successfully fabricated in Japan (KEK, IHI). We established basic fabrication techniques through the development of prototype structures including RDDS1. The precise stacking and bonding technologies for RDDS structure are presented in this paper. (author)

  16. Development and Applications of a Stage Stacking Procedure

    Science.gov (United States)

    Kulkarni, Sameer; Celestina, Mark L.; Adamczyk, John J.

    2012-01-01

    The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure, including a newly defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor used in a power generating gas turbine engine. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to curves as a function of stage inlet flow coefficient and corrected shaft speed. In addition to these blockage curves, the stage stacking procedure utilizes stage characteristics of ideal work coefficient and adiabatic efficiency. These curves are constructed using flow information extracted from computational fluid dynamics (CFD) simulations of groups of stages within the compressor. Performance estimates resulting from the stage stacking procedure are shown to match the results of CFD simulations of the entire compressor to within 1.6% in overall total pressure ratio and within 0.3 points in overall adiabatic efficiency. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressors operating range.

  17. Hydrodynamic Modelling and Experimental Analysis of FE-DMFC Stacks

    Science.gov (United States)

    Kablou, Yashar

    Direct methanol fuel cells (DMFCs) present some unique features such as having liquid fuel, quick refueling process, compact design and high energy density. These characteristics make them incredibly suitable as a promising power source for portable electronic applications, such as cell phones or laptop computers. Despite of these positive aspects, the commercial development of DMFCs has nevertheless been hindered by some important issues such as, carbon dioxide formation at the anode compartment and, methanol crossover through the membrane. Many researchers have tried to model the two-phase flow behavior inside the DMFC anode compartment using the "homogenous flow modelling" approach, which has proven to be inaccurate specially when dealing with DMFC stacks. On the other hand, several strategies to prevent methanol crossover have been suggested in the literature, including the use of a flowing electrolyte between the DMFC anode and cathode compartments. Preliminary tests on flowing electrolyte direct methanol fuel cells (FE-DMFCs) have shown promising results; however, further investigation should be carried out on the stack level. In the first part of this study, a quasi two-dimensional numerical model was developed, to predict the two-phase flow behavior within the DMFC anode compartment, both in single cell and stack levels. Various types of flow modelling approaches and void fraction correlations were utilized to estimate the pressure drop across the anode compartment. It was found that the "separated flow modelling" approach, as well as CISE correlation for void fraction (developed at the CISE labs in Milan), yield the best results. In the second part, a five-cell FE-DMFC stack unit with a parallel serpentine flow bed design and U-type manifold configuration, was developed and tested at various operating conditions. It was found that, the flowing electrolyte effectively reduced methanol crossover and, improved the stack performance.

  18. Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?

    Science.gov (United States)

    Mateo, Rubén G.; Felicísimo, Ángel M.; Pottier, Julien; Guisan, Antoine; Muñoz, Jesús

    2012-01-01

    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed. PMID

  19. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Science.gov (United States)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  20. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-Yu.; Lai, Wei-Hsiang [Institute of Aeronautics and Astronautics, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 701 (China); Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih [Chung-Shan Institute of Science and Technology, Materials and Electro-Optics Research Division, P.O. Box No. 90008-8-3 Lung-Tan, Tao-Yuan 325 (China)

    2008-04-15

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm x 6 cm x 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm x 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm{sup -2} and 0.4 mg cm{sup -2}, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm{sup -2} at 0.425 V and 92 mW cm{sup -2} at 4.25 V, respectively under the conditions of 70 C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of

  1. Sampling of power plant stacks for air toxic emissions: Final report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-28

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in two phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.

  2. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.

  3. Oxygen-induced immediate onset of the antiferromagnetic stacking in thin Cr films on Fe(001)

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Giulia, E-mail: giulia.berti@polimi.it; Brambilla, Alberto; Calloni, Alberto; Bussetti, Gianlorenzo; Finazzi, Marco; Duò, Lamberto; Ciccacci, Franco [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-04-20

    We investigated the magnetic coupling of ultra-thin Cr films grown at 600 K on a Fe(001)-p(1 × 1)O substrate by means of spin-polarized photoemission spectroscopy. Our findings show that the expected antiferromagnetic stacking of the magnetization in Cr(001) layers occurs right from the first atomic layer at the Cr/Fe interface. This is at variance with all previous observations in similar systems, prepared in oxygen-free conditions, which always reported on a delayed onset of the magnetic oscillations due to the occurrence of significant chemical alloying at the interface, which is substantially absent in our preparation.

  4. Effect of stacking fault energy on high-temperature creep parameters of nickel-cobalt alloys

    International Nuclear Information System (INIS)

    Nerodenko, L.M.; Dabizha, E.V.

    1982-01-01

    Results of creep investigation are discussed for two alloys of the Ni-Co system. In terms of the structural creep model an analysis is made for the effect of stacking fault energy on averaged parameters of the dislocation structure: inovable dislocation density subgrain size, activation volume. The rate of steady-state creep is determined by the process of dislocation passing through the subgrain boundaries with activation energy of 171.0 and 211.5 kJ/mol for the Ni-25% Co and Ni-65% Co alloys, respectively

  5. Web application security is a stack how to CYA (cover your apps) completely

    CERN Document Server

    Mac Vittie, Lori

    2015-01-01

    The web application stack - a growing threat vector   Understand the threat and learn how to defend your organisation This book is intended for application developers, system administrators and operators, as well as networking professionals who need a comprehensive top-level view of web application security in order to better defend and protect both the 'web' and the 'application' against potential attacks. This book examines the most common, fundamental attack vectors and shows readers the defence techniques used to combat them. ContentsIntroductionAttack SurfaceThreat VectorsThreat Mitigatio

  6. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    KAUST Repository

    Saeed, A.

    2015-06-09

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. © 2015, Nature Publishing Group. All rights reserved.

  7. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-01-01

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  8. Electronic structure of the rotation twin stacking fault in β-ZnS

    International Nuclear Information System (INIS)

    Northrup, J.E.; Cohen, M.L.

    1981-01-01

    The electronic structure of the rotation twin stacking fault in β-ZnS is calculated with the self-consistent pseudopotential method. The stacking fault creates a potential barrier of approx.0.07 eV and induces the localization of stacking-fault resonances near the top of the valence band. Stacking-fault states are also predicted to exist in the various gaps in the projected valence-band structure

  9. Controlling for peak power extraction from microbial fuel cells can increase stack voltage and avoid cell reversal

    Science.gov (United States)

    Boghani, Hitesh C.; Papaharalabos, George; Michie, Iain; Fradler, Katrin R.; Dinsdale, Richard M.; Guwy, Alan J.; Ieropoulos, Ioannis; Greenman, John; Premier, Giuliano C.

    2014-12-01

    Microbial fuel cells (MFCs) are bioelectrochemical systems which can degrade organic materials and are increasingly seen as potential contributors to low carbon technologies, particularly in energy recovery from and treatment of wastewaters. The theoretical maximum open circuit voltage from MFCs lies in the region of 1.1 V, but is reduced substantially by overvoltage losses. Practical use of the power requires stacking or other means to increase voltage. Series stacking of MFCs with typically encountered variability in operating conditions and performance raises the risk of cell reversal, which diminishes overall power performance. A novel strategy of MFC subsystem series connectivity along with maximum power point tracking (MPPT) generates increased power from individual MFCs whilst eliminating cell reversal. MFCs fed with lower concentrations of substrate experienced voltage reversal when connected in normal series connection with one common load, but when MFCs and loads together were connected in series, the underperforming cell is effectively bypassed and maximum power is made available. It is concluded that stack voltage may be increased and cell reversal avoided using the hybrid connectivity along with MPPT. This approach may be suitable for stacked MFC operations in the event that large scale arrays/modules are deployed in treating real wastewaters.

  10. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cells Stacks

    Science.gov (United States)

    Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.

  11. The Methods of Design and Implementation of Stack Filters for Image Processing

    Directory of Open Access Journals (Sweden)

    S. Marchevsky

    1995-04-01

    Full Text Available This paper deals with a large class of nonlinear digital filters, the stack filters, which contain all combinations and compositions of rank order operators within a finite window. Attention is given to design and effective hardware implementation of an optimal stack filter for image processing. Presented simulation results confirm robustness of stack filters in the image restoration corrupted by impulsive noise.

  12. The Effect of a Sport Stacking Intervention on Handwriting with Second Grade Students

    Science.gov (United States)

    Li, Yuhua; Coleman, Diane; Ransdell, Mary; Coleman, Lyndsie; Irwin, Carol

    2014-01-01

    The present study examined the impact a 14-week sport stacking (cup stacking) exercise intervention would have on children's handwriting quality and speed. Eighty-three second graders were randomly assigned to either an experimental or a control group. The experimental group (n = 42) participated in a 15-min session of sport stacking activities…

  13. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...

  14. Spam comments prediction using stacking with ensemble learning

    Science.gov (United States)

    Mehmood, Arif; On, Byung-Won; Lee, Ingyu; Ashraf, Imran; Choi, Gyu Sang

    2018-01-01

    Illusive comments of product or services are misleading for people in decision making. The current methodologies to predict deceptive comments are concerned for feature designing with single training model. Indigenous features have ability to show some linguistic phenomena but are hard to reveal the latent semantic meaning of the comments. We propose a prediction model on general features of documents using stacking with ensemble learning. Term Frequency/Inverse Document Frequency (TF/IDF) features are inputs to stacking of Random Forest and Gradient Boosted Trees and the outputs of the base learners are encapsulated with decision tree to make final training of the model. The results exhibits that our approach gives the accuracy of 92.19% which outperform the state-of-the-art method.

  15. Radar Target Recognition Based on Stacked Denoising Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Zhao Feixiang

    2017-04-01

    Full Text Available Feature extraction is a key step in radar target recognition. The quality of the extracted features determines the performance of target recognition. However, obtaining the deep nature of the data is difficult using the traditional method. The autoencoder can learn features by making use of data and can obtain feature expressions at different levels of data. To eliminate the influence of noise, the method of radar target recognition based on stacked denoising sparse autoencoder is proposed in this paper. This method can extract features directly and efficiently by setting different hidden layers and numbers of iterations. Experimental results show that the proposed method is superior to the K-nearest neighbor method and the traditional stacked autoencoder.

  16. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C [Los Alamos, NM; Wilson, Mahlon S [Los Alamos, NM

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  17. STACKING ON COMMON REFLECTION SURFACE WITH MULTIPARAMETER TRAVELTIME

    Directory of Open Access Journals (Sweden)

    Montes V. Luis A.

    2006-12-01

    Full Text Available Commonly seismic images are displayed in time domain because the model in depth can be known only in well logs. To produce seismic sections, pre and post stack processing approaches use time or depth velocity models whereas the common reflection method does not, instead it requires a set of parameters established for the first layer. A set of synthetic data of an anticline model, with sources and receivers placed on a flat topography, was used to observe the performance of this method. As result, a better reflector recovering compared against conventional processing sequence was observed.
    The procedure was extended to real data, using a dataset acquired on a zone characterized by mild topography and quiet environment reflectors in the Eastern Colombia planes, observing an enhanced and a better continuity of the reflectors in the CRS stacked section.

  18. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill

    2017-11-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  19. Remote Sensing Image Classification Based on Stacked Denoising Autoencoder

    Directory of Open Access Journals (Sweden)

    Peng Liang

    2017-12-01

    Full Text Available Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised Greedy layer-wise training algorithm is used to train each layer in turn for more robust expressing, characteristics are obtained in supervised learning by Back Propagation (BP neural network, and the whole network is optimized by error back propagation. Finally, Gaofen-1 satellite (GF-1 remote sensing data are used for evaluation, and the total accuracy and kappa accuracy reach 95.7% and 0.955, respectively, which are higher than that of the Support Vector Machine and Back Propagation neural network. The experiment results show that the proposed method can effectively improve the accuracy of remote sensing image classification.

  20. Rain Sensor with Stacked Light Waveguide Having Tilted Air Gap

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Vehicle sensor to detect rain drop on and above waveguide utilizing light deflection and scattering was realized, keeping wide sensing coverage and sensitivity to detect mist accumulation. Proposed sensor structure under stacked light wave guide consisted of light blocking fixture surrounding photodetector and adjacent light source. Tilted air gap between stacked light waveguide and light blocking fixture played major role to increase sensitivity and to enhance linearity. This sensor structure eliminated complex collimating optics, while keeping wide sensing coverage using simple geometry. Detection algorithm based on time-to-intensity transformation process was used to convert raining intensity into countable raining process. Experimental result inside simulated rain chamber showed distinct different response between light rain and normal rain. Application as automobile rain sensor is expected.