WorldWideScience

Sample records for stack sampling system

  1. 296-B-5 Stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-02-01

    The B Plant Administration Manual requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 296-B-5 at B Plant. The sampling and monitoring system associated with stack 296-B-5 is functional and performing satisfactorily. This document is an annual assessment report of the systems associated with the 296-B-5 stack

  2. 296-B-10 stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-01-01

    B Plant Administration Manual, requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with stack 296-B-10 at B Plant. The ventilation system of WESF (Waste Encapsulation and Storage Facility) is designed to provide airflow patterns so that air movement throughout the building is from areas of lesser radioactivity to areas of greater radioactivity. All potentially contaminated areas are maintained at a negative pressure with respect to the atmosphere so that air flows into the building at all times. The exhaust discharging through the 296-B-10 stack is continuously monitored and sampled using a sampling and monitoring probe assembly located approximately 17.4 meters (57 feet) above the base of the stack. The probe assembly consists of 5 nozzles for the sampling probe and 2 nozzles to monitor the flow. The sampling and monitoring system associated with Stack 296-B-10 is functional and performing satisfactorily

  3. Experimental performance evaluation of two stack sampling systems in a plutonium facility

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.

    1992-04-01

    The evaluation of two routine stack sampling systems at the Z-Plant plutonium facility operated by Rockwell International for USERDA is part of a larger study, sponsored by Rockwell and conducted by Battelle, Pacific Northwest Laboratories, of gaseous effluent sampling systems. The gaseous effluent sampling systems evaluated are located at the main plant ventilation stack (291-Z-1) and at a vessel vent stack (296-Z-3). A preliminary report, which was a paper study issued in April 1976, identified many deficiencies in the existing sampling systems and made recommendations for corrective action. The objectives of this experimental evaluation of those sampling systems were as follows: Characterize the radioactive aerosols in the stack effluents; Develop a tracer aerosol technique for validating particulate effluent sampling system performance; Evaluate the performance of the existing routine sampling systems and their compliance with the sponsor's criteria; and Recommend corrective action where required. The tracer aerosol approach to sampler evaluation was chosen because the low concentrations of radioactive particulates in the effluents would otherwise require much longer sampling times and thus more time to complete this evaluation. The following report describes the sampling systems that are the subject of this study and then details the experiments performed. The results are then presented and discussed. Much of the raw and finished data are included in the appendices

  4. 291-B-1 stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1994-01-01

    The B Plant 291-B-1 main stack exhausts gaseous effluents to the atmosphere from the 221-B Building canyon and cells, the No. 1 Vessel Ventilation System (VVS1), the 212-B Cask Station cell ventilation system, and, to a limited capacity, the 224-B Building. VVS1 collects offgases from various process tanks in 221-B Building, while the 224-B system maintains a negative pressure in out-of-service, sealed process tanks. B Plant Administration Manual, WHC-CM-7-5, Section 5.30 requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 291-B-1 (System Number B977A) at B Plant. The system is functional and performing satisfactorily

  5. 40 CFR 61.44 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.44 Section 61.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Firing § 61.44 Stack sampling. (a) Sources subject to § 61.42(b) shall be continuously sampled, during...

  6. Preliminary evaluation of the gaseous effluent sampling and monitoring systems at the 291-Z-1 and 296-Z-3 stacks

    International Nuclear Information System (INIS)

    Schwendiman, L.C.; Glissmeyer, J.A.

    1992-04-01

    The 291-Z-1 and 296-Z-3 stack effluent particulate sampling and monitoring systems are being evaluated for compliance with Atlantic Richfield Hanford Company's Interim Criteria for such systems. This evaluation is part of a study by Battelle-Northwest of gaseous effluent sampling systems in ARHCO facilities. This letter report presents a preliminary evaluation of the mentioned facilities and the indicated improvements needed to meet the Interim Criteria so that conceptual design work for improved systems can be initiated. There is currently underway a detailed study at the two stacks including a series of sampling experiments, the findings of which will not be included in this report. The gaseous effluent sampling system at the 291-Z-1 and 296-Z-3 stacks are very dissimilar and will be treated in separate sections of this report. The discussions for each sampling system will include a brief description and a preliminary evaluation of the systems

  7. Modeling fuel cell stack systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., Los Alamos, NM (United States); Lalk, T R [Dept. of Mech. Eng., Texas A and M Univ., College Station, TX (United States)

    1998-06-15

    A technique for modeling fuel cell stacks is presented along with the results from an investigation designed to test the validity of the technique. The technique was specifically designed so that models developed using it can be used to determine the fundamental thermal-physical behavior of a fuel cell stack for any operating and design configuration. Such models would be useful tools for investigating fuel cell power system parameters. The modeling technique can be applied to any type of fuel cell stack for which performance data is available for a laboratory scale single cell. Use of the technique is demonstrated by generating sample results for a model of a Proton Exchange Membrane Fuel Cell (PEMFC) stack consisting of 125 cells each with an active area of 150 cm{sup 2}. A PEMFC stack was also used in the verification investigation. This stack consisted of four cells, each with an active area of 50 cm{sup 2}. Results from the verification investigation indicate that models developed using the technique are capable of accurately predicting fuel cell stack performance. (orig.)

  8. 40 CFR 61.53 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under...

  9. 40 CFR 61.33 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or operator...

  10. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  11. MODIFYING A 60-YEAR-OLD STACK-SAMPLING SYSTEM TO MEET ANSI N13.1-1999 EQUIVALENCY

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2006-01-01

    The 291-T-1 stack was constructed in 1944 to support ongoing missions associated with the Hanford Project. Recent changes in the plant mission required a revision to the existing license of the stack that was operating as a minor emission unit. The Environmental Protection Agency (EPA) and the Washington Department of Health (WDOH) deemed this revision to be a significant modification, thereby requiring the stack to operate to the ANSI N13.1-1999 sampling and monitoring requirements. Because the stack is similar to other stacks on the Hanford site, allowance was made by EPA to demonstrate equivalency to the ANSI standard via calculations in lieu of actual testing. Calculations were allowed for determining the deposition, nozzle transmission and aspiration ratios, but measurements were required for the stack flow coefficient of variation (COV). The equivalency determination was to be based on the requirements of Table 6 of the ANSI N13.1-1999 Standard

  12. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  13. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  14. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  15. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  16. Testing the sampling efficiency of a nuclear power station stack monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L.H. [Instrumentinvest, Nykoeping (Sweden)

    1997-08-01

    The test method comprises the injection of known amounts of monodisperse particles in the stack air stream, at a suitable point upstream of the sampling installation. To find a suitable injection polls, the gas flow was mapped by means of a tracer gas, released in various points in the stack base. The resulting concentration distributions at the stack sampler level were observed by means of an array of gas detectors. An injection point that produced symmetrical distribution over the stack area, and low concentrations at the stack walls was selected for the particle tests. Monodisperse particles of 6, 10, and 19 {mu}m aerodynamic diameter, tagged with dysprosium, were dispersed in the selected injection point. Particle concentration at the sampler level was measured. The losses to the stack walls were found to be less than 10 %. The particle concentrations at the four sampler inlets were calculated from the observed gas distribution. The amount calculated to be aspirated into the sampler piping was compared with the quantity collected by the sampling train ordinary filter, to obtain the sampling line transmission efficiency. 1 ref., 2 figs.

  17. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.

  18. Consolidity: Stack-based systems change pathway theory elaborated

    Directory of Open Access Journals (Sweden)

    Hassen Taher Dorrah

    2014-06-01

    Full Text Available This paper presents an elaborated analysis for investigating the stack-based layering processes during the systems change pathway. The system change pathway is defined as the path resulting from the combinations of all successive changes induced on the system when subjected to varying environments, activities, events, or any excessive internal or external influences and happenings “on and above” its normal stands, situations or set-points during its course of life. The analysis is essentially based on the important overall system paradigm of “Time driven-event driven-parameters change”. Based on this paradigm, it is considered that any affected activity, event or varying environment is intelligently self-recorded inside the system through an incremental consolidity-scaled change in system parameters of the stack-based layering types. Various joint stack-based mathematical and graphical approaches supported by representable case studies are suggested for the identification, extraction, and processing of various stack-based systems changes layering of different classifications and categorizations. Moreover, some selected real life illustrative applications are provided to demonstrate the (infinite stack-based identification and recognition of the change pathway process in the areas of geology, archeology, life sciences, ecology, environmental science, engineering, materials, medicine, biology, sociology, humanities, and other important fields. These case studies and selected applications revealed that there are general similarities of the stack-based layering structures and formations among all the various research fields. Such general similarities clearly demonstrate the global concept of the “fractals-general stacking behavior” of real life systems during their change pathways. Therefore, it is recommended that concentrated efforts should be expedited toward building generic modular stack-based systems or blocks for the mathematical

  19. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    Science.gov (United States)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  20. Assessment of the National Research Universal Reactor Proposed New Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    This document reports on a series of tests conducted to assess the proposed air sampling location for the National Research Universal reactor (NRU) complex exhaust stack, located in Chalk River, Ontario, Canada, with respect to the applicable criteria regarding the placement of an air sampling probe. Due to the age of the equipment in the existing monitoring system, and the increasing difficulty in acquiring replacement parts to maintain this equipment, a more up-to-date system is planned to replace the current effluent monitoring system, and a new monitoring location has been proposed. The new sampling probe should be located within the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The internal Pacific Northwest National Laboratory (PNNL) project for this task was 65167, Atomic Energy Canada Ltd. Chalk River Effluent Duct Flow Qualification. The testing described in this document was guided by the Test Plan: Testing of the NRU Stack Air Sampling Position (TP-STMON-032).

  1. An assessment of air sampling location for stack monitoring in nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Bok [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Hyoung; Lee, Jong Il; Kim, Bong Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    In this study, air sampling locations in the stack of the Advanced Fuel Science Building (AFSB) at the Korea Atomic Energy Research Institute (KAERI) were assessed according to the ANSI/HPS N13.1-1999 specification. The velocity profile, flow angle and 10 μm aerosol particle profile at the cross-section as functions of stack height L and stack diameter D (L/D) were assessed according to the sampling location criteria using COMSOL. The criteria for the velocity profile were found to be met at 5 L/D or more for the height, and the criteria for the average flow angle were met at all locations through this assessment. The criteria for the particle profile were met at 5 L/D and 9 L/D. However, the particle profile at the cross-section of each sampling location was found to be non-uniform. In order to establish uniformity of the particle profile, a static mixer and a perimeter ring were modeled, after which the degrees of effectiveness of these components were compared. Modeling using the static mixer indicated that the sampling locations that met the criteria for the particle profile were 5-10 L/D. When modeling using the perimeter ring, the sampling locations that met the criteria for particle profile were 5 L/D and 7-10 L/D. The criteria for the velocity profile and the average flow angle were also met at the sampling locations that met the criteria for the particle profile. The methodologies used in this study can also be applied during assessments of air sampling locations when monitoring stacks at new nuclear facilities as well as existing nuclear facilities.

  2. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  3. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  4. [Analysis of phthalate esters in plastic-packaging bags on-line sample stacking-microemulsion electrokinetic chromatography].

    Science.gov (United States)

    Xiao, Jia; Huang, Ying; Wang, Minyi; Chen, Guonan

    2012-09-01

    Two convenient, effective, and reproducible methods using microemulsion electrokinetic chromatography (MEEKC)-normal stacking mode (NSM) and reversed electrode polarity stacking mode (REPSM) were developed for the on-line sample stacking of phthalate esters (PAEs). REPSM coupled with MEEKC increased the sensitivity of 937.5 to 7,143 times for four PAEs compared to the conventional MEEKC. The separating conditions in the MEEKC method were studied, and many factors influencing the two sample stacking processes were investigated in detail. The optimum sample matrices for the two stacking methods were as follows: 30 mmol/L sodium cholate (SC) and 30.0 mmol/L borate (pH 8.5). Additionally, sample injections as large as 3.45 kPa x 40 s and 3.45 kPa x 90 s were applied for NSM-MEEKC and REPSM-MEEKC, respectively. The linear relationship and reproducibility were also examined. Under the optimum conditions, the detection limits (S/N = 3) of the PAEs were in the ranges of 0.021 - 0.33 mg/L and 0.7 - 4 microg/L for NSM-MEEKC and REPSM-MEEKC, respectively. The proposed REPSM-MEEKC has been successfully applied to determine PAEs in plastic-packaging bags, and the spiked recoveries were in the range of 89.1% - 105.6% with satisfactory results.

  5. Prototype particulate stack sampler with single-cut nozzle and microcomputer calculating/display system

    International Nuclear Information System (INIS)

    Eler, J.C.; Littlefield, L.G.; Tillery, M.I.

    1979-01-01

    A prototype particulate stack sampler (PPSS) has been developed to improve on the existing EPA Method 5 sampling apparatus. Its primary features are (1) higher sampling rate (56 1/min); (2) display (on demand) of all required variables and calculated values by a microcomputer-based calculating and display system; (3) continuous stack gas moisture determination; (4) a virtual impactor nozzle with 3 μm mass median diameter cutpoint which collects fine and coarse particle fractions on separate glass fiber filters; (5) a variable-area inlet to maintain isokinetic sampling conditions; and (6) conversion to stainless steel components from the glass specified by EPA Method 5. The basic sampling techniques of EPA Method 5 have been retained; however, versatility in the form of optional in-stack filters and general modernization of the stack sampler have been provided in the prototype design. Laboratory testing with monodisperse dye aerosols has shown the present variable inlet, virtual impactor nozzle to have a collection efficiency which is less than 77% and significant wall losses. This is primarily due to lack of symmetry in this rectangular jet impactor and short transition lengths dictated by physical design constraints (required passage of the nozzle through a 7.6 cm (3 in) diameter stack port). Electronic components have shown acceptable service in laboratory testing although no field testing of the prototype under a broad range of temperature, humidity, and SO 2 concentration has been undertaken

  6. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  7. Separation of arsenic species by capillary electrophoresis with sample-stacking techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zu Liang; Naidu, Ravendra [Adelaide Laboratory, CSIRO Land and Water, PMB2, 5064, Glen Osmond, SA (Australia); Lin, Jin-Ming [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 100085, Beijing (China)

    2003-03-01

    A simple capillary zone electrophoresis procedure was developed for the separation of arsenic species (AsO{sub 2}{sup 2-}, AsO{sub 4}{sup 2-}, and dimethylarsinic acid, DMA). Both counter-electroosmotic and co-electroosmotic (EOF) modes were investigated for the separation of arsenic species with direct UV detection at 185 nm using 20 mmol L{sup -1} sodium phosphate as the electrolyte. The separation selectivity mainly depends on the separation modes and electrolyte pH. Inorganic anions (Cl{sup -}, NO{sub 2}{sup -}, NO{sub 3}{sup -} and SO{sub 4}{sup 2-}) presented in real samples did not interfere with arsenic speciation in either separation mode. To improve the detection limits, sample-stacking techniques, including large-volume sample stacking (LVSS) and field-amplified sample injection (FASI), were investigated for the preconcentration of As species in co-CZE mode. Less than 1 {mu}mol L{sup -1} of detection limits for As species were achieved using FASI. The proposed method was demonstrated for the separation and detection of As species in water. (orig.)

  8. Stack Monitoring System At PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Zamrul Faizad Omar; Mohd Sabri Minhat; Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Izhar Abu Hussin

    2014-01-01

    This paper describes the current Stack Monitoring System at PUSPATI TRIGA Reactor (RTP) building. A stack monitoring system is a continuous air monitor placed at the reactor top for monitoring the presence of radioactive gaseous in the effluent air from the RTP building. The system consists of four detectors that provide the reading for background, particulate, Iodine and Noble gas. There is a plan to replace the current system due to frequent fault of the system, thus thorough understanding of the current system is required. Overview of the whole system will be explained in this paper. Some current results would be displayed and moving forward brief plan would be mentioned. (author)

  9. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    Science.gov (United States)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  10. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-21

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  11. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  12. Sampling of power plant stacks for air toxic emissions: Final report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-28

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in two phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.

  13. System effects in sample self-stacking CZE: Single analyte peak splitting of salt-containing samples

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2009-01-01

    Roč. 30, č. 5 (2009), s. 866-874 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA AV ČR IAA400310609; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : CZE * peak splitting * self-stacking Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.077, year: 2009

  14. Project W-420 Stack Monitoring system upgrades conceptual design report

    International Nuclear Information System (INIS)

    TUCK, J.A.

    1998-01-01

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks

  15. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  16. A Software Managed Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Jordan, Alexander; Abbaspourseyedi, Sahar; Schoeberl, Martin

    2016-01-01

    In a real-time system, the use of a scratchpad memory can mitigate the difficulties related to analyzing data caches, whose behavior is inherently hard to predict. We propose to use a scratchpad memory for stack allocated data. While statically allocating stack frames for individual functions...

  17. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  18. A 3D microtomographic system with stacked fan-beam geometry

    International Nuclear Information System (INIS)

    Kohlbrenner, Adrian; Haemmerle, Stefan; Laib, Andres; Rueegsegger, Peter

    2000-01-01

    The move from 2D to 3D analysis, and the increase in spatial resolution characterize recent improvements in CT-based structure assessment. A new desktop micro-CT system with high scanning speed has been developed. The instrument makes use of a novel multiple fan-beam technique: radiation from a line-focus X-ray tube is divided into a stack of fan-beams by a foil collimator with a 30 μm pitch. The stacked fan-beam geometry allows to design compact CT scanners with a source-to-detector distance of only 18 cm. The complete system fits into a standard 19 in. rack. Image reconstruction is based on standard fan-beam algorithms, which eliminates the difficulties and limitations associated with cone-beam reconstruction. The detector comprises a low-noise area CCD sensor, a fiber-optic light guide and a scintillator screen. A complete examination requires 2 min only. The new micro-CT system has a voxel size of 20x20x26 μm 3 . Each 3D image contains a quarter of a billion voxels or a multiple of it. Samples up to 20 mm in diameter and up to 40 mm in length can be imaged. The instrument can be operated in a normal lab environment

  19. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    Science.gov (United States)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  20. System for inspection of stacked cargo containers

    Science.gov (United States)

    Derenzo, Stephen [Pinole, CA

    2011-08-16

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. The invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.

  1. Anionic microemulsion to solvent stacking for on-line sample concentration of cationic analytes in capillary electrophoresis.

    Science.gov (United States)

    Kukusamude, Chunyapuk; Srijaranai, Supalax; Quirino, Joselito P

    2014-05-01

    The common SDS microemulsion (i.e. 3.3% SDS, 0.8% octane, and 6.6% butanol) and organic solvents were investigated for the stacking of cationic drugs in capillary zone electrophoresis using a low pH separation electrolyte. The sample was prepared in the acidic microemulsion and a high percentage of organic solvent was included in the electrolyte at anodic end of capillary. The stacking mechanism was similar to micelle to solvent stacking where the micelles were replaced by the microemulsion for the transport of analytes to the organic solvent rich boundary. This boundary is found between the microemulsion and anodic electrolyte. The effective electrophoretic mobility of the cations reversed from the direction of the anode in the microemulsion to the cathode in the boundary. Microemulsion to solvent stacking was successfully achieved with 40% ACN in the anodic electrolyte and hydrodynamic sample injection of 21 s at 1000 mbar (equivalent to 30% of the effective length). The sensitivity enhancement factors in terms of peak height and corrected peak area were 15 to 35 and 21 to 47, respectively. The linearity R(2) in terms of corrected peak area were >0.999. Interday precisions (%RSD, n = 6) were 3.3-4.0% for corrected peak area and 2.0-3.0% for migration time. Application to spiked real sample is also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Charge transfer in pi-stacked systems including DNA

    International Nuclear Information System (INIS)

    Siebbeles, L.D.A.

    2003-01-01

    Charge migration in DNA is a subject of intense current study motivated by long-range detection of DNA damage and the potential application of DNA as a molecular wire in nanoscale electronic devices. A key structural element, which makes DNA a medium for long-range charge transfer, is the array of stacked base pairs in the interior of the double helix. The overlapping pi-orbitals of the nucleobases provide a pathway for motion of charge carriers generated on the stack. This 'pi-pathway' resembles the columnarly stacked macrocyclic cores in discotic materials such as triphenylenes. The structure of these pi-stacked systems is highly disordered with dynamic fluctuations occurring on picosecond to nanosecond time scales. Theoretical calculations, concerning the effects of structural disorder and nucleobase sequence in DNA, on the dynamics of charge carriers are presented. Electronic couplings and localization energies of charge carriers were calculated using density functional theory (DFT). Results for columnarly stacked triphenylenes and DNA nucleobases are compared. The results are used to provide insight into the factors that control the mobility of charge carriers. Further, experimental results on the site-selective oxidation of guanine nucleobases in DNA (hot spots for DNA damage) are analyzed on basis of the theoretical results

  3. Stack and area tritium monitoring systems for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Pearson, G.G.; Meixler, L.D.; Sirsingh, R.A.P.

    1992-01-01

    This paper reports on the TFTR Tritium Stack and Area Monitoring Systems which have been developed to provide the required level of reliability in a cost effective manner consistent with the mission of the Tritium Handling System on TFTR. Personnel protection, environmental responsibility, and tritium containing system integrity have been the considerations in system design. During the Deuterium-Tritium (D-T) experiments on TFTR, tritium will be used for the first time as one of the fuels. Area monitors provide surveillance of the air in various rooms at TFTR. Stack monitors monitor the air at the TFTR test site that is exhausted through the HVAC systems, from the room exhaust stacks and the tritium systems process vents. The philosophies for the implementation of the Stack and Area Tritium Monitoring Systems at TFTR are to use hardwired controls wherever personnel protection is involved, and to take advantage of modern intelligent controllers to provide a distributed system to support the functions of tracking, displaying, and archiving concentration levels of tritium for all of the monitored areas and stacks

  4. Assessment of the LV-S2 & LV-S3 Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.; Amidan, Brett G.

    2014-09-30

    This document reports on a series of tests conducted to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 1-2A exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The LV-C2, LV-S2, and LV-S3 exhaust stacks were tested together as a group (Test Group 1-2A). This report only covers the results of LV-S2 and LV-S3; LV-C2 will be reported on separately. Federal regulations1 require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. 2 These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

  5. Retrofitting of an improved stack monitoring system in Rajasthan atomic power station

    International Nuclear Information System (INIS)

    Natarajan, K.

    1985-01-01

    The problems encountered in the measurement of inert gas activities, iodine activity and tritium activity released through the stack in RAPS are described and the considerations for the development of improved instruments outlined. The new approach provides for better accuracy of measurement of all the relevant radioactive parameters in the stack at one centralised place. The construction work in the station for the newly conceived stack activity monitoring system is completed and the earlier equipment used is installed in the room temporarily. Development prototypes of stack inert gas monitoring system and iodine monitoring system as described in Section 5 are made and evaluated. Fabrication of new equipment for retrofitting in RAPS is in progress and these will replace the equipment temporarily installed in the station

  6. Research and Development of Fully Automatic Alien Smoke Stack and Packaging System

    Science.gov (United States)

    Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu

    2017-12-01

    The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.

  7. Stack Flow Rate Changes and the ANSI/N13.1-1999 Qualification Criteria: Application to the Hanford Canister Storage Building Stack

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Canister Storage Building (CSB), located in the 200-East Area of the Hanford Site, is a 42,000 square foot facility used to store spent nuclear fuel from past activities at the Hanford Site. Because the facility has the potential to emit radionuclides into the environment, its ventilation exhaust stack has been equipped with an air monitoring system. Subpart H of the National Emissions Standards for Hazardous Air Pollutants requires that a sampling probe be located in the exhaust stack in accordance with criteria established by the American National Standards Institute/Health Physics Society Standard N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities.

  8. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  9. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Hedemann Jensen, P.; Lauridsen, B.

    1984-06-01

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131 I. The collection efficiency for iodine in form of elementary iodine (I 2 ) and methyliodide (CH 3 I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41 Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  10. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III, sampled March 28, 1999

    International Nuclear Information System (INIS)

    LOCKREM, L.L.

    1999-01-01

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999

  11. A Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Nielsen, Carsten

    2016-01-01

    Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related...

  12. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  13. Computerized method and system for designing an aerodynamic focusing lens stack

    Science.gov (United States)

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  14. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  15. The Influence of the Density of Coconut Fiber as Stack in Thermo-Acoustics Refrigeration System

    Science.gov (United States)

    Hartulistiyoso, E.; Yulianto, M.; Sucahyo, L.

    2018-05-01

    An experimental study of using coconut fiber as stack with varying density in thermo-acoustics refrigeration system has been done. Stack is a device which is described as the “heart” in thermo-acoustics refrigeration system. The length of stack is a fix parameter in this experiment. The performance of the coconut fiber was evaluated from the density of stack (varied from 30%, 50% and 70%), position of stack (varied from 0 to 34 cm from the sound generator), and frequency of sound generator (varied from 150 Hz, 200Hz, 250Hz and 300Hz). The inside, outside, and environment temperatures were collected every second using Data Acquisition (DAQ). The result showed that the increase of stack density will increase the performance of thermo-acoustics refrigeration system. The higher density produced temperature differences in cold side and hot side of 5.4°C. In addition, the position of stack and frequency of sound generator have an important role in the performance of thermo-acoustics refrigeration system for all variations of the density.

  16. Revamping of stack monitoring system at CORAL facility and estimation of aerosol penetration using 'DEPOSITION2001' code

    International Nuclear Information System (INIS)

    Ajoy, K.C.; Dhanasekaran, A.; Santhanam, R.; Rajagopal, V.; Jose, M.T.

    2018-01-01

    Monitoring of effluent discharge from stack forms an integral part of health physics surveillance programme and a mandatory requirement to ensure regulatory compliance. A unique challenge in stack monitoring is to obtain a representative sample from the flow stream and then transport the same to the monitoring devices with minimum losses. This paper describes the modification of the latter part of the transport line where distribution of sample begins to individual monitors. This work was initiated to address the issues of ageing, ease of use and to provide additional tapping points for future requirements. After revamping the sampling line, it was also validated using the computational code Deposition 2001a to ensure that the system meets even the ISO criteria

  17. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  18. Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks Power Generation System

    Directory of Open Access Journals (Sweden)

    Paulina Pianko-Oprych

    2017-12-01

    Full Text Available The main purpose of this paper was to develop a complete dynamic model of a power generation system based on two serially connected solid oxide fuel cell stacks. The uniqueness of this study lies in a different number of fuel cells in the stacks. The model consists of the electrochemical model, mass and energy balance equations implemented in MATLAB Simulink environment. Particular attention has been paid to the analysis of the transient response of the reformers, fuel cells and the burner. The dynamic behavior of the system during transient conditions was investigated by load step changing. The model evaluates electrical and thermal responses of the system at variable drawn current. It was found that a decrease of 40% in the 1st stage and 2nd solid oxide fuel cell (SOFC stacks drawn current caused both stacks temperature to drop by 2%. An increase of the cell voltage for the 1st and 2nd SOFC stacks led to very fast steam reformer response combined with a slight decrease in reformer temperature, while a considerable burner temperature increase of 70 K can be observed. Predictions of the model provide the basic insight into the operation of the power generation-based SOFC system during various transients and support its further design modifications.

  19. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  20. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  1. Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes.

    Science.gov (United States)

    Xu, Yuanhong; Gao, Ying; Wei, Hui; Du, Yan; Wang, Erkang

    2006-05-19

    Capillary electrophoresis (CE) with Ru(bpy)3(2+) electrochemiluminescence (ECL) detection system was established to the determination of contamination of banknotes with controlled drugs and a high efficiency on-column field-amplified sample stacking (FASS) technique was also optimized to increase the ECL intensity. The method was illustrated using heroin and cocaine, which are two typical and popular illicit drugs. Highest sample stacking was obtained when 0.01 mM acetic acid was chosen for sample dissolution with electrokinetical injection for 6 s at 17 kV. Under the optimized conditions: ECL detection at 1.2 V, separation voltage 10.0 kV, 20 mM phosphate-acetate (pH 7.2) as running buffer, 5 mM Ru(bpy)3(2+) with 50 mM phosphate-acetate (pH 7.2) in the detection cell, the standard curves were linear in the range of 7.50x10(-8) to 1.00x10(-5) M for heroin and 2.50x10(-7) to 1.00x10(-4) M for cocaine and detection limits of 50 nM for heroin and 60 nM for cocaine were achieved (S/N = 3), respectively. Relative standard derivations of the ECL intensity and the migration time were 3.50 and 0.51% for heroin and 4.44 and 0.12% for cocaine, respectively. The developed method was successfully applied to the determination of heroin and cocaine on illicit drug contaminated banknotes without any damage of the paper currency. A baseline resolution for heroin and cocaine was achieved within 6 min.

  2. Independent determination of the accuracy of the OSTR stack gas monitor and its operational application

    International Nuclear Information System (INIS)

    Pickett, B.D.; Johnson, A.G.

    1982-01-01

    This study was undertaken to determine the accuracy of the stack gas monitor, using techniques which were independent of the monitoring system itself. Samples of argon-41 to be used as the standards in this study were carefully produced in the thermal column of the OSTR and counted on a Ge(Li) detector which was connected to a multichannel analyzer (MCA). As the argon-41 standard in the gas sample flask decayed, the concentration of the argon-41 was compared to the output of the Ge(Li)/MCA system. This established a calibration curve for the counting system, whereby a sample with an unknown concentration of argon-41 could be counted and the subsequent count rate from the sample converted to a concentration expressed in mCi per milliliter. Gas samples were extracted from various points in the reactor exhaust system and the concentrations of argon-41 were determined by counting on the Ge(Li)/MCA system. Each sample concentration was then compared to the argon-41 concentration indicated by the stack gas monitor. The initial results indicated that, although possibly intermittent, the argon-41 concentrations displayed by the stack gas monitor were often approximately 50% of those predicted by analysis of individual samples from the exhaust system. Several possible sources for the discrepancy were checked, including the method of SGM calibration, uneven mixing of exhaust air and argon-41 in the reactor building exhaust stream, and dilution of the gas concentration in the SGM system by air leakage into the system. After considerable effort, the latter cause was found to be the culprit, due to an aging gasket around the stack monitor's moving particulate-filter-paper housing

  3. Availability Analysis of the Ventilation Stack CAM Interlock System

    CERN Document Server

    Young, J

    2000-01-01

    Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies, and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability.

  4. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    Science.gov (United States)

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  5. Tests of a High Temperature Sample Conditioner for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-18

    Tests were performed to evaluate a sample conditioning unit for stack monitoring at Hanford Tank Waste Treatment and Immobilization Plant (WTP) exhaust stacks with elevated air temperatures. The LV-S2, LV-S3, HV-S3A and HV-S3B exhaust stacks are expected to have elevated air temperature and dew point. At these emission points, exhaust temperatures are too high to deliver the air sample directly to the required stack monitoring equipment. As a result, a sample conditioning system is considered to cool and dry the air prior to its delivery to the stack monitoring system. The method proposed for the sample conditioning is a dilution system that will introduce cooler, dry air to the air sample stream. This method of sample conditioning is meant to reduce the sample temperature while avoiding condensation of moisture in the sample stream. An additional constraint is that the ANSI/HPS N13.1-1999 standard states that at least 50% of the 10 μm aerodynamic diameter (AD) particles present in the stack free stream must be delivered to the sample collector. In other words, depositional loss of particles should be limited to 50% in the sampling, transport, and conditioning systems. Based on estimates of particle penetration through the LV-S3 sampling system, the diluter should perform with about 80% penetration or better to ensure that the total sampling system passes the 50% or greater penetration criterion.

  6. Aersol particle losses in sampling systems

    International Nuclear Information System (INIS)

    Fan, B.J.; Wong, F.S.; Ortiz, C.A.; Anand, N.K.; McFarland, A.R.

    1993-01-01

    When aerosols are sampled from stacks and ducts, it is usually necessary to transport them from the point of sampling to a location of collection or analysis. Losses of aerosol particles can occur in the inlet region of the probe, in straight horizontal and vertical tubes and in elbows. For probes in laminary flow, the Saffman lift force can cause substantial losses of particles in a short inlet region. An empirical model has been developed to predict probe inlet losses, which are often on the order of 40% for 10 μm AED particles. A user-friendly PC computer code, DEPOSITION, has been setup to model losses in transport systems. Experiments have been conducted to compare the actual aerosol particle losses in transport systems with those predicted by the DEPOSITION code

  7. From the components to the stack. Developing and designing 5kW HT-PEFC stacks; Von der Komponente zum Stack. Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klasse

    Energy Technology Data Exchange (ETDEWEB)

    Bendzulla, Anne

    2010-12-22

    The aim of the present project is to develop a stack design for a 5-kW HTPEFC system. First, the state of the art of potential materials and process designs will be discussed for each component. Then, using this as a basis, three potential stack designs with typical attributes will be developed and assessed in terms of practicality with the aid of a specially derived evaluation method. Two stack designs classified as promising will be discussed in detail, constructed and then characterized using short stack tests. Comparing the stack designs reveals that both designs are fundamentally suitable for application in a HT-PEFC system with on-board supply. However, some of the performance data differ significantly for the two stack designs. The preferred stack design for application in a HT-PEFC system is characterized by robust operating behaviour and reproducible high-level performance data. Moreover, in compact constructions (120 W/l at 60 W/kg), the stack design allows flexible cooling with thermal oil or air, which can be adapted to suit specific applications. Furthermore, a defined temperature gradient can be set during operation, allowing the CO tolerance to be increased by up to 10 mV. The short stack design developed within the scope of the present work therefore represents an ideal basis for developing a 5-kW HT-PEFC system. Topics for further research activities include improving the performance by reducing weight and/or volume, as well as optimizing the heat management. The results achieved within the framework of this work clearly show that HTPEFC stacks have the potential to play a decisive role in increasing efficiency in the future, particularly when combined with an on-board supply system. (orig.) [German] Ziel der vorliegenden Arbeit ist die Entwicklung eines Stackkonzeptes fuer ein 5 kW-HT-PEFC System. Dazu wird zunaechst fuer jede Komponente der Stand der Technik moeglicher Materialien und Prozesskonzepte diskutiert. Darauf aufbauend werden drei

  8. Performance evaluation of a stack cooling system using CO{sub 2} air conditioner in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chul; Won, Jong Phil [Thermal Management Research Center, Korea Automotive Technology Institute, Chungnam 330-912 (Korea); Park, Yong Sun; Lim, Tae Won [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi 449-912 (Korea); Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

    2009-01-15

    A relation between the heat release from a fuel cell stack and an air conditioning system's performance was investigated. The air conditioning system installed in a fuel cell vehicle can be used for stack cooling when additional stack heat release is required over a fixed radiator capacity during high vehicle power generation. This study investigated the performance of a stack cooling system using CO{sub 2} air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed and compared with those for the conventional radiator cooling system with/without cabin cooling. When the radiator coolant inlet temperature and flow rate were 65 C and 80 L/min, respectively, for the outdoor air inlet speed of 5 m/s, the heat release of the stack cooling system with the aid of CO{sub 2} air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, this increased by 7% versus the case without cabin cooling. (author)

  9. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  10. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  11. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to le...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures.......Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...

  12. Characterization of cotton gin PM10 emissions based on EPA stack sampling methodologies and particle size distributions

    Science.gov (United States)

    A project to characterize cotton gin emissions in terms of stack sampling was conducted during the 2008 through 2011 ginning seasons. The impetus behind the project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. EPA AP-42 emission factors ar...

  13. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  14. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  15. Novel vehicle detection system based on stacked DoG kernel and AdaBoost

    Science.gov (United States)

    Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun

    2018-01-01

    This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727

  16. Stacking by electroinjection with discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Zak K

    2002-08-01

    The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.

  17. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  18. Crystallite size effects in stacking faulted nickel hydroxide and its electrochemical behaviour

    International Nuclear Information System (INIS)

    Ramesh, T.N.

    2009-01-01

    β-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH) 2 . Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC). This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide

  19. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  20. Dose assessment from potential radionuclide emissions from stacks on the Hanford Site

    International Nuclear Information System (INIS)

    Davis, W.E.; Barnett, J.M.

    1995-04-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order required RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which points are subject to the continuous emission sampling requirements of Title 40, Code of Federal Regulations, Part 61 (40 CFR 61), Subpart H, and (2) continuously sample radionuclide emissions in accordance with requirements in 40 CFR 61.93. The Information Request required RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. A Compliance Plan was submitted to EPA, Region 10, on April 30, 1993. The Compliance Plan specified that a dose assessment would be performed for 84 Westinghouse Hanford Company (WHC) stacks registered with the Washington State Department of Health on the Hanford Site. Any stack identified in the assessment as having potential emissions to cause an effective dose equivalent (EDE) to a maximum exposed individual (MEI) greater than 0.1 mrem y -1 must have a compliant sampling system. In addition, a Federal Facility Compliance Agreement (FFCA) was signed on. February 7, 1994. The FFCA required that all unregistered stacks on the Hanford Site be assessed. This requirement increased the number of stacks to be assessed to 123 stacks. Six methods for performing the assessments are described. An initial assessment using only the HEPA filtration factor for back calculations identified 32 stacks that would have emissions which would cause an EDE to the MEI greater than 0.1 mrem y -1 . When the other methods were applied the number was reduced to 20 stacks. The paper discusses reasons for these overestimates

  1. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Thormann, W.

    2017-01-01

    Roč. 1512, AUG (2017), s. 124-132 ISSN 0021-9673 Institutional support: RVO:68081715 Keywords : head-column field-amplified sample stacking * capillary electrophoresis * water plug Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  2. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Thormann, W.

    2017-01-01

    Roč. 1512, AUG (2017), s. 124-132 ISSN 0021-9673 Institutional support: RVO:68081715 Keywords : head- column field-amplified sample stacking * capillary electrophoresis * water plug Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  3. Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack

    International Nuclear Information System (INIS)

    Huang, Zhen-Ming; Su, Ay; Liu, Ying-Chieh

    2014-01-01

    In this study, the performance of a polymer electrolyte membrane fuel cell stack has been evaluated for a hybrid power system test platform. To simulate vehicle acceleration, the stack was operated under dynamic-loading, and to demonstrate the exchange of power flow between two power sources the hybrid power system was tested under three different modes. A unit cell was fabricated for high stack performance and the stack was constructed with 18 open-cathode type fuel cells. Air which acts as a coolant as well as an oxidant for electrochemical reactions is provided by a pair of fans. The capabilities of the stack for hybrid power system test platform were validated by successful dynamic-loading tests. The performance of the stack for various air fan voltage was evaluated and an optimal value was concluded. The conditions like inlet temperature of H 2 and the stack current were established for maximum power. It was also found that humidification of hydrogen at anode inlet degrades the stack performance and stability due to flooding. Evidence shows that for the higher overall performance, the fuel cell acts continuously on constant current output. The study contributes to the design of mobility hybrid system to get better performance and reliability. - Highlights: • An open-cathode type PEMFC (polymer electrolyte membrane fuel cell) stack (rated output 300 W) was fabricated. • The open-cathode configuration simplifies the design of a stack system. • Assess the feasibility of combining a fuel cell stack in a hybrid system. • The study contributes to the design of mobility hybrid system to get better performance and reliability

  4. Sample Stacking in capillary zone electrophoresis : Principles, advantages and limitations

    NARCIS (Netherlands)

    Beckers, J.L.; Bocek, P.

    2000-01-01

    The principles of stacking procedures are described and their properties are discussed, including the fundamentals of the behavior of zone boundaries and the consequences of the self-correcting properties of boundaries in moving boundary electrophoresis, isotachophoresis, and zone electrophoresis.

  5. Analysis of plant hormones by microemulsion electrokinetic capillary chromatography coupled with on-line large volume sample stacking.

    Science.gov (United States)

    Chen, Zongbao; Lin, Zian; Zhang, Lin; Cai, Yan; Zhang, Lan

    2012-04-07

    A novel method of microemulsion electrokinetic capillary chromatography (MEEKC) coupled with on-line large volume sample stacking was developed for the analysis of six plant hormones including indole-3-acetic acid, indole-3-butyric acid, indole-3-propionic acid, 1-naphthaleneacetic acid, abscisic acid and salicylic acid. Baseline separation of six plant hormones was achieved within 10 min by using the microemulsion background electrolyte containing a 97.2% (w/w) 10 mM borate buffer at pH 9.2, 1.0% (w/w) ethyl acetate as oil droplets, 0.6% (w/w) sodium dodecyl sulphate as surfactant and 1.2% (w/w) 1-butanol as cosurfactant. In addition, an on-line concentration method based on a large volume sample stacking technique and multiple wavelength detection was adopted for improving the detection sensitivity in order to determine trace level hormones in a real sample. The optimal method provided about 50-100 fold increase in detection sensitivity compared with a single MEEKC method, and the detection limits (S/N = 3) were between 0.005 and 0.02 μg mL(-1). The proposed method was simple, rapid and sensitive and could be applied to the determination of six plant hormones in spiked water samples, tobacco leaves and 1-naphthylacetic acid in leaf fertilizer. The recoveries ranged from 76.0% to 119.1%, and good reproducibilities were obtained with relative standard deviations (RSDs) less than 6.6%.

  6. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug.

    Science.gov (United States)

    Šesták, Jozef; Thormann, Wolfgang

    2017-08-25

    Part I on head-column field-amplified sample stacking comprised a detailed study of the electrokinetic injection of a weak base across a short water plug into a phosphate buffer at low pH. The water plug is converted into a low conductive acidic zone and cationic analytes become stacked at the interface between this and a newly formed phosphoric acid zone. The fundamentals of electrokinetic processes occurring thereafter were studied experimentally and with computer simulation and are presented as part II. The configuration analyzed represents a discontinuous buffer system. Computer simulation revealed that the phosphoric acid zone at the plug-buffer interface becomes converted into a migrating phosphate buffer plug which corresponds to the cationically migrating system zone of the phosphate buffer system. Its mobility is higher than that of the analytes such that they migrate behind the system zone in a phosphate buffer comparable to the applied background electrolyte. The temporal behaviour of the current and the conductivity across the water plug were monitored and found to reflect the changes in the low conductivity plug. Determination of the buffer flow in the capillary revealed increased pumping caused by the mismatch of electroosmosis within the low conductivity plug and the buffer. This effect becomes elevated with increasing water plug length. For plug lengths up to 1% of the total column length the flow quickly drops to the electroosmotic flow of the buffer and simulations with experimentally determined current and flow values predict negligible band dispersion and no loss of resolution for both low and large molecular mass components. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    completely. Thus, in systems with hard deadlines the worst-case execution time (WCET) of the real-time software running on them needs to be bounded. Modern architectures use features such as pipelining and caches for improving the average performance. These features, however, make the WCET analysis more...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore...

  8. Effect of NaOH on large-volume sample stacking of haloacetic acids in capillary zone electrophoresis with a low-pH buffer.

    Science.gov (United States)

    Tu, Chuanhong; Zhu, Lingyan; Ang, Chay Hoon; Lee, Hian Kee

    2003-06-01

    Large-volume sample stacking (LVSS) is an effective on-capillary sample concentration method in capillary zone electrophoresis, which can be applied to the sample in a low-conductivity matrix. NaOH solution is commonly used to back-extract acidic compounds from organic solvent in sample pretreatment. The effect of NaOH as sample matrix on LVSS of haloacetic acids was investigated in this study. It was found that the presence of NaOH in sample did not compromise, but rather help the sample stacking performance if a low pH background electrolyte (BGE) was used. The sensitivity enhancement factor was higher than the case when sample was dissolved in pure water or diluted BGE. Compared with conventional injection (0.4% capillary volume), 97-120-fold sensitivity enhancement in terms of peak height was obtained without deterioration of separation with an injection amount equal to 20% of the capillary volume. This method was applied to determine haloacetic acids in tap water by combination with liquid-liquid extraction and back-extraction into NaOH solution. Limits of detection at sub-ppb levels were obtained for real samples with direct UV detection.

  9. Exploring coherent transport through π-stacked systems for molecular electronic devices

    DEFF Research Database (Denmark)

    Li, Qian; Solomon, Gemma

    2014-01-01

    Understanding electron transport across π-stacked systems can help to elucidate the role of intermolecular tunneling in molecular junctions and potentially with the design of high-efficiency molecular devices. Here we show how conjugation length and substituent groups influence the electron trans...

  10. Confirmation of vanadium complex formation using electrospray mass spectrometry and determination of vanadium speciation by sample stacking capillary electrophoresis

    International Nuclear Information System (INIS)

    Chen Zuliang; Owens, Gary; Naidu, Ravendra

    2007-01-01

    Capillary zone electrophoresis (CZE) with UV detection was used to determine vanadium species. Nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), ethylene glycol-bis(2-aminoethylether)-tetraacetic acid (EGTA) and 2,6-pyridinedicarboxylic acid (PDCA) were investigated to determine whether these ligands formed stable anionic complexes with vanadium. Of all the ligands studied HEDTA was the most suitable ligand because it gave the largest UV response with reasonable migration time. Electrospray mass spectrometry (ES-MS) was used to confirm the formation of [VO 2 (HEDTA)] 2- and [VO(HEDTA)] 1- in solution. An electrolyte containing 25 mM phosphate, 0.25 mM tetradecyltrimethylammonium bromide (TTAB) at pH 5.5 was optimum for the separation of these anionic vanadium complexes. Sample stacking techniques, including large-volume sample stacking (LVSS) and field-amplified sample injection (FASI), were tested to improve the sensitivity. Best sensitivity was obtained using FASI, with detection limits of 0.001 μM, equivalent to 0.4 μg L -1 , for [VO 2 (HEDTA)] 2- and 0.01 μM, equivalent to 3.4 μg L -1 for [VO(HEDTA)] 1- . The utility of the method for the speciation of V(IV) and V(V) was demonstrated using ground water samples

  11. Development of an Integrated Polymer Microfluidic Stack

    International Nuclear Information System (INIS)

    Datta, Proyag; Hammacher, Jens; Pease, Mark; Gurung, Sitanshu; Goettert, Jost

    2006-01-01

    Microfluidic is a field of considerable interest. While significant research has been carried out to develop microfluidic components, very little has been done to integrate the components into a complete working system. We present a flexible modular system platform that addresses the requirements of a complete microfluidic system. A microfluidic stack system is demonstrated with the layers of the stack being modular for specific functions. The stack and accompanying infrastructure provides an attractive platform for users to transition their design concepts into a working microfluidic system quickly with very little effort. The concept is demonstrated by using the system to carry out a chemilumiscence experiment. Details regarding the fabrication, assembly and experimental methods are presented

  12. Stochastic stacking without filters

    International Nuclear Information System (INIS)

    Johnson, R.P.; Marriner, J.

    1982-12-01

    The rate of accumulation of antiprotons is a critical factor in the design of p anti p colliders. A design of a system to accumulate higher anti p fluxes is presented here which is an alternative to the schemes used at the CERN AA and in the Fermilab Tevatron I design. Contrary to these stacking schemes, which use a system of notch filters to protect the dense core of antiprotons from the high power of the stack tail stochastic cooling, an eddy current shutter is used to protect the core in the region of the stack tail cooling kicker. Without filters one can have larger cooling bandwidths, better mixing for stochastic cooling, and easier operational criteria for the power amplifiers. In the case considered here a flux of 1.4 x 10 8 per sec is achieved with a 4 to 8 GHz bandwidth

  13. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  14. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application

    International Nuclear Information System (INIS)

    Ping, Mao; Zhi-Gang, Zhang; Li-Yang, Pan; Jun, Xu; Pei-Yi, Chen

    2009-01-01

    Stacked ruthenium (Ru) nanocrystals (NCs) are formed by rapid thermal annealing for the whole gate stacks and embedded in memory structure, which is compatible with conventional CMOS technology. Ru NCs with high density (3 × 10 12 cm −2 ), small size (2–4 nm) and good uniformity both in aerial distribution and morphology are formed. Attributed to the higher surface trap density, a memory window of 5.2 V is obtained with stacked Ru NCs in comparison to that of 3.5 V with single-layer samples. The stacked Ru NCs device also exhibits much better retention performance because of Coulomb blockade and vertical uniformity between stacked Ru NCs

  15. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack

    KAUST Repository

    Hatzell, Marta C.; Logan, Bruce E.

    2013-01-01

    ) accumulation within the stack, reducing overall system performance. The management and minimization of bubbles formed in RED flow fields is an important operational issue which has yet to be addressed. Flow fields with and without spacers in RED stacks were

  16. Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.

    Science.gov (United States)

    Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen

    2012-01-01

    An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Field-amplified sample stacking-sweeping of vitamins B determination in capillary electrophoresis.

    Science.gov (United States)

    Dziomba, Szymon; Kowalski, Piotr; Bączek, Tomasz

    2012-12-07

    A capillary electrophoretic method for determination of five water soluble vitamins B along with baclofen as an internal standard has been developed and assessed in context of precision, accuracy, sensitivity, freedom from interference, linearity, detection and quantification limits. On-line preconcentration technique, namely field-amplified sample stacking (FASS)-sweeping, has been employed in respect to obtain more sensitive analysis. Separation conditions received after optimization procedure were as following background electrolyte (BGE), 10 mM NaH(2)PO(4), 80 mM SDS, (pH 7.25); sample matrix (SM), 10 mM NaH(2)PO(4) (pH 4.60); uncoated fused silica capillary (50 μm i.d. × 67 cm length); UV spectrophotometric detection at 200 nm; injection times: 10s and 30s at 3.45 kPa; applied voltage 22 kV; temperature 22°C. Validation parameters, namely precision, accuracy and linearity, were considered as satisfactory. Under the optimized conditions, it has been also successfully applied for vitamins B determination in bacterial growth medium and commercially available Ilex paraguariensis leaves. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Confirmation of vanadium complex formation using electrospray mass spectrometry and determination of vanadium speciation by sample stacking capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zuliang [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)]. E-mail: zuliang.chen@unisa.edu.au; Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); CRC for Contamination Assessment and Remediation of Environments, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia)

    2007-02-28

    Capillary zone electrophoresis (CZE) with UV detection was used to determine vanadium species. Nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), ethylene glycol-bis(2-aminoethylether)-tetraacetic acid (EGTA) and 2,6-pyridinedicarboxylic acid (PDCA) were investigated to determine whether these ligands formed stable anionic complexes with vanadium. Of all the ligands studied HEDTA was the most suitable ligand because it gave the largest UV response with reasonable migration time. Electrospray mass spectrometry (ES-MS) was used to confirm the formation of [VO{sub 2}(HEDTA)]{sup 2-} and [VO(HEDTA)]{sup 1-} in solution. An electrolyte containing 25 mM phosphate, 0.25 mM tetradecyltrimethylammonium bromide (TTAB) at pH 5.5 was optimum for the separation of these anionic vanadium complexes. Sample stacking techniques, including large-volume sample stacking (LVSS) and field-amplified sample injection (FASI), were tested to improve the sensitivity. Best sensitivity was obtained using FASI, with detection limits of 0.001 {mu}M, equivalent to 0.4 {mu}g L{sup -1}, for [VO{sub 2}(HEDTA)]{sup 2-} and 0.01 {mu}M, equivalent to 3.4 {mu}g L{sup -1} for [VO(HEDTA)]{sup 1-}. The utility of the method for the speciation of V(IV) and V(V) was demonstrated using ground water samples.

  19. SOFC - Manufacture of stacks for test and demonstration related activities, stack and system tests and identification of end user requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Joachim; Primdahl, S.; Boegh Elmose, H.; Weineisen, H.; Richter, A.

    2008-11-15

    The aim of the project was to solve the technical challenges in relation to stack functionality in connection with operation of multi stack assemblies under realistic operating conditions. It was the intention to make a targeted effort with the aim of developing a high performance stack technology suitable for both small and large units. An important part of the project was the testing of stack assemblies up to 10 kW power range with relevant fuel and realistic operation condition in the test facility at HC OErstedvaerket. The manufacturing of stacks in the project was as planned a number of stacks (70 kW) for use in demonstration projects both for single stacks and for multi stack assemblies. The start up of the work on the SOFC test facility at HC OErstedsvaerket (HCV) was delayed due to a late delivery of the unit from the PSO 6385 project. A number of unforeseen events during the project have meant that the SOFC test facility at HCV has not until now been ready for performing tests. The experience gained from the operation of a 20 kW Alpha unit in a co-operation between TOFC and Waertsilae now provides an important contribution to the future multi stack assemblies. The work on identification of end user requirements has resulted in a number of different development priorities for the m-CHP and the Distributed Generation market segments. (au)

  20. A Strategy to Suppress Phonon Transport in Molecular Junctions Using pi-Stacked Systems

    DEFF Research Database (Denmark)

    Li, Qian; Strange, Mikkel; Duchemin, Ivan

    2017-01-01

    to suppress phonon transport in graphene-based molecular junctions preserving high electronic power factor, using nonbonded pi-stackal systems. Using first-principles calculations, we find that the thermal conductance of pi-stacked systems can be reduced by about 95%, compared with that of a covalently bonded...

  1. Project W-420 Ventilation Stack Monitoring System Year 2000 Compliance Assessment Project Plan

    International Nuclear Information System (INIS)

    BUSSELL, J.H.

    1999-01-01

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-420, Ventilation Stack Monitoring Systems Upgrades. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The project work scope includes upgrades to ventilation stacks and generic effluent monitoring systems (GEMS) at the 244-A Double Contained Receiver Tank (DCRT), the 244-BX DCRT, the 244-CR Vault, tanks 241-C-105 and 241-C-106, the 244-S DCRT, and the 244-TX DCRT. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase, This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems

  2. Trace interpolation by slant-stack migration

    International Nuclear Information System (INIS)

    Novotny, M.

    1990-01-01

    The slant-stack migration formula based on the radon transform is studied with respect to the depth steep Δz of wavefield extrapolation. It can be viewed as a generalized trace-interpolation procedure including wave extrapolation with an arbitrary step Δz. For Δz > 0 the formula yields the familiar plane-wave decomposition, while for Δz > 0 it provides a robust tool for migration transformation of spatially under sampled wavefields. Using the stationary phase method, it is shown that the slant-stack migration formula degenerates into the Rayleigh-Sommerfeld integral in the far-field approximation. Consequently, even a narrow slant-stack gather applied before the diffraction stack can significantly improve the representation of noisy data in the wavefield extrapolation process. The theory is applied to synthetic and field data to perform trace interpolation and dip reject filtration. The data examples presented prove that the radon interpolator works well in the dip range, including waves with mutual stepouts smaller than half the dominant period

  3. Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm

    International Nuclear Information System (INIS)

    Yang, Shipin; Chellali, Ryad; Lu, Xiaohua; Li, Lijuan; Bo, Cuimei

    2016-01-01

    Accurate models of PEM (proton exchange membrane) fuel cells are of great significance for the analysis and the control for power generation. We present a new semi-empirical model to predict the voltage outputs of PEM fuel cell stacks. We also introduce a new estimation method, called AC-POA (aging and challenging P systems based optimization algorithm) allowing deriving the parameters of the semi-empirical model. In our model, the cathode inlet pressure is selected as an additional factor to modify the expression of concentration over-voltage V con for traditional Amphlett's PEM fuel cell model. In AC-POA, the aging-mechanism inspired object updating rule is merged in existing P system. We validate through experiments the effectiveness of AC-POA and the fitting accuracy of our model. Modeling comparison results show that the predictions of our model are the best in terms of fitting to actual sample data. - Highlights: • Presented a p c -based modificatory semi-empirical model for PEMFC stack. • Introduced a new aging inspired improved parameter estimation algorithm, AC-POA. • Validated the effectiveness of the AC-POA and the new model. • Remodeled the practical PEM fuel cell system.

  4. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  5. CAM and stack air sampler design guide

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1994-01-01

    About 128 air samplers and CAMs presently in service to detect and document potential radioactive release from 'H' and 'F' area tank farm ventilation stacks are scheduled for replacement and/or upgrade by Projects S-5764, S-2081, S-3603, and S-4516. The seven CAMs scheduled to be upgraded by Project S-4516 during 1995 are expected to provide valuable experience for the three remaining projects. The attached document provides design guidance for the standardized High Level Waste air sampling system

  6. Tracer gas experiment to verify the dispersion from a tall stack

    International Nuclear Information System (INIS)

    Sivertsen, B.; Irwin, J.S.

    1996-01-01

    At the request of the Ministerios de Obras Publicas y Urbanismo (MOPU) in Madrid, the Norwegian Institute for Air Research (NILU) planned and carried out a comprehensive field experiment at the Andorra (Teruel) power plant in Spain. All together, eleven releases of sulfur hexafluoride (SF6) tracer were carried out at the 1,200 MW electric coal fired power plant. The tracer was emitted into the atmosphere from the 343 m high stack, stack exit diameter of 9 m. The stack gas emission characteristics were nearly constant during the period having an exit temperature of 175.1 C (1.9), exit velocity of 35.5 m/s (0.14) and sulfur dioxide (SO 2 ) emission rate of 46.1 x 10 3 kg/hr (5.15 x 10 3 ); standard deviations are listed in parentheses. Samples were taken at the surface along sampling arcs located approximately 8, 23, 43 and 75 km downwind. The releases were undertaken during typical late spring daytime conditions. The synoptic weather conditions were dominated by a large high pressure system on the Atlantic, west of Spain. Fronts were passing the area from the north and a low pressure system was developing over central Europe (Germany). Winds at the surface were generally brisk from the northwest at 7 to 12 m/s

  7. Start-Stop Test Procedures on the PEMFC Stack Level

    DEFF Research Database (Denmark)

    Mitzel, Jens; Nygaard, Frederik; Veltzé, Sune

    The test is addressed to investigate the influence on stack durability of a long stop followed by a restart of a stack. Long stop should be defined as a stop in which the anodic compartment is fully filled by air due to stack leakages. In systems, leakage level of the stack is low and time to fil...

  8. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  9. Vertical melting of a stack of membranes

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  10. Efficiency of Polymer Electrolyte Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hans Bosma

    2011-08-01

    Full Text Available This paper applies a feedforward control of optimal oxygen excess ratio that maximize net power (improve efficiency of a NedStack P8.0-64 PEM fuel cell stack (FCS system. Net powers profile as a function of oxygen excess ratio for some points of operation are analyzed by using FCS model. The relationships between stack current and the corresponding control input voltage that gives an optimal oxygen excess ratio are used to design a feedforward control scheme. The results of this scheme are compared to the results of a feedforward control using a constant oxygen excess ratio. Simulation results show that optimal oxygen excess ratio improves fuel cell performance compared to the results of constant oxygen excess ratio. The same procedures are performed experimentally for the FCS system. The behaviour of the net power of the fuel cell stack with respect to the variation of oxygen excess ratio is analyzed to obtain optimal values. Data of stack current and the corresponding voltage input to the compressor that gives optimal values of oxygen excess ratio are used to develop a feedforward control. Feedforward control based on constant and optimal oxygen excess ratio control, are implemented in the NedStack P8.0-64 PEM fuel cell stack system by using LabVIEW. Implementation results shows that optimal oxygen excess ratio control improves the fuel cell performance compared to the constant oxygen excess ratio control.

  11. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  12. Combination of micelle collapse and field-amplified sample stacking in capillary electrophoresis for determination of trimethoprim and sulfamethoxazole in animal-originated foodstuffs.

    Science.gov (United States)

    Liu, Lihong; Wan, Qian; Xu, Xiaoying; Duan, Shunshan; Yang, Chunli

    2017-03-15

    An on-line preconcentration method combining micelle to solvent stacking (MSS) with field-amplified sample stacking (FASS) was employed for the analysis of trimethoprim (TMP) and sulfamethoxazole (SMZ) by capillary zone electrophoresis (CZE). The optimized experimental conditions were as followings: (1) sample matrix, 10.0mM SDS-5% (v/v) methanol; (2) trapping solution (TS), 35mM H 3 PO 4 -60% acetonitrile (CH 3 CN); (3) running buffer, 30mM Na 2 HPO 4 (pH=7.3); (4) sample solution volume, 168nL; TS volume, 168nL; and (5) 9kV voltage, 214nm UV detection. Under the optimized conditions, the limits of detection (LODs) for SMZ and TMP were 7.7 and 8.5ng/mL, and they were 301 and 329 times better compared to a typical injection, respectively. The contents of TMP and SMZ in animal foodstuffs such as dairy products, eggs and honey were analyzed, too. Recoveries of 80-104% were acquired with relative standard deviations of 0.5-5.4%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Availability Analysis of the Ventilation Stack CAM Interlock System

    International Nuclear Information System (INIS)

    YOUNG, J.

    2000-01-01

    Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability. Further, requiring an alarm to actuate upon CAM failure is not necessary to maintain the availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability. However, if CAM failures were only detected by the 92-day functional tests required in the Authorization Basis (AB), CAM availability would be much less than that credited in the safety analysis. Therefore it is recommended that the current surveillance practice of daily simple system checks, 30-day source checks and 92-day functional tests be continued in order to maintain CAM availability

  14. A new multiphasic buffer system for benzyldimethyl-n-hexadecylammonium chloride polyacrylamide gel electrophoresis of proteins providing efficient stacking.

    Science.gov (United States)

    Kramer, Michael L

    2006-02-01

    Acidic PAGE systems using cationic detergents such as benzyldimethyl-n-hexadecylammonium chloride (16-BAC) or CTAB have proven useful for the detection of methoxy esters sensitive to alkaline pH, resolving basic proteins such as histones and membrane proteins. However, the interesting phosphate-based system suffered from poor stacking, resulting in broadened bands and long running times. Therefore, a new 16-BAC PAGE system based on the theory of moving boundary electrophoresis with properties comparable to the classical SDS-PAGE system was designed. As a result a new multiphasic analytical 16-BAC PAGE system providing efficient stacking and significantly shorter running times is presented here. It is based on acetic acid and methoxyacetic acid as common ion constituents. This PAGE system takes advantage of the additional counter stacking effect due to a cross boundary electrophoresis system resulting from the selected buffer constituents. Furthermore, the concentration of 16-BAC was optimized by determining its previously unknown CMC. Due to efficient focusing of the introduced tracking dye, methyl green, termination of electrophoresis can now be more easily followed as compared to the Schlieren line.

  15. Recent progress of sample stacking in capillary electrophoresis (2014–2016)

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2017-01-01

    Roč. 38, č. 1 (2017), s. 20-32 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : stacking * zone electrophoresis * trace analysis * review Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  16. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-05-15

    Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vpeak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  17. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  18. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  19. Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack

    International Nuclear Information System (INIS)

    Lee, Jae Hyuk; Kim, Bo Sung; Lee, Yong Taek; Kim, Yong Chan

    2010-01-01

    In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used

  20. Development of a dynamic CT system for neutron radiography and consecutive visualization of three-dimensional water behavior in a PEFC stack

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Hashimoto, Michinori; Sugimoto, Katsumi; Asano, Hitoshi; Takenaka, Nobuyuki; Mochiki, Koh-ichi; Yasuda, Ryo

    2011-01-01

    A dynamic CT system was developed for visualization of consecutive three-dimensional water behavior in a PEFC stack for neutron radiography. The system is composed of a neutron image intensifier and a C-MOS high speed video camera. An operating stack with three cells based on the Japan Automobile Research Institute standard was visualized using the neutron radiography system at a research reactor JRR-3 in Japan Atomic Energy Agency. The dynamic water behavior in channels in the operating PEFC stack was clearly visualized every 15 seconds by using the system. The water amount in each cell was evaluated by the CT reconstructed images. It was shown that a cell voltage decreased gradually when the water increased and increased rapidly when the water was evacuated. It was estimated that the power generation stopped when the channel of a cell was partly filled with the water because the air supply was blocked to a cell in the stack. (author)

  1. Simulation of magnetization and levitation characteristics of HTS tape stacks

    Science.gov (United States)

    Anischenko, I. V.; Pokrovskii, S. V.; Mineev, N. A.

    2017-12-01

    In this work it is presented a computational model of a magnetic levitation system based on stacks of high-temperature second generation superconducting tapes (HTS) GdBa2Cu3O7-x. Calculated magnetic field and the current distributions in the system for different stacks geometries in the zero-field cooling mode are also presented. The magnetization curves of the stacks in the external field of a permanent NdFeB magnet and the levitation force dependence on the gap between the magnet and the HTS tapes stack were obtained. A model of the magnetic system, oriented to levitation application, is given. Results of modeling were compared with the experimental data.

  2. Development and preliminary experimental study on micro-stacked insulator

    International Nuclear Information System (INIS)

    Ren Chengyan; Yuan Weiqun; Zhang Dongdong; Yan Ping; Wang Jue

    2009-01-01

    High gradient insulating technology is one of the key technologies in new type dielectric wall accelerator(DWA). High gradient insulator, namely micro-stacked insulator, was developed and preliminary experimental study was done. Based on the finite element and particle simulating method, surface electric field distribution and electron movement track of micro-stacked insulator were numerated, and then the optimized design proposal was put forward. Using high temperature laminated method, we developed micro-stacked insulator samples which uses exhaustive fluorinated ethylene propylene(FEP) as dielectric layer and stainless steel as metal layer. Preliminary experiment of vacuum surface flashover in nanosecond pulse voltage was done and micro-stacked insulator exhibited favorable vacuum surface flashover performance with flashover field strength of near 180 kV/cm. (authors)

  3. Project W-420 Ventilation Stack Monitoring System Year 2000 Compliance Assessment Project Plan

    International Nuclear Information System (INIS)

    BUSSELL, J.H.

    1999-01-01

    This document contains a limited assessment of Year 2000 compliance for Project W-420. Additional information is provided as a road map to project documents and other references that may be used to verify Year 2000 compliance. This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-420, Ventilation Stack Monitoring Systems Upgrades. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The project work scope includes upgrades to ventilation stacks and generic effluent monitoring systems (GEMS) at the 244-A Double Contained Receiver Tank (DCRT), the 244-BX DCRT, the 244-CR Vault, tanks 241-C-105 and 241-C-106, the 244-S DCRT, and the 244-TX DCRT. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase, This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems

  4. A VM-shared desktop virtualization system based on OpenStack

    Science.gov (United States)

    Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie

    2018-04-01

    With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.

  5. Calculation of tritium release from reactor's stack

    International Nuclear Information System (INIS)

    Akhadi, M.

    1996-01-01

    Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)

  6. Stack Characterization in CryoSat Level1b SAR/SARin Baseline C

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Di Giacinto, Andrea; Bouffard, Jerome; Féménias, Pierre; Parrinello, Tommaso

    2015-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. CryoSat is the first altimetry mission operating in SAR mode and it carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. The current CryoSat IPF (Instrument Processing Facility), Baseline B, was released in operation in February 2012. After more than 2 years of development, the release in operations of the Baseline C is expected in the first half of 2015. It is worth recalling here that the CryoSat SAR/SARin IPF1 generates 20Hz waveforms in correspondence of an approximately equally spaced set of ground locations on the Earth surface, i.e. surface samples, and that a surface sample gathers a collection of single-look echoes coming from the processed bursts during the time of visibility. Thus, for a given surface sample, the stack can be defined as the collection of all the single-look echoes pointing to the current surface sample, after applying all the necessary range corrections. The L1B product contains the power average of all the single-look echoes in the stack: the multi-looked L1B waveform. This reduces the data volume, while removing some information contained in the single looks, useful for characterizing the surface and modelling the L1B waveform. To recover such information, a set of parameters has been added to the L1B product: the stack characterization or beam behaviour parameters. The stack characterization, already included in previous Baselines, has been reviewed and expanded in Baseline C. This poster describes all the stack characterization parameters, detailing what they represent and how they have been computed. In details, such parameters can be summarized in: - Stack

  7. Application of particle size distributions to total particulate stack samples to estimate PM2.5 and PM10 emission factors for agricultural sources

    Science.gov (United States)

    Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...

  8. Stacking and discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Z K

    2000-08-01

    Discontinuous buffers for capillary zone electrophoresis (CZE) can be used under less rigid conditions compared to those for isotachophoresis for stacking. They can be prepared simply by modifying the sample itself, either by addition of small inorganic ions, low conductivity diluents, or both, and also by adjusting its pH, meanwhile injecting a large volume on the capillary. Zwitterionic and organic-based buffers such as triethanolamine and tris(hydroxymethyl)aminomethane (Tris) are well suited for stacking due to their low conductivity, provided the buffer is discontinuous as demonstrated here. A simple mechanism based on discontinuous buffers is described to explain many of the observed stacking types in CZE, pointing out the many similarities to transient isotachophoresis.

  9. EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN, is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

  10. ejIP: A TCP/IP Stack for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2011-01-01

    present the design and implementation of a network stack written entirely in Java. This implementation serves as an example how to implement system functions in a safe language and gives evidence that Java can be used for operating system related functionality. The described TCP/IP stack ejIP has already...

  11. Dynamic stack testing and HiL simulation

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, G. [GRandalytics, Honolulu, HI (United States)

    2009-07-01

    The applications for fuel cell and stack deployment have changed rapidly over the years, from stationary backup supplies to highly dynamic automotive power systems. As a result, testing must keep up in order to ensure mature products of high quality. A new breed of stack test stations has been designed, based on a newly developed single cell, high dynamic hardware-in-the-loop (HiL) simulator in order to meet the growing demand of realistic fuel cell testing scenarios for aviation and automotive industries. The paper described and illustrated the test station architecture and outline of communication nodes. The paper also described the voltage monitor and presented schematics of voltage monitoring modules. The basic requirements of the architecture that were presented included low latency; flexible communication with simulation targets and other data input/output nodes; scalability to various stack sizes; and, safety and reliability. It was concluded that first tests with the voltage monitoring system not only confirmed the design, high throughput and signal quality, but also suggested another application, namely a stack impedance spectrometer for each individual cell. 1 ref., 3 figs.

  12. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack

    KAUST Repository

    Hatzell, Marta C.

    2013-11-01

    Ammonium bicarbonate has recently been demonstrated to be an excellent thermolytic solution for energy generation in reverse electrodialysis (RED) stacks. However, operating RED stacks at room temperatures can promote gaseous bubble (CO2, NH3) accumulation within the stack, reducing overall system performance. The management and minimization of bubbles formed in RED flow fields is an important operational issue which has yet to be addressed. Flow fields with and without spacers in RED stacks were analyzed to determine how both fluid flow and the buildup and removal of bubbles affected performance. In the presence of a spacer, the membrane resistance increased by ~50Ω, resulting in a decrease in power density by 30% from 0.140Wm-2 to 0.093Wm-2. Shorter channels reduced concentration polarization affects, and resulted in 3-23% higher limiting current density. Gas accumulation was minimized through the use of short vertically aligned channels, and consequently the amount of the membrane area covered by bubbles was reduced from ~20% to 7% which caused a 12% increase in power density. As ammonium bicarbonate RED systems are scaled up, attention to channel aspect ratio, length, and alignment will enable more stable performance. © 2013 Elsevier B.V.

  13. Lower power by voltage stacking : a fine-grained system design approach

    NARCIS (Netherlands)

    Blutman, K.; Kapoor, A.; Martinez, J.G.; Fatemi, S.H.; Pineda de Gyvez, J.

    2016-01-01

    Stacking voltage domains on top of each other is a design approach that is getting the attention of engineering communities due to the implicit high efficiency of the power delivery. Previous works have shown voltage stacking at the core level only. In this paper we present a more involved approach

  14. Algebraic stacks

    Indian Academy of Sciences (India)

    Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.

  15. Assessment for potential radionuclide emissions from stacks and diffuse and fugitive sources on the Hanford Site

    International Nuclear Information System (INIS)

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-06-01

    By using the six EPA-approved methods, instead of only the original back calculation method for assessing the 84 WHC registered stacks, the number of stacks requiring continuous monitoring was reduced from 32 to 19 stacks. The intercomparison between results showed that no correlation existed between back calculations and release fractions. Also the NDA, upstream air samples, and powder release fraction method results were at least three orders of magnitude lower then the back calculations results. The most surprising results of the assessment came from NDA. NDA was found to be an easy method for assessing potential emissions. For the nine stacks assessed by NDA, all nine of the stacks would have required continuous monitoring when assessed by back calculations. However, when NDA was applied all stacks had potential emissions that would cause an EDE below the > 0.1 mrem/y standard. Apparent DFs for the HEPA filter systems were calculated for eight nondesignated stacks with emissions above the detection limit. These apparent DFs ranged from 0.5 to 250. The EDE dose to the MEI was calculated to be 0.028 mrem/y for diffuse and fugitive emissions from the Hanford Sited. This is well below the > 0.1 mrem/y standard

  16. Solid-Phase Extraction and Large-Volume Sample Stacking-Capillary Electrophoresis for Determination of Tetracycline Residues in Milk

    Directory of Open Access Journals (Sweden)

    Gabriela Islas

    2018-01-01

    Full Text Available Solid-phase extraction in combination with large-volume sample stacking-capillary electrophoresis (SPE-LVSS-CE was applied to measure chlortetracycline, doxycycline, oxytetracycline, and tetracycline in milk samples. Under optimal conditions, the proposed method had a linear range of 29 to 200 µg·L−1, with limits of detection ranging from 18.6 to 23.8 µg·L−1 with inter- and intraday repeatabilities < 10% (as a relative standard deviation in all cases. The enrichment factors obtained were from 50.33 to 70.85 for all the TCs compared with a conventional capillary zone electrophoresis (CZE. This method is adequate to analyze tetracyclines below the most restrictive established maximum residue limits. The proposed method was employed in the analysis of 15 milk samples from different brands. Two of the tested samples were positive for the presence of oxytetracycline with concentrations of 95 and 126 µg·L−1. SPE-LVSS-CE is a robust, easy, and efficient strategy for online preconcentration of tetracycline residues in complex matrices.

  17. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

    OpenAIRE

    Zhang, Han; Xu, Tao; Li, Hongsheng; Zhang, Shaoting; Wang, Xiaogang; Huang, Xiaolei; Metaxas, Dimitris

    2017-01-01

    Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aiming at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of the object based on given...

  18. The operation and monitoring of sewage disposal by stack injection

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.A. [Alyeska Pipeline Service Co. (United States)

    1994-12-31

    A system that uses turbine exhaust to evaporate sewage, was described. The Alyeska Pipeline Service developed the system for isolated pump stations located in permafrost areas. The pumps moving the crude oil in the Trans Alaska Pipeline System (TAPS) were driven by simple cycle gas turbine engines which produce large amounts of waste heat. The waste heat was used to evaporate the sewage effluent, effectively destroying all pathogens in it. The process, known as `stack injection`, was recently upgraded to increase efficiency and safety. Stack injection was being used at five pump stations. Methods used to control operation of the stack injection system, and field data used to redesign the system were reviewed. 3 figs., 3 refs.

  19. Review of measurement techniques for stack monitoring of long-lived alpha emitters

    International Nuclear Information System (INIS)

    Kordas, J.F.; Phelps, P.L.

    1978-01-01

    As a result of the promulgation of new guidelines by the Environmental Protection Agency (40 CFR 190) for releases of long-lived, alpha-emitting substances, the stack-monitoring requirements for measuring long-lived alpha particles may change in terms of both monitored isotopes and the detection levels. This paper briefly reviews stack-monitoring requirements for long-lived alpha-emitting particles. It also examines the currently deployed alpha-particulate, stack-monitoring systems and discusses prototype systems that may be applicable to stack monitoring

  20. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  1. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    Science.gov (United States)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  2. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  3. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  4. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  5. Fabrication of high gradient insulators by stack compression

    Science.gov (United States)

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  6. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    Science.gov (United States)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  7. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  8. Joint Polish–Finnish sampling of surface waters around the phosphogypsum waste stacks in Gdańsk and Police from 1 to 3 July 2013 – Results of the expedition

    OpenAIRE

    Räike, Antti; Koskela, Jarkko; Knuuttila, Seppo; Lehtoranta, Jouni; Pitkänen, Heikki; Risto, Maarit; Vuorinen, Jyrki

    2015-01-01

    The report describes the results of the joint Polish–Finnish sampling expedition aimed at estimating the possible effects of the two Polish phosphogypsum stacks located in Wislinka (Gdańsk) and Police on the loading of the Baltic Sea and the nearby watercourses. The joint expedition was based on the agreement between the Polish and Finnish Ministers of the Environment in June 2013. The results indicate a clear effect of the phosphogypsum stack on phosphate and total phosphorus concentratio...

  9. Static analysis of worst-case stack cache behavior

    DEFF Research Database (Denmark)

    Jordan, Alexander; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Utilizing a stack cache in a real-time system can aid predictability by avoiding interference that heap memory traffic causes on the data cache. While loads and stores are guaranteed cache hits, explicit operations are responsible for managing the stack cache. The behavior of these operations can......-graph, the worst-case bounds can be efficiently yet precisely determined. Our evaluation using the MiBench benchmark suite shows that only 37% and 21% of potential stack cache operations actually store to and load from memory, respectively. Analysis times are modest, on average running between 0.46s and 1.30s per...

  10. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  11. Regular control of monitors for effluents from nuclear power plant stacks

    International Nuclear Information System (INIS)

    Stroem, L.

    1979-01-01

    The report describes a test procedure for emission monitoring devices for nuclear power plants. The follosing procedures are described, inspection, determination of the air flow through the stack, measurement and adjustment of the flow in the stack loop, measurement and adjustment of flow and density in the measuring loop, calibration of the gas detector, efficiency of sampling of methyliodide and aerosol. (K.K.)

  12. Assessment of the Idaho National Laboratory Hot Fuel Examination Facility Stack Monitoring Site for Compliance with ANSI/HPS N13.1 1999

    International Nuclear Information System (INIS)

    Glissmeyer, John A.; Flaherty, Julia E.

    2010-01-01

    This document reports on a series of tests to determine whether the location of the air sampling probe in the Hot Fuels Examination Facility (HFEF) heating, ventilation and air conditioning (HVAC) exhaust duct meets the applicable regulatory criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria of the ANSI/HPS N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that is representative of the effluent stream. The tests conducted by PNNL during July 2010 on the HFEF system are described in this report. The sampling probe location is approximately 20 feet from the base of the stack. The stack base is in the second floor of the HFEF, and has a building ventilation stream (limited potential radioactive effluent) as well as a process stream (potential radioactive effluent, but HEPA-filtered) that feeds into it. The tests conducted on the duct indicate that the process stream is insufficiently mixed with the building ventilation stream. As a result, the air sampling probe location does not meet the criteria of the N13.1-1999 standard. The series of tests consists of various measurements taken over a grid of points in the duct cross section at the proposed sampling-probe location. The results of the test series on the HFEF exhaust duct as it relates to the criteria from ANSI/HPS N13.1-1999 are desribed in this report. Based on these tests, the location of the air sampling probe does not meet the requirements of the ANSI/HPS N13.1-1999 standard, and modifications must be made to either the HVAC system or the air sampling probe for compliance. The recommended approaches are discussed and vary from sampling probe modifications to modifying the junction of the two air exhaust streams.

  13. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  14. A stacking method and its applications to Lanzarote tide gauge records

    Science.gov (United States)

    Zhu, Ping; van Ruymbeke, Michel; Cadicheanu, Nicoleta

    2009-12-01

    A time-period analysis tool based on stacking is introduced in this paper. The original idea comes from the classical tidal analysis method. It is assumed that the period of each major tidal component is precisely determined based on the astronomical constants and it is unchangeable with time at a given point in the Earth. We sum the tidal records at a fixed tidal component center period T then take the mean of it. The stacking could significantly increase the signal-to-noise ratio (SNR) if a certain number of stacking circles is reached. The stacking results were fitted using a sinusoidal function, the amplitude and phase of the fitting curve is computed by the least squares methods. The advantage of the method is that: (1) an individual periodical signal could be isolated by stacking; (2) one can construct a linear Stacking-Spectrum (SSP) by changing the stacking period Ts; (3) the time-period distribution of the singularity component could be approximated by a Sliding-Stacking approach. The shortcoming of the method is that in order to isolate a low energy frequency or separate the nearby frequencies, we need a long enough series with high sampling rate. The method was tested with a numeric series and then it was applied to 1788 days Lanzarote tide gauge records as an example.

  15. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    application of advanced methods for detailed electrochemical characterisation during operation. An operating stack is subject to steep compositional gradients in the gaseous reactant streams, and significant temperature gradients across each cell and across the stack, which makes it a complex system...... Fuel Cell A/S was characterised in detail using electrochemical impedance spectroscopy. An investigation of the optimal geometrical placement of the current probes and voltage probes was carried out in order to minimise measurement errors caused by stray impedances. Unwanted stray impedances...... are particularly problematic at high frequencies. Stray impedances may be caused by mutual inductance and stray capacitance in the geometrical set-up and do not describe the fuel cell. Three different stack geometries were investigated by electrochemical impedance spectroscopy. Impedance measurements were carried...

  16. Simulations Of Transverse Stacking In The NSLS-II Booster

    International Nuclear Information System (INIS)

    Fliller, R. III; Shaftan, T.

    2011-01-01

    The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme. We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.

  17. Stack Monitor Operating Experience Review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Bruyere, S.A.

    2009-01-01

    Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative 'all modes' failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

  18. Introduction of a stack-phantom for PET

    International Nuclear Information System (INIS)

    Jonsson, C.; Schnell, P.O.; Jacobsson, H.; Engelin, L.; Danielsson, A.M.; Johansson, L.; Larsson, S.A.; Pagani, M.; Stone-Elander, S.

    2002-01-01

    Aim: We have previously developed a new flexible phantom system for SPECT, i.e. 'the stack phantom' (Eur. J. Nucl. Med. 27, No.2, 131-139, 2000). The unique feature of this phantom system is that it allows studies with, as well as without major degrading impacts from photon attenuation and Compton scattering. The specific aim of this work was to further develop the system with special reference to PET. Material and methods: The principle of the phantom concept is discrete sampling of 3D objects by a series of equidistant 2D planes. The 2D planes are a digitised set of 2D sections, representing the radioactivity distribution in the object of interest. Using a grey scale related to the radioactivity concentration, selected images are printed by radioactive ink on thin paper sheets and stacked into the 3D structure with low-density or with tissue equivalent material in between. Using positron emitting radionuclides, the paper sheets alone may not be sufficiently thick to avoid annihilation losses due to escaping positrons. In order to investigate the amount of additional material needed, a spot of radioactivity ( 18 F) was printed out and subsequently covered by adding thin plastic films (0.055mm) on both sides of the paper. Short PET scans (ECAT 921) were performed and the count-rate was registered after each additional layer of plastic cover. A first prototype, a cylindrical cold-spot phantom was constructed on the basis of these results. Nine identical sheets were printed out and first mounted in between 4 mm plates of polystyrene (density 1.04 g/cm 3 ). After a PET-scan, the paper sheets were re-mounted in between a low-density material (Divinycell, H30, density 0.03 g/cm 3 ) before repeating the PET scan. Results: For 18 F, the number of registered annihilation photons increased with increasing number of plastic sheets from 70% for the pure paper sheet to about 100% with 0.5 mm plastic cover on each side. PET of the low-density stacked cold spot phantom

  19. Numerical model for stack gas diffusion in terrain with buildings. Variations in air flow and gas concentration with additional building near stack

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito; Numata, Kunio

    2009-01-01

    A numerical simulation method for predicting atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings has been developed. The turbulence closure technique using a modified k-ε-type model without a hydrostatic approximation was used for flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by trajectories of released particles. The developed numerical model was applied to a virtual terrain and building conditions in this study prior to the applications of a numerical model for real terrain and building conditions. The height of the additional building (H a ), located about 200 m leeward from the stack, was varied (i.e., H a =0, 20, 30 and 50 m), and its effects on airflow and the concentration of stack gas at a released height of 75 m were calculated. Furthermore, effective stack height, which was used in the safety analysis of atmospheric diffusion for nuclear facilities in Japan, was evaluated from the calculated ground-level concentration of stack gas. The cavity region behind the additional building was calculated, and turbulence near the cavity was observed to decrease when the additional building was present. According to these flow variations with the additional building, tracer gas tended to diffuse to the ground surface rapidly with the additional building at the leeward position of the cavity, and the ground-level stack gas concentration along the plume axis also increased with the height of the additional building. However, the variations in effective stack height with the height of the additional building were relatively small and ranged within several m in this study. (author)

  20. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle–Pacific Northwest Division operates numerous research and development (R&D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)’s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  1. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  2. Project W420 Air Sampler Probe Placement Qualification Tests for Four 6-Inch Diameter Stacks: 296-A-25, 296-B-28, 296-S-22, and 296-T-18

    International Nuclear Information System (INIS)

    Maughan, A.D.; Glissmeyer, J.A.

    1998-01-01

    The W420 project covers the upgrading of effluent monitoring systems at six ventilation exhaust stacks in tank-farm facilities at the U.S. Department of Energy's Hanford Site. The discharge stacks of five of the six systems will be completely replaced. Four of these (296-A-25, 296-B-28, 296-S-22, and 296-T-18) will be of the same size, 6-inches in diameter and about 12-ft high. This report documents tests that were conducted to verify that these four stacks meet the applicable regulatory criteria regarding the placement of the air sampling probe. These criteria ensure that the contaminants in the stack are well mixed with the airflow at the location of the probe such that the extracted sample represents the whole. There are also criteria addressing the transport of the sample to the collection device. These are not covered in this report, but will need to be addressed later. These tests were conducted by Pacific Northwest National Laboratory on a full-scale model of the 6-inch stick. The sequence of tests addresses the acceptability of the flow angle relative to the probe and the uniformity of air velocity and gaseous and particle tracers in the cross section of the stack. All tests were successful, and all acceptance criteria were met

  3. A high-performance aluminum-feed microfluidic fuel cell stack

    Science.gov (United States)

    Wang, Yifei; Leung, Dennis Y. C.

    2016-12-01

    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  4. Sensitive determination of pyrrolizidine alkaloids in Tussilago farfara L. by field-amplified, sample-stacking, sweeping micellar electrokinetic chromatography.

    Science.gov (United States)

    Cao, Kun; Xu, Yi; Mu, Xiuni; Zhang, Qing; Wang, Renjie; Lv, Junjiang

    2016-11-01

    Pyrrolizidine alkaloids are the toxic components in Tussilago farfara L. Due to the lack of standard substances for quantitative analysis and traces of pyrrolizidine alkaloids in total alkaloids, the full quality control of Tussilago farfara L has been limited. In this study, we aimed to solve the difficulty of determination of pyrrolizidine alkaloids and identify more components in the total alkaloids. An on-line preconcentration method has been applied to improve determining sensitivity of pyrrolizidine alkaloids in Tussilago farfara L. in which included field-amplified sample stacking and sweeping in micellar electrokinetic capillary chromatography. The main parameters that affected separation and stacking efficiency were investigated in details. Under the optimal conditions, the sensitivity enhancement factors obtained by the developed method for the analytes were from 15- to 12-fold, the limits of detection of senkirkine and senecionine were 2∼5 μg/L. Senkirkine and senecionine have been detected in alkaloids (c) of Tussilago farfara L, along ferulic acid methyl ester and methyl caffeate. The developed method was also applied to the analysis of acid extraction (a) of Tussilago farfara L, and senkirkine could be detected directly. The results indicated that the developed method is feasible for the analysis of pyrrolizidine alkaloids in Tussilago farfara L with good recoveries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Testing system for a fuel cells stack

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Stefanescu, Ioan; Raceanu, Mircea; Enache, Adrian; Lazar, Roxana Elena

    2006-01-01

    Hydrogen and electricity together represent one of the most promising ways to realize sustainable energy, whilst fuel cells provide the most efficient conversion devices for converting hydrogen and possibly other fuels into electricity. Thus, the development of fuel cell technology is currently being actively pursued worldwide. Due to its simple operation and other fair characteristics, the Proton Exchange Membrane Fuel Cell (PEMFC) is especially suitable as a replacement for the internal combustion engine. The PEMFC is also being developed for decentralized electricity and heat generation in buildings and mobile applications. Starting with 2001 the Institute of Research - Development for Cryogenics and Isotopic Technologies - ICIT - Rm. Valcea developed research activities supported by the Romanian Ministry of Education and Research within the National Research Program in order to bridge the gap to European competencies in the area of hydrogen and fuel cells. The paper deals with the testing system designed and developed in ICIT Rm. Valcea as a flexible and versatile tool allowing a large scale of parameter settings and measurements on a single cell or on a fuel cells stack onto a wind range of output power values. (authors)

  6. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    International Nuclear Information System (INIS)

    Bachand, D.D.; Crummel, G.M.

    1994-07-01

    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks

  7. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1994-07-01

    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

  8. Mechanical testing of adherence of stacked layers in tubular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Correia, L.A.; Schuring, E.W.; Van Delft, Y.C. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2007-09-15

    For the development of new molecular separation technologies strong robust tubular membrane systems are required. The fragile membranes, however, need a strong defect free support such as a porous asymmetric ceramic tube. Mechanical failure of these ceramic membrane systems during manufacturing and operation is mainly caused by delamination of the stacked layers. Therefore development is focused on improving the adherence. As no standard mechanical test for tubular samples is available yet, a new tensile test was developed to facilitate the current research. The most important components in the new equipment is a test tool with a curvature matching that of the test sample and a sample casing that align and guide the test tool during the tensile test. With this tensile test the manufacturing procedure for the ECN standard tubular {alpha}-alumina support was optimized. Firing the asymmetric support at 1300C resulted in the highest mechanical strength for the support system with cohesive fracture in the support tube. With the test developed the process condition could be identified where the material of the support tube is the weakest link in the support system.

  9. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    Directory of Open Access Journals (Sweden)

    Yujie Zhu

    2015-08-01

    Full Text Available Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices.

  10. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures

    DEFF Research Database (Denmark)

    Sakai, S.; Ustinov, A. V.; Kohlstedt, H.

    1994-01-01

    Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...... focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance...

  11. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2008-03-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  12. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2009-01-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  13. Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.

    2011-01-01

    Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.

  14. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    As SOFC technology is moving closer to a commercial break through, methods to measure the “state-of-health” of operating stacks are becoming of increasing interest. This requires application of advanced methods for detailed electrical and electrochemical characterization during operation....... An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... in the hydrogen fuel gas supplied to the stack. EIS was used to examine the long-term behavior and monitor the evolution of the impedance of each of the repeating units and the whole stack. The observed impedance was analyzed in detail for one of the repeating units and the whole stack and the losses reported...

  15. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    International Nuclear Information System (INIS)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-01-01

    Battelle-Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy's Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided

  16. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  17. New approach for dynamic flow management within the PEMFC stack

    International Nuclear Information System (INIS)

    Varlam, Mihai; Culcer, Mihai; Carcadea, Elena; Stefanescu, Ioan; Iliescu, Mariana; Enache, Adrian

    2009-01-01

    An adequate gas and water flow management is a key issue to reach and maintain a higher output power for a PEM fuel cell stack. One of the main aspects which could limit the performance of a PEM fuel cell stack is the weak capability for a non-uniform water distribution management within the fuel cell. The produced water could become a handicap to attain the best working performance by blocking the catalytic surfaces and by preventing the mass transport process. Usually, the excess water is removed in one cell, comparatively to others from the stack and taking into account that all the cells are supplied in parallel from a common air admission pipe, a limitation of gas flow rate within that cell is created. Consequently, this constraint will reduce further the water removal speed. This feedback process will generate finally a drastic decrease of the fuel cell stack performance. A new practical solution to this water and gas non-uniformity of distributions problem is to use a sequential purge procedure of several fuel cell groups inside the stack which could guarantee a right management of water. An experimental setup has been built based on four fuel cell stack. Every fuel cell was connected to a single removal pipe via a solenoid valve. A computer-controlled hardware and software system has been designed and built, in order to generate a given opening-closing sequence for the automatic valve system. (authors)

  18. ooi: OpenStack OCCI interface

    Directory of Open Access Journals (Sweden)

    Álvaro López García

    2016-01-01

    Full Text Available In this document we present an implementation of the Open Grid Forum’s Open Cloud Computing Interface (OCCI for OpenStack, namely ooi (Openstack occi interface, 2015  [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability, portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other OCCI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not tied to a particular OpenStack release version.

  19. ooi: OpenStack OCCI interface

    Science.gov (United States)

    López García, Álvaro; Fernández del Castillo, Enol; Orviz Fernández, Pablo

    In this document we present an implementation of the Open Grid Forum's Open Cloud Computing Interface (OCCI) for OpenStack, namely ooi (Openstack occi interface, 2015) [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability, portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other OCCI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not tied to a particular OpenStack release version.

  20. 3D stacked chips from emerging processes to heterogeneous systems

    CERN Document Server

    Fettweis, Gerhard

    2016-01-01

    This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size.  The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.   •Provides single-source reference to the latest research in 3D optoelectronic integration: process, devices, and systems; •Explains the use of wireless 3D integration to improve 3D IC reliability and yield; •Describes techniques for monitoring and mitigating thermal behavior in 3D I...

  1. Technology leadership : a road map to commercially viable PEMFC stack technology

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. [Ballard Power Systems, Burnaby, BC (Canada)

    2005-07-01

    This abstract discussed recent advances in stack technology by Ballard Power Systems. The technology department of this Canadian-owned company exhibited the capability of a single proton exchange membrane fuel cell (PEMFC) stack design to demonstrate that cost reduction, freeze start capability from -20 degrees C and durability under an automotive dynamic operating cycle are comparable to that experienced by a fuel cell stack in an actual vehicle. A technology road map has been developed by the company to define a path to the commercial viability of the PEMFC stack by 2010. Key target parameters for cost reduction, durability, freeze start and stack power density were described in detail along with demonstrated historical capability and details of how the company will achieve its required targets. refs., tabs., figs.

  2. Stack gas treatment

    Science.gov (United States)

    Reeves, Adam A.

    1977-04-12

    Hot stack gases transfer contained heat to a gravity flow of pebbles treated with a catalyst, cooled stacked gases and a sulfuric acid mist is withdrawn from the unit, and heat picked up by the pebbles is transferred to air for combustion or other process. The sulfuric acid (or sulfur, depending on the catalyst) is withdrawn in a recovery unit.

  3. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system co...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  4. Cell layer level generalized dynamic modeling of a PEMFC stack using VHDL-AMS language

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Blunier, Benjamin; Miraoui, Abdellatif; El-Moudni, Abdellah [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, University of Technology of Belfort-Montbeliard, Rue Thierry Mieg, 90000 Belfort (France)

    2009-07-15

    A generalized, cell layer scale proton exchange membrane fuel cell (PEMFC) stack dynamic model is presented using VHDL-AMS (IEEE standard Very High Speed Integrated Circuit Hardware Description Language-Analog and Mixed-Signal Extensions) modeling language. A PEMFC stack system is a complex energy conversion system that covers three main energy domains: electrical, fluidic and thermal. The first part of this work shows the performance and the advantages of VHDL-AMS language when modeling such a complex system. Then, using the VHDL-AMS modeling standards, an electrical domain model, a fluidic domain model and a thermal domain model of the PEMFC stack are coupled and presented together. Thus, a complete coupled multi-domain fuel cell stack 1-D dynamic model is given. The simulation results are then compared with a Ballard 1.2 kW NEXA fuel cell system, and show a great agreement between the simulation and experimentation. This complex multi-domain VHDL-AMS stack model can be used for a model based control design or a Hardware-In-the-Loop application. (author)

  5. Study of the mechanism of acetonitrile stacking and its application for directly combining liquid-phase microextraction with micellar electrokinetic chromatography.

    Science.gov (United States)

    Sun, Jingru; Feng, Jing; Shi, Ludi; Liu, Laping; He, Hui; Fan, Yingying; Hu, Shibin; Liu, Shuhui

    2016-08-26

    Acetonitrile stacking is an online concentration method that is distinctive due to its inclusion of a high proportion of organic solvent in sample matrices. We previously designed a universal methodology for the combination of liquid-phase microextraction (LPME) and capillary electrophoresis (CE) using acetonitrile stacking and micellar electrokinetic chromatography (MEKC) mode, thereby achieving large-volume injection of the diluted LPME extractant and the online concentration. In this report, the methodology was extended to the analysis of highly substituted hydrophobic chlorophenols in wines using diethyl carbonate as the extractant. Additionally, the mechanism of acetonitrile stacking was studied. The results indicated that the combination of LPME and MEKC exhibited good analytical performance: with ∼40-fold concentration by LPME, a 20-cm (33% of the total length) sample plug injection of an eight-fold dilution of diethyl carbonate with the organic solvent-saline solution produced enrichments higher by a factor of 260-791. Limits of qualification ranged from 5.5 to 16.0ng/mL. Acceptable reproducibilities of lower than 1.8% for migration time and 8.6% for peak areas were obtained. A dual stacking mechanism of acetonitrile stacking was revealed, involving transient isotachophoresis plus pH-junction stacking. The latter was associated with a pH shift induced by the presence of acetonitrile. The pseudo-stationary phase (Brij-35) played an important role in reducing the CE running time by weakening the isotachophoretic migration of the analyte ions following Cl(-) ions. The combination of acetonitrile stacking and nonionic micelle-based MEKC appears to be a perfect match for introducing water-immiscible LPME extractants into an aqueous CE system and can thus significantly expand the application of LPME-CE in green analytical chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Lightweight Stacks of Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  7. Continued maturing of SOFC cell production technology and development and demonstration of SOFC stacks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-15

    The overall objective of the 6385 project was to develop stack materials, components and stack technology including industrial relevant manufacturing methods for cells components and stacks. Furthermore, the project should include testing and demonstration of the stacks under relevant operating conditions. A production of 6.829 cells, twenty 75-cell stacks and a number of small stacks was achieved. Major improvements were also made in the manufacturing methods and in stack design. Two test and demonstration activities were included in the project. The first test unit was established at H.C. OErsted power plant at the Copenhagen waterfront in order to perform test of SOFC stacks. The unit will be used for tests in other projects. The second demonstration unit is the alpha prototype demonstration in a system running on natural gas in Finland. The alpha prototype demonstration system with 24 TOFC (Topsoe Fuel Cell) stacks was established and started running in October 2007 and operational experience was gained in the period from October 2007 to February 2008. (auther)

  8. Some important results from the air pollution distribution model STACKS (1988-1992)

    International Nuclear Information System (INIS)

    Erbrink, J.J.

    1993-01-01

    Attention is paid to the results of the study on the distribution of air pollutants by high chimney-stacks of electric power plants. An important product of the study is the integrated distribution model STACKS (Short Term Air-pollutant Concentrations Kema modelling System). The improvements and the extensions of STACKS are described in relation to the National Model, which has been used to estimate the environmental effects of individual chimney-stacks. The National Model shows unacceptable variations for high pollutant sources. Based on the results of STACKS revision of the National model has been taken into consideration. By means of the revised National Model a more realistic estimation of the environmental effects of electric power plants can be carried out

  9. OpenStack cloud computing cookbook

    CERN Document Server

    Jackson, Kevin

    2013-01-01

    A Cookbook full of practical and applicable recipes that will enable you to use the full capabilities of OpenStack like never before.This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments with familiarity of cloud computing platforms. Knowledge of virtualization and managing linux environments is expected.

  10. Helping Students Design HyperCard Stacks.

    Science.gov (United States)

    Dunham, Ken

    1995-01-01

    Discusses how to teach students to design HyperCard stacks. Highlights include introducing HyperCard, developing storyboards, introducing design concepts and scripts, presenting stacks, evaluating storyboards, and continuing projects. A sidebar presents a HyperCard stack evaluation form. (AEF)

  11. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li

    2014-07-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  12. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2010-10-15

    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  13. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  14. Exhaust stack monitoring issues at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1987-11-01

    This report outlines the problems of obtaining valid, representative samples of, and continuously monitoring for, radioactive particulates in the discharge air from the underground disposal facilities at WIPP. There appears to be serious problems with the presently installed systems. Chapter 1 of the report provides an overview of current perspective on the major issues. Principal conclusions of the overview are that the present sampling locations are not optimum for the intended purpose; that the chosen probe design is not capable of meeting requirements for delivery of a representative sample to the detectors; and that the proposed test plan for the flow conditioning and monitoring system is seriously flawed. Chapter 2 is a summary of the major findings and recommendations of a peer review. The review suggested that the proposed flow conditioning concepts were likely to be an unworkable substitute for having adequate duct length between major disturbances in flow and the sampling or monitoring locations; that the use of probes of simpler design with large diameter inlet nozzles feeding short transmission lines would provide superior performance; and that conditions for monitoring discharge air would be far better ahead of the collar in the exhaust shaft than any location downstream. Chapter 3 contains the detailed technical basis for a conceptual design, and a proposed sample extraction system for the stack discharge location. 36 refs., 23 figs., 4 tabs

  15. Guanine base stacking in G-quadruplex nucleic acids

    Science.gov (United States)

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  16. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples.

    Science.gov (United States)

    Espina-Benitez, Maria; Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-07-07

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE "acetonitrile stacking" preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L -1 and 2.91 and 3.86 µg∙L -1 , respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.

  17. Development of the novel control algorithm for the small proton exchange membrane fuel cell stack without external humidification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; Kim, Sang-Hyun; Kim, Wook; Lee, Jong-Hak; Cho, Kwan-Seok; Choi, Woojin [Department of Electrical Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea); Park, Kyung-Won [Department of Chemical/Environmental Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea)

    2010-09-15

    Small PEM (proton exchange membrane) fuel cell systems do not require humidification and have great commercialization possibilities. However, methods for controlling small PEM fuel cell stacks have not been clearly established. In this paper, a control method for small PEM fuel cell systems using a dual closed loop with a static feed-forward structure is defined and realized using a microcontroller. The fundamental elements that need to be controlled in fuel cell systems include the supply of air and hydrogen, water management inside the stack, and heat management of the stack. For small PEM fuel cell stacks operated without a separate humidifier, fans are essential for air supply, heat management, and water management of the stack. A purge valve discharges surplus water from the stack. The proposed method controls the fan using a dual closed loop with a static feed-forward structure, thereby improving system efficiency and operation stability. The validity of the proposed method is confirmed by experiments using a 150-W PEM fuel cell stack. We expect the proposed algorithm to be widely used for controlling small PEM fuel cell stacks. (author)

  18. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  19. A microcontroller with 96% power-conversion efficiency using stacked voltage domains

    NARCIS (Netherlands)

    Blutman, K.; Kapoor, A.; Majumdar, A.; Martinez, J.G.; Echeverri, J.; Sevat, L.; Van Der Wel, A.; Fatemi, H.; Pineda de Gyvez, J.; Makinwa, K.

    2016-01-01

    This paper presents a CMOS 40nm microcontroller where for the first time, stacked voltage domains are used. The system features an ARM Cortex M0+ processor, 4kB ROM, 16kB SRAM, peripherals, and an on-chip switched-capacitor voltage regulator (SCVR). By using voltage stacking the test chip achieves

  20. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  1. Measurements of proton energy spectra using a radiochromic film stack

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  2. Numerical and experimental studies of stack shunt current for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Yin, Cong; Guo, Shaoyun; Fang, Honglin; Liu, Jiayi; Li, Yang; Tang, Hao

    2015-01-01

    Highlights: • A coupled three-dimensional model of VRB cell stack is developed. • Shunt current of the stack is studied with the model and experiment. • Increased electrolyte resistance in channel and manifold lowers the shunt current. • Shunt current loss increases with stack cell number nonlinearly. - Abstract: The stack shunt current of VRB (vanadium redox flow battery) was investigated with experiments and 3D (three-dimensional) simulations. In the proposed model, cell voltages and electrolyte conductivities were calculated based on electrochemical reaction distributions and SOC (state of charge) values, respectively, while coulombic loss was estimated according to shunt current and vanadium ionic crossover through membrane. Shunt current distributions and coulombic efficiency are analyzed in terms of electrolyte conductivities and stack cell numbers. The distributions of cell voltages and shunt currents calculated with proposed model are validated with single cell and short stack tests. The model can be used to optimize VRB stack manifold and channel designs to improve VRB system efficiency

  3. Repulsive fluxons in a stack of Josephson junctions perturbed by a cavity

    DEFF Research Database (Denmark)

    Madsen, Søren; Pedersen, Niels Falsig; Christiansen, Peter Leth

    2008-01-01

    The BSCCO type intrinsic Josephson junction has been modeled as a stack of inductively coupled long Josephson junctions, which were described by a system of coupled sine-Gordon equations. In a system of 10 long Josephson junctions coupled to a linear cavity, we numerically investigate how...... of the inductive coupling strength, we investigate the cavity current, fluxon phase difference, and current–voltage characteristic. The stack-cavity system with in-phase fluxon motion may be utilized as a THz oscillator....

  4. On-line stacking techniques for the nonaqueous capillary electrophoretic determination of acrylamide in processed food

    International Nuclear Information System (INIS)

    Tezcan, Filiz; Erim, F. Bedia

    2008-01-01

    In the present study, field amplified sample stacking (FASS) techniques in the nonaqueous capillary electrophoresis method (NACE) were introduced for the on-line concentration of the acrylamide to improve acrylamide detection at 210 nm by diode-array detection. Acetonitrile (ACN) as a nonaqueous solvent permits acrylamide to be protonated through the change of its acid-base chemistry, allowing capillary electrophoretic separation of this compound. Choosing 30 mmol L -1 HClO 4 , 20 mmol L -1 NaClO 4 , 218 mmol L -1 CH 3 COOH in ACN as the separation electrolyte and employing sample stacking methods, the LOD value of acrylamide was decreased to 2.6 ng mL -1 with electrokinetic injection and 4.4 ng mL -1 with hydrodynamic injection. Optimized stacking conditions were applied to the determination of acrylamide in several foodstuffs. The method is simple, rapid, inexpensive, and widely applicable for the determination of acrylamide in food samples

  5. Elimination of voltage reversal in multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFCs) stacking system by resistor control.

    Science.gov (United States)

    Kim, Bongkyu; Chang, In Seop

    2018-08-01

    Voltage reversal (VR) in series connection of multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFC) is eliminated by manipulating the resistor control. Discharge test results collected from two mMEA-MFCs initially operated (designated as P1 and P2) confirm that the performance of P2 exceeds that of P1. Thus, driving P1 and P2 as serially stacked MFCs generate the VR in P1. Controlling the inserted resistor adjust the current production of P2 to maintain balance with P1, and the VR in P1 is eliminated in the operation of stacking mode. Thus, manipulating the internal resistance provide an applicable approach to suppress VR in the stacking of mMEA-MFCs system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Text-Filled Stacked Area Graphs

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    -filled stacked area graphs; i.e., graphs that feature stacked areas that are filled with small-typed text. Since these graphs allow for computing the text layout automatically, it is possible to include large amounts of textual detail with very little effort. We discuss the most important challenges and some...... solutions for the design of text-filled stacked area graphs with the help of an exemplary visualization of the genres, publication years, and titles of a database of several thousand PC games....

  7. On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle

    Science.gov (United States)

    Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol

    2016-09-01

    The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.

  8. Power sources involving ~ 300W PEMFC fuel cell stacks cooled by different media

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2017-01-01

    Full Text Available Two constructions of ~300W PEMFC stacks, cooled by different media, were analysed. An open-cathode ~300W PEMFC stack cooled by air (Horizon, Singapore and a PEMFC F-42 stack cooled by a liquid medium (Schunk, Germany were chosen for all of the investigations described in this paper. The potential for the design and construction of power sources involving fuel cells, as well as of a hybrid system (fuel cell-lithium battery for mobile and stationary applications, is presented and discussed. The impact of certain experimental parameters on PEMFC stack performance is analysed and discussed.

  9. Thermoacoustic design using stem of goose down stack

    Science.gov (United States)

    Farikhah, Irna; Ristanto, Sigit; Idrus, Hadiyati; Kaltsum, Ummi; Faisal, Affandi; Setiawan, Ihsan; Setio Utomo, Agung Bambang

    2012-09-01

    Many refrigerators using CFC as a refrigerant are seen as the cause of the depletion of ozone. Hence, thermoacoustic was chosen as an alternative refrigerator that safe for environment. There are many variable that influenced the optimization of thermoacoustic design. One of them is thermal conductivity of material of stack. The Stack material must have a low thermal conductivity. In this research we used organic stack made of stem of goose down. It has superior thermal insulating. It means that they have the lowest thermal conductivity. The system uses no refrigerant or compressor, and the only mechanical moving part is the loudspeaker connected to a signal generator that produces the acoustic. The working fluid is air and the material of resonator is stainless steel. A series test on the laboratory found that there is a decrease of 5°C in temperature for about 2 minutes.

  10. Maturing of SOFC cell and stack production technology and preparation for demonstration of SOFC stacks. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    2006-07-01

    The TOFC/Riso pilot plant production facility for the manufacture of anode-supported cells has been further up-scaled with an automated continuous spraying process and an extra sintering capacity resulting in production capacity exceeding 15,000 standard cells (12x12 cm2) in 2006 with a success rate of about 85% in the cell production. All processing steps such as tape-casting, spraying, screen-printing and atmospheric air sintering in the cell production have been selected on condition that up-scaling and cost effective, flexible, industrial mass production are feasible. The standard cell size is currently being increased to 18x18 cm2, and 150 cells of this size have been produced in 2006 for our further stack development. To improve quality and lower production cost, a new screen printing line is under establishment. TOFC's stack design is an ultra compact multilayer assembly of cells (including contact layers), metallic interconnects, spacer frames and glass seals. The compactness ensures minimized material consumption and low cost. Standard stacks with cross flow configuration contains 75 cells (12x12cm2) delivering about 1.2 kW at optimal operation conditions with pre-reformed NG as fuel. Stable performance has been demonstrated for 500-1000 hours. Significantly improved materials, especially concerning the metallic interconnect and the coatings have been introduced during the last year. Small stacks (5-10 cells) exhibit no detectable stack degradation using our latest cells and stack materials during test periods of 500-1000 hours. Larger stacks (50-75 cells) suffer from mal-distribution of gas and air inside the stacks, gas leakage, gas cross-over, pressure drop, and a certain loss of internal electrical contact during operation cycles. Measures have been taken to find solutions during the following development work. The stack production facilities have been improved and up-scaled. In 2006, 5 standard stacks have been assembled and burned in based on

  11. Modelling the protocol stack in NCS with deterministic and stochastic petri net

    Science.gov (United States)

    Hui, Chen; Chunjie, Zhou; Weifeng, Zhu

    2011-06-01

    Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.

  12. Remaining Sites Verification Package for the 100-F-46, 119-F Stack Sampling French Drain. Attachment to Waste Site Reclassification Form 2008-021

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    The 100-F-46 french drain consisted of a 1.5 to 3 m long, vertically buried, gravel-filled pipe that was approximately 1 m in diameter. Also included in this waste site was a 5 cm cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building into the 100-F-46 french drain. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  13. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  14. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  15. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...... model to simulate the temperature development of a fuel cell stack during heating can be used for assistance in system and control design. The heating strategies analyzed and tested reduced the startup time of one of the fuel cell stacks from 1 h to about 6 min....

  16. V-stack piezoelectric actuator

    Science.gov (United States)

    Ardelean, Emil V.; Clark, Robert L.

    2001-07-01

    Aeroelastic control of wings by means of a distributed, trailing-edge control surface is of interest with regards to maneuvers, gust alleviation, and flutter suppression. The use of high energy density, piezoelectric materials as motors provides an appealing solution to this problem. A comparative analysis of the state of the art actuators is currently being conducted. A new piezoelectric actuator design is presented. This actuator meets the requirements for trailing edge flap actuation in both stroke and force. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties while displaying linearity over a wide range of stroke. The V-Stack Piezoelectric Actuator, consists of a base, a lever, two piezoelectric stacks, and a pre-tensioning element. The work is performed alternately by the two stacks, placed on both sides of the lever. Pre-tensioning can be readily applied using a torque wrench, obviating the need for elastic elements and this is for the benefit of the stiffness of the actuator. The characteristics of the actuator are easily modified by changing the base or the stacks. A prototype was constructed and tested experimentally to validate the theoretical model.

  17. Reflector imaging by diffraction stacking with stacking velocity analysis; Jugo sokudo kaiseki wo tomonau sanran jugoho ni yoru hanshamen imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J; Rokugawa, S; Kato, Y [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yokota, T [Japan National Oil Corp., Tokyo (Japan); Miyazaki, T [Geological Survey of Japan, Tsukuba (Japan)

    1997-10-22

    Concerning seismic reflection survey for geometrical arrangement between pits, the scattering stacking method with stacking velocity analysis is compared with the CDP (common depth point horizontal stacking method). The advantages of the CDP supposedly include the following. Since it presumes an average velocity field, it can determine velocities having stacking effects. The method presumes stratification and, since such enables the division of huge quantities of observed data into smaller groups, more data can be calculated in a shorter time period. The method has disadvantages, attributable to its presuming an average velocity field, that accuracy in processing is lower when the velocity field contrast is higher, that accuracy in processing is low unless stratification is employed, and that velocities obtained from stacking velocity analysis are affected by dipped structures. Such shortcomings may be remedied in the scattering stacking method with stacking velocity analysis. Possibilities are that, as far as the horizontal reflection plane is concerned, it may yield stack records higher in S/N ratio than the CDP. Findings relative to dipped reflection planes will be introduced at the presentation. 6 refs., 12 figs.

  18. Seismic (SSE) evaluation for the 291Z stack at the Hanford Site -- Addition of environmental monitoring penetrations

    International Nuclear Information System (INIS)

    Baxter, J.T.

    1994-01-01

    The purpose of this 291Z stack analysis is to determine the structural effects of chipping additional holes into the stacks concrete walls. The proposed holes are for new environmental monitoring sample probes to be installed at three different elevations. The approximate elevations proposed at this time are 50 ft, 135 ft and 175 ft. There will be four holes required at each of the elevations to support two sample probes extending across the diameter of the stack. A structural sensitivity study has been completed to assess the effect of the proposed holes on the baseline seismic qualification of the stack completed by URS/John A. Blume ampersand Associates, Engineers, San Francisco, California (URS/Blume) in August, 1988. Results of the sensitivity study indicate that the stack would still have adequate structural moment capacity if the new holes were drilled cutting the vertical strength reinforcing steel, or if existing penetrations added since original construction have inadvertently cut vertical rebars. For current and future modifications, no vertical rebar should be cut. A limited number of horizontal rebar, no more than 2, may be cut at the new hole locations without significantly influencing the stack structural shear capacity. New penetrations in the 291Z stack should not be located below elevation 47 ft., 4 in. due to rebar layout and the fact that maximum seismic structural loads occur below this elevation. No vertical rebar should be cut when chipping the new penetrations in the stack concrete wall for the environmental monitoring equipment. Wind load qualification was reviewed. Seismic loads govern over wind loads for all structural load cases; therefore no additional wind analyses are required

  19. A STACKED ANALYSIS OF 115 PULSARS OBSERVED BY THE FERMI LAT

    Energy Technology Data Exchange (ETDEWEB)

    McCann, A., E-mail: mccann@kicp.uchicago.edu [Kavli Institute for Cosmological Physics, University of Chicago 933 East 56th Street, Chicago, IL 60637 (United States)

    2015-05-10

    Due to the low gamma-ray fluxes from pulsars above 50 GeV and the small collecting area of space-based telescopes, the gamma-ray emission discovered by the Fermi Large Area Telescope (LAT) in ∼150 pulsars is largely unexplored at these energies. In this regime, the uncertainties on the spectral data points and/or the constraints from upper limits are not sufficient to provide robust tests of competing emission models in individual pulsars. The discovery of power-law-type emission from the Crab pulsar at energies exceeding 100 GeV provides a compelling justification for exploration of other pulsars at these energies. We applied the method of aperture photometry to measure pulsar emission spectra from Fermi-LAT data and present a stacked analysis of 115 pulsars selected from the Second Fermi-LAT catalog of gamma-ray pulsars. This analysis, which uses an average of ∼4.2 yr of data per pulsar, aggregates low-level emission which cannot be resolved in individual objects but can be detected in an ensemble. We find no significant stacked excess at energies above 50 GeV. An upper limit of 30% of the Crab pulsar level is found for the average flux from 115 pulsars in the 100–177 GeV energy range at the 95% confidence level. Stacked searches exclusive to the young pulsar sample, the millisecond pulsar sample, and several other promising sub-samples also return no significant excesses above 50 GeV.

  20. Role of stacking disorder in ice nucleation.

    Science.gov (United States)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  1. Cleaning of stack gases from combustion of low level radioactive waste in Studsvik, Sweden

    International Nuclear Information System (INIS)

    Haard, E.

    1979-01-01

    The plant for combustion of low-level radioactive waste at Studsvik, Sweden, is described. The waste that is treated comes from nuclear power plants, industry, hospitals and universities. It is estimated to be about 270 ton/year in a few years time. The waste consists of plast, cloth, wood, paper, rubber, biological material and unburnable components such as glass and metals. The bags with waste may have a maximum surface dose rate of 10 mrem/h. For 5 % of the bags the maximum dose rate may be 100 mrem/h. During the combustion, samples of the stack gases are collected. The release of radioactivity is reported to the Swedish authorities. During 1978 three different stack gas cleaning systems, wet cleaning, electrostatic filters and textile filters were investigated. The wet cleaning gave a radioactive sludge which was difficult to take care of. In the electrostatic filters it was difficult to change components due to radioactivity. Therefore the textile filters were chosen. A textile filter will be installed during 1979. The cleaning capacity of the filter is expected to be 90 % and will decrease the collective doses from stack gases with 6.7 manrem/year. The cost is estimated to 450 000 Sw kr/year (100 000 US dollar). (K.K.)

  2. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  3. Parsing of the free energy of aromatic-aromatic stacking interactions in solution

    Energy Technology Data Exchange (ETDEWEB)

    Kostjukov, Viktor V.; Khomytova, Nina M. [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine); Hernandez Santiago, Adrian A.; Tavera, Anna-Maria Cervantes; Alvarado, Julieta Salas [Faculty of Chemical Sciences, Autonomous University of Puebla, Puebla (Mexico); Evstigneev, Maxim P., E-mail: max_evstigneev@mail.ru [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine)

    2011-10-15

    Graphical abstract: Highlights: > A protocol for decomposition of the free energy of aromatic stacking is developed. > The factors stabilizing/destabilizing stacking of aromatic molecules are defined. > Hydrophobic contribution is found to be dominant. - Abstract: We report an analysis of the energetics of aromatic-aromatic stacking interactions for 39 non-covalent reactions of self- and hetero-association of 12 aromatic molecules with different structures and charge states. A protocol for computation of the contributions to the total energy from various energetic terms has been developed and the results are consistent with experiment in 92% of all the systems studied. It is found that the contributions from hydrogen bonds and entropic factors are always unfavorable, whereas contributions from van-der-Waals, electrostatic and/or hydrophobic effects may lead to stabilizing or destabilizing factors depending on the system studied. The analysis carried out in this work provides an answer to the questions 'What forces stabilize/destabilize the stacking of aromatic molecules in aqueous-salt solution and what are their relative importance?'

  4. Parsing of the free energy of aromatic-aromatic stacking interactions in solution

    International Nuclear Information System (INIS)

    Kostjukov, Viktor V.; Khomytova, Nina M.; Hernandez Santiago, Adrian A.; Tavera, Anna-Maria Cervantes; Alvarado, Julieta Salas; Evstigneev, Maxim P.

    2011-01-01

    Graphical abstract: Highlights: → A protocol for decomposition of the free energy of aromatic stacking is developed. → The factors stabilizing/destabilizing stacking of aromatic molecules are defined. → Hydrophobic contribution is found to be dominant. - Abstract: We report an analysis of the energetics of aromatic-aromatic stacking interactions for 39 non-covalent reactions of self- and hetero-association of 12 aromatic molecules with different structures and charge states. A protocol for computation of the contributions to the total energy from various energetic terms has been developed and the results are consistent with experiment in 92% of all the systems studied. It is found that the contributions from hydrogen bonds and entropic factors are always unfavorable, whereas contributions from van-der-Waals, electrostatic and/or hydrophobic effects may lead to stabilizing or destabilizing factors depending on the system studied. The analysis carried out in this work provides an answer to the questions 'What forces stabilize/destabilize the stacking of aromatic molecules in aqueous-salt solution and what are their relative importance?'

  5. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Marmy, C A; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  6. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.

    1979-06-01

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  7. Energy efficiency improvement of a Kraft process through practical stack gases heat recovery

    International Nuclear Information System (INIS)

    Mostajeran Goortani, B.; Mateos-Espejel, E.; Moshkelani, M.; Paris, J.

    2011-01-01

    A process scheme for the optimal recovery of heat from stack gases considering energy and technical constraints has been developed and applied to an existing Kraft pulping mill. A system based on a closed loop recirculation of hot oil is used to recover the heat from stack gases and distribute it to the appropriate cold streams. The recovery of heat from stack gases is part of an overall optimization of the Kraft mill. Tools such as Pinch Analysis and exergy analysis are used to evaluate the process streams. The results indicate that 10.8 MW of heat from stack gases can be reused to heat process streams such as the deaerator water, hot water, drying filtrates, and black liquor. A simulation model of the recirculation loop has been developed to determine the specifications of the recovery system. The total heat exchanger surface area required by the system is 3460 m 2 , with a hot oil recirculation temperature of 137 o C. The anticipated total investment is $10.3 M, with a payback time of 1.8 years. - Highlights: → We developed a process design for recovering heat from stack gases in a Kraft mill. → The recovered heat is optimally distributed to the process cold streams. → Heat recovery system has a total surface area of 3500 m 2 without gases condensation. → A reduction of 7 percent in total process steam demand is anticipated. → A total investment of 10.3 M$ is needed with a payback time of less than two years

  8. Principles for Instructional Stack Development in HyperCard.

    Science.gov (United States)

    McEneaney, John E.

    The purpose of this paper is to provide information about obtaining and using HyperCard stacks that introduce users to principles of stack development. The HyperCard stacks described are available for downloading free of charge from a server at Indiana University South Bend. Specific directions are given for stack use, with advice for beginners. A…

  9. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge

    International Nuclear Information System (INIS)

    Liu, Rui; Chen, Jixin; Xun, Jingzhi; Jiao, Kui; Du, Qing

    2014-01-01

    Highlights: • The thermal behaviors of a Li-ion battery stack have been investigated by modeling. • Parametric studies have been performed focusing on three different cooling materials. • Effects of discharge rate, ambient temperature and Reynolds number are examined. • General guidelines are proposed for the thermal management of a Li-ion battery stack. - Abstract: Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors

  10. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems......, a precise estimation of hydration status of the fuel cell during standby is important for a fast and safe startup. In this article, the measurement of the complex impedance of the fuel cell is suggested as a method to estimate the membrane hydration status. A 56-cell fuel cell stack has been symmetrically...... fed with air whose temperature and relative humidity were controlled, and its complex impedance was measured at different frequencies and for different values of relative humidity. After showing that the experiment was repeatable, the fuel cell stack was characterized, a power regression model...

  11. DBaaS with OpenStack Trove

    CERN Document Server

    Giardini, Andrea

    2013-01-01

    The purpose of the project was to evaluate the Trove component for OpenStack, understand if it can be used with the CERN infrastructure and report the benefits and disadvantages of this software. Currently, databases for CERN projects are provided by a DbaaS software developed inside the IT-DB group. This solution works well with the actual infrastructure but it is not easy to maintain. With the migration of the CERN infrastructure to OpenStack the Database group started to evaluate the Trove component. Instead of mantaining an own DbaaS service it can be interesting to migrate everything to OpenStack and replace the actual DbaaS software with Trove. This way both virtual machines and databases will be managed by OpenStack itself.

  12. Development of a Three Dimensional Neural Sensing Device by a Stacking Method

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chang

    2010-04-01

    Full Text Available This study reports a new stacking method for assembling a 3-D microprobe array. To date, 3-D array structures have usually been assembled with vertical spacers, snap fasteners and a supporting platform. Such methods have achieved 3-D structures but suffer from complex assembly steps, vertical interconnection for 3-D signal transmission, low structure strength and large implantable opening. By applying the proposed stacking method, the previous techniques could be replaced by 2-D wire bonding. In this way, supporting platforms with slots and vertical spacers were no longer needed. Furthermore, ASIC chips can be substituted for the spacers in the stacked arrays to achieve system integration, design flexibility and volume usage efficiency. To avoid overflow of the adhesive fluid during assembly, an anti-overflow design which made use of capillary action force was applied in the stacking method as well. Moreover, presented stacking procedure consumes only 35 minutes in average for a 4 × 4 3-D microprobe array without requiring other specially made assembly tools. To summarize, the advantages of the proposed stacking method for 3-D array assembly include simplified assembly process, high structure strength, smaller opening area and integration ability with active circuits. This stacking assembly technique allows an alternative method to create 3-D structures from planar components.

  13. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  14. User Driven Image Stacking for ODI Data and Beyond via a Highly Customizable Web Interface

    Science.gov (United States)

    Hayashi, S.; Gopu, A.; Young, M. D.; Kotulla, R.

    2015-09-01

    While some astronomical archives have begun serving standard calibrated data products, the process of producing stacked images remains a challenge left to the end-user. The benefits of astronomical image stacking are well established, and dither patterns are recommended for almost all observing targets. Some archives automatically produce stacks of limited scientific usefulness without any fine-grained user or operator configurability. In this paper, we present PPA Stack, a web based stacking framework within the ODI - Portal, Pipeline, and Archive system. PPA Stack offers a web user interface with built-in heuristics (based on pointing, filter, and other metadata information) to pre-sort images into a set of likely stacks while still allowing the user or operator complete control over the images and parameters for each of the stacks they wish to produce. The user interface, designed using AngularJS, provides multiple views of the input dataset and parameters, all of which are synchronized in real time. A backend consisting of a Python application optimized for ODI data, wrapped around the SWarp software, handles the execution of stacking workflow jobs on Indiana University's Big Red II supercomputer, and the subsequent ingestion of the combined images back into the PPA archive. PPA Stack is designed to enable seamless integration of other stacking applications in the future, so users can select the most appropriate option for their science.

  15. The SBOL Stack: A Platform for Storing, Publishing, and Sharing Synthetic Biology Designs.

    Science.gov (United States)

    Madsen, Curtis; McLaughlin, James Alastair; Mısırlı, Göksel; Pocock, Matthew; Flanagan, Keith; Hallinan, Jennifer; Wipat, Anil

    2016-06-17

    Recently, synthetic biologists have developed the Synthetic Biology Open Language (SBOL), a data exchange standard for descriptions of genetic parts, devices, modules, and systems. The goals of this standard are to allow scientists to exchange designs of biological parts and systems, to facilitate the storage of genetic designs in repositories, and to facilitate the description of genetic designs in publications. In order to achieve these goals, the development of an infrastructure to store, retrieve, and exchange SBOL data is necessary. To address this problem, we have developed the SBOL Stack, a Resource Description Framework (RDF) database specifically designed for the storage, integration, and publication of SBOL data. This database allows users to define a library of synthetic parts and designs as a service, to share SBOL data with collaborators, and to store designs of biological systems locally. The database also allows external data sources to be integrated by mapping them to the SBOL data model. The SBOL Stack includes two Web interfaces: the SBOL Stack API and SynBioHub. While the former is designed for developers, the latter allows users to upload new SBOL biological designs, download SBOL documents, search by keyword, and visualize SBOL data. Since the SBOL Stack is based on semantic Web technology, the inherent distributed querying functionality of RDF databases can be used to allow different SBOL stack databases to be queried simultaneously, and therefore, data can be shared between different institutes, centers, or other users.

  16. Stacking the Equiangular Spiral

    OpenAIRE

    Agrawal, A.; Azabi, Y. O.; Rahman, B. M.

    2013-01-01

    We present an algorithm that adapts the mature Stack and Draw (SaD) methodology for fabricating the exotic Equiangular Spiral Photonic Crystal Fiber. (ES-PCF) The principle of Steiner chains and circle packing is exploited to obtain a non-hexagonal design using a stacking procedure based on Hexagonal Close Packing. The optical properties of the proposed structure are promising for SuperContinuum Generation. This approach could make accessible not only the equiangular spiral but also other qua...

  17. Linear identification and model adjustment of a PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, C; Puleston, P F; More, J J [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Husar, A [Institut de Robotica i Informatica Industrial (CSIC-UPC), c/ Llorens i Artigas 4-6, 08028 Barcelona (Spain); Mayosky, M A [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Comision de Investigaciones Cientificas (CIC), Provincia de Buenos Aires (Argentina)

    2008-07-15

    In the context of fuel cell stack control a mayor challenge is modeling the interdependence of various complex subsystem dynamics. In many cases, the states interaction is usually modeled through several look-up tables, decision blocks and piecewise continuous functions. Many internal variables are inaccessible for measurement and cannot be used in control algorithms. To make significant contributions in this area, it is necessary to develop reliable models for control and design purposes. In this paper, a linear model based on experimental identification of a 7-cell stack was developed. The procedure followed to obtain a linear model of the system consisted in performing spectroscopy tests of four different single-input single-output subsystems. The considered inputs for the tests were the stack current and the cathode oxygen flow rate, while the measured outputs were the stack voltage and the cathode total pressure. The resulting model can be used either for model-based control design or for on-line analysis and errors detection. (author)

  18. Spherical distribution structure of the semiconductor laser diode stack for pumping

    International Nuclear Information System (INIS)

    Zhao Tianzhuo; Yu Jin; Liu Yang; Zhang Xue; Ma Yunfeng; Fan Zhongwei

    2011-01-01

    A semiconductor laser diode stack is used for pumping and 8 semiconductor laser diode arrays of the stack are put on a sphere, and the output of every bar is specially off-axis compressed to realize high coupling efficiency. The output beam of this semiconductor laser diode stack is shaped by a hollow duct to the laser active medium. The efficiency of the hollow light pipe, which is used for semiconductor laser diode stack coupling, is analyzed by geometric optics and ray tracing. Geometric optics analysis diagnoses the reasons for coupling loss and guides the design of the structure. Ray tracing analyzes the relation between the structural parameters and the output characteristics of this pumping system, and guides parameter optimization. Simulation and analysis results show that putting the semiconductor laser diode arrays on a spherical surface can increase coupling efficiency, reduce the optimum duct length and improve the output energy field distribution. (semiconductor devices)

  19. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  20. Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection.

    Science.gov (United States)

    Taheri, Mohammadreza; Fotovati, Mohsen; Hosseini, Seyed-Kiumars; Ghassempour, Alireza

    2017-10-01

    An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is "How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?" To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase. © 2017 Wiley Periodicals, Inc.

  1. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  2. Energy Efficient Clustering Based Network Protocol Stack for 3D Airborne Monitoring System

    Directory of Open Access Journals (Sweden)

    Abhishek Joshi

    2017-01-01

    Full Text Available Wireless Sensor Network consists of large number of nodes densely deployed in ad hoc manner. Usually, most of the application areas of WSNs require two-dimensional (2D topology. Various emerging application areas such as airborne networks and underwater wireless sensor networks are usually deployed using three-dimensional (3D network topology. In this paper, a static 3D cluster-based network topology has been proposed for airborne networks. A network protocol stack consisting of various protocols such as TDMA MAC and dynamic routing along with services such as time synchronization, Cluster Head rotation, and power level management has been proposed for this airborne network. The proposed protocol stack has been implemented on the hardware platform consisting of number of TelosB nodes. This 3D airborne network architecture can be used to measure Air Quality Index (AQI in an area. Various parameters of network such as energy consumption, Cluster Head rotation, time synchronization, and Packet Delivery Ratio (PDR have been analyzed. Detailed description of the implementation of the protocol stack along with results of implementation has been provided in this paper.

  3. Experimental Evidence for Phase-Locked States in Stacked Long Josephson Junctions

    DEFF Research Database (Denmark)

    Carapella, Giovanni; Costabile, Giovanni; Mancher, Martin

    1997-01-01

    We fabricated and tested samples consisteing of two long stacked Josephson junctions with direct access to the intermediate electrode, whose thickness is smaller than the London penetration depth $\\lambda _L$. The electrodes are patterned so that the junctions can be idependently biased in the ov...

  4. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Koetz, R; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  5. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  6. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  7. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    Science.gov (United States)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and

  8. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    OpenAIRE

    Auer, Corinna; Lang, Michael; Couturier, Karine; Nielsen, Eva Ravn; Mc Phail, Stephen; Tsotridis, Georgios; FU, Qingxi; Chan, Siew Hwa

    2015-01-01

    The market penetration of fuel and electrolysis cell energy systems in Europe requires the development of reliable assessment, testing and prediction of performance and durability of solid oxide cells and stacks (SOC). To advance in this field the EU-project “SOCTESQA” was launched in May 2014. Partners from different countries in Europe and one external party from Singapore are working together to develop uniform and industry wide test procedures and protocols for SOC cell/stack assembly. In...

  9. SOCTESQA - Solid Oxide Cell and Stack Testing, Safety and Quality Assurance

    OpenAIRE

    Lang, Michael; Auer, Corinna; Couturier, Karine; Nielsen, Eva Ravn; Mc Phail, Stephen; Kotsionopoulos, Nikolaos; FU, Qingxi; Liu, Qinglin

    2015-01-01

    For the successful market penetration of high temperature solid oxide fuel/electrolysis cell energy systems it is necessary to increase the quality assurance and the reliable assessment of the corresponding cells and stacks. Therefore in May 2014 the EU-funded project SOCTESQA was launched. Partners from different countries in Europe and one external party from Singapore are working together to develop uniform and industry wide test procedures and programs for solid oxide cell/stack (SOC) ass...

  10. Assessment of the seismic resistance of a ventilation stack on a reactor building

    International Nuclear Information System (INIS)

    Makovicka, Daniel; Makovicka, Daniel

    2005-01-01

    The paper analyzes the seismic resistance of a ventilation stack on a reactor building, including the possible reserves of increasing the resistance. Structures of this type are highly sensitive to seismic loads, as the tuning of the stack (the spectrum of its lowest natural frequencies) corresponds with the frequency spectrum of excitation due to seismic effects. The purpose of the paper is to present an example of an actual structure to show the character of the response of the structure, and the participation of the individual frequency components of the response in the overall stress and strain state of a structure of this type. The methodology for a numerical analysis of the structure is also given. The load of the stack proper is modified by the transfer characteristics of the building. In engineering practice, the system is usually divided into two subsystems: the building with the sub-base, and the stack proper. The level of justification for the application of this simplification depends on the distance of the natural frequencies of the stack from the natural frequencies of the building. Finally, the paper deals with possible errors in determining the actual seismic resistance of the stack structure

  11. Spherical Torus Center Stack Design

    International Nuclear Information System (INIS)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-01

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device

  12. The untyped stack calculus and Bohm's theorem

    Directory of Open Access Journals (Sweden)

    Alberto Carraro

    2013-03-01

    Full Text Available The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.

  13. Simple Stacking Methods for Silicon Micro Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gianmario Scotti

    2014-08-01

    Full Text Available We present two simple methods, with parallel and serial gas flows, for the stacking of microfabricated silicon fuel cells with integrated current collectors, flow fields and gas diffusion layers. The gas diffusion layer is implemented using black silicon. In the two stacking methods proposed in this work, the fluidic apertures and gas flow topology are rotationally symmetric and enable us to stack fuel cells without an increase in the number of electrical or fluidic ports or interconnects. Thanks to this simplicity and the structural compactness of each cell, the obtained stacks are very thin (~1.6 mm for a two-cell stack. We have fabricated two-cell stacks with two different gas flow topologies and obtained an open-circuit voltage (OCV of 1.6 V and a power density of 63 mW·cm−2, proving the viability of the design.

  14. Annex I.G. Demolition of the G1 stack at Marcoule by toppling

    International Nuclear Information System (INIS)

    2005-01-01

    The G1 stack at Marcoule was constructed during the first half of 1956 as a ventilation outlet for the G1 reactor, which is cooled by air. After the G1 reactor was decommissioned, the G1 stack served as a ventilation outlet for two new nuclear facilities on the site. Being no longer in compliance with regulations and having many inadequacies and uncertainties in terms of the prestressed concrete, the stack posed a potential damage risk in extreme wind or in the event of an earthquake. In 1994 it was decided that a new stack would be built to act as an outlet for the existing nuclear facilities, and that the old one would be demolished. The G1 stack was 100 m in height, 10 m in diameter and constructed with 24 vertically stacked concrete rings consisting of nine prefabricated sections, each 3.6 m in height. It was capped by a metal deflector (about 6 m in height and weighing 50 t). The inside consisted of nine semicircular tubes constructed of steel sheet metal weighing 120 t. The base of the stack consisted of the foundation, a plate and a base plate which were constructed at the site. The barrel sections were prefabricated. Construction lasted from January 1956 to June 1956. At the base, the cylindrical portion of the stack widened to form three feet extending to a depth of 7.5 m. The base plate of the stack was formed onsite to the height of 16.7 m and then prestressed using cables. A repair carried out in 1964 included adding a concrete lining of the initial rings of the cylinder up to a level of 22.1 m. Additional prestressing with the base plate and repair of the horizontal and vertical prestressing of the barrel were also carried out, leaving only 22 rings and 43 visible cables. The total mass of the stack was 2170 t, including: - Concrete: cylinder 800 t, base plate 1200 t; - Steel: internal structures 120 t, deflector 50 t. The main radiological risk was the presence of traces of tritium. The radioactive inventory for the entire stack was estimated in 2000

  15. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a

  16. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  17. Adding large EM stack support

    KAUST Repository

    Holst, Glendon

    2016-12-01

    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  18. Prediction of residual stress distribution in multi-stacked thin film by curvature measurement and iterative FEA

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang; Park, Jun Hyub

    2005-01-01

    In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element Method (FEM). We develop a finite element program for REsidual Stress Analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi-stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multilayers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the film after etching layer by layer in multi-stacked film

  19. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Xiang, Jing

    2014-01-01

    Highlights: • Two microgrids with different structure are simulated. • Their performance are comprehensively evaluated and compared. • The one with DES and a FC stack has high environmental and quality indexes. - Abstract: In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance

  20. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  1. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    Science.gov (United States)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  2. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  3. A search for the coherently radiating fluxon state in stacks of long intrinsic Josephson junctions

    CERN Document Server

    Lee, H J; Bae, M H; Wang, H; Yamashita, T

    2002-01-01

    We studied the motion of fluxons in a stack of intrinsic Josephson junctions (IJJs) of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta single crystals in a long junction limit. Driven by the tunnelling bias, current Josephson fluxons excite plasma oscillations and move in resonance with the plasma propagation modes. We examined two types of samples in this study; mesa structure (UD1) and a stack of junctions sandwiched between normal-metallic electrodes (DSC1). In a high magnetic field, the hysteresis in the I-V characteristics of both-types of samples vanished. The resulting single I-V curve exhibited a cusp structure at characteristic bias voltages which were believed to be boundaries of different moving fluxon configurations. We studied the sample-geometry dependence of the cusp characteristics by comparing the results from the two types of samples.

  4. Stacking machine learning classifiers to identify Higgs bosons at the LHC

    International Nuclear Information System (INIS)

    Alves, A.

    2017-01-01

    Machine learning (ML) algorithms have been employed in the problem of classifying signal and background events with high accuracy in particle physics. In this paper, we compare the performance of a widespread ML technique, namely, stacked generalization , against the results of two state-of-art algorithms: (1) a deep neural network (DNN) in the task of discovering a new neutral Higgs boson and (2) a scalable machine learning system for tree boosting, in the Standard Model Higgs to tau leptons channel, both at the 8 TeV LHC. In a cut-and-count analysis, stacking three algorithms performed around 16% worse than DNN but demanding far less computation efforts, however, the same stacking outperforms boosted decision trees. Using the stacked classifiers in a multivariate statistical analysis (MVA), on the other hand, significantly enhances the statistical significance compared to cut-and-count in both Higgs processes, suggesting that combining an ensemble of simpler and faster ML algorithms with MVA tools is a better approach than building a complex state-of-art algorithm for cut-and-count.

  5. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.

    Science.gov (United States)

    Zhuang, Li; Zheng, Yu; Zhou, Shungui; Yuan, Yong; Yuan, Haoran; Chen, Yong

    2012-02-01

    A tubular air-cathode microbial fuel cell (MFC) stack with high scalability and low material cost was constructed and the ability of simultaneous real wastewater treatment and bioelectricity generation was investigated under continuous flow mode. At the two organic loading rates (ORLs) tested (1.2 and 4.9kg COD/m(3)d), five non-Pt MFCs connected in series and parallel circuit modes treating swine wastewater can enable an increase of the voltage and the current. The parallel stack retained high power output and the series connection underwent energy loss due to the substrate cross-conduction effect. With continuous electricity production, the parallel stack achieved 83.8% of COD removal and 90.8% of NH(4)(+)-N removal at 1.2kg COD/m(3)d, and 77.1% COD removal and 80.7% NH(4)(+)-N removal at 4.9kg COD/m(3)d. The MFC stack system in this study was demonstrated to be able to treat real wastewater with the added benefit of harvesting electricity energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    KAUST Repository

    Geise, Geoffrey M.

    2014-01-14

    Membrane ionic resistance is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt concentration is known to affect membrane resistance when the same concentration is used on both sides of the membrane, little is known about membrane resistance when the membrane is placed between solutions of different concentrations, such as in a reverse electrodialysis (RED) stack. Ionic resistance measurements obtained using Selemion CMV and AMV that separated sodium chloride and ammonium bicarbonate solutions of different concentrations were greater than those measured using only the high-concentration solution. Measured RED stack resistances showed good agreement with resistances calculated using an equivalent series resistance model, where the membranes accounted for 46% of the total stack resistance. The high area resistance of the membranes separating different salt concentration solutions has implications for modeling and optimizing membranes used in RED systems.

  7. Operational measurements of stack flow rates in a nuclear power plant with ultrasonic anemometer

    International Nuclear Information System (INIS)

    Voelz, E.; Kirtzel, H.-J.; Ebenhoech, E.

    2003-01-01

    The calculation of the impact of radio nuclides within the surroundings of nuclear power stations requires quantitative measurements of the stack emission. As a standard method, propeller anemometers have been installed inside the stack, but due to the wear and tear of the moving parts in such conventional sensors the servicing and maintenance are costly and may cause restrictions in the operation of the stack. As an alternative to propeller anemometers ultrasonic sensors have been applied which employ no moving parts and are almost free of maintenance. Furthermore, any shifts in internal calibration parameters can be identified by the sensor electronics with on-line plausibility checks. The tests have proven that ultrasonic systems are able to measure adequately and reliably the flow inside the stack. (orig.)

  8. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  9. Development of Auto-Stacking Warehouse Truck

    Directory of Open Access Journals (Sweden)

    Kuo-Hsien Hsia

    2018-03-01

    Full Text Available Warehouse automation is a very important issue for the promotion of traditional industries. For the production of larger and stackable products, it is usually necessary to operate a fork-lifter for the stacking and storage of the products by a skilled person. The general autonomous warehouse-truck does not have the ability of stacking objects. In this paper, we develop a prototype of auto-stacking warehouse-truck that can work without direct operation by a skill person. With command made by an RFID card, the stacker truck can take the packaged product to the warehouse on the prior-planned route and store it in a stacking way in the designated storage area, or deliver the product to the shipping area or into the container from the storage area. It can significantly reduce the manpower requirements of the skilled-person of forklift technician and improve the safety of the warehousing area.

  10. Testing and Evaluation of an Advanced High Performance Planar SOFC Stack

    National Research Council Canada - National Science Library

    Elangovan, S

    1999-01-01

    .... SOFCo has conducted several programs which synergistically address this objective: an internally funded program focusing on stack development and system integration for pipeline natural gas (PNG...

  11. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  12. External magnetic field and self-field effects in stacked long Josephson junctions

    DEFF Research Database (Denmark)

    Carapella, G.; Costabile, G.; Mygind, Jesper

    1996-01-01

    We have fabricated and tested samples consisting of two long stacked Josephson junctions with direct access to the intermediate electrode, whose thickness is smaller than London penetration depth lambda(L). The electrodes are patterned so that the junctions can be independently biased in the over...

  13. Protection of Microkernel Environment L4Re from Stack-smashed Attacks

    Directory of Open Access Journals (Sweden)

    Vasily Andreevich Sartakov

    2014-12-01

    Full Text Available Microkernel-based operating systems provide high level of protection due to the strong isolation of components, small size of Trusted Computing Base and execution of drivers in user space. At the same time, such systems are vulnerable to a stack overflow attacks, because these attacks exploit the hardware features of the platform, such as shared memory space for data and code. Modern architectures, such as AMD64 and ARM, provide opportunities to counteract attacks at the hardware level by disallowing memory allocation for storing executable stack and heap, but this protection mechanism requires additional support from the operating system. This paper presents memory management, program execution model and IPC mechanism of microkernel Fiasco.OC and environment L4Re from nonexecution memory support point of view.

  14. Synthesis of carbon nanotubes from palm oil on stacking and non-stacking substrate by thermal-CVD method

    Science.gov (United States)

    Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Fadzlinatul, M. Y.; Salifairus, M. J.; Asli, N. A.

    2018-05-01

    Palm oil has been used as the carbon source to synthesize carbon nanotubes (CNTs) on silicon substrates using the thermal chemical vapor deposition (CVD) method. Meanwhile, silicon has been applied using two techniques, which are stacked technique and non-stacked technique. The CNTs were grown at the constant time of 30 minutes with various synthesis temperatures of 750 °C, 850 °C and 950 °C. The CNTs were characterized using micro-Raman spectroscopy and field emission scanning electron microscopy (FESEM). It was found that the density, growth rate, diameter and length of the CNTs produced were affected by the synthesis temperature. Moreover, the structure slightly changes were observed between CNTs obtained in SS and NSS. The synthesize temperature of 750 °C was considered as the suitable temperature for the production of CNTs due to low ID/IG ratio, which for stacked is 0.89 and non-stacked are 0.90. The possible explanation for the different morphology of the produced CNTs was also discussed.

  15. Radionuclide characterization of graphite stacks from plutonium production reactors of the Siberian group of chemical enterprises

    International Nuclear Information System (INIS)

    Bushuev, A.V.; Verzilov, Yu.M.; Zubarev, V.N.

    2001-01-01

    The residual radionuclide concentrations and distributions in graphite from moderator stack of plutonium production reactors at Tomsk-7 have been investigated. It was found that the dominant activity of graphite is 14 C. To gain information on surface and volume contamination of graphite blocks from the moderator stack, the special sets of samples were collected and assayed. The schemes are proposed for evaluation of individual radionuclide inventories together with results of the evaluations performed. (author)

  16. Data Quality Objectives Summary Report for the Demolition of the 116-D and 116-DR Stacks

    International Nuclear Information System (INIS)

    Adler, J. G.

    1999-01-01

    This data quality objective (DQO) summary report has been developed to support demolition and disposal of the 116-D and 116-DR stacks in the 100-D Area of the Hanford Site. This project-specific summary was developed to meet the requirements in BHI-EE-01, Environmental Investigations Procedures, Procedure 1.2, ''Data Quality Objectives,'' using a simplified DQO process. The pathway for disposal of the 116-D and 116-DR stacks is the Environmental Restoration Disposal Facility (ERDF), which requires the development of a waste profile. A combination of process knowledge, history, and existing analogous data will be used to build a waste profile to dispose of the stack and plenum debris in the ERDF. Additional sample data are not necessary for waste designation. This report also addresses the Resources, Conservation, and Recovery Act of 1976 treatment, storage, and disposal closure requirements associated with the 116-DR stack

  17. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  18. Engineering task plan for rotary mode core sampling exhausters CAM high radiation interlock

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The Rotary Mode Core Sampling (RMCS) system is primarily made up of the Rotary Mode Core Sample Trucks (RMCST) and the RMCS Exhausters. During RMCS operations an Exhauster is connected to a tank riser and withdraws gases from the tank dome vapor space at approximately 200 Standard Cubic Feet per Minute (SCFM). The gases are passed through two High Efficiency Particulate Air (HEPA) filters before passing out the exhaust stack to the atmosphere. A Continuous Air Monitor (CAM) monitors the exhaust gases in the exhaust stack for beta particle and gamma radiation. The CAM has a high radiation alarm output and a detector fail alarm output. The CAM alarms are currently connected to the data logger only. The CAM alarms require operator response per procedure LMHC 1998 but no automatic functions are initiated by the CAM alarms. Currently, there are three events that can cause an automatic shut down of the Exhauster. These are, Low Tank Pressure, Highnow Stack Flow and High HEPA Filter Differential Pressure (DP)

  19. Stack monitor for the Proof-of-Breeding Project

    International Nuclear Information System (INIS)

    Fergus, R.W.

    1985-01-01

    This stack monitor system is a coordinated arrangement of hardware and software to monitor four hot cells (8 stacks) during the fuel dissection for the Proof-of-Breeding Project. The cell monitors, which are located in fan lofts, contain a microprocessor, radiation detectors, air flow sensors, and air flow control equipment. Design criteria included maximizing microprocessor control while minimizing the hardware complexity. The monitors have been programmed to produce concentration and total activity release data based on several detector measurements and flow rates. Although each monitor can function independently, a microcomputer can also be used to control each cell monitor including reprogramming if necessary. All programming is software, as opposed to firmware, with machine language for compactness in the cell monitors and Basic language for adaptability in the microcomputer controller

  20. Measurements of the LHCb software stack on the ARM architecture

    International Nuclear Information System (INIS)

    Kartik, S Vijay; Couturier, Ben; Clemencic, Marco; Neufeld, Niko

    2014-01-01

    The ARM architecture is a power-efficient design that is used in most processors in mobile devices all around the world today since they provide reasonable compute performance per watt. The current LHCb software stack is designed (and thus expected) to build and run on machines with the x86/x86 6 4 architecture. This paper outlines the process of measuring the performance of the LHCb software stack on the ARM architecture – specifically, the ARMv7 architecture on Cortex-A9 processors from NVIDIA and on full-fledged ARM servers with chipsets from Calxeda – and makes comparisons with the performance on x86 6 4 architectures on the Intel Xeon L5520/X5650 and AMD Opteron 6272. The paper emphasises the aspects of performance per core with respect to the power drawn by the compute nodes for the given performance – this ensures a fair real-world comparison with much more 'powerful' Intel/AMD processors. The comparisons of these real workloads in the context of LHCb are also complemented with the standard synthetic benchmarks HEPSPEC and Coremark. The pitfalls and solutions for the non-trivial task of porting the source code to build for the ARMv7 instruction set are presented. The specific changes in the build process needed for ARM-specific portions of the software stack are described, to serve as pointers for further attempts taken up by other groups in this direction. Cases where architecture-specific tweaks at the assembler lever (both in ROOT and the LHCb software stack) were needed for a successful compile are detailed – these cases are good indicators of where/how the software stack as well as the build system can be made more portable and multi-arch friendly. The experience gained from the tasks described in this paper are intended to i) assist in making an informed choice about ARM-based server solutions as a feasible low-power alternative to the current compute nodes, and ii) revisit the software design and build system for portability and

  1. Ultra-sensitive speciation analysis of mercury by CE-ICP-MS together with field-amplified sample stacking injection and dispersive solid-phase extraction.

    Science.gov (United States)

    Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu

    2016-04-01

    A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.

    Science.gov (United States)

    Liu, Min; Wang, Xueping; Zhang, Hongzhong

    2018-03-01

    In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Stack Memory Implementation and Analysis of Timing Constraint, Power and Memory using FPGA

    DEFF Research Database (Denmark)

    Thind, Vandana; Pandey, Nisha; Pandey, Bishwajeet

    2017-01-01

    real-time output, so that source used to realize the project is not wasted and get an energy efficient design. However, Stack memory is an approach in which information is entered and deleted from the stack memory segment in the pattern of last in first out mechanism. There are several ways...... of implementation of stack memory algorithm but virtex4 and virtex7 low voltage were considered to be the most efficient platforms for its operation. The developed system is energy efficient as the algorim ensures less memory utilization, less power consumption and short time for signal travel.......Abstract— in this work of analysis, stack memory algorithm is implemented on a number of FPGA platforms like virtex4, virtex5, virtex6, virtex6 low power and virtex7 low voltage and very detailed observations/investigations were made about timing constraint, memory and power dissipation. The main...

  4. Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field

    Science.gov (United States)

    Žukovič, M.; Borovský, M.; Bobák, A.

    2018-05-01

    We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.

  5. Improved charge trapping flash device with Al2O3/HfSiO stack as blocking layer

    International Nuclear Information System (INIS)

    Zheng Zhi-Wei; Huo Zong-Liang; Zhu Chen-Xin; Xu Zhong-Guang; Liu Jing; Liu Ming

    2011-01-01

    In this paper, we investigate an Al 2 O 3 /HfSiO stack as the blocking layer of a metal—oxide—nitride—oxide—silicon-type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al 2 O 3 /HfO 2 stack as the blocking layer, the sample with the Al 2 O 3 /HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al 2 O 3 /HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications. (interdisciplinary physics and related areas of science and technology)

  6. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  7. Finding diversity for building one-day ahead Hydrological Ensemble Prediction System based on artificial neural network stacks

    Science.gov (United States)

    Brochero, Darwin; Anctil, Francois; Gagné, Christian; López, Karol

    2013-04-01

    In this study, we addressed the application of Artificial Neural Networks (ANN) in the context of Hydrological Ensemble Prediction Systems (HEPS). Such systems have become popular in the past years as a tool to include the forecast uncertainty in the decision making process. HEPS considers fundamentally the uncertainty cascade model [4] for uncertainty representation. Analogously, the machine learning community has proposed models of multiple classifier systems that take into account the variability in datasets, input space, model structures, and parametric configuration [3]. This approach is based primarily on the well-known "no free lunch theorem" [1]. Consequently, we propose a framework based on two separate but complementary topics: data stratification and input variable selection (IVS). Thus, we promote an ANN prediction stack in which each predictor is trained based on input spaces defined by the IVS application on different stratified sub-samples. All this, added to the inherent variability of classical ANN optimization, leads us to our ultimate goal: diversity in the prediction, defined as the complementarity of the individual predictors. The stratification application on the 12 basins used in this study, which originate from the second and third workshop of the MOPEX project [2], shows that the informativeness of the data is far more important than the quantity used for ANN training. Additionally, the input space variability leads to ANN stacks that outperform an ANN stack model trained with 100% of the available information but with a random selection of dataset used in the early stopping method (scenario R100P). The results show that from a deterministic view, the main advantage focuses on the efficient selection of the training information, which is an equally important concept for the calibration of conceptual hydrological models. On the other hand, the diversity achieved is reflected in a substantial improvement in the scores that define the

  8. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    Science.gov (United States)

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film

  9. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Science.gov (United States)

    2010-07-01

    ... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. (a... maintain an SO2 continuous emission monitoring system and flow monitoring system in the duct to the common...

  10. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  11. Effects of stacking sequence on fracture mechanisms in quasi-isotropic Carbon/epoxy laminates under tensile loading

    International Nuclear Information System (INIS)

    Hessabi, Z. R.; Majidi, B.; Aghazadeh, J.

    2006-01-01

    The progress of damage in quasi-isotropic carbon/epoxy laminates under tensile loading has been Investigated microscopically. One significant mode of failure in laminated composites is delamination initiating at free edges. The interlaminar stress in the boundary ply along the free edges of a laminated composite is the main factor to cause delamination. The laminate stacking sequence affects the interlaminar stress distribution and consequently may change the mode of failure. It is of design importance to determine a suitable criterion based on stress analysis to obtain the best stacking sequence. In the present work, tensile properties of six samples with different stacking sequences have been examined. Results showed that stress analysis at distance very close to the free edges is a suitable criterion to predict the initiation of delamination and the stacking sequence of [90/45/0/-45] s , has the highest strength among the others. Furthermore finite element analysis showed that the adjacent ±45 plies cause premature delamination during tensile loading

  12. Sedimentation stacking diagram of binary colloidal mixtures and bulk phases in the plane of chemical potentials

    International Nuclear Information System (INIS)

    Heras, Daniel de las; Schmidt, Matthias

    2015-01-01

    We give a full account of a recently proposed theory that explicitly relates the bulk phase diagram of a binary colloidal mixture to its phase stacking phenomenology under gravity (de las Heras and Schmidt 2013 Soft Matter 9 8636). As we demonstrate, the full set of possible phase stacking sequences in sedimentation-diffusion equilibrium originates from straight lines (sedimentation paths) in the chemical potential representation of the bulk phase diagram. From the analysis of various standard topologies of bulk phase diagrams, we conclude that the corresponding sedimentation stacking diagrams can be very rich, even more so when finite sample height is taken into account. We apply the theory to obtain the stacking diagram of a mixture of nonadsorbing polymers and colloids. We also present a catalog of generic phase diagrams in the plane of chemical potentials in order to facilitate the practical application of our concept, which also generalizes to multi-component mixtures. (paper)

  13. Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation

    Science.gov (United States)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    Beta-Barium Borate (β-BBO) crystal is commonly used in nonlinear frequency conversion from visible to deep ultraviolet (DUV). However, in a single crystal BBO, its large spatial walk-off effect will reduce spatial overlap of ordinary and extraordinary beam, and thus degrade the conversion efficiency. To overcome the restrictions in current DUV conversion systems, Onyx applies adhesive-free bonding technique to replace the single crystal BBO with a spatial Walk-off Compensated (WOC) BBO stack, which is capable of correcting the spatial walk-off while retaining a constant nonlinear coefficient in the adjacent bonding layers. As a result, the β-BBO stack will provide good beam quality, high conversion efficiency, and broader acceptance angle and spectral linewidth, when compared with a single crystal of BBO. In this work, we report on performance of a spatial walk-off compensated β-BBO stack with adhesive-free bonding technique, for efficiently converting from the visible to DUV range. The physics behind the WOC BBO stack are demonstrated, followed by simulation of DUV conversion efficiency in an external resonance cavity. We also demonstrate experimentally the beam quality improvement in a 4-layer WOC BBO stack over a single BBO crystal.

  14. Turbostratic stacked CVD graphene for high-performance devices

    Science.gov (United States)

    Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-03-01

    We have fabricated turbostratic stacked graphene with high-transport properties by the repeated transfer of CVD monolayer graphene. The turbostratic stacked CVD graphene exhibited higher carrier mobility and conductivity than CVD monolayer graphene. The electron mobility for the three-layer turbostratic stacked CVD graphene surpassed 10,000 cm2 V-1 s-1 at room temperature, which is five times greater than that for CVD monolayer graphene. The results indicate that the high performance is derived from maintenance of the linear band dispersion, suppression of the carrier scattering, and parallel conduction. Therefore, turbostratic stacked CVD graphene is a superior material for high-performance devices.

  15. Stacking and Analysis of Melamine in Milk Products with Acetonitrile-Salt Stacking Technique in Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yu Kong

    2014-01-01

    Full Text Available Melamine was measured in real milk products with capillary electrophoresis (CE based on acetonitrile-salt stacking (ASS method. Real milk samples were deproteinized with acetonitrile at a final concentration of 60% (v/v and then injected hydrodynamically at 50 mBar for 40.0 s. The optimized buffer contains 80.0 mmol/L pH 2.8 phosphates. Melamine could be detected within 20.0 min at +10 kV with a low limit of detection (LOD of 0.03 μmol/L. Satisfactory reproducibility (inter- and intraday RSD% both for migration time and peak area was lower than 5.0% and a wide linearity range of 0.05 μmol/L ~ 10.0 μmol/L were achieved. The proposed method was suitable for routine assay of MEL in real milk samples that was subjected to a simple treatment step.

  16. OpenStack augstas pieejamības risinājumi

    OpenAIRE

    Dreiže, Toms

    2016-01-01

    Šis bakalaura darbs ir pētījums par OpenStack IaaS mākoņpakalpojumu platformu. Tā mērķis ir sniegt ieskatu augstas pieejamības pamatprincipos un OpenStack mākoņpakalpojumu platformas piedāvātajos augstas pieejamības nodrošināšanas risinājumos. Bakalaura darba gaitā ir veikta augsti pieejamas OpenStack trīs mezglu sistēmas uzstādīšana, izmantojot Galera Cluster datubāzu klasteri un HAProxy slodzes līdzsvarotāju. Tika pārbaudīta OpenStack augsta pieejamība, testējot OpenStack Glance komponentes...

  17. Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Giboyeaux, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-19

    The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stack discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.

  18. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  19. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  20. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec...

  1. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z; Scherer, G G; Marmy, Ch; Glaus, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  2. Some experience with measurements of stack releases and their correlation with environmental measurements

    International Nuclear Information System (INIS)

    Czarnecki, J.

    1988-01-01

    The first nuclear power plants (NPP) in Switzerland were built during the late 1960s and the early 1970s (PWR-Beznau and BWR-Muhleberg). A new generation of NPPs were built ten years later (PWR-Goesgen and BWR-Leibstadt). In all these NPP special attention was given to the sampling and measurements of the releases of radioactive materials, in particular long lived aerosols and J-131. The sampling systems at the Swiss NPP were originally installed on the basis of the American National Standard Guide to sampling Airborne Radioactive Materials in Nuclear Facilities, (ANSI NI3, 1 - 1969) or equivalent standards such as ISO 2889 and DIN 25423. Unfortunately, the sampling systems described in these guides cover only that fraction of radioactive aerosols, which is preferentially retained in various portions of the respiratory tract (0.3 to 10 Μm). In a NPP one can expect during an accident a very wide range of particles with diameters as large as 100 and more Μm, which can be transported away by the stack effluent and may not be properly sampled and measured. It should be taken into account that there are some non filtered rooms and that filters can fail or even break. Such particles when released cause a ground contamination in the vicinity of the plant. Such an event occurred in September 1986 in the NPP-Muhleberg

  3. The use of Graphic User Interface for development of a user-friendly CRS-Stack software

    Science.gov (United States)

    Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah

    2017-04-01

    The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the

  4. Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Wardah Fatimah Mohammad; Salleh, Elias [Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Adam, Nor Mariah [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapian, Abdul Razak [Department of Architecture, Kulliyyah of Architecture and Environmental Design, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur (Malaysia); Yusof Sulaiman, Mohamad [Solar Energy Research Institute, 3rd Floor, Tun Sri Lanang Library Building, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2010-10-15

    In the hot and humid climate, stack ventilation is inefficient due to small temperature difference between the inside and outside of naturally ventilated buildings. Hence, solar induced ventilation is a feasible alternative in enhancing the stack ventilation. This paper aims to investigate the effectiveness of a proposed solar induced ventilation strategy, which combines a roof solar collector and a vertical stack, in enhancing the stack ventilation performance in the hot and humid climate. The methodology selected for the investigation is physical experimental modelling which was carried out in the actual environment. The results are presented and discussed in terms of two performance variables: air temperature and air velocity. The findings indicate that the proposed strategy is able to enhance the stack ventilation, both in semi-clear sky and overcast sky conditions. The highest air temperature difference between the air inside the stack and the ambient air (T{sub i}-T{sub o}) is achieved in the semi-clear sky condition, which is about 9.9 C (45.8 C-35.9 C). Meanwhile, in the overcast sky condition, the highest air temperature difference (T{sub i}-T{sub o}) is 6.2 C (39.3 C-33.1 C). The experimental results also indicate good agreement with the theoretical results for the glass temperature, the air temperature in the roof solar collector's channel and the absorber temperature. The findings also show that wind has significant effect to the induced air velocity by the proposed strategy. (author)

  5. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  6. Circularly polarized luminescence of helically assembled pyrene π-stacks on RNA and DNA duplexes.

    Science.gov (United States)

    Nakamura, Mitsunobu; Ota, Fuyuki; Takada, Tadao; Akagi, Kazuo; Yamana, Kazushige

    2018-05-01

    In this report, we describe the circularly polarized luminescence (CPL) of the RNA duplexes having one to four 2'-O-pyrene modified uridines (Upy) and the DNA duplexes having two, four, and six pyrene modified non-nucleosidic linkers (Py). Both the pyrene π-stack arrays formed on the RNA and DNA double helical structures exhibited pyrene excimer fluorescence. In the pyrene-modified RNA systems, the RNA duplex having four Upys gives CPL emission with g lum value of <0.01 at 480 nm. The structure of pyrene stacks on the RNA duplex may be rigidly regulated with increase in the Upy domains, which resulted in the CPL emission. In the DNA systems, the pyrene-modified duplexes containing two and four Pys exhibited CPL emission with g lum values of <0.001 at 505 nm. The pyrene π-stack arrays presented here show CPL emission. However, the g lum values are relatively small when compared with our previous system consisting of the pyrene-zipper arrays on RNA. © 2018 Wiley Periodicals, Inc.

  7. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  8. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system

    Science.gov (United States)

    Toor, S.; Osmani, L.; Eerola, P.; Kraemer, O.; Lindén, T.; Tarkoma, S.; White, J.

    2014-06-01

    The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.

  9. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system

    International Nuclear Information System (INIS)

    Toor, S; Eerola, P; Kraemer, O; Lindén, T; Osmani, L; Tarkoma, S; White, J

    2014-01-01

    The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.

  10. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  11. Solid oxide fuel cell short stack performance testing - Part A: Experimental analysis and μ-combined heat and power unit comparison

    Science.gov (United States)

    Mastropasqua, L.; Campanari, S.; Brouwer, J.

    2017-12-01

    The need to experimentally understand the detailed performance of SOFC stacks under operating conditions typical of commercial SOFC systems has prompted this two-part study. The steady state performance of a 6-cell short stack of yttria (Y2O3) stabilised zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped lanthanum manganite (LaMnO3, LSM)/YSZ cathodes is experimentally evaluated. In Part A, the stack characterisation is carried out by means of sensitivity analyses on the fuel utilisation factor and the steam-to-carbon ratio. Electrical and environmental performances are assessed and the results are compared with a commercial full-scale micro-CHP system, which comprises the same cells. The results show that the measured temperature dynamics of the short stack in a test stand environment are on the order of many minutes; therefore, one cannot neglect temperature dynamics for a precise measurement of the steady state polarisation behaviour. The overall polarisation performance is comparable to that of the full stack employed in the micro-CHP system, confirming the good representation that short-stack analyses can give of the entire SOFC module. The environmental performance is measured verifying the negligible values of NO emissions (<10 ppb) across the whole polarisation curve.

  12. Diffusion of Nickel into Ferritic Steel Interconnects of Solid Oxide Fuel/Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bowen, Jacob R.

    2013-01-01

    diffusion of nickel from the Ni/YSZ electrode or the contact layer into the interconnect plate. Such diffusion can cause austenization of the ferritic structure and could possibly alter corrosion properties of the steel. Whereas this process has already been recognized by SOFC stack developers, only...... a limited number of studies have been devoted to the phenomenon. Here, diffusion of Ni into ferritic Crofer 22 APU steel is studied in a wet hydrogen atmosphere after 250 hours of exposure at 800 °C using Ni-plated (~ 10 micron thick coatings) sheet steel samples as a model system. Even after...... this relatively short time all the metallic nickel in the coating has reacted and formed solid solutions with iron and chromium. Diffusion of Ni into the steel causes formation of the austenite FCC phase. The microstructure and composition of the oxide scale formed on the sample surface after 250 hours is similar...

  13. Method for applying a thin film barrier stack to a device with microstructures, and device provided with such a thin film barrier stack

    NARCIS (Netherlands)

    2005-01-01

    A method for applying a thin film barrier stack to a device with microstructures, such as, for instance, an OLED, wherein the thin film barrier stack forms a barrier to at least moisture and oxygen, wherein the stack is built up from a combination of org. and inorg. layers, characterized in that a

  14. Manufacturing of cells and stacks for SOFC development, test and demonstration projects and SOFC hotbox design development

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    The purpose of this project is to support the continued SOFC development through manufacturing process optimization and manufacturing of SOFC cells and stacks. These cells and stacks will serve as a necessary base for the development activities and for the establishment of a number of test and demonstration activities. The manufacture will also help provide operating experience and reduce manufacturing cost. Another main focus of the manufacturing is to assure technical improvements and reliability. It is imperative to the eventual success of the technology that test and demonstration is carried out in the pre-market conditions that will exist for the next years in the three market segments targeted by TOFC (Distributed generation, micro CHP and APU incl. marine APU). Finally, the project also includes development activities focusing on the stack-system interface (hotbox design development) and on dealing with transients and start up and shut down times, which is of particular importance for APU and micro CHP applications. Three topics are addressed:1) Cell manufacture, including production development, capacity lift and manuf. of cells for test and demonstration; 2) Stack manufacture and test, including a test facility, stack manuf. and test of stacks in a system at HCV; 3) Hotbox design development, including design, prototype construction and testing. The progress of this project is documented. Major achievements are successful manufacture of adequate amounts of cells and stacks according to the application. Furthermore significant over-performance in design, construction and test of a methanol based hotbox prototype as well as publication of this. (au)

  15. Study of a PEFC power generator modular architecture based on a multi-stack association

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, James; Pera, Marie-Cecile; Hissel, Daniel; Kauffmann, Jean-Marie [Laboratoire d' Electronique, Electrotechnique et Systemes, Unite Mixte de Recherche UTBM et UFC, L2ES-UTBM Batiment F-Technopole, Rue Thierry Mieg, 90010 Belfort (France); De Bernardinis, Alexandre; Candusso, Denis; Coquery, Gerard [Institut National de Recherche Sur Les Transports et Leur Securite (INRETS LTN), 2 Avenue Du General Malleret-Joinville, 94114 Arcueil (France)

    2006-05-19

    This paper presents a study of a polymer electrolyte fuel cell (PEFC) power generator based on a multi-stack association dedicated to transportation applications. First, a dynamic model of the fuel cell for high frequencies, which can be used in association with the power converter is presented. In a second hand, an original power converter architecture has been studied which authorizes the electrical association of two fuel cell stacks. Such a configuration is well adapted for the testing of fuel cell in normal or degraded mode which corresponds to real operating conditions encountered on-board a vehicle. Finally, simulation results of the complete twin-stacks power system are presented and discussed. (author)

  16. Performance Analysis of a Hybrid One-Sided Magnetic Exciter Mounted on a Piezoelectric Stack

    Directory of Open Access Journals (Sweden)

    A. Nandi

    2010-01-01

    Full Text Available The present work proposes a non-contact hybrid exciter especially useful for harmonic excitation of lightly damped structures/rotors. In the proposed exciter an electromagnet is placed on a piezoelectric stack and the extension of the piezoelectric stack is made almost equal to the displacement of the structure using a simple tracking control. This largely eliminates stiffness coupling between the structure/rotor and the exciter and non-linearity in the excitation force due to the vibration of the structure/rotor. The stiffness and inertia of the piezoelectric stack is considered in the analysis. A SIMULINK model of the combined structure and the exciter is developed for a full time-domain simulation of the excitation system.

  17. Study and Development of an OpenStack solution

    OpenAIRE

    Jorba Brosa, Maria

    2014-01-01

    Estudi i desenvolupament d'una solució de virtualització amb Openstack. Es farà un especial èmfasi en la part de seguretat. Deployment of a solution based in OpenStack for the creation of an Infrastructure service cloud. Implementación de una solución basada en OpenStack para la creación de una infrastructura de servicios cloud. Implementació d'una solució basada en OpenStack per la creació d'una infrastructura de serveis cloud.

  18. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  19. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft 2 ) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft 2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft 2 ) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  20. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  1. Exploring online evolution of network stacks

    OpenAIRE

    Imai, Pierre

    2013-01-01

    Network stacks today follow a one-size-fits-all philosophy. They are mostly kept unmodified due to often prohibitive costs of engineering, deploying and administrating customisation of the networking software, with the Internet stack architecture still largely being based on designs and assumptions made for the ARPANET 40 years ago. We venture that heterogeneous and rapidly changing networks of the future require, in order to be successful, run-time self-adaptation mechanisms at different tim...

  2. Monitoring and Modeling Temperature Variations Inside Silage Stack Using Novel Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Green, Ole; Shahrak Nadimi, Esmaeil; Blanes-Vidal, Victoria

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol and 10 mW transmission power). The designed sensor housings were capable......Abstract: By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor; and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  3. Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks

    DEFF Research Database (Denmark)

    Green, O.; Nadimi, E.S.; Blanes-Vidal, V.

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol, and 10 mW transmission power). The designed sensor housings were capable......By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor: and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  4. Music Preference, Depression, Suicidal Preoccupation, and Personality: Comment on Stack and Gundlach's Papers.

    Science.gov (United States)

    Lester, David; Whipple, Melissa

    1996-01-01

    In a sample of students (n=93), preference for country and western music was not associated with depression or suicidal preoccupation as has been suggested by Stack and Gundlach. However, preference for heavy metal music was associated with prior suicidal ideation. Stronger associations were found between music preferences and measures of…

  5. High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal management

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.; Colclasure, A. M.; Goldin, G.

    Effective thermal integration of system components is critical to the performance of small-scale (design and simulation tool for a highly-integrated tubular SOFC system. The SOFC is modeled using a high fidelity, one-dimensional tube model coupled to a three-dimensional computational fluid dynamics (CFD) model. Recuperative heat exchange between SOFC tail-gas and inlet cathode air and reformer air/fuel preheat processes are captured within the CFD model. Quasi one-dimensional thermal resistance models of the tail-gas combustor (TGC) and catalytic partial oxidation (CPOx) complete the balance of plant (BoP) and SOFC coupling. The simulation tool is demonstrated on a prototype 66-tube SOFC system with 650 W of nominal gross power. Stack cooling predominately occurs at the external surface of the tubes where radiation accounts for 66-92% of heat transfer. A strong relationship develops between the power output of a tube and its view factor to the relatively cold cylinder wall surrounding the bundle. The bundle geometry yields seven view factor groupings which correspond to seven power groupings with tube powers ranging from 7.6-10.8 W. Furthermore, the low effectiveness of the co-flow recuperator contributes to lower tube powers at the bundle outer periphery.

  6. Radiation damage and life-time evaluation of RBMK graphite stack

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, P A; Chugunov, O K; Manevsky, V N; Karpukhin, V I [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation). Reactor Material Div.

    1996-08-01

    At the present time there are 11 NPP units with RBMK reactors in operation in Russia, with the oldest now in operation 22 years. Design life-time of the RBMK-1000 reactor is 30 years. This paper addresses the evaluation of RBMK graphite stack life-time. It is the practice in Russia to evaluate the reliability of the channel reactor graphite stack using at least three criteria: degradation of physical-mechanical properties of graphite, preservation of the graphite brick integrity, and degradation of the graphite stack as a structure. Stack life-time evaluation by different criteria indicates that the most realistic approach may be realized on the basis of the criteria of brick cracking and degradation of the graphite stack as a structure. The RBMK reactor graphite stack life-time depends on its temperature and for different units it may be different. (author). 2 refs, 10 figs.

  7. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  8. Influence of the GaN spacer thickness on the structural and photoluminescence properties of multi-stack InN/GaN quantum dots

    International Nuclear Information System (INIS)

    Ke, Wen-Cheng; Lee, Shuo-Jen; Chen, Shiow-Long; Kao, Chia-Yu; Houng, Wei-Chung; Wei, Chih-An; Su, Yi-Ru

    2012-01-01

    Highlights: ► We present structural and photoluminescence characteristics of multi-stack InN/GaN QDs. ► A single crystalline 10-nm thick GaN capping layer is grown on the InN QDs. ► The PL intensity of the three-layer stacked sample is about 3 times that of the single-layer sample. - Abstract: This paper reports the structural and photoluminescence (PL) characteristics of single-layer and multi-stack InN/GaN quantum dots (QDs) with varying spacer thickness. A single crystalline 10-nm thick GaN capping layer is grown on the InN QDs by the flow-rate modulation epitaxy (FME) method. The PL peak is red shifted down to 18 meV and its full width at half maximum (FWHM) was narrowed from 104 meV to 77 meV as increasing GaN capping layer thickness to 20-nm. The red-shift and the linewidth narrowing of the PL spectra for the single-layer InN QDs as a result of the increase in capping thickness are believed to be due to the fact that the GaN capping layer decreases the surface defect density thereby decreasing the surface electron concentration of the InN QDs. However, the PL intensity decreases rapidly with the increase in GaN spacer thickness for the three-layer stacked InN/GaN QDs. Because of kinetic roughening, the 20-nm thick GaN capping layer shows a roughened surface. This roughened GaN capping layer degrades the InN QDs growth in the next layer of multi-stack InN QDs. In addition, the increased compressive strain on the InN QDs with the increase in GaN spacer thickness increases the defect density at the InN/GaN capped interface and will further decrease the PL intensity. After the GaN spacer thickness is modified, the PL intensity of the three-layer stacked sample with a 10-nm thick GaN spacer layer is about 3 times that of the single-layer sample.

  9. Thermal stress analysis of a planar SOFC stack

    Science.gov (United States)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  10. Optimization of hole generation in Ti/CFRP stacks

    Science.gov (United States)

    Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.

    2018-03-01

    The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.

  11. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  12. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  13. Can-Evo-Ens: Classifier stacking based evolutionary ensemble system for prediction of human breast cancer using amino acid sequences.

    Science.gov (United States)

    Ali, Safdar; Majid, Abdul

    2015-04-01

    The diagnostic of human breast cancer is an intricate process and specific indicators may produce negative results. In order to avoid misleading results, accurate and reliable diagnostic system for breast cancer is indispensable. Recently, several interesting machine-learning (ML) approaches are proposed for prediction of breast cancer. To this end, we developed a novel classifier stacking based evolutionary ensemble system "Can-Evo-Ens" for predicting amino acid sequences associated with breast cancer. In this paper, first, we selected four diverse-type of ML algorithms of Naïve Bayes, K-Nearest Neighbor, Support Vector Machines, and Random Forest as base-level classifiers. These classifiers are trained individually in different feature spaces using physicochemical properties of amino acids. In order to exploit the decision spaces, the preliminary predictions of base-level classifiers are stacked. Genetic programming (GP) is then employed to develop a meta-classifier that optimal combine the predictions of the base classifiers. The most suitable threshold value of the best-evolved predictor is computed using Particle Swarm Optimization technique. Our experiments have demonstrated the robustness of Can-Evo-Ens system for independent validation dataset. The proposed system has achieved the highest value of Area Under Curve (AUC) of ROC Curve of 99.95% for cancer prediction. The comparative results revealed that proposed approach is better than individual ML approaches and conventional ensemble approaches of AdaBoostM1, Bagging, GentleBoost, and Random Subspace. It is expected that the proposed novel system would have a major impact on the fields of Biomedical, Genomics, Proteomics, Bioinformatics, and Drug Development. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. ORELA data acquisition system hardware. Vol. 6. Eight-stage stacking buffer memory (Q-5066)

    International Nuclear Information System (INIS)

    Wintenberg, R.E.; Reynolds, J.W.

    1977-01-01

    A Stacking Buffer Memory for de-randomizing data on high data rate experiments at ORELA is documented by a description of operation, mechanical details of design, and a detailed theory of operation illustrated through six examples of operation

  15. Routes to a commercially viable PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J.; Foster, S.E.; Hodgson, D.; Marrett, A.

    2002-07-01

    This report describes the results of a project to design and build a 10 kW{sub e} proton exchange membrane fuel cell (PEMFC) stack, including membrane electrode assemblies (MEAs), bipolar plates and stack hardware. The aim was to prove the design concept and to demonstrate functionality by operating the stack at >1 kW{sub e}/L and 500 W/kg for 200 hours operation. The project was extended to include the assembly and testing of two additional 1 kW{sub e} PEMFC stacks based on coated metal components. Low equivalent weight perfluorinated ionomer ion exchange membranes were prepared and were found to give a superior electrochemical performance to commercial materials. A technique to etch various stainless steel grades and control processes was successfully developed and optimised. Coatings for stainless steel and titanium were successfully developed and met the required performance criteria. All PEMFC stack components were selected and designed to enable subsequent commercial manufacture.

  16. Stacking faults and phase changes in Mg-doped InGaN grown on Si

    International Nuclear Information System (INIS)

    Liliental-Weber, Zuzanna; Yu, Kin M.; Reichertz, Lothar A.; Ager, Joel W.; Walukiewicz, Wladek; Schaff, William J.; Hawkridge, Michael E.

    2009-01-01

    We report evidence for the role of Mg in the formation of basal stacking faults and a phase transition in In x Ga 1-x N layers doped with Mg grown by molecular beam epitaxy on Si(111) substrates with AlN buffer layers. Several samples with varying In content between x∝0.1 and x∝0.3 are examined by transmission electron microscopy and other techniques. High densities of basal stacking faults are observed in the central region of the InGaN layer away from the substrate or layer surface, but at varying depths within this region. Selected area diffraction patterns show that while the InGaN layer is initially in the wurtzite phase (and of good quality) AlN buffer layer, there is a change to the zinc blende phase in the upper part of the InGaN layer. SIMS measurements show that the Mg concentration drops from a maximum to a steady concentration coinciding with the presence of the basal stacking faults. There is little change in In or Ga concentrations in the same area. High-resolution electron microscopy from the area of the stacking faults confirms that the change to the cubic phase is abrupt across one such fault. These results indicate that Mg plays a role in the formation of stacking faults and the phase change observed in In x Ga 1-x N alloys. We also consider the role of In in the formation of these defects. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  18. Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

    Directory of Open Access Journals (Sweden)

    Shoudong Gu

    2016-06-01

    Full Text Available To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT (Surface Mount Technology production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process. Here, the critical jet ejection velocity is discussed through theoretical analysis. The relations between ejection velocity and needle structure, needle velocity, and nozzle diameter were obtained by FLUENT software. Then, the prototype of the solder paste jetting system was fabricated, and the performance was verified by experiments. The effects of the gap between nozzle and needle, the driving voltage, and the nozzle diameter on the jetting performance and droplet diameter were obtained. Solder paste droplets 0.85 mm in diameter were produced when the gap between the nozzle and needle was adjusted to 10 μm, the driving voltage to 80 V, the nozzle diameter to 0.1 mm, and the variation of the droplet diameter was within ±3%.

  19. Local Conduction in Mo xW1- xSe2: The Role of Stacking Faults, Defects, and Alloying.

    Science.gov (United States)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W

    2018-04-18

    Here, we report on the surface conductivity of WSe 2 and Mo x W 1- x Se 2 (0 ≤ x ≤ 1) crystals investigated with conductive atomic force microscopy. We found that stacking faults, defects, and chemical heterogeneities form distinct two-dimensional and one-dimensional conduction paths on the transition metal dichalcogenide surface. In the case of WSe 2 , in addition to step edges, we find a significant amount of stacking faults (formed during the cleaving process) that strongly influence the surface conductivity. These regions are attributed to the alternation of the 2H and 3R polytypism. The stacking faults form regular 2D patterns by alternation of the underlying stacking order, with a periodicity that varies significantly between different regions and samples. In the case of Mo x W 1- x Se 2 , its conductivity has a localized nature, which depends on the underlying chemical composition and the Mo/W ratio. Segregation to W-rich and Mo-rich regions during the growth process leads to nonuniform conduction paths on the surface of the alloy. We found a gradual change of the conductivity moving from one region to the other, reminiscent of lateral band bending. Our results demonstrate the use of C-AFM as a nanoscopic tool to probe the electrical properties of largely inhomogeneous samples and show the complicated nature of the surface conductivity of TMDC alloys.

  20. Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters

    Science.gov (United States)

    Bulbul, Esra; Markevitch, Maxim; Foster, Adam; Miller, Eric; Bautz, Mark; Lowenstein, Mike; Randall, Scott W.; Smith, Randall K.

    2016-01-01

    We perform a detailed study of the stacked Suzaku observations of 47 galaxy clusters, spanning a redshift range of 0.01-0.45, to search for the unidentified 3.5 keV line. This sample provides an independent test for the previously detected line. We detect a 2sigma-significant spectral feature at 3.5 keV in the spectrum of the full sample. When the sample is divided into two subsamples (cool-core and non-cool core clusters), the cool-core subsample shows no statistically significant positive residuals at the line energy. A very weak (approx. 2sigma confidence) spectral feature at 3.5 keV is permitted by the data from the non-cool-core clusters sample. The upper limit on a neutrino decay mixing angle of sin(sup 2)(2theta) = 6.1 x 10(exp -11) from the full Suzaku sample is consistent with the previous detections in the stacked XMM-Newton sample of galaxy clusters (which had a higher statistical sensitivity to faint lines), M31, and Galactic center, at a 90% confidence level. However, the constraint from the present sample, which does not include the Perseus cluster, is in tension with previously reported line flux observed in the core of the Perseus cluster with XMM-Newton and Suzaku.

  1. Sport stacking activities in school children's motor skill development.

    Science.gov (United States)

    Li, Yuhua; Coleman, Diane; Ransdell, Mary; Coleman, Lyndsie; Irwin, Carol

    2011-10-01

    This study examined the impact of a 12-wk. sport stacking intervention on reaction time (RT), manual dexterity, and hand-eye coordination in elementary school-aged children. 80 Grade 2 students participated in a 15-min. sport stacking practice session every school day for 12 wk., and were tested on psychomotor performance improvement. Tests for choice RT, manual dexterity, and photoelectric rotary pursuit tracking were conducted pre- and post-intervention for both experimental group (n = 36) and the controls (n = 44) who did no sport stacking. Students who had the intervention showed a greater improvement in two-choice RT. No other group difference was found. Such sport stacking activities may facilitate children's central processing and perceptual-motor integration.

  2. Sample changer for X-ray spectrometer

    International Nuclear Information System (INIS)

    Kaestner, F.; Bisch, H.

    1977-01-01

    A sample planchette with several samples in a spectrometer is rotated so as to position each sample in succession in a counting position. To change the planchette, the cover of the spectrometer raises together with the planchette and rotates to the side into a vertical magazine. The planchette is unhooked onto a tray which rapidly moves to a position above the cover, and the next planchette in the magazine stack moves upwards on a tray and is hooked to the cover and taken to the counting station. Three chains ensure the movement of the planchette trays in the magazine, one for raising the uncounted samples up the magazine, one for shifting the counted ones to the upper stack, and one to move the counted planchettes higher up the magazine. The movement of the chains is controlled by microswitches. (ORU) [de

  3. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  4. The Stack-Size of Combinatorial Tries Revisited

    Directory of Open Access Journals (Sweden)

    Markus E. Nebel

    2002-12-01

    Full Text Available In the present paper we consider a generalized class of extended binary trees in which leaves are distinguished in order to represent the location of a key within a trie of the same structure. We prove an exact asymptotic equivalent to the average stack-size of trees with α internal nodes and β leaves corresponding to keys; we assume that all trees with the same parameters α and β have the same probability. The assumption of that uniform model is motivated for example by the usage of tries for the compression of blockcodes. Furthermore, we will prove asymptotics for the r-th moments of the stack-size and we will show that a normalized stack-size possesses a theta distribution in the limit.

  5. Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.

    Science.gov (United States)

    Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V

    2018-04-19

    Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.

  6. Role of stacking fault energy on the deformation characteristics of copper alloys processed by plane strain compression

    International Nuclear Information System (INIS)

    El-Danaf, Ehab A.; Al-Mutlaq, Ayman; Soliman, Mahmoud S.

    2011-01-01

    Highlights: → Different compositions of Cu-Zn and Cu-Al alloys are plane strain compressed. → Strain hardening rates, microstructure and texture evolution are documented. → SFE has an indirect effect rather a critical dislocation density controls twinning. → Cu-Al exhibited the need for higher dislocation density for twin initiation. → Onset of twinning occurs in the copper alloys tested with a normalized SFE ≤ 10-3. - Abstract: Samples of Cu-Al and Cu-Zn alloys with different compositions were subjected to large strains under plane strain compression (PSC), a process that simulates the rolling operation. Four compositions in the Cu-Al system, namely 1, 2, 4.7 and 7 wt.% Al and three compositions in the Cu-Zn system of 10, 20 and 30 wt.% Zn, were investigated. Adding Al or Zn to Cu effectively lowers the stacking fault energy (SFE) of the alloy and changes the deformation mechanism from dislocation slipping to dislocation slipping and deformation twinning. True stress-true strain responses in PSC were documented and the strain hardening rates were calculated and correlated to the evolved microstructure. The onset of twinning in low SFE alloys was not directly related to the low value of SFE, but rather to build up of a critical dislocation density during strain hardening in the early stage of deformation (ε < 0.1). The evolution of texture was documented for the Cu-Al samples using X-ray diffraction for samples plane strain compressed to true axial strains of 0.25, 0.5, 0.75 and 1.0. Orientation distribution function (ODF) plots were generated and quantitative information on the volume fraction of ideal rolling orientations were depicted and correlated with the stacking fault energy.

  7. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes?

    Science.gov (United States)

    Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert

    2016-04-07

    We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.

  8. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.

    2015-01-01

    In the EU-funded project “SOCTESQA” partners from Europe and Singapore are working together to develop uniform and industry wide test procedures and protocols for solid oxide cells and stacks SOC cell/stack assembly. New application fields which are based on the operation of the SOC cell/stack as......In the EU-funded project “SOCTESQA” partners from Europe and Singapore are working together to develop uniform and industry wide test procedures and protocols for solid oxide cells and stacks SOC cell/stack assembly. New application fields which are based on the operation of the SOC cell...

  9. Optimized stacked RADFETs for milli-rad dose measurement

    International Nuclear Information System (INIS)

    O'Connell, B.; Lane, B.; Mohammadzadeh, A.

    1999-01-01

    This paper details the improvements in the design of stacked RADFETs for increased radiation sensitivity. The issues of high read-out voltage has been shown to be a draw-back. It is the body (bulk)effect factor that is responsible for the increased overall stack Threshold voltage (V T ), which is greater than the sum of the individual devices V T . From extensive process and device simulation and resultant circuit simulation, modified stack structures have been proposed and designed. New and exciting result of lower initial (pre-irradiation) output voltage as well as increased radiation sensitivity will be presented. (author)

  10. About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Matinyan, G K; Harutyunyan, M Z

    2014-01-01

    The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. The influence of: the CLC sublayer thicknesses; incidence angle; local dielectric (magnetic) anisotropy of the CLC layers; refraction indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.

  11. A study of the internal humidification of an integrated PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K H; Lee, T H [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Park, D J; Rho, Y W; Kho, Y T [KOGAS R and D Center, Kyunggi (Korea, Republic of)

    1998-07-15

    An integrated proton exchange membrane fuel-cell (PFMFC) system has been developed with an internal humidifier within the stack. Research is concentrated on selecting a membrane with low cost and good water permeability because, to date, high-cost membranes (e.g., as Nafion) have been used. The gas and water permeability of several membranes were measured. A low-cost ultra filtration (UF) membrane shows better characteristics for the internal humidifier and cell performance than the others. Also, saturated water vapour permeating through the UF membrane can be supplied at the stack from the internal humidifier. The internal humidifier using UF membrane is thought to be a satisfactory humidifier for a PEMPC. (orig.)

  12. Optoelectronic interconnects for 3D wafer stacks

    Science.gov (United States)

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  13. Coherent stacking of picosecond laser pulses in a high-Q optical cavity for accelerator applications

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Telegin, Yu.N.

    2007-01-01

    We have performed the harmonic analysis of the steady-state coherent pulse-stacking process in a high-Q Fabry-Perot cavity. The expression for the stacked pulse shape is obtained as a function of both the laser cavity and pulse-stacking cavity parameters. We have also estimated the pulse power gains attainable in the laser-optical system of NESTOR storage ring, which is under development at Kharkov Institute of Physics and Technology. It is shown that high power gains (∼10 4 ) can be, in principle, achieved in a cavity, formed with low-absorption, high reflectivity (R ∼ 0.9999) mirrors, if the laser cavity length will differ exactly by half wavelength from the pulse-stacking cavity length. It implies development of the sophisticated frequency stabilization loop for maintaining the cavity length constant within a sub-nanometer range. At the same time, power gains of ∼10 3 can be obtained with medium reflectivity mirrors (R ∼ 0.999) at considerably lower cost

  14. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.

    Science.gov (United States)

    Meng, Fei; Estruga, Marc; Forticaux, Audrey; Morin, Stephen A; Wu, Qiang; Hu, Zheng; Jin, Song

    2013-12-23

    Stacking faults are an important class of crystal defects commonly observed in nanostructures of close packed crystal structures. They can bridge the transition between hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases, with the most known example represented by the "nanowire (NW) twinning superlattice". Understanding the formation mechanisms of stacking faults is crucial to better control them and thus enhance the capability of tailoring physical properties of nanomaterials through defect engineering. Here we provide a different perspective to the formation of stacking faults associated with the screw dislocation-driven growth mechanism of nanomaterials. With the use of NWs of WZ aluminum nitride (AlN) grown by a high-temperature nitridation method as the model system, dislocation-driven growth was first confirmed by transmission electron microscopy (TEM). Meanwhile numerous stacking faults and associated partial dislocations were also observed and identified to be the Type I stacking faults and the Frank partial dislocations, respectively, using high-resolution TEM. In contrast, AlN NWs obtained by rapid quenching after growth displayed no stacking faults or partial dislocations; instead many of them had voids that were associated with the dislocation-driven growth. On the basis of these observations, we suggest a formation mechanism of stacking faults that originate from dislocation voids during the cooling process in the syntheses. Similar stacking fault features were also observed in other NWs with WZ structure, such as cadmium sulfide (CdS) and zinc oxide (ZnO).

  15. Phases of a stack of membranes in a large number of dimensions of configuration space

    Science.gov (United States)

    Borelli, M. E.; Kleinert, H.

    2001-05-01

    The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.

  16. Seismic facies analysis from pre-stack data using self-organizing maps

    International Nuclear Information System (INIS)

    Kourki, Meysam; Ali Riahi, Mohammad

    2014-01-01

    In facies analysis, seismic data are clustered in different groups. Each group represents subsurface points with similar physical properties. Different groups can be related to differences in lithology, physical properties of rocks and fluid changes in the rocks. The supervised and unsupervised data clustering are known as two types of clustering architecture. In supervised clustering, the number of clusters is predefined, while in unsupervised clustering, a collection of patterns partitions into groups without predefined clusters. In this study, the pre-stack data clustering is used for seismic facies analysis. In this way, a horizon was selected from pre-stack data, followed by sorting of data using offset. A trace associated with each CDP is constructed, for which the first and second samples are related to the first and second offsets, respectively. The created trace is called consolidated trace which is characteristic of subsurface points. These consolidated traces are clustered by using self-organizing maps (SOM). In proposed pre-stack seismic data clustering, points with similar physical properties are placed in one cluster. Seismic data associated with hydrocarbon reservoirs have very different characteristics that are easily recognized. The efficiency of the proposed method was tested on both synthetic and real seismic data. The results showed that the algorithm improves the data classification and the points of different properties are noticeable in final maps. (paper)

  17. Characterizing edge and stacking structures of exfoliated graphene by photoelectron diffraction

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Koh, Shinji; Daimon, Hiroshi; Matsushita, Tomohiro

    2013-01-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO 2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions. (author)

  18. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    International Nuclear Information System (INIS)

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-01-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczyński (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  19. Effect of flow parameters on flare stack generator noise

    International Nuclear Information System (INIS)

    Dinn, T.S.

    1998-01-01

    The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs

  20. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  1. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  2. LAB3 Cosmic Ray Test Stand Analysis of Steel Stack Supports

    International Nuclear Information System (INIS)

    Cease, H.

    1998-01-01

    A cosmic ray test stand is being constructed at Lab 3. The stand consists of two stacks of steel plates one resting on top of the other. The top stack is composed of 6 plates of steel making an overall stack size of 34.5-inch x 40-inch x 99-inch. The bottom stack also has 6 layers of plate making an overall size of approximately 49.5-inch x 82-inch x 99-inch. The bottom stack is supported with three support legs. See drawing 3823.000ME-900428 for the individual plate orientation. The minimum support leg size and necessary welds between plates are determined.

  3. On the interplay between chirality and exciton coupling: a DFT calculation of the circular dichroism in π-stacked ethylene.

    Science.gov (United States)

    Norman, Patrick; Linares, Mathieu

    2014-09-01

    The chirality of stacked weakly interacting π-systems was interpreted in terms of Frenkel exciton states and the formation of excitonic circular dichroism (CD) bands was monitored for ethylene stacks of varying sizes. Convergence of CD bands with respect to the system size was observed for stacks involving around 10 molecules. By means of rotation around the C-C double bond in ethylene, chirality was induced in the monomeric system and which was shown to dominate the spectral responses, even for polymer aggregates. In helical assemblies of chiral entities, there will always be a mix of excitonic and monomeric contributions to the CD signal and it is demonstrated that the complex polarization propagator approach in combination with Density Functional Theory is a suitable method to address this situation. © 2014 Wiley Periodicals, Inc.

  4. Nonlinearly stacked low noise turbofan stator

    Science.gov (United States)

    Schuster, William B. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  5. Evaluation of field emission properties from multiple-stacked Si quantum dots

    International Nuclear Information System (INIS)

    Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.

  6. Fluorescence imaging of sample zone narrowing and dispersion in a glass microchip: the effects of organic solvent (acetonitrile)-salt mixtures in the sample matrix and surfactant micelles in the running buffer.

    Science.gov (United States)

    Jia, Zhijian; Lee, Yi-kuen; Fang, Qun; Huie, Carmen W

    2006-03-01

    A mismatch in the EOF velocities between the sample zone and running buffer region is known to generate pressure-driven, parabolic flow profile of the sample plug in electrokinetic separation systems. In the present study, video fluorescence microscopy was employed to capture real-time dynamics of the sample plug (containing fluorescein as the probe molecule) in a discontinuous conductivity system within a glass microchip, in which the sample matrix consisted of a mixture of ACN and salt (NaCl), and the running buffer contained sodium cholate (SC) micelles as the pseudo-stationary phase (i.e., performing "ACN stacking" in the mode of MEKC). Upon application of the separation voltage, the video images revealed that zone narrowing and broadening of the probe molecules occurred as the sample plug headed toward the cathode during the initial time period, probably resulting in part from the stacking/sweeping, and destacking of the SC micelles at the boundaries between the sample zone and running buffer. Interestingly, a second sample zone narrowing event can be observed as the sample plug moved further toward the cathode, which could be attributed to the sweeping of the slower moving probe molecules by the faster moving SC micelles that originated from the anode. This phenomenon was studied as a function of pH, sample plug length, as well as the concentration of organic solvent and salt in the sample matrix. The data suggested that the presence of large amounts of an organic solvent (such as ACN or methanol) and salts in the sample matrix not only induces sample dispersion due to the formation of a pressure-driven (hydrodynamic) flow, but may also lead to the formation of a double sample zone narrowing phenomenon by altering the local EOF dynamics within the separation system.

  7. Extensive radioactive characterization of a phosphogypsum stack in SW Spain: {sup 226}Ra, {sup 238}U, {sup 210}Po concentrations and {sup 222}Rn exhalation rate

    Energy Technology Data Exchange (ETDEWEB)

    Abril, Jose-Maria, E-mail: jmabril@us.es [Dpto. Fisica Aplicada I, Universidad de Sevilla, EUITA, Ctra Utrera Km 1, 41013 Seville (Spain); Garcia-Tenorio, Rafael, E-mail: gtenorio@us.es [Dpto. Fisica Aplicada II, Universidad de Sevilla, ETSA, Avda. Reina Mercedes s/n, 41012 Seville (Spain); Manjon, Guillermo, E-mail: manjon@us.es [Dpto. Fisica Aplicada II, Universidad de Sevilla, ETSA, Avda. Reina Mercedes s/n, 41012 Seville (Spain)

    2009-05-30

    Phosphogypsum (PG) is a by-product of the phosphate fertilizer industries that contains relatively high concentrations of uranium series radionuclides. The US-EPA regulates the agriculture use of PG, attending to its {sup 226}Ra content and to the {sup 222}Rn exhalation rate from inactive stacks. Measurements of {sup 222}Rn exhalation rates in PG stacks typically show a large and still poorly understood spatial and temporal variability, and the published data are scarce. This work studies an inactive PG stack in SW Spain of about 0.5 km{sup 2} from where PG can be extracted for agriculture uses, and an agriculture soil 75 km apart, being representative of the farms to be amended with PG. Activity concentrations of {sup 226}Ra, {sup 238}U and {sup 210}Po have been measured in 30 PG samples (0-90 cm horizon) allowing for the construction of maps with spatial distributions in the PG stack and for the characterization of the associated PG inputs to agriculture soils. Averaged {sup 226}Ra concentrations for the stack were 730 {+-} 60 Bq kg{sup -1} (d.w.), over the US-EPA limit of 370 Bq kg{sup -1}. {sup 222}Rn exhalation rate has been measured by the charcoal canister method in 49 sampling points with 3 canisters per sampling point. Values in PG stack were under the US-EPA limit of 2600 Bq m{sup -2} h{sup -1}, but they were one order of magnitude higher than those found in the agriculture soil. Variability in radon emissions has been studied at different spatial scales. Radon exhalation rates were correlated with {sup 226}Ra concentrations and daily potential evapotranspiration (ETo). They increased with ETo in agriculture soils, but showed an opposite behaviour in the PG stack.

  8. Uniqueness of magnetotomography for fuel cells and fuel cell stacks

    International Nuclear Information System (INIS)

    Lustfeld, H; Hirschfeld, J; Reissel, M; Steffen, B

    2009-01-01

    The criterion for the applicability of any tomographic method is its ability to construct the desired inner structure of a system from external measurements, i.e. to solve the inverse problem. Magnetotomography applied to fuel cells and fuel cell stacks aims at determining the inner current densities from measurements of the external magnetic field. This is an interesting idea since in those systems the inner electric current densities are large, several hundred mA per cm 2 and therefore relatively high external magnetic fields can be expected. Still the question remains how uniquely the inverse problem can be solved. Here we present a proof that by exploiting Maxwell's equations extensively the inverse problem of magnetotomography becomes unique under rather mild assumptions and we show that these assumptions are fulfilled in fuel cells and fuel cell stacks. Moreover, our proof holds true for any other device fulfilling the assumptions listed here. Admittedly, our proof has one caveat: it does not contain an estimate of the precision requirements the measurements need to fulfil for enabling reconstruction of the inner current densities from external magnetic fields.

  9. Comprehensive first-principles study of stable stacking faults in hcp metals

    International Nuclear Information System (INIS)

    Yin, Binglun; Wu, Zhaoxuan; Curtin, W.A.

    2017-01-01

    The plastic deformation in hcp metals is complex, with the associated dislocation core structures and properties not well understood on many slip planes in most hcp metals. A first step in establishing the dislocation properties is to examine the stable stacking fault energy and its structure on relevant slip planes. However, this has been perplexing in the hcp structure due to additional in-plane displacements on both sides of the slip plane. Here, density functional theory guided by crystal symmetry analysis is used to study all relevant stable stacking faults in 6 hcp metals (Mg, Ti, Zr, Re, Zn, Cd). Specially, the stable stacking fault energy, position, and structure on the Basal, Prism I and II, Pyramidal I and II planes are determined using all-periodic supercells with full atomic relaxation. All metals show similar stacking fault position and structure as dictated by crystal symmetry, but the associated stacking fault energy, being governed by the atomic bonding, differs significantly among them. Stacking faults on all the slip planes except the Basal plane show substantial out-of-plane displacements while stacking faults on the Prism II, Pyramidal I and II planes show additional in-plane displacements, all extending to multiple atom layers. The in-plane displacements are not captured in the standard computational approach for stacking faults, and significant differences are shown in the energies of such stacking faults between the standard approach and fully-relaxed case. The existence of well-defined stable stacking fault on the Pyramidal planes suggests zonal dislocations are unlikely. Calculations on the equilibrium partial separation further suggests 〈c + a〉 dissociation into three partials on the Pyramidal I plane is unlikely and 〈c〉 dissociation on Prism planes is unlikely to be stable against climb-dissociation onto the Basal planes in these metals.

  10. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m Class System

    Science.gov (United States)

    Cheatwood, F. McNeil; Swanson, Gregory T.; Johnson, R. Keith; Hughes, Stephen; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and

  11. Analysis of preemption costs for the stack cache

    DEFF Research Database (Denmark)

    Naji, Amine; Abbaspour, Sahar; Brandner, Florian

    2018-01-01

    , the analysis of the stack cache was limited to individual tasks, ignoring aspects related to multitasking. A major drawback of the original stack cache design is that, due to its simplicity, it cannot hold the data of multiple tasks at the same time. Consequently, the entire cache content needs to be saved...

  12. Local Conduction in MoxW1–xSe2: The Role of Stacking Faults, Defects, and Alloying

    Science.gov (United States)

    2018-01-01

    Here, we report on the surface conductivity of WSe2 and MoxW1–xSe2 (0 ≤ x ≤ 1) crystals investigated with conductive atomic force microscopy. We found that stacking faults, defects, and chemical heterogeneities form distinct two-dimensional and one-dimensional conduction paths on the transition metal dichalcogenide surface. In the case of WSe2, in addition to step edges, we find a significant amount of stacking faults (formed during the cleaving process) that strongly influence the surface conductivity. These regions are attributed to the alternation of the 2H and 3R polytypism. The stacking faults form regular 2D patterns by alternation of the underlying stacking order, with a periodicity that varies significantly between different regions and samples. In the case of MoxW1–xSe2, its conductivity has a localized nature, which depends on the underlying chemical composition and the Mo/W ratio. Segregation to W-rich and Mo-rich regions during the growth process leads to nonuniform conduction paths on the surface of the alloy. We found a gradual change of the conductivity moving from one region to the other, reminiscent of lateral band bending. Our results demonstrate the use of C-AFM as a nanoscopic tool to probe the electrical properties of largely inhomogeneous samples and show the complicated nature of the surface conductivity of TMDC alloys. PMID:29578328

  13. Accurate acoustic and elastic beam migration without slant stack for complex topography

    International Nuclear Information System (INIS)

    Huang, Jianping; Yuan, Maolin; Li, Zhenchun; Liao, Wenyuan; Yue, Yubo

    2015-01-01

    Recent trends in seismic exploration have led to the collection of more surveys, often with multi-component recording, in onshore settings where both topography and subsurface targets are complex, leading to challenges for processing methods. Gaussian beam migration (GBM) is an alternative to single-arrival Kirchhoff migration, although there are some issues resulting in unsatisfactory GBM images. For example, static correction will give rise to the distortion of wavefields when near-surface elevation and velocity vary rapidly. Moreover, Green’s function compensated for phase changes from the beam center to receivers is inaccurate when receivers are not placed within some neighborhood of the beam center, that is, GBM is slightly inflexible for irregular acquisition system and complex topography. As a result, the differences of both the near-surface velocity and the surface slope from the beam center to the receivers and the poor spatial sampling of the land data lead to inaccuracy and aliasing of the slant stack, respectively. In order to improve the flexibility and accuracy of GBM, we propose accurate acoustic, PP and polarity-corrected PS beam migration without slant stack for complex topography. The applications of this method to one-component synthetic data from a 2D Canadian Foothills model and a Zhongyuan oilfield fault model, one-component field data and an unseparated multi-component synthetic data demonstrate that the method is effective for structural and relatively amplitude-preserved imaging, but significantly more time-consuming. (paper)

  14. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production

    Directory of Open Access Journals (Sweden)

    Mauro Francesco Sgroi

    2016-11-01

    Full Text Available Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs. The concept of a direct methanol fuel cell (DMFC is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs. In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.

  15. Generalized diffraction-stack migration and filtering of coherent noise

    KAUST Repository

    Zhan, Ge

    2014-01-27

    We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.

  16. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    Science.gov (United States)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  17. Anisotropic electrical conduction in relation to the stacking disorder in graphite

    International Nuclear Information System (INIS)

    Tsuzuku, T.

    1979-01-01

    The in-plane and c-axis conduction behaviours of Kish graphite and of hot-worked pyrolytic graphite are discussed in relation to their structural perfection, special interest being focused onto the stacking fault disorder which appears in the form of extended basal dislocation ribbons. Analysis of the two-dimensional magneto-conductivity indicates that the carrier density of faulted specimens increases slowly with temperature (T) even below the degeneracy point of the carrier system, whereas the unfaulted ones do not. the c-axis resistivity (psub(c)) has been found to decrease with diminishing stacking disorder for a well-defined specimen group not containing such irregularities as microcracks. This verifies the applicability of the band model to the intrinsic psub(c) 's, in connection with the success of Ono's theory accounting for the wide-range scattering of past data. The discrepancy still remaining between the theoretical and experimental psub(c) vs T relationship, as well as the increase of the in-plane conduction carrier density with temperature, seems to be removed by assuming thermal liberation of the localized Tamm-state electrons from the stacking fault planes. (author)

  18. Mixed Mechanism of Lubrication by Lipid Bilayer Stacks.

    Science.gov (United States)

    Boţan, Alexandru; Joly, Laurent; Fillot, Nicolas; Loison, Claire

    2015-11-10

    Although the key role of lipid bilayer stacks in biological lubrication is generally accepted, the mechanisms underlying their extreme efficiency remain elusive. In this article, we report molecular dynamics simulations of lipid bilayer stacks undergoing load and shear. When the hydration level is reduced, the velocity accommodation mechanism changes from viscous shear in hydration water to interlayer sliding in the bilayers. This enables stacks of hydrated lipid bilayers to act as efficient boundary lubricants for various hydration conditions, structures, and mechanical loads. We also propose an estimation for the friction coefficient; thanks to the strong hydration forces between lipid bilayers, the high local viscosity is not in contradiction with low friction coefficients.

  19. Correlated lateral phase separations in stacks of lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Takuma, E-mail: hoshino-takuma@ed.tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Komura, Shigeyuki, E-mail: komura@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Andelman, David, E-mail: andelman@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

    2015-12-28

    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, T{sub c}, for larger inter-layer interaction. When the temperature ratio, T/T{sub c}, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.

  20. Ablation of film stacks in solar cell fabrication processes

    Science.gov (United States)

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  1. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-28

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  2. Design and analysis of the PBFA-Z vacuum insulator stack

    International Nuclear Information System (INIS)

    Shoup, R.W.; Long, F.; Martin, T.H.; Stygar, W.A.; Spielman, R.B.; Struve, K.W.; Mostrom, M.; Corcoran, P.; Smith, I.

    1996-01-01

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. The insulator stack design and present the results of the ELECTRO and IVORY analyses are described. (author). 2 tabs., 9 figs., 3 refs

  3. Design and analysis of the PBFA-Z vacuum insulator stack

    Energy Technology Data Exchange (ETDEWEB)

    Shoup, R W [Field Command Defense Nuclear Agency, Kirtland AFB, NM (United States); Long, F; Martin, T H; Stygar, W A; Spielman, R B [Sandia National Laboratories, Albuquerque, NM (United States). Dept 9573; Ives, H [EG and G, Albuquerque, NM (United States); Struve, K W; Mostrom, M [Mission Research Corp., Albuquerque, NM (United States); Corcoran, P; Smith, I [Pulse Sciences, Inc., San Leandro, CA (United States)

    1997-12-31

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. The insulator stack design and present the results of the ELECTRO and IVORY analyses are described. (author). 2 tabs., 9 figs., 3 refs.

  4. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI.

    Science.gov (United States)

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-02-01

    Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.

  5. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  6. Pressurized Operation of a Planar Solid Oxide Cell Stack

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune Dalgaard

    2016-01-01

    , pressurized SOEC based electrolyzers can become more efficient both energy- and cost-wise than PEM and Alkaline systems. Pressurization of SOFCs can significantly increase the cell power density and reduce the size of auxiliary components. In the present study, a SOC stack was successfully operated......Solid oxide cells (SOCs) can be operated either as fuel cells (SOFC) to convert fuels to electricity or as electrolyzers (SOEC) to convert electricity to fuels such as hydrogen or methane. Pressurized operation of SOCs provide several benefits on both cell and system level. If successfully matured...

  7. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    Science.gov (United States)

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  8. Electronic structure of the rotation twin stacking fault in β-ZnS

    International Nuclear Information System (INIS)

    Northrup, J.E.; Cohen, M.L.

    1981-01-01

    The electronic structure of the rotation twin stacking fault in β-ZnS is calculated with the self-consistent pseudopotential method. The stacking fault creates a potential barrier of approx.0.07 eV and induces the localization of stacking-fault resonances near the top of the valence band. Stacking-fault states are also predicted to exist in the various gaps in the projected valence-band structure

  9. POSIX and Object Distributed Storage Systems Performance Comparison Studies With Real-Life Scenarios in an Experimental Data Taking Context Leveraging OpenStack Swift & Ceph

    Science.gov (United States)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing infrastructure has become an intensive dynamic system used for first-hand data collection and analysis resulting in a dense collection of data output. As we have transitioned to our current state, inefficient, limited storage systems have become an impediment to fast feedback to online shift crews. Motivation for a centrally accessible, scalable and redundant distributed storage system had become a necessity in this environment. OpenStack Swift Object Storage and Ceph Object Storage are two eye-opening technologies as community use and development have led to success elsewhere. In this contribution, OpenStack Swift and Ceph have been put to the test with single and parallel I/O tests, emulating real world scenarios for data processing and workflows. The Ceph file system storage, offering a POSIX compliant file system mounted similarly to an NFS share was of particular interest as it aligned with our requirements and was retained as our solution. I/O performance tests were run against the Ceph POSIX file system and have presented surprising results indicating true potential for fast I/O and reliability. STAR'S online compute farm historical use has been for job submission and first hand data analysis. The goal of reusing the online compute farm to maintain a storage cluster and job submission will be an efficient use of the current infrastructure.

  10. High power, repetitive stacked Blumlein pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  11. Physical and electrical properties of bilayer CeO{sub 2}/TiO{sub 2} gate dielectric stack

    Energy Technology Data Exchange (ETDEWEB)

    Chong, M.M.V. [School of Materials Science and Engineering, Nanyang Technological University of Singapore, Block N 4.1Nanyang Avenue, Singapore 639798 (Singapore); GlobalFoundries Singapore Private Limited, 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Lee, P.S. [School of Materials Science and Engineering, Nanyang Technological University of Singapore, Block N 4.1Nanyang Avenue, Singapore 639798 (Singapore); Tok, A.I.Y., E-mail: MIYTOK@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University of Singapore, Block N 4.1Nanyang Avenue, Singapore 639798 (Singapore)

    2016-08-15

    Highlights: • A bilayer gate dielectric stack of CeO{sub 2}/TiO{sub 2} to study the dependency of film growth with varying annealing temperatures is proposed. • The study demonstrates CeO{sub 2}/TiO{sub 2} bilayer stack with comparable κ-value as that of HfO{sub 2} but with reduced leakage current density of 4 orders of magnitude. • Schottky emission is the dominant leakage conduction mechanism of annealed CeO{sub 2}/TiO{sub 2} stack due to thermionic effect of interface properties. - Abstract: This study demonstrates a bilayer gate oxide structure of cerium oxide deposited via pulsed laser deposition and titanium oxide using conventional atomic layer deposition. Samples were deposited on p-type Si (100) substrate and exhibit interesting physical and electrical properties such that 600 °C annealed CeO{sub 2}/TiO{sub 2} samples having κ-value of 18 whereas pure CeO{sub 2} deposited samples have dielectric constant of 17.1 with leakage current density of 8.94 × 10{sup −6} A/cm{sup 2} at 1 V applied voltage. The result shows promising usage of the synthesized rare earth oxides as gate dielectric where ideal κ-value and significant reduction of the leakage current by 5 orders of magnitude is achieved. Leakage current conduction mechanism for as-deposited sample is found to be dominated by Poole–Frenkel (PF) emission; the trap level is found to be at 1.29 eV whereas annealed samples (600 °C and 800 °C) exhibited Schottky emission with trap levels at 1.45 eV and 0.81 eV, respectively.

  12. Electronic States of High-k Oxides in Gate Stack Structures

    Science.gov (United States)

    Zhu, Chiyu

    In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate stack structures have been prepared using a reactive electron beam system and a plasma enhanced atomic layer deposition system. Three interrelated issues represent the central themes of the research: 1) the interface band alignment, 2) candidate high-k materials, and 3) band bending, internal electric fields, and charge transfer. 1) The most highlighted issue is the band alignment of specific high-k structures. Band alignment relationships were deduced by analysis of XPS and UPS spectra for three different structures: a) HfO2/VO2/SiO2/Si, b) HfO 2-La2O3/ZnO/SiO2/Si, and c) HfO 2/VO2/ HfO2/SiO2/Si. The valence band offset of HfO2/VO2, ZnO/SiO2 and HfO 2/SiO2 are determined to be 3.4 +/- 0.1, 1.5 +/- 0.1, and 0.7 +/- 0.1 eV. The valence band offset between HfO2-La2O3 and ZnO was almost negligible. Two band alignment models, the electron affinity model and the charge neutrality level model, are discussed. The results show the charge neutrality model is preferred to describe these structures. 2) High-k candidate materials were studied through comparison of pure Hf oxide, pure La oxide, and alloyed Hf-La oxide films. An issue with the application of pure HfO2 is crystallization which may increase the leakage current in gate stack structures. An issue with the application of pure La2O3 is the presence of carbon contamination in the film. Our study shows that the alloyed Hf-La oxide films exhibit an amorphous structure along with reduced carbon contamination. 3) Band bending and internal electric fields in the gate stack structure were observed by XPS and UPS and indicate the charge transfer during the growth and process. The oxygen

  13. Potential radionuclide emissions from stacks on the Hanford Site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscoy

    International Nuclear Information System (INIS)

    Barnett, J.M.

    1994-07-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, ''National Emission Standards for Hazardous Air Pollutants'', stacks that have the potential to emit ≥ 0.1 mrem per year to the maximally exposed individual are considered ''major'' and must meet the continuous monitoring requirements. After the method was tested and verified, the US Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method; and 15 were assessed. The most significant,result from this study was the redesignation. of the T Plant main stack. The stack was assessed as being ''minor'', and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements

  14. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  15. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  16. Behavior of a nuclear power plant ventilation stack for wind loads

    International Nuclear Information System (INIS)

    Venkatachalapathy, V.

    2012-01-01

    This paper describes behavior of self supporting tall reinforced concrete (RC) ventilation stack of a nuclear power plant (NPP) for wind loads. Since the static and equivalent dynamic wind loads are inter-dependant on overall size of the stack, proper sizing of the stack geometry is important for reducing wind loads. The present study investigated the influence of engineered backfill soil on lateral response of ventilation stack. Ignoring backfill soil stiffness up to ground height does not allow to predict actual critical wind velocity causing across wind oscillation. The results show that proposed modification in the stack geometry modeled using 2D beam-spring elements is economical than that of single tapered geometry. Shaft diameter reduced in the proposed geometry indicates that there is a scope for overall space savings in the NPP layout. (author)

  17. Using qualimetric engineering and extremal analysis to optimize a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Besseris, George J.

    2014-01-01

    Highlights: • We consider the optimal configuration of a PEMFC stack. • We utilize qualimetric engineering tools (Taguchi screening, regression analysis). • We achieve analytical solution on a restructured power-law fitting. • We discuss the Pt-cost involvement in the unit and area minimization scope. - Abstract: The optimal configuration of the proton exchange membrane fuel-cell (PEMFC) stack has received attention recently because of its potential use as an isolated energy distributor for household needs. In this work, the original complex problem for generating an optimal PEMFC stack based on the number of cell units connected in series and parallel arrangements as well as on the cell area is revisited. A qualimetric engineering strategy is formulated which is based on quick profiling the PEMFC stack voltage response. Stochastic screening is initiated by employing an L 9 (3 3 ) Taguchi-type OA for partitioning numerically the deterministic expression of the output PEMFC stack voltage such that to facilitate the sizing of the magnitude of the individual effects. The power and current household specifications for the stack system are maintained at the typical settings of 200 W at 12 V, respectively. The minimization of the stack total-area requirement becomes explicit in this work. The relationship of cell voltage against cell area is cast into a power-law model by regression fitting that achieves a coefficient of determination value of 99.99%. Thus, the theoretical formulation simplifies into a non-linear extremal problem with a constrained solution due to a singularity which is solved analytically. The optimal solution requires 22 cell units connected in series where each unit is designed with an area value of 151.4 cm 2 . It is also demonstrated how to visualize the optimal solution using the graphical method of operating lines. The total area of 3270.24 cm 2 becomes a new benchmark for the optimal design of the studied PEMFC stack configuration. It is

  18. Porous Structures in Stacked, Crumpled and Pillared Graphene-Based 3D Materials.

    Science.gov (United States)

    Guo, Fei; Creighton, Megan; Chen, Yantao; Hurt, Robert; Külaots, Indrek

    2014-01-01

    Graphene, an atomically thin material with the theoretical surface area of 2600 m 2 g -1 , has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ~ 2600 m 2 g -1 /N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate-plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600 to 40 m 2 g -1 ) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m 2 g -1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.

  19. Inter-layered clay stacks in Jurassic shales

    Science.gov (United States)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  20. Loss of collected particles from the filter of the stack monitor, the Ringhals-1 power reactor

    International Nuclear Information System (INIS)

    Stroem, L.

    1993-01-01

    The function of the filter holder was examined in the laboratory and in the Ringhals measurement installation. It was concluded that a loss of sample could occur, if the filter has a heavy particle deposit. An approximate relation between deposits thickness and loss of sample could be determined. Particle concentration in the stack air is sometimes so high, that loss of sample can occur. The test have also revealed that the sample air stream can by-pass the filter, without proper indication of the defect. Control instrumentation is proposed

  1. Multibands tunneling in AAA-stacked trilayer graphene

    Science.gov (United States)

    Redouani, Ilham; Jellal, Ahmed; Bahaoui, Abdelhadi; Bahlouli, Hocine

    2018-04-01

    We study the electronic transport through np and npn junctions for AAA-stacked trilayer graphene. Two kinds of gates are considered where the first is a single gate and the second is a double gate. After obtaining the solutions for the energy spectrum, we use the transfer matrix method to determine the three transmission probabilities for each individual cone τ = 0 , ± 1 . We show that the quasiparticles in AAA-stacked trilayer graphene are not only chiral but also labeled by an additional cone index τ. The obtained bands are composed of three Dirac cones that depend on the chirality indexes. We show that there is perfect transmission for normal or near normal incidence, which is a manifestation of the Klein tunneling effect. We analyze also the corresponding total conductance, which is defined as the sum of the conductance channels in each individual cone. Our results are numerically discussed and compared with those obtained for ABA- and ABC-stacked trilayer graphene.

  2. Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus.

    Science.gov (United States)

    Lysandrou, M; Pashalidis, I

    2008-02-01

    The effect of the matrix composition (main constituents) on the concentration and chemical behavior of uranium in phosphogypsum stack solutions and leachates has been investigated. Solid and aqueous samples were taken from three different sub-areas of a phosphogypsum stack at a coastal area in Vasilikos (Cyprus). The sub-areas are characterized whether by their acidity (e.g. "aged" and "non-aged" phosphogypsum) or by their salt content, originating from pulping water during wet stacking or (after deposition) from the adjacent sea. Measurements in stack solutions and leachates showed that phosphogypsum characteristics affect both, the concentration and the chemical behavior of uranium in solution. Uranium concentration in solutions of increased salinity is up to three orders of magnitude higher than in solutions of low salinity and this is attributed to the effect of ionic strength on the solubility of phosphogypsum. Modelling showed that uranium in stack solutions is predominantly present in the form of uranium(VI) phosphate complexes (e.g. UO(2)(H(2)PO(4))(2), UO(2)HPO(4)), whereas in leachates uranium(VI) fluoro complexes (e.g. UO(2)F(2), UO(2)F(3)(-)) are predominant in solution. The latter indicates that elution of uranium from phosphogypsum takes places most probably in the form of fluoro complexes. Both, effective elution by saline water and direct migration of uranium to the sea, where it forms very stable uranium(VI) carbonato complexes, indicate that the adjacent sea will be the final receptor of uranium released from Vasilikos phosphogypsum.

  3. A dual shared stack for FSLM in Erika Enterprise

    NARCIS (Netherlands)

    Balasubramanian, S.M.N.; Afshar, S.; Gai, P.; Behnam, M.; Bril, R.J.

    2017-01-01

    Recently, the flexible spin-lock model (FSLM) has been introduced, unifying spin-based and suspension-based resource sharing protocols for real-time multi-core platforms. Unlike the multiprocessor stack resource policy (MSRP), FSLM doesn’t allow tasks on a core to share a single stack, however. In

  4. Radiation-Tolerant Intelligent Memory Stack - RTIMS

    Science.gov (United States)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2011-01-01

    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  5. A Urea Biosensor from Stacked Sol-Gel Films with Immobilized Nile Blue Chromoionophore and Urease Enzyme

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2007-10-01

    Full Text Available An optical urea biosensor was fabricated by stacking several layers of sol-gelfilms. The stacking of the sol-gel films allowed the immobilization of a Nile Bluechromoionophore (ETH 5294 and urease enzyme separately without the need of anychemical attachment procedure. The absorbance response of the biosensor was monitoredat 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel filmformat enabled higher enzyme loading in the biosensor to be achieved. The urea opticalbiosensor constructed from three layers of sol-gel films that contained urease demonstrateda much wider linear response range of up to 100 mM urea when compared with biosensorsthat constructed from 1-2 layers of films. Analysis of urea in urine samples with thisoptical urea biosensor yielded results similar to that determined by a spectrophotometricmethod using the reagent p-dimethylaminobenzaldehyde (R2 = 0.982, n = 6. The averagerecovery of urea from urine samples using this urea biosensor is approximately 103%.

  6. A Urea Biosensor from Stacked Sol-Gel Films with Immobilized Nile Blue Chromoionophore and Urease Enzyme.

    Science.gov (United States)

    Alqasaimeh, Muawia Salameh; Heng, Lee Yook; Ahmad, Musa

    2007-10-11

    An optical urea biosensor was fabricated by stacking several layers of sol-gelfilms. The stacking of the sol-gel films allowed the immobilization of a Nile Bluechromoionophore (ETH 5294) and urease enzyme separately without the need of anychemical attachment procedure. The absorbance response of the biosensor was monitoredat 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel filmformat enabled higher enzyme loading in the biosensor to be achieved. The urea opticalbiosensor constructed from three layers of sol-gel films that contained urease demonstrateda much wider linear response range of up to 100 mM urea when compared with biosensorsthat constructed from 1-2 layers of films. Analysis of urea in urine samples with thisoptical urea biosensor yielded results similar to that determined by a spectrophotometricmethod using the reagent p-dimethylaminobenzaldehyde (R² = 0.982, n = 6). The averagerecovery of urea from urine samples using this urea biosensor is approximately 103%.

  7. Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k-Nearest Neighbor Scheme

    KAUST Repository

    Dairi, Abdelkader; Harrou, Fouzi; Sun, Ying; Senouci, Mohamed

    2018-01-01

    Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this study, we propose a stereovisionbased method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model that combines the greedy learning features with the dimensionality reduction capacity and employs an unsupervised k-nearest neighbors algorithm (KNN) to accurately and reliably detect the presence of obstacles. We consider obstacle detection as an anomaly detection problem. We evaluated the proposed method by using practical data from three publicly available datasets, the Malaga stereovision urban dataset (MSVUD), the Daimler urban segmentation dataset (DUSD), and Bahnhof dataset. Also, we compared the efficiency of DSA-KNN approach to the deep belief network (DBN)-based clustering schemes. Results show that the DSA-KNN is suitable to visually monitor urban scenes.

  8. Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k-Nearest Neighbor Scheme

    KAUST Repository

    Dairi, Abdelkader

    2018-04-30

    Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this study, we propose a stereovisionbased method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model that combines the greedy learning features with the dimensionality reduction capacity and employs an unsupervised k-nearest neighbors algorithm (KNN) to accurately and reliably detect the presence of obstacles. We consider obstacle detection as an anomaly detection problem. We evaluated the proposed method by using practical data from three publicly available datasets, the Malaga stereovision urban dataset (MSVUD), the Daimler urban segmentation dataset (DUSD), and Bahnhof dataset. Also, we compared the efficiency of DSA-KNN approach to the deep belief network (DBN)-based clustering schemes. Results show that the DSA-KNN is suitable to visually monitor urban scenes.

  9. Thermal conductivity measurement of HTS tapes and stacks for current lead applications

    International Nuclear Information System (INIS)

    Schwarz, Michael; Weiss, Klaus-Peter; Heller, Reinhard; Fietz, Walter H.

    2009-01-01

    The use of high-temperature-superconductors (HTS) within current leads offers a high potential to save cooling-power. The principle of HTS current leads is well established, e.g. for particle accelerators (LHC-CERN) but also on the commercial sector, which offer HTS current leads ready for use in small scale magnets and magnets systems. Future fusion machines currently under construction like ITER, W7-X or JT-60SA also will use HTS current leads. At the moment the standard material for HTS current leads is a Bi 2 Sr 2 Ca 2 Cu 3 O x (BSCCO)-AgAu composite tape. The common way to receive high current capacity current leads is to form stacks by sintering or soldering these tapes together. The solder changes the thermal conductivity of the stacks compared to the single tape in the temperature range from 4 K to 60 K. To estimate the heat flux from the warm environment to the cold application the measurement of the thermal conductivity of the soldered stack is mandatory. Therefore the thermal conductivity of stacks with different number of tapes is investigated. To measure the thermal conduction in the current flow direction, the axial heat flow method is used. Combining these results with FEM simulations gives the possibility to estimate the thermal conductivity normal to the flat tape plane. The resulting anisotropic thermal conductivity can be used to model the behaviour of the HTS tape under thermal disturbances more accurately.

  10. Implementing cloud storage with OpenStack Swift

    CERN Document Server

    Rajana, Kris; Varma, Sreedhar

    2014-01-01

    This tutorial-based book has a step-by-step approach for each topic, ensuring it is thoroughly covered and easy to follow. If you are an IT administrator who wants to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Whether your job is to build, manage, or use OpenStack Swift, this book is an ideal way to move your career ahead. Only basic Linux and server technology skills are expected, to take advantage of this book.

  11. 40 CFR 63.307 - Standards for bypass/bleeder stacks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards for bypass/bleeder stacks. 63.307 Section 63.307 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Standards for Coke Oven Batteries § 63.307 Standards for bypass/bleeder stacks. (a)(1) Except as otherwise...

  12. A real-time stack radioactivity monitoring system and dose projection program

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.P.; Michael, P.A. [Brookhaven National Laboratory, Upton, NY (United States); Bernstein, H.J. [Bernstein & Sons, Bellport, NY (United States)

    1995-02-01

    At Brookhaven National Laboratory, a commercial Low- and High-Range Air Effluent Monitor has become operational at the 60 Mw (t) High Flux Beam Reactor. Its output data is combined with that from ground-level and elevated meteorological sensors to provide a real-time projection of the down-wind dose rates from noble gases and radioiodines released from the HFBR`s 100 m stack. The output of the monitor, and the meteorological sensors and the dose projections can be viewed at emergency response terminals located in the Reactor Control Room, its Technical Support Center and at the laboratory`s separately located Meteorological Station and Monitoring and Assessment Center.

  13. Design compliance matrix waste sample container filling system for nested, fixed-depth sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    This design compliance matrix document provides specific design related functional characteristics, constraints, and requirements for the container filling system that is part of the nested, fixed-depth sampling system. This document addresses performance, external interfaces, ALARA, Authorization Basis, environmental and design code requirements for the container filling system. The container filling system will interface with the waste stream from the fluidic pumping channels of the nested, fixed-depth sampling system and will fill containers with waste that meet the Resource Conservation and Recovery Act (RCRA) criteria for waste that contains volatile and semi-volatile organic materials. The specifications for the nested, fixed-depth sampling system are described in a Level 2 Specification document (HNF-3483, Rev. 1). The basis for this design compliance matrix document is the Tank Waste Remediation System (TWRS) desk instructions for design Compliance matrix documents (PI-CP-008-00, Rev. 0)

  14. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  15. Production and Reliability Oriented SOFC Cell and Stack Design

    DEFF Research Database (Denmark)

    Hauth, Martin; Lawlor, Vincent; Cartellieri, Peter

    2017-01-01

    The paper presents an innovative development methodology for a production and reliability oriented SOFC cell and stack design aiming at improving the stacks robustness, manufacturability, efficiency and cost. Multi-physics models allowed a probabilistic approach to consider statistical variations...... in production, material and operating parameters for the optimization phase. A methodology for 3D description of spatial distribution of material properties based on a random field models was developed and validated by experiments. Homogenized material models on multiple levels of the SOFC stack were...... and output parameters and to perform a sensitivity analysis were developed and implemented. The capabilities of the methodology is illustrated on two practical cases....

  16. Method of detecting stacks with leaky fuel elements in liquid-metal-cooled reactor and apparatus for effecting same

    International Nuclear Information System (INIS)

    Aristarkhov, N.N.; Efimov, I.A.; Zaistev, B.I.; Peters, I.G.; Tymosh, B.S.

    1976-01-01

    Described is a method of detecting stacks with leaky fuel elements in a liquid-metal-cooled reactor, consisting in that prior to withdrawing a coolant sample, gas is accumulated in the coolant of the stack being controlled, the reactor being shut down, separated from the sample by means of an inert carrier gas, and the radioactivity of the separated gas is measured. An apparatus for carrying out said method comprises a sampler in the form of a tube parallel to the reactor axis in the hole of a rotating plug and adapted to move along the reactor axis. Made in the top portion of the tube are holes for the introduction of the inert carrier gas and the removal thereof together with the gases evolved from the coolant, while the bottom portion of the tube is provided with a sealing member

  17. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.; Arafa, Nadim M.; Abdel-Rahman, Ehab

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack's position, length and plate spacing are the three main parameters that have been investigated in this study. Stack's position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine's most powerful operating point.

  18. SFM TECHNIQUE AND FOCUS STACKING FOR DIGITAL DOCUMENTATION OF ARCHAEOLOGICAL ARTIFACTS

    Directory of Open Access Journals (Sweden)

    P. Clini

    2016-06-01

    Full Text Available Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.

  19. LOFT diesel generator ''A'' exhaust stack seismic analysis

    International Nuclear Information System (INIS)

    Blandford, R.K.

    1978-01-01

    A stress analysis of the LOFT Diesel Generator ''A'' Exhaust Stack was performed to determine its reaction to Safe-Shutdown Earthquake loads. The exhaust stack silencer and supporting foundation was found to be inadequate for the postulated seismic accelerations. Lateral support is required to prevent overturning of the silencer pedestal and reinforcement of the 4'' x 0.5'' silencer base straps is necessary. Basic requirements for this additional support are discussed

  20. Experiences from design and testing of a small PEM fuel cell stack

    International Nuclear Information System (INIS)

    Lange, T.; Ofstad, A.B.; Moller-Holst, S.

    2004-01-01

    'Full text:' Introduction The Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered the most promising candidate for mobile applications, due to its high power density, short start-up times and immediate response to changes in power demand. PEMFC systems tend, however, to become rather complex in order to provide for optimum water and thermal management, and facilitate stable operation. Auxiliary components add to cost and volume, and may reduce reliability. Pressurized operation may increase system power density, but to the sacrifice of efficiency. The atmospheric systems are inferior to pressurized systems with respect to water self-sufficiency and usually demand voluminous water condenser systems. At high power densities the amount of waste heat becomes considerable, and for larger systems liquid cooling is usually inevitable. But even for smaller, air-cooled systems, thermal management is challenging because of the relatively small temperature difference between the fuel cell and the surroundings. Over more than a decade there has been a trend towards simpler PEMFC systems holding a minimum number of auxiliary components, operating at atmospheric pressure and utilizing various self-humidifying techniques. However, due to the complexity of PEMFC operation, the degree of simplification becomes a trade-off between system cost and volume, and controllability. Experimental In the present work a small 10 cell PEMFC stack for demonstrational purposes was designed, assembled and tested. Commercial MEAs (Gore) and GDLs (E-TEK) were used. Thermocouples were inserted into the cathode air channels. Based on a total of 300 temperature measurements a semi-3-dimensional temperature distribution in the stack was obtained. Cell performance was characterized by obtaining polarization curves for each cell and measuring the steady state temperature distribution at a current density of 0.10 A/cm 2 . Results and Discussion Stable performance was obtained at 0.10 A/cm 2

  1. Stacking non-BPS D-branes

    International Nuclear Information System (INIS)

    Alberghi, Gian Luigi; Caceres, Elena; Goldstein, Kevin; Lowe, David A. . lowe@het.brown.edu

    2001-08-01

    We present a candidate supergravity solution for a stacked configuration of stable non-BPS D-branes in Type II string theory compactified on T 4 /Z 2 . This gives a supergravity description of nonabelian tachyon condensation on the brane woldvolume. (author)

  2. Planetary Sample Caching System Design Options

    Science.gov (United States)

    Collins, Curtis; Younse, Paulo; Backes, Paul

    2009-01-01

    Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.

  3. Determination of thephysico-chemical 131I species in the exhausts and stack effluent of a PWR power plant

    International Nuclear Information System (INIS)

    Deuber, H.; Wilhelm, J.G.

    1979-01-01

    To quantify the credit that can be granted in the assessment of the 131 I ingestion doses and the improvement that can be achieved in the ventilation systems if differences of the physico-chemical 131 I species with respect to the environmental impact are taken into account, the fractions of the 131 I species were determined in the stack effluent and in various exhausts of a 1300 MW/sub e/ PWR power plant during a period of 3 months. Based on these measurements, calculations for different cases of filtration of the main exhausts for iodine were carried out. The average fractions of elemental and organic 131 I were about 70 and 30% respectively in the stack effluent during the time indicated. Elem. 131 I orginated mainly from the hoods in which samples of the primary coolant are taken and processed. Org. 131 I was mainly contributed by the equipment compartments. If the hood exhaust had been filtered, as was the case with the equipment compartment exhaust, the fractions of elem. and org. 131 I would have been on the order of 50% each and the calculated 131 I ingestion doses would have been a factor of 3 lower

  4. Stacking dependence of carrier transport properties in multilayered black phosphorous

    Science.gov (United States)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  5. Extended Life PZT Stack Test Fixture

    Science.gov (United States)

    Badescu, Mircea; Sherrit, S.; Bao, X.; Aldrich, J.; Bar-Cohen, Y.; Jones, C.

    2009-01-01

    Piezoelectric stacks are being sought to be used as actuators for precision positioning and deployment of mechanisms in future planetary missions. Beside the requirement for very high operation reliability, these actuators are required for operation at space environments that are considered harsh compared to normal terrestrial conditions.These environmental conditions include low and high temperatures and vacuum or high pressure. Additionally, the stacks are subjected to high stress and in some applications need to operate with a very long lifetime durability.Many of these requirements are beyond the current industry design margins for nominal terrestrial applications. In order to investigate some of the properties that will indicate the durability of such actuators and their limitations we have developed a new type of test fixture that can be easily integrated in various test chambers for simulating environmental conditions, can provide access for multiple measurements while being exposed to adjustable stress levels. We designed and built two test fixtures and these fixtures were made to be adjustable for testing stacks with different dimensions and can be easily used in small or large numbers. The properties that were measured using these fixtures include impedance, capacitance, dielectric loss factor, leakage current, displacement, breakdown voltage, and lifetime performance. The fixtures characteristics and the test capabilities are presented in this paper.

  6. Potential radionuclide emissions from stacks on the Hanford site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J.M. [Westinghouse Hanford Company, Richland, WA (United States)

    1995-02-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, {open_quotes}National Emission Standards for Hazardous Air Pollutants{close_quotes}, stacks that have the potential to emit {ge} 1 {mu}Sv y{sup {minus}1} (0.1 mrem y{sup {minus}1}) to the maximally exposed individual are considered {open_quotes}major{close_quotes} and must meet the continuous monitoring requirements. After the method was tested and verified, the U.S. Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method, and 15 were assessed. (The method could not be applied at seven stacks because of excessive background radiation or because no gamma emitting particles appear in the emission stream.) The most significant result from this study was the redesignation of the T Plant main stack. The stack was assessed as being {open_quotes}minor{close_quotes}, and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements.

  7. Core sampling system spare parts assessment

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-01-01

    Soon, there will be 4 independent core sampling systems obtaining samples from the underground tanks. It is desirable that these systems be available for sampling during the next 2 years. This assessment was prepared to evaluate the adequacy of the spare parts identified for the core sampling system and to provide recommendations that may remediate overages or inadequacies of spare parts

  8. Safety Evaluation of Radioactive Material Transport Package under Stacking Test Condition

    International Nuclear Information System (INIS)

    Lee, Ju Chan; Seo, Ki Seog; Yoo, Seong Yeon

    2012-01-01

    Radioactive waste transport package was developed to transport eight drums of low and intermediate level waste(LILW) in accordance with the IAEA and domestic related regulations. The package is classified with industrial package IP-2. IP-2 package is required to undergo a free drop test and a stacking test. After free drop and stacking tests, it should prevent the loss or dispersal of radioactive contents, and loss of shielding integrity which would result in more than 20 % increase in the radiation level at any external surface of the package. The objective of this study is to establish the safety test method and procedure for stacking test and to prove the structural integrities of the IP-2 package. Stacking test and analysis were performed with a compressive load equal to five times the weight of the package for a period of 24 hours using a full scale model. Strains and displacements were measured at the corner fitting of the package during the stacking test. The measured strains and displacements were compared with the analysis results, and there were good agreements. It is very difficult to measure the deflection at the container base, so the maximum deflection of the container base was calculated by the analysis method. The maximum displacement at the corner fitting and deflection at the container base were less than their allowable values. Dimensions of the test model, thickness of shielding material and bolt torque were measured before and after the stacking test. Throughout the stacking test, it was found that there were no loss or dispersal of radioactive contents and no loss of shielding integrity. Thus, the package was shown to comply with the requirements to maintain structural integrity under the stacking condition.

  9. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts

    2011-11-01

    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  10. Calculation of AC losses in large HTS stacks and coils

    DEFF Research Database (Denmark)

    Zermeno, Victor; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2012-01-01

    In this work, we present a homogenization method to model a stack of HTS tapes under AC applied transport current or magnetic field. The idea is to find an anisotropic bulk equivalent for the stack of tapes, where the internal alternating structures of insulating, metallic, superconducting...... allowing for overcritical current densities to be considered. The method presented here allowed for a computational speedup factor of up to 2 orders of magnitude when compared to full 2-D simulations taking into account the actual structure of the stacks without compromising accuracy....

  11. Review of the stack discharge active particle contamination problem

    Energy Technology Data Exchange (ETDEWEB)

    Parker, H M

    1948-03-22

    Quantities of the order of ten million to 100 million radioactive particles per month were emitted from the stacks over a period of several months. High activity in the range 0.1 to 3..mu..c was probably confined to large carrier particles of corrosion debris from iron ductwork in the separations plant ventilation air system. This report discusses chemical, physical and radiochemical properties of the particles, and possible biological and health effects of exposure to them. (ACR)

  12. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models

    International Nuclear Information System (INIS)

    Zhang, W.; Croiset, E.; Douglas, P.L.; Fowler, M.W.; Entchev, E.

    2005-01-01

    The design of a fuel cell system involves both optimization of the fuel cell stack and the balance of plant with respect to efficiency and economics. Many commercially available process simulators, such as AspenPlus TM , can facilitate the analysis of a solid oxide fuel cell (SOFC) system. A SOFC system may include fuel pre-processors, heat exchangers, turbines, bottoming cycles, etc., all of which can be very effectively modelled in process simulation software. The current challenge is that AspenPlus TM or any other commercial process simulators do not have a model of a basic SOFC stack. Therefore, to enable performing SOFC system simulation using one of these simulators, one must construct an SOFC stack model that can be implemented in them. The most common approach is to develop a complete SOFC model in a programming language, such as Fortran, Visual Basic or C++, first and then link it to a commercial process simulator as a user defined model or subroutine. This paper introduces a different approach to the development of a SOFC model by utilizing existing AspenPlus TM functions and existing unit operation modules. The developed ''AspenPlus TM SOFC'' model is able to provide detailed thermodynamic and parametric analyses of the SOFC operation and can easily be extended to study the entire power plant consisting of the SOFC and the balance of plant without the requirement for linking with other software. Validation of this model is performed by comparison to a Siemens-Westinghouse 100 kW class tubular SOFC stack. Sensitivity analyses of major operating parameters, such as utilization factor (U f ), current density (I c ) and steam-carbon ratio (S/C), were performed using the developed model, and the results are discussed in this paper

  13. Multipole Stack for the 800 MeV PS Booster

    CERN Multimedia

    1975-01-01

    The 800 MeV PS Booster had seen first beam in its 4 superposed rings in 1972, routine operation began in 1973. In the strive for ever higher beam intensities, the need for additional multipole lenses became evident. After detailed studies, the manufacture of 8 stacks of multipoles was launched in 1974. Each stack consists of 4 superposed multipoles and each multipole has 4 concentric shells. From the innermost to the outermost shell, Type A contains octupole, skew-octupole, sextupole, skew-sextupole. Type B contains skew-octupole, skew-sextupole, vertical dipole, horizontal dipole. Completion of installation in 1976 opened the way to higher beam intensities. M. Battiaz is seen here with a multipole stack and its many electrical connections.

  14. Improved DNA clamps by stacking to adjacent nucleobases

    DEFF Research Database (Denmark)

    Fatthalla, M.I.; Pedersen, Erik Bjerregaard

    2012-01-01

    Three or four aromatic rings interconnected by acetylene bridges form a stiff conjugated system with sufficient conformational freedom to make it useful to link together the two strands of a DNA clamp. Upon targeting a ssDNA, the conformational flexibility allows better stacking of the linker...... to the underlying non-planar base triplet in the formed triplex. This type of triplexes has a substantially higher thermal melting temperature which can be further improved by inserting locked nucleic acids (LNAs) in the Hoogsteen part of the clamp. An extremely high sensitivity to mismatches is observed...

  15. Evidence of a non-dimensional parameter controlling the flooding of PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buaud, Fabrice; Lelandais, Damien [Heat and Energy Department, Polytech' Nantes, Nantes University, Rue Christian Pauc, BP50609, 44 306 Nantes Cedex 3 (France); Auvity, Bruno [Heat and Energy Department, Polytech' Nantes, Nantes University, Rue Christian Pauc, BP50609, 44 306 Nantes Cedex 3 (France); Laboratoire de Thermocinetique de Nantes (CNRS-UMR 6607) (France)

    2008-06-15

    Water management is a key issue to get satisfactory and stable Polymer exchange membrane fuel cell (PEMFC) performances. The work reported in the present paper focuses on the determination of the operational conditions when using PEMFC stack working with ambient air without extra humidification. The objectives are to reduce as much as possible the auxiliaries consumptions. As far as the reaction air blower is concerned, the specific goal of the present tests is to find the minimum air flow rate to feed the PEMFC stack in order to prevent flooding. Our particular interest concerns the control of a PEMFC stack to power a prototype vehicle for the Shell Eco Marathon race. Tests are then conducted on a wide range of stoichiometry, for different values of current and stack temperature using ambient air. Flooding is shown to depend on all these parameters. A water balance calculation is developed comparing the amount of water produced by the electrochemical reaction to the amount of water transported as vapour in the exit air flow minus the amount of water incoming the stack in the ambient air. A non-dimensional number called the Flooding Number is constructed. This balance is first considered in the ideal case with the theoretical flow rate of reactants and products. It is shown that the stack temperature and the stoichiometry are the main order parameters and that conditions of ambient air have only secondary effects on the water balance. In a second step, the Flooding Number is evaluated for all the experimental tests. A critical Flooding Number appears clearly delimiting the range of operational conditions for which stack flooding appears. This result allows us to control the air blower and the cooling fan during the runs at the Shell Eco Marathon 2007 race in order to reduce hydrogen consumption due to auxiliaries. The non-dimensional number exhibited in the present paper is believed to be relevant to stack flooding. It can be used for any PEMFC stack to make clear

  16. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment.

    Science.gov (United States)

    Wu, Shijia; Li, Hui; Zhou, Xuechen; Liang, Peng; Zhang, Xiaoyuan; Jiang, Yong; Huang, Xia

    2016-07-01

    A novel stacked microbial fuel cell (MFC) which had a total volume of 72 L with granular activated carbon (GAC) packed bed electrodes was constructed and verified to present remarkable power generation and COD removal performance due to its advantageous design of stack and electrode configuration. During the fed-batch operation period, a power density of 50.9 ± 1.7 W/m(3) and a COD removal efficiency of 97% were achieved within 48 h. Because of the differences among MFC modules in the stack, reversal current occurred in parallel circuit connection with high external resistances (>100 Ω). This reversal current consequently reduced the electrochemical performance of some MFC modules and led to a lower power density in parallel circuit connection than that in independent circuit connection. While increasing the influent COD concentrations from 200 to 800 mg/L at hydraulic retention time of 1.25 h in continuous operation mode, the power density of stacked MFC increased from 25.6 ± 2.5 to 42.1 ± 1.2 W/m(3) and the COD removal rates increased from 1.3 to 5.2 kg COD/(m(3) d). This study demonstrated that this novel MFC stack configuration coupling with GAC packed bed electrode could be a feasible strategy to effectively scale up MFC systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    Science.gov (United States)

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  18. Role of SiC substrate surface on local tarnishing of deposited silver mirror stacks

    Science.gov (United States)

    Limam, Emna; Maurice, Vincent; Seyeux, Antoine; Zanna, Sandrine; Klein, Lorena H.; Chauveau, Grégory; Grèzes-Besset, Catherine; Savin De Larclause, Isabelle; Marcus, Philippe

    2018-04-01

    The role of the SiC substrate surface on the resistance to the local initiation of tarnishing of thin-layered silver stacks for demanding space mirror applications was studied by combined surface and interface analysis on model stack samples deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. It is shown that suppressing the surface pores resulting from the bulk SiC material production process by surface pretreatment eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 overcoat after the deposition of silver. The formation of channels connecting the silver layer to its environment through the failing protection layer at the surface pores and locally enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is suppressed, which markedly delays tarnishing initiation and thereby preserves the optical performance. The results revealed that residual tarnishing initiation proceeds by a mechanism essentially identical in nature but involving different pathways short circuiting the protection layer and enabling H2S ingress until the silver layer. These permeation pathways are suggested to be of microstructural origin and could correspond to the incompletely coalesced intergranular boundaries of the SiO2 layer.

  19. Electromagnetic waves in a topological insulator thin film stack: helicon-like wave mode and photonic band structure.

    Science.gov (United States)

    Inoue, Jun-ichi

    2013-09-09

    We theoretically explore the electromagnetic modes specific to a topological insulator superlattice in which topological and conventional insulator thin films are stacked periodically. In particular, we obtain analytic formulas for low energy mode that corresponds to a helicon wave, as well as those for photonic bands. We illustrate that the system can be modeled as a stack of quantum Hall layers whose conductivity tensors alternately change signs, and then we analyze the photonic band structures. This subject is a natural extension of a previous study by Tselis et al., which took into consideration a stack of identical quantum Hall layers but their discussion was limited into a low energy mode. Thus we provide analytic formulas for photonic bands and compare their features between the two systems. Our central findings in the topological insulator superlattice are that a low energy mode corresponding to a helicon wave has linear dispersion instead of the conventional quadratic form, and that a robust gapless photonic band appears although the system considered has spacial periodicity. In addition, we demonstrate that the photonic bands agree with the numerically calculated transmission spectra.

  20. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  1. The Impact of 3D Stacking and Technology Scaling on the Power and Area of Stereo Matching Processors

    Directory of Open Access Journals (Sweden)

    Seung-Ho Ok

    2017-02-01

    Full Text Available Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV, three-dimensional (3D stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs.

  2. Development of 4S and related technologies (7). Analytical evaluation of RVACS performance under loss of stacks condition

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Nishi, Yoshihisa; Ueda, Nobuyuki

    2009-01-01

    The 4S (Super-Safe, Small and Simple) reactor is a sodium-cooled fast reactor aiming at an application to dispersed energy source and multi-purpose use. An introduction of RVACS (Reactor Vessel Auxiliary Cooling System) can enhance the passive decay heat removal capability. In the present study, the RVACS performance in 4S reactor (10MWe, pool-type) was analytically evaluated under the functional loss of RVACS stack condition, which is considered as a beyond design basis event. A protected loss of heat sink accident was selected and simulated to evaluate the capability of RVACS to cool the plant under such an unusual condition. The three-dimensional thermal hydraulic analysis was conducted by PHOENICS code. Analytical results show that the functional loss of air outlet stack has more effect on RVACS performance than that of air inlet stack. The air flow rate in RVACS under the functional loss of one out of two outlet stacks decreases up to approximately 60% and the heat removal rate approximately 70%, comparing with those under the normal stack condition. However, the maximum hot plenum temperature is low enough to satisfy the safety criteria. (author)

  3. High thermal stability in W/MgO/CoFeB/W/CoFeB/W stacks via ultrathin W insertion with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; Yu, Tao [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhu, Zhengyong; Zhong, Huicai [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Khamis, Khamis Masoud [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100191 (China)

    2016-07-15

    The perpendicular magnetic anisotropy (PMA) of a series of top MgO/CoFeB/W stacks were studied. In these stacks, the thickness of CoFeB is limited in a range of 1.1–2.2 nm. It was found that the stack can still maintain PMA in a 1.9 nm thick CoFeB free layer. Besides, we investigated the thermal stability factor ∆ of a spin transfer torque magnetic random access memory (STT-MRAM) by inserting an ultra-thin W film of 0.8 nm between two CoFeB films. The result shows a clear PMA behavior for the samples with CoFeB thickness up to 2.5 nm, and an in-plane magnetic anisotropy (IMA) when the CoFeB is thicker than 2.5 nm. Moreover, the thermal stability factor ∆ of the CoFeB stack with W insertion is about 132 for a 50 nm size STT-MRAM device, which is remarkably improved compared to 112 for a sample without W insertion. Our results represent an alternative way to realize the endurance at high annealing temperature, high-density and high ∆ in STT-MRAM device by ultra-thin W insertion. - Highlights: • The MgO/CoFeB/W multilayer can still maintain PMA in a CoFeB thickness of 1.9 nm. • The sample with 2.5 nm thickness of CoFeB by W insertion can still maintain PMA. • The sample with W insertion can still maintain PMA until the annealing temperature as high as 350 °C. • The thermal stability factor ∆ of sample with W insertion could be increase to about 132 for a 50 nm size STT-MRAM device.

  4. Rozšíření modulů OpenStack pro platformu Ansible

    OpenAIRE

    Šamalík, Adam

    2016-01-01

    OpenStack je cloudová platforma s distribuovanou architekturou, jejíž instalace je velice komplexní. V této práci navrhnu Ansible Playbook (automatický instalační skript), který OpenStack nainstaluje. OpenStack is a cloud platform with distributed architecture that is very complex to deploy. In this thesis, I will design an Ansible playbok (automatic deployment script) to deploy a custom OpenStack architecture. C

  5. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H

    2016-01-01

    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  6. Field-induced stacking transition of biofunctionalized trilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Masato Nakano, C. [Flintridge Preparatory School, La Canada, California 91011 (United States); Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  7. National Spherical Torus Experiment (NSTX) Center Stack Upgrade

    International Nuclear Information System (INIS)

    Neumeyer, C.; Avasarala, S.; Chrzanowski, J.; Dudek, L.; Fan, H.; Hatcher, H.; Heitzenroeder, P.; Menard, J.; Ono, M.; Ramakrishnan, S.; Titus, P.; Woolley, R.; Zhan, H.

    2009-01-01

    The purpose of the NSTX Center Stack Upgrade project is to expand the NSTX operational space and thereby the physics basis for next-step ST facilities. The plasma aspect ratio (ratio of plasma major to minor radius) of the upgrade is increased to 1.5 from the original value of 1.26, which increases the cross sectional area of the center stack by a factor of ∼ 3 and makes possible higher levels of performance and pulse duration.

  8. CSNS computing environment Based on OpenStack

    Science.gov (United States)

    Li, Yakang; Qi, Fazhi; Chen, Gang; Wang, Yanming; Hong, Jianshu

    2017-10-01

    Cloud computing can allow for more flexible configuration of IT resources and optimized hardware utilization, it also can provide computing service according to the real need. We are applying this computing mode to the China Spallation Neutron Source(CSNS) computing environment. So, firstly, CSNS experiment and its computing scenarios and requirements are introduced in this paper. Secondly, the design and practice of cloud computing platform based on OpenStack are mainly demonstrated from the aspects of cloud computing system framework, network, storage and so on. Thirdly, some improvments to openstack we made are discussed further. Finally, current status of CSNS cloud computing environment are summarized in the ending of this paper.

  9. Protection of Microkernel Environment L4Re from Stack-smashed Attacks

    OpenAIRE

    Vasily Andreevich Sartakov; Alexander Sergeevich Tarasikov

    2014-01-01

    Microkernel-based operating systems provide high level of protection due to the strong isolation of components, small size of Trusted Computing Base and execution of drivers in user space. At the same time, such systems are vulnerable to a stack overflow attacks, because these attacks exploit the hardware features of the platform, such as shared memory space for data and code. Modern architectures, such as AMD64 and ARM, provide opportunities to counteract attacks at the hardware level by dis...

  10. Three dimensional analysis of planar solid oxide fuel cell stack considering radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Inui, Y.; Urata, A.; Kanno, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2007-05-15

    The authors have been engaged in numerical simulations of the planar type solid oxide fuel cell (SOFC) to make clear the dependence of the cell performance on its operating conditions. Up to now, the authors have already developed the simulation codes for the one channel region and the single cell plate in its cell stack. To calculate accurately the effect of radiation heat transfer from the cell stack surfaces, however, a code that can treat the whole cell stack is necessary. In the present study, therefore, the authors newly develop a three dimensional simulation code of the planar SOFC stack, and the detailed effect of the radiation heat transfer is investigated. It is made clear that the conventional codes are sufficiently accurate, and the newly developed whole cell stack code is not inevitable to predict the maximum cell temperature. This is because the thermal conductivity of the cell materials made of ceramics is very small, and the central part of the cell stack is almost free from the influence of radiation heat transfer. On the other hand, the stack simulation is needed to calculate accurately the cell voltage because the radiation heat transfer reduces it when the ambient temperature is low. The bad influence of low ambient temperature on the voltage is, however, small and relatively high voltage is obtained even when the ambient temperature is very low. (author)

  11. Frequency domain method for the stack of seismic and radar data

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H; Sato, M [Tohoku University, Sendai (Japan); Xu, S

    1997-10-22

    With relation to the stacking method of elastic wave and radar wave, the frequency domain stacking method using the Fourier conversion was proposed as a method for automatically removing errors in time correction leaving advantages of the conventional horizontal stacking method. Concerning an example of wave motion with the same wave form and time difference, as a result of the analysis conducted by this method, it was found that not only effects are kept of suppressing random noise and regular noise in the conventional horizontal stacking method, but the resolution in the original wave motion data is kept. In the example, amplitude of the noise was a half of the wave motion signal, but if it is more than 0.85 times of the wave motion signal, favorable result cannot be obtained in this method. In the analysis in the area where time correction is very difficult and the correction cannot be made completely, it is useful also for the time domain stacking method to acquire data on high resolution of elastic wave and radar wave. 4 refs., 2 figs.

  12. Highlights of X-Stack ExM Deliverable: MosaStore

    Energy Technology Data Exchange (ETDEWEB)

    Ripeanu, Matei [Univ. of British Columbia, Vancouver, BC (Canada)

    2016-07-20

    This brief report highlights the experience gained with MosaStore, an exploratory part of the X-Stack project “ExM: System support for extreme-scale, many-task applications”. The ExM project proposed to use concurrent workflows supported by the Swift language and runtime as an innovative programming model to exploit parallelism in exascale computers. MosaStore aims to support this endeavor by improving storage support for workflow-based applications, more precisely by exploring the gains that can be obtained from co-designing the storage system and the workflow runtime engine. MosaStore has been developed primarily at the University of British Columbia.

  13. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Science.gov (United States)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  14. Stack semantics of type theory

    DEFF Research Database (Denmark)

    Coquand, Thierry; Mannaa, Bassel; Ruch, Fabian

    2017-01-01

    We give a model of dependent type theory with one univalent universe and propositional truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we show that countable choice cannot be proved in dependent type theory with one univalent universe...

  15. Dual stacked partial least squares for analysis of near-infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yiming [Institute of Automation, Chinese Academy of Sciences, 100190 Beijing (China); Xie, Qiong, E-mail: yimbi@163.com [Institute of Automation, Chinese Academy of Sciences, 100190 Beijing (China); Peng, Silong; Tang, Liang; Hu, Yong; Tan, Jie [Institute of Automation, Chinese Academy of Sciences, 100190 Beijing (China); Zhao, Yuhui [School of Economics and Business, Northeastern University at Qinhuangdao, 066000 Qinhuangdao City (China); Li, Changwen [Food Research Institute of Tianjin Tasly Group, 300410 Tianjin (China)

    2013-08-20

    Graphical abstract: -- Highlights: •Dual stacking steps are used for multivariate calibration of near-infrared spectra. •A selective weighting strategy is introduced that only a subset of all available sub-models is used for model fusion. •Using two public near-infrared datasets, the proposed method achieved competitive results. •The method can be widely applied in many fields, such as Mid-infrared spectra data and Raman spectra data. -- Abstract: A new ensemble learning algorithm is presented for quantitative analysis of near-infrared spectra. The algorithm contains two steps of stacked regression and Partial Least Squares (PLS), termed Dual Stacked Partial Least Squares (DSPLS) algorithm. First, several sub-models were generated from the whole calibration set. The inner-stack step was implemented on sub-intervals of the spectrum. Then the outer-stack step was used to combine these sub-models. Several combination rules of the outer-stack step were analyzed for the proposed DSPLS algorithm. In addition, a novel selective weighting rule was also involved to select a subset of all available sub-models. Experiments on two public near-infrared datasets demonstrate that the proposed DSPLS with selective weighting rule provided superior prediction performance and outperformed the conventional PLS algorithm. Compared with the single model, the new ensemble model can provide more robust prediction result and can be considered an alternative choice for quantitative analytical applications.

  16. Dual stacked partial least squares for analysis of near-infrared spectra

    International Nuclear Information System (INIS)

    Bi, Yiming; Xie, Qiong; Peng, Silong; Tang, Liang; Hu, Yong; Tan, Jie; Zhao, Yuhui; Li, Changwen

    2013-01-01

    Graphical abstract: -- Highlights: •Dual stacking steps are used for multivariate calibration of near-infrared spectra. •A selective weighting strategy is introduced that only a subset of all available sub-models is used for model fusion. •Using two public near-infrared datasets, the proposed method achieved competitive results. •The method can be widely applied in many fields, such as Mid-infrared spectra data and Raman spectra data. -- Abstract: A new ensemble learning algorithm is presented for quantitative analysis of near-infrared spectra. The algorithm contains two steps of stacked regression and Partial Least Squares (PLS), termed Dual Stacked Partial Least Squares (DSPLS) algorithm. First, several sub-models were generated from the whole calibration set. The inner-stack step was implemented on sub-intervals of the spectrum. Then the outer-stack step was used to combine these sub-models. Several combination rules of the outer-stack step were analyzed for the proposed DSPLS algorithm. In addition, a novel selective weighting rule was also involved to select a subset of all available sub-models. Experiments on two public near-infrared datasets demonstrate that the proposed DSPLS with selective weighting rule provided superior prediction performance and outperformed the conventional PLS algorithm. Compared with the single model, the new ensemble model can provide more robust prediction result and can be considered an alternative choice for quantitative analytical applications

  17. Effect of stacking sequence on mechanical properties neem wood veneer plastic composites

    Science.gov (United States)

    Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.

    2018-04-01

    This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.

  18. Reexamination of the ISABELLE box car stacking scheme

    International Nuclear Information System (INIS)

    Chasman, R.

    1975-01-01

    Box car stacking of ISABELLE after acceleration of the fundamental frequency in the AGS is reviewed with the present ISABELLE parameters and examined with regard to longitudinal impedence requirements. The scheme results in an impedance tolerance of Z/n less than or equal to 30 Ω compared to Z/n less than or equal to 5 Ω obtained for rf stacking. However, to meet the claimed luminosity, the AGS performance demands are increased above those assumed in the ISABELLE proposal

  19. Seismic fragility of ventilation stack of nuclear power plant

    International Nuclear Information System (INIS)

    Nefedov, S.S.; Yugai, T.Z.; Kalinkin, I.V.; Vizir, P.L.

    2003-01-01

    Fragility study of safety related elements is necessary step in seismic PSA of nuclear power plant (NPP). In present work fragility was analyzed after the example of the ventilation stack of NPP. Ventilation stack, considered in present work, is a separately erected construction with height of 100 m made of cast-in-place reinforced concrete. In accordance with IAEA terminology fragility of element is defined as conditional probability of its failure at given level of seismic loading. Failure of a ventilation stack was considered as development of the plastic hinge in some section of a shaft. Seismic ground acceleration a, which corresponds to failure, could be defined as limit seismic acceleration of ventilation stack [a]. Limit seismic acceleration [a] was considered as random value. Sources of its variation are connected with stochastic nature of factors determining it (properties of construction materials, soils etc.), and also with uncertainties of existing analytical techniques. Random value [a] was assumed to be distributed lognormally. Median m[a] and logarithmically standard deviation β of this distribution were defined by 'scaling method' developed by R.P. Kennedy et al. Using this values fragility curves were plotted for different levels of confidence probability. (author)

  20. Die-stacking architecture

    CERN Document Server

    Xie, Yuan

    2015-01-01

    The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, promise attractive solutions to reduce the delay of interconnects in future microprocessors. 3D memory stacking enables much higher memory bandwidth for future chip-multiprocessor design, mitigating the ""memory wall"" problem. In addition, heterogenous integration enabled by 3D technology can also result in innovative designs for future microprocessors. This book first provides a brief introduction to this emerging technology, and then presents a variety of approaches to design

  1. Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.

    Science.gov (United States)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-03-16

    Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.

  2. Development of a method to measure the concentration of 14C in the stack air of nuclear power plants by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Stenstroem, K.; Erlandsson, B.; Hellborg, R.; Haakansson, K.; Wiebert, A.; Skog, G.

    1993-04-01

    C-14, a pure low-energetic beta-emitter, is produced through various nuclear reactions in nuclear power plants. Some of this C-14 is air-borne and is transported via the ventilation system through the stack of the power station and is integrated in living matter in the surroundings of the plant. The long half-life of the isotope (T1/2=5730 years) and the biological importance of carbon may lead to a not negligible contribution of the radiation dose for those living in the neighbourhood of nuclear power plants. C-14 has earlier been measured radiometrically with mainly two different methods, using proportional counters or liquid scintillators. In this report a new method is described, using an accelerator based technique. accelerator mass spectrometry (AMS). This technique has at least three advantages over the radiometrical methods. It requires only a few litres of gas per sample, which is 100-1000 times less compared to the radiometrical methods. It is insensitive to the beta and gamma rays from other radioactive isotopes in the stack air. The measuring time with AMS, about 20 minutes per sample, is considerably shorter compared to the radiometrical methods, which demand several hours per sample. The integrity of the AMS method is high and it might be convenient for regulatory supervision. (22 refs.)

  3. Stacking fault growth of FCC crystal: The Monte-Carlo simulation approach

    International Nuclear Information System (INIS)

    Jian Jianmin; Ming Naiben

    1988-03-01

    The Monte-Carlo method has been used to simulate the growth of the FCC (111) crystal surface, on which is presented the outcrop of a stacking fault. The comparison of the growth rates has been made between the stacking fault containing surface and the perfect surface. The successive growth stages have been simulated. It is concluded that the outcrop of stacking fault on the crystal surface can act as a self-perpetuating step generating source. (author). 7 refs, 3 figs

  4. Reliability prediction of large fuel cell stack based on structure stress analysis

    Science.gov (United States)

    Liu, L. F.; Liu, B.; Wu, C. W.

    2017-09-01

    The aim of this paper is to improve the reliability of Proton Electrolyte Membrane Fuel Cell (PEMFC) stack by designing the clamping force and the thickness difference between the membrane electrode assembly (MEA) and the gasket. The stack reliability is directly determined by the component reliability, which is affected by the material property and contact stress. The component contact stress is a random variable because it is usually affected by many uncertain factors in the production and clamping process. We have investigated the influences of parameter variation coefficient on the probability distribution of contact stress using the equivalent stiffness model and the first-order second moment method. The optimal contact stress to make the component stay in the highest level reliability is obtained by the stress-strength interference model. To obtain the optimal contact stress between the contact components, the optimal thickness of the component and the stack clamping force are optimally designed. Finally, a detailed description is given how to design the MEA and gasket dimensions to obtain the highest stack reliability. This work can provide a valuable guidance in the design of stack structure for a high reliability of fuel cell stack.

  5. 40 CFR 63.7296 - What emission limitations must I meet for battery stacks?

    Science.gov (United States)

    2010-07-01

    ... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...

  6. An impact analysis of a micro wind system. [windpower for recovering magnesium from stack dust

    Science.gov (United States)

    Zimmer, R. P.; Robinette, S. L.; Mason, R. M.; Schaffer, W. A.

    1975-01-01

    A process for the recovery of steel mill stack dust has been developed and is being used to recover secondary metals by a small company in Georgia. The process is energy intensive and wind generators were studied as a means of supplying energy for part of the recovery process. Some of the results of this study will be presented.

  7. Fuel Cell Stack Testing and Durability in Support of Ion Tiger UAV

    Science.gov (United States)

    2010-06-02

    N00173-08-2-C008 specified. In June 2008, the first M250 stack 242503 data were incorporated into the PEMFC system model as a look-up data table...control and operational model which implements the operational strategy by controlling the power from the PEMFC systems and battery pack for a total...Outputs PEMFC System Outputs <~~>*<*,yrx**i~yc*r»>r-’+**^^ FCS_P«wi_Dwn«l (W) 10 15 20 25 BfOfumon PCM« Cwnind Wi ) 5 10 15

  8. Exposure of CR39 Stacks to Oxygen and Sulphur Beams at the CERN-SPS

    CERN Multimedia

    2002-01-01

    We plan to expose 8 stacks of CR39 sheets to oxygen and sulphur ions of 60 and 200~GeV at the CERN-SPS.\\\\ \\\\ The main purpose of the exposures is the calibration of the CR39 sheets used for a large area experimental search for magnetic monopoles at the Gran Sasso Laboratory (experiment MACRO). \\\\ \\\\ The stacks have 20~layers of CR39, each layer 13~cm~x~7~cm and 1.4~mm thick. A copper absorber is located after the first 6 layers. \\\\ \\\\ We require exposures of about 2000 tracks per cm$^2$ over the entire area of the stack with a uniform illumination. The standard beam used for the emulsion experiments is normally adequate for this purpose.\\\\ \\\\ We have performed one exposure to sulphur ions. The etched tracks have been measured automatically with the Elbeck image analyser system. We measured the incoming sulphur ions as well as the nuclear fragments produced in the copper absorber. Clean separation among the peaks due to the various fragments is obtained (there is no indication of nuclei with fractional electri...

  9. Fuel flow distribution in SOFC stacks revealed by impedance spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, Rasmus

    2014-01-01

    As SOFC technology is moving closer to a commercial break through, methods to measure the “state-of-health” of operating stacks are becoming of increasing interest. This requires application of advanced methods for detailed electrical and electrochemical characterization during operation. An oper......As SOFC technology is moving closer to a commercial break through, methods to measure the “state-of-health” of operating stacks are becoming of increasing interest. This requires application of advanced methods for detailed electrical and electrochemical characterization during operation...... utilizations. The fuel flow distribution provides important information about the operating limits of the stack when high electrical efficiency is required....

  10. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    Science.gov (United States)

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.

  11. Frictional forces in an SOFC stack with sliding seals

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T; Oishi, N; Namikawa, T; Yamazaki, Y [Tokyo Institute of Technology, Tokyo (Japan)

    1996-06-05

    The detrimental thermal stresses in planar SOFC stacks can be reduced using sliding seals. In the proposal planar stack the electrolyte film is sandwiched by YSZ support rings to release the thermal stresses. In order to estimate the strength of the support ring, the frictional forces between heat resistant alloy and YSZ were measured at 900{degree}C. The coefficient of friction between Hastelloy X and YSZ increased when they were measured lifter 144h heating. However, the coefficient of friction between HA-214 and YSZ did not increase. The measurement and a calculation of the stresses in the support rings led the result that a thickness of 0.6mm was necessary for 200mm diameter support rings under a stack pressure of 0.1kgcm{sup -2}. 6 refs., 9 figs., 1 tab.

  12. Does interchain stacking morphology contribute to the singlet-triplet interconversion dynamics in polymer heterojunctions?

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Eric R. [Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)], E-mail: bittner@uh.edu; Burghardt, Irene [Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Friend, Richard H. [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2009-02-23

    Time-dependent density functional theory (TD-DFT) is used to examine the effect of stacking in a model semiconducting polymer hetrojunction system consisting of two co-facially stacked oligomers. We find that the excited electronic states are highly sensitive to the alignment of the monomer units of the two chains. In the system we examined, the exchange energy is nearly identical to both the and band off-set at the heterojunction and to the exciton binding energy. Our results indicate that the triplet excitonic states are nearly degenerate with the singlet exciplex states opening the possibility for the interconversion of singlet and triplet electronic states at the heterojunction interface via spin-orbit coupling localized on the heteroatoms. Using Russell-Saunders theory, we estimate this interconversion rate to be approximately 700-800 ps, roughly a 5-10-fold increase compared to isolated organic polymer chains.

  13. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    Science.gov (United States)

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  14. Novel variable structure control for the temperature of PEM fuel cell stack based on the dynamic thermal affine model

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: → The affine state space control-oriented model is designed and realized for the variant structure control (VSC) strategy. → The VSC with rapid-smooth reaching law and rapid-convergent sliding mode is presented for the PEMFC stack temperature. → Numerical results show that the method can control the operating temperature to reach the target value satisfactorily. - Abstract: Dynamic thermal management of proton exchange membrane fuel cell stack (PEMFC) is a very important aspect, which plays an important role on electro-reaction. Its variation also has a significant influence on the performance and lifespan of PEMFC stack. The temperature of stack should be controlled efficiently, which has great impacts on the performance of PEMFC due to the thermal variation. Based on the control-oriented dynamic thermal affine model identified by optimization algorithm, a novel variable structures control (VSC) with rapid-smooth reaching law (RSRL) and rapid-convergent sliding mode (FCSM) is presented for the temperature control system of PEMFC stack. Numerical test results show that the method can control the operating temperature to reach the target value satisfactorily, which proves the effectiveness and robustness of the algorithm.

  15. A small mono-polar direct methanol fuel cell stack with passive operation

    Science.gov (United States)

    Chan, Y. H.; Zhao, T. S.; Chen, R.; Xu, C.

    A passive direct methanol fuel cell (DMFC) stack that consists of six unit cells was designed, fabricated, and tested. The stack was tested with different methanol concentrations under ambient conditions. It was found that the stack performance increased when the methanol concentration inside the fuel tank was increased from 2.0 to 6.0 M. The improved performance is primarily due to the increased cell temperature as a result of the exothermic reaction between the permeated methanol and oxygen on the cathode. Moreover, the increased cell temperature enhanced the water evaporation rate on the air-breathing cathode, which significantly reduced water flooding on the cathode and further improved the stack performance. This passive DMFC stack, providing 350 mW at 1.8 V, was successfully applied to power a seagull display kit. The seagull display kit can continuously run for about 4 h on a single charge of 25 cm 3 4.0-M methanol solution.

  16. Stacks with TiN/titanium as the bipolar plate for PEMFCs

    International Nuclear Information System (INIS)

    Ren, Zhijun; Zhang, Dongming; Wang, Zaiyi

    2012-01-01

    Proton exchange membrane fuel cell (PEMFC) is a potential alternative for the internal combustion engine. But many problems, such as metallic bipolar plate instead of graphite bipolar plate to decrease the cost, should be solved before its application. Based on the previous results that single cell with TiN/Ti as bipolar plates shows high performance and enough long-time durability, the progress on the stacks with TiN/Ti as bipolar plates is reported in this manuscript. Till now seldom report is focused on stacks because of the complicated processing technique, especially for that with TiN/Ti as bipolar plate. The flow field in the plate is punched from titanium deformation, and two plates are welded by laser welding to form one piece of bipolar plate. The adopted processing techniques for stacks with TiN/Ti as bipolar plate exhibit advantage and feasibility in industry. The power density by weight for the stack is as high as 1353 W kg −1 , although it still has space to be improved. Next work should be focused on the design of flow channel parameters and flow field type based on plastic deformation of metal materials. -- Highlights: ► The progress on the stacks with TiN/Ti as bipolar plates is reported. ► The adopted processing techniques exhibit feasibility in industry. ► The power density by weight for the stack is as high as 1353 W kg −1 .

  17. Efficient Context Switching for the Stack Cache: Implementation and Analysis

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar; Brandner, Florian; Naji, Amine

    2015-01-01

    , the analysis of the stack cache was limited to individual tasks, ignoring aspects related to multitasking. A major drawback of the original stack cache design is that, due to its simplicity, it cannot hold the data of multiple tasks at the same time. Consequently, the entire cache content needs to be saved...

  18. Optimal Stack Layout in a Sea Container Terminal with Automated Lifting Vehicles

    OpenAIRE

    Roy, D.; Gupta, A.; Parhi, S.; de Koster, M.B.M.

    2014-01-01

    textabstractContainer terminal performance is largely determined by its design decisions, which include the number and type of quay cranes (QCs), stack cranes (SCs), transport vehicles, vehicle travel path, and stack layout. The terminal design process is complex because it is affected by factors such as topological constraints, stochastic interactions among the quayside, vehicle transport and stackside operations. Further, the orientation of the stack layout (parallel or perpendicular to the...

  19. Stacked magnet superconducting bearing

    International Nuclear Information System (INIS)

    Rigney, T.K. II; Saville, M.P.

    1993-01-01

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines

  20. Iridium Interfacial Stack (IRIS)

    Science.gov (United States)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  1. Chernobyl risk reduction via ventilation stack repair: a successful international project

    International Nuclear Information System (INIS)

    Gore, B.F.; Glukhov, A.Y.; Schmidt, J.P.; Vargo, G.I.; Osterloh, J.V.; Kupny, V.I.; Korneev, A.A.; Matvejev, Y.A.

    1999-01-01

    The recently completed project to repair the ChNPP Unit 3/4 ventilation stack is the first international project providing a direct physical improvement and safety upgrade at the Shelter (Ukrytie) facility. The 1986 explosion at Chernobyl NPP Unit 4 severely damaged the ventilation stack framework of bracing and its foundation. At one node, where six elements of the framework joined together, one element was completely missing one element was torn from the node and left hanging from its other end, and one element was badly bent and dented. Foundation supports were knocked measurably off plumb. Repair of the ChNPP ventilation stack is the first international project providing direct physical improvement and safety upgrade at the Shelter facility. The repairs have restored the stack to full design strength, from an emergency condition with a high probability of collapse

  2. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  3. Stacking fault energy of C-alloyed steels: The effect of magnetism

    International Nuclear Information System (INIS)

    Lu, Song; Li, Ruihuan; Kádas, Krisztina; Zhang, Hualei; Tian, Yanzhong; Kwon, Se Kyun; Kokko, Kalevi; Hu, Qing-Miao; Hertzman, Staffan

    2017-01-01

    First-principles calculations have been performed to study the effect of C on the stacking fault energy (SFE) of paramagnetic γ-Fe and Fe−Cr−Ni austenitic steel. In these systems, the local magnetic structure is very sensitive to the volume in both fcc and hcp structures, which emphasizes the importance of the magnetovolume coupling effect on the SFE. The presence of C atom suppresses the local magnetic moments of Fe atoms in the first coordination shell of C. Compared to the hypothetical nonmagnetic case, paramagnetism significantly reduces the effect of C on the SFE. In the scenario of C being depleted from the stacking fault structure or twin boundaries, e.g., due to elevated temperature, where the chemical effect of C is dissipated, we calculate the C-induced volume expansion effect on the SFE. The volume induced change in the SFE corresponds to more than ∼ 50% of the total C effect on the SFE obtained assuming uniform C distribution.

  4. Dose assessment for potential radionuclide emissions from stacks on the Hanford Site: NESHAP compliance

    International Nuclear Information System (INIS)

    Davis, W.E.; Barnett, J.M.; Kenoyer, J.L.

    1994-03-01

    The purpose of this document is to present the assessment results for the registered stacks on the Hanford Site for potential emissions, i.e. emissions with no control devices in place. Further, the document will identify those stacks requiring continuous monitoring, i.e. the effective dose equivalent from potential emissions >0.1 mrem/yr. The stack assessment of potential emissions was performed on 84 registered stacks on the Hanford Site. These emission sources represent individual point sources presently registered under Washington Administrative code 246-247 with the Washington Department of Health. The methods used in assessing the potential emissions from the stacks are described

  5. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data.

    Science.gov (United States)

    Muir, Dylan R; Kampa, Björn M

    2014-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  6. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  7. Reducing the layer number of AB stacked multilayer graphene grown on nickel by annealing at low temperature.

    Science.gov (United States)

    Velasco, J Marquez; Giamini, S A; Kelaidis, N; Tsipas, P; Tsoutsou, D; Kordas, G; Raptis, Y S; Boukos, N; Dimoulas, A

    2015-10-09

    Controlling the number of layers of graphene grown by chemical vapor deposition is crucial for large scale graphene application. We propose here an etching process of graphene which can be applied immediately after growth to control the number of layers. We use nickel (Ni) foil at high temperature (T = 900 °C) to produce multilayer-AB-stacked-graphene (MLG). The etching process is based on annealing the samples in a hydrogen/argon atmosphere at a relatively low temperature (T = 450 °C) inside the growth chamber. The extent of etching is mainly controlled by the annealing process duration. Using Raman spectroscopy we demonstrate that the number of layers was reduced, changing from MLG to few-layer-AB-stacked-graphene and in some cases to randomly oriented few layer graphene near the substrate. Furthermore, our method offers the significant advantage that it does not introduce defects in the samples, maintaining their original high quality. This fact and the low temperature our method uses make it a good candidate for controlling the layer number of already grown graphene in processes with a low thermal budget.

  8. Low Cost Mars Sample Return Utilizing Dragon Lander Project

    Science.gov (United States)

    Stoker, Carol R.

    2014-01-01

    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  9. A novel atmospheric tritium sampling system

    Science.gov (United States)

    Qin, Lailai; Xia, Zhenghai; Gu, Shaozhong; Zhang, Dongxun; Bao, Guangliang; Han, Xingbo; Ma, Yuhua; Deng, Ke; Liu, Jiayu; Zhang, Qin; Ma, Zhaowei; Yang, Guo; Liu, Wei; Liu, Guimin

    2018-06-01

    The health hazard of tritium is related to its chemical form. Sampling different chemical forms of tritium simultaneously becomes significant. Here a novel atmospheric tritium sampling system (TS-212) was developed to collect the tritiated water (HTO), tritiated hydrogen (HT) and tritiated methane (CH3T) simultaneously. It consisted of an air inlet system, three parallel connected sampling channels, a hydrogen supply module, a methane supply module and a remote control system. It worked at air flow rate of 1 L/min to 5 L/min, with temperature of catalyst furnace at 200 °C for HT sampling and 400 °C for CH3T sampling. Conversion rates of both HT and CH3T to HTO were larger than 99%. The collecting efficiency of the two-stage trap sets for HTO was larger than 96% in 12 h working-time without being blocked. Therefore, the collected efficiencies of TS-212 are larger than 95% for tritium with different chemical forms in environment. Besides, the remote control system made sampling more intelligent, reducing the operator's work intensity. Based on the performance parameters described above, the TS-212 can be used to sample atmospheric tritium in different chemical forms.

  10. The use of low cost compact cameras with focus stacking functionality in entomological digitization projects

    Directory of Open Access Journals (Sweden)

    Jan Mertens

    2017-10-01

    Full Text Available Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens.

  11. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies.

    Science.gov (United States)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew; Gautier, Laurent; Willis, Scooter; Fields, Christopher; Katayama, Toshiaki

    2012-01-01

    Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java Virtual Machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often. Here, we present cross-language examples for sequence translation, and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux.

  12. Quantification of Honeycomb Number-Type Stacking Faults: Application to Na3Ni2BiO6 Cathodes for Na-Ion Batteries.

    Science.gov (United States)

    Liu, Jue; Yin, Liang; Wu, Lijun; Bai, Jianming; Bak, Seong-Min; Yu, Xiqian; Zhu, Yimei; Yang, Xiao-Qing; Khalifah, Peter G

    2016-09-06

    Ordered and disordered samples of honeycomb-lattice Na3Ni2BiO6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na(+)/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycomb layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. It is demonstrated that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are

  13. Microseismic event location by master-event waveform stacking

    Science.gov (United States)

    Grigoli, F.; Cesca, S.; Dahm, T.

    2016-12-01

    Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We

  14. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  15. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.

    Science.gov (United States)

    Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L

    2013-11-29

    Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.

  16. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    Science.gov (United States)

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  17. Serendipity in the Stacks: Libraries, Information Architecture, and the Problems of Accidental Discovery

    Science.gov (United States)

    Carr, Patrick L.

    2015-01-01

    Serendipity in the library stacks is generally regarded as a positive occurrence. While acknowledging its benefits, this essay draws on research in library science, information systems, and other fields to argue that, in two important respects, this form of discovery can be usefully framed as a problem. To make this argument, the essay examines…

  18. Moving object detection in top-view aerial videos improved by image stacking

    Science.gov (United States)

    Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen

    2017-08-01

    Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.

  19. Fluxons in long and annular intrinsic Josephson junction stacks

    CERN Document Server

    Clauss, T; Moessle, M; Müller, A; Weber, A; Kölle, D; Kleiner, R

    2002-01-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  20. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    2017-12-04

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, prevent Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be