WorldWideScience

Sample records for stack gas cleaning

  1. Cleaning of stack gases from combustion of low level radioactive waste in Studsvik, Sweden

    International Nuclear Information System (INIS)

    Haard, E.

    1979-01-01

    The plant for combustion of low-level radioactive waste at Studsvik, Sweden, is described. The waste that is treated comes from nuclear power plants, industry, hospitals and universities. It is estimated to be about 270 ton/year in a few years time. The waste consists of plast, cloth, wood, paper, rubber, biological material and unburnable components such as glass and metals. The bags with waste may have a maximum surface dose rate of 10 mrem/h. For 5 % of the bags the maximum dose rate may be 100 mrem/h. During the combustion, samples of the stack gases are collected. The release of radioactivity is reported to the Swedish authorities. During 1978 three different stack gas cleaning systems, wet cleaning, electrostatic filters and textile filters were investigated. The wet cleaning gave a radioactive sludge which was difficult to take care of. In the electrostatic filters it was difficult to change components due to radioactivity. Therefore the textile filters were chosen. A textile filter will be installed during 1979. The cleaning capacity of the filter is expected to be 90 % and will decrease the collective doses from stack gases with 6.7 manrem/year. The cost is estimated to 450 000 Sw kr/year (100 000 US dollar). (K.K.)

  2. Numerical model for stack gas diffusion in terrain with buildings. Variations in air flow and gas concentration with additional building near stack

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito; Numata, Kunio

    2009-01-01

    A numerical simulation method for predicting atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings has been developed. The turbulence closure technique using a modified k-ε-type model without a hydrostatic approximation was used for flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by trajectories of released particles. The developed numerical model was applied to a virtual terrain and building conditions in this study prior to the applications of a numerical model for real terrain and building conditions. The height of the additional building (H a ), located about 200 m leeward from the stack, was varied (i.e., H a =0, 20, 30 and 50 m), and its effects on airflow and the concentration of stack gas at a released height of 75 m were calculated. Furthermore, effective stack height, which was used in the safety analysis of atmospheric diffusion for nuclear facilities in Japan, was evaluated from the calculated ground-level concentration of stack gas. The cavity region behind the additional building was calculated, and turbulence near the cavity was observed to decrease when the additional building was present. According to these flow variations with the additional building, tracer gas tended to diffuse to the ground surface rapidly with the additional building at the leeward position of the cavity, and the ground-level stack gas concentration along the plume axis also increased with the height of the additional building. However, the variations in effective stack height with the height of the additional building were relatively small and ranged within several m in this study. (author)

  3. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  4. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  5. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  6. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P [Gas Turbine Efficiency, Jarfalla (Sweden)

    1999-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  7. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  8. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the

  9. WWW expert system on producer gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, E.J.; Lammers, G.; Beenackers, A.A.C.M. [University of Groningen (Netherlands)

    1999-07-01

    The University of Groningen (RUG) has developed an expert system on cleaning of biomass producer gas. This work was carried out in close co-operation with the Biomass Technology Group B.V. (BTG) in Enschede, The Netherlands within the framework of the EC supported JOR3-CT95-0084 project. The expert system was developed as a tool for the designer-engineer of downstream gas cleaning equipment and consists of an information package and a flowsheet package. The packages are integrated in a client/server system. The flowsheeting package of the expert system has been designed for the evaluation of different gas cleaning methods. The system contains a number of possible gas cleaning devices such as: cyclone, fabric filter, ceramic filter, venturi scrubber and catalytic cracker. The user can select up to five cleaning steps in an arbitrary order for his specific gas cleaning problem. After specification of the required design parameters, the system calculates the main design characteristics of the cleaning device. The information package is a collection of HTML{sup TM} files. It contains a large amount of information, tips, experience data, literature references and hyperlinks to other interesting Internet sites. This information is arranged per cleaning device. (orig.)

  10. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  11. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov (United States)

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  12. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.

    1982-05-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput ammounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (Author) [de

  13. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.R.M.

    1983-01-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxiliary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10,000 kcal/kg waste. The maximum throughput amounts to 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveyed by doserate and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (author)

  14. Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse

    Science.gov (United States)

    Trucks Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative

  15. Rheinbraun`s experience in hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Renzenbrink, W.; Wischnewski, R. [Rheinbraun AG, Koeln (Germany)

    1998-11-01

    For the introduction of modern types of power stations like IGCC, PCFBC, etc. the application of a functional hot gas filter is of essential importance. A hot gas filter with two tiers for dry and complete dedusting of the entire raw gas flow of 53,000 m{sup 3}(STP)/h was started up in 1993 in the High Temperature Winkler (HTW) coal gasification demonstration plant in Hurth/Berrenrath near Cologne, Germany. The operational data of the filter are a pressure of 10 bar and a temperature of 270{degree}C. The filter was supplied by the `LLB` company and is characterised by the principle of upright arrangement of the ceramic filter elements. During nearly 8,000 h of plant operation up to September 1995 the filter showed stable and safe operation, a separation efficiency of {gt}99.98%, a 21% reduction in filtration surface, reduction in cleaning gas requirement by factor 10, reduction in cleaning gas pressure to 16 bar and a significant reduction in maintenance and operating costs. The resultant clean gas dust content was {lt} 3 mg/m{sup 3}(STP) compared to the design value of 5 mg/m{sup 3}(STP). In a test to the limit of operation one failure occurred when 20 candles broke. In order to yield larger filtering surfaces in very large filter units, e.g. for IGCCs, without using more than one filter the multistage design is the only sensible solution. Prior to industrial-scale application such a system has to be tested. Therefore the two-tier filter was converted into a three-tier type with separate filter modules at the end of 1995. After another 5,400 h of plant operation this three-tier filter shows safe and stable operation with a clean gas dust content of {lt} 2 mg/m{sup 3}(STP). 3 refs., 5 figs., 1 tab.

  16. Air-cleaning apparatus

    International Nuclear Information System (INIS)

    Howard, A.G.

    1981-01-01

    An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces

  17. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  18. Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas

    Science.gov (United States)

    Cities Make the Clean Switch to Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Facebook Tweet about Alternative Fuels Data Center : Cities Make the Clean Switch to Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Cities

  19. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    Science.gov (United States)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  20. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  1. Evaluation of Ultra Clean Fuels from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  2. Stack gas treatment

    Science.gov (United States)

    Reeves, Adam A.

    1977-04-12

    Hot stack gases transfer contained heat to a gravity flow of pebbles treated with a catalyst, cooled stacked gases and a sulfuric acid mist is withdrawn from the unit, and heat picked up by the pebbles is transferred to air for combustion or other process. The sulfuric acid (or sulfur, depending on the catalyst) is withdrawn in a recovery unit.

  3. Use of acoustic field in gas cleaning

    International Nuclear Information System (INIS)

    Boulaud, D.; Madelaine, G.; Malherbe, C.

    1985-01-01

    The use of acoustic field in gas cleaning can be done in two ways: the first is the conditioning of an aerosol by acoustic agglomeration before filtration by conventional methods (cyclones, granular beds, etc.), the second is the collection efficiency improvement of granular bed filters exposed to an acoustic field. In a first part, experimental results are given on the acoustic agglomeration of a polydisperse aerosol of mass concentration between 0.5 and 1 g/m 3 . An important effect of wall precipitation of particles is described and deposition velocity due to the presence of an acoustic field are measured as a function of particle diameter, sound pressure level and acoustic frequency. A dimensionless relationship between the deposition velocity and particle relaxation time is established for these results. At the end of this part energetic criteria for the use of acoustic agglomeration in a gas cleaning train is given. In a second part, experimental results are given to the influence of acoustic field on the collection efficiency of monodispersed aerosols ranging from 0.1 to 1 μm. For these both uses of acoustic field in industrial gas cleaning the different alternatives for the acoustic field generation are discussed

  4. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    Directory of Open Access Journals (Sweden)

    Takenobu Michioka

    2016-03-01

    Full Text Available Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the additional structure. When the source height is equivalent to the reactor building height, the additional structure enhances both the vertical and horizontal gas dispersion widths and decreases the ground gas concentration, and it means that the additional structure does not decrease the effective stack height. When the source height is larger than the reactor height, the additional structures might affect the effective stack height. As the distance between the source and the additional structure decreases, or as the height of the additional structure increases, the structure has a larger effect on the effective stack height.

  5. Power station stack gas emissions

    International Nuclear Information System (INIS)

    Hunwick, Richard J.

    2006-01-01

    There are increasing awareness and pressure to reduce emissions of acid rain and photochemical smog. There is a need to produce new control system and equipment to capture those emissions. The most visible form of pollutions are the chimney smoke, dust and particles of fly ash from mineral matter in the fuel. Acid gases are hard on structures and objects containing limestone. Coal fired power generation is likely to be able to sustain its competitive advantage as a clean source of electricity in comparison with nuclear power and natural gas

  6. Proceedings of the 23rd DOE/NRC nuclear air cleaning conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1995-02-01

    The report contains the papers presented at the 23rd DOE/NRC Nuclear Air Cleaning Conference and the associated discussions. Major topics are: (1) nuclear air cleaning codes, (2) nuclear waste, (3) filters and filtration, (4) effluent stack monitoring, (5) gas processing, (6) adsorption, (7) air treatment systems, (8) source terms and accident analysis, and (9) fuel reprocessing. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Exhaust gas clean up process

    Science.gov (United States)

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  8. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  9. Incineration and flue gas cleaning in China - a Review

    International Nuclear Information System (INIS)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa

    2010-01-01

    Waste incineration is rapidly developing in China. Different technologies are proposed for Municipal Solid Waste (MSW), Hazardous Waste (HW), and Medical Waste (MW). The required technologies are either imported, or developed locally. Some data are cited to illustrate these rapid developments. Incinerator flue gas arises at rather limited scale (10,000-100,000 Nm 3 /h), compared to power generation, yet the number of pollutants to be counted with is huge: dust and grit, acid gases, NO x , selected heavy metals, aerosols and nanoparticles, Polycyclic Aromatic Hydrocarbons, and dioxins. Major options in flue gas cleaning can be derived from Best Available Technologies (BAT), as were developed in the European Union. Hence, E.U. practice is analyzed in some detail, by considering the present situation in selected E.U. countries (Germany, Sweden, the Netherlands, Denmark, Belgium). A comparison is made with China. Also, the situation in Japan is examined. Based on this wide experience, a number of technical suggestions regarding incineration, flue gas cleaning, and emission control are formulated. Also, the possibility of co incineration is considered. Starting from the particular experience of Zhejiang University (as a designer of Fluid Bed and Rotary Kiln plant, with large experience in Fluid Bed processes, coal firing, gasification and pyrolysis, and actively monitoring thermal units throughout China) some specific Case Studies are examined, e.g., a fluidized bed incinerator and its gas cleaning system (MSWI and HWI from ITPE). Some attention is paid to the potential threats in China from uncontrolled combustion sources. As a conclusion, some recommendations are formulated regarding flue gas cleaning in Developing Nations at large and in China in particular. (author)

  10. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning

    Science.gov (United States)

    Mylläri, Fanni; Asmi, Eija; Anttila, Tatu; Saukko, Erkka; Vakkari, Ville; Pirjola, Liisa; Hillamo, Risto; Laurila, Tuomas; Häyrinen, Anna; Rautiainen, Jani; Lihavainen, Heikki; O'Connor, Ewan; Niemelä, Ville; Keskinen, Jorma; Dal Maso, Miikka; Rönkkö, Topi

    2016-06-01

    Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2) and assessment related to nucleation rates. The experiments showed that the primary emissions of particles and SO2 were effectively reduced by flue-gas desulfurization and fabric filters, especially the emissions of particles smaller than 200 nm in diameter. Primary pollutant concentrations reached background levels in 200-300 s. However, the atmospheric measurements indicated that new particles larger than 2.5 nm are formed in the flue-gas plume, even in the very early phases of atmospheric ageing. The effective number emission of nucleated particles were several orders of magnitude higher than the primary particle emission. Modelling studies indicate that regardless of continuing dilution of the flue gas, nucleation precursor (H2SO4 from SO2 oxidation) concentrations remain relatively constant. In addition, results indicate that flue-gas nucleation is more efficient than predicted by atmospheric aerosol modelling. In particular, the observation of the new particle formation with rather low flue-gas SO2 concentrations changes the current understanding of the air quality effects of coal combustion. The results can be used to evaluate optimal ways to achieve better air quality, particularly in polluted areas like India and China.

  11. Independent determination of the accuracy of the OSTR stack gas monitor and its operational application

    International Nuclear Information System (INIS)

    Pickett, B.D.; Johnson, A.G.

    1982-01-01

    This study was undertaken to determine the accuracy of the stack gas monitor, using techniques which were independent of the monitoring system itself. Samples of argon-41 to be used as the standards in this study were carefully produced in the thermal column of the OSTR and counted on a Ge(Li) detector which was connected to a multichannel analyzer (MCA). As the argon-41 standard in the gas sample flask decayed, the concentration of the argon-41 was compared to the output of the Ge(Li)/MCA system. This established a calibration curve for the counting system, whereby a sample with an unknown concentration of argon-41 could be counted and the subsequent count rate from the sample converted to a concentration expressed in mCi per milliliter. Gas samples were extracted from various points in the reactor exhaust system and the concentrations of argon-41 were determined by counting on the Ge(Li)/MCA system. Each sample concentration was then compared to the argon-41 concentration indicated by the stack gas monitor. The initial results indicated that, although possibly intermittent, the argon-41 concentrations displayed by the stack gas monitor were often approximately 50% of those predicted by analysis of individual samples from the exhaust system. Several possible sources for the discrepancy were checked, including the method of SGM calibration, uneven mixing of exhaust air and argon-41 in the reactor building exhaust stream, and dilution of the gas concentration in the SGM system by air leakage into the system. After considerable effort, the latter cause was found to be the culprit, due to an aging gasket around the stack monitor's moving particulate-filter-paper housing

  12. Air and gas cleaning technology for nuclear applications

    International Nuclear Information System (INIS)

    First, M.W.

    1986-01-01

    All large-scale uses of radioactive materials require rigid control of off-gases and generated aerosols. Nuclear air and gas cleaning technology has answered the need from the days of the Manhattan Project to the present with a variety of devices. The one with the longest and most noteworthy service is the HEPA (high efficiency particulate air) filter that originally was referred to as an absolute filter in recognition of its extraordinary particle retention characteristics. Activated-charcoal adsorbers have been employed worldwide for retention of volatile radioiodine in molecular and combined forms and, less frequently, for retention of radioactive noble gases. HEPA filters and activated -charcoal adsorbers are often used with auxiliary devices that serve to extend their effective service life or significantly improve collection efficiency under unfavorable operating conditions. Use of both air cleaning devices and their auxiliaries figure prominently in atomic energy, disposal of high- and low-level nuclear wastes, and in the production of fissile materials. The peaceful uses of nuclear energy would be impossible without these, or equivalent, air- and gas-cleaning devices

  13. First operational tests of an oxycoal hot gas cleaning facility; Erste Betriebstests einer Oxycoal-Heissgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, A.; Habermehl, M.; Foerster, M.; Kneer, R. [RWTH Aachen University (Germany). Lehrstuhl fuer Waerme- und Stoffuebertragung

    2009-07-01

    An oxyfuel power plant process using a ceramic high temperature membrane for oxygen supply is investigated within the scope of the OXYCOAL-AC project at RWTH Aachen Uni-versity. Implementing the membrane requires a clean gas at a temperature of 850 C. There-fore a hot gas cleaning facility based on porous ceramic candle filters is used, which is state-of-the-art for the gas cleaning of synthesis gas or for flue gas cleaning in pressurised fluid-ised bed furnaces. However, these applications operate at lower temperatures and in a sig-nificantly different atmosphere. Thus, experiences for dust removal at high temperatures in oxyfuel atmoshere are not available. Experiments with a hot gas cleaning facility were con-ducted at the experimental combustion plant of the Institute of Heat and Mass Transfer, us-ing different candle filter materials. The flue gas was provided by a coal fired 100 kW{sub th} oxy-fuel furnace. The operational behaviour of the filtration facility, the adhesion and dedusting properties of the filter cake were investigated. (orig.)

  14. New challenges to air/gas cleaning systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  15. Flue gas cleaning chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gutberlet, H [VEBA Kraftwerke Ruhr AG, Gelsenkirchen (Germany)

    1996-12-01

    The introduction of modern flue gas cleaning technology into fossil-fueled power stations has repeatedly confronted the power station chemists with new and interesting problems over the last 15 - 20 years. Both flue gas desulphurization by lime washing and catalytic removal of nitrogen oxides are based on simple basic chemical reactions. Owing to the use of readily available starting materials, the production of safe, useful end products and, last but not least, the possibility of implementing all this on an industrial scale by means of efficient process engineering, limestone desulphurization and catalytic removal of nitrogen oxides dominate the world market and, little by little, are becoming still more widespread. The origin and thus the quality of fuels and starting materials, the firing method, the mode of operation and engineering peculiarities in each plant interact in a complex manner. Simple cause/effect relationships are frequently incapable of explaining phenomena; thinking in complex interrelationships is needed. (EG)

  16. Natural gas - bridge to a clean energy future

    International Nuclear Information System (INIS)

    Doelman, J.

    1991-01-01

    Per unit of useful energy natural gas gives the lowest environmental pollution of all fossil fuels. This is due to its low carbon content, the absence of sulphur compounds, and the fact that natural gas can, rather easily, be burnt completely in such a way that also the NO x emission is acceptably low. Although natural gas has already a good record as an efficient and clean fuel large improvements are still possible, but this requires more R+D and time. The presently known natural gas world reserves are high enough to go for a substantially higher share of gas in the energy package. E.g. replacing coal by natural gas will give large environmental improvements. Furthermore, direct gas use is very often the most efficient and cleanest option, also when electricity is an alternative. To develop and connect the known large reserves to the market enormous amounts of money are required. The political and economical situation should make these investments possible and attractive. The ideas first expressed by the Dutch prime minister, now incorporated in the Energy Charter, have been developed to that end. Special attention should be given to the development of small gas fields as is e.g. being done in The Netherlands, which has improved the local gas reserves situation impressively. As a first major step to a clean future the potential of natural gas should be explored and put to work worldwide. Its potential as an important diversified source of energy is underestimated. Amongst others by funding more natural gas R+D natural gas should develop a keyrole in the energy scene of the next 3-5 decades.(author) 3 figs., 8 tabs., 3 refs

  17. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    Science.gov (United States)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  18. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  19. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  20. Renewable Natural Gas Clean-up Challenges and Applications

    Science.gov (United States)

    2011-01-13

    produced from digesters ─ Animal manure (dairy cows, swine ) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...LNG) for vehicle fuel ─Ft. Lewis — Anaerobic digestion of waste water for production of hydrogen as a fuel cell vehicle fuel ─SCRA * – Landfill gas...BE CLEANED- UP AND PLACED IN THE NATURAL GAS PIPELINE SYSTEM 6 GTI RNG Project Examples >Example GTI Projects: ─Gills Onions— Anaerobic

  1. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  2. Handbook - Status assessment of polymeric materials in flue gas cleaning systems; Handbok - Statusbedoemning av polymera material i roekgassystem

    Energy Technology Data Exchange (ETDEWEB)

    Roemhild, Stefanie

    2011-01-15

    In today's flue gas cleaning systems with advanced energy recovery systems and improved flue gas cleaning, the use of polymeric materials has continuously increased in applications where the flue gas environment is to corrosive to be handled with metallic materials. Typical polymeric materials used are fibre reinforced plastics (FRP), glassflake-filled linings, polypropylene (PP) and fluoropolymers. Demands on increased profitability and efficiency at incineration plants involve that also polymeric materials have to face more demanding environments with increased temperature, temperature changes, changes in fuel composition and therewith fluegas composition and longer service intervals. The knowledge on how polymeric materials perform in general and how these service conditions influence them, is, however, poor and continuous status assessment is therefore necessary. The overall aim of this project has been to assess simple techniques for status assessment of polymeric materials in flue gas cleaning equipment and to perform an inventory of present experience and knowledge on the use of polymeric materials. The project consisted of an inventory of present experience, analysis of material from shut-down plants and plants still in service, field testing in a plant adding sulphur during combustion and the assessment of different non-destructive testing (NDT) methods by laboratory experiments. The results of the project are summarised in the form of a handbook which in the first place addresses plant owners and maintenance staff at incineration plants and within the pulp and paper industry. In the introductory chapter typical polymeric materials (FRP, flake linings, PP and fluoropolymers) used in flue gas cleaning equipment are described as well as the occurring corrosion mechanisms. The inventory of process equipment is divided into sections about scrubbers, flue gas ducts, stacks, internals and other equipment such as storage tanks. Typical damages are

  3. Development of filters for exhaust air or off-gas cleaning

    International Nuclear Information System (INIS)

    Wilhelm, J.

    1988-01-01

    The activities of the 'Laboratorium fuer Aerosolphysik und Filtertechnik II' of the 'Kernforschungszentrum Karlsruhe' concentrate on the development of filters to be used for cleaning nuclear and conventional exhaust air and off-gas. Originally, these techniques were intended to be applied in nuclear facilities only. Their application for conventional gas purification, however, has led to a reorientation of research and development projects. By way of example, it is reported about the use of the multi-way sorption filter for radioiodine removal in nuclear power plants and following flue-gas purification in heating power plants as well as for off-gas cleaning in chemical industry. The improvement of HEPA filters and the development of metal fibre filters has led to components which can be used in the range of high humidity and moisture as well as at high temperatures and an increased differential pressure. The experience obtained in the field of high-efficiency filtering of nuclear airborne particles is made use of during the investigations concerning the removal of particles of conventional pollutants in the submicron range. A technique of radioiodine removal and an improved removal of airborne particles has been developed for use in the future reprocessing plant. Thus, a maximum removal efficiency can be achieved and an optimum waste management is made possible. It is reported about the components obtained as a result of these activities and their use for off-gas cleaning in the Wackersdorf reprocessing plant (WAW). (orig.) [de

  4. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni

    2013-01-01

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H 2 S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO 2 -laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  5. Simple Stacking Methods for Silicon Micro Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gianmario Scotti

    2014-08-01

    Full Text Available We present two simple methods, with parallel and serial gas flows, for the stacking of microfabricated silicon fuel cells with integrated current collectors, flow fields and gas diffusion layers. The gas diffusion layer is implemented using black silicon. In the two stacking methods proposed in this work, the fluidic apertures and gas flow topology are rotationally symmetric and enable us to stack fuel cells without an increase in the number of electrical or fluidic ports or interconnects. Thanks to this simplicity and the structural compactness of each cell, the obtained stacks are very thin (~1.6 mm for a two-cell stack. We have fabricated two-cell stacks with two different gas flow topologies and obtained an open-circuit voltage (OCV of 1.6 V and a power density of 63 mW·cm−2, proving the viability of the design.

  6. Design of off-gas and air cleaning systems at nuclear power plants

    International Nuclear Information System (INIS)

    1987-01-01

    The primary purpose of this report is to describe the current design of air and process off-gas cleaning technologies used in nuclear power plants (NPPs). Because of the large inventory of fission products that are produced in the fuel (i.e. in the range of 5x10 19 Bq per GW(e)·a) and the highly restrictive airborne radionuclide release limits being established by Member States, air and process off-gas cleaning technologies are constantly being improved to provide higher airborne radionuclide recovery efficiencies and a smaller probability of malfunction. For various technologies considered an attempt has been made to provide the following information: (a) Process description in terms of principles of off-gas and air cleaning, operating parameters and system performance; (b) Design for normal and accident situations; (c) Design of components with regard to construction materials, size, shape and geometry of the system, resistance to chemical and physical degradation from the operational environment, safety and quality assurance requirements

  7. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    Science.gov (United States)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  8. Flue Gas Cleaning With Alternative Processes and Reaction Media

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Huang, Jun; Riisager, Anders

    2007-01-01

    Alternative methods to the traditional industrial NOX and SOXflue gas cleaning processes working at lower temperatures and/orleading to useful products are desired. In this work we presentour latest results regarding the use of molten ionic media inelectrocatalytic membrane separation, ionic liquid...... reversibleabsorption and supported ionic liquid deNOX catalysis. Furtherdevelopment of the methods will hopefully make them suitable forinstallation in different positions in the flue gas duct ascompared to the industrial methods available today....

  9. Assessment of corrosion in the flue gas cleaning system using on-line monitoring

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vendelbo Nielsen, Lars; Berggreen Petersen, Michael

    2015-01-01

    Amager unit 1 is a 350 MW multifuel suspension-fired plant commissioned in 2009 to fire biomass (straw and wood pellets). Increasing corrosion problems in the flue gas cleaning system were observed in the gas-gas preheater (GAFO), the booster fan and flue gas ducts. Chlorine containing corrosion ...

  10. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  11. Process, background and design criteria of the gas cleaning at Puertollano IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Pisa, J. [Elcogas, Madrid (Spain)

    1998-11-01

    The Puertollano IGCC plant selected cooling by a water-tube boiler with upstream quenching at high velocities that requires a dust-free cooling gas at not less than 250{degree}C in order not to penalise the heat recovery efficiency. A filtration system for gas dedusting in the 250{degree}C temperature range has been installed and will be commissioned at the end of 1997. The gas cleaning concept is completed with a Venturi Scrubber, a COS hydrolysis reactor and a MDEA column to strip the sulphuric acid to yield clean gas. The gasification island is based upon the PRENFLO system which is an entrained-flow system with dry feeding. The selection of the filter system arrangement considered the limited operational experience in comparable operating conditions and acknowledged the flexibility of the filter system versus the cyclone-scrubber as far as easier load variation operation, the reduction of residues needing deposition and increased slag flow, as well as easier maintenance. Additionally to the ceramic test filters in Furstenhausen (PRENFLO) and Deer Park near Houston (SHELL), ceramic candle-type filter were selected in Buggenum and at Wabash River, and for the KoBra plant. The main criteria for the selection of the filter system and the type of candle were: separation efficiency to match clean gas limits; uniform distribution of the dust-laden gas to the filters; wear-resistant routing of the dust-laden gas flow; need for a supporting structure which must cope with sudden pressure fluctuations; optimised pulse gas system; and maintenance and repair. Based upon the above criteria, the PRENFLO concept requirements and the gas turbine specification, an arrangement with two pressure filter vessels with LLB design and filter elements manufactured by Schumacher has been installed in Puertollano. 2 figs., 3 tabs.

  12. Update on the REIPPPP, clean coal, nuclear, natural gas

    CSIR Research Space (South Africa)

    Milazi, Dominic

    2015-12-01

    Full Text Available , clean coal, nuclear, natural gas The Sustainable Energy Resource Handbook Volume 6 Dominic Milazi, Dr Tobias Bischof-Niemz, Abstract Since its release in 2011, the Integrated Resource Plan (IRP 2010-2030), or IRP 2010, has been the authoritative... text setting out South Africa’s electricity plan over the next 20 years. The document indicates timelines on the roll out of key supply side options such as renewable energy, the nuclear, natural gas and coal build programmes, as well as peaking...

  13. Method for cleaning the filter pockets of dust gas filter systems

    Energy Technology Data Exchange (ETDEWEB)

    Margraf, A

    1975-05-07

    The invention deals with a method to clean filter pockets filled with dust gas. By a periodic to and fro air jet attached to a scavenging blower, a pulsed fluttering movement of the filter surface is obtained which releases the outer layers of dust. The charging of the filter pockets with scavenging air to clean the filter material can be carried out immediately on the pulsed admission with suitable time control.

  14. Natural gas in Mexico and its perspectives as a clean energetic

    International Nuclear Information System (INIS)

    Penilla, Rodolfo Navarro

    1994-01-01

    In Mexico, the natural gas market is characterized by stable consumption and growing perspectives in the demand, due to the entrance in vigor of news environmental norms, as soon as, the benefits from the natural gas are as energetic for many applications in several sectors and like a clean fountain of energy proper for the environmental protection plans. (author)

  15. Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks

    International Nuclear Information System (INIS)

    Sasmito, Agus P.; Kurnia, Jundika C.; Mujumdar, Arun S.

    2012-01-01

    A careful design of gas and coolant channel is essential to ensure high performance and durability of proton exchange membrane (PEM) fuel cell stack. The channel design should allow for good thermal, water and gas management whilst keeping low pressure drop. This study evaluates numerically the performance of various gas and coolant channel designs simultaneously, e.g. parallel, serpentine, oblique-fins, coiled, parallel-serpentine and a novel hybrid parallel-serpentine-oblique-fins designs. The stack performance and local distributions of key parameters are investigated with regards to the thermal, water and gas management. The results indicate that the novel hybrid channel design yields the best performance as it constitutes to a lower pumping power and good thermal, water and gas management as compared to conventional channels. Advantages and limitation of the designs are discussed in the light of present numerical results. Finally, potential application and further improvement of the design are highlighted. -- Highlights: ► We evaluate various gas and coolant channel designs in liquid-cooled PEM fuel cell stack. ► The model considers coupled electrochemistry, channel design and cooling effect simultaneously. ► We propose a novel hybrid channel design. ► The novel hybrid channel design yields the best thermal, water and gas management which is beneficial for long term durability. ► The novel hybrid channel design exhibits the best performance.

  16. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  17. Ni/YSZ electrode degradation studied by impedance spectroscopy: Effects of gas cleaning and current density

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg

    2010-01-01

    Anode supported (Ni/YSZ–YSZ–LSM/YSZ) solid oxide fuel cells were tested and the degradation over time was monitored and analyzed by impedance spectroscopy. Test conditions were chosen to focus on the anode degradation and all tests were operated at 750 °C. O2 was supplied to the cathode...... and the anode inlet gas mixture had a high p(H2O)/p(H2) ratio of 0.4/0.6. Commercially available gasses were applied. Cells were tested over a few hundred hours applying varying current densities (OCV, 0.75 A/cm2 and 1 A/cm2). To investigate the effects of possible impurities in the inlet gas stream...... on the anode degradation, tests were set-up both with and without gas cleaning. Gas cleaning was done by passing the H2 over porous nickel at room temperature. It was found that cleaning of the inlet H2 gas more than halved the anode degradation under current load. For tests at OCV the increase in the Ni...

  18. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  19. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  20. Tracer gas experiment to verify the dispersion from a tall stack

    International Nuclear Information System (INIS)

    Sivertsen, B.; Irwin, J.S.

    1996-01-01

    At the request of the Ministerios de Obras Publicas y Urbanismo (MOPU) in Madrid, the Norwegian Institute for Air Research (NILU) planned and carried out a comprehensive field experiment at the Andorra (Teruel) power plant in Spain. All together, eleven releases of sulfur hexafluoride (SF6) tracer were carried out at the 1,200 MW electric coal fired power plant. The tracer was emitted into the atmosphere from the 343 m high stack, stack exit diameter of 9 m. The stack gas emission characteristics were nearly constant during the period having an exit temperature of 175.1 C (1.9), exit velocity of 35.5 m/s (0.14) and sulfur dioxide (SO 2 ) emission rate of 46.1 x 10 3 kg/hr (5.15 x 10 3 ); standard deviations are listed in parentheses. Samples were taken at the surface along sampling arcs located approximately 8, 23, 43 and 75 km downwind. The releases were undertaken during typical late spring daytime conditions. The synoptic weather conditions were dominated by a large high pressure system on the Atlantic, west of Spain. Fronts were passing the area from the north and a low pressure system was developing over central Europe (Germany). Winds at the surface were generally brisk from the northwest at 7 to 12 m/s

  1. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    Science.gov (United States)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  2. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  3. Trends in the design and operation of off-gas cleaning systems in nuclear facilities

    International Nuclear Information System (INIS)

    First, M.W.

    1980-01-01

    Trends in the design and operation of off-gas cleaning systems in nuclear facilities reflect the normal development by manufacturers of new and improved equipment and the demand for more safety, greater reliability, and higher collection efficiency as an aftermath of the well publicized accident at Three Mile Island. The latter event has to be viewed as a watershed in the history of off-gas treatment requirements for nuclear facilities. It is too soon to predict what these will be with any degree of assurance but it seems reasonable to expect greatly increased interest in containment venting systems for light water and LMFBR nuclear power reactors and more stringent regulatory requirements for auxiliary off-gas cleaning systems. Although chemical and waste handling plants share few characteristics with reactors other than the presence of radioactive materials, often in large amounts, tighter requirements for handling reactor off-gases will surely be transferred to other kinds of nuclear facilities without delay. Currently employed nuclear off-gas cleaning technology was largely developed and applied during the decade of the 1950s. It is regrettable that the most efficient and most economical off-gas treatment systems do not always yield the best waste forms for storage or disposal. It is even more regrettable that waste management has ceased to be solely a technical matter but has been transformed instead into a highly charged political posture of major importance in many western nations. Little reinforcement has been provided by detailed studies of off-gas treatment equipment failures that show that approximately 13% of over 9000 licensee event reports to the United States Nuclear Regulatory Commission pertained to failures in ventilating and cleaning systems and their monitoring instruments

  4. Exhaust gas cleaning system for handling radioactive fission and activation gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.

    1975-01-01

    An exhaust gas cleaning system utilizing the principle of delaying radioactive gases to permit their radioactive decay to a level acceptable for release to the atmosphere, comprising an adsorbent for adsorbing radioactive gas and a container for containing the adsorbent and for constraining gas to flow through the adsorbent, the adsorbent and the container forming simultaneously an adsorptive delay section and a mechanical delay section, by means of a predetermined ratio of volume of voids in the adsorbent to total volume of the container containing the adsorbent, for delaying radioactive gas to permit its radioactive decay to a level acceptable for release to the atmosphere is described. A method of using an adsorbent for cleaning a radioactive gas containing an isotope which is adsorbed by the adsorbent and containing an isotope whose adsorption by the adsorbent is low as compared to the isotope which is adsorbed and which is short-lived as compared to the isotope which is adsorbed, comprising constraining the gas to flow through the adsorbent with the retention time for the isotope which is adsorbed being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere and with the retention time for the isotope of relatively low adsorption and relatively short life being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere is also described. (U.S.)

  5. Temperature control of thermal-gas-dynamical installation in cleaning oil-well tubes

    Science.gov (United States)

    Penner, V. A.; Martemyanov, D. B.; Pshenichnikova, V. V.

    2017-08-01

    The article provides the study results of cleaning oil-well tubes, the oil-well tube failure reasons for service by their types have been considered. The chemical method of cleaning oil-well tubes as the least expensive has been reviewed when acid solution moves to the interptube space mixing up with oil and liquidates paraffin and pitches deposits on the internal pipe surface. Except the chemical method of pipes cleaning the mechanical one was considered as well. Also the disadvantages -such as the low productivity of cleaning and design complexity- of this deposits removal method on the internal oil-well tube surface have been considered. An effective method for cleaning oil-well tubing from paraffin and pitches by the thermodynamic plant based on the aircraft engine has been introduced for the first time. The temperature distribution graph in the gas stream at the engine output has been given.

  6. Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, A.; Bonalumi, D.; Lozza, G.

    2013-01-01

    Highlights: • Hot fuel gas clean-up is a very favorable technology for IGCC concepts. • IGCC net efficiency reduces to 41.5% when realizing post-combustion CO 2 capture. • Complex IGCC layouts are necessary if exhaust gas recirculation is realized. • IGCC performance does not significantly vary with exhaust gas recirculation. - Abstract: This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO 2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO 2 capture station and to issues related to exhaust gas recirculation in combined cycles. The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO 2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO 2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout

  7. A brief history of the air cleaning conferences

    International Nuclear Information System (INIS)

    First, M.W.

    1995-01-01

    I have been asked to prepare a history of the air cleaning conferences. Undertaking such a task is, of course, a wonderful opportunity for reminiscences and a chance to retell old war stories. I must admit that it has taken much longer than I anticipated because I found myself so completely engrossed rereading the old records that time seemed to stop, although the hours passed. But a history of the nuclear air cleaning conferences means more than a stroll down memory lane. The 23 recorded air cleaning conference proceedings reflect an important aspect of the history of major nuclear developments, both military and civilian, because engineered safety features designed to prevent dispersion of radioactive products to the environment have always been a necessity for progress in this field. For this reason, I hope the history of the nuclear air cleaning conferences will not only be enjoyable, but also have meaning for young people entering this field. The air cleaning conferences were an outgrowth of the operations of the U.S. Atomic Energy Commission's (AEC) Stack Gas Working Group established in 1948 to review air cleaning operations at AEC installations. AEC's Division of Engineering sponsored and funded air cleaning research and development at Harvard University's School of Public Health, beginning about the same time. In addition to research and development, the Harvard contract called for consulting and educational services. The latter provided the opportunity for meetings devoted to information on air cleaning that could be applied to ongoing and anticipated nuclear operations

  8. A brief history of the air cleaning conferences

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W.

    1995-02-01

    I have been asked to prepare a history of the air cleaning conferences. Undertaking such a task is, of course, a wonderful opportunity for reminiscences and a chance to retell old war stories. I must admit that it has taken much longer than I anticipated because I found myself so completely engrossed rereading the old records that time seemed to stop, although the hours passed. But a history of the nuclear air cleaning conferences means more than a stroll down memory lane. The 23 recorded air cleaning conference proceedings reflect an important aspect of the history of major nuclear developments, both military and civilian, because engineered safety features designed to prevent dispersion of radioactive products to the environment have always been a necessity for progress in this field. For this reason, I hope the history of the nuclear air cleaning conferences will not only be enjoyable, but also have meaning for young people entering this field. The air cleaning conferences were an outgrowth of the operations of the U.S. Atomic Energy Commission`s (AEC) Stack Gas Working Group established in 1948 to review air cleaning operations at AEC installations. AEC`s Division of Engineering sponsored and funded air cleaning research and development at Harvard University`s School of Public Health, beginning about the same time. In addition to research and development, the Harvard contract called for consulting and educational services. The latter provided the opportunity for meetings devoted to information on air cleaning that could be applied to ongoing and anticipated nuclear operations.

  9. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  10. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J [VTT Energy, Espoo (Finland). Energy Production Technologies; and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  11. Maturing of SOFC cell and stack production technology and preparation for demonstration of SOFC stacks. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    2006-07-01

    The TOFC/Riso pilot plant production facility for the manufacture of anode-supported cells has been further up-scaled with an automated continuous spraying process and an extra sintering capacity resulting in production capacity exceeding 15,000 standard cells (12x12 cm2) in 2006 with a success rate of about 85% in the cell production. All processing steps such as tape-casting, spraying, screen-printing and atmospheric air sintering in the cell production have been selected on condition that up-scaling and cost effective, flexible, industrial mass production are feasible. The standard cell size is currently being increased to 18x18 cm2, and 150 cells of this size have been produced in 2006 for our further stack development. To improve quality and lower production cost, a new screen printing line is under establishment. TOFC's stack design is an ultra compact multilayer assembly of cells (including contact layers), metallic interconnects, spacer frames and glass seals. The compactness ensures minimized material consumption and low cost. Standard stacks with cross flow configuration contains 75 cells (12x12cm2) delivering about 1.2 kW at optimal operation conditions with pre-reformed NG as fuel. Stable performance has been demonstrated for 500-1000 hours. Significantly improved materials, especially concerning the metallic interconnect and the coatings have been introduced during the last year. Small stacks (5-10 cells) exhibit no detectable stack degradation using our latest cells and stack materials during test periods of 500-1000 hours. Larger stacks (50-75 cells) suffer from mal-distribution of gas and air inside the stacks, gas leakage, gas cross-over, pressure drop, and a certain loss of internal electrical contact during operation cycles. Measures have been taken to find solutions during the following development work. The stack production facilities have been improved and up-scaled. In 2006, 5 standard stacks have been assembled and burned in based on

  12. Calculation of aerodynamics of aerosol filter designs for cleaning of heavy liquid metal cooler reactor gas loops

    International Nuclear Information System (INIS)

    Valery P Melnikov; Pyotr N Martynov; Albert K Papovyants; Ivan V Yagodkin

    2005-01-01

    Full text of publication follows: One of the basic performances of aerosol filters is the aerodynamic resistance to the flow of gaseous medium to be cleaned. Calculation of the aerodynamics of aerosol filters in reference to the gas loops of reactor installations with heavy liquid metal coolant (HLMC) allows the design of the structural components of filters to be optimized to provide minimum initial resistance values. It is established that owing to various factors aerosol particles of different concentration and disperse composition are present always in the gas spaces of heavy liquid metal cooled reactor gas loops. To prevent the negative effect of aerosols on the equipment of the gas loops, it is reasonable to use filters of multistep design with sections of preliminary and fine cleaning to catch micron and submicron particles, respectively. A computer program and technique have been developed to evaluate the aerodynamics of folded aerosol filters for different parameters of their structural components, taking account of the aerosol spectrum and concentration. The algorithm of the calculation is presented by the example of a two-step design assembled in single vessel; the filter dimensions and pattern of the air flow to be cleaned are determined under the given boundary conditions. The evaluation of the aerodynamic resistance of filters was performed with consideration for local resistances and resistances of all the structural components of the filter (sudden constriction, expansion, the flow in air channels, filtering material and so on). Correlations have been derived for the resistance of air channels, filtering materials of preliminary and fine cleaning sections as a function of such parameters as the section depth (50-500 mm), the height of separators (3,5-20 mm), the filtering surface area (1,5-30 m 2 ). Based on the calculation results, the auto-similarity domain was brought out for the minimal values of filter resistances as a function of the ratio of

  13. Assessment of cleaning efficiency of the polydisperse gas flow in double-flow dedusting system

    Directory of Open Access Journals (Sweden)

    O.G. Butenko

    2016-05-01

    Full Text Available One of priority problems of nature protection activity at the industrial enterprises is upgrading the gas emissions cleaning of polydispersed dust. To solve the problem of catching of small fraction dust the double-flow dedusting system has been offered. Aim: The aim of the work is to determine the dependency type of the cleaning efficiency of polydisperse gas flow on gas separation factor double-flow dedusting system. Materials and methods: The analysis of influence of gas separation factor in the dividing device of double-flow dedusting system on its efficiency is carried out. By drawing up the mass balance of system on gas and on the mass of dust the general dependence for breakthrough of the main catcher, characterizing overall effectiveness of system, is received. Results: It is shown that value of breakthrough factor of the main catcher depends on dimensionless efficiency factors of the equipment. The received general dependence of breakthrough factor on separation factor allows to define the optimum value of separation factor for any combined dedusting system.

  14. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  15. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, Dietmar; Sadeler, Christian [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Technology, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-08-15

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (author)

  16. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Science.gov (United States)

    Gerteisen, Dietmar; Sadeler, Christian

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management.

  17. Investigation into CO2 laser cleaning of titanium alloys for gas-turbine component manufacture

    International Nuclear Information System (INIS)

    Turner, M.W.; Crouse, P.L.; Li, L; Smith, A.J.E.

    2006-01-01

    This paper reports results of the investigation into the feasibility of using a CO 2 laser technology to perform critical cleaning of gas-turbine aero-engine components for manufacture. It reports the results of recent trials and relates these to a thermal model of the cleaning mechanisms, and describes resultant component integrity. The paper defines the experimental conditions for the laser cleaning of various aerospace-grade contaminated titanium alloys, using a continuous wave CO 2 laser. Laser cleaning of Ti64 proved successful for electron beam welding, but not for the more sensitive Ti6246. For diffusion bonding the trials produced a defective standard of joint. Effects of oxide formation is modelled and examined experimentally

  18. Gas plant cleaning case history

    Energy Technology Data Exchange (ETDEWEB)

    Woods, B

    1971-03-22

    Basic steps to be taken before using any cleaning method are select a responsible group and give it full responsibility; know the problem, what type of fouling, lab samples, amount of material, time and cost; sell the idea to management; maintain the cleaning equipment; and follow up each cleaning operation. These principles have been applied to advantage in the amine contractor at Taylor, a vessel 60 ft high with 78-in. OD, containing carbon steel deck trays with stainless steel caps. The original attempt to clean with wire scrapers manually involved much lost time and several crews. There was limited space in the tray vessels, design created areas difficult to clean, working conditions were unpleasant, equipment downtime was extended, labor cost was high, and the final result was not satisfactory. Chemical cleaning was substituted, preceded by a water wash. Five hours of caustic wash with a 3% solution at 170$F were followed by a water wash, an acid wash, 1-hr neutralization with a weak soda ash solution, and finally passivation to eliminate iron oxide. For the acid wash, sulfamic acid was found best, in 10% concentration for 4 hr. Cascading was most economical, but flooding has been employed sometimes at 2-1/2 times the cost, to reach all the dark corners.

  19. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  20. Determination of Source Term for an Annual Stack Release of Gas Reactor G.A. Siwabessy

    International Nuclear Information System (INIS)

    Sudiyati; Syahrir; Unggul Hartoyo; Nugraha Luhur

    2008-01-01

    Releases of radionuclide from the reactor are noble gases, halogenides and particulates. The measurements were carried out directly on the air monitoring system of the stack. The results of these measurements are compared with the annual Source-Term data from the Safety Analyses report (SAR) of RSG-GAS. The measurement results are smaller than the data reported in SAR document. (author)

  1. An assessment of greenhouse gas emissions-weighted clean energy standards

    International Nuclear Information System (INIS)

    Coffman, Makena; Griffin, James P.; Bernstein, Paul

    2012-01-01

    This paper quantifies the relative cost-savings of utilizing a greenhouse gas emissions-weighted Clean Energy Standard (CES) in comparison to a Renewable Portfolio Standard (RPS). Using a bottom-up electricity sector model for Hawaii, this paper demonstrates that a policy that gives “clean energy” credit to electricity technologies based on their cardinal ranking of lifecycle GHG emissions, normalizing the highest-emitting unit to zero credit, can reduce the costs of emissions abatement by up to 90% in comparison to a typical RPS. A GHG emissions-weighted CES provides incentive to not only pursue renewable sources of electricity, but also promotes fuel-switching among fossil fuels and improved generation efficiencies at fossil-fired units. CES is found to be particularly cost-effective when projected fossil fuel prices are relatively low. - Highlights: ► Proposes a GHG Emissions-Weighted Clean Energy Standard (CES) mechanism. ► Compares CES to RPS using a case study of Hawaii. ► Finds CES is up to 90% more cost-effective as a GHG abatement tool.

  2. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  3. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  4. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    As SOFC technology is moving closer to a commercial break through, methods to measure the “state-of-health” of operating stacks are becoming of increasing interest. This requires application of advanced methods for detailed electrical and electrochemical characterization during operation....... An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... in the hydrogen fuel gas supplied to the stack. EIS was used to examine the long-term behavior and monitor the evolution of the impedance of each of the repeating units and the whole stack. The observed impedance was analyzed in detail for one of the repeating units and the whole stack and the losses reported...

  5. Mining utilization of residues of exhaust gas cleaning from waste incinerators; Bergtechnische Verwertung von Abgasreinigungsrueckstaenden aus Verbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Werthmann, Rainer [K+S Entsorgung GmbH, Kassel (Germany). Abfallchemie und Zulassungen

    2013-03-01

    The exhaust gas purification of a household incinerator or a substitute fuel power plant intends to remove dust, heavy metal compounds and acid harmful gases from the exhaust gas in order to comply with the immission-control legal limits. The particulate matter contains volatile heavy metal chlorides which precipitate as a solid matter. The enhanced amount of water-soluble salts is conspicuous. The concentration of soluble components is limited to 10,000 mg/L in the 1:10 eluate due to the landfill regulation. Thus, the residues of exhaust gas cleaning are predestined for an underground waste disposal in salt mines. Under this aspect, the author of the contribution under consideration reports on the mining utilization of residues of exhaust gas cleaning from waste incinerators.

  6. Testing the sampling efficiency of a nuclear power station stack monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L.H. [Instrumentinvest, Nykoeping (Sweden)

    1997-08-01

    The test method comprises the injection of known amounts of monodisperse particles in the stack air stream, at a suitable point upstream of the sampling installation. To find a suitable injection polls, the gas flow was mapped by means of a tracer gas, released in various points in the stack base. The resulting concentration distributions at the stack sampler level were observed by means of an array of gas detectors. An injection point that produced symmetrical distribution over the stack area, and low concentrations at the stack walls was selected for the particle tests. Monodisperse particles of 6, 10, and 19 {mu}m aerodynamic diameter, tagged with dysprosium, were dispersed in the selected injection point. Particle concentration at the sampler level was measured. The losses to the stack walls were found to be less than 10 %. The particle concentrations at the four sampler inlets were calculated from the observed gas distribution. The amount calculated to be aspirated into the sampler piping was compared with the quantity collected by the sampling train ordinary filter, to obtain the sampling line transmission efficiency. 1 ref., 2 figs.

  7. Gas stream clean-up filter and method for forming same

    International Nuclear Information System (INIS)

    Mei, J.S.; DeVault, J.; Halow, J.S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products

  8. Application of ESP for gas cleaning in cement industry--with reference to India.

    Science.gov (United States)

    Bapat, J D

    2001-02-16

    Electrostatic precipitators (ESP) are used for gas cleaning in almost every section of cement manufacture. Application of ESP is studied, keeping in view Indian conditions. The characterisation of dust emissions has been done for different units, such as rotary kiln and raw mill, alkali by-pass, clinker cooler, cement and coal mill, in terms of exit gas quantity, temperature, dew point, dust content and particle size. It is seen that all these characteristics have a wide range of variance. The ESP system must effectively deal with these variations. The fundamental analytical expression governing the performance of ESP, i.e. the Deutsch equation, and that for particle migration velocity, were analysed to predict the effect of major operating parameters, namely particle size, temperature and applied voltage. Whereas the migration velocity (and the efficiency) varies directly with the particle size, it is proportional to the square and square root of applied voltage and absolute temperature of the gas, respectively. The increase in efficiency due to temperature is not seen in dc based ESP, perhaps due to more pronounced negative effect on the applied voltage due to the increase in dust resistivity at higher temperatures. The effect of gas and dust characteristics on the collection efficiency of ESP, as seen in the industrial practice, is summarised. Some main process and design improvements effectively dealing with the problem of gas and dust characteristics have been discussed. These are gas conditioning, pulse energization, ESP-fabric filter (FF) combination, improved horizontal flow as well as open top ESP.Generally, gas conditioning entails higher operating and maintenance costs. Pulse energization allows the use of hot gas, besides reducing the dust emission and power consumption. The improved horizontal flow ESP has been successfully used in coal dust cleaning. The open top or vertical flow ESP has a limitation on collection efficiency as it provides for only

  9. The influence of noble-gas ion bombardment on the electrical and optical properties of clean silicon surfaces

    International Nuclear Information System (INIS)

    Martens, J.W.D.

    1980-01-01

    A study of the effect of argon and helium ion bombardment on the electrical and optical properties of the clean silicon (211) surface is described. The objective of the study was to determine the effect of noble gas ions on the density of surface states at the clean silicon surface. (Auth.)

  10. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    Energy Technology Data Exchange (ETDEWEB)

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  11. Natural gas in Mexico and its perspectives as a clean energetic; El gas natural en Mexico y sus perspectivas como energetico limpio

    Energy Technology Data Exchange (ETDEWEB)

    Penilla, Rodolfo Navarro [Instituto Mexicano de Ingenieros Quimicos, Mexico, DF (Mexico)

    1994-12-31

    In Mexico, the natural gas market is characterized by stable consumption and growing perspectives in the demand, due to the entrance in vigor of news environmental norms, as soon as, the benefits from the natural gas are as energetic for many applications in several sectors and like a clean fountain of energy proper for the environmental protection plans. (author)

  12. Calculation of tritium release from reactor's stack

    International Nuclear Information System (INIS)

    Akhadi, M.

    1996-01-01

    Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)

  13. Influence of the temperature of superheating surfaces in a gas flow on the formation of sulfur trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vnukov, A K; Taran, O E

    1977-05-01

    In supercritical steam generators fired with sulfur-rich heating fuel oil, catalytic after-oxidation of SO/sub 2/ takes place in amounts which correspond to the formation of SO/sub 3/ in the furnaces. The amount of SO/sub 3/ produced depends directly on the dirt accumulation in the convection stack. Corrosion-free operation of heating surfaces and flue gas stacks cannot be achieved by a mere reduction of the excess pressure; this is proved by operational experience for this type of steam generator. An investigation of the mechanism of catalytic SO/sub 3/ formation will help to find further measures to be taken, e.g., cleaning of the convection heating surfaces, introduction of additives to poison the catalysts, etc. It should thus be possible, in the long run, to reduce the low-temperature corrosion of heating surfaces and gas stacks and to improve the operational performance of the boilers.

  14. Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Grieco, E.; Poggio, A. [Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10121 (Italy)

    2009-09-15

    Municipal solid waste incinerators are designed to enhance the electrical efficiency obtained by the plant as much as possible. For this reason strong integration between the flue gas cleaning system and the heat recovery system is required. To provide higher electrical efficiencies acid gas neutralization process has the major importance in flue gas cleaning system. At least four technologies are usually applied for acid gas removal: dry neutralization with Ca(OH){sub 2} or with NaHCO{sub 3}, semi-dry neutralization with milk of lime and wet scrubbing. Nowadays, wet scrubbers are rarely used as a result of the large amount of liquid effluents produced; wet scrubbing technology is often applied as a final treatment after a dry neutralization. Operating conditions of the plant were simulated by using Aspen Plus in order to investigate the influences of four different technologies on the electrical efficiency of the plant. The results of the simulations did not show a great influence of the gas cleaning system on the net electrical efficiency, as the difference between the most advantageous technology (neutralization with NaHCO{sub 3}) and the worst one, is about 1%. (author)

  15. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  16. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  17. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  18. Refractories for exhaust gas scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Primary metal smelters are recovering a greater percentage of their stack emissions because of increased global environmental pressures. Copper and nickel producers processing sulfide ore are under particular scrutiny for sulfur dioxide emissions. The use of various acid plant designs and associated scrubbers to capture the gas is commonplace. Failure of acid plant or sulfur dioxide control devices can be very expensive, both in terms of repair costs and lost production. Close attention should be paid to ensure smooth, long term and proper operation of these vessels. With INCO flash furnace shops smelter gases are treated immediately upon leaving the furnace in a particulate scrubber where the gases are cooled and de-dusted in a water spray chamber. The amount of chlorine and fluorine in the waste gas can vary widely, ranging from non-existent to being a major source of concern for refractory wear. Developed specifically for use in hazardous waste incinerators burning fluorine-containing materials, spall-resistant, high-purity alimina bricks were installed in various gas cleaning units in copper smelting plants. Because of the materials's combination of abrasion resistance, thermal cycling resistance, and chemical durability under conditions of variable SO(3) and fluorine attack, the material has proven to be more than adequate for the challenges of gas cleaning equipment. 2 refs.

  19. High temperature gasification and gas cleaning – phase II of the HotVegas project

    OpenAIRE

    Meysel, P.; Halama, S.; Botteghi, F.; Steibel, M.; Nakonz, M.; Rück, R.; Kurowski, P.; Buttler, A.; Spliethoff, H.

    2016-01-01

    The primary objective of the research project HotVeGas is to lay the necessary foundations for the long-term development of future, highly efficient high-temperature gasification processes. This includes integrated hot gas cleaning and optional CO2 capture and storage for next generation IGCC power plants and processes for the development of synthetic fuels. The joint research project is funded by the German Federal Ministry of Economics and Technology and five industry partners. It is coordi...

  20. Electro-membrane processes for flue gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T. F.

    1997-12-31

    Various techniques for NO removal in Membrane Contactor were considered. However the NO absorption in a liquid adsorbent with chemical enhancement and its ease for regeneration, was selected as the most practicable choice. Various different compounds for chemical enhancement were studied and Fe(II)-chelate enhanced adsorbent was selected for further studies. The technical feasibility of Fe(II)-chelate enhanced adsorbent for obtaining greater than 80% NO removal have been successfully established. Even though the membrane area required for greater than 80% NO removal has been found to be about 500 m{sup 2}/MW{sub c} (compared to 50 - 150 m{sup 2}/MW{sub c}, for 95% SO{sub 2} removal, depending on the membrane characteristics), suitable Membrane Contactor design has been proposed for carrying out the process at an acceptable gas side pressure drop. The electro-membrane processes for the regeneration of adsorbents have been studied both theoretically and experimentally. The theoretical studies have concerned the study of basic functions of both the bipolar membranes and charge laden (anion/cation) membranes. Suitable experimental techniques have been devised for studying of these basic parameters (e.g. charge transport number, salt diffusion through membranes, current-voltage characteristics of bipolar membranes and electrical resistance of charge laden membranes). These parameters have further been utilized in the mechanistic model of combined membranes in an ED cell (electrodialysis). Based on these fundamental studies and analysis of process requirements, suitable configuration of ED cell has been developed and verified by experimental studies. The effect of both the stack design parameters (e.g. number of cells, membrane type and spacer design) and the operational parameters (e.g. temperature, electrolyte concentration, liquid velocity and current density) have been studied for optimization of energy consumption for regeneration of loaded adsorbents. As a result

  1. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  2. Effect of flow parameters on flare stack generator noise

    International Nuclear Information System (INIS)

    Dinn, T.S.

    1998-01-01

    The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs

  3. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  4. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  5. New approach for dynamic flow management within the PEMFC stack

    International Nuclear Information System (INIS)

    Varlam, Mihai; Culcer, Mihai; Carcadea, Elena; Stefanescu, Ioan; Iliescu, Mariana; Enache, Adrian

    2009-01-01

    An adequate gas and water flow management is a key issue to reach and maintain a higher output power for a PEM fuel cell stack. One of the main aspects which could limit the performance of a PEM fuel cell stack is the weak capability for a non-uniform water distribution management within the fuel cell. The produced water could become a handicap to attain the best working performance by blocking the catalytic surfaces and by preventing the mass transport process. Usually, the excess water is removed in one cell, comparatively to others from the stack and taking into account that all the cells are supplied in parallel from a common air admission pipe, a limitation of gas flow rate within that cell is created. Consequently, this constraint will reduce further the water removal speed. This feedback process will generate finally a drastic decrease of the fuel cell stack performance. A new practical solution to this water and gas non-uniformity of distributions problem is to use a sequential purge procedure of several fuel cell groups inside the stack which could guarantee a right management of water. An experimental setup has been built based on four fuel cell stack. Every fuel cell was connected to a single removal pipe via a solenoid valve. A computer-controlled hardware and software system has been designed and built, in order to generate a given opening-closing sequence for the automatic valve system. (authors)

  6. Energy Conservation Alternatives Study (ECAS): Conceptual Design and Implementation Assessment of a Utility Steam Plant with Conventional Furnace and Wet Lime Stack Gas Scrubbers

    Science.gov (United States)

    Brown, Dale H.

    1976-01-01

    A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.

  7. Colorimetric gas dosimeter

    International Nuclear Information System (INIS)

    McConnaughey, P.W.; McKee, E.S.

    1984-01-01

    A gas dosimeter comprises a stack of porous sheets, impregnated with a reagent that changes color on contact with the gas to be determined, contained in a housing which has an opening to expose one end of the stack to the atmosphere to be tested. The gas to be determined penetrates by diffusion the layers of porous sheets, causing the sheets in the stack to change color sequentially from the end of the stack exposed to the atmosphere. The degree of penetration through the layers of porous sheets is a function of dosage exposure. The housing may be transparent with each superposed sheet in the stack being larger than the adjacent underlying sheet, so that each sheet is visible through the housing endwall

  8. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  9. Cleaning technologies with sonic horns and gas explosions at the waste-fired power plant in Offenbach (Germany); Reinigung mit Schall und Explosionsgenerator im Muellheizkraftwerk Offenbach

    Energy Technology Data Exchange (ETDEWEB)

    Fuele, Tibor Horst [Energieversorgung Offenbach AG, Offenbach am Main (Germany). Abt. Betrieb Kraftwerke

    2013-10-01

    During the operation of boiler systems, fouling (dirt, slag, ash, and soot deposits) appears to be inevitable in the combustion chamber and the flue gas path of power plants. The paper informs about the practical operating experience made in the waste incineration power plant in Offenbach with two not too well-known online cleaning technologies that can be easily retrofitted, i.e. acoustic sonic soot cleaning that can be used e.g. at air preheaters, economisers, catalysers and electrostatic precipitators, and explosion generator which is an automatic cleaning system that operates with controlled gas explosions to clean e.g. superheaters and evaporisers. (orig.)

  10. Retrofitting of an improved stack monitoring system in Rajasthan atomic power station

    International Nuclear Information System (INIS)

    Natarajan, K.

    1985-01-01

    The problems encountered in the measurement of inert gas activities, iodine activity and tritium activity released through the stack in RAPS are described and the considerations for the development of improved instruments outlined. The new approach provides for better accuracy of measurement of all the relevant radioactive parameters in the stack at one centralised place. The construction work in the station for the newly conceived stack activity monitoring system is completed and the earlier equipment used is installed in the room temporarily. Development prototypes of stack inert gas monitoring system and iodine monitoring system as described in Section 5 are made and evaluated. Fabrication of new equipment for retrofitting in RAPS is in progress and these will replace the equipment temporarily installed in the station

  11. Toward the development of erosion-free ultrasonic cavitation cleaning with gas-supersaturated water

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2015-11-01

    In ultrasonic cleaning, contaminant particles attached at target surfaces are removed by liquid flow or acoustic waves that are induced by acoustic cavitation bubbles. However, the inertial collapse of such bubbles often involve strong shock emission or water hammer by re-entrant jets, thereby giving rise to material erosion. Here, we aim at developing an erosion-free ultrasonic cleaning technique with the aid of gas-supersaturated water. The key idea is that (gaseous) cavitation is triggered easily even with low-intensity sonication in water where gases are dissolved beyond Henry's saturation limit, allowing us to buffer violent bubble collapse. In this presentation, we report on observations of the removal of micron/submicron-sized particles attached at glass surfaces by the action of gaseous cavitation bubbles under low-intensity sonication.

  12. Hanford gas dispersion analysis

    International Nuclear Information System (INIS)

    Fujita, R.K.; Travis, J.R.

    1994-01-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster's operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently ∼4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased

  13. Combustion gas cleaning in the ceramic tile industry: technical guide; Nettoyage des fumees de combustion dans l'industrie ceramique: guide technique

    Energy Technology Data Exchange (ETDEWEB)

    Lezaun, F.J. [ENAGAS-Grupo Gas Natural (Spain); Mallol, G.; Monfort, E. [instituto de Tecnologia Ceramica, ITC (Spain); Busani, G. [Agenzia Regionale per la Prevenzione e l' Amiente, ARPA (Spain)

    2000-07-01

    This document presents a summary of a technical guide drawn up on combustion gas cleaning systems in ceramic frit and tile production. The guide describes the method to be followed for selecting the best possible solutions for reducing pollutant concentrations in different emission sources, in accordance with current regulatory requirements and the CET recommendation. There are three sources of combustion gas air emissions that need to be cleaned in ceramic tile and frit production and they are usually related to the following process stages: slip spray drying, tile firing and frit melting. The different nature of the emissions means that different substances will need to be cleaned in each emission. Thus, in spray drying and frit melting, the only species to be cleaned are suspended particles, while in tile firing, it is also necessary to reduce the fluorine concentration. The systems analysed in this guide are mainly wet cleaning systems, bag filters and electrostatic precipitators. In the study, the efficiency of these cleaning systems is compared at each emission source from a technical and economic point of view, and concrete solutions are put forward in each case, together with a list of suppliers of the technologies involved. (authors)

  14. Large-scale production of Fischer-Tropsch diesel from biomass. Optimal gasification and gas cleaning systems

    International Nuclear Information System (INIS)

    Boerrigter, H.; Van der Drift, A.

    2004-12-01

    The paper is presented in the form of copies of overhead sheets. The contents concern definitions, an overview of Integrated biomass gasification and Fischer Tropsch (FT) systems (state-of-the-art, gas cleaning and biosyngas production, experimental demonstration and conclusions), some aspects of large-scale systems (motivation, biomass import) and an outlook

  15. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  16. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft 2 ) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft 2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft 2 ) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  17. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  18. A methodology for handling exploration risk and constructing supply curves for oil and gas plays when resources are stacked

    International Nuclear Information System (INIS)

    Dallaire, S.M.

    1994-01-01

    The use of project economics to estimate full-cycle supply prices for undiscovered oil and gas resources is a straightforward exercise for those regions where oil and gas plays are not vertically superimposed on one another, ie. are not stacked. Exploration risk is incorporated into such an analysis by using a simple two-outcome decision tree model to include the costs of dry and abandoned wells. The decision tree model can be expanded to include multiple targets or discoveries, but this expansion requires additional drilling statistics and resource assessment data. A methodology is suggested to include exploration risk in the preparation of supply curves when stacked resources are expected and little or no information on uphole resources is available. In this method, all exploration costs for wells drilled to targets in the play being evaluated are assigned to that play, rather than prorated among the multiple targets or discoveries. Undiscovered pools are assumed to either bear all exploration costs (full cycle discoveries) or no exploration costs (half cycle discoveries). The weighted full- and half-cycle supply price is shown to be a more realistic estimate of the supply price of undiscovered pools in a play when stacked resources exist. The statistics required for this methodology are minimal, and resource estimates for prospects in other zones are not required. The equation relating the average pool finding cost to the discovery record is applicable to different scenarios regarding the presence of shallower and deeper resources. The equation derived for the two-outcome decision tree model is shown to be a special case of the general expression. 5 refs., 7 figs

  19. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  20. Corrosion in the Flue Gas Cleaning System of a Biomass-Fired Power Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Olesen, R. E.; Gensmann, P.

    2017-01-01

    After only a few years operation, corrosiondamage was observed in the flue gas cleaning system of abiomass power plant. The corrosion was on the lower partof the gas/gas heat exchanger fabricated from A242weathering steel, where UNS S31600 bolts were used toattach sealing strips to the rotor. Thick...... iron oxides (up to5 mm) had formed on the weathering steel, and theseoxides also contained chlorine and sulfur. In this area of theheat exchanger, weathering steel has not had the optimalwet/dry cycles required to achieve a protective oxide. Dueto the thick growing oxide on the rotor, the UNS S31600......bolts were under stress and this together with the presenceof accumulated chlorine between the sealing strips andbolts resulted in stress corrosion cracking and rupture. Inaddition, Zn-K-Cl deposits were agglomerated in the ductafter the DeNOx unit. Zn was also a constituent of corrosionproducts...

  1. Ensuring clean air: Developing a clean air strategy for British Columbia

    International Nuclear Information System (INIS)

    1992-04-01

    In 1992, a clean air strategy will be developed to incorporate views of British Columbians on ways to meet goals related to air quality. A discussion paper is presented to provide information to those interested in participation in developing this strategy. The paper gives information on air quality issues important to the province, including local air quality, urban smog, ozone layer depletion, and global climate change. The views and concerns expressed by stakeholders who attended the Clean Air Conference in 1991 are summarized. The process used to develop the clean air strategy is outlined and some outcomes to be anticipated from the strategy are suggested, including policies and priorities for action to ensure clean air. Air pollutants of concern are total reduced sulfur, mainly from pulp mills and gas processing plants; smoke from wood burning; sulfur dioxide from pulp mills and gas plants; hydrogen fluoride from aluminum smelting; ground-level ozone in urban areas; and acid rain. Elements of a clean air strategy include a smoke management policy, management strategies for greenhouse gases and ozone smog, ozone layer protection measures, regional air quality management plans, and long-term planning efforts in energy use, transportation modes, community design, and land use. 12 refs., 14 figs., 2 tabs

  2. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  3. Performance of a methane-fueled single-cell SOFC stack at various levels of fuel utilization

    International Nuclear Information System (INIS)

    Ahmed, K.; Bolden, R.; Ramprakash and Foger, K.

    1998-01-01

    Fuel-gas mixtures representing 10 to 85% utilization of a methane-steam mixture at S/C=2 were fed to a single cell stack with a Ni-based anode at 875 deg C. Cell voltage and power output were recorded at current densities of 50 to 350 mA/cm 2 . The accompanying anode off-gas composition at some of these conditions were measured using on-line gas chromatograph and compared with the compositions predicted by a thermodynamic model based on the assumption of no carbon formation. Electrical losses were measured at a chosen current density at various levels of fuel utilization by the galvanostatic current-interruption technique. Cell voltage stability was monitored for up to 1000 h at two levels of fuel utilization. The stack performance was simulated using a mathematical model of the stack; the simulations were compared with the stack test data. Copyright (1998) Australasian Ceramic Society

  4. Plasma target output from a magnetically augmented, gas-injected, washer-stack plasma gun

    International Nuclear Information System (INIS)

    Osher, J.E.

    1982-01-01

    This article describes a new washer-stack gun design developed for the application of plasma target production for the startup of neutral-beam trapping in a fusion research magnetic confinement system. The gun is a Mo anode type that is D 2 injected and has an auxiliary pulsed magnet for control of plasma-flux mapping. One of the principal features of 2--10-ms duration pulses for gun operation in a suitable magnetic field is the formation of an arc column along magnetic field lines from the gun's central cathode electrode to the vacuum chamber walls (at common anode potential). The primary power output from a 5.0-cm-i.d. gun is typically carried along this arc column by a stream of approximately 2000 A of 50--250-eV electrons. This primary stream of relatively low-density energetic electrons efficiently ionizes the injected gas, forming a quasi-dc source of denser secondary plasma of approx.10 13 /cm 3 at a few eV, which is able to flow or diffuse away along a somewhat larger column of magnetic field lines. In plasma-target production tests on a test stand, a gun operated at a D 2 gas flow of 22 Torr ls -1 yielded 250 A of equivalent plasma flow

  5. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas: treatment of offgases from chemical processing; aerosol; behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions; HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration; filter testing; and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  6. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas; treatment of offgases from chemical processing; aerosol behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions: HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration, filter testing, and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  7. Air cleaning using regenerative silica gel wheel

    DEFF Research Database (Denmark)

    Fang, Lei

    2011-01-01

    This paper discussed the necessity of indoor air cleaning and the state of the art information on gas-phase air cleaning technology. The performance and problems of oxidation and sorption air cleaning technology were summarized and analysed based on the literature studies. Eventually, based...... on an experimental study, a technology called clean air heat pump is proposed as a practical approach for indoor air cleaning....

  8. Optimisation of environmental gas cleaning routes for solid wastes cogeneration systems. Part II - Analysis of waste incineration combined gas/steam cycle

    International Nuclear Information System (INIS)

    Holanda, Marcelo R.; Perrella Balestieri, Jose A.

    2008-01-01

    In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I

  9. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  10. Assessment and evaluation of ceramic filter cleaning techniques: Task Order 19

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Zaharchuk, R.; Harbaugh, L.B.; Klett, M.

    1994-10-01

    The objective of this study was to assess and evaluate the effectiveness, appropriateness and economics of ceramic barrier filter cleaning techniques used for high-temperature and high-pressure particulate filtration. Three potential filter cleaning techniques were evaluated. These techniques include, conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently employed, or being considered for use, in the filtration of coal derived gas streams (combustion or gasification) under high-temperature high-pressure conditions. This study was divided into six subtasks: first principle analysis of ceramic barrier filter cleaning mechanisms; operational values for parameters identified with the filter cleaning mechanisms; evaluation and identification of potential ceramic filter cleaning techniques; development of conceptual designs for ceramic barrier filter systems and ceramic barrier filter cleaning systems for two DOE specified power plants; evaluation of ceramic barrier filter system cleaning techniques; and final report and presentation. Within individual sections of this report critical design and operational issues were evaluated and key findings were identified.

  11. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  12. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  13. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen; Juarez-Robles, Daniel; Wang, Kai; Hernandez-Guerrero, Abel

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm 2 . The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for a relatively large sized fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  14. CdSe Nanoparticles with Clean Surfaces: Gas Phase Synthesis and Optical Properties

    Directory of Open Access Journals (Sweden)

    Zhang Hongwei

    2015-01-01

    Full Text Available CdSe nanoparticles (NPs were generated in gas phase with a magnetron plasma gas aggregation cluster beam source. Coagulation-free CdSe nanocrystals with very clean particle surface and interface, as well as a fairly uniform spatial distribution were obtained. The deposited NPs have a good dispersity with a mean diameter of about 4.8nm. A strong photoluminescence band corresponding to the near- band-edge transition of the CdSe NPs was observed. The CdSe NP films show a significant photoconductance induced by laser irradiation. With an applied bias voltage of 10V, the photo- induced current can be as high as 0.4mA under 0.01mW/mm2 405nm laser illumination. Our approach offers an alternative method for CdSe NP synthesis, which has the advantages such as high purity, good process and product control, as well as mass production, as compared to the existing methods.

  15. Rapid and simple clean-up and derivatizaton procedure for the gas chromatographic determination of acidic drugs in plasma

    NARCIS (Netherlands)

    Roseboom, H.; Hulshoff, A.

    1979-01-01

    A rapid and simple clean-up and derivatization procedure that can be generally applied to the gas chromatographie (GC) determination of acidic drugs of various chemical and therapeutic classes is described. The drugs are extracted from acidified plasma with chloroform containing 5% of isopropanol,

  16. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z; Scherer, G G; Marmy, Ch; Glaus, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  17. Clean coal and heavy oil technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    Global power generation markets have shown a steady penetration of GT/CC technology into oil and gas fired applications as the technology has matured. The lower cost, improved reliability and efficiency advantages of combined cycles can now be used to improve the cost of electricity and environmental acceptance of poor quality fuels such as coal, heavy oil, petroleum coke and waste products. Four different technologies have been proposed, including slagging combustors, Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC) and Integrated Gasification Combined Cycle (IGCC). Details of the technology for the three experimental technologies can be found in the appendix. IGCC is now a commercial technology. In the global marketplace, this shift is being demonstrated using various gasification technologies to produce a clean fuel for the combined cycle. Early plants in the 1980s demonstrated the technical/environmental features and suitability for power generation plants. Economics, however, were disappointing until the model F GT technologies were first used commercially in 1990. The economic break-through of matching F technology gas turbines with gasification was not apparent until 1993 when a number of projects were ordered for commercial operation in the mid-1990s. GE has started 10 new projects for operation before the year 2000. These applications utilize seven different gasification technologies to meet specific application needs. Early plants are utilizing low-cost fuels, such as heavy oil or petroleum coke, to provide economics in first-of-a-kind plants. Some special funding incentives have broadened the applications to include power-only coal plants. Next generation gas turbines projected for commercial applications after the year 2000 will contribute to another step change in technology. It is expected that the initial commercialization process will provide the basis for clear technology choices on future plants.

  18. Regular control of monitors for effluents from nuclear power plant stacks

    International Nuclear Information System (INIS)

    Stroem, L.

    1979-01-01

    The report describes a test procedure for emission monitoring devices for nuclear power plants. The follosing procedures are described, inspection, determination of the air flow through the stack, measurement and adjustment of the flow in the stack loop, measurement and adjustment of flow and density in the measuring loop, calibration of the gas detector, efficiency of sampling of methyliodide and aerosol. (K.K.)

  19. Stack Monitoring System At PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Zamrul Faizad Omar; Mohd Sabri Minhat; Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Izhar Abu Hussin

    2014-01-01

    This paper describes the current Stack Monitoring System at PUSPATI TRIGA Reactor (RTP) building. A stack monitoring system is a continuous air monitor placed at the reactor top for monitoring the presence of radioactive gaseous in the effluent air from the RTP building. The system consists of four detectors that provide the reading for background, particulate, Iodine and Noble gas. There is a plan to replace the current system due to frequent fault of the system, thus thorough understanding of the current system is required. Overview of the whole system will be explained in this paper. Some current results would be displayed and moving forward brief plan would be mentioned. (author)

  20. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  1. Treatment of waste water from flue gas cleaning; Behandlung von Abwasser der Rauchgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Ogiermann, Klaus; Meyerhoff, Thomas [Berkefeld - VWS Deutschland GmbH, Celle (Germany); Hagen, Klaus [Berkefeld - VWS Deutschland GmbH, Bayreuth (Germany); Basabe, Juan Luis [HPD Process Engineering S.A., Bilbao (Spain); Vendrup, Michael [Krueger A/S, Soeborg (Denmark)

    2012-11-01

    Strict limits must be adhered to for treating waste water incurred during flue gas desulphurisation (FGD). One and two-stage precipitation processes have proven themselves in FGD waste water treatment. Metals can be removed with the MetClean {sup registered} process. Another option is evaporation. Waste water ZLD systems (Zero Liquid Discharge) recover, via a falling film evaporator with subsequent crystallisation, more than 98 % of the water and produce, aside from the condensate, only solid material that can be disposed of in landfill. A further development, named ZLD CoLD trademark, significantly reduces the investment and operating costs of this solution. (orig.)

  2. Removal of particles by ICRF cleaning in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Hu Jiansheng; Li Jiangang; Zhang Shouyin; Gu Xuemao; Zhang Xiaodong; Zhao Yanping; Gong Xianzu; Kuang Guangli; Li Chengfu; Luo Jiarong; Wang Xiaoming; Gao Xiang; Wan Baonian; Xie Jikang; Wan Yuanxi

    2001-01-01

    The ICRF (Ion Cyclotron Range Frequency) cleaning technique has been used as a routine wall cleaning method in the HT-7 superconducting tokamak. In a wide range of toroidal field, the removal rate of residual gas by ICRF cleaning was about twenty times higher than that of glow discharge cleaning (GDC). At different gas pressure and RF power levels, the ICRF cleaning is studied carefully. A good impurity cleaning effect and a very high hydrogen removal rate were obtained. The removal rate of hydrogen by 5 kW ICRF cleaning achieved was 1.6 x 10 -5 Torr.l/s. And the relationships among pressure P, outgassing rate Q, atomic layers L absorbed on surface and the cleaning mode were discussed briefly

  3. Modelling de-novo formation of dioxins in the effluent gas cleaning tract of a zinc recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Nordsieck, H.; Peche, R.

    2002-07-01

    Dioxins as well as other chloroaromatics are an unwanted by-product of most metallurgical processes, both in primary metal production and in recycling, such as at the re-use of high-zinc steel dust, as obtained in the second steel melting process using in electric arc furnaces, by extracting the included zinc. for achieving this purpose, the steel dust is treated in a rotary kiln. This resulting zinc oxide is offered to metal working companies in form of fine powder where it is used for galvanizing of components, for example, or for converting the powder pure metal. In the framework of the MINIDIP-project (Minimization of Dioxins in Thermal Industrial Processes: Mechanisms, Monitoring, Abatement) the formation of dioxins was studied as a function of temperature, time, oxygen, and inhibitor addition. The resulting kinetic data are introduced into a computational fluid dynamics (CFD) model, featuring geometric representations of the effluent gas cleaning tract components and the temperature and gas flow field as well as the trajectories and destination of particles different sizes calculated. This CFD model is used to estimate the de-novo formation of dioxins from the moment the gas leaves the rotary kiln until its cleaning, in order to define the role of this part of the plant in the formation of dioxins, as well as the identification and extent of possibilities for minimizing dioxin emissions. (Author)

  4. Measurement of Heat Flow Transmitted through a Stacked-Screen Regenerator of Thermoacoustic Engine

    Directory of Open Access Journals (Sweden)

    Shu Han Hsu

    2017-03-01

    Full Text Available A stacked-screen regenerator is a key component in a thermoacoustic Stirling engine. Therefore, the choice of suitable mesh screens is important in the engine design. To verify the applicability of four empirical equations used in the field of thermoacoustic engines and Stirling engines, this report describes the measurements of heat flow rates transmitted through the stacked screen regenerator inserted in an experimental setup filled with pressurized Argon gas having mean pressure of 0.45 MPa. Results show that the empirical equations reproduce the measured heat flow rates to a mutually similar degree, although their derivation processes differ. Additionally, results suggest that two effective pore radii would be necessary to account for the viscous and thermal behaviors of the gas oscillating in the stacked-screen regenerators.

  5. Investigation and feasibility study of a former manufactured gas plant site in Tuttlingen (Germany), based on individually determined clean-up criteria

    Energy Technology Data Exchange (ETDEWEB)

    Heinecker, C.; Pickel, H.-J.; Duffek, J. [HPC Harress Pickel Consult GmbH, Fuldatal (Germany)

    1995-12-31

    At the request of the former plant operator, a manufactured gas plant site in Tuttlingen, Germany, was investigated from 1988 through 1992 for subsurface soil contamination resulting from former activities. In 1991, the contents of the former tar pits and parts of the adjacent soil contaminations were removed in the course of clean-up activities by means of excavation and disposed at a special waste site. Following an initial risk assessment, a remedial investigation was carried out in order to further delineate the contaminated areas as well as to create a reliable database for a feasibility study of remedial alternatives. The feasibility study followed applicable Baden-Wurttemberg state guidelines, including the following elements: Determination of the clean-up goals for soils; pre-selection of the clean-up procedure; cost estimate; cost-effectiveness study; Non-monetary evaluation; and total evaluation/clean-up proposal. The following general alternatives were available for the definition of clean-up goals: background values (`H-values`); general guidelines values (`SZ-values`); and clean-up goals based on contaminant fate and transport as well as site use (`SZA-values`).

  6. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  7. Comparison of glow discharge cleaning with Taylor-type discharge cleaning on JFT-2

    International Nuclear Information System (INIS)

    Yokokura, Kenji; Matsuzaki, Yoshimi; Tani, Takashi

    1983-01-01

    Method of glow discharge cleaning (GDC) was applied to JFT-2 tokamak and the cleaning effect of GDC was compared with that of taylor-type discharge cleaning (TDC) on the same machin. Results show clearly their individual characteristics to remove light impurities. Their abilities of surface cleaning were compared each other by observing cleanliness of sample surfaces with a AES and by measuring decay times of produced gas pressures during discharge cleanings with a mass-analyser. It was shown that TDC method is better by several times than GDC method from a mass-analyser measurement. Moreover discharge cleaning time necessary to reduce light impurities in the normal plasma to a certain level was compared by monitoring time evolution of radiation loss power with a bolometer, and the time by TDC was only one fifth of that by GDC. The advantage of TDC may come from the excellently high hydrogen flux which interacts with the limiter and the wall. (author)

  8. Fire protection for clean rooms

    International Nuclear Information System (INIS)

    Kirson, D.

    1990-01-01

    The fire protection engineer often must decide what size fire can be tolerated before automatic fire suppression systems actuate. Is it a wastepaper basket fire, a bushel basket fire...? In the case of state-of-the-art clean rooms, the answer clearly is not even an incipient fire. Minor fires in clean rooms can cause major losses. This paper discusses what a clean room is and gives a brief overview of the unique fire protection challenges encountered. The two major causes of fire related to clean rooms in the semiconductor industry are flammable/pyrophoric gas fires in plastic ducts and polypropylene wet bench fires. This paper concentrates on plastic ductwork in clean rooms, sprinkler protection in ductwork, and protection for wet benches

  9. FY1995 development of a clean CVD process by evaluation and control of gas phase nucleation phenomena; 1995 nendo kisokaku seisei gensho no hyoka to seigyo ni yoru clean CVD process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this study is to develop a high-rate and clean chemical vapor deposition (CVD) process as a breakthrough technique to overcome the problems that particles generated in the gas phase during CVD process for preparation of functional thin films cause reduced product yield and deterioration of the films. In the CVD process proposed here, reactant gas and generated particles are electrically charged to control the motion of them with an electric field. In this study, gas-phase nucleation phenomena are evaluated both theoretically and experimentally. A high-rate, ionized CVD method is first developed, in which reactant gas and generated particles are charged with negative ions generated from a radioisotope source and the UV/photoelectron method, and the motion of the charged gas and particles is controlled with an electric field. Charging and transport processes of fine particles are then investigated experimentally and theoretically to develop a clean CVD method in which generated particles are removed with the electric forces. As a result, quantitative evaluation of the charging and transport process was made possible. We also developed devices for measuring the size distribution and concentration of fine particles in low pressure gas such as those found in plasma CVD processes. In addition, numerical simulation and experiments in this study for a TEOS/O{sub 3} CVD process to prepare thin films could determine reaction rates which have not been known so far and give information on selecting good operation conditions for the process. (NEDO)

  10. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  11. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors

    International Nuclear Information System (INIS)

    1968-01-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [fr

  12. Testing and Evaluation of an Advanced High Performance Planar SOFC Stack

    National Research Council Canada - National Science Library

    Elangovan, S

    1999-01-01

    .... SOFCo has conducted several programs which synergistically address this objective: an internally funded program focusing on stack development and system integration for pipeline natural gas (PNG...

  13. Meet the biologists: Sour gas treatment uses biology rather than chemistry to clean things up

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2003-03-01

    Basic elements of the new bio-desulfurization technology are described. The new process uses the commonly occurring bacterium, Thiobacillus, rather than chemical means to remove hydrogen sulfide from natural gas. Development of the process began some ten years ago in the Netherlands as a means to clean sewage water and purify water for beer. The application of removing hydrogen sulfide from natural gas evolved upon discovery that the process was able to convert hydrogen sulfide to sulfur. Key to the bio-desulfurization process is the Thiobacillus bacterium, which unlike other plant forms, relies on chemosynthesis (instead of photosynthesis) of hydrogen sulfide, oxygen and carbon dioxide for its energy requirements. The technology has applications in refineries as well as in gas processing plants. It is well suited for use in Canada where operations tend to be on the small scale (less than 50 tonnes per day). The portable unit can be moved to another location when production at a given well drops off.

  14. The operation and monitoring of sewage disposal by stack injection

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.A. [Alyeska Pipeline Service Co. (United States)

    1994-12-31

    A system that uses turbine exhaust to evaporate sewage, was described. The Alyeska Pipeline Service developed the system for isolated pump stations located in permafrost areas. The pumps moving the crude oil in the Trans Alaska Pipeline System (TAPS) were driven by simple cycle gas turbine engines which produce large amounts of waste heat. The waste heat was used to evaporate the sewage effluent, effectively destroying all pathogens in it. The process, known as `stack injection`, was recently upgraded to increase efficiency and safety. Stack injection was being used at five pump stations. Methods used to control operation of the stack injection system, and field data used to redesign the system were reviewed. 3 figs., 3 refs.

  15. Impurity studies and discharge cleaning in Doublet III

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  16. Impurity studies and discharge cleaning in Doublet III

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  17. Nonlinear empirical model of gas humidity-related voltage dynamics of a polymer-electrolyte-membrane fuel cell stack

    Science.gov (United States)

    Meiler, M.; Andre, D.; Schmid, O.; Hofer, E. P.

    suitable experimental setup to apply fast variations of gas humidity is introduced and is used to investigate a 10 cell PEMFC stack under various operation conditions. Using methods like stepwise multiple-regression a good mathematical description with reduced free parameters is achieved.

  18. Plasma cleaning of beamline optical components: Contamination and gas composition effects

    International Nuclear Information System (INIS)

    Rosenberg, R.A.; Smith, J.A.; Wallace, D.J.

    1992-01-01

    We have initiated a program to study the impact of gas composition on the carbon removal rate during plasma cleaning of optical components, and of possible contamination due to the plasma processing. The measurements were performed in a test chamber designed to simulate the geometry of the grating/Codling mirror section of a Grasshopper monochromator. Removal rates were determined for a direct-current (dc) (Al electrode) discharge using a quartz crystal microbalance coated with polymethylmethacrylate, located at the position of the grating. Auger electron spectroscopy analysis of strateg- ically located, gold-coated stainless steel samples was employed to determine contamination. The relative removal rates of the gases studied were 3% C 2 F 6 /O 2 much-gt O 2 +H 2 O>O 2 ∼N 2 O>H 2 >N 2 . Although the C 2 F 6 /O 2 gas mixture showed a 20 times greater removal rate than its nearest competitor, it also caused significant contamination to occur. Contamination studies were performed for both dc and radio-frequency (rf) discharges. For the dc discharge we found that great care must be taken in order to avoid Al contamination; for the rf discharge, significant Fe contamination was observed

  19. Physical cleaning by bubbly streaming flow in an ultrasound field

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.

  20. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Marmy, C A; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  1. The Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    Mosby, R.C.

    1991-01-01

    The natural gas liquids industry and specifically the gas processing business has not been rosy the last several years. processors have been faced with low NGL prices, high inventories and more regulations which have forced product margins to all time lows and have resulted in plant closings, mergers and a determined search for those processors that are left for ways to make ends meet until times get better. Whether a barometer for the future or merely a fluke in the economy, things got better in 1990. Last year represented a change for the positive in all the indicators characterizing the gas processing business. An early winter in 1989, propane distribution problems, overall increases in petrochemical demand for NGLs and the fear brought on by events in Kuwait all contributed to changes in the marketplace. For the gas processor, these events combined with relatively low natural gas prices to produce wider processing margins and a degree of prosperity. The biggest regulatory event in 1990 however was without a doubt the Clean Air Act Amendments. These sweeping changes to the 1970 Clean Air Act promise to affect the economy and public health well into the next century. The purpose of this paper is to examine first the major provisions of the Clean Air Act Amendments of 1990 and then relate those anticipated changes to the gas processing industry. As will be examined later, the Amendments will create both threats and opportunities for gas processors

  2. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    OpenAIRE

    Takenobu Michioka; Koichi Sada; Kazuki Okabayashi

    2016-01-01

    Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking) on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the...

  3. New air cleaning technology in Japan

    International Nuclear Information System (INIS)

    Yoshida, Y.; Kitani, S.; Matsui, H.; Ikezawa, Y.

    1981-01-01

    Application of the new techniques and improvements in air cleaning systems have been made to reduce release of radioactive materials from nuclear facilities based on the ALARA concept. For example, the reduction of release of radioactive gaseous effluents has been made by installation of a charcoal gas hold-up system and a clean steam supply system for a turbine gland seal in a BWR and of a gas decay tank system in a PWR. In connection with the effort for reduction of releases in plants, research and development on air cleaning technology have also been made. Some activities mentioned in the present paper are: removal of particulates, airborne radioiodine, noble gases and tritium; penetration characteristics of submicron DOP aerosol for HEPA filters; radioiodine removal from air exhausts; and operational performance of the incineration plants using ceramic filters

  4. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  5. Measurement of lead compound in stack gas

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y; Hori, M; Tanikawa, N

    1979-01-01

    The concentration and particle-size distribution of lead compounds in the exhaust gas from various stationary sources are examined. The stationary sources concern lead production from battery scraps, lead smelting of cable mold, steel production from iron scraps, plastic combustion furnace, and a heavy oil boiler. A lead concentration of 0.2-100 mg/cu m in exhaust gas is detected. Furthermore, exhaust gas lead compounds are affected by the raw materials used.

  6. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  7. Clean-room robot implementation

    International Nuclear Information System (INIS)

    Comeau, J.L.

    1982-01-01

    A robot has been incorporated in a clean room operation in which vacuum tube parts are cleaned just prior to final assembly with a 60 lb/in 2 blast of argon gas. The robot is programmed to pick up the parts, manipulate/rotate them as necessary in the jet pattern and deposit them in a tray precleaned by the robot. A carefully studied implementation plan was followed in the procurement, installation, modification and programming of the robot facility. An unusual configuration of one tube part required a unique gripper design. A study indicated that the tube parts processed by the robot are 12% cleaner than those manually cleaned by an experienced operator

  8. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  9. CO2 saturated water as two-phase flow for fouling control in reverse electrodialysis.

    Science.gov (United States)

    Moreno, J; de Hart, N; Saakes, M; Nijmeijer, K

    2017-11-15

    When natural feed waters are used in the operation of a reverse electrodialysis (RED) stack, severe fouling on the ion exchange membranes and spacers occurs. Fouling of the RED stack has a strong influence on the gross power density output; which can decrease up to 50%. Moreover, an increase in the pressure loss occurs between the feed water inlet and outlet, increasing the pumping energy and thus decreasing the net power density that can be obtained. In this work, we extensively investigated the use of CO 2 saturated water as two-phase flow cleaning for fouling mitigation in RED using natural feed waters. Experiments were performed in the REDstack research facility located at the Afsluitdijk (the Netherlands) using natural feed waters for a period of 60 days. Two different gas combinations were experimentally investigated, water/air sparging and water/CO 2 (saturated) injection. Air is an inert gas mixture and induces air sparging in the stack. In the case of CO 2 , nucleation, i.e. the spontaneous formation of bubbles, occurs at the spacer filaments due to depressurization of CO 2 saturated water, inducing cleaning. Results showed that stacks equipped with CO 2 saturated water can produce an average net power density of 0.18 W/m 2 under real fouling conditions with minimal pre-treatment and at a low outside temperature of only 8 °C, whereas the stacks equipped with air sparging could only produce an average net power density of 0.04 W/m 2 . Electrochemical impedance spectroscopy measurements showed that the stacks equipped with air sparging increased in stack resistance due to the presence of stagnant bubbles remaining in the stack after every air injection. Furthermore, the introduction of CO 2 gas in the feed water introduces a pH decrease in the system (carbonated solution) adding an additional cleaning effect in the system, thus avoiding the use of environmentally unwanted cleaning chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All

  10. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.; Arafa, Nadim M.; Abdel-Rahman, Ehab

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack's position, length and plate spacing are the three main parameters that have been investigated in this study. Stack's position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine's most powerful operating point.

  11. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference

    International Nuclear Information System (INIS)

    First, M.W.; Harvard Univ., Boston, MA

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  12. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  13. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  14. Thermal stress analysis of a planar SOFC stack

    Science.gov (United States)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  15. Hot gas cleaning in power stations by using electron beam technology. Influence on PAH emissions

    International Nuclear Information System (INIS)

    Callen, M.S.; de la Cruz, M.T.; Mastral, A.M.; Murillo, R.; Marinov, S.; Stefanova, M.

    2007-01-01

    The Electron Beam Technology (EBT), proven treatment for SO 2 and NO x removal, is applied to different power stations as a hot gas cleaning system. In this paper, an assessment of this technique installed in a Bulgarian power station on organic emissions is analyzed. The Polycyclic Aromatic Hydrocarbons (PAH) content, not only emitted in the gas phase but also trapped in the solid phase, has been carried out before and after the irradiation. The main aim has been to know whether the EBT affects organic emissions, like PAH, as it happens with inorganic pollutants, like SO 2 and NO x , studying EBT effects from an organic environmental point of view. The PAH quantification was performed by using a very sensitive analytical technique, gas chromatography with mass spectrometry mass spectrometry detection (GC-MS-MS). Results showed that PAH are influenced by the EBT showing a reduction of the most volatile PAH in the gas phase. With regard to the solid by-products obtained after the irradiation, fertilizers, similar PAH concentration to the fly ashes produced when no irradiation is applied were found. These fertilizers were considered like unpolluted soils being adequate for agriculture applications with PAH concentrations below the target value set up by the Dutch government. (author)

  16. Emergency gas processing device

    International Nuclear Information System (INIS)

    Taruishi, Yoshiaki; Sasaki, Susumu.

    1984-01-01

    Purpose: To enable the reduction of radioactive substances released out of reactor buildings irrespective of the aging change in the buildings. Constitution: There are provided an exhaust gas flow channel for cleaning contaminated airs within a reactor building by way of a series of filters and exhausting the cleaned airs by means of exhaust fans to the outside and a gas recycling flow channel having a cooler in connection with the exhaust gas flow channel at a position downstream of the exhaust fans for returning the cleaned airs in the exhaust gas flow channel to the inside of the reactor buildings. The pressure difference between the outside and the inside of the reactor buildings is made constant by controlling the air flow channel within the gas recycling flow channel by a flow control valve. The airs cleaned by the series of the filters are recycled to the inside of the buildings to decrease the radioactive substance within the buildings. (Horiuchi, T.)

  17. What is Clean Cities? October 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

  18. Large-scale staged low-far gasification, phase 1c. Continuous tests and dry gas cleaning. Final report; Storskala trinopdelt lavtjaereforgasning, fase 1c. Kontinuerte forsoeg og toer gasrensning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Dall Bentzen, J.; Hummelshoej, R.M. (COWI A/S (DK)); Henriksen, Ulrik (Danmarks Tekniske Univ., DTU-MEK (DK)); Geest, C. (Babcock and Wilcox Voelund (DK))

    2007-05-15

    On basis of successful process verification at the laboratory plant during the project's Phase 1a, a gas cleaning system has been designed, established and commissioned during this Phase 1c project, with the objective of demonstrating that the gas from the LT-BIG gasifier can be cleaned by means of bag filter, in order for the gas to become suitable for motor operation and possibly other purposes. It has further been a purpose of the project to document continuous operation of the laboratory plant. Thus, 3 tests have been made during the project with a duration of 12 hours, 66 hours and 211 hours, respectively, in total ca. 100 hours' operation. In total, the pilot plant has now been operating for 150-200 hours. During the tests, tar measurements have been made before bag filter, after bag filter and after the activated carbon filter. The gas cleaning system is designed so that a partial current of the gas can be led to a cooler and a bag filter, where the temperature and speed over the filter can be adjusted. Particles are caught in the bag filter, and the vaporous tar materials near the bag filter are caught in a following activated carbon filter. (au)

  19. Clean Cities Award Winning Coalition: Coachella Valley

    Energy Technology Data Exchange (ETDEWEB)

    ICF Kaiser

    1999-05-20

    Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

  20. Evolution and perspectives in waste incineration emissions and flue gas cleaning systems in the last 20 years

    International Nuclear Information System (INIS)

    Giugliano, M.; Cernuschi, S.; Grosso, M.

    2006-01-01

    The evolution of the technology of waste combustion, energy recovery and flue gas treatment allows to redefine the role of the incineration plant as a basic component of integrated waste management systems. Starting with an overview of the evaluation of emission limits and of the new Best Available Techniques (BAT) approach, strongly recommended by the European Union, the paper reports an overview of the stack emission concentrations measured in recent plants in Italy compared to older ones, with special attention to the dioxin issue. Concerning this topic, it is demonstrated that BAT-equipped plants can act as actual dioxin destroyer rather than producers, even when all the fluxes released in the environment (gaseous, solid and liquid residues) are taken into account. The second part of the paper deals with the evolution of the flue gas control technologies of the last 20 years, pointing out the major trends and the future perspectives for further increases of the removal monitoring of conventional and trace pollutants are briefly described [it

  1. Industrial plant for flue gas cleaning with use of electron beam at the 'Pomorzany' Power Plant

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Tyminski, B.; Iller, E.; Zimek, Z.; Licki, J.; Kostrzewski, R.; Sobolewski, L.; Cybulski, J.

    2002-01-01

    Construction of the second in the world installation for fuel gas cleaning with the use of electron beam at the POMORZANY Power Plant has been completed in 2001 and test operation started. During the last year all the units of installation as well as measuring and control systems were tested and corrected. 200 t of a fertilizer have been produced in 2001 and ca. 31 t in January 2002. Emission of corresponding amount of acidic pollutants was reduced and the Power Plant POMORZANY paid lower fines for the emission. (author)

  2. Continued maturing of SOFC cell production technology and development and demonstration of SOFC stacks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-15

    The overall objective of the 6385 project was to develop stack materials, components and stack technology including industrial relevant manufacturing methods for cells components and stacks. Furthermore, the project should include testing and demonstration of the stacks under relevant operating conditions. A production of 6.829 cells, twenty 75-cell stacks and a number of small stacks was achieved. Major improvements were also made in the manufacturing methods and in stack design. Two test and demonstration activities were included in the project. The first test unit was established at H.C. OErsted power plant at the Copenhagen waterfront in order to perform test of SOFC stacks. The unit will be used for tests in other projects. The second demonstration unit is the alpha prototype demonstration in a system running on natural gas in Finland. The alpha prototype demonstration system with 24 TOFC (Topsoe Fuel Cell) stacks was established and started running in October 2007 and operational experience was gained in the period from October 2007 to February 2008. (auther)

  3. Fiscal 2000 achievement report. Research and development of semiconductor CVD chamber cleaning systems for electronic device manufacturing using new alternative gas instead of SF6, PFCs, and other gases; 2000 nendo sokkoteki kakushinteki energy kankyo gijutsu kaihatsu seika hokokusho. SF6 tou ni daitaisuru gasu wo riyo shita denshi debaisu seizo cleaning system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The efforts aim to develop a CVD (chemical vapor deposition) mechanism cleaning gas with less environmental impact such as global warming and a CVD process using the same. The candidate gas synthesizing study for the development of such a gas continues from the preceding fiscal year. In addition, various candidate gases and tentatively synthesized gases are evaluated for their cleaning performance using a simplified experimental system. As the result, patent applications were filed for three novel alternative gases low in environmental impact and high in cleaning performance. In the research and development of CVD processes, a verification test process is developed for the evaluation of alternative gases at the real system level using a large CVD evaluation system. Studies are also made in which some existing gases are utilized to improve on CVD cleaning efficiency and to reduce greenhouse gas emissions. In relation to the process, one domestic patent application is made, and three essays are presented at an international conference on electrochemistry in the United States. (NEDO)

  4. Gas stream cleaning system and method

    Science.gov (United States)

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  5. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  6. Pbar Beam Stacking in the Recycler by Longitudinal Phase-space Coating

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-08-06

    Barrier rf buckets have brought about new challenges in longitudinal beam dynamics of charged particle beams in synchrotrons and at the same time led to many new remarkable prospects in beam handling. In this paper, I describe a novel beam stacking scheme for synchrotrons using barrier buckets without any emittance dilution to the beam. First I discuss the general principle of the method, called longitudinal phase-space coating. Multi-particle beam dynamics simulations of the scheme applied to the Recycler, convincingly validates the concepts and feasibility of the method. Then I demonstrate the technique experimentally in the Recycler and also use it in operation. A spin-off of this scheme is its usefulness in mapping the incoherent synchrotron tune spectrum of the beam particles in barrier buckets and producing a clean hollow beam in longitudinal phase space. Both of which are described here in detail with illustrations. The beam stacking scheme presented here is the first of its kind.

  7. Clean Cities Now, Vol. 15, No. 1, April 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on electric vehicle deployment, renewable natural gas, and articles on Clean Cities coalition successes across the country.

  8. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  9. Metal foams as gas coolers for exhaust gas recirculation systems subjected to particulate fouling

    International Nuclear Information System (INIS)

    Hooman, K.; Malayeri, M.R.

    2016-01-01

    Highlights: • Fouling of metal foam heat exchangers as EGR gas coolers is tested. • An optimal design was inferred based on the generated data. • A simple cleaning technique was suggested and evaluated. - Abstract: This paper presents experimental results indicating the benefits and challenges associated with the use of metal foams as Exhaust Gas Recirculation (EGR) coolers. Fouling of such heat exchangers is a critical issue and, as such, special attention has been paid to address this very issue in the present study where a soot generator has been employed to simulate the engine running condition. Effects of aluminium foam PPI and height as well as gas velocity are investigated. It has been noted that proper design of the foam can lead to significantly higher heat transfer rate and reasonable pressure drop compared to no-foam cases. More interestingly, it is demonstrated that the foams can be cleaned easily without relying on expensive cleaning techniques. Using simple brush-cleaning, the foams can be reused as EGR gas coolers with a performance penalty of only 17% (compared to a new or clean foam).

  10. EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN, is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

  11. Flue Gas Cleaning

    DEFF Research Database (Denmark)

    Fehrmann, Rasmus

    2014-01-01

    and dry scrubbing for sulfur oxides (SO2) and catalytic removal of nitrogen oxides (NOx). There is however, a desire of increasing the energy produced in electrical power plants by firing CO2-neutral biomass/waste or biomass/waste in combination with fossil fuels. Thus, the EU reached agreement in March......-time. But the problems may also be attacked by new materials like supported ionic liquid phase (SILP) gas absorbers where the pollutants may be selectively absorbed, desorbed and finally converted to useful mineral acids of commercial grade – really a green waste-to-value approach that we persue instead...

  12. Exposure of CR39 Stacks to Oxygen and Sulphur Beams at the CERN-SPS

    CERN Multimedia

    2002-01-01

    We plan to expose 8 stacks of CR39 sheets to oxygen and sulphur ions of 60 and 200~GeV at the CERN-SPS.\\\\ \\\\ The main purpose of the exposures is the calibration of the CR39 sheets used for a large area experimental search for magnetic monopoles at the Gran Sasso Laboratory (experiment MACRO). \\\\ \\\\ The stacks have 20~layers of CR39, each layer 13~cm~x~7~cm and 1.4~mm thick. A copper absorber is located after the first 6 layers. \\\\ \\\\ We require exposures of about 2000 tracks per cm$^2$ over the entire area of the stack with a uniform illumination. The standard beam used for the emulsion experiments is normally adequate for this purpose.\\\\ \\\\ We have performed one exposure to sulphur ions. The etched tracks have been measured automatically with the Elbeck image analyser system. We measured the incoming sulphur ions as well as the nuclear fragments produced in the copper absorber. Clean separation among the peaks due to the various fragments is obtained (there is no indication of nuclei with fractional electri...

  13. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  14. Problems of cleaning of gas releases from heat generating facilities

    International Nuclear Information System (INIS)

    Tret'yakov, V.; Burdejnaya, T.

    2000-01-01

    The paper deals with the problem of flue gases cleaning in the situation of a significant increasing use of fossil fuels in the Russian energy production. Information is given about the methods used in TPPs in different countries for cleaning of the gases released to the atmosphere from SO 2 and NO x . The main ways for solving the problem of decreasing of air pollution are outlined

  15. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures

    Science.gov (United States)

    Chang, Chun-Chieh; Huang, Li; Nogan, John; Chen, Hou-Tong

    2018-05-01

    We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importance for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.

  16. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  17. Computerized method and system for designing an aerodynamic focusing lens stack

    Science.gov (United States)

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  18. Refining clean fuels for the future

    International Nuclear Information System (INIS)

    Courty, P.; Gruson, J.F.

    2001-01-01

    To which extent transportation fuels will reasonably be changed in the coming years? LPG and natural gas are expected to challenge conventional fuels, hydrogen and methanol are bounded to possible fuel cells development. Among others, security of supply, competitive economics and environmental protection issues will be the key to the changes in the coming years. But taking into account expected transportation development, liquid fuels from oil should prevail as the reference energy. Though most of technologies and catalysts needed for the future are still existing or under marketing plans, the industry has to cope with the growing share of middle distillates. Indeed future zero heavy fuel-oil refineries are technically feasible through many existing and recent technologies. However their potential profitability is weighed down deeply by the very high investments and operating costs which are tied up. Tomorrow's main gasoline challenges deal with sulfur in FCC gasoline, aromatics and olefins contents together with a possible ban of ethers, hampering future octane demand and its technical feasibility. In a similar way diesel oil issues for the future imply a very deep desulfurization with possible aromatics hydrogenation and rings opening in order to comply with cetane and poly-aromatics ratings. Natural gas upgrading via syngas chemistry is still expected to open the way to clean fuels for the future via improved and integrated FT's GTL technologies which could as a matter provide most of future increases in clean fuels demand without decreasing the related fatal carbon losses as CO 2 . As an overall view, clean fuels production for the future is technically feasible. Advanced hydro-refining and hydro-conversion technologies open the way to clean fuels and allow the best flexibility in the gasoline/middle distillates ratio. However cost reduction remains a key issue since the huge investments needed are faced with low and volatile refining margins. In addition, CO 2

  19. Algebraic stacks

    Indian Academy of Sciences (India)

    Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.

  20. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

    OpenAIRE

    Zhang, Han; Xu, Tao; Li, Hongsheng; Zhang, Shaoting; Wang, Xiaogang; Huang, Xiaolei; Metaxas, Dimitris

    2017-01-01

    Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aiming at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of the object based on given...

  1. Robotic cleaning of a spent fuel pool

    International Nuclear Information System (INIS)

    Roman, H.T.; Marian, F.A.; Silverman, E.B.; Barkley, V.P.

    1987-01-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant

  2. A Photocatalytic Active Adsorbent for Gas Cleaning in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Peter Pucher

    2008-01-01

    Full Text Available Efficient photocatalysis for gas cleaning purposes requires a large accessible, illuminated active surface in a simple and compact reactor. Conventional concepts use powdered catalysts, which are nontransparent. Hence a uniform distribution of light is difficult to be attained. Our approach is based on a coarse granular, UV-A light transparent, and highly porous adsorbent that can be used in a simple fixed bed reactor. A novel sol-gel process with rapid micro mixing is used to coat a porous silica substrate with TiO2-based nanoparticles. The resulting material posses a high adsorption capacity and a photocatalytic activity under UV-A illumination (PCAA = photocatalytic active adsorbent. Its photocatalytic performance was studied on the oxidation of trichloroethylene (TCE in a fixed bed reactor setup in continuous and discontinuous operation modes. Continuous operation resulted in a higher conversion rate due to less slip while discontinuous operation is superior for a total oxidation to CO2 due to a user-defined longer residence time.

  3. Clean air strategy for Alberta: Background project reports

    International Nuclear Information System (INIS)

    1991-06-01

    As a background to the development of a clean air strategy for Alberta, reports are presented which cover the definition of what clean air is, the applicability of full cost accounting to this strategy, market-based approaches to managing Alberta air emissions, gas and electric utility incentives programs for energy efficiency, energy efficiency legislation in Alberta and other jurisdictions, initiatives which address emissions reduction in the transportation sector, coordination of science and technology relevant to clean air issues, and initiatives in energy and environmental education

  4. Gas Cleaning System with a Pre-Unloading Flow

    Directory of Open Access Journals (Sweden)

    Vasilevsky Michail

    2016-01-01

    Full Text Available The analysis of the causes and mechanisms reduce the efficiency of processes separation in cyclone devices, the results of field surveys of industrial cyclone. It offers an alternative solution to clean the flue gases from the boiler KE-10/14.

  5. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  6. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  7. System of treating flue gas

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas

  8. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  9. Safe, reliable desulfurization of high and very high H{sub 2}S loadings by UgnCleanTubes {sup registered}; Sichere, zuverlaessige Entschwefelung hoher und sehr hoher H{sub 2}S-Beladungen durch UgnCleanTubes {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Zoelsmann, Herbert [UGN-Umwelttechnik GmbH, Gera (Germany); Hilgert, Walter [Rietzler-Gruppe GmbH, Nuernberg (Germany)

    2016-08-01

    UgnCleanPellets {sup registered} S 3.5 for complete, safe desulfurization of biogas/biogenic fuel gases (hydrolysis and pyrolysis gas, landfill gas, sewage gas,..), natural gas and associated petroleum gases and industrial production exhaust gases are market introduced and tested worldwide. In particular, the complete surrender of gas cooling, gas drying and gas reheating, the H{sub 2}S removal to zero level and proven in practice loading capacity of up to % 80 percent characterize the UgnCleanPellets {sup registered} S 3.5 external as a cost-effective, efficient and sustainable desulfurization medium. The further development of the pellets to the UgnCleanTubes {sup registered} S 3.5 - that is, to internally hollow pellets with correspondingly enlarged, outer surface - is the next logical step to further improve performance whilst fully retaining the advantages of pellets. [German] UgnCleanPellets {sup registered} S 3.5 zur vollstaendigen, sicheren Entschwefelung von Biogas/biogenen Brenngasen (Hydrolyse- und Pyrolysegas, Deponiegas, Klaergas,...), Erdgas und Erdoelbegleitgasen sowie industriellen Produktionsabgasen sind markteingefuehrt und weltweit erprobt. Insbesondere der vollstaendige Verzicht auf Gaskuehlung, Gastrocknung und Gaswiederaufheizung, die H{sub 2}S-Entfernung auf Nullniveau sowie die in der Praxis nachgewiesene Beladungskapazitaet von bis zu 80-Gew% zeichnen die UgnCleanPellets {sup registered} S 3.5 als ein kostenguenstiges, effizientes und nachhaltiges externes Entschwefelungsmedium aus. Die Weiterentwicklung der Pellets zu den UgnCleanTubes {sup registered} S 3.5 - d.h. zu innen hohlen Pellets mit entsprechend vergroesserter, aeusserer Oberflaeche - ist der naechste konsequente Schritt zur weiteren Leistungssteigerung bei vollstaendiger Beibehaltung der Vorteile der Pellets.

  10. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  11. Cleaning Massive Sonar Point Clouds

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Larsen, Kasper Green; Mølhave, Thomas

    2010-01-01

    We consider the problem of automatically cleaning massive sonar data point clouds, that is, the problem of automatically removing noisy points that for example appear as a result of scans of (shoals of) fish, multiple reflections, scanner self-reflections, refraction in gas bubbles, and so on. We...

  12. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  13. Method of detecting stacks with leaky fuel elements in liquid-metal-cooled reactor and apparatus for effecting same

    International Nuclear Information System (INIS)

    Aristarkhov, N.N.; Efimov, I.A.; Zaistev, B.I.; Peters, I.G.; Tymosh, B.S.

    1976-01-01

    Described is a method of detecting stacks with leaky fuel elements in a liquid-metal-cooled reactor, consisting in that prior to withdrawing a coolant sample, gas is accumulated in the coolant of the stack being controlled, the reactor being shut down, separated from the sample by means of an inert carrier gas, and the radioactivity of the separated gas is measured. An apparatus for carrying out said method comprises a sampler in the form of a tube parallel to the reactor axis in the hole of a rotating plug and adapted to move along the reactor axis. Made in the top portion of the tube are holes for the introduction of the inert carrier gas and the removal thereof together with the gases evolved from the coolant, while the bottom portion of the tube is provided with a sealing member

  14. Making the clean available: Escaping India’s Chulha Trap

    International Nuclear Information System (INIS)

    Smith, Kirk R.; Sagar, Ambuj

    2014-01-01

    Solid cookfuel pollution is the largest energy-related health risk globally and most important cause of ill-health for Indian women and girls. At 700 million cooking with open biomass chulhas, the Indian population exposed has not changed in several decades, in spite of hundreds of programs to make the “available clean”, i.e. to burn biomass cleanly in advanced stoves. While such efforts continue, there is need to open up another front to attack this health hazard. Gas and electric cooking, which are clean at the household, are already the choice for one-third of Indians. Needed is a new agenda to make the “clean available”, i.e., to vigorously extend these clean fuels into populations that are caught in the Chulha Trap. This will require engaging new actors including the power and petroleum ministries as well as the ministry of health, which have not to date been directly engaged in addressing this problem. It will have implications for LPG imports, distribution networks, and electric and gas user technologies, as well as setting new priorities for electrification and biofuels, but at heart needs to be addressed as a health problem, not one of energy access, if it is to be solved effectively. - Highlights: • Pollution from cooking with solid fuels is largest health hazard for Indian women and girls. • 700 million Indians are caught in a trap using solid fuels with little change in number exposed for decades. • Efforts to make the biomass fuel clean through advanced stoves have made only modest progress in decades. • A major new effort is needed to make the clean available, in the form of gas and electricity. • This will require forging new partnerships and rethinking how these fuels are currently promoted

  15. Development of Osaka gas type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Iha, M.; Shiratori, A.; Chikagawa, O. [Murata Mfg. Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  16. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  17. System and method for treatment of a flue gas

    Science.gov (United States)

    Spiry, Irina Pavlovna; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Perry, Robert James; McDermott, John Brian

    2017-09-19

    A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.

  18. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  19. Cost Benefit Analysis of Using Clean Energy Supplies to Reduce Greenhouse Gas Emissions of Global Automotive Manufacturing

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2011-09-01

    Full Text Available Automotive manufacturing is energy-intensive. The consumed energy contributes to the generation of significant amounts of greenhouse gas (GHG emissions by the automotive manufacturing industry. In this paper, a study is conducted on assessing the application potential of such clean energy power systems as solar PV, wind and fuel cells in reducing the GHG emissions of the global auto manufacturing industry. The study is conducted on the representative solar PV, wind and fuel cell clean energy systems available on the commercial market in six representative locations of GM’s global facilities, including the United States, Mexico, Brazil, China, Egypt and Germany. The results demonstrate that wind power is superior to other two clean energy technologies in the economic performance of the GHG mitigation effect. Among these six selected countries, the highest GHG emission mitigation potential is in China, through wind power supply. The maximum GHG reduction could be up to 60 tons per $1,000 economic investment on wind energy supply in China. The application of wind power systems in the United States and Germany could also obtain relatively high GHG reductions of between 40–50 tons per $1,000 economic input. When compared with wind energy, the use of solar and fuel cell power systems have much less potential for GHG mitigation in the six countries selected. The range of median GHG mitigation values resulting from solar and wind power supply are almost at the same level.

  20. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-21

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  1. Discharge cleaning of carbon deposits

    International Nuclear Information System (INIS)

    Mozetic, M.; Vesel, A.; Drenik, A.

    2006-01-01

    Experimental results of discharge cleaning of carbon deposits are presented. Deposits were prepared by creating plasma in pure methane. The methane was cracked in RF discharge at the output power of 250 W. The resultant radicals were bonded to the wall of discharge vessel forming a thin film of hydrogenated black carbon with the thickness of about 200nm. The film was then cleaned in situ by oxygen plasma with the density of about 1x10 16 m -3 , electron temperature of 5 eV, neutral gas kinetic temperature of about 100 0 C and neutral atom density of 6x10 21 m -3 . The treatment time was 30 minutes. The efficiency of plasma cleaning was monitored by optical emission spectroscopy. As long as the wall was contaminated with carbon deposit, substantial emission of the CO molecules was detected. As the cleaning was in progress, the CO emission was decreasing and vanished after 30 minutes when the discharge vessel became free of any carbon. The results are explained by interaction of plasma radicals with carbon deposits. (author)

  2. The regulatory context of gas flaring in Alberta

    International Nuclear Information System (INIS)

    Gilmour, B.S.; Cook, C.

    1999-01-01

    The legislative and regulatory regime regarding gas flaring in Alberta was reviewed. The issue of gas flaring has received much attention from petroleum industry regulators in Alberta. Residents living in the vicinity of flares have identified them as sources of odour, smoke, noise and air quality-related health concerns. Sulfur dioxide and carbon dioxide emissions from the flare stacks may contribute to acid rain and the greenhouse effect. The Strosher Report, released by the Alberta Research Council in 1996, has also identified about 250 different compounds in flare emissions, including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and other products of incomplete combustion. The public opposition to solution gas flaring has caused regulators to consider new options designed to reduce the adverse economic and environmental impacts that may be associated with gas flaring. This paper discusses the roles of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection in administering legislation that impacts on gas flaring. In March 1999, the EUB released a guide containing the following five major points regarding gas flaring: (1) implementation of the Clean Air Strategic Alliance's (CASA's) recommendations to eventually eliminate flaring, by starting immediately to reduce flaring, and improve the efficiency of flares, (2) adoption of the CASA schedule of reduction targets for solution gas flaring, (3) conducting a review of the current approval process for small-scale electrical generation systems to encourage co-generation as a productive use of solution gas that is being flared, (4) creating better public notification requirements for new and existing facilities, and (5) discussing conflict resolution between operators and landowners. 26 refs

  3. Clean Economy, Living Planet. The Race to the Top of Global Clean Energy Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Slot, A.; Van den Berg, W. [Roland Berger Strategy Consultants RBSC, Amsterdam (Netherlands)

    2012-05-15

    For four years, WWF and Roland Berger have tracked developments in the global clean energy technology (cleantech) sector and ranked countries according to their cleantech sales. The 3rd annual 'Clean Economy, Living Planet' report ranks 40 countries based on the 2011 sales value of the clean energy technology products they manufacture. The report shows that the EU has lost its position to China as the leader in the fast growing global cleantech energy manufacturing sector. However, when cleantech sales are weighted as a percentage of GDP, Denmark and Germany occupied the first and third position globally. Last year the sector's global sales value rose by 10% to almost 200 billion euros, close to the scale of consumer electronics manufacturing. It is projected to overtake oil and gas equipment in the next three years.

  4. Recent results on cleaning and conditioning the ATF vacuum system

    International Nuclear Information System (INIS)

    Langley, R.A.; Clark, T.L.; Glowienka, J.C.; Goulding, R.H.; Mioduszewski, P.K.; Rasmussen, D.A.; Rayburn, T.F.; Schaich, C.R.; Shepard, T.D.; Simpkins, J.E.; Yarber, J.L.

    1990-01-01

    Techniques for cleaning and conditioning the vacuum vessel of the Advanced Toroidal Facility (ATF) and its internal components are described. The vacuum vessel cleaning technique combines baking to 150 degree C and glow discharges with hydrogen gas. Chromium gettering is used to further condition the system. The major internal components are the anodized aluminum baffles in the Thomson scattering system, a graphite-shielded ICRF antenna, two graphite limiters, and a diagnostic graphite plate. Three independent heating systems are used to bake some of the major components of the system. The major characteristics used for assessing cleanliness and conditioning progress are the maximum pressure attained during bakeout, the results of gas analysis, and revelant plasma parameters (e.g., time to radiative decay). Details of the various cleaning and conditioning procedures and results are presented

  5. Design and operation of off-gas cleaning and ventilation systems in facilities handling low and intermediate level radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The number of developing countries constructing new nuclear facilities is increasing. These facilities include the production and processing of radioisotopes, as well as all types of laboratories and installations, which handle radioactive material and deal with the treatment of radioactive wastes. Ventilation and air cleaning systems are a vital part of the general design of any nuclear facility. The combination of a well designed ventilation system with thorough cleaning of exhaust air is the main method of preventing radioactive contamination of the air in working areas and in the surrounding atmosphere. This report provides the latest information on the design and operation of off-gas cleaning and ventilation systems for designers and regulatory authorities in the control and operation of such systems in nuclear establishments. The report presents the findings of an Advisory Group Meeting held in Vienna from 1 to 5 December 1986 and attended by 12 experts from 11 Member States. Following this meeting, a revised report was prepared by the International Atomic Energy Agency Secretariat and three consultants, M.J. Kabat (Canada), W. Stotz (Federal Republic of Germany) and W.A. Fairhurst (United Kingdom). The final draft was commented upon and approved by the participants of the meeting. 69 refs, 37 figs, 12 tabs

  6. Black powder removal in a Mexico gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, John R. [TDW Services, Inc., New Castle, DE (United States); Drysdale, Colin; Warterfield, Bob D. [T.D.Williamson, Inc., Tulsa, OK (United States)

    2008-07-01

    This paper focuses on the cleaning methodology and operational constrains involved with the removal of black powder in a high pressure natural gas transmission pipeline. In this case, the accumulation of black powder along the pipeline system over the seven year period since it was put into service was creating significant problems in the areas of maintenance, customer relations, and cost to the pipeline operator due to clogging of filters, reduced gas flow, and penalties as result of non-compliant delivery contracts. The pipeline cleaning project consisted of running cleaning pigs or scrappers with batches of cleaning solution through each section of the pipeline while dealing with such factors as three (3) pipeline section lengths in excess of 160 kms (100 miles), gas flow velocity fluctuations, shutdowns, and gas delivery schedule requirements. The cleaning program for the entire pipeline system included the use of chemical and diesel based cleaning solution, running multiple cleaning pigs, liquid injection and separation system, mobile storage tanks, various equipment and personnel for logistical support. Upon completion of the cleaning program, the level of black powder and other solids in all pipeline sections was reduced to approximately 0.5% liquid/solid ratio and the pipeline system returned to normal optimum operation. (author.

  7. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  8. A study of the internal humidification of an integrated PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K H; Lee, T H [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Park, D J; Rho, Y W; Kho, Y T [KOGAS R and D Center, Kyunggi (Korea, Republic of)

    1998-07-15

    An integrated proton exchange membrane fuel-cell (PFMFC) system has been developed with an internal humidifier within the stack. Research is concentrated on selecting a membrane with low cost and good water permeability because, to date, high-cost membranes (e.g., as Nafion) have been used. The gas and water permeability of several membranes were measured. A low-cost ultra filtration (UF) membrane shows better characteristics for the internal humidifier and cell performance than the others. Also, saturated water vapour permeating through the UF membrane can be supplied at the stack from the internal humidifier. The internal humidifier using UF membrane is thought to be a satisfactory humidifier for a PEMPC. (orig.)

  9. Evaluation of boiler chemical cleaning techniques

    International Nuclear Information System (INIS)

    1993-04-01

    The EPRI/SGOG process, which has been selected by Ontario Hydro for use at the Bruce A station, is described. This process consists of alternating iron removal and copper removal steps, the two metals which comprise the bulk of the deposit in the Bruce A SGs. The iron removal solvent consists of ethylenediameinetetraacetic acid (EDTA), hydrazine, ammonium hydroxide and a proprietary corrosion inhibitor CCI-801. The copper removal solvent consists of EDTA, ethylene diamine and hydrogen peroxide. Ontario Hydro proposes to clean a bank of four SGs in parallel employing a total of six copper removal steps and four iron removal steps. Cleaning all eight SGs in a single Bruce A unit will generate 2,200 m 3 of liquid waste which will be treated by a wet air oxidation process. The iron and copper sludges will be buried in a landfill site while the liquid waste will be further treated by the Bruce sewage treatment plant. Some ammonia vapour will be generated through the wet air oxidation process and will be vented through a stack on top of the high bay of the spent solvent treatment plant. With the exception of the proprietary corrosion inhibitor, all chemicals that will be employed in the cleaning and waste treatment operations are standard industrial chemicals which are well characterized. No extraordinary hazards are anticipated with their use as long as adequate safety precautions are taken

  10. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P [VTT Energy, Espoo (Finland)

    1997-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  11. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  12. CleanFleet. Final report: Volume 5, employee attitude assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The experiences of couriers, operations managers, vehicle handlers (refuelers), and mechanics who drove and/or worked with alternative fuel vehicles, and the attitudes and perceptions of people with these experiences, are examined. Five alternative fuels studied in the CleanFleet project are considers& compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The three major areas of interest include comparative analysis of issues such as health, safety and vehicle performance, business issues encompassing several facets of station operations, and personal commentary and opinions about the CleanFleet project and the alterative fuels. Results of the employee attitude assessment are presented as both statistical and qualitative analysis.

  13. Data cleaning in the energy domain

    Science.gov (United States)

    Akouemo Kengmo Kenfack, Hermine N.

    This dissertation addresses the problem of data cleaning in the energy domain, especially for natural gas and electric time series. The detection and imputation of anomalies improves the performance of forecasting models necessary to lower purchasing and storage costs for utilities and plan for peak energy loads or distribution shortages. There are various types of anomalies, each induced by diverse causes and sources depending on the field of study. The definition of false positives also depends on the context. The analysis is focused on energy data because of the availability of data and information to make a theoretical and practical contribution to the field. A probabilistic approach based on hypothesis testing is developed to decide if a data point is anomalous based on the level of significance. Furthermore, the probabilistic approach is combined with statistical regression models to handle time series data. Domain knowledge of energy data and the survey of causes and sources of anomalies in energy are incorporated into the data cleaning algorithm to improve the accuracy of the results. The data cleaning method is evaluated on simulated data sets in which anomalies were artificially inserted and on natural gas and electric data sets. In the simulation study, the performance of the method is evaluated for both detection and imputation on all identified causes of anomalies in energy data. The testing on utilities' data evaluates the percentage of improvement brought to forecasting accuracy by data cleaning. A cross-validation study of the results is also performed to demonstrate the performance of the data cleaning algorithm on smaller data sets and to calculate an interval of confidence for the results. The data cleaning algorithm is able to successfully identify energy time series anomalies. The replacement of those anomalies provides improvement to forecasting models accuracy. The process is automatic, which is important because many data cleaning processes

  14. The BC energy plan : a vision for clean energy leadership

    International Nuclear Information System (INIS)

    2007-02-01

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs

  15. The BC energy plan : a vision for clean energy leadership

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs.

  16. Fiscal 1999 basic study for promotion of joint implementation. Effective utilization of associated gas at Kokdumalak Field of the Republic of Uzbekistan; 1999 nendo Uzbekistan koku Kokdumalak zuihan gas yuko riyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A feasibility study is conducted for an Uzbekistani plan for effectively utilizing associated gas at its Kokdumalak Gas Field. The effort will lead to a clean development mechanism in the future. The associated gas and off-gas now being totally burnt in a flare stack will serve as raw materials for the recovery of LPG (liquid petroleum gas), NGL (natural gas liquid), etc. The amount of total investment is US$82,003,000, with US$69,739,000 borrowed and US$12,264,000 self-financed. Thanks to the products to be recovered, there will be an energy substitution rate of 168,418 tons per year in terms of oil. There will be a huge reduction of greenhouse gas emissions of 4.52-million tons per year in terms of CO2, tantamount to the discharge of a 1000MW-class power plant. Although the project will be low in profitability, with the FIRR (financial internal rate of return) on investment before tax being as low as 10.56%, yet it is desired that, in view of the expected reduction in greenhouse gas, effective utilization of associated gas, and in view of its impact on the future development of the Republic of Uzbekistan and its society, the project will be implemented as soon as possible. It is expected that the country will enjoy various tax revenues to be created, foreign exchange by importing LPG, and earnings through emission right trading involving greenhouse gas. (NEDO)

  17. Recent results on cleaning and conditioning the ATF vacuum system

    International Nuclear Information System (INIS)

    Langley, R.A.; Clark, T.L.; Glowienka, J.C.

    1989-01-01

    Techniques for cleaning and conditioning the vacuum vessel of the Advanced Toroidal Facility (ATF) and its internal components are described. The vacuum vessel cleaning technique combines baking to 150/degree/C and glow discharges with hydrogen gas. Chromium gettering is used to further condition the system. The major internal components are the anodized aluminum baffles in the Thomson scattering system, a graphite-shielded ICRF antenna, two graphite limiters, and a diagnostic graphite plate. Three independent heating systems are used to bake some of the major components of the system. The major characteristics used for assessing cleanliness and conditioning progress are the maximum pressure attained during bakeout, the results of gas analysis, and relevant plasma parameters (e.g., time to radiative decay). Details of the various cleaning and conditioning procedures and results are presented. 5 refs., 8 figs., 3 tabs

  18. Water recovery from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Heijboer, R.; Van Deelen-Bremer, M.H.; de Vos, F.; Zeijseink, A.G.L. [KEMA Nederland B.V. (Netherlands)

    2007-07-01

    In the power generation process a large amount of water is needed, for steam generation, flue gas cleaning etc. On the other hand a large amount of water is emitted to the atmosphere via the stack. For example a 400 MW coal fired power plant with a flue gas desulfurisation plant emits about 1,500,000 m{sup 3} per hour with a water concentration of about 11%. The emitted water has a rather good quality compared to surface water and needs less effort to be treated for use as make-up water. As the available amount of water in the flue gas from the earlier mentioned power plant is about 150 tons per hour, recovering 20% of this amount covers the make-up water needs of this 400 MW power plant. Direct condensation of the flue gas needs large cooling power and the condensed water is acidic and corrosive and needs cleanup treatment before it can be used in the water/steam cycle. KEMA developed a technology based on gas separation membranes which makes it possible to recover water from flue gas. The process is covered by a wide patent. The principle of the membrane is comparable to the material that is used in fabric like SympaTex{reg_sign} and GORE-TEX{reg_sign}. The GORE-TEX material is permeable to water vapor but rejects liquid water. The driving force is the water vapor pressure close to the human skin which is the higher than the water vapor pressure open the outside of the clothing. The selectivity of the GORE-TEX material however is not good enough to be used at the temperature of flue gas. The University of Twente (Netherlands) developed a membrane material based on modified PEEK which is highly selective of water vapor at flue gas temperatures. Based on the fact that flat membranes have an uneconomical surface to volume ratio, the choice has been made to use hollow fibre membranes. 6 figs.

  19. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  20. Effect of Gas Fueling Location on H-mode Access in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.; Bell, R.; Biewer, T.; Bush, C.; Chang, C.S.; Gates, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; Maqueda, R.; Menard, J.; Mueller, D.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2003-01-01

    The dependence of H-mode access on the poloidal location of the gas injection source has been investigated in the National Spherical Torus Experiment (NSTX). We find that gas fueling from the center stack midplane area produces the most reproducible H-mode access with generally the lowest L-H threshold power in lower single-null configuration. The edge toroidal rotation velocity is largest (in direction of the plasma current) just before the L-H transition with center stack midplane fueling, and then reverses direction after the L-H transition. Simulation of these results with a 2-D guiding-center Monte Carlo neoclassical transport code is qualitatively consistent with the trends in the measured velocities. Double-null discharges exhibit H-mode access with gas fueling from either the center stack midplane or center stack top locations, indicating a reduced sensitivity of H-mode access on fueling location in that shape

  1. Clean energy: Revisiting the challenges of industrial policy

    International Nuclear Information System (INIS)

    Morris, Adele C.; Nivola, Pietro S.; Schultze, Charles L.

    2012-01-01

    Large public investments in clean energy technology arguably constitute an industrial policy. One rationale points to market failures that have not been corrected by other policies, most notably greenhouse gas emissions and dependence on oil. Another inspiration for clean energy policy reflects economic arguments of the 1980s. It suggests strategic government investments would increase U.S. firms' market share of a growing industry and thus help American firms and workers. This paper examines the reasoning for clean energy policy and concludes that: •While a case can be made that subsidizing clean energy might help address market failures, the case may be narrower than some assert, and turning theory into sound practice is no simple feat. •An appropriate price on greenhouse gases is an essential precondition to ensuring efficient incentives to develop and deploy cost-effective emissions-abating technologies. However, efficient prices alone are unlikely to generate efficient levels of basic research and development by private firms. •Government investments in clean energy are unlikely to produce net increases in employment in the long run, in part because pushing home-grown technologies at taxpayers' expense offers no guarantee that the eventual products ultimately would not be manufactured somewhere else. •Spending on clean energy technologies is not well suited to fiscal stimulus. The authors recommend that: •Federal energy spending should invest in technologies with the lowest expected cost of abatement and highest probability of market penetration. •Funding decisions ought to be insulated – as much as possible – from rent-seeking by interest groups, purely political distortions, and the parochial preferences of legislators. - Highlights: ► Clean energy technology policy may be less justifiable than many assert, and doing it well is hard. ► The government should appropriately price greenhouse gas emissions and fund technology R and D.

  2. Cleaning of Sodium in the Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  3. Five stacks over the Danube

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Following the departure of Communism, Hungary adopted the most ambitious privatisation programme of all the eastern European countries. Within a year the state electricity company, MVM, and the oil and gas company, MOL, were prepared for sale and a consequent injection of foreign capital. Control of prices by central government inhibited investment initially but a new legal framework put in place in 1995 introduced a pricing regime more attractive to external investors. Particular interest was shown in the 2,200MW mixed heavy oil and natural gas power plant at Dunamenti on the Danube, characterised by its five stacks of varying height which reflect the changing technology employed at the plant. The bid was won by Tractabel of Belgium who have been highly successful in improving plant efficiency. However, the impact of privatisation is now being felt in uncertainty over fuel supply. Removing such uncertainty in order to maintain existing investment and provide the additional 4000MW of generating capacity needed to keep pace with demand, is a major problem which the incoming government faces. (UK)

  4. Study on component interface evolution of a solid oxide fuel cell stack after long term operation

    Science.gov (United States)

    Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian

    2018-05-01

    A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.

  5. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site....... This article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell...... is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  6. Modeling fuel cell stack systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., Los Alamos, NM (United States); Lalk, T R [Dept. of Mech. Eng., Texas A and M Univ., College Station, TX (United States)

    1998-06-15

    A technique for modeling fuel cell stacks is presented along with the results from an investigation designed to test the validity of the technique. The technique was specifically designed so that models developed using it can be used to determine the fundamental thermal-physical behavior of a fuel cell stack for any operating and design configuration. Such models would be useful tools for investigating fuel cell power system parameters. The modeling technique can be applied to any type of fuel cell stack for which performance data is available for a laboratory scale single cell. Use of the technique is demonstrated by generating sample results for a model of a Proton Exchange Membrane Fuel Cell (PEMFC) stack consisting of 125 cells each with an active area of 150 cm{sup 2}. A PEMFC stack was also used in the verification investigation. This stack consisted of four cells, each with an active area of 50 cm{sup 2}. Results from the verification investigation indicate that models developed using the technique are capable of accurately predicting fuel cell stack performance. (orig.)

  7. Clean fuels from fossil sources

    International Nuclear Information System (INIS)

    Sanfilippo, D.

    2000-01-01

    Energy availability is determining to sustain the social development, but energy production involves environmental impacts at regional and global level. The central role of oil, natural gas, coal for energy supply will be kept for decades. The development of the engine-fuel combination to satisfy more stringent emissions limitations, is the challenge for an environmentally clean transportation system [it

  8. Retrofit flue gas desulfurization system at Indianapolis Power and Light Co. Petersburg Station Units 1 and 2

    International Nuclear Information System (INIS)

    Watson, W.K.; Wolsiffer, S.R.; Youmans, J.; Martin, J.E.; Wedig, C.P.

    1992-01-01

    This paper briefly describes the status of the retrofit wet limestone flue gas desulfurization system (FGDS) project at Indianapolis Power and Light Company (IPL), Petersburg Units 1 and 2. This project was initiated by IPL in response to the Clean Air Act of 1990 and is intended to treat the flue gas from two base load units with a combined capacity of approximately 700 MW gross electrical output. IPL is the owner and operator of the Petersburg Station located in southwestern Indiana. Stone and Webster Engineering Corporation (Stone and Webster) is the Engineer and Constructor for the project. Radian Corporation is a subcontractor to Stone and Webster in the area of flue gas desulfurization (FGD) process. General Electric Environmental Systems, Inc. (GEESI) is the supplier of the FGDS. The project is organized as a team with each company providing services. The supplier of the new stack is scheduled to be selected and join the team in early 1992. Other material suppliers and field contractors will be selected in 1992

  9. CDM (Clean Development Mechanism) opportunities for the oil and gas sector

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Joana Chiavari [FEEM - Fondazione Eni Enrico Mattei, Milan (Italy). Eni/Agip Group

    2004-07-01

    Due to the broad impact of legislation limiting greenhouse gas emissions and the increasing public awareness concerning the environment, the oil industry has been currently incorporating climate change considerations in its corporate strategy. However, compliance in the carbon constrained economy does not merely represent a cost issue; it also represents an opportunity. Projects developed under the Clean Development Mechanism (CDM) in particular represent an incentive both for companies and governments to invest in emission reduction projects in developing countries and earn carbon credits, while promoting sustainable development. The oil industry is characterized by a high emission reduction potential and is able to deliver to the market an amount of credits which is by far higher than the amount that most projects developers are able to offer. However some critical issues, such as the current interpretation of the additionally concept, may represent a barrier for the full utilization of such mechanism, particularly regarding petroleum-sector projects, thus reducing the benefits the CDM can actually produce. Considering that a very large number of CDM projects may be needed for the implementation of a successful climate policy, the engagement of the oil industry on the Kyoto mechanisms is very important and auspicial. (author)

  10. Vertical Silicon Nanowire Platform for Low Power Electronics and Clean Energy Applications

    Directory of Open Access Journals (Sweden)

    D.-L. Kwong

    2012-01-01

    Full Text Available This paper reviews the progress of the vertical top-down nanowire technology platform developed to explore novel device architectures and integration schemes for green electronics and clean energy applications. Under electronics domain, besides having ultimate scaling potential, the vertical wire offers (1 CMOS circuits with much smaller foot print as compared to planar transistor at the same technology node, (2 a natural platform for tunneling FETs, and (3 a route to fabricate stacked nonvolatile memory cells. Under clean energy harvesting area, vertical wires could provide (1 cost reduction in photovoltaic energy conversion through enhanced light trapping and (2 a fully CMOS compatible thermoelectric engine converting waste-heat into electricity. In addition to progress review, we discuss the challenges and future prospects with vertical nanowires platform.

  11. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    International Nuclear Information System (INIS)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Dechelette, F.; Prele, G.; Rodriguez, G.

    2012-01-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO 2 interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  12. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Lovera, P.; Fleche, J. L. [CEA, DEN, DPC Saclay, F-91191 Gif-sur-Yvette (France); Lacroix, M. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Carra, O. [AREVA / NP, 10 Rue Juliette Recamier, 69003 Lyon (France); Dechelette, F. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Prele, G. [EDF/SEPTEN, 12-14 avenue Dutrievoz, 69628 Villeurbane Cedex (France); Rodriguez, G. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  13. Cleaning up: environmental services are bound to stay a growth industry

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2000-01-01

    Environmental protection regulations with particular regard for the oil and natural gas industry are reviewed. New flaring regulations will be reduced by 70 per cent within the next seven years and remaining flares will operate at nearly 100 per cent efficiency in burning harmful substances. The Canadian Council of Ministers of the Environment (CCME) is currently targeting other emission sources from oilfield equipment. Benzene emissions from glycol dehydrators will be reduced by 90 per cent by 2007. Soil remediation targets are also very ambitious. The standard is 1,000 parts per million of hydrocarbons. As an indication of the difficulties experienced by oil companies in land reclamation, one out of five topsoil replacement and revegetation applications have failed. As a result of these stringent regulations, a multi-billion dollar environmental industry has emerged, constantly searching for better and more cost effective ways to comply with rising standards. The most immediate challenge is to snuff out some 5,300 flare stacks. The science behind environmental protection is still weak and controversial, and satisfactory answers are still some years away; in the meantime oil companies must meet existing requirements, inventing new equipment and approaches in the process. Incineration may be one answer, but alternative approaches are also being investigated. Wellsite reclamation, cleaning up of exhausted fields, identifying and preserving wild animal habitats, protecting endangered species, accounting for human populations and their effects, greenhouse gas emissions and the complex issues of emissions trading and credits are just some of the issues that will ensure that environmental services will continue to be a growth industry

  14. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  15. Perceptions of Improved Biomass and Liquefied Petroleum Gas Stoves in Puno, Peru: Implications for Promoting Sustained and Exclusive Adoption of Clean Cooking Technologies

    Directory of Open Access Journals (Sweden)

    Jacqueline Hollada

    2017-02-01

    Full Text Available Many households in low- and middle-income countries cook with inefficient biomass-burning stoves, which cause high levels of household air pollution and threaten long-term health. Although clean stoves and fuels are available, uptake and consistent use has been low. Using observations and in-depth interviews, we assessed the attitudes, preferences, and beliefs about traditional versus liquefied petroleum gas (LPG stoves in rural Puno, Peru. A total of 31 in-depth interviews were conducted with primary cooks and their families, health workers, community leaders, and improved stove contractors. Six in-home observations of meal preparation were also conducted. Six major barriers to consistent use of clean stoves were identified: (1 perceived differences in food taste and nutrition by stove type; (2 cooking niches filled by different stoves; (3 social norms related to cooking practices; (4 safety concerns; (5 comparative costs of using different stoves; and (6 lack of awareness and concern about long-term health risks. These findings suggest that to successfully reduce household air pollution, clean cooking programs and policies must consider the many factors influencing adoption beyond health, such as cost, taste, fears, and cultural traditions. These factors could be incorporated into community-based and national efforts to scale-up sustained and exclusive adoption of clean cooking.

  16. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  17. 17th DOE nuclear air cleaning conference: proceedings. Volume 2

    International Nuclear Information System (INIS)

    First, M.W.

    1983-02-01

    Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier

  18. 17th DOE nuclear air cleaning conference: proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. (ed.)

    1983-02-01

    Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

  19. Worldwide gas marketing

    International Nuclear Information System (INIS)

    Carson, M.M.

    1994-01-01

    Natural gas is an important source of energy throughout the world due to its availability and clean burning characteristics. From liquefied natural gas being shipped via tanker from Alaska to Japan, to natural gas via pipeline from Canada to the US, to inter-country natural gas shipment within the European continent, natural gas continues to expand and justify its place of honor in the world energy picture

  20. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure

  1. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2008-03-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  2. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2009-01-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  3. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  4. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  5. Simultaneous treatment of SO2 containing stack gases and waste water

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  6. Compliance with the Clean Air Act Amendments: Challenge of the 90's

    International Nuclear Information System (INIS)

    Odegard, G.J.; Van, H.

    1993-01-01

    With its 17,593 miles of pipeline, El Paso Natural Gas Company is one of the country's largest interstate natural gas transmission companies. To keep the gas continually moving through the pipeline, it is compressed back to high pressures at 73 stations comprising 1,210,120 horsepower located along the pipeline route. These compressor stations, which operate 24 hours a day every day, house 316 reciprocating engines and 92 gas turbines. As fuel, these engines and turbines burn natural gas. Natural gas combustion releases emissions of nitrogen oxides and carbon monoxide with small amounts of particulates, sulfur dioxide and volatile organic compounds. This presentation will describe how one large energy company plans to comply with these new requirements over the next several years. El Paso has developed an extensive Air Program designed to obtain all needed operating permits by the November 1995 deadline. Work is underway to quantify and document emissions at every operating facility. Emissions tests will measure NOx, CO, oxygen, CO 2 , water, stack temperature, stack velocity and fuel flow rate. Data generated by the Emissions Inventory System will be used not only for permit applications, but to develop alternative emission reduction strategies at facilities located in nonattainment areas. Dispersion modeling will be performed to analyze compliance with PSD increments and National Ambient Air Quality Standards

  7. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, S.; Clary, W.; Tice, D.R.

    2002-01-01

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  8. Clean coal technology roadmap: issues paper

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    The need for the Clean Coal Technology Roadmap is based on the climate change threat, Canada's commitment to the Kyoto protocol, and the need to keep options open in determining the future position of coal in Canada's energy mix. The current role of coal, issues facing coal-fired utilities, and greenhouse gas emission policies and environmental regulations are outlined. The IEA energy outlook (2002) and a National Energy Board draft concerning Canada's energy future are outlined. Environmental, market, and technical demands facing coal, technology options for existing facilities, screening new developments in technology, and clean coal options are considered. 13 figs. 5 tabs.

  9. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  10. ooi: OpenStack OCCI interface

    Directory of Open Access Journals (Sweden)

    Álvaro López García

    2016-01-01

    Full Text Available In this document we present an implementation of the Open Grid Forum’s Open Cloud Computing Interface (OCCI for OpenStack, namely ooi (Openstack occi interface, 2015  [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability, portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other OCCI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not tied to a particular OpenStack release version.

  11. ooi: OpenStack OCCI interface

    Science.gov (United States)

    López García, Álvaro; Fernández del Castillo, Enol; Orviz Fernández, Pablo

    In this document we present an implementation of the Open Grid Forum's Open Cloud Computing Interface (OCCI) for OpenStack, namely ooi (Openstack occi interface, 2015) [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability, portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other OCCI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not tied to a particular OpenStack release version.

  12. Knitted structures of endless fibers for gas cleaning. Pt. 2; Gestrickte Strukturen aus Endlosfasern fuer die Abgasreinigung. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, A.; Mayer, J.; Wintermantel, E.; Buck, A.; Schmidt, R.M.; Mattes, P.; Sudmanns, H.; Bressler, H.

    1995-07-01

    Knittings based on ceramic filament yarns can be used to clean polluted air and exhaust gas efficiently up to temperatures of 1000 C. They provide interesting properties for the filtration of Diesel particles as well as for catalysis and adsorption of toxic gas components. The special knitting technology can handle any brittle fibers, producing elastic structures, which are thermochoc-resistent and can therefore even be used for preturbo applications. The first part of this paper, published in MTZ 56 (1995) 2 deals with the basic properties of this cleaning medium. This second part concentrates on Diesel particulate trop applications. These new trap and catalyst concepts are under development by Buck/Bondorf with TTM/Niederrohrdorf. Basic research is delegated to ETH Zuerich and Universitaet by Gillet/Edenkoben and, with focus on preturbo-applications by MTU/Friedrichshafen. (orig.) [Deutsch] Gestricke aus keramischen Endlosfasern sind bis zu Temperaturen um 1000 C fuer die Abluft- und Abgasreinigung einsetzbar. Sie eignen sich fuer die Filtration von Dieselpartikeln, insbesondere deren Feinstfraktionen ebenso wie fuer die Katalyse und fuer die Adsorption gasfoermiger Schadstoffkomponenten. Die Strukturen sind volumenelastisch, unempfindlich gegen Thermoschock und daher auch im motornahen Bereich risikoarm einsetzbar. In einem ersten Teilbeitrag in der Februarausgabe der MTZ wurden grundlegende Erkenntnisse dieses Abgasreinigungsmediums beschrieben. Der vorliegende zweite Teil beschreibt Anwendungen mit Schwerpunkt Dieselpartikelfilter. Diese neue Fasertechnik wird bei Buck, Bondorf, zusammen mit TTM, Niderrohrdorf, entwickelt. Forschungsarbeiten werden an der ETH Zuerich und der Universitaet Erlangen im Rahmen des BMFT-Projektes 01 VQ 9305/9 durchgefuehrt. Fragen zu motornachgeschalteten Anwendungen untersucht Gillett, Edenkoben, Moeglichkeiten der Motorintegration solcher Filter die MTU Friedrichshafen. (orig.)

  13. Atmospheric deterioration of clean surface of epitaxial (001)-YBaCuO films studied by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Ohara, Tomoyuki; Sakuta, Ken; Kamishiro, Makio; Kobayashi, Takeshi

    1991-01-01

    The effects of gas exposure on the clean surface of the epitaxial YBaCuO thin films were closely investigated using the low-energy electron diffraction (LEED) method. The clean surface was obtained by in-vacuum annealing at 500degC. Once the clean surface was exposed to air, even at room temperature, the LEED spots disappeared or sometimes became faint. To ensure the degradation mechanism of the YBaCuO clean surface, the specimens were exposed to pure O 2 and N 2 gases separately and measured by LEED. As a result, it was found that O 2 is very safe but N 2 serves as a poisonous gas for the YBaCuO clean surface. (author)

  14. Plasma cleaning techniques and future applications in environmentally conscious manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1995-07-01

    Plasmas have frequently been used in industry as a last step surface preparation technique in an otherwise predominantly wet-etch process. The limiting factor in the usefulness of plasma cleaning techniques has been the rate at which organic materials are removed. Recent research in the field of plasma chemistry has provided some understanding of plasma processes. By controlling plasma conditions and gas mixtures, ultra-fast plasma cleaning and etching is possible. With enhanced organic removal rates, plasma processes become more desirable as an environmentally sound alternative to traditional solvent or acid dominated process, not only as a cleaning tool, but also as a patterning and machining tool. In this paper, innovations in plasma processes are discussed including enhanced plasma etch rates via plasma environment control and aggressive gas mixtures. Applications that have not been possible with the limited usefulness of past plasma processes are now approaching the realm of possibility. Some of these possible applications will be discussed along with their impact to environmentally conscious manufacturing.

  15. Quantitative Prediction of Coalbed Gas Content Based on Seismic Multiple-Attribute Analyses

    Directory of Open Access Journals (Sweden)

    Renfang Pan

    2015-09-01

    Full Text Available Accurate prediction of gas planar distribution is crucial to selection and development of new CBM exploration areas. Based on seismic attributes, well logging and testing data we found that seismic absorption attenuation, after eliminating the effects of burial depth, shows an evident correlation with CBM gas content; (positive structure curvature has a negative correlation with gas content; and density has a negative correlation with gas content. It is feasible to use the hydrocarbon index (P*G and pseudo-Poisson ratio attributes for detection of gas enrichment zones. Based on seismic multiple-attribute analyses, a multiple linear regression equation was established between the seismic attributes and gas content at the drilling wells. Application of this equation to the seismic attributes at locations other than the drilling wells yielded a quantitative prediction of planar gas distribution. Prediction calculations were performed for two different models, one using pre-stack inversion and the other one disregarding pre-stack inversion. A comparison of the results indicates that both models predicted a similar trend for gas content distribution, except that the model using pre-stack inversion yielded a prediction result with considerably higher precision than the other model.

  16. Analysis of the effect of dissimilar welding in a high pressure flare stack

    International Nuclear Information System (INIS)

    Mahdi Ezwan Mahmoud; Mohd Harun; Zaifol Samsu; Norasiah Kasim; Zaiton Selamat; Alahuddin, K.H.

    2010-01-01

    A flare stack is an elevated vertical stack found in a natural gas processing plant, used primarily for combusting waste gases released by pressure relief valves. The materials used for our high pressure flare tip are carbon steel (CS) type A516 Gr. 55 for its lower portion, and stainless steel (SS) 310 for its upper portion. Both were combined into a single unit by arc welding (dissimilar welding), with SS310 as a base metal. After 5 years of operations, few mechanical deformations were observed on the flare stack, along with corrosion deposit on the CS portion of the flare. Detailed analysis shows the presence of toe and shrinkage cracks, along with spheroidization of pearlite in the CS. These are caused by factors such as mismatched welding and coefficient of thermal expansion (CTE) between the metals. These factors helped exacerbate crack initiation and propagation. Based on the evidence collected, it is recommended that the CS A516 be replaced with SS310. (author)

  17. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to le...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures.......Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...

  18. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    Science.gov (United States)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.

  19. Experiments on cleaning effects of TDC, GDC and ECR-DC in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Matsuzaki, Y.; Ogawa, H.; Miura, Y.; Ohtsuka, H.; Suzuki, N.; Yamauchi, T.; Tani, T.; Mori, M.

    1987-01-01

    The cleaning effects of Taylor-type discharge cleaning (TDC), glow discharge cleaning (GDC) and ECR discharge cleaning (ECR-DC) were studied in the JFT-2M tokamak by comparing the properties of resulting tokamak plasmas, by observing the surface composition of samples and by residual gas analysis. The operational parameters of the three discharge cleaning techniques were as follows; the plasma current for TDC is 20 kA, the DC current for GDC is 3 A and the RF power for ECR-DC is 2.3 kW. Parameters of the tokamak plasmas such as loop voltages, radiation losses, spectra emission of oxygen, maximum mean electron densities and profiles of electron temperature were improved as the TDC and ECR-DC proceeded. Changes in the surface composition of samples were measured by Auger electron spectrosopy. The results showed that during the TDC and ECR-DC oxygen was reduced, while GDC reduced mainly carbon. Residual gas analysis performed during discharge cleaning corroborated these results. (orig.)

  20. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    In order to address these tar related problems a cleaning and cooling system has been developed in house that facilitates tar removal to acceptable levels tolerated by the internal combustion (IC) engine and meets emission standards as well. The main objective of the present work is to reduce tar level and develop control ...

  1. Alberta's clean energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper deals with the future of clean energy in Alberta. With the present economic growth of the oil sands industry in Alberta, it is expected that there will be very considerable increases in job opportunities and GDP in both Canada and US. The challenges include high-energy demand and reduction of the carbon footprint. Alberta has adopted certain approaches to developing renewable and alternate forms of energy as well as to increasing the efficiency of present energy use and raising environmental consciousness in energy production. Three areas where the effects of clean energy will be felt are energy systems, climate change, and regional impacts, for instance on land, water, and wildlife. Alberta's regulatory process is shown by means of a flow chart. Aspects of oil sands environmental management include greenhouse gas targets, air quality assurance, and water quality monitoring, among others. Steps taken by Alberta to monitor and improve air quality and water management are listed. In conclusion, the paper notes that significant amounts of money are being pumped into research and development for greenhouse gas and water management projects.

  2. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  3. Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-05-01

    Full Text Available This study proposes a gas-cleaning process for the simultaneous removal of sulfur compounds, tar, and particles from biomass-gasified gas using Fe-supported activated carbon and a water-gas shift reaction. On a laboratory scale, the simultaneous removal of H2S and COS was performed under a mixture of gases (H2/CO/CO2/CH4/C2H4/N2/H2S/COS/steam. The reactions such as COS + H2 → H2S + CO and COS + H2O → H2S + CO2 and the water-gas shift reaction were promoted on the Fe-supported activated carbon. The adsorption capacity with steam was higher than that without steam. On a bench scale, the removal of impurities from a gas derived from biomass gasification was investigated using two activated filters packed with Fe-supported activated carbon. H2S and COS, three- and four-ring polycyclic aromatic hydrocarbons (PAHs, and particles were removed and a water-gas shift reaction was promoted through the first filter at 320–350 °C. The concentrations of H2S and COS decreased to less than 0.1 ppmv. Particles and the one- and two-ring PAHs, except for benzene, were then removed through the second filter at 60–170 °C. The concentration of tar and particles decreased from 2428 to 102 mg Nm−3 and from 2244 to 181 mg Nm−3, respectively.

  4. Proceedings of the 24. DOE/NRC nuclear air cleaning and treatment conference

    International Nuclear Information System (INIS)

    First, M.W.

    1997-08-01

    This report contains the papers presented at the 24th DOE/NRC Nuclear Air Cleaning and Treatment Conference and the associated discussions. Major topics are: (1) nuclear air cleaning issues, (2) waste management, (3) instrumentation and measurement, (4) testing air and gas cleaning systems, (5) progress and challenges in cleaning up Hanford, (6) international nuclear programs, (7) standardized test methods, (8) HVAC, (9) decommissioning, (10) computer modeling applications, (11) adsorption, (12) iodine treatment, (13) filters, and (14) codes and standards for filters and adsorbers. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  5. Proceedings of the 24. DOE/NRC nuclear air cleaning and treatment conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1997-08-01

    This report contains the papers presented at the 24th DOE/NRC Nuclear Air Cleaning and Treatment Conference and the associated discussions. Major topics are: (1) nuclear air cleaning issues, (2) waste management, (3) instrumentation and measurement, (4) testing air and gas cleaning systems, (5) progress and challenges in cleaning up Hanford, (6) international nuclear programs, (7) standardized test methods, (8) HVAC, (9) decommissioning, (10) computer modeling applications, (11) adsorption, (12) iodine treatment, (13) filters, and (14) codes and standards for filters and adsorbers. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  6. Lightweight Stacks of Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  7. Feasibility of zeolitic imidazolate framework membranes for clean energy applications

    NARCIS (Netherlands)

    Thornton, A. W.; Dubbeldam, D.; Liu, M. S.; Ladewig, B. P.; Hill, A. J.; Hill, M. R.

    2012-01-01

    Gas separation technologies for carbon-free hydrogen and clean gaseous fuel production must efficiently perform the following separations: (1) H2/CO2 (and H2/N2) for pre-combustion coal gasification, (2) CO2/N2 for post-combustion of coal, (3) CO2/CH4 for natural gas sweetening and biofuel

  8. Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials.

    Science.gov (United States)

    Ma, Xuezhi; Liu, Qiushi; Xu, Da; Zhu, Yangzhi; Kim, Sanggon; Cui, Yongtao; Zhong, Lanlan; Liu, Ming

    2017-11-08

    A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 10 10 cm -2 ) and high carrier mobility (up to 48 820 cm 2 V -1 s -1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.

  9. Proceedings of the fifteenth DOE nuclear air cleaning conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. (ed.)

    1979-02-01

    Papers presented are grouped under the following topics: noble gas separation, damage control, aerosols, test methods, new air cleaning technology from Europe, open-end, and filtration. A separate abstract was prepared for each paper.

  10. Experiment and numerical simulation on the performance of a kw-scale molten carbonate fuel cell stack

    Directory of Open Access Journals (Sweden)

    L. J. Yu

    2007-12-01

    Full Text Available A high-temperature molten carbonate fuel cell stack was studied experimentally and computationally. Experimental data for fuel cell temperature was obtained when the stack was running under given operational conditions. A 3-D CFD numerical model was set up and used to simulate the central fuel cell in the stack. It includes the mass, momentum and energy conservation equations, the ideal gas law and an empirical equation for cell voltage. The model was used to simulate the transient behavior of the fuel cell under the same operational conditions as those of the experiment. Simulation results show that the transient temperature and current and power densities reach their maximal values at the channel outlet. A comparison of the modeling results and the experimental data shows the good agreement.

  11. Proceedings of the 19th DOE/NRC nuclear air cleaning conference

    International Nuclear Information System (INIS)

    First, M.W.

    1987-05-01

    This document contains the papers and the associated discussions of the 19 DOE/NRC Nuclear Air Cleaning Conference. Sessions were devoted to (1) fire, explosion and accident analysis, (2) adsorption and iodine retention, (3) filters and filter testing, (4) standards and regulation, (5) treatment of radon, krypton, tritium and carbon-14, (6) ventilation and air cleaning in reactor operations, (7) dissolver off-gas cleaning, (8) adsorber fires, (9) nuclear grade carbon testing, (10) sampling and monitoring, and (11) field test experience. Individual papers were processed separately for the data base

  12. Components for containment enclosures. Part 4: Ventilation and gas-cleaning systems such as filters, traps, safety and regulation valves, control and protection devices

    International Nuclear Information System (INIS)

    2001-01-01

    ISO 11933 consists of the following parts, under the general title Components for containment enclosures: Part 1: Glove/bag ports, bungs for glove/bag ports, enclosure rings and interchangeable units; Part 2: Gloves, welded bags, gaiters for remote-handling tongs and for manipulators; Part 3: Transfer systems such as plain doors, airlock chambers, double door transfer systems, leaktight connections for waste drums; Part 4: Ventilation and gas-cleaning systems such as filters, traps, safety and regulation valves, control and protection devices; Part 5: Penetrations for electrical and fluid circuits. This part of ISO 11933 specifies the design criteria and the characteristics of various components used for ventilation and gas-cleaning in containment enclosures. These components are either directly fixed to the containment enclosure wall, or used in the environment of a shielded or unshielded containment enclosure or line of such enclosures. They can be used alone or in conjunction with other mechanical components, including those specified in ISO 11933-1 and ISO 11933-3. This part of ISO 11933 is applicable to: filtering devices, including high-efficiency particulate air (HEPA) filters and iodine traps; safety valves and pressure regulators; systems ensuring the mechanical protection of containment enclosures; control and pressure-measurement devices

  13. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP....... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  14. Helping Students Design HyperCard Stacks.

    Science.gov (United States)

    Dunham, Ken

    1995-01-01

    Discusses how to teach students to design HyperCard stacks. Highlights include introducing HyperCard, developing storyboards, introducing design concepts and scripts, presenting stacks, evaluating storyboards, and continuing projects. A sidebar presents a HyperCard stack evaluation form. (AEF)

  15. Operating experience in cleaning sodium-wetted components at the KNK nuclear power plant

    International Nuclear Information System (INIS)

    Stade, K.Ch.

    1978-01-01

    Since 1969, components of the KNK facility, the first sodium cooled nuclear power plant in the Federal Republic of Germany, have been cleaned both by the alcohol and the wet gas techniques. This paper outlines the experience accumulated In the application of these methods, especially in cleaning steam generators and fuel elements. Some preliminary results are indicated of the attempt to clean a cold trap from the primary circuit of the KNK facility. (author)

  16. Prototype particulate stack sampler with single-cut nozzle and microcomputer calculating/display system

    International Nuclear Information System (INIS)

    Eler, J.C.; Littlefield, L.G.; Tillery, M.I.

    1979-01-01

    A prototype particulate stack sampler (PPSS) has been developed to improve on the existing EPA Method 5 sampling apparatus. Its primary features are (1) higher sampling rate (56 1/min); (2) display (on demand) of all required variables and calculated values by a microcomputer-based calculating and display system; (3) continuous stack gas moisture determination; (4) a virtual impactor nozzle with 3 μm mass median diameter cutpoint which collects fine and coarse particle fractions on separate glass fiber filters; (5) a variable-area inlet to maintain isokinetic sampling conditions; and (6) conversion to stainless steel components from the glass specified by EPA Method 5. The basic sampling techniques of EPA Method 5 have been retained; however, versatility in the form of optional in-stack filters and general modernization of the stack sampler have been provided in the prototype design. Laboratory testing with monodisperse dye aerosols has shown the present variable inlet, virtual impactor nozzle to have a collection efficiency which is less than 77% and significant wall losses. This is primarily due to lack of symmetry in this rectangular jet impactor and short transition lengths dictated by physical design constraints (required passage of the nozzle through a 7.6 cm (3 in) diameter stack port). Electronic components have shown acceptable service in laboratory testing although no field testing of the prototype under a broad range of temperature, humidity, and SO 2 concentration has been undertaken

  17. Acid Gas Removal from Natural Gas with Alkanolamines

    DEFF Research Database (Denmark)

    Sadegh, Negar

    commercially for the removal of acid gas impurities from natural gas. Alkanolamines, simple combinations of alcohols and ammonia, are the most commonly used category of chemical solvents for acid gas capture. This Ph.D. project is aboutthermodynamics of natural gas cleaning process with alkanolamines......Some 40 % of the world’s remaining gas reserves are sour or acid, containing large quantities of CO2 and H2S and other sulfur compounds. Many large oil and gas fields have more than 10 mole % CO2 and H2S content. In the gas processing industry absorption with chemical solvents has been used...... pressure on acid gas solubility was also quantitatively investigated through both experimental and modeling approaches....

  18. Compressed natural gas for vehicles and how we can develop and meet the market

    International Nuclear Information System (INIS)

    Pinkerton, W.E.

    1992-01-01

    This paper reports that state and federal legislation have mandated the use of clean burning fuels. Clean fuels include: compressed natural gas (CNG), ethanol, methanol, liquefied petroleum gas (LPG), electricity, and reformulated gasoline. The Clean Air Amendments 1990 have created support for the rapid utilization of the compressed natural gas (CNG). Responsively, diverse occupations related to this industry are emerging. A coordinated infrastructure is vital to the successful promotion of clean fuels and synchronized endorsement of the law

  19. Performance Testing of Tracer Gas and Tracer Aerosol Detectors for use in Radionuclide NESHAP Compliance Testing

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lattin, Rebecca Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack sampling system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable

  20. Operational experience of the fuel cleaning facility of Joyo

    International Nuclear Information System (INIS)

    Mukaibo, R.; Matsuno, Y.; Sato, I.; Yoneda, Y.; Ito, H.

    1978-01-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 ∼ 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  1. Operational experience of the fuel cleaning facility of Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Mukaibo, R; Matsuno, Y; Sato, I; Yoneda, Y; Ito, H [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 {approx} 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  2. Evaluation of field emission properties from multiple-stacked Si quantum dots

    International Nuclear Information System (INIS)

    Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.

  3. Decomposition of tar in gas from updraft gasifier by thermal cracking

    DEFF Research Database (Denmark)

    Brandt, Peder; Henriksen, Ulrik Birk

    2000-01-01

    Continuing earlier work with tar reduction by partial oxidation of pyrolysis gas [1] thermal cracking has been evaluated as a gas cleaning process. The work has been focusing on cleaning gas from updraft gasifiers, and the long term purpose is to develop a tar cleaning unit based on thermal...... cracking. An experimental set-up has been built, in which a flow of contaminated gas can be heated up to 1290°C in a reactor made of pure Al2O3. Four measurements were made. Three with gas from a pyrolysis unit simulating updraft gasifier, and one with gas from an updraft gasifier. Cracking temperatures...... was 1200, 1250 and 1290°C, and the residence time at this temperature was 0.5 second. The measurements show that at the selected residence time of 0.5 second, the gas flow in a thermal tar cracking unit has to be heated to at least 1250°C to achieve sufficient tar cleaning. At 1290°C, a tar content as low...

  4. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    International Nuclear Information System (INIS)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  5. Guanine base stacking in G-quadruplex nucleic acids

    Science.gov (United States)

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  6. In situ dc oxygen-discharge cleaning system for optical elements

    International Nuclear Information System (INIS)

    Koide, T.; Shidara, T.; Tanaka, K.; Yagishita, A.; Sato, S.

    1989-01-01

    In situ dc oxygen-discharge cleaning arrangements have been developed at the Photon Factory for the removal of carbon contamination from optical surfaces. A high cleaning rate could be achieved by producing an oxygen plasma close to the optical elements with special care taken to avoid any harmful effects from the discharge; contaminant carbon was completely removed within a few hours, at most. This short exposure time and the use of dry oxygen gas resulted in a restoration of the original ultrahigh vacuum without a bakeout. Results with a Seya-Namioka beamline for gas-phase experiments showed a flux enhancement amounting to a factor of 50, and results with a grasshopper beamline showed a nearly complete recovery of the light intensity, even at the carbon K edge

  7. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Directory of Open Access Journals (Sweden)

    Robert Clifford

    Full Text Available The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal correlates with cleaning efficacy (absence of molecular or cultivable biomaterial and whether one brief educational intervention improves cleaning outcomes.Before-after trial.Newly built community hospital.90 minute training refresher with surface-specific performance results.Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention and assessments continued for another eight consecutive months.1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant. For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant, and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016. For nonspecific biomaterial on surfaces: a removal of cultivable Gram-negatives (GN trended toward improvement (P = 0.056; b removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning worsened (P = 0.017; c removal of PCR-based detection of bacterial DNA improved (P = 0.046, but acquisition worsened (P = 0.003; d cleaning thoroughness and efficacy were not correlated.At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  8. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  9. The NOXSO clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  10. One stacked-column vibration test and analysis for VHTR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Ishizuka, Hiroshi; Ide, Akira; Hayakawa, Hitoshi; Shingai, Kazuteru.

    1978-07-01

    This paper describes experimental results of the vibration test on a single stacked-column and compares them with the analytical results. A 1/2 scale model of the core element of a very high temperature gas-cooled reactor (VHTR) was set on a shaking table. Sinusoidal waves, response time history waves, beat wave and step wave of input acceleration 100 - 900 gal in the frequency of 0.5 to 15 Hz were used to vibrate the table horizontally. Results are as follows: (1) The column has a non-linear resonance and exhibits a hysteresis response with jump points. (2) The column vibration characteristics is similar to that of the finite beams connected with non-linear soft spring. (3) The column resonance frequency decreases with increasing input acceleration. (4) The impact force increases with increasing input acceleration and boundary gap width. (5) Good correlation in vibration behavior of the stacked-column and impact force on the boundary between test and analysis was obtained. (auth.)

  11. Control of cavitation using dissolved carbon dioxide for damage-free megasonic cleaning of wafers

    Science.gov (United States)

    Kumari, Sangita

    equilibria revealed that the loss of released CO2(aq) upon increase in pH can be compensated by moderate increase in added NH4HCO3. Using this method, simultaneous control of SL and solution pH was demonstrated in two systems, NH4HCO3/HCl and NH4OH/CO2, at two nominal pH values; 5.7 and 7.0. Damage studies were performed on wafer samples with line/space patterns donated by IMEC and FSI International bearing Si/metal/a-Si gate stacks of thickness ~36 nm and Si/Poly-Si gate stacks of thickness ~67 nm, respectively. A single wafer spin cleaning tool MegPieRTM was used for the generation of megasonic energy for inducing damage to the structures. It was demonstrated that CO2 dissolution in DI water suppresses damage to the gate stacks in a dose-dependent manner. Together, these studies establish a systematic and strong correlation between CO2(aq) concentration, SL suppression and damage suppression. Significant damage reduction (~50 % to ~90 %) was observed at [CO2(aq)] > ~300 ppm. It was also demonstrated that CO2(aq) suppresses damage under alkaline pH condition too. This demonstration was made possible by the successful design of two new cleaning systems NH4HCO3/NH4OH and CO2/NH 4OH that could generate CO2(aq) under alkaline conditions. Damage suppressing ability of the newly designed cleaning systems were compared to the standard cleaning system NH4OH at pH 8.2 and it was found that NH4HCO3/NH4OH and CO2/NH 4OH systems were 80 % more efficient in suppressing damage compared to the standard NH4OH cleaning system. Finally, megasonic cleaning studies were conducted in the same single wafer spin cleaning tool MegPieRTM, using SiO2 particles (size 185 nm) deposited on 200 mm oxide Si wafers, as the contaminant. It was found that the standard cleaning chemical, NH4OH, pH 8.2, was effective in achieving > 95 % particle removal for 2 min irradiation of megasonic energy at power densities > 0.7 W/cm2. Based on these results, a new system, NH4HCO3/NH4OH, was designed with an aim to

  12. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  13. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    Science.gov (United States)

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  14. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  15. From the components to the stack. Developing and designing 5kW HT-PEFC stacks; Von der Komponente zum Stack. Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klasse

    Energy Technology Data Exchange (ETDEWEB)

    Bendzulla, Anne

    2010-12-22

    The aim of the present project is to develop a stack design for a 5-kW HTPEFC system. First, the state of the art of potential materials and process designs will be discussed for each component. Then, using this as a basis, three potential stack designs with typical attributes will be developed and assessed in terms of practicality with the aid of a specially derived evaluation method. Two stack designs classified as promising will be discussed in detail, constructed and then characterized using short stack tests. Comparing the stack designs reveals that both designs are fundamentally suitable for application in a HT-PEFC system with on-board supply. However, some of the performance data differ significantly for the two stack designs. The preferred stack design for application in a HT-PEFC system is characterized by robust operating behaviour and reproducible high-level performance data. Moreover, in compact constructions (120 W/l at 60 W/kg), the stack design allows flexible cooling with thermal oil or air, which can be adapted to suit specific applications. Furthermore, a defined temperature gradient can be set during operation, allowing the CO tolerance to be increased by up to 10 mV. The short stack design developed within the scope of the present work therefore represents an ideal basis for developing a 5-kW HT-PEFC system. Topics for further research activities include improving the performance by reducing weight and/or volume, as well as optimizing the heat management. The results achieved within the framework of this work clearly show that HTPEFC stacks have the potential to play a decisive role in increasing efficiency in the future, particularly when combined with an on-board supply system. (orig.) [German] Ziel der vorliegenden Arbeit ist die Entwicklung eines Stackkonzeptes fuer ein 5 kW-HT-PEFC System. Dazu wird zunaechst fuer jede Komponente der Stand der Technik moeglicher Materialien und Prozesskonzepte diskutiert. Darauf aufbauend werden drei

  16. Adding gas from biomass to the gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Martin; Polman, Erik [GASTEC NV (Netherlands); Jensen, Jan K.; Myken, Asger [Danish Gas Technology Center A/S, Hoersholm (Denmark); Joensson, Owe; Dahl, Anders [Swedish Gas Center AB, Malmoe (Sweden)

    2001-07-01

    The aim of this project carried out in the framework of the Altener programme is to provide an overview of technologies for cleaning and upgrading of biogas for remote use. A further aim is to determine to what extent gases produced from biomass (digestion or gasification)can be added to the gas grid and what additional safety regulations are necessary. Finally, existing European standards and national legislation have been studied in order to determine the possibility of conflicting and/or missing regulations with the intended approach.The information collected in this project can be used to select promising technologies and may serve as background information for developing harmonised standards. This report describes the various production and cleaning techniques and the present requirements for the use of biogas. The technology for adding gas from biomass to the gas grid on a larger scale can contribute to a higher share of biomass in the energy supply and will also allow a highly efficient use of the energy contained in the biomass.Moderate tax incentives will make the use of gas from biomass economically attractive for large groups of end-users.

  17. Text-Filled Stacked Area Graphs

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    -filled stacked area graphs; i.e., graphs that feature stacked areas that are filled with small-typed text. Since these graphs allow for computing the text layout automatically, it is possible to include large amounts of textual detail with very little effort. We discuss the most important challenges and some...... solutions for the design of text-filled stacked area graphs with the help of an exemplary visualization of the genres, publication years, and titles of a database of several thousand PC games....

  18. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling

    Science.gov (United States)

    Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel

    Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling

  19. Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack

    International Nuclear Information System (INIS)

    James O'Brien; Carl Stoots; Steve Herring; J. Hartvigsen

    2005-01-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900 C. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte supported, with scandia-stabilized zirconia electrolytes (∼140 (micro)m thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1-0.6), gas flow rates (1000-4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 100 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate

  20. Proceedings of the fifteenth DOE nuclear air cleaning conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. (ed.)

    1979-02-01

    Papers presented are grouped under the following topics: air cleaning; waste volume reduction and preparation for storage; tritium, carbon-14, ozone; containment of accidental releases; adsorbents and absorbents; and off-gas treatment. A separate abstract was prepared for each paper.

  1. Analysis of Radioactivity Contamination Level of Kartini Reactor Efluen Gas to the Environment

    International Nuclear Information System (INIS)

    Suratman; Purwanto; Aminjoyo, S

    1996-01-01

    The analysis of radioactivity contamination level of Kartini reactor efluen gas to the environment has been done from 13-10-'95 until 8-2-'96. The aim of this research is to determine the radioactivity contamination level on the environment resulted from the release of Kartini reactor efluen gas and other facilities at Yogyakarta Nuclear Research Centre through stack. The analysis methods is the student t-test, the first count factor test and the gamma spectrometry. The gas sampling were carried out in the stack reactor, reactor room, environment and in other room for comparison. Efluen gas was sucked through a filter by a high volume vacuum pump. The filter was counted for beta, gamma and alpha activities. The radioactivity contamination level of the efluen gas passing through the stack to the environment was measured between 0.57 - 1.34 Bq/m3, which was equal to the airborne radioactivity in environment between 0.69 - 1.12 Bq/m3. This radioactivity comes from radon daughter, decay products result from the natural uranium and thorium series of the materials of the building

  2. Potential for preparation of hot gas cleanup sorbents from spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Biagini, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Labs.

    1996-01-01

    Three spent-decoked hydroprocessing catalysts and two corresponding fresh catalysts were tested as hot gas clean-up sorbents and compared with the zinc ferrite using a simulated coal gasification gas mixture. The catalysts deposited only by coke exhibited relatively good cleaning efficiency. The catalyst deposited by coke and metals such as vanadium and nickel was less efficient. The useful life of the spent hydroprocessing catalysts may be extended if utilized as hot gas clean-up sorbents. 12 refs., 3 figs., 4 tabs.

  3. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  4. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  5. Plan of gas; the technique of transforming oil pipelines into gas pipeline

    International Nuclear Information System (INIS)

    Carta Petrolera

    1998-01-01

    The discovery, development and commercialization of a high one number of gas deposits with big reserves, guided to establish the National Plan, for massive use for gas, whose social objective is the of arriving with this clean and economic fuel to all the places of the country

  6. Exploring the clean development mechanism: Malaysian case study

    DEFF Research Database (Denmark)

    Pedersen, Anne Rathmann

    2008-01-01

    During 2006 the CDM market in Malaysia became established and by December 2007 a total of 20 Malaysian projects had registered with the CDM Executive Board. The Kyoto Protocol defines the Annex I countries, as countries that are obliged to reduce their greenhouse gas (GHG) emissions and the clean...

  7. International Clean Energy Coalition

    Energy Technology Data Exchange (ETDEWEB)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  8. The convenient truth LPG: clean energy for a low carbon world

    International Nuclear Information System (INIS)

    Rolland, M.

    2008-01-01

    In the context of climate change, no one solution is future-proof. It is going to take a coordinated worldwide effort to find the right mix of energy policies while balancing diverse and sometimes competing priorities. The WLPGA Climate Change Working Group (CCWG) seeks to demonstrate that the technologies needed to continue current rates of development while mitigating climate change already exist and that LP gas can be a major part of today's solutions to this challenge. LP gas is not a zero-GHG fuel. However, in most cases it can make major and immediate contributions to delivering real GHG emissions reductions. In some ways LP Gas can claim to be ahead of its time, for its clean-burning, low-carbon advantage is available at once, so that even using today's technology, most industries can exceed Kyoto GHG reduction targets by switching to LP Gas. The fact is that LP Gas produces lower GHG emissions compared to conventional energy supplies in virtually every application it is used, from stationary applications such as water heating, space heating, cooking and industrial boilers to transportation applications. There are opportunities to switch to clean burning LP gas for virtually every industry as a means meet GHG targets. LP gas is also portable, making it a perfect complement to distributed renewable energy source such as solar, wind and wave energy (and soon the fuel cell), thereby reducing our reliance centrally produced electricity. LP Gas used in combination with these renewable sources also can improve energy reliability while reducing the overall life-cycle costs. The portable and clean burning nature of LP Gas also makes it an ideal substitute for solid fuels in domestic cooking and heating applications. Household solid fuel use, overwhelmingly concentrated in developing countries, accounts for up to 30% of black carbon emissions worldwide according to some statistics. Switching to LP Gas could lower global GHG emissions as well as help to diminish

  9. Canadian government motivators for clean air vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Forster, J. [Transport Canada, Ottawa, ON (Canada)

    1999-07-01

    A slide presentation is included which covers: why support clean air vehicles, key areas of action including climate change and cleaner air and conclusions. Reasons for supporting clean air vehicles include: the environment is not a top of mind issue for Canadians but is a core issue, transportation contributes significantly to environmental problems, e.g., 40-50% of smog emissions, and 27% of greenhouse gas emissions, and clean air vehicles are part of the solution. The first area of action is that of climate change, and includes as elements: the Kyoto Protocol, First Ministers, and 15 Issue Tables. The second area of action is clean air. Action on climate change can have ancillary benefits, e.g., reduction in smog-related emissions. Government is taking action to address smog in concert with the provinces in the Federal Smog Management Plan. A key element in the Plan is that of ensuring that appropriate emissions standards are in place. Transport Canada supports clean air vehicles through research conducted at the Transporation Research and Development Centre. Further Transport Canada involvement includes: partnership in Montreal 2000, demonstration/conversion testing, development of advanced EV systems, and membership in the CEVEQ. In the longer term, new technologies hold the key to addressing many environmental challenges. This is particularly true with respect to climate change and air quality, and new vehicle technologies will play an important role.

  10. Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D co-deposition in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P.; Wu, D.; Sun, L.Y.; Zhao, D.Y.; Hai, R.; Li, C. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian, 116024 (China); Ding, H., E-mail: hding@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian, 116024 (China); Hu, Z.H.; Wang, L.; Hu, J.S.; Chen, J.L.; Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2017-05-15

    Highlights: • LIBS was applied to EAST for monitoring the cleaning performance of the first wall using He-ICRF cleaning. • The cleaning performance is effective under helium ambient gas and some measurements have been obtained. • The results also indicate that the influence of magnetic field on LIBS signal is much stronger in helium ambient gas. • The effect of delay time and laser fluence on the LIBS signal has been investigated. - Abstract: In this paper, laser-induced breakdown spectroscopy (LIBS) under magnetic field condition has been studied in laboratory and EAST tokamak. The experimental results reveal that in helium ambient gas, the magnetic field significantly enhances the LIBS signal intensity (∼3 times). The effect of time delay and laser fluence on the intensity of LIBS has been investigated for optimizing the signal to background ratio (S/B). The developed LIBS approach has been applied to monitor the cleaning performance of the first wall in the fusion device of EAST using the ion cyclotron range of frequency (ICRF). The experimental results demonstrate that the cleaning performance for Li/D co-deposition layer is effective under helium ambient gas. The removing rate of Li on the surface of W tile is faster than that on Mo tile in He-ICRF cleaning and the D/(D + H) ratio on Mo tile is higher by ∼1.2 times than that on W tile. This work would indicate the feasibility of using LIBS to monitor the wall cleaning processes in EAST tokamak.

  11. A Two-Dimensional Post-Stack Seismic Inversion for Acoustic Impedance of Gas and Hydrate Bearing Deep-Water Sediments Within the Continental Slope of the Ulleung Basin, East Sea, Korea

    Directory of Open Access Journals (Sweden)

    Keumsuk Lee

    2013-01-01

    Full Text Available A post-stack inversion of 2D seismic data was conducted to estimate the spatial distribution of acoustic impedance associated with gas and hydrates in the Ulleung Basin, East Sea, Korea constrained by logs from three boreholes drilled on its continental margin. A model-based inversion was applied to a Plio-Quaternary succession composed of alternations of unconsolidated mass-flow deposits/turbidites. A comparison of seismic reflections and synthetic data computed from impedance logs is shown for two zones. An upper (steep slope zone contains a moderately continuous, possibly bottom-simulating reflector feature along the corresponding section. This feature may be associated with a lithology boundary near a drill site in addition to, or instead of, a stability boundary of gas hydrates (i.e., gas below and hydrates above. The lower (gentle slope zone has locally cross-cutting reflection patterns that are more likely to be attributed to gas- and hydrate-related physical phenomena than to spatiotemporal changes in lithology. This seismic inversion is informative and useful, making a contribution to enhance the interpretability of the seismic profiles for a potential hydrate recovery.

  12. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Hedemann Jensen, P.; Lauridsen, B.

    1984-06-01

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131 I. The collection efficiency for iodine in form of elementary iodine (I 2 ) and methyliodide (CH 3 I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41 Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  13. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  14. V-stack piezoelectric actuator

    Science.gov (United States)

    Ardelean, Emil V.; Clark, Robert L.

    2001-07-01

    Aeroelastic control of wings by means of a distributed, trailing-edge control surface is of interest with regards to maneuvers, gust alleviation, and flutter suppression. The use of high energy density, piezoelectric materials as motors provides an appealing solution to this problem. A comparative analysis of the state of the art actuators is currently being conducted. A new piezoelectric actuator design is presented. This actuator meets the requirements for trailing edge flap actuation in both stroke and force. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties while displaying linearity over a wide range of stroke. The V-Stack Piezoelectric Actuator, consists of a base, a lever, two piezoelectric stacks, and a pre-tensioning element. The work is performed alternately by the two stacks, placed on both sides of the lever. Pre-tensioning can be readily applied using a torque wrench, obviating the need for elastic elements and this is for the benefit of the stiffness of the actuator. The characteristics of the actuator are easily modified by changing the base or the stacks. A prototype was constructed and tested experimentally to validate the theoretical model.

  15. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  16. Impact of emerging clean vehicle system on water stress

    International Nuclear Information System (INIS)

    Cai, Hua; Hu, Xiaojun; Xu, Ming

    2013-01-01

    Graphical abstract: Display Omitted - Highlights: • Clean vehicles may increase US water consumption up to 2810 billion gallons/year. • Large-scale clean vehicle adoption could lead to severe regional water stress. • Fuel choice for clean vehicle is crucial in minimizing regional water stress. • Regional optimization illustrated the importance of regional consideration. - Abstract: While clean vehicles (i.e., vehicles powered by alternative fuels other than fossil fuels) offer great potential to reduce greenhouse gas emissions from gasoline-based vehicles, the associated impact on water resources has not yet been fully assessed. This research provides a systematic evaluation of the impact of a fully implemented clean vehicle system on national and state-level water demand and water stress. On the national level, based on existing policies, transitioning the current gasoline-based transportation into one with clean vehicles will increase national annual water consumption by 1950–2810 billion gallons of water, depending on the market penetration of electric vehicles. On the state level, variances of water efficiency in producing different fuels are significant. The fuel choice for clean vehicle development is especially crucial for minimizing water stress increase in states with already high water stress, high travel demands, and significant variations in water efficiency in producing different alternative fuels. Current development of clean vehicle infrastructure, however, has not reflected these state-level variations. This study takes an optimization approach to further evaluate impacts on state-level water stress from a fully implemented clean vehicle system and identified potential roles (fuel producer or consumer) states may play in real world clean vehicle development scenario. With an objective of minimizing overall water stress impact, our optimization model aims to provide an analytical framework to better assess impacts on state-level water

  17. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  18. Reflector imaging by diffraction stacking with stacking velocity analysis; Jugo sokudo kaiseki wo tomonau sanran jugoho ni yoru hanshamen imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J; Rokugawa, S; Kato, Y [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yokota, T [Japan National Oil Corp., Tokyo (Japan); Miyazaki, T [Geological Survey of Japan, Tsukuba (Japan)

    1997-10-22

    Concerning seismic reflection survey for geometrical arrangement between pits, the scattering stacking method with stacking velocity analysis is compared with the CDP (common depth point horizontal stacking method). The advantages of the CDP supposedly include the following. Since it presumes an average velocity field, it can determine velocities having stacking effects. The method presumes stratification and, since such enables the division of huge quantities of observed data into smaller groups, more data can be calculated in a shorter time period. The method has disadvantages, attributable to its presuming an average velocity field, that accuracy in processing is lower when the velocity field contrast is higher, that accuracy in processing is low unless stratification is employed, and that velocities obtained from stacking velocity analysis are affected by dipped structures. Such shortcomings may be remedied in the scattering stacking method with stacking velocity analysis. Possibilities are that, as far as the horizontal reflection plane is concerned, it may yield stack records higher in S/N ratio than the CDP. Findings relative to dipped reflection planes will be introduced at the presentation. 6 refs., 12 figs.

  19. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    OpenAIRE

    Mohan, Gowtham; Dahal, Sujata; Kumar, Uday; Martin, Andrew; Kayal, Hamid

    2014-01-01

    Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases) liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a) electricity by combining steam rankine cycle using heat recovery steam generator (HRSG); (b) clean water by air gap membrane distillation (AGMD) plant; and (c) cooling by single stage vapor absorption chiller (VAC). The flue gases liber...

  20. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.

  1. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  2. High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, Jens Ulrik

    2012-01-01

    C and -0.5 A/cm2 with no long term degradation, as long as the inlet gases to the Ni/YSZ electrode were cleaned [3]. In this work, co-electrolysis of steam and carbon dioxide was studied in a TOFC® 10-cell stack, containing 3 different types ofNi/YSZ electrode supported cells with a footprint of 12X12 cm2....... The stack was operated at 800 oC and -0.75 A/cm2 with 60% conversion for a period of 1000 hours. One type of the cells showed no long term degradation but actually activation during the entire electrolysis period, while the other two types degraded. The performance and durability of the different cell types...... is discussed with respect to cell material composition and microstructure. The results of this study show that long term electrolysis is feasible without notable degradation also at lower temperature (800 oC) and higher current density (-0.75 A/cm2)....

  3. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  4. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  5. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  6. Manifold seal structure for fuel cell stack

    Science.gov (United States)

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  7. Sweet carbon: An analysis of sugar industry carbon market opportunities under the clean development mechanism

    International Nuclear Information System (INIS)

    McNish, Tyler; Jacobson, Arne; Kammen, Dan; Gopal, Anand; Deshmukh, Ranjit

    2009-01-01

    Bagasse power generation projects provide a useful framework for evaluating several key aspects of the Clean Development Mechanism of the Kyoto Protocol. On the positive side, our analysis, which draws in part from a data set of 204 bagasse electricity generation projects at sugar mills, indicates that these projects provide Annex I country investors with a cost-effective means to achieve greenhouse gas emissions reductions. Our analysis also confirms that the marketplace for Clean Development Mechanism-derived offsets is robust and competitive. Moreover, bagasse projects appear to provide a positive example in a 'new wave' of clean energy investment that has replaced the earlier industrial gas projects. At the same time, we also identify two aspects of the CDM that demand improvement. First, the additionality standard needs to be tightened and made more transparent and consistent. Financial additionality should be required for all projects; however, any financial additionality test applied by the Clean Development Mechanism's Executive Board must be informed by the significant barriers faced by many projects. Second, the administrative processes for registration and verification of offsets need to be streamlined in order to prevent long registration time lags from chilling clean energy investment.

  8. Progress in the study of PCHE performance with various stacking methods; PCHEs and test facility

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Kim, Eun Ho; Yoon, Sung Ho; Kim, Moo Hwan; Park, Gun Yeop

    2012-01-01

    Printed Circuit Heat Exchanger (PCHE) is famous with its superior compactness and relatively higher resistance to pressure which came from its manufacturing process. PCHE is made by diffusion bonding of thin metal plates having various flow channel shapes on them. Diffusion bonding makes stack of plates become a monolithic block by grain growth between the surfaces of each plates near the melting temperature of material. With these characteristics, it has become a promising heat exchanger type in oil and gas industry, power plant and chemical reactors fields, despite of its relatively short history than others. From many researches, it is known that the flow channel and the stacking method of plates are the major design factors of PCHE. Flow channels have been studied by relatively many researchers, and there are several well known channel types like zigzag channel, S shape fin, and airfoil fin shape. On the other hands, there is little research about stacking method so called 'bank type'. By Kim et al., it was showed that stacking method of PCHE influences the heat transfer rate and pressure drop, but the comparison of the different stacking method was not conducted. In this research, heat transfer and pressure drop characteristics of PCHEs with various bank types will be studied. And this article will introduce three kinds of PCHEs fabricated by different bank types, and the test facility for performance test of these heat exchangers

  9. Observations of changes in residual gas and surface composition with discharge cleaning in PLT

    International Nuclear Information System (INIS)

    Dylla, H.F.; Bol, K.; Cohen, S.A.; Hawryluk, R.J.; Meservey, E.B.; Rossnagel, S.M.

    1978-10-01

    Hydrogen discharge cleaning of the PLT vacuum vessel has been studied by mass spectroscopy of desorbed gases and surface analysis of exposed samples. Several modes of vessel conditioning have been studied to date: (1) a high power discharge cleaning (PDC) mode, with a peak power density to the vessel wall P/sub s/ approximately 0.6 w/cm 2 and a peak electron temperature T/sub e/ approximately 100 ev; (2) low power (Taylor-type) discharge cleaning (TDC) with P/sub s/ approximately 0.05 w/cm 2 and T/sub e/ equal to or less than 5 eV. The predominant residual gases produced during PDC are CH 4 (1-5 x 10 -6 torr) and CO (1-10 x 10 -7 torr), whereas TDC produced primarily H 2 O (1-2 x 10 -6 torr) and CH 4 (1-10 x 10 -7 torr). In situ surface analysis of hydrocarbon-covered stainless steel has shown significant decreases in carbon coverage occurring after 10 3 -10 4 pulses of either cleaning mode. Observed changes in oxygen coverage are more difficult to interpret because of the presence of the nascent oxide layer on the stainless steel substrates

  10. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.

    Science.gov (United States)

    Zhao, Pei; Kim, Sungjin; Chen, Xiao; Einarsson, Erik; Wang, Miao; Song, Yenan; Wang, Hongtao; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo

    2014-11-25

    Using ethanol as the carbon source, self-limiting growth of AB-stacked bilayer graphene (BLG) has been achieved on Cu via an equilibrium chemical vapor deposition (CVD) process. We found that during this alcohol catalytic CVD (ACCVD) a source-gas pressure range exists to break the self-limitation of monolayer graphene on Cu, and at a certain equilibrium state it prefers to form uniform BLG with a high surface coverage of ∼94% and AB-stacking ratio of nearly 100%. More importantly, once the BLG is completed, this growth shows a self-limiting manner, and an extended ethanol flow time does not result in additional layers. We investigate the mechanism of this equilibrium BLG growth using isotopically labeled (13)C-ethanol and selective surface aryl functionalization, and results reveal that during the equilibrium ACCVD process a continuous substitution of graphene flakes occurs to the as-formed graphene and the BLG growth follows a layer-by-layer epitaxy mechanism. These phenomena are significantly in contrast to those observed for previously reported BLG growth using methane as precursor.

  11. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.

    1979-06-01

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  12. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  13. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    completely. Thus, in systems with hard deadlines the worst-case execution time (WCET) of the real-time software running on them needs to be bounded. Modern architectures use features such as pipelining and caches for improving the average performance. These features, however, make the WCET analysis more...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore...

  14. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    Science.gov (United States)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  15. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  16. Principles for Instructional Stack Development in HyperCard.

    Science.gov (United States)

    McEneaney, John E.

    The purpose of this paper is to provide information about obtaining and using HyperCard stacks that introduce users to principles of stack development. The HyperCard stacks described are available for downloading free of charge from a server at Indiana University South Bend. Specific directions are given for stack use, with advice for beginners. A…

  17. U.S. Department of Energy clean cities five-year strategic plan.

    Energy Technology Data Exchange (ETDEWEB)

    Cambridge Concord Associates

    2011-02-15

    Clean Cities is a government-industry partnership sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program, which is part of the Office of Energy Efficiency and Renewable Energy. Working with its network of about 100 local coalitions and more than 6,500 stakeholders across the country, Clean Cities delivers on its mission to reduce petroleum consumption in on-road transportation. In its work to reduce petroleum use, Clean Cities focuses on a portfolio of technologies that includes electric drive, propane, natural gas, renewable natural gas/biomethane, ethanol/E85, biodiesel/B20 and higher-level blends, fuel economy, and idle reduction. Over the past 17 years, Clean Cities coalitions have displaced more than 2.4 billion gallons of petroleum; they are on track to displace 2.5 billion gallons of gasoline per year by 2020. This Clean Cities Strategic Plan lays out an aggressive five-year agenda to help DOE Clean Cities and its network of coalitions and stakeholders accelerate the deployment of alternative fuel and advanced technology vehicles, while also expanding the supporting infrastructure to reduce petroleum use. Today, Clean Cities has a far larger opportunity to make an impact than at any time in its history because of its unprecedented $300 million allocation for community-based deployment projects from the American Recovery and Reinvestment Act (ARRA) (see box below). Moreover, the Clean Cities annual budget has risen to $25 million for FY2010 and $35 million has been requested for FY2011. Designed as a living document, this strategic plan is grounded in the understanding that priorities will change annually as evolving technical, political, economic, business, and social considerations are woven into project decisions and funding allocations. The plan does not intend to lock Clean Cities into pathways that cannot change. Instead, with technology deployment at its core, the plan serves as a guide for decision-making at both the

  18. DBaaS with OpenStack Trove

    CERN Document Server

    Giardini, Andrea

    2013-01-01

    The purpose of the project was to evaluate the Trove component for OpenStack, understand if it can be used with the CERN infrastructure and report the benefits and disadvantages of this software. Currently, databases for CERN projects are provided by a DbaaS software developed inside the IT-DB group. This solution works well with the actual infrastructure but it is not easy to maintain. With the migration of the CERN infrastructure to OpenStack the Database group started to evaluate the Trove component. Instead of mantaining an own DbaaS service it can be interesting to migrate everything to OpenStack and replace the actual DbaaS software with Trove. This way both virtual machines and databases will be managed by OpenStack itself.

  19. Clean coal technology challenges for China

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J. [Tsinghua University, Beijing (China). Dept. of Thermal Engineering

    2001-01-01

    China is rich in coal reserves and also the largest coal producer and consumer in the world. Coal constitutes over 70% of the total energy consumption, some 86% of coal production is burned directly, which causes serious air pollution problems. However, based on China's specific energy structure, coal utilisation will remain the dominant means of energy usage and clean coal technology must be the way forward if the environmental problems are to be resolved. This article discusses China's Clean Coal Technology Program, its implementation, including the clean coal technologies being developed and introduced, with reference to the key R & D institutes for each of the coal-using sectors. The article is an edited version of the 2000 Robens Coal Science Lecture, delivered in London in October 2000. The China Coal Technology Program for the 9th Five-Year Plan (1996-2000) was approved in 1997. The technologies included in the Program considered in this article are in: coal washing and grading, coal briquette, coal water slurry; circulating fluidised bed technology; pressurised fluidised bed combined cycle; integrated gasification combined cycle; coal gasification, coal liquefaction and flue gas desulfurisation. 4 tabs.

  20. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.

    Science.gov (United States)

    Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C

    2011-10-01

    Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred.

  1. In-situ solidification cleans up old gas plant site

    International Nuclear Information System (INIS)

    Hatfield, A.D.; Dennis, N.D.

    1995-01-01

    A manufactured gas plant site in Columbus, Georgia, was the location of an environmental cleanup in 1992. Manufactured gas was produced at this site from 1854 to 1931 with the availability of natural gas from a transmission pipeline causing its demise. However, waste products, primarily coal tar from the earlier years of plant operation, remained with the site. In-situ solidification was chosen as the cleanup method. Post monitoring activities show that the project was successful and the site is now a park and a leading part of river front development

  2. Stacking the Equiangular Spiral

    OpenAIRE

    Agrawal, A.; Azabi, Y. O.; Rahman, B. M.

    2013-01-01

    We present an algorithm that adapts the mature Stack and Draw (SaD) methodology for fabricating the exotic Equiangular Spiral Photonic Crystal Fiber. (ES-PCF) The principle of Steiner chains and circle packing is exploited to obtain a non-hexagonal design using a stacking procedure based on Hexagonal Close Packing. The optical properties of the proposed structure are promising for SuperContinuum Generation. This approach could make accessible not only the equiangular spiral but also other qua...

  3. Stochastic stacking without filters

    International Nuclear Information System (INIS)

    Johnson, R.P.; Marriner, J.

    1982-12-01

    The rate of accumulation of antiprotons is a critical factor in the design of p anti p colliders. A design of a system to accumulate higher anti p fluxes is presented here which is an alternative to the schemes used at the CERN AA and in the Fermilab Tevatron I design. Contrary to these stacking schemes, which use a system of notch filters to protect the dense core of antiprotons from the high power of the stack tail stochastic cooling, an eddy current shutter is used to protect the core in the region of the stack tail cooling kicker. Without filters one can have larger cooling bandwidths, better mixing for stochastic cooling, and easier operational criteria for the power amplifiers. In the case considered here a flux of 1.4 x 10 8 per sec is achieved with a 4 to 8 GHz bandwidth

  4. Impacts of imports, government policy and technology on future natural gas supply

    International Nuclear Information System (INIS)

    Allison, E.

    2009-01-01

    This presentation discussed the impacts of imports, government policy and technology on future natural gas supply. Specifically, it discussed projections of natural gas supply and demand; the potential impact of imports on United States natural gas supply; the potential impacts of government policy on natural gas supply and demand; and the impact of technological innovations on natural gas supply such as coalbed methane and methane hydrate. Specific government policies that were examined included the American Recovery and Reinvestment Act of 2009; the American Clean Energy and Security Act of 2009; and the Clean Energy Jobs and American Power Act of 2009. It was concluded that the United States demand for natural gas will expand and that the impact of pending clean energy legislation is unclear. In addition, each potential future resource will face constraints and new resources may come on line in the next 20 years. figs.

  5. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  6. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  7. Consolidity: Stack-based systems change pathway theory elaborated

    Directory of Open Access Journals (Sweden)

    Hassen Taher Dorrah

    2014-06-01

    Full Text Available This paper presents an elaborated analysis for investigating the stack-based layering processes during the systems change pathway. The system change pathway is defined as the path resulting from the combinations of all successive changes induced on the system when subjected to varying environments, activities, events, or any excessive internal or external influences and happenings “on and above” its normal stands, situations or set-points during its course of life. The analysis is essentially based on the important overall system paradigm of “Time driven-event driven-parameters change”. Based on this paradigm, it is considered that any affected activity, event or varying environment is intelligently self-recorded inside the system through an incremental consolidity-scaled change in system parameters of the stack-based layering types. Various joint stack-based mathematical and graphical approaches supported by representable case studies are suggested for the identification, extraction, and processing of various stack-based systems changes layering of different classifications and categorizations. Moreover, some selected real life illustrative applications are provided to demonstrate the (infinite stack-based identification and recognition of the change pathway process in the areas of geology, archeology, life sciences, ecology, environmental science, engineering, materials, medicine, biology, sociology, humanities, and other important fields. These case studies and selected applications revealed that there are general similarities of the stack-based layering structures and formations among all the various research fields. Such general similarities clearly demonstrate the global concept of the “fractals-general stacking behavior” of real life systems during their change pathways. Therefore, it is recommended that concentrated efforts should be expedited toward building generic modular stack-based systems or blocks for the mathematical

  8. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Koetz, R; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  9. CleanFleet. Final report: Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily commercial service. Between April 1992 and September 1994, five alternative fuels were tested in 84 panel vans: compressed natural gas (CNG), propane gas, methanol as M-85, California Phase 2 reformulated gasoline (RFG), and electricity. The AFVs were used in normal FedEx package delivery service in the Los Angeles basin alongside 27 {open_quotes}control{close_quotes} vans operating on regular gasoline. The liquid and gaseous fuel vans were model year 1992 vans from Ford, Chevrolet, and Dodge. The two electric vehicles (EVs) were on loan to FedEx from Southern California Edison. The AFVs represented a snapshot in time of 1992 technologies that (1) could be used reliably in daily FedEx operations and (2) were supported by the original equipment manufacturers (OEMs). A typical van is shown in Figure 2. The objective of the project was to demonstrate and document the operational, emissions, and economic status of alternative fuel, commercial fleet delivery vans in the early 1990s for meeting air quality regulations in the mid to late 1990s. During the two-year demonstration, CleanFleet`s 111 vehicles travelled more than three million miles and provided comprehensive data on three major topics: fleet operations, emissions, and fleet economics. Fleet operations were examined in detail to uncover and resolve problems with the use of the fuels and vehicles in daily delivery service. Exhaust and evaporative emissions were measured on a subset of vans as they accumulated mileage. The California Air Resources Board (ARB) measured emissions to document the environmental benefits of these AFVs. At the same time, CleanFleet experience was used to estimate the costs to a fleet operator using AFVs to achieve the environmental benefits of reduced emissions.

  10. Ecological effectiveness of oil spill countermeasures: how clean is clean?

    International Nuclear Information System (INIS)

    Baker, J.M.

    1999-01-01

    This paper with 94 references examines background levels of hydrocarbons and the difficulty of defining clean. Processes and timescales for natural cleaning, and factors affecting natural cleaning timescales are considered. Ecological advantages and disadvantages of clean-up methods are highlighted, and five case histories of oil spills are summarised. The relationships between ecological and socio-economic considerations, and the need for a net environmental benefit analysis which takes into account the advantages and disadvantages of clean-up responses and natural clean-up are discussed. A decision tree for evaluating the requirement for shore clean-up is illustrated. (UK)

  11. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.

  12. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  13. Research and development on air cleaning system of reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Naruki, K.

    1985-01-01

    Present status in Japan of R and D on air cleaning systems, especially of the fuel reprocessing plant is summarized. The description is centered on the R and D and experience of Tokai-reprocessing plant, which covers the plant air cleaning system, effort carried out for decreasing I 2 effluence in the actual vented off-gas, and R and D for recovery of Kr and 3 H. Some experimental results for the evaluation of HEPA filter are also described

  14. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  15. Stack released plutonium in the environment of a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Horton, J.H.; Sanders, S.M.; Corey, J.C.

    1979-01-01

    Chemical separations facilities at the Savannah River Plant have released very small quantities of plutonium to the environment since 1955. Characterization studies of airborne particulates from the process stack show that the plutonium is nearly always attached to nonradioactive particles. The geometric mean diameter of plutonium-bearing particulates in the stack gas is 5.43 μm. Most of the particles contain less than 10 -15 Ci of 239 Pu. Studies with cascade impactors 1.1 m above the ground indicated that the average annual air concentration was 612 x 10 -18 Ci/m 3 (less than 0.1% of the maximum permissible concentration recommended by the ICRP). Cropping studies showed plutonium concentrations of 3 x 10 -3 pCi/g in wheat, 5.5 x 10 -4 in soybeans, and 1.7 x 10 -4 in corn. The 70-year dose-to-bone from ingesting 10 5 g of grain would be less than 1 mrem

  16. Development and characterisation of a portable direct methanol fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, A.

    2005-11-21

    This thesis deals with the development and characterisation of a portable direct methanol fuel cell stack. In addition, calculations of the transport of methanol and water in the membrane are compared with experimentally determined values. It also includes investigations of the behaviour of single-cells and some of its components, as the anode gas diffusion layer and the anode flow-field. For the addition of methanol to the anode feed loop, a passive concept based on a permeable tube was developed and verified by both experiments and simulations. (orig.)

  17. Clean Development Mechanism: Core of Kyoto Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Kyun [United Nations Environment Programme (Denmark)

    2000-06-01

    Kyoto protocol is a foundation for achieving an ultimate goal of UNFCCC, which is to stabilizing greenhouse gas concentration in the air. The clean development system is a core element for successful implementation of Kyoto protocol with other Kyoto mechanisms. While UNFCCC requires a new paradigm changing to sustainable development considering demand and future environment from the past supply-oriented resource consumption, the clean development system will be used as a means of successful establishment of a new paradigm in 21st century. As environmental problem is integrated with economic problem and each country is thriving for securing its own economic benefit in the issue of environmental conservation, Korea should do its best to have both of global environmental conservation and economic benefit for its own. 1 tab.

  18. ANALYSIS ON TECHNOLOGICAL PROCESSES CLEANING OIL PIPELINES

    Directory of Open Access Journals (Sweden)

    Mariana PǍTRAŞCU

    2015-05-01

    Full Text Available In this paper the researches are presented concerning the technological processes of oil pipelines.We know several technologies and materials used for cleaning the sludge deposits, iron and manganese oxides, dross, stone, etc.de on the inner walls of drinking water pipes or industries.For the oil industry, methods of removal of waste materials and waste pipes and liquid and gas transport networks are operations known long, tedious and expensive. The main methods and associated problems can be summarized as follows: 1 Blowing with compressed air.2 manual or mechanical brushing, sanding with water or dry.3 Wash with water jet of high pressure, solvent or chemical solution to remove the stone and hard deposits.4 The combined methods of cleaning machines that use water jets, cutters, chains, rotary heads cutters, etc.

  19. Primary methods in biomass gasification for gas conditioning and cleaning

    NARCIS (Netherlands)

    Vilela, C.F.M.

    2012-01-01

    The substitution of natural gas by a renewable equivalent is an interesting option to reduce the use of fossil fuels and the accompanying greenhouse gas emissions, as well as from the point of view of security of supply. Green gas is the renewable alternative. It comprises biogas (1st generation

  20. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.

  1. Clean Transfer of Large Graphene Single Crystals for High-Intactness Suspended Membranes and Liquid Cells.

    Science.gov (United States)

    Zhang, Jincan; Lin, Li; Sun, Luzhao; Huang, Yucheng; Koh, Ai Leen; Dang, Wenhui; Yin, Jianbo; Wang, Mingzhan; Tan, Congwei; Li, Tianran; Tan, Zhenjun; Liu, Zhongfan; Peng, Hailin

    2017-07-01

    The atomically thin 2D nature of suspended graphene membranes holds promising in numerous technological applications. In particular, the outstanding transparency to electron beam endows graphene membranes great potential as a candidate for specimen support of transmission electron microscopy (TEM). However, major hurdles remain to be addressed to acquire an ultraclean, high-intactness, and defect-free suspended graphene membrane. Here, a polymer-free clean transfer of sub-centimeter-sized graphene single crystals onto TEM grids to fabricate large-area and high-quality suspended graphene membranes has been achieved. Through the control of interfacial force during the transfer, the intactness of large-area graphene membranes can be as high as 95%, prominently larger than reported values in previous works. Graphene liquid cells are readily prepared by π-π stacking two clean single-crystal graphene TEM grids, in which atomic-scale resolution imaging and temporal evolution of colloid Au nanoparticles are recorded. This facile and scalable production of clean and high-quality suspended graphene membrane is promising toward their wide applications for electron and optical microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spherical Torus Center Stack Design

    International Nuclear Information System (INIS)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-01

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device

  3. How the nuclear industry keeps it gases clean

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The paper surveys briefly the papers presented at a conference on gas filtration in the nuclear industry. The theory, development, design, use (under various conditions of temperature, humidity, corrosion), performance, cleaning and testing of fibrous, HEPA, metal, packed bed and magnetic filters are included, and the problems, advantages and disadvantages of the various types of filter are discussed. (U.K.)

  4. The clean development mechanisms. Ensuring its climate and development benefits

    International Nuclear Information System (INIS)

    Salter, L.; Volpi, L.

    2000-01-01

    The Clean Development Mechanism (CDM) potentially offers a major opportunity for catalysing technology leapfrogging in the South. A CDM which delivers genuine incentives for investment in clean energy technologies and innovative energy solutions could become the first step in shifting towards a development model based on the delivery of sustainable energy services. Conversely, according to a recent analysis for WWF, a CDM regime which allows easy credits for conventional technologies will merely serve to reinforce the current trend towards increased carbon dependency in the South, at the same time as it allows industrialised countries to continue to increase greenhouse gas emissions at home

  5. The untyped stack calculus and Bohm's theorem

    Directory of Open Access Journals (Sweden)

    Alberto Carraro

    2013-03-01

    Full Text Available The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.

  6. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    Science.gov (United States)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  7. Alkali ion migration between stacked glass plates by corona discharge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Keiga [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Sakai, Daisuke [Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Funatsu, Shiro; Uraji, Keiichiro [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan); Yamamoto, Kiyoshi [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Nishii, Junji, E-mail: nishii@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)

    2015-05-30

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  8. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Science.gov (United States)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  9. Breathing Clean : Considering the Switch to Natural Gas Buses

    OpenAIRE

    Kojima, Masami

    2001-01-01

    In response to emerging epidemiological evidence of the toxicity of diesel vehicular emissions, there is growing interest in substituting conventional diesel with much cleaner natural gas in cities where ambient concentrations of particulate matter are markedly higher than what is internationally considered acceptable. This paper compares the performance of natural gas and conventional die...

  10. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  11. Adding large EM stack support

    KAUST Repository

    Holst, Glendon

    2016-12-01

    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  12. Fundamental study of droplet spray characteristics in photomask cleaning for advanced lithography

    Science.gov (United States)

    Lu, C. L.; Yu, C. H.; Liu, W. H.; Hsu, Luke; Chin, Angus; Lee, S. C.; Yen, Anthony; Lee, Gaston; Dress, Peter; Singh, Sherjang; Dietze, Uwe

    2010-09-01

    The fundamentals of droplet-based cleaning of photomasks are investigated and performance regimes that enable the use of binary spray technologies in advanced mask cleaning are identified. Using phase Doppler anemometry techniques, the effect of key performance parameters such as liquid and gas flow rates and temperature, nozzle design, and surface distance on droplet size, velocity, and distributions were studied. The data are correlated to particle removal efficiency (PRE) and feature damage results obtained on advanced photomasks for 193-nm immersion lithography.

  13. Porous Structures in Stacked, Crumpled and Pillared Graphene-Based 3D Materials.

    Science.gov (United States)

    Guo, Fei; Creighton, Megan; Chen, Yantao; Hurt, Robert; Külaots, Indrek

    2014-01-01

    Graphene, an atomically thin material with the theoretical surface area of 2600 m 2 g -1 , has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ~ 2600 m 2 g -1 /N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate-plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600 to 40 m 2 g -1 ) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m 2 g -1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.

  14. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  15. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  16. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  17. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  18. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  19. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  20. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  1. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  2. Start-Stop Test Procedures on the PEMFC Stack Level

    DEFF Research Database (Denmark)

    Mitzel, Jens; Nygaard, Frederik; Veltzé, Sune

    The test is addressed to investigate the influence on stack durability of a long stop followed by a restart of a stack. Long stop should be defined as a stop in which the anodic compartment is fully filled by air due to stack leakages. In systems, leakage level of the stack is low and time to fil...

  3. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  4. Trace interpolation by slant-stack migration

    International Nuclear Information System (INIS)

    Novotny, M.

    1990-01-01

    The slant-stack migration formula based on the radon transform is studied with respect to the depth steep Δz of wavefield extrapolation. It can be viewed as a generalized trace-interpolation procedure including wave extrapolation with an arbitrary step Δz. For Δz > 0 the formula yields the familiar plane-wave decomposition, while for Δz > 0 it provides a robust tool for migration transformation of spatially under sampled wavefields. Using the stationary phase method, it is shown that the slant-stack migration formula degenerates into the Rayleigh-Sommerfeld integral in the far-field approximation. Consequently, even a narrow slant-stack gather applied before the diffraction stack can significantly improve the representation of noisy data in the wavefield extrapolation process. The theory is applied to synthetic and field data to perform trace interpolation and dip reject filtration. The data examples presented prove that the radon interpolator works well in the dip range, including waves with mutual stepouts smaller than half the dominant period

  5. Development of Auto-Stacking Warehouse Truck

    Directory of Open Access Journals (Sweden)

    Kuo-Hsien Hsia

    2018-03-01

    Full Text Available Warehouse automation is a very important issue for the promotion of traditional industries. For the production of larger and stackable products, it is usually necessary to operate a fork-lifter for the stacking and storage of the products by a skilled person. The general autonomous warehouse-truck does not have the ability of stacking objects. In this paper, we develop a prototype of auto-stacking warehouse-truck that can work without direct operation by a skill person. With command made by an RFID card, the stacker truck can take the packaged product to the warehouse on the prior-planned route and store it in a stacking way in the designated storage area, or deliver the product to the shipping area or into the container from the storage area. It can significantly reduce the manpower requirements of the skilled-person of forklift technician and improve the safety of the warehousing area.

  6. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  7. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  8. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  9. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack

    KAUST Repository

    Hatzell, Marta C.

    2013-11-01

    Ammonium bicarbonate has recently been demonstrated to be an excellent thermolytic solution for energy generation in reverse electrodialysis (RED) stacks. However, operating RED stacks at room temperatures can promote gaseous bubble (CO2, NH3) accumulation within the stack, reducing overall system performance. The management and minimization of bubbles formed in RED flow fields is an important operational issue which has yet to be addressed. Flow fields with and without spacers in RED stacks were analyzed to determine how both fluid flow and the buildup and removal of bubbles affected performance. In the presence of a spacer, the membrane resistance increased by ~50Ω, resulting in a decrease in power density by 30% from 0.140Wm-2 to 0.093Wm-2. Shorter channels reduced concentration polarization affects, and resulted in 3-23% higher limiting current density. Gas accumulation was minimized through the use of short vertically aligned channels, and consequently the amount of the membrane area covered by bubbles was reduced from ~20% to 7% which caused a 12% increase in power density. As ammonium bicarbonate RED systems are scaled up, attention to channel aspect ratio, length, and alignment will enable more stable performance. © 2013 Elsevier B.V.

  10. Adsorptive separation of NOsub(x) from dissolver off-gas

    International Nuclear Information System (INIS)

    Ringel, H.

    1984-06-01

    After precleaning the dissolver off-gas contains, besides the noble gases Xe and Kr, about 0.5 vol.% each of NOsub(x) and H 2 O. For the removal of these NOsub(x) and H 2 O residues to below 1 ppm, an adsorptive gas cleaning process has been developed and tested on a lab-scale. For the process, an acid resistant molecular sieve was selected and its properties investigated with respect to application; e.g. the dependence of the adsorption capacity on temperature, gas composition and face velocity. By the operation of a lab-scale facility with 400 Nl/h continuous off-gas throughput the suitability of the adsorption process has been demonstrated for off-gas cleaning and recycling of the separated NO 2 and H 2 O to the dissolver. (orig.) [de

  11. 40 CFR 61.44 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.44 Section 61.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Firing § 61.44 Stack sampling. (a) Sources subject to § 61.42(b) shall be continuously sampled, during...

  12. SOFC - Manufacture of stacks for test and demonstration related activities, stack and system tests and identification of end user requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Joachim; Primdahl, S.; Boegh Elmose, H.; Weineisen, H.; Richter, A.

    2008-11-15

    The aim of the project was to solve the technical challenges in relation to stack functionality in connection with operation of multi stack assemblies under realistic operating conditions. It was the intention to make a targeted effort with the aim of developing a high performance stack technology suitable for both small and large units. An important part of the project was the testing of stack assemblies up to 10 kW power range with relevant fuel and realistic operation condition in the test facility at HC OErstedvaerket. The manufacturing of stacks in the project was as planned a number of stacks (70 kW) for use in demonstration projects both for single stacks and for multi stack assemblies. The start up of the work on the SOFC test facility at HC OErstedsvaerket (HCV) was delayed due to a late delivery of the unit from the PSO 6385 project. A number of unforeseen events during the project have meant that the SOFC test facility at HCV has not until now been ready for performing tests. The experience gained from the operation of a 20 kW Alpha unit in a co-operation between TOFC and Waertsilae now provides an important contribution to the future multi stack assemblies. The work on identification of end user requirements has resulted in a number of different development priorities for the m-CHP and the Distributed Generation market segments. (au)

  13. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Høgh, Jens Valdemar Thorvald; Nielsen, Karsten Agersted

    2011-01-01

    . The degradation of the electrolysis cells was found to be influenced by the adsorption of impurities from the applied inlet gases, whereas the application of chromium containing interconnect plates and glass sealings do not seem to influence the durability when operated at 850 °C. Cleaning the inlet gases...

  14. Use of porous silicon to minimize oxidation induced stacking fault defects in silicon

    International Nuclear Information System (INIS)

    Shieh, S.Y.; Evans, J.W.

    1992-01-01

    This paper presents methods for minimizing stacking fault defects, generated during oxidation of silicon, include damaging the back of the wafer or depositing poly-silicon on the back. In either case a highly defective structure is created and this is capable of gettering either self-interstitials or impurities which promote nucleation of stacking fault defects. A novel method of minimizing these defects is to form a patch of porous silicon on the back of the wafer by electrochemical etching. Annealing under inert gas prior to oxidation may then result in the necessary gettering. Experiments were carried out in which wafers were subjected to this treatment. Subsequent to oxidation, the wafers were etched to remove oxide and reveal defects. The regions of the wafer adjacent to the porous silicon patch were defect-free, whereas remote regions had defects. Deep level transient spectroscopy has been used to examine the gettering capability of porous silicon, and the paper discusses the mechanism by which the porous silicon getters

  15. Synthesis of carbon nanotubes from palm oil on stacking and non-stacking substrate by thermal-CVD method

    Science.gov (United States)

    Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Fadzlinatul, M. Y.; Salifairus, M. J.; Asli, N. A.

    2018-05-01

    Palm oil has been used as the carbon source to synthesize carbon nanotubes (CNTs) on silicon substrates using the thermal chemical vapor deposition (CVD) method. Meanwhile, silicon has been applied using two techniques, which are stacked technique and non-stacked technique. The CNTs were grown at the constant time of 30 minutes with various synthesis temperatures of 750 °C, 850 °C and 950 °C. The CNTs were characterized using micro-Raman spectroscopy and field emission scanning electron microscopy (FESEM). It was found that the density, growth rate, diameter and length of the CNTs produced were affected by the synthesis temperature. Moreover, the structure slightly changes were observed between CNTs obtained in SS and NSS. The synthesize temperature of 750 °C was considered as the suitable temperature for the production of CNTs due to low ID/IG ratio, which for stacked is 0.89 and non-stacked are 0.90. The possible explanation for the different morphology of the produced CNTs was also discussed.

  16. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  17. The Clean Development Mechanism and Sustainable Development in China's Electricity Sector

    Institute of Scientific and Technical Information of China (English)

    Paul A. Steenhof

    2005-01-01

    The Clean Development Mechanism,a flexibility mechanism contained in the Kyoto Protocol, offers China an important tool to attract investment in clean energy technology and processes into its electricity sector. The Chinese electricity sector places centrally in the country's economy and environment, being a significant contributor to the acid rain and air pollution problems that plague many of China's cities and regions, and therefore a focus of many related energy and environmental policies.China's electricity sector has also been the subject of a number of economic analyses that have showed that it contains the highest potential for clean energy investment through the Clean Development Mechanism of any economic sector in China. This mechanism, through the active participation from investors in more industrialized countries, can help alleviate the environmental problems attributable to electricity generation in China through advancing such technology as wind electricity generation, dean coal technology, high efficient natural gas electricity generation, or utilization of coal mine methane. In this context, the Clean Development Mechanism also compliments a range of environmental and energy policies which are strategizing to encourage the sustainable development of China's economy.

  18. Clean Coal Day '93. Hokkaido Seminar; Clean Coal Day '93. Hokkaido Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The titles of the lectures in this record are 1) Coal energy be friendly toward the earth, 2) Future development of coal-fired thermal power generation, 3) Current status of research and development of coalbed methane in the U.S., and 4) PFBC (pressurized fluidized bed combustion combined cycle) system. Under title 1), the reason is explained why coal is back as an energy source and is made much of. The actualities of coal being labelled as a dirty energy source are explained. The rapid growth of demand for coal in Asia is commented on and what is expected of clean coal technology is stated. Under title 2), it is predicted that atomic energy, LNG (liquefied natural gas), and coal will be the main energy sources for electric power in Japan. Under title 3), it is stated that 10% of America's total amount of methane production is attributable to coal mining, that methane is the cleanest of the hydrocarbon fuels although it is a pollution source from an environmental point of view, and that it is therefore reasonable to have its collection and utilization placed in the domain of clean coal technology. Under title 4), a PFBC system to serve as the No. 3 machine for the Tomahigashi-Atsuma power plant is described. (NEDO)

  19. Oil Fields, Oil and gas production platforms are potential source for oil spills and may interfere with mechanical means to clean up oil spills., Published in 1998, 1:24000 (1in=2000ft) scale, Louisiana State University (LSU).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Oil Fields dataset current as of 1998. Oil and gas production platforms are potential source for oil spills and may interfere with mechanical means to clean up oil...

  20. The Clean-Development Mechanism, stochastic permit prices and energy investments

    International Nuclear Information System (INIS)

    Hieronymi, Philipp; Schüller, David

    2015-01-01

    We analyze the impact on energy investments stemming from different emission permit classes, by considering permits that are allocated inside the European Emission Trading Scheme and secondary Certified Emission Reduction (sCER) permits originating from the Clean Development Mechanism. One price taking firm which is subject to emission regulation has the choice to invest in gas or wind power plant. The firm faces uncertainty regarding stochastically evolving permit prices, while it receives a premium on the electricity price for wind energy. As a first step, we determine the value of the option to invest into a gas power plant over time. Then, we calculate the investment probability of a gas power investment in a range of policy scenarios. We find that allowing the usage of sCER permits in the present policy framework has a positive impact on gas power investment. Decoupling the price processes has a similar effect. If the quota of sCER permits is doubled, the decrease in the investment probability for wind power is large. We carry out sensitivity tests for different parameter values, and find that investment behavior changes significantly with differing interest rates, the wind energy premium and volatility. - Highlights: • We model the impact of two CO 2 permit classes on energy investments. • We present a real-options framework accounting for uncertainty. • Clean Development Mechanism permits have a negative influence on investment into renewable energy. • Interest rate and volatility values have a strong impact on the results

  1. FY 2001 report on the results of the trend survey of introduction of clean energy vehicle for the transport industry; 2001 nendo unso yo clean energy jidosha no donyu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    Survey/analysis were made on the details of the plan on the leading introduction of clean energy vehicle by 632 transporters who applied for the project on promotion of clean energy vehicle in FY 2001. As a result of the survey, the following were made clear. The clean energy vehicles to be planned to be introduced by transporters are all natural gas vehicles. The transporters planning the leading introduction are mostly in large cities and are spreading also in the periphery. Fifty three percent of the transporters predicts that the predicted average running distance of the clean energy vehicle to be introduced is the same as those of the vehicles they owns, and 39% predicts that it is shorter. About the form of utilization, they use it overwhelmingly for the regional collection/delivery. It is considered that the improvement in running distance per 1 fuel filling of clean energy vehicle will contribute to the spread. Fuel supply stations that the clean energy cars to be introduced use concentrate in the good location. It is necessary to strongly promote preparation of the infrastructure. (NEDO)

  2. Desulfurized gas production from vertical kiln pyrolysis

    Science.gov (United States)

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  3. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hopson, Dr Janet L [Univ. of Tennessee, Knoxville, TN (United States); Greene, David [Univ. of Tennessee, Knoxville, TN (United States); Gibson, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  4. Chapter 4: Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives

    Science.gov (United States)

    Chapter 4 of Assessing the Multiple Benefits of Clean Energy helps state states understand the methods, models, opportunities, and issues associated with assessing the GHG, air pollution, air quality, and human health benefits of clean energy options.

  5. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  6. Modelling of Rotor-gas bearings for Feedback Controller Design

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik

    2014-01-01

    Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which ca...... and are shown to accurately describe the dynamical behaviour of the rotor-gas bearing. Design of a controller using the identied models is treated and experiments verify the improvement of the damping properties of the rotor-gas bearing.......Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which can...... be designed from suitable models describing the relation from actuator input to measured shaft position. Current state of the art models of controllable gas bearings however do not provide such relation, which calls for alternative strategies. The present contribution discusses the challenges for feedback...

  7. A gas circulation and purification system for gas-cell-based low-energy RI-beam production

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T.; Wada, M.; Katayama, I.; Kojima, T. M.; Reponen, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsubota, T. [Tokyo KOATSU Co., Ltd., 1-9-8 Shibuya, Shibuyaku, Tokyo 150-0002 (Japan)

    2016-06-15

    A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part per billion is achieved with this method.

  8. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  9. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application

    International Nuclear Information System (INIS)

    Ping, Mao; Zhi-Gang, Zhang; Li-Yang, Pan; Jun, Xu; Pei-Yi, Chen

    2009-01-01

    Stacked ruthenium (Ru) nanocrystals (NCs) are formed by rapid thermal annealing for the whole gate stacks and embedded in memory structure, which is compatible with conventional CMOS technology. Ru NCs with high density (3 × 10 12 cm −2 ), small size (2–4 nm) and good uniformity both in aerial distribution and morphology are formed. Attributed to the higher surface trap density, a memory window of 5.2 V is obtained with stacked Ru NCs in comparison to that of 3.5 V with single-layer samples. The stacked Ru NCs device also exhibits much better retention performance because of Coulomb blockade and vertical uniformity between stacked Ru NCs

  10. Nondestructive inspection of the condition of oil pipeline cleaning units

    International Nuclear Information System (INIS)

    Berdonosov, V.A.; Boiko, D.A.; Lapshin, B.M.; Chakhlov, V.L.

    1989-01-01

    One of the reasons for shutdowns of main oil pipelines is stoppage of the cleaning unit in cleaning of the inner surface of paraffin deposits caused by damage to the cleaning unit. The authors propose a method of searching for and determining the condition of the cleaning unit not requiring dismantling of the pipeline according to which the initial search for the cleaning unit is done with acoustic instruments (the increased acoustic noise at the point of stoppage of its is recorded) and subsequent inspection by a radiographic method. An experimental model of an instrument was developed making it possible to determine the location of a cleaning unit in an oil pipeline in stoppage of it from the acoustic noise. The instrument consists of two blocks, the remote sensor and the indicator block, which are connected to each other with a cable up to 10 m long. The design makes it possible to place the sensor at any accessible point of a linear part of the pipeline (in a pit, on a valve, etc.) while the indicator block may remain on the surface of the ground. The results obtained make it possible to adopt the optimum solutions on elimination of their malfunctioning and to prevent emergency situations without dismantling of the pipeline. With the equipment developed it is possible to inspect oil and gas pipelines with different reasons for a reduction in their throughput

  11. Microseismic event location by master-event waveform stacking

    Science.gov (United States)

    Grigoli, F.; Cesca, S.; Dahm, T.

    2016-12-01

    Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We

  12. Vertical melting of a stack of membranes

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  13. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions

    KAUST Repository

    Luo, Xi

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production. © 2013 Elsevier Ltd.

  14. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  15. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  16. Clean Cities 2015 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use and greenhouse gas (GHG) emissions in transportation. A national network of nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. Each year, DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Progress reports and information are submitted online as a function of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators report a range of information that characterize the membership, funding, projects, and activities of their coalitions. They also document activities in their region related to the development of refueling/charging infrastructure, sales of alternative fuels; deployment of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); idle reduction initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use and GHG emission reduction impacts, which are summarized in this report.

  17. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  18. Methane formation in tritium gas exposed to stainless steel

    International Nuclear Information System (INIS)

    Morris, G.A.

    1977-01-01

    Tests were performed to determine the effect cleanliness of a surface exposed to tritium gas had on methane formation. These tests performed on 304 stainless steel vessels, cleaned in various ways, showed that the methane formation was reduced by the use of various cleaning procedures

  19. Turbostratic stacked CVD graphene for high-performance devices

    Science.gov (United States)

    Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-03-01

    We have fabricated turbostratic stacked graphene with high-transport properties by the repeated transfer of CVD monolayer graphene. The turbostratic stacked CVD graphene exhibited higher carrier mobility and conductivity than CVD monolayer graphene. The electron mobility for the three-layer turbostratic stacked CVD graphene surpassed 10,000 cm2 V-1 s-1 at room temperature, which is five times greater than that for CVD monolayer graphene. The results indicate that the high performance is derived from maintenance of the linear band dispersion, suppression of the carrier scattering, and parallel conduction. Therefore, turbostratic stacked CVD graphene is a superior material for high-performance devices.

  20. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  1. OpenStack augstas pieejamības risinājumi

    OpenAIRE

    Dreiže, Toms

    2016-01-01

    Šis bakalaura darbs ir pētījums par OpenStack IaaS mākoņpakalpojumu platformu. Tā mērķis ir sniegt ieskatu augstas pieejamības pamatprincipos un OpenStack mākoņpakalpojumu platformas piedāvātajos augstas pieejamības nodrošināšanas risinājumos. Bakalaura darba gaitā ir veikta augsti pieejamas OpenStack trīs mezglu sistēmas uzstādīšana, izmantojot Galera Cluster datubāzu klasteri un HAProxy slodzes līdzsvarotāju. Tika pārbaudīta OpenStack augsta pieejamība, testējot OpenStack Glance komponentes...

  2. Clean coal technology and advanced coal-based power plants

    International Nuclear Information System (INIS)

    Alpert, S.B.

    1991-01-01

    Clean Coal Technology is an arbitrary terminology that has gained increased use since the 1980s when the debate over acid raid issues intensified over emissions of sulfur dioxide and nitrogen oxides. In response to political discussions between Prime Minister Brian Mulroney of Canada and President Ronald Reagan in 1985, the US government initiated a demonstration program by the Department of Energy (DOE) on Clean Coal Technologies, which can be categorized as: 1. precombustion technologies wherein sulfur and nitrogen are removed before combustion, combustion technologies that prevent or lower emissions as coal is burned, and postcombustion technologies wherein flue gas from a boiler is treated to remove pollutants, usually transforming them into solids that are disposed of. The DOE Clean Coal Technology (CCT) program is being carried out with $2.5 billion of federal funds and additional private sector funds. By the end of 1989, 38 projects were under way or in negotiation. These projects were solicited in three rounds, known as Clean Coal I, II, and III, and two additional solicitations are planned by DOE. Worldwide about 100 clean coal demonstration projects are being carried out. This paper lists important requirements of demonstration plants based on experience with such plants. These requirements need to be met to allow a technology to proceed to commercial application with ordinary risk, and represent the principal reasons that a demonstration project is necessary when introducing new technology

  3. Clean Air Act Amendments of 1990: Impacts on natural gas markets. Summary of the annual GRI Energy Seminar (12th) for the GRI Board of Directors and Advisory Council. Held in Asheville, North Carolina on August 12-14, 1991

    International Nuclear Information System (INIS)

    Farrell, M.D.

    1991-01-01

    Each year, Gas Research Institute (GRI) conducts an energy seminar for its Board of Directors and Advisory Council on an issue of timely importance to the gas industry. The topic selected for the Twelfth Annual GRI Energy Seminar was 'Clean Air Act Amendments of 1990: Impacts on Natural Gas Markets.' The two sessions of the seminar focused upon the sectors of the energy market most significantly affected by the legislation. Session I: Fuel Choices for Stationary Applications explored the impact of the Clean Air Act Amendments upon stationary, fuel-burning applications, particularly power plants. The current outlook for bringing existing coal-fired power plants into conformance with the law and the significance of the provisions for the choice of fuels for major future fuel-burning facilities were discussed, along with the impact of the provisions upon GRI's strategies and the technical and economic targets for ongoing R and D. Session II: The Emerging Alternative-Fuel Vehicle Market addressed the significance of the new requirements to the outlook for compressed natural gas vehicles and the suitability of GRI's methane vehicle R and D strategy to the revised outlook. The report summarizes the presentations and discussions at the seminar

  4. Efficiency of Polymer Electrolyte Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hans Bosma

    2011-08-01

    Full Text Available This paper applies a feedforward control of optimal oxygen excess ratio that maximize net power (improve efficiency of a NedStack P8.0-64 PEM fuel cell stack (FCS system. Net powers profile as a function of oxygen excess ratio for some points of operation are analyzed by using FCS model. The relationships between stack current and the corresponding control input voltage that gives an optimal oxygen excess ratio are used to design a feedforward control scheme. The results of this scheme are compared to the results of a feedforward control using a constant oxygen excess ratio. Simulation results show that optimal oxygen excess ratio improves fuel cell performance compared to the results of constant oxygen excess ratio. The same procedures are performed experimentally for the FCS system. The behaviour of the net power of the fuel cell stack with respect to the variation of oxygen excess ratio is analyzed to obtain optimal values. Data of stack current and the corresponding voltage input to the compressor that gives optimal values of oxygen excess ratio are used to develop a feedforward control. Feedforward control based on constant and optimal oxygen excess ratio control, are implemented in the NedStack P8.0-64 PEM fuel cell stack system by using LabVIEW. Implementation results shows that optimal oxygen excess ratio control improves the fuel cell performance compared to the constant oxygen excess ratio control.

  5. Dynamic analysis of the CRBRP clean-up system (three stage aqueous scrubber)

    International Nuclear Information System (INIS)

    Kyi, R.; Bijlani, C.; Fazekas, P.; Dajani, A.

    1981-01-01

    The CRBRP containment clean-up system design required the determination of the thermal-hydraulic performance of the system during its projected operating cycle. The reduced scale component tests at HEDL provided valuable information about the generic performance of the components; however, due to the limitations of the test facility the exact simulation of the actual CRBRP conditions was not feasible. A computer program was developed to permit dynamic system analysis of the full size air cleaning system. The dynamic system analysis considered the mass and energy balances across each component. In addition to the major filtration system components, the system modeling included the supporting fluid system components such as pumps, tanks and heat exchangers. Variable gas flow, temperature, chemical concentrations, and other system parameters were also modeled. Fission product heat, chemical reaction heat and heat of solution were considered. The analysis results provided sodium hydroxide solution concentrations and temperatures, gas temperatures and other variables at the various components within the air cleaning system for each calculated time interval. The accuracy of the computer modeling was verified by comparing the calculated results with HEDL test data. The comparison indicated a better than +-10% agreement with the test data. The analysis results provided the basis for the selection of the system components

  6. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  7. Predicting mercury retention in utility gas cleaning systems with SCR/ESP/FGD combinations or activated carbon injection

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Balaji; Naik, Chitralkumar V.; Niksa, Stephen [Niksa Energy Associates LLC, Belmont, CA (United States); Fujiwara, Naoki [Idemitsu Kosan Co., Ltd, Chiba (Japan). Coal and Environment Research Lab.

    2013-07-01

    This paper presents validations of the Hg speciation predicted by NEA's MercuRator trademark package with an American field test database for 28 full-scale utility gas cleaning systems. It emphasizes SCR/ESP/FGD combinations and activated carbon injection because these two applications present the best long- term prospects for Hg control by coal-burning utilities. Validations of the extents of Hg{sup 0} oxidation across SCRs and of Hg retention in wet FGDs gave correlation coefficients greater than 0.9 for both units. A transport-based FGD analysis correctly assessed the potential for Hg{sup 0} re-emission in one limestone wet FGD. Among the ten stations in the SCR/ESP/FGD validations, the simulations correctly identified 3 of 4 of the relatively high Hg emissions rates; all four of the sites with moderate emissions rates; and both sites with the lowest emission rates. The validations for ACI applications demonstrated that Hg removals can be accurately estimated for the full domain of coal quality, LOI, and ACI rates for both untreated and brominated carbon sorbents. The predictions for ACI depict the test-to-test variations in most cases, and accurately describe the impact of ACI configuration and sorbent type. ACI into FFs is the most effective configuration, although ACI into ESPs often removes 90% or more Hg, provided that there is sufficient residence time and Cl in the flue gas. Brominated sorbents perform better than untreated carbons, unless SO{sub 3} condensation inhibits Hg adsorption.

  8. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  9. Clean Cities Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  10. Heat Recovery From Tail Gas Incineration To Generate Power

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Tarek

    2010-09-15

    Many industrial processes result in tail gas wastes that must be flared or incinerated to abide with environmental guidelines. Tail gas incineration occurs in several chemical processes resulting in high-temperature exhaust gas that simply go to the stack, thus wasting all that valuable heat! This paper discusses useful heat recovery and electric power generation utilizing available heat in exhaust gas from tail gas incinerators. This heat will be recovered in a waste-heat recovery boiler that will produce superheated steam to expand in a steam turbine to generate power. A detailed cost estimate is presented.

  11. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec...

  12. Laser surface cleaning

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  13. Evaluating impacts of Clean Air Act compliance strategies

    International Nuclear Information System (INIS)

    Shirer, D.A.; Evans, R.J.; Harrison, C.D.; Kehoe, D.B.

    1993-01-01

    The Clean Air Act Amendments of 1990 requires that by the year 2000, US SO 2 emissions must be reduced by 10 million tons. This requirement will have significant impact on coal-fired electric utilities. As a result, most utilities are currently evaluating numerous compliance options, including buying allowances, coal cleaning/blending/switching, and flue gas scrubbing. Moreover, each utility must address its own unique circumstances with regard to competition, efficiency, capital expenditures, reliability, etc. and many utilities may choose a combination of compliance options to simultaneously satisfy their environmental, performance, and financial objectives. The Coal Quality Expert, which is being developed under a clean coal technology project funded by US DOE and EPRI, will predict the economic, operational, and environmental benefits of using higher-quality coals and provides an assessment of the merits of various post-combustion control technologies for specific utility applications. This paper presents background on how utilities evaluate their compliance options, and it describes how the Coal Quality Expert could be used for such evaluations in the future to assure that each utility can select the best combination of coal specifications and emission control technologies to meet its compliance objectives

  14. Thermodynamic investigation of an integrated gasification plant with solid oxide fuel cell and steam cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering, Thermal Energy System

    2012-07-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas was rather clean for feeding to the SOFC stacks after a simple cleaning step. Because all the fuel cannot be burned in the SOFC stacks, a burner was used to combust the remaining fuel. The off-gases from the burner were then used to produce steam for the bottoming steam cycle in a heat recovery steam generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system integration configurations are completely novel and have not been studied elsewhere. Plant efficiencies of 56% were achieved under normal operation which was considerably higher than the IGCC (Integrated Gasification Combined Cycle) in which a gasification plant is integrated with a gas turbine and a steam turbine. Furthermore, it is shown that under certain operating conditions, plant efficiency of about 62 is also possible to achieve. (orig.)

  15. Ultra-clean

    International Nuclear Information System (INIS)

    Hergenroether, K.

    1987-01-01

    No other method guarantees such a thorough cleaning of contaminated materials' surfaces. Only ultrasound can reach those cavities crevices and corners where any manual cleaning fails. Furthermore there is no cumbersome and time-consuming manual decontamination which often has to be carried out in glove boxes and hot cells. Depending on the design the cleaning effect can reach from removing adhering dirt particles to removing complete surface layers. (orig./PW) [de

  16. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Science.gov (United States)

    advice on financing instruments. In a recent keynote to the Climate and Clean Energy Investment Forum renewable energy technologies in the country. Informing Energy Access and Clean Energy Project Finance understanding and knowledge of how to design policies that enable financing and encourage investment in clean

  17. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  18. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  19. Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Wardah Fatimah Mohammad; Salleh, Elias [Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Adam, Nor Mariah [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapian, Abdul Razak [Department of Architecture, Kulliyyah of Architecture and Environmental Design, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur (Malaysia); Yusof Sulaiman, Mohamad [Solar Energy Research Institute, 3rd Floor, Tun Sri Lanang Library Building, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2010-10-15

    In the hot and humid climate, stack ventilation is inefficient due to small temperature difference between the inside and outside of naturally ventilated buildings. Hence, solar induced ventilation is a feasible alternative in enhancing the stack ventilation. This paper aims to investigate the effectiveness of a proposed solar induced ventilation strategy, which combines a roof solar collector and a vertical stack, in enhancing the stack ventilation performance in the hot and humid climate. The methodology selected for the investigation is physical experimental modelling which was carried out in the actual environment. The results are presented and discussed in terms of two performance variables: air temperature and air velocity. The findings indicate that the proposed strategy is able to enhance the stack ventilation, both in semi-clear sky and overcast sky conditions. The highest air temperature difference between the air inside the stack and the ambient air (T{sub i}-T{sub o}) is achieved in the semi-clear sky condition, which is about 9.9 C (45.8 C-35.9 C). Meanwhile, in the overcast sky condition, the highest air temperature difference (T{sub i}-T{sub o}) is 6.2 C (39.3 C-33.1 C). The experimental results also indicate good agreement with the theoretical results for the glass temperature, the air temperature in the roof solar collector's channel and the absorber temperature. The findings also show that wind has significant effect to the induced air velocity by the proposed strategy. (author)

  20. Air and gas cleaning methods for reactor containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, L.

    1963-11-15

    In this paper, a survey is made of the existing and some proposed new methods for the control and purification of air and gases which might be released from a reactor contained or confined for protection of the health and safety of the public from potential accidents. The difference between confinement and containment concepts must be considered. The problems involved and the need for decontamination, site selection, exclusion area, population density, distance, etc., have been discussed elsewhere. We propose to discuss here the safety measures necessary to control the release of radioactive materials to the environment. This requires special systems which must function effectively to minimize loss of fission products such as halogens and particulates. These can penetrate the confinement filters or the containment vessel to a limited extent even after cleaning.

  1. Source mechanism of small long-period events at Mount St. Helens in July 2005 using template matching, phase-weighted stacking, and full-waveform inversion

    Science.gov (United States)

    Matoza, Robin S.; Chouet, Bernard A.; Dawson, Phillip B.; Shearer, Peter M.; Haney, Matthew M.; Waite, Gregory P.; Moran, Seth C.; Mikesell, T. Dylan

    2015-01-01

    Long-period (LP, 0.5-5 Hz) seismicity, observed at volcanoes worldwide, is a recognized signature of unrest and eruption. Cyclic LP “drumbeating” was the characteristic seismicity accompanying the sustained dome-building phase of the 2004–2008 eruption of Mount St. Helens (MSH), WA. However, together with the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP “subevents”), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. The signal-to-noise ratios of the individual events are too low to produce reliable waveform-inversion results, but the events are repetitive and can be stacked. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005 using a master event to detect 822 network triggers. We stack waveforms for 359 high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism pointsto the volumetric oscillation (~10 m3) of a subhorizontal crack located at shallow depth (~30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice, perhaps supplied from snow melt.

  2. EPRI/Alberta Research Council Clean Soil Process

    International Nuclear Information System (INIS)

    Spear, C.E.

    1992-12-01

    The EPRI/Alberta Research Council Clean Soil Process can remove hydrocarbon contamination from waste material from manufactured gas plants. The process uses coal as an absorbent to remove hydrocarbons. For petroleum contaminated soils, the process can bring residual concentration of petroleum below 0.1 percent and polycyclic aromatic hydrocarbon (PAH) concentration to 1--5 ppM. For coal tar contaminated soils, the process can reduce tar concentrations to about 0.05-0.5 percent and the PAH concentration to about 10--60 ppM. Additional post-treatment may be required for some precleaned soils. The process yields by-product agglomerates suitable for combustion in industrial boilers. Light hydrocarbons such as benzene are vaporized from the soil, condensed and collected in the Process and disposed of off-site. The Clean Soil Process has been tested at pilot-plant scale. A conceptual design for a 200-tons-per-day plant yielded a capital cost estimated at $3.1 million with a per-ton operating cost of $40

  3. Two-Phase Phenomena In Wet Flue Gas Desulfurization Process

    International Nuclear Information System (INIS)

    Minzer, U.; Moses, E.J.; Toren, M.; Blumenfeld, Y.

    1998-01-01

    In order to reduce sulfur oxides discharge, Israel Electric Corporation (IEC) is building a wet Flue Gas Desulfurization (FGD) facility at Rutenberg B power station. The primary objective of IEC is to minimize the occurrence of stack liquid discharge and avoid the discharge of large droplets, in order to prevent acid rain around the stack. Liquid discharge from the stack is the integrated outcome of two-phase processes, which are discussed in this work. In order to estimate droplets discharge the present investigation employs analytical models, empirical tests, and numerical calculations of two-phase phenomena. The two-phase phenomena are coupled and therefore cannot be investigated separately. The present work concerns the application of Computational Fluid Dynamic (CFD) as an engineering complementary tool in the IEC investigation

  4. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  5. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  6. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  7. Gas fired boilers and atmospheric pollution

    International Nuclear Information System (INIS)

    Chiaranello, J.M.

    1991-01-01

    A general analysis concerning atmospheric pollution is presented: chemical composition and vertical distribution of atmosphere and pollutants, chemical reactions, ozone destruction and production cycles, COx, NOx and SOx pollutions. The gas fired boiler number and repartition in France are presented and the associated pollution is analyzed (CO2, CO, NOx) and quantified. Various pollution control technics concerning gas fired boiler pollutants are described and a pollution criterion for clean gas fired generators is proposed

  8. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P; Kurkela, E; Staahlberg, P; Hepola, J [VTT Energy, Espoo (Finland)

    1997-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  9. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Kurkela, E.; Staahlberg, P.; Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  10. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  11. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  12. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Energy Technology Data Exchange (ETDEWEB)

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  13. How clean is clean?---How clean is needed?

    International Nuclear Information System (INIS)

    Hays, A.K.

    1991-01-01

    This paper will provide an overview of cleaning qualifications used in a variety of industries: from small-scale manufacturer's of precision-machined products to large-scale manufacturer's of electronics (printed wiring boards and surface mount technology) and microelectronics. Cleanliness testing techniques used in the production of precision-machined products, will be described. The on-going DOD program to obtain high-reliability electronics, through the use of military specifications for cleaning and cleanliness levels, will be reviewed. In addition, the continually changing cleanroom/materials standards of the microelectronics industry will be discussed. Finally, we will speculate on the role that new and improved analytical techniques and sensor technologies will play in the factories of the future. 4 refs., 1 tab

  14. Theoretical Valuation of Multi-Channel Cyclone to Reduce Gas Flow Dustiness in Agressive Environment

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2016-10-01

    Full Text Available Contaminated gas cleaning from finely divided solids is carried out using a new generation of multi-channel design cyclones. The application of these devices are separated and precipitated particles with a minimum diameter up to 2 micrometers, reaching up to 95% cleaning efficiency. Cyclones of such constructions are usually used under usual conditions at elevated temperature and low humidity. Under aggressive conditions, these devices can be clogged, and their recovery is not possible. Further studies are research into the application of constructive solutions to adapt the cyclone gas cleaning of the particulate matter under aggressive conditions. This theoretical evaluation has described the characteristics change of gas flow and particulate matters at different aggressive environment. Such conditions were loudly describe the gas-flow high-temperature range of 50–200 °C and gas-vapor stream, the humidity reaches 70–100%. Estimated aggressive conditions on the gas flow dynamics forces – pressure, resistance and centrifugal, and particulate mechanical – gravitational and adhesion strength. All parameters are evaluated in comparison with the values under normal conditions.

  15. Method for applying a thin film barrier stack to a device with microstructures, and device provided with such a thin film barrier stack

    NARCIS (Netherlands)

    2005-01-01

    A method for applying a thin film barrier stack to a device with microstructures, such as, for instance, an OLED, wherein the thin film barrier stack forms a barrier to at least moisture and oxygen, wherein the stack is built up from a combination of org. and inorg. layers, characterized in that a

  16. The possibility of using clean coal in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Wong, H.K.; Khairudin, M.Y. [Tenaga Nasional Berhad, Perai (Malaysia)

    1994-12-31

    The Asia-Pacific region will see tremendous growth in demand for electricity in the next few decades and will be an important market for generation equipment and associated services. The Association of Southeast Asian Nations (ASEAN) countries alone anticipate additional power demand of more than 37,000 NM by the year 2000, with an estimated total expenditure of US $85 billion. Trends in recent years show natural gas-fired combined cycle in plants to be fast gaining in popularity over conventional thermal plants. The advantages include increased primary energy conversion efficiency coupled with significant reduction in pollutant emissions, shorter construction times, faster loading rates and reduced staffing requirements. In the computer model used for generation capacity expansion planning in Tenaga Nasional Berhad, clean coal technology models are not used as candidate plants. In the opinion of the authors, this results from a lack of comprehensive data regarding the operating characteristics and the capital and operating costs of such plants, making it difficult to compare to more proven technologies. We also believe that the economics of such plants have not been sufficiently demonstrated at full scale. The authors believe, however, that in the future, coal-fired combined cycle plants will offer enormous possibilities in Malaysia as an urgency to develop this form of clean coal technology in other countries will assure widespread commercial realization of the technology. The anticipated increase in electricity demand brings to the region many business opportunities. As an example, gas turbine component parts, which are used both in conventional systems and clean coal systems, initially can be locally manufactured with technology transfer from original equipment manufacturers; these technology transfers can progress into fall-licenses to local manufacturers.

  17. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  18. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    Science.gov (United States)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  19. Adenine versus Guanine Quartets in Aqueous Solution. Dispersion-Corrected DFT Study on the Differences in π-Stacking and Hydrogen-Bonding Behavior

    NARCIS (Netherlands)

    Fonseca Guerra, C.; van der Wijst, T.; Poater, J.; Swart, M.; Bickelhaupt, F.M.

    2010-01-01

    We have investigated the performance of the dispersion-corrected density functionals (BLYP-D, BP86-D and PBE-D) and the widely used B3LYP functional for describing the hydrogen bonds and the stacking interactions in DNA base dimers. For the gas-phase situation, the bonding energies have been

  20. Stack Monitor Operating Experience Review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Bruyere, S.A.

    2009-01-01

    Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative 'all modes' failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

  1. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  2. Study and Development of an OpenStack solution

    OpenAIRE

    Jorba Brosa, Maria

    2014-01-01

    Estudi i desenvolupament d'una solució de virtualització amb Openstack. Es farà un especial èmfasi en la part de seguretat. Deployment of a solution based in OpenStack for the creation of an Infrastructure service cloud. Implementación de una solución basada en OpenStack para la creación de una infrastructura de servicios cloud. Implementació d'una solució basada en OpenStack per la creació d'una infrastructura de serveis cloud.

  3. Active gas discharge cleaning for superconducting lead-plated resonators

    International Nuclear Information System (INIS)

    Malev, M.D.; Weisser, D.C.

    1985-06-01

    Lead-plating for superconducting RF resonators historically has been directed toward reducing grain size and eliminating spikes on the surface. Investigations were made of degassing lead-plated surfaces under RF resonant electron discharge or multipacting. The mass-spectra of the residual atmosphere showed that decomposition of hydrocarbons on the surface took place. Discolouration of the lead surface, due to the formation of a carbon layer, was easily observed. A method of cleaning surfaces by ion bombardment employing chemically active gases, was proposed and tested. An RF discharge, initiated by multipacting at pressure 10 -2 - 10 -1 torr was used. The first step, discharge treatment in a CO 2 atmosphere, assures oxidation of carbon and hydrocarbons into gaseous compounds which are removed by pumping. During the second step, discharge treatment in a hydrogen atmosphere, lead oxides are reduced to metal

  4. Electric Engines to Gas

    International Nuclear Information System (INIS)

    Novoa, M.G.

    1996-01-01

    Environmental pollution and specially air pollution, it is produced in a wide range by exhaust gases of internal combustion engines, those which are used to generate energy. Direct use of fossil combustibles as petroleum derivatives and coal produces large quantities of harmful elements to ecology equilibrium. Whit the objective of reducing this pollutant load has been development thermoelectric plants whit turbine to gas or to steam, those which are moved by internal combustion engines. Gas engines can burn most of available gases, as both solid waste and wastewater treatment plants biogas, propane gas, oil-liquefied gas or natural gas. These gases are an alternative and clean energy source, and its efficiency in internal combustion engines is highest compared whit other combustibles as gasoline-motor or diesel

  5. Exploring online evolution of network stacks

    OpenAIRE

    Imai, Pierre

    2013-01-01

    Network stacks today follow a one-size-fits-all philosophy. They are mostly kept unmodified due to often prohibitive costs of engineering, deploying and administrating customisation of the networking software, with the Internet stack architecture still largely being based on designs and assumptions made for the ARPANET 40 years ago. We venture that heterogeneous and rapidly changing networks of the future require, in order to be successful, run-time self-adaptation mechanisms at different tim...

  6. In situ dc oxygen‐discharge cleaning system for optical elements

    International Nuclear Information System (INIS)

    Koide, Tsuneharu; Shidara, Tetsuo; Tanaka, Kenichiro; Yagishita, Akira; Sato, Shigeru

    1989-01-01

    In situ dc oxygen‐discharge cleaning arrangements have been developed at the Photon Factory for the removal of carbon contamination from optical surfaces. A high cleaning rate could be achieved by producing an oxygen plasma close to the optical elements with special care taken to avoid any harmful effects from the discharge; contaminant carbon was completely removed within a few hours, at most. This short exposure time and the use of dry oxygen gas resulted in a restoration of the original ultrahigh vacuum without a bakeout. Results with a Seya‐Namioka beamline for gas‐phase experiments showed a flux enhancement amounting to a factor of 50, and results with a grasshopper beamline showed a nearly complete recovery of the light intensity, even at the carbon K edge

  7. Gas pipeline Opon - Barrancabermeja. Consumption at low cost with environmental cleaning

    International Nuclear Information System (INIS)

    Carta Petrolera

    1997-01-01

    The gas pipeline Opon-Barrancabermeja, is part of a project to produce hydrocarbons in the Carare Region. For this line will be transported natural gas of the Opon Field, in Simitarra (Colombia). The benefits that it brings the presence of the gas pipeline for the community have to see from the same construction of the net, joined with diverse programs that link to communities of the influence areas, in aspects related with health, education, environmental reparation and agricultural diversification

  8. Radiation damage and life-time evaluation of RBMK graphite stack

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, P A; Chugunov, O K; Manevsky, V N; Karpukhin, V I [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation). Reactor Material Div.

    1996-08-01

    At the present time there are 11 NPP units with RBMK reactors in operation in Russia, with the oldest now in operation 22 years. Design life-time of the RBMK-1000 reactor is 30 years. This paper addresses the evaluation of RBMK graphite stack life-time. It is the practice in Russia to evaluate the reliability of the channel reactor graphite stack using at least three criteria: degradation of physical-mechanical properties of graphite, preservation of the graphite brick integrity, and degradation of the graphite stack as a structure. Stack life-time evaluation by different criteria indicates that the most realistic approach may be realized on the basis of the criteria of brick cracking and degradation of the graphite stack as a structure. The RBMK reactor graphite stack life-time depends on its temperature and for different units it may be different. (author). 2 refs, 10 figs.

  9. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  10. A high-performance aluminum-feed microfluidic fuel cell stack

    Science.gov (United States)

    Wang, Yifei; Leung, Dennis Y. C.

    2016-12-01

    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  11. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  12. Dynamic stack testing and HiL simulation

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, G. [GRandalytics, Honolulu, HI (United States)

    2009-07-01

    The applications for fuel cell and stack deployment have changed rapidly over the years, from stationary backup supplies to highly dynamic automotive power systems. As a result, testing must keep up in order to ensure mature products of high quality. A new breed of stack test stations has been designed, based on a newly developed single cell, high dynamic hardware-in-the-loop (HiL) simulator in order to meet the growing demand of realistic fuel cell testing scenarios for aviation and automotive industries. The paper described and illustrated the test station architecture and outline of communication nodes. The paper also described the voltage monitor and presented schematics of voltage monitoring modules. The basic requirements of the architecture that were presented included low latency; flexible communication with simulation targets and other data input/output nodes; scalability to various stack sizes; and, safety and reliability. It was concluded that first tests with the voltage monitoring system not only confirmed the design, high throughput and signal quality, but also suggested another application, namely a stack impedance spectrometer for each individual cell. 1 ref., 3 figs.

  13. Development of an Integrated Polymer Microfluidic Stack

    International Nuclear Information System (INIS)

    Datta, Proyag; Hammacher, Jens; Pease, Mark; Gurung, Sitanshu; Goettert, Jost

    2006-01-01

    Microfluidic is a field of considerable interest. While significant research has been carried out to develop microfluidic components, very little has been done to integrate the components into a complete working system. We present a flexible modular system platform that addresses the requirements of a complete microfluidic system. A microfluidic stack system is demonstrated with the layers of the stack being modular for specific functions. The stack and accompanying infrastructure provides an attractive platform for users to transition their design concepts into a working microfluidic system quickly with very little effort. The concept is demonstrated by using the system to carry out a chemilumiscence experiment. Details regarding the fabrication, assembly and experimental methods are presented

  14. Optimization of hole generation in Ti/CFRP stacks

    Science.gov (United States)

    Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.

    2018-03-01

    The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.

  15. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  16. Electrochemical Impedance Spectroscopy (EIS) Characterization of Reformate-operated High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Simon Araya, Samuel; Andreasen, Søren Juhl

    2017-01-01

    their effects on a reformate-operated stack. Polarization curves were also recorded to complement the impedance analysis of the researched phenomena. An equivalent circuit model was used to estimate the different resistances at varying parameters. It showed a significantly higher low frequency resistance......, λanode= 1.6 for reformate operation and λcathode= 4.The work also compared dry hydrogen, steam reforming and autothermal reforming gas feeds at160 ◦Cand showed appreciably lower performance in the case of autothermal reforming at the same stoichiometry, mainly attributable to mass transport related...

  17. Fabrication of high gradient insulators by stack compression

    Science.gov (United States)

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  18. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  19. Biological off-gas treatment: let's make things better

    NARCIS (Netherlands)

    Groenestijn, J.W. van

    1998-01-01

    Biological off-gas treatment is the most effective cleaning method for many off-gases which contain low concentration of pollutants (<5 g/m3). The world market share in off-gas treatment is a few percent. Potential buyers are reserved because of existing biofilter quality differences and lack of

  20. Routes to a commercially viable PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J.; Foster, S.E.; Hodgson, D.; Marrett, A.

    2002-07-01

    This report describes the results of a project to design and build a 10 kW{sub e} proton exchange membrane fuel cell (PEMFC) stack, including membrane electrode assemblies (MEAs), bipolar plates and stack hardware. The aim was to prove the design concept and to demonstrate functionality by operating the stack at >1 kW{sub e}/L and 500 W/kg for 200 hours operation. The project was extended to include the assembly and testing of two additional 1 kW{sub e} PEMFC stacks based on coated metal components. Low equivalent weight perfluorinated ionomer ion exchange membranes were prepared and were found to give a superior electrochemical performance to commercial materials. A technique to etch various stainless steel grades and control processes was successfully developed and optimised. Coatings for stainless steel and titanium were successfully developed and met the required performance criteria. All PEMFC stack components were selected and designed to enable subsequent commercial manufacture.