WorldWideScience

Sample records for stably transformed arabidopsis

  1. Efficient Plastid Transformation in Arabidopsis.

    Science.gov (United States)

    Yu, Qiguo; Lutz, Kerry Ann; Maliga, Pal

    2017-09-01

    Plastid transformation is routine in tobacco ( Nicotiana tabacum ) but 100-fold less frequent in Arabidopsis ( Arabidopsis thaliana ), preventing its use in plastid biology. A recent study revealed that null mutations in ACC2 , encoding a plastid-targeted acetyl-coenzyme A carboxylase, cause hypersensitivity to spectinomycin. We hypothesized that plastid transformation efficiency should increase in the acc2 background, because when ACC2 is absent, fatty acid biosynthesis becomes dependent on translation of the plastid-encoded ACC β-carboxylase subunit. We bombarded ACC2 -defective Arabidopsis leaves with a vector carrying a selectable spectinomycin resistance ( aadA ) gene and gfp , encoding the green fluorescence protein GFP. Spectinomycin-resistant clones were identified as green cell clusters on a spectinomycin medium. Plastid transformation was confirmed by GFP accumulation from the second open reading frame of a polycistronic messenger RNA, which would not be translated in the cytoplasm. We obtained one to two plastid transformation events per bombarded sample in spectinomycin-hypersensitive Slavice and Columbia acc2 knockout backgrounds, an approximately 100-fold enhanced plastid transformation frequency. Slavice and Columbia are accessions in which plant regeneration is uncharacterized or difficult to obtain. A practical system for Arabidopsis plastid transformation will be obtained by creating an ACC2 null background in a regenerable Arabidopsis accession. The recognition that the duplicated ACCase in Arabidopsis is an impediment to plastid transformation provides a rational template to implement plastid transformation in related recalcitrant crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Glufosinate ammonium selection of transformed Arabidopsis.

    Science.gov (United States)

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  3. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.

    Science.gov (United States)

    Miki, Daisuke; Zhang, Wenxin; Zeng, Wenjie; Feng, Zhengyan; Zhu, Jian-Kang

    2018-05-17

    Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.

  4. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation

    Directory of Open Access Journals (Sweden)

    Gray John C

    2006-11-01

    Full Text Available Abstract Background The floral dip method of transformation by immersion of inflorescences in a suspension of Agrobacterium is the method of choice for Arabidopsis transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7–10 d and high seedling density and fungal contamination may result in failure to recover transformants. Results A method for identifying transformed seedlings in as little as 3.25 d has been developed. Arabidopsis T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4–6 h light, 48 h dark and 24 h light (3.25 d. Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8–1.0 cm whereas non-resistant seedlings have short hypocotyls (0.2–0.4 cm. Conclusion The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7–10 d required for selection using current protocols.

  5. Improvements in the transformation of Arabidopsis thaliana C24 leaf-discs by Agrobacterium tumefaciens

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, P J

    1996-01-01

    We report here an efficient Arabidopsis leafdisc transformation protocol yielding an average transformation frequency of 1.6 transgenic shoots per leaf explant 4 weeks after the bacterial infection period. Subsequent cultivation in vitro is such that a high percentage (85-90%) of the primary...... transformants produces seeds with an average seed yield of 100-300 seeds per plant. This improved transformation protocol yields mainly (70%) transformants segregating for a single T-DNA locus of which 68% actually contain one T-DNA insert. The objective is to generate a pool of independent transformants...

  6. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...

  7. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation.

    Science.gov (United States)

    Kwon, Tackmin

    2016-09-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

  8. Establishment of an Indirect Genetic Transformation Method for Arabidopsis thaliana ecotype Bangladesh

    Directory of Open Access Journals (Sweden)

    Bulbul AHMED

    2011-11-01

    Full Text Available Arabidopsis thaliana is a small flowering plant belonging to the Brassicaceae family, which is adopted as a model plant for genetic research. Agrobacterium tumifaciensmediated transformation method for A. thaliana ecotype Bangladesh was established. Leaf discs of A. thaliana were incubated with A. tumefaciens strain LBA4404 containing chimeric nos. nptII. nos and intron-GUS genes. Following inoculation and co-cultivation, leaf discs were cultured on selection medium containing 50 mg/l kanamycin + 50 mg/l cefotaxime + 1.5 mg/l NAA and kanamycin resistant shoots were induced from the leaf discs after two weeks. Shoot regeneration was achieved after transferring the tissues onto fresh medium of the same combination. Finally, the shoots were rooted on MS medium containing 50 mg/l kanamycin. Incorporation and expression of the transgenes were confirmed by PCR analysis. Using this protocol, transgenic A. thaliana plants can be obtained and indicates that genomic transformation in higher plants is possible through insertion of desired gene. Although Agrobacterium mediated genetic transformation is established for A. thaliana, this study was the conducted to transform A. thaliana ecotype Bangladesh.

  9. The instability of the flax element LIS-1 in transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bastaki NK

    2015-05-01

    Full Text Available Nasmah K Bastaki, Christopher A Cullis Department of Biology, Case Western Reserve University, Cleveland, OH, USA Background: The LIS-1 is an element that appears as a site-specific insertion event in some flax lines in response to certain growth conditions and can be transmitted to subsequent generations. The origin of LIS-1 in the flax genome is uncertain. One possibility is that since LIS-1 does not exist intact in the progenitor line, it is assembled from small sequences found scattered throughout the genome, and that, under stressful growth conditions, induction occurs and these sequences are rearranged and assembled to form the intact LIS-1 element. It is unknown whether the intact LIS-1 element would remain stably integrated in other plant species or if it would be destabilized from their genome. Results: In this study, Agrobacterium-mediated plant transformation via floral dipping was used to transform different accessions of the Columbia ecotype of Arabidopsis thaliana, with either LIS-1 or the target site into which LIS-1 integrates. The stability and the inheritance patterns of both elements were followed in subsequent generations. Our results indicate that, in the different transformed accessions, the target site of LIS-1 remains stable in the T1 and T2 generations. However, LIS-1 is not found intact in any transformed A. thaliana plants. Instead, it goes through multiple fragmentation events, which seem to be genotype dependent. In the process, the region originally flanking LIS-1 in the T-DNA construct can be converted to the same sequence found at the target site in flax, followed by complete excision of all the flax DNA in the construct. Conclusion: These results demonstrate that the processes by which LIS-1 is produced in flax are also present in A. thaliana because both plants are capable of destabilizing the intact LIS-1 element.Keywords: flax (Linum usitatissimum, Arabidopsis thaliana, plant transformation, Linum insertion

  10. An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol

    Directory of Open Access Journals (Sweden)

    Ülker Bekir

    2006-10-01

    Full Text Available Abstract Background The Agrobacterium vacuum (Bechtold et al 1993 and floral-dip (Clough and Bent 1998 are very efficient methods for generating transgenic Arabidopsis plants. These methods allow plant transformation without the need for tissue culture. Large volumes of bacterial cultures grown in liquid media are necessary for both of these transformation methods. This limits the number of transformations that can be done at a given time due to the need for expensive large shakers and limited space on them. Additionally, the bacterial colonies derived from solid media necessary for starting these liquid cultures often fail to grow in such large volumes. Therefore the optimum stage of plant material for transformation is often missed and new plant material needs to be grown. Results To avoid problems associated with large bacterial liquid cultures, we investigated whether bacteria grown on plates are also suitable for plant transformation. We demonstrate here that bacteria grown on plates can be used with similar efficiency for transforming plants even after one week of storage at 4°C. This makes it much easier to synchronize Agrobacterium and plants for transformation. DNA gel blot analysis was carried out on the T1 plants surviving the herbicide selection and demonstrated that the surviving plants are indeed transgenic. Conclusion The simplified method works as efficiently as the previously reported protocols and significantly reduces the workload, cost and time. Additionally, the protocol reduces the risk of large scale contaminations involving GMOs. Most importantly, many more independent transformations per day can be performed using this modified protocol.

  11. Large eddy simulation of stably stratified turbulence

    International Nuclear Information System (INIS)

    Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao

    2011-01-01

    Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.

  12. An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    Science.gov (United States)

    Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan

    2013-01-01

    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266

  13. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Joydeep Banerjee

    Full Text Available On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985 are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85 showed stronger expression (about 3.5 fold compared to the At4g35987 promoter (P87. The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications.

  14. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

    Science.gov (United States)

    Ghedira, Rim; De Buck, Sylvie; Van Ex, Frédéric; Angenon, Geert; Depicker, Ann

    2013-12-01

    T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.

  15. Identification and molecular properties of SUMO-binding proteins in arabidopsis

    KAUST Repository

    Park, Hyeongcheol; Choi, Wonkyun; Park, Heejin; Cheong, Misun; Koo, Yoonduck; Shin, Gilok; Chung, Woosik; Kim, Woeyeon; Kim, Mingab; Bressan, Ray Anthony; Bohnert, Hans Jü rgen; Lee, Sangyeol; Yun, Daejin

    2011-01-01

    in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern

  16. Is VIP1 important for Agrobacterium-mediated transformation?

    Science.gov (United States)

    Shi, Yong; Lee, Lan-Ying; Gelvin, Stanton B

    2014-09-01

    Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  17. The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant.

    Science.gov (United States)

    Ghedira, Rim; De Buck, Sylvie; Nolf, Jonah; Depicker, Ann

    2013-07-01

    To evaluate the chromosomal background of different Agrobacterium strains on floral dip transformation frequency, eight wild-type Agrobacterium strains, provided by Laboratorium voor Microbiologie Gent (LMG) and classified in different genomic groups, were compared with the commonly used Agrobacterium strains C58C1 Rif(r) (pMP90) and LBA4404 in Arabidopsis thaliana Columbia (Col-0) and C24 ecotypes. The C58C1 Rif(r) chromosomal background in combination with the pMP90 virulence plasmid showed high Col-0 floral dip transformation frequencies (0.76 to 1.57%). LMG201, which is genetically close to the Agrobacterium C58 strain, with the same virulence plasmid showed comparable or even higher transformation frequencies (1.22 to 2.28%), whereas the LBA4404 strain displayed reproducibly lower transformation frequencies (Agrobacterium chromosomal backgrounds had transformation frequencies between those of the C58C1 Rif(r) (pMP90) and LBA4404 reference strains. None of the strains could transform the C24 ecotype with a frequency higher than 0.1%. Strikingly, all Arabidopsis Col-0 floral dip transformation experiments showed a high transformation variability from plant to plant (even more than 50-fold) within and across the performed biological repeats for all analyzed Agrobacterium strains. Therefore, the physiology of the plant and, probably, the availability of competent flowers to be transformed determine, to a large extent, floral dip transformation frequencies.

  18. Causal boundary for stably causal space-times

    International Nuclear Information System (INIS)

    Racz, I.

    1987-12-01

    The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs

  19. Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism.

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C; Sitbon, Folke

    2011-09-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels.

  20. Visualization of mole fraction distribution of slow jet forming stably stratified field

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Hishida, Makoto

    1990-01-01

    An experimental study has been performed to investigate the behavior of flow and mass transfer in gaseous slow jet in which buoyancy force opposed the flow forming stably stratified field. The study has been performed to understand the basic features of air ingress phenomena at pipe rupture accident of the high temperature gas-cooled reactor. A displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the mole fraction distribution. As the result, the followings were obtained: (1) The stably stratified fields were formed in the vicinity of the outlet of the slow jet. The penetration distance of the stably stratified fields increased with Froude number. (2) Mass fraction distributions in the stably stratified fields were well correlated with the present model using the ramp mole velocity profile. (author)

  1. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis.

    Science.gov (United States)

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis.

  2. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  3. Characterization of new cell line stably expressing CHI3L1 oncogene

    Directory of Open Access Journals (Sweden)

    Chekhonin V. P.

    2011-06-01

    Full Text Available Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1. Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.

  4. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. The demise of chloroplast DNA in Arabidopsis.

    Science.gov (United States)

    Rowan, Beth A; Oldenburg, Delene J; Bendich, Arnold J

    2004-09-01

    Although it might be expected that chloroplast DNA (cpDNA) would be stably maintained in mature leaves, we report the surprising observation that cpDNA levels decline during plastid development in Arabidopsis thaliana (Col.) until most of the leaves contain little or no DNA long before the onset of senescence. We measured the cpDNA content in developing cotyledons, rosette leaves, and cauline leaves. The amount of cpDNA per chloroplast decreases as the chloroplasts develop, reaching undetectable levels in mature leaves. In young cauline leaves, most individual molecules of cpDNA are found in complex, branched forms. In expanded cauline leaves, cpDNA is present in smaller branched forms only at the base of the leaf and is virtually absent in the distal part of the leaf. We conclude that photosynthetic activity may persist long after the demise of the cpDNA. Copyright 2004 Springer-Verlag

  6. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings

    Science.gov (United States)

    2014-01-01

    Background Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. Results We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts. Conclusions AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous

  7. Synthesis of Hydroxylated Sterols in Transgenic Arabidopsis Plants Alters Growth and Steroid Metabolism1[C][W][OA

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C.; Sitbon, Folke

    2011-01-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels. PMID:21746809

  8. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  9. The Promoter of AtUSP Is Co-regulated by Phytohormones and Abiotic Stresses in Arabidopsis thaliana.

    Science.gov (United States)

    Bhuria, Monika; Goel, Parul; Kumar, Sanjay; Singh, Anil K

    2016-01-01

    Universal stress proteins (USPs) are known to be expressed in response to various abiotic stresses in a wide variety of organisms, such as bacteria, archaebacteria, protists, algae, fungi, plants, and animals. However, in plants, biological function of most of the USPs still remains obscure. In the present study, Arabidopsis USP gene ( AtUSP ) showed induction in response to abscisic acid (ABA) and various abiotic stresses viz . heat, dehydration, salt, osmotic, and cold stresses. Additionally, in silico analysis of AtUSP promoter identified several cis -elements responsive to phytohormones and abiotic stresses such as ABRE, ERE, DRE, and HSE, etc. To functionally validate the AtUSP promoter, the 1115 bp region of promoter was characterized under phytohormone and abiotic stress treatments. Deletion analysis of promoter was carried out by cloning the full length promoter (D0) and its three 5' deletion derivatives, D1 (964 bp), D2 (660 bp), and D3 (503 bp) upstream of the β-glucuronidase (GUS) reporter gene, which were then stably transformed in Arabidopsis plants. The AtUSP promoter (D0) showed minimal activity under non-stress conditions which was enhanced in response to phytohormone treatments (ABA and ACC) and abiotic stresses such as dehydration, heat, cold, salt, and osmotic stresses. The seedlings harboring D1 and D2 deletion fragments showed constitutive GUS expression even under control condition with increased activity almost under all the treatments. However, D3 seedlings exhibited complete loss of activity under control condition with induction under ACC treatment, dehydration, heat, oxidative, salt, and osmotic stresses. Thus, present study clearly showed that AtUSP promoter is highly inducible by phytohormones and multiple abiotic stresses and it can be exploited as stress inducible promoter to generate multi-stress tolerant crops with minimal effects on their other important traits.

  10. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo; Byrt, Caitlin; Qiu, Jiaen; Baumann, Ute; Hrmova, Maria; Evrard, Aurelie; Johnson, Alexander A T; Birnbaum, Kenneth D.; Mayo, Gwenda M.; Jha, Deepa; Henderson, Sam W.; Tester, Mark A.; Gilliham, Mathew; Roy, Stuart J.

    2015-01-01

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  11. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo

    2015-12-11

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  12. Tesla-transformer-type electron beam accelerator

    International Nuclear Information System (INIS)

    Liu Jinliang; Zhong Huihuang; Tan Qimei; Li Chuanlu; Zhang Jiande

    2002-01-01

    An electron-beam Tesla-transformer accelerator is described. It consists of the primary storage energy system. Tesla transformer, oil Blumlein pulse form line, and the vacuum diode. The experiments of initial stage showed that diode voltage rises up to about 500 kV with an input of 20 kV and the maximum electron-beam current is about 9 kA, the pulse width is about 50 ns. This device can operate stably and be set up easily

  13. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  14. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    Science.gov (United States)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  15. Progress in planta transformation without tissue culture

    International Nuclear Information System (INIS)

    Gu Yunhong; Chinese Academy of Sciences, Hefei; Qin Guangyong; Huo Yuping; Yu Zengliang

    2004-01-01

    With the development of planta genetic engineering, more emphases have been laid on convenient and high efficient genetic transformation methods. And transformation without tissue culture is a prospective direction of it. In this paper, traditional transformation methods and the methods of non-tissue culture were summarized. With the exploration and application of Arabidopsis transformation mechanism, with the use of ion beam-mediated transformation invented by Chinese scientists and the development of other transformation methods, transformation methods without tissue culture and planta genetic engineering could be improved rapidly. (authors)

  16. Turbulent circulation above the surface heat source in stably stratified atmosphere

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-10-01

    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".

  17. Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection.

    Science.gov (United States)

    Wajih, Nadeem; Owen, John; Wallin, Reidar

    2008-01-01

    Recombinant members of the vitamin K-dependent protein family (factors IX and VII and protein C) have become important pharmaceuticals in treatment of bleeding disorders and sepsis. However, because the in vivo gamma-carboxylation system in stable cell lines used for transfection has a limited capacity of post translational gamma-carboxylation, the recovery of fully gamma-carboxylated and functional proteins is low. In this work we have engineered recombinant factor VII producing HEK 293 cells to stably overexpress VKORC1, the reduced vitamin K gamma-carboxylase cofactor and in addition stably silenced the gamma-carboxylase inhibitory protein calumenin. Stable cell lines transfected with only a factor VII cDNA had a 9% production of functional recombinant factor VII. On the other hand, these recombinant factor VII producing cells when engineered to overexpress VKORC1 and having calumenin stably suppressed more than 80% by shRNA expression, produced 68% functional factor VII. The technology presented should be applicable to all vertebrae members of the vitamin K-dependent protein family and should lower the production cost of the clinically used factors VII, IX and protein C.

  18. Differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation.

    Science.gov (United States)

    Shih, Po-Yuan; Chou, Shu-Jen; Müller, Caroline; Halkier, Barbara Ann; Deeken, Rosalia; Lai, Erh-Min

    2018-03-02

    Agrobacterium tumefaciens is the causal agent of crown gall disease in a wide range of plants via a unique interkingdom DNA transfer from bacterial cells into the plant genome. Agrobacterium tumefaciens is capable of transferring its T-DNA into different plant parts at different developmental stages for transient and stable transformation. However, the plant genes and mechanisms involved in these transformation processes are not well understood. We used Arabidopsis thaliana Col-0 seedlings to reveal the gene expression profiles at early time points during Agrobacterium infection. Common and differentially expressed genes were found in shoots and roots. A gene ontology analysis showed that the glucosinolate (GS) biosynthesis pathway was an enriched common response. Strikingly, several genes involved in indole glucosinolate (iGS) modification and the camalexin biosynthesis pathway were up-regulated, whereas genes in aliphatic glucosinolate (aGS) biosynthesis were generally down-regulated, on Agrobacterium infection. Thus, we evaluated the impacts of GSs and camalexin during different stages of Agrobacterium-mediated transformation combining Arabidopsis mutant studies, metabolite profiling and exogenous applications of various GS hydrolysis products or camalexin. The results suggest that the iGS hydrolysis pathway plays an inhibitory role on transformation efficiency in Arabidopsis seedlings at the early infection stage. Later in the Agrobacterium infection process, the accumulation of camalexin is a key factor inhibiting tumour development on Arabidopsis inflorescence stalks. In conclusion, this study reveals the differential roles of GSs and camalexin at different stages of Agrobacterium-mediated transformation and provides new insights into crown gall disease control and improvement of plant transformation. © 2018 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  19. A new seed-based assay for meiotic recombination in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Melamed-Bessudo, C.; Yehuda, E.; Stuitje, A.R.; Levy, A.A.

    2005-01-01

    Meiotic recombination is a fundamental biological process that plays a central role in the evolution and breeding of plants. We have developed a new seed-based assay for meiotic recombination in Arabidopsis. The assay is based on the transformation of green and red fluorescent markers expressed

  20. Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael Watson

    Full Text Available DNA methylation in plants targets cytosines in three sequence contexts, CG, CHG and CHH (H representing A, C or T. Each of these patterns has traditionally been associated with distinct DNA methylation pathways with CHH methylation being controlled by the RNA dependent DNA methylation (RdDM pathway employing small RNAs as a guide for the de novo DOMAINS REARRANGED METHYLTRANSFERASE (DRM2, and maintenance DNA METHYLTRANSFERASE1 (MET1 being responsible for faithful propagation of CG methylation. Here we report an unusual 'dense methylation' pattern under the control of MET1, with methylation in all three sequence contexts. We identified epi-alleles of dense methylation at a non coding RNA locus (At4g15242 in Arabidopsis ecotypes, with distinct dense methylation and expression characteristics, which are stably maintained and transmitted in genetic crosses and which can be heritably altered by depletion of MET1. This suggests that, in addition to its classical CG maintenance function, at certain loci MET1 plays a role in creating transcriptional diversity based on the generation of independent epi-alleles. Database inspection identified several other loci with MET1-dependent dense methylation patterns. Arabidopsis ecotypes contain distinct epi-alleles of these loci with expression patterns that inversely correlate with methylation density, predominantly within the transcribed region. In Arabidopsis, dense methylation appears to be an exception as it is only found at a small number of loci. Its presence does, however, highlight the potential for MET1 as a contributor to epigenetic diversity, and it will be interesting to investigate the representation of dense methylation in other plant species.

  1. An improved Agrobacterium mediated transformation in tomato ...

    African Journals Online (AJOL)

    ONOS

    2010-03-29

    Mar 29, 2010 ... extended periods and enters the roots through wounds. *Corresponding ..... syringone increases the transformation in Arabidopsis and in soybean ..... that the choice of a proper selection scheme has elimina- ted the chance ...

  2. Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2014-01-01

    An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.

  3. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome

    Science.gov (United States)

    Schoof, Heiko; Zaccaria, Paolo; Gundlach, Heidrun; Lemcke, Kai; Rudd, Stephen; Kolesov, Grigory; Arnold, Roland; Mewes, H. W.; Mayer, Klaus F. X.

    2002-01-01

    Arabidopsis thaliana is the first plant for which the complete genome has been sequenced and published. Annotation of complex eukaryotic genomes requires more than the assignment of genetic elements to the sequence. Besides completing the list of genes, we need to discover their cellular roles, their regulation and their interactions in order to understand the workings of the whole plant. The MIPS Arabidopsis thaliana Database (MAtDB; http://mips.gsf.de/proj/thal/db) started out as a repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project and the Arabidopsis Genome Initiative. Our aim is to transform MAtDB into an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities and by creating a comprehensive resource for Arabidopsis as a reference model for other species, including crop plants. PMID:11752263

  4. Sensitivity of the Geomagnetic Octupole to a Stably Stratified Layer in the Earth's Core

    Science.gov (United States)

    Yan, C.; Stanley, S.

    2017-12-01

    The presence of a stably stratified layer at the top of the core has long been proposed for Earth, based on evidence from seismology and geomagnetic secular variation. Geodynamo modeling offers a unique window to inspect the properties and dynamics in Earth's core. For example, numerical simulations have shown that magnetic field morphology is sensitive to the presence of stably stratified layers in a planet's core. Here we use the mMoSST numerical dynamo model to investigate the effects of a thin stably stratified layer at the top of the fluid outer core in Earth on the resulting large-scale geomagnetic field morphology. We find that the existence of a stable layer has significant influence on the octupolar component of the magnetic field in our models, whereas the quadrupole doesn't show an obvious trend. This suggests that observations of the geomagnetic field can be applied to provide information of the properties of this plausible stable layer, such as how thick and how stable this layer could be. Furthermore, we have examined whether the dominant thermal signature from mantle tomography at the core-mantle boundary (CMB) (a degree & order 2 spherical harmonic) can influence our results. We found that this heat flux pattern at the CMB has no outstanding effects on the quadrupole and octupole magnetic field components. Our studies suggest that if there is a stably stratified layer at the top of the Earth's core, it must be limited in terms of stability and thickness, in order to be compatible with the observed paleomagnetic record.

  5. Large eddy simulation of turbulent and stably-stratified flows

    International Nuclear Information System (INIS)

    Fallon, Benoit

    1994-01-01

    The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr

  6. Optimal energy growth in a stably stratified shear flow

    Science.gov (United States)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  7. Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Yang, Xinping; Ye, Chengchen; Liu, Yu; Zhao, Fang-Jie

    2015-01-01

    Perfluorooctanoic acid (PFOA) is widely used in the manufacture of many industrial and household products. To assess the potential environmental risk of PFOA, its accumulation, translocation and phytotoxic effects were investigated using the model plant species Arabidopsis thaliana. Exposure to 18 μM PFOA-F in agar plates did not affect plant growth, but 181–1811 μM PFOA-F inhibited root and shoot growth. PFOA was more phytotoxic on shoot growth than NaF at the equivalent F concentration, with the latter having 3.9–7.6 times higher EC50 for shoot biomass than PFOA. PFOA was efficiently translocated from roots to shoots, where it existed as intact PFOA molecules without transformation evidenced by the 19 F NMR spectra. PFOA caused a significant increase in the concentration of H 2 O 2 and malondialdehyde (MDA) in shoots, indicating that oxidative stress is a likely cause of PFOA phytotoxicity. - Highlights: • PFOA is more phytotoxic on shoot growth than NaF at the equivalent F concentration. • PFOA is readily taken up and translocated from roots to shoots. • PFOA exists as intact molecules without transformation in Arabidopsis shoots. • PFOA causes oxidative stress in Arabidopsis shoots. - Perfluorooctanoic acid causes oxidative stress and is more phytotoxic on shoot growth than inorganic fluoride at the equivalent F concentration.

  8. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    Science.gov (United States)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  9. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    International Nuclear Information System (INIS)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-01-01

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na + content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na + homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  10. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Zhang, Hongxia, E-mail: hxzhang@sippe.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China)

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  11. Utility of T-DNA insertion mutagenesis in arabidopsis for crop improvement

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, K A [Arizona Univ., Tucson, AZ (United States). Dept. of Plant Sciences

    1995-11-01

    T-DNA insertion mutagenesis in Arabidopsis is an efficient and expedient method for isolating genes that may have agronomic importance in crop plants. More than 14,000 transformants, with an average of 1.5 inserts per transformant, have been generated in the laboratory at the University of Arizona, Tucson, United States of America. Assuming that the genome of Arabidopsis is 100 Mb and that insertion is random, there is a greater than 50% probability that any particular gene has been tagged in this population. These transformed lines have been screened for any visible alteration in phenotype. In addition, they have been screened under numerous selective regimes such as cold tolerance, auxin and ethylene resistance or sensitivity, and nitrate utilization, among many others. Twenty per cent of these transformants segregate for some type of mutation. Approximately 40% of these are due to T-DNA insertion. Genes have already been cloned from various developmental and biochemical pathways, including flower, root and trichome morphology, light and ethylene regulated growth, fatty acid desaturation and epicuticular wax (EW) production. Some of the isolated genes are being introduced into agronomic species in an attempt to improve specific traits. For example, two genes important in EW production have been introduced into Brassica oleracea (broccoli) to modify the nature of the EW such that engineered plants will show greater resistance to herbivorous insects. Similarly, genes involved in fatty acid desaturation, male sterility, height or nitrogen metabolism, to mention only a few, could also be utilized to improve certain crop traits via genetic engineering. Several of these examples are described. (author). 57 refs, 1 fig., 2 tabs.

  12. Arabidopsis Growth Simulation Using Image Processing Technology

    Directory of Open Access Journals (Sweden)

    Junmei Zhang

    2014-01-01

    Full Text Available This paper aims to provide a method to represent the virtual Arabidopsis plant at each growth stage. It includes simulating the shape and providing growth parameters. The shape is described with elliptic Fourier descriptors. First, the plant is segmented from the background with the chromatic coordinates. With the segmentation result, the outer boundary series are obtained by using boundary tracking algorithm. The elliptic Fourier analysis is then carried out to extract the coefficients of the contour. The coefficients require less storage than the original contour points and can be used to simulate the shape of the plant. The growth parameters include total area and the number of leaves of the plant. The total area is obtained with the number of the plant pixels and the image calibration result. The number of leaves is derived by detecting the apex of each leaf. It is achieved by using wavelet transform to identify the local maximum of the distance signal between the contour points and the region centroid. Experiment result shows that this method can record the growth stage of Arabidopsis plant with fewer data and provide a visual platform for plant growth research.

  13. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  14. Characterization of a Madin-Darby canine kidney cell line stably expressing TRPV5.

    NARCIS (Netherlands)

    Dekker, E. den; Schoeber, J.P.H.; Topala, C.N.; Graaf, S.F.J. van de; Hoenderop, J.G.J.; Bindels, R.J.M.

    2005-01-01

    To provide a cell model for studying specifically the regulation of Ca2+ entry by the epithelial calcium channel transient receptor potential-vanilloid-5 (TRPV5), green fluorescent protein (GFP)-tagged TRPV5 was expressed stably in Madin-Darby canine kidney type I (MDCK) cells. The localization of

  15. Initiator of carcinogenesis selectively and stably inhibits stem cell differentiation: a concept that initiation of carcinogenesis involves multiple phases

    International Nuclear Information System (INIS)

    Scott, R.E.; Maercklein, P.B.

    1985-01-01

    A concept of carcinogenesis was recently devised in our laboratory that suggests the development of defects in the control of cell differentiation is associated with an early phase of carcinogenesis. To test this proposal directly, the effects of an initiator of carcinogenesis (i.e., UV irradiation) on proadipocyte stem cell differentiation and proliferation was assayed. In this regard, 3T3 T proadipocytes represent a nontransformed mesenchymal stem cell line that possesses the ability to regulate its differentiation at a distinct state in the G 1 phase of the cell cycle as well as the ability to regulate its proliferation at two additional G 1 states. The results establish that a slow dosage of 254 nm UV irradiation selectivity and stably inhibits the differentiation of a high percentage of proadipocyte stem cells without significantly altering their ability to regulate cellular proliferation in growth factor-deficient or nutrient-deficient culture conditions. Differentiation-defect proadipocyte stem cells are demonstrated not to be completely transformed but to show an increased spontaneous transformation rate, as evidenced by the formation of type III foci in high density cell cultures. These data support the role of defects in the control of differentiation in the inhibition of carcinogenesis. These observations support a concept that the initiation of carcinogenesis involves multiple phases

  16. Assessing the utility of photoswitchable fluorescent proteins for tracking intercellular protein movement in the Arabidopsis root.

    Directory of Open Access Journals (Sweden)

    Shuang Wu

    Full Text Available One way in which cells communicate is through the direct transfer of proteins. In plants, many of these proteins are transcription factors, which are made by one cell type and traffic into another. In order to understand how this movement occurs and its role in development, we would like to track this movement in live, intact plants in real-time. Here we examine the utility of the photoconvertible proteins, Dendra2 and (to a lesser extent EosFP as tags for studying intracellular and intercellular protein movement in the Arabidopsis root. To this end, we made fusions between Dendra2 and six mobile transcription factors. Our results show that Dendra2 is an effective tool for studying protein movement between plant cells. Interestingly, we found that Dendra2 could not simply be swapped into existing constructs that had originally contained GFP. Most of the fusions made in this way failed to produce a fluorescent fusion. In addition we found that the optimal settings for photoconversion of Dendra2 in stably transformed roots were different from what has been published for photoconversion in transient assays in plants or in animal cells. By modifying the confocal setting, we were able to photoconvert Dendra2 in all cell layers in the root. However the efficiency of photoconversion was affected by the position of the cell layer within the root, with more internal tissues requiring more energy. By examining the Dendra2 fusions, we confirmed the mobility of the SHORT-ROOT (SHR and CAPRICE (CPC transcription factors between cells and we further discovered that SHR movement in stele and CPC movement in the epidermis are non-directional.

  17. A preliminary study on a specifically expressed arabidopsis promotor in vascular bundle

    International Nuclear Information System (INIS)

    Gu Yunhong; Xie Chuanxiao; Wu Lifang; Yu Zengliang

    2003-01-01

    From a population of about 3500 single plants in Arabidopsis promoter trapping bank, one plant whose GUS-gene had been specifically expressed in vascular bundle, was screened by the method of gus tissue staining. The T-DNA flanking sequence was amplified using TAIL-PCR. This band will be purified and connected to TA cloning vector. After sequencing and searching in the genebank, its function will be demonstrated through transformation

  18. Method of stably radiolabeling antibodies with technetium and rhenium

    International Nuclear Information System (INIS)

    Paik, C.H.; Reba, R.C.; Eckelman, W.C.

    1987-01-01

    A method is described for labeling antibodies or antibody fragments with radionuclides of technetium or rhenium to obtain stable labeling, comprising: reacting a reduced radioisotope of technetium or rhenium with an antibody or antibody fragment, or a diethylenetriaminepentaacetic acid conjugated antibody or antibody fragment, in the presence of free or carrier-bound diethylenetriaminepentaacetic acid (DTPA). The amount of DTPA is sufficient to substantially completely inhibit binding of the reduced technetium or rhenium to nonstable binding sites of the antibody or antibody fragment, or the DTPA-conjugated antibody or antibody fragment. The resultant stably labeled antibody or antibody fragment, or DTPA[conjugated antibody or antibody fragment is recovered

  19. A non-canonical transferred DNA insertion at the BRI1 locus in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Zhong; Zhu, Yan; Erhardt, Mathieu; Ruan, Ying; Shen, Wen-Hui

    2009-04-01

    Agrobacterium-mediated transformation is widely used in transgenic plant engineering and has been proven to be a powerful tool for insertional mutagenesis of the plant genome. The transferred DNA (T-DNA) from Agrobacterium is integrated into the plant genome through illegitimate recombination between the T-DNA and the plant DNA. Contrasting to the canonical insertion, here we report on a locus showing a complex mutation associated with T-DNA insertion at the BRI1 gene in Arabidopsis thaliana. We obtained a mutant line, named salade for its phenotype of dwarf stature and proliferating rosette. Molecular characterization of this mutant revealed that in addition to T-DNA a non-T-DNA-localized transposon from bacteria was inserted in the Arabidopsis genome and that a region of more than 11.5 kb of the Arabidopsis genome was deleted at the insertion site. The deleted region contains the brassinosteroid receptor gene BRI1 and the transcription factor gene WRKY13. Our finding reveals non-canonical T-DNA insertion, implicating horizontal gene transfer and cautioning the use of T-DNA as mutagen in transgenic research.

  20. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.

    Science.gov (United States)

    Shikata, Masahito; Ezura, Hiroshi

    2016-01-01

    Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.

  1. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants.

    Science.gov (United States)

    Kudo, Toru; Sasaki, Yohei; Terashima, Shin; Matsuda-Imai, Noriko; Takano, Tomoyuki; Saito, Misa; Kanno, Maasa; Ozaki, Soichi; Suwabe, Keita; Suzuki, Go; Watanabe, Masao; Matsuoka, Makoto; Takayama, Seiji; Yano, Kentaro

    2016-10-13

    In quantitative gene expression analysis, normalization using a reference gene as an internal control is frequently performed for appropriate interpretation of the results. Efforts have been devoted to exploring superior novel reference genes using microarray transcriptomic data and to evaluating commonly used reference genes by targeting analysis. However, because the number of specifically detectable genes is totally dependent on probe design in the microarray analysis, exploration using microarray data may miss some of the best choices for the reference genes. Recently emerging RNA sequencing (RNA-seq) provides an ideal resource for comprehensive exploration of reference genes since this method is capable of detecting all expressed genes, in principle including even unknown genes. We report the results of a comprehensive exploration of reference genes using public RNA-seq data from plants such as Arabidopsis thaliana (Arabidopsis), Glycine max (soybean), Solanum lycopersicum (tomato) and Oryza sativa (rice). To select reference genes suitable for the broadest experimental conditions possible, candidates were surveyed by the following four steps: (1) evaluation of the basal expression level of each gene in each experiment; (2) evaluation of the expression stability of each gene in each experiment; (3) evaluation of the expression stability of each gene across the experiments; and (4) selection of top-ranked genes, after ranking according to the number of experiments in which the gene was expressed stably. Employing this procedure, 13, 10, 12 and 21 top candidates for reference genes were proposed in Arabidopsis, soybean, tomato and rice, respectively. Microarray expression data confirmed that the expression of the proposed reference genes under broad experimental conditions was more stable than that of commonly used reference genes. These novel reference genes will be useful for analyzing gene expression profiles across experiments carried out under various

  3. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium

    DEFF Research Database (Denmark)

    Trieu, A.T.; Burleigh, S.H.; Kardailsky, I.V.

    2000-01-01

    Two rapid and simple in planta transformation methods have been developed for the model legume Medicago truncatula. The first approach is based on a method developed for transformation of Arabidopsis thaliana and involves infiltration of flowering plants with a suspension of Agrobacterium....... The second method involves infiltration of young seedlings with Agrobacterium. In both cases a proportion of the progeny of the infiltrated plants is transformed. The transformation frequency ranges from 4.7 to 76% for the flower infiltration method, and from 2.9 to 27.6% for the seedling infiltration method....... Both procedures resulted in a mixture of independent transformants and sibling transformants. The transformants were genetically stable, and analysis of the T-2 generation indicates that the transgenes are inherited in a Mendelian fashion. These transformation systems will increase the utility of M...

  4. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  5. Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers

    Science.gov (United States)

    Watanabe, T.; Riley, J. J.; Nagata, K.

    2017-10-01

    The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.

  6. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  7. Reference: 783 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available xpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 en...phospholipid metabolism in Arabidopsis, including the possibility of ACBP6 in the cytosolic trafficking of phosphatidylcholine. Overe

  8. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1

    Directory of Open Access Journals (Sweden)

    Sandhu Devinder

    2009-08-01

    Full Text Available Abstract Background Systemic acquired resistance (SAR is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR genes. Arabidopsis non-expressor of PR1 (NPR1 is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i PR-1 was induced following INA treatment and (ii BGL2 following infection with Pseudomonas syringae pv. tomato (Pst, and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential

  9. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.

    Science.gov (United States)

    Sandhu, Devinder; Tasma, I Made; Frasch, Ryan; Bhattacharyya, Madan K

    2009-08-05

    Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1

  10. Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhimin Zheng

    2015-05-01

    Full Text Available Paramutation is an epigenetic phenomenon that has been observed in a number of multicellular organisms. The epigenetically silenced state of paramutated alleles is not only meiotically stable but also “infectious” to active homologous alleles. The molecular mechanism of paramutation remains unclear, but components involved in RNA-directed DNA methylation (RdDM are required. Here, we report a multi-copy pRD29A-LUC transgene in Arabidopsis thaliana that behaves like a paramutation locus. The silent state of LUC is induced by mutations in the DNA glycosylase gene ROS1. The silent alleles of LUC are not only meiotically stable but also able to transform active LUC alleles into silent ones, in the absence of ros1 mutations. Maintaining silencing at the LUC gene requires action of multiple pathways besides RdDM. Our study identified specific factors that are involved in the paramutation-like phenomenon and established a model system for the study of paramutation in Arabidopsis.

  11. Reference: 774 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  12. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco.

    Science.gov (United States)

    Garcia, I; Rodgers, M; Pepin, R; Hsieh, T F; Matringe, M

    1999-04-01

    4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

  13. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    Science.gov (United States)

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-12-19

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.

  14. Identification and molecular properties of SUMO-binding proteins in arabidopsis

    KAUST Repository

    Park, Hyeongcheol

    2011-05-20

    Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in animals and yeasts. However, little is known about plant SUMO targets. To identify SUMO substrates in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern was detected in the transgenic plants. SUMO1-modified proteins were selected after two-dimensional gel electrophoresis (2-DE) image analysis and identified using matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We identified 27 proteins involved in a variety of processes such as nucleic acid metabolism, signaling, metabolism, and including proteins of unknown functions. Binding and sumoylation patterns were confirmed independently. Surprisingly, MCM3 (At5G46280), a DNA replication licensing factor, only interacted with and became sumoylated by AtSUMO1, but not by SUMO1ΔGG or AtSUMO3. The results suggest specific interactions between sumoylation targets and particular sumoylation enzymes. ©2011 KSMCB.

  15. Reference: 255 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ases, AtIPK1 and AtIPK2beta, for the later steps of phytate synthesis in Arabidopsis thaliana. Coincident disruption...olyphosphate kinases in phosphate signaling biology. Generation of phytate-free seeds in Arabidopsis through disruption

  16. Quantitative Evaluation of Myostatin Gene in Stably Transfected Caprine Fibroblast Cells by Anti-Myostatin shRNA.

    Science.gov (United States)

    Jain, Sudhir Kumar; Jain, Hemlata; Kumar, Dharmendra; Bedekar, Megha Kadam; Pandey, Akhilesh Kumar; Sarkhel, Bikash Chandra

    2015-09-01

    Skeletal muscle is the major component of lean tissue that is used for consumption, and myostatin is a negative regulator of skeletal muscle growth. Downregulation of this gene therefore offers a strategy for developing superior animals with enhanced muscle growth. Knockdown of myostatin was achieved by RNA interference technology. The anti-myostatin shRNA were designed and stably transfected in caprine fibroblast cells. The reduced expression of target gene was achieved and measured in clonal fibroblast cells by real-time PCR. Two single-cell clones induced significant decrease of myostatin gene expression by 73.96 and 72.66 %, respectively (P < 0.05). To ensure the appropriate growth of transfected cell, seven media were tested. The best suited media was used for transfected fibroblast cell proliferation. The findings suggest that shRNA provides a novel potential tool for gene knockdown and these stably transfected cells can be used as the donor cells for animal cloning.

  17. A germline chromothripsis event stably segregating in 11 individuals through three generations

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Nazaryan-Petersen, Lusine; Sun, Wei

    2016-01-01

    PURPOSE: Parentally transmitted germ-line chromothripsis (G-CTH) has been identified in only a few cases. Most of these rearrangements were stably transmitted, in an unbalanced form, from a healthy mother to her child with congenital abnormalities probably caused by de novo copy-number changes...... of the DNA damage response, may be related to G-CTH formation. CONCLUSION: G-CTH rearrangements are not always associated with abnormal phenotypes and may be misinterpreted as balanced two-way translocations, suggesting that G-CTH is an underdiagnosed phenomenon.Genet Med 18 5, 494-500....

  18. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA.

    Science.gov (United States)

    Harris, Nilangani N; Javellana, John; Davies, Kevin M; Lewis, David H; Jameson, Paula E; Deroles, Simon C; Calcott, Kate E; Gould, Kevin S; Schwinn, Kathy E

    2012-03-12

    Carotenoids and anthocyanins are the predominant non-chlorophyll pigments in plants. However, certain families within the order Caryophyllales produce another class of pigments, the betalains, instead of anthocyanins. The occurrence of betalains and anthocyanins is mutually exclusive. Betalains are divided into two classes, the betaxanthins and betacyanins, which produce yellow to orange or violet colours, respectively. In this article we show betalain production in species that normally produce anthocyanins, through a combination of genetic modification and substrate feeding. The biolistic introduction of DNA constructs for transient overexpression of two different dihydroxyphenylalanine (DOPA) dioxygenases (DODs), and feeding of DOD substrate (L-DOPA), was sufficient to induce betalain production in cell cultures of Solanum tuberosum (potato) and petals of Antirrhinum majus. HPLC analysis showed both betaxanthins and betacyanins were produced. Multi-cell foci with yellow, orange and/or red colours occurred, with either a fungal DOD (from Amanita muscaria) or a plant DOD (from Portulaca grandiflora), and the yellow/orange foci showed green autofluorescence characteristic of betaxanthins. Stably transformed Arabidopsis thaliana (arabidopsis) lines containing 35S: AmDOD produced yellow colouration in flowers and orange-red colouration in seedlings when fed L-DOPA. These tissues also showed green autofluorescence. HPLC analysis of the transgenic seedlings fed L-DOPA confirmed betaxanthin production. The fact that the introduction of DOD along with a supply of its substrate (L-DOPA) was sufficient to induce betacyanin production reveals the presence of a background enzyme, possibly a tyrosinase, that can convert L-DOPA to cyclo-DOPA (or dopaxanthin to betacyanin) in at least some anthocyanin-producing plants. The plants also demonstrate that betalains can accumulate in anthocyanin-producing species. Thus, introduction of a DOD and an enzyme capable of converting

  19. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA

    Directory of Open Access Journals (Sweden)

    Harris Nilangani N

    2012-03-01

    Full Text Available Abstract Background Carotenoids and anthocyanins are the predominant non-chlorophyll pigments in plants. However, certain families within the order Caryophyllales produce another class of pigments, the betalains, instead of anthocyanins. The occurrence of betalains and anthocyanins is mutually exclusive. Betalains are divided into two classes, the betaxanthins and betacyanins, which produce yellow to orange or violet colours, respectively. In this article we show betalain production in species that normally produce anthocyanins, through a combination of genetic modification and substrate feeding. Results The biolistic introduction of DNA constructs for transient overexpression of two different dihydroxyphenylalanine (DOPA dioxygenases (DODs, and feeding of DOD substrate (L-DOPA, was sufficient to induce betalain production in cell cultures of Solanum tuberosum (potato and petals of Antirrhinum majus. HPLC analysis showed both betaxanthins and betacyanins were produced. Multi-cell foci with yellow, orange and/or red colours occurred, with either a fungal DOD (from Amanita muscaria or a plant DOD (from Portulaca grandiflora, and the yellow/orange foci showed green autofluorescence characteristic of betaxanthins. Stably transformed Arabidopsis thaliana (arabidopsis lines containing 35S: AmDOD produced yellow colouration in flowers and orange-red colouration in seedlings when fed L-DOPA. These tissues also showed green autofluorescence. HPLC analysis of the transgenic seedlings fed L-DOPA confirmed betaxanthin production. Conclusions The fact that the introduction of DOD along with a supply of its substrate (L-DOPA was sufficient to induce betacyanin production reveals the presence of a background enzyme, possibly a tyrosinase, that can convert L-DOPA to cyclo-DOPA (or dopaxanthin to betacyanin in at least some anthocyanin-producing plants. The plants also demonstrate that betalains can accumulate in anthocyanin-producing species. Thus, introduction

  20. Toward stable genetic engineering of human o-glycosylation in plants

    DEFF Research Database (Denmark)

    Yang, Zhang; Bennett, Eric Paul; Jørgensen, Bodil

    2012-01-01

    Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types...... an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating Gal......NAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O...

  1. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    Directory of Open Access Journals (Sweden)

    John E McLaughlin

    Full Text Available Fusarium head blight (FHB or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin, a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1 contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  2. UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Pang, Qishen; Hays, J.B.

    1991-01-01

    Removal of cyclobutane pyrimidine dimers (CBPDs) in vivo from the DNA of UV-irradiated eight-leaf seedlings of Arabidopsis thaliana was rapid in the presence of visible light (half-life about 1 hour); removal of CBPDs in the dark, presumably via excision repair, was an order of magnitude slower. Extracts of plants contained significant photolyase in vitro, as assayed by restoration of transforming activity to UV-irradiated Escherichia coli plasmids; activity was maximal from four-leaf to 12-leaf stages. UV-B treatment of seedlings for 6 hours increased photolyase specific activity in extracts twofold. Arabidopsis photolyase was markedly temperature-sensitive, both in vitro (half-life at 30C about 12 minutes) and in vivo (half-life at 30C, 30 to 45 minutes). The wavelength dependency of the photoreactivation cross-section showed a broad peak at 375 to 400 nm, and is thus similar to that for maize pollen; it overlaps bacterial and yeast photolyase action spectra

  3. Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis.

    Science.gov (United States)

    Walz, M; Kück, U

    1995-12-01

    The ascomycete Sordaria macrospora was transformed using different plasmid molecules containing the bacterial hygromycin B resistance gene (hph) under the control of different expression signals. The highest transformation frequency was obtained with vector pMW1. On this plasmid molecule, expression of the hph gene is directed by the upstream region of the isopenicillin N synthetase gene (pcbC) from the deuteromycete Acremonium chrysogenum. Southern analysis suggests that the vector copies are integrated as tandem repeats into the S. macrospora chromosomes and that duplicated sequences are most probably not inactivated by methylation during meiosis. Furthermore, the hygromycin B resistance (hygR) is not correlated with the number of integrated vector molecules. Electrophoretic karyotyping was used to further characterize S. macrospora transformants. Five chromosomal bands were separated by pulsed-field gel electrophoresis (PFGE) representing seven chromosomes with a total genome size of 39.5Mb. Hybridization analysis revealed ectopic integration of vector DNA into different chromosomes. In a few transformants, major rearrangements were detected. Transformants were sexually propagated to analyze the fate of the heterologous vector DNA. Although the hygR phenotype is stably maintained during mitosis, about a third of all lines tested showed loss of the resistance marker gene after meiosis. However, as was concluded from electrophoretic karyotyping, the resistant spores showed a Mendelian segregation of the integrated vector molecules in at least three consecutive generations. Our data indicate that heterologous marker genes can be used for transformation tagging, or the molecular mapping of chromosomal loci in S. macrospora.

  4. Enhancement of naphthalene tolerance in transgenic Arabidopsis plants overexpressing the ferredoxin-like protein (ADI1) from rice.

    Science.gov (United States)

    Fu, Xiao-Yan; Zhu, Bo; Han, Hong-Juan; Zhao, Wei; Tian, Yong-Sheng; Peng, Ri-He; Yao, Quan-Hong

    2016-01-01

    The ADI1 Arabidopsis plants enhanced tolerance and degradation efficiency to naphthalene and had great potential for phytoremediation of naphthalene in the plant material before composting or harvesting and removal. Naphthalene is a global environmental concern, because this substance is assumed to contribute considerably to human cancer risk. Cleaning up naphthalene contamination in the environment is crucial. Phytoremediation is an efficient technology to clean up contaminants. However, no gene that can efficiently degrade exogenous recalcitrant naphthalene in plants has yet been discovered. Ferredoxin (Fd) is a key player of biological electron transfer reaction in the PAH degradation process. The biochemical pathway for bacterial degradation of naphthalene has been well investigated. In this study, a rice gene, ADI1, which codes for a putative photosynthetic-type Fd, has been transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants enhanced tolerance and degradation efficiency of naphthalene. Compared with wild-type plants, transgenic plants assimilated naphthalene from the culture media faster and removed more of this substance. When taken together, our findings suggest that breeding plants with overexpressed ADI1 gene is an effective strategy to degrade naphthalene in the environment.

  5. Turbulent fluxes in stably stratified boundary layers

    International Nuclear Information System (INIS)

    L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii

    2008-01-01

    We present here an extended version of an invited talk we gave at the international conference 'Turbulent Mixing and Beyond'. The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations and dimensional estimates of the turbulent thermal flux, run into a well-known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction to observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here, we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations, removing the unphysical predictions of previous theories. We propose that the approach taken here is sufficient to describe the lower parts of the atmospheric boundary layer, as long as the Richardson number does not exceed an order of unity. For much higher Richardson numbers, the physics may change qualitatively, requiring careful consideration of the potential Kelvin-Helmoholtz waves and their interaction with the vortical turbulence.

  6. Arabidopsis: an adequate model for dicot root systems?

    Directory of Open Access Journals (Sweden)

    Richard W Zobel

    2016-02-01

    Full Text Available The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5 of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for eudicot plant root systems.

  7. Turbulent circulation above the surface heat source in a stably stratified environment

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-09-01

    The results of the numerical modeling of turbulent structure of the penetrating convection above the urban heat island with a small aspect ratio in a stably stratified medium at rest are presented. The gradient diffusion representations for turbulent momentum and heat fluxes are used, which depend on three parameters — the turbulence kinetic energy, the velocity of its spectral expenditure, and the dispersion of temperature fluctuations. These parameters are found from the closed differential equations of balance in the RANS approach of turbulence description. The distributions of averaged velocity and temperature fields as well as turbulent characteristics agree well with measurement data.

  8. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.

    Science.gov (United States)

    Krenek, Pavel; Samajova, Olga; Luptovciak, Ivan; Doskocilova, Anna; Komis, George; Samaj, Jozef

    2015-11-01

    Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  10. Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis.

    Science.gov (United States)

    Pavet, Valeria; Olmos, Enrique; Kiddle, Guy; Mowla, Shaheen; Kumar, Sanjay; Antoniw, John; Alvarez, María E; Foyer, Christine H

    2005-11-01

    Programmed cell death, developmental senescence, and responses to pathogens are linked through complex genetic controls that are influenced by redox regulation. Here we show that the Arabidopsis (Arabidopsis thaliana) low vitamin C mutants, vtc1 and vtc2, which have between 10% and 25% of wild-type ascorbic acid, exhibit microlesions, express pathogenesis-related (PR) proteins, and have enhanced basal resistance against infections caused by Pseudomonas syringae. The mutants have a delayed senescence phenotype with smaller leaf cells than the wild type at maturity. The vtc leaves have more glutathione than the wild type, with higher ratios of reduced glutathione to glutathione disulfide. Expression of green fluorescence protein (GFP) fused to the nonexpressor of PR protein 1 (GFP-NPR1) was used to detect the presence of NPR1 in the nuclei of transformed plants. Fluorescence was observed in the nuclei of 6- to 8-week-old GFP-NPR1 vtc1 plants, but not in the nuclei of transformed GFP-NPR1 wild-type plants at any developmental stage. The absence of senescence-associated gene 12 (SAG12) mRNA at the time when constitutive cell death and basal resistance were detected confirms that elaboration of innate immune responses in vtc plants does not result from activation of early senescence. Moreover, H2O2-sensitive genes are not induced at the time of systemic acquired resistance execution. These results demonstrate that ascorbic acid abundance modifies the threshold for activation of plant innate defense responses via redox mechanisms that are independent of the natural senescence program.

  11. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    Science.gov (United States)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  12. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis

    Science.gov (United States)

    Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole; Ausubel, Frederick M.; Pierce, Naomi E.

    2010-01-01

    Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated dissection of canonical eukaryotic defense pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defense and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here we describe the eukaryotic life cycle of S. flava on Arabidopsis, and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defense-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate (JA) and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with JA or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis JA signaling mutants, and increased in plants pre-treated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyze insect/plant interactions. PMID:21073583

  13. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny.

    Science.gov (United States)

    Lee, Sa Mi; Kang, Kyungsu; Chung, Hyungsup; Yoo, Soon Hee; Xu, Xiang Ming; Lee, Seung-Bum; Cheong, Jong-Joo; Daniell, Henry; Kim, Minkyun

    2006-06-30

    The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

  14. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  15. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  16. High current relativistic beam propagates stably in gas surrounded by nonconducting walls

    International Nuclear Information System (INIS)

    Clark, J.C.

    1977-01-01

    LLL has been studying the propagation of high current electron beams for a number of years to understand their behavior for use in a variety of experimental uses. Our latest experiments have shown that a mildly relativistic electron beam of 10 to 15 kA and a pulse width of 30 to 40 ns can propagate stably and with no net current transfer in insulating tubes filled with neutral gases. These experiments have been performed in the Magnetic Fusion Energy program where Electronics Engineering has been operating an electron beam accelerator, designing some of the diagnostics, such as laser interferometers, and performing the experiments. This article briefly describes our experimental observations

  17. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants.

    Science.gov (United States)

    Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P

    1998-11-01

    By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.

  18. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    Science.gov (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. The genome of Arabidopsis thaliana.

    OpenAIRE

    Goodman, H M; Ecker, J R; Dean, C

    1995-01-01

    Arabidopsis thaliana is a small flowering plant that is a member of the family cruciferae. It has many characteristics--diploid genetics, rapid growth cycle, relatively low repetitive DNA content, and small genome size--that recommend it as the model for a plant genome project. The current status of the genetic and physical maps, as well as efforts to sequence the genome, are presented. Examples are given of genes isolated by using map-based cloning. The importance of the Arabidopsis project ...

  20. Database Description - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Arabidopsis Phenome Database Database Description General information of database Database n... BioResource Center Hiroshi Masuya Database classification Plant databases - Arabidopsis thaliana Organism T...axonomy Name: Arabidopsis thaliana Taxonomy ID: 3702 Database description The Arabidopsis thaliana phenome i...heir effective application. We developed the new Arabidopsis Phenome Database integrating two novel database...seful materials for their experimental research. The other, the “Database of Curated Plant Phenome” focusing

  1. Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens.

    Science.gov (United States)

    Mayo, Kristin J; Gonzales, Barbara J; Mason, Hugh S

    2006-01-01

    This protocol is used to produce stably transformed tobacco (Nicotiana tabacum) NT1 cell lines, using Agrobacterium tumefaciens-mediated DNA delivery of a binary vector containing a gene encoding hepatitis B surface antigen and a gene encoding the kanamycin selection marker. The NT1 cultures, at the appropriate stage of growth, are inoculated with A. tumefaciens containing the binary vector. A 3-day cocultivation period follows, after which the cultures are rinsed and placed on solid selective medium. Transformed colonies ('calli') appear in approximately 4 weeks; they are subcultured until adequate material is obtained for analysis of antigen production. 'Elite' lines are selected based on antigen expression and growth characteristics. The time required for the procedure from preparation of the plant cell materials to callus development is approximately 5 weeks. Growth of selected calli to sufficient quantities for antigen screening may require 4-6 weeks beyond the initial selection. Creation of the plasmid constructs, transformation of the A. tumefaciens line, and ELISA and Bradford assays to assess protein production require additional time.

  2. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Identification and Shape Analysis of Arabidopsis Cultivated in Nitrogen-free Environment

    Directory of Open Access Journals (Sweden)

    Junmei ZHANG

    2014-07-01

    Full Text Available This paper presents a method for segmentation and shape description of Arabidopsis plants with non-green leaves. The image was first calibrated by detecting the corners of a checkerboard. After the preprocessing step, the image was transformed to CIELUV color space, removing the lightness from the chromatic coordinates. The U component showed markedly different textures between the plant and the background. Hence its standard derivation was calculated and thresholded. With this method, significant leaves of the plant were separated while some stalks were not. Therefore, Support Vector Machine was then used to train the LUV data to do further segmentation as a complement of texture analysis. With these two steps, the plant was completely identified and the shape features were then extracted, including the total area, the symmetry and the number of leaves. The real area of the plant was derived with the number of foreground pixels and the calibration result. The symmetries were represented with the degrees of bilateral symmetry in the direction of the major and minor axes. And the number of leaves was obtained by identifying the number of local maximum of the contour-based signature. Experiment result shows that this method is effective in segmentation and shape analysis of Arabidopsis plants.

  4. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  5. Reference: 170 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rice A et al. 2005 Mar. Plant Cell 17(3):791-803. Environmental time cues, such as photocycles (light/dark) and thermocycles...h is known about entrainment of the Arabidopsis thaliana clock to photocycles, th...e determinants of thermoperception and entrainment to thermocycles are not known. The Arabidopsis PSEUDO-RES... an oscillation after entrainment to thermocycles and to reset its clock in response to cold pulses and thus

  6. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    Science.gov (United States)

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.

  7. A stably expressed llama single-domain intrabody targeting Rev displays broad-spectrum anti-HIV activity.

    Science.gov (United States)

    Boons, Eline; Li, Guangdi; Vanstreels, Els; Vercruysse, Thomas; Pannecouque, Christophe; Vandamme, Anne-Mieke; Daelemans, Dirk

    2014-12-01

    The HIV Rev protein mediates the transport of partially and unspliced HIV mRNA from the nucleus to the cytoplasm. Rev multimerizes on a secondary stem-loop structure present in the viral intron-containing mRNA species and recruits the cellular karyopherin CRM1 to export viral mRNAs from the nucleus to the cytoplasm. Previously we have identified a single-domain intrabody (Nb(190)), derived from a llama heavy-chain antibody, which efficiently inhibits Rev multimerization and suppresses the production of infectious virus. We recently mapped the epitope of this nanobody and demonstrated that Rev residues K20 and Y23 are crucial for interaction while residues V16, H53 and L60 are important to a lesser extent. Here, we generated cell lines stably expressing Nb(190) and assessed the capacity of these cell lines to suppress the replication of different HIV-1 subtypes. These cells stably expressing the single-domain antibody are protected from virus-induced cytopathogenic effect even in the context of high multiplicity of infection. In addition, the replication of different subtypes of group M and one strain of group O is significantly suppressed in these cell lines. Next, we analysed the natural variations of Rev amino acids in sequence samples from HIV-1 infected patients worldwide and assessed the effect of Nb(190) on the most prevalent polymorphisms occurring at the key epitope positions (K20 and Y23) in Rev. We found that Nb(190) was able to suppress the function of these Rev variants except for the K20N mutant, which was present in only 0.7% of HIV-1 sequence populations (n = 4632). Cells stably expressing the single-domain intrabody Nb(190) are protected against virus-induced cytopathogenic effect and display a selective survival advantage upon infection. In addition, Nb(190) suppresses the replication of a wide range of different HIV-1 subtypes. Large-scale sequence analysis reveals that the Nb(190) epitope positions in Rev are well conserved across major HIV-1

  8. Arabidopsis CDS blastp result: AK108458 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108458 002-143-D05 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|152379...1|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 2e-35 ...

  9. Arabidopsis CDS blastp result: AK070842 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070842 J023074O14 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|1523791...|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 1e-112 ...

  10. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    Science.gov (United States)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  11. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  12. Expression in Arabidopsis of a nucellus-specific promoter from watermelon (Citrullus lanatus).

    Science.gov (United States)

    Dwivedi, Krishna K; Roche, Dominique; Carman, John G

    2010-11-01

    Though many tissue-specific promoters have been identified, few have been associated specifically with the angiospermous megasporangium (nucellus). In the present study the 2000-bp regulatory region upstream to the watermelon, Citrullus lanatus (Thunb.) Matsum & Nakai, gene WM403 (GenBank accession no. AF008925), which shows nucellus-specific expression, was cloned from watermelon gDNA and fused to the β-glucuronidase reporter gene (GUS). The resulting plasmid, WM403 Prom::GUS(+), which also contained NPTII, was transformed into Arabidopsis thaliana ecotype Co1-0. Seedlings were selected on kanamycin-containing medium, and transformants were confirmed by PCR. GUS assays of T(3) transformants revealed weak promoter activation in epidermal layers of the placenta and locule septum during premeiotic ovule development but strong activation in the nucellus, embryo sac and early embryo, from early embryo sac formation to early globular embryo formation. Expression in seeds was absent thereafter. These results indicate that the WM403 promoter may be useful in driving nucellus-specific gene expression in plants including candidate genes for important nucellus-specific traits such as apospory or adventitious embryony. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Guo, Jiangbo; Xu, Wenzhong; Ma, Mi

    2012-01-01

    Highlights: ► Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. ► Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. ► Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. ► A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2–10 folds cadmium/arsenite and 2–3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  14. Reference: 398 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available modulate the photosynthetic potential of plant cells. Identification of genes required for light-induced chloroplast movement... is beginning to define the molecular machinery that controls these movement...s. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabi...dopsis thaliana) that displays attenuated chloroplast movements under intermediate and high light intensitie...s while maintaining a normal movement response under low light intensities. In wi

  15. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, de M.; Zaanen, van W.; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, van L.C.; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced

  16. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, M. de; Zaanen, W. van; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the sspectrum of effectiveness of P. rapae-induced

  17. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  18. Multi-element bioimaging of Arabidopsis thaliana roots

    DEFF Research Database (Denmark)

    Persson, Daniel Olof; Chen, Anle; Aarts, Mark G.M.

    2016-01-01

    Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using conventio......Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using...... omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images...... looked completely different, with iron bound mainly in the epidermis of the wild-type plants but confined to the cortical cell walls of the mutant. The method offers the power of inductively coupled plasma-mass spectrometry to be fully employed, thereby providing a basis for detailed studies of ion...

  19. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  20. Altered expression of Aurora kinases in Arabidopsis results in aneu- and polyploidization.

    Science.gov (United States)

    Demidov, Dmitri; Lermontova, Inna; Weiss, Oda; Fuchs, Joerg; Rutten, Twan; Kumke, Katrin; Sharbel, Timothy F; Van Damme, Daniel; De Storme, Nico; Geelen, Danny; Houben, Andreas

    2014-11-01

    Aurora is an evolutionary conserved protein kinase family involved in monitoring of chromosome segregation via phosphorylation of different substrates. In plants, however, the involvement of Aurora proteins in meiosis and in sensing microtubule attachment remains to be proven, although the downstream components leading to the targeting of spindle assembly checkpoint signals to anaphase-promoting complex have been described. To analyze the three members of Aurora family (AtAurora1, -2, and -3) of Arabidopsis we employed different combinations of T-DNA insertion mutants and/or RNAi transformants. Meiotic defects and the formation of unreduced pollen were revealed including plants with an increased ploidy level. The effect of reduced expression of Aurora was mimicked by application of the ATP-competitive Aurora inhibitor II. In addition, strong overexpression of any member of the AtAurora family is not possible. Only tagged or truncated forms of Aurora kinases can be overexpressed. Expression of truncated AtAurora1 resulted in a high number of aneuploids in Arabidopsis, while expression of AtAurora1-TAPi construct in tobacco resulted in 4C (possible tetraploid) progeny. In conclusion, our data demonstrate an essential role of Aurora kinases in the monitoring of meiosis in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhao, Jun; Gao, Yulong; Zhang, Zhiyuan; Chen, Tianzi; Guo, Wangzhen; Zhang, Tianzhen

    2013-08-06

    Cotton (Gossypium spp.) is widely cultivated due to the important economic value of its fiber. However, extreme environmental degradation impedes cotton growth and production. Receptor-like kinase (RLK) proteins play important roles in signal transduction and participate in a diverse range of processes in response to plant hormones and environmental cues. Here, we introduced an RLK gene (GbRLK) from cotton into Arabidopsis and investigated its role in imparting abiotic stress tolerance. GbRLK transcription was induced by exogenously supplied abscisic acid (ABA), salicylic acid, methyl jasmonate, mock drought conditions and high salinity. We cloned the promoter sequence of this gene via self-formed adaptor PCR. Sequence analysis revealed that the promoter region contains many cis-acting stress-responsive elements such as ABRE, W-Box, MYB-core, W-Box core, TCA-element and others. We constructed a vector containing a 1,890-bp sequence in the 5' region upstream of the initiation codon of this promoter and transformed it into Arabidopsis thaliana. GUS histochemical staining analysis showed that GbRLK was expressed mainly in leaf veins, petioles and roots of transgenic Arabidopsis, but not in the cotyledons or root hairs. GbRLK promoter activity was induced by ABA, PEG, NaCl and Verticillium dahliae. Transgenic Arabidopsis with constitutive overexpression of GbRLK exhibited a reduced rate of water loss in leaves in vitro, along with improved salinity and drought tolerance and increased sensitivity to ABA compared with non-transgenic Col-0 Arabidopsis. Expression analysis of stress-responsive genes in GbRLK Arabidopsis revealed that there was increased expression of genes involved in the ABA-dependent signaling pathway (AtRD20, AtRD22 and AtRD26) and antioxidant genes (AtCAT1, AtCCS, AtCSD2 and AtCSD1) but not ion transporter genes (AtNHX1, AtSOS1). GbRLK is involved in the drought and high salinity stresses pathway by activating or participating in the ABA signaling

  2. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    Lacoste, J.; Cohen, L.; Hiscott, J.

    1991-01-01

    The effect of constitutive Tax expression on the interaction of NF-κ B with its recognition sequence and on NF-κ B-dependent gene expression was examined in T lymphoid Jurkat cell lines (19D and 9J) stably transformed with a Tax expression vector. Tax expressing T cell lines contained a constitutive level of NF-κ B binding activity, detectable by mobility shift assay and uv cross-linking using a palindromic NF-κ B probe homologous to the interferon beta PRDII site. In Jurkat and NC2.10 induction with phorbol esters resulted in the appearance of new DNA binding proteins of 85, 75, and 54 kDa, whereas in Tax expressing cells the 85-kDa protein and a 92-kDa DNA binding protein were constitutively induced. Expression of Tax protein in 19D and 9J resulted in transcription of the endogenous NF-kappa B-dependent granulocyte-macrophage colony stimulating factor gene and increased basal level expression of transfected NF-kappa B-regulated promoters. Nonetheless transcription of both the endogenous and the transfected gene was inducible by PMA treatment. Tax expression in Jurkat T cells may alter the stoichiometry of NF-kappa B DNA binding proteins and thus change the expression of NF-kappa B-regulated promoters

  3. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.

    Science.gov (United States)

    Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C

    2016-02-01

    Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  4. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.

    Science.gov (United States)

    Lindsey, Benson E; Rivero, Luz; Calhoun, Chistopher S; Grotewold, Erich; Brkljacic, Jelena

    2017-10-17

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and

  5. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  6. Biochemical transformation of deoxythymidine kinase-deficient mouse cells with uv-irradiated equine herpesvirus type 1

    International Nuclear Information System (INIS)

    Allen, G.P.; McGowan, J.J.; Gentry, G.A.; Randall, C.C.

    1978-01-01

    A line of 3T3 mouse cells lacking deoxythymidine kinase (dTK - ) was stably transformed to the dTK + phenotype after exposure to uv-irradiated equine herpesvirus type 1 (EHV-1). Biochemical transformants were isolated in a system selective for the dTK + phenotype (Eagle minimal essential medium containing 10 -4 M hypoxanthine, 6 x 10 -7 M aminopterin, and 2 x 10 -5 M deoxythymidine). Transformation was accompanied by the acquisition of a dTK activity with immunological, electrophoretic, and biochemical characteristics identical to those of the dTK induced by EHV-1 during productive infection. The transformed cells have been maintained in selective culture medium for more than 50 passages and have retained the capacity to express EHV-1-specific antigens. Spontaneous release of infectious virus has not been detected in the transformed lines, and the cells were not oncogenic for athymic nude mice. In contrast to normal dTK + 3T3 cells, EHV-1 transformants were unable to grow in the presence of arabinosylthymine, a drug selectively phosphorylated by herpesvirus-coded dTK's. These results indicate that a portion of the EHV-1 genome is able to persist in the transformed cells for many generations and be expressed as an enzymatically active viral gene product

  7. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: mami@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  8. Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula.

    Directory of Open Access Journals (Sweden)

    Wun S Chao

    Full Text Available Quantitative real-time polymerase chain reaction (qRT-PCR is the most important tool in measuring levels of gene expression due to its accuracy, specificity, and sensitivity. However, the accuracy of qRT-PCR analysis strongly depends on transcript normalization using stably expressed reference genes. The aim of this study was to find internal reference genes for qRT-PCR analysis in various experimental conditions for seed, adventitious underground bud, and other organs of leafy spurge. Eleven candidate reference genes (BAM4, PU1, TRP-like, FRO1, ORE9, BAM1, SEU, ARF2, KAPP, ZTL, and MPK4 were selected from among 171 genes based on expression stabilities during seed germination and bud growth. The other ten candidate reference genes were selected from three different sources: (1 3 stably expressed leafy spurge genes (60S, bZIP21, and MD-100 identified from the analyses of leafy spurge microarray data; (2 3 orthologs of Arabidopsis "general purpose" traditional reference genes (GAPDH_1, GAPDH_2, and UBC; and (3 4 orthologs of Arabidopsis stably expressed genes (UBC9, SAND, PTB, and F-box identified from Affymetrix ATH1 whole-genome GeneChip studies. The expression stabilities of these 21 genes were ranked based on the C(T values of 72 samples using four different computation programs including geNorm, Normfinder, BestKeeper, and the comparative ΔC(T method. Our analyses revealed SAND, PTB, ORE9, and ARF2 to be the most appropriate reference genes for accurate normalization of gene expression data. Since SAND and PTB were obtained from 4 orthologs of Arabidopsis, while ORE9 and ARF2 were selected from 171 leafy spurge genes, it was more efficient to identify good reference genes from the orthologs of other plant species that were known to be stably expressed than that of randomly testing endogenous genes. Nevertheless, the two newly identified leafy spurge genes, ORE9 and ARF2, can serve as orthologous candidates in the search for reference genes

  9. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S.

    2008-03-01

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  10. Induction and characterization of Arabidopsis mutants by Ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S. [Gyeongbuk Institute for Bio Industry, Andong (Korea, Republic of)

    2008-03-15

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and {gamma}-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  11. Unravelling the potential of a new uracil phosphoribosyltransferase (UPRT) from Arabidopsis thaliana in sensitizing HeLa cells towards 5-fluorouracil.

    Science.gov (United States)

    Narayanan, Sharmila; Sanpui, Pallab; Sahoo, Lingaraj; Ghosh, Siddhartha Sankar

    2016-10-01

    In silico studies with uracil phosphoribosyltransferase from Arabidopsis thaliana (AtUPRT) revealed its lower binding energies for uracil and 5-fluorouracil (5-FU) as compared to those of bacterial UPRT indicating the prospective of AtUPRT in gene therapy implications. Hence, AtUPRT was cloned and stably expressed in cervical cancer cells (HeLa) to investigate the effect of prodrug 5-FU on these transfected cancer cells. The treatment of AtUPRT-expressing HeLa (HeLa-UPP) cells with 5-FU for 72h resulted in significant decrease in cell viability. Moreover, 5-FU was observed to induce apoptosis and perturb mitochondrial membrane potential in HeLa-UPP cells. While cell cycle analysis revealed significant S-phase arrest as a result of 5-FU treatment in HeLa-UPP cells, quantitative gene expression analysis demonstrated simultaneous upregulation of important cell cycle related genes, cyclin D1 and p21. The survival fractions of non-transfected, vector-transfected and AtUPRT-transfected HeLa cells, following 5-FU treatment, were calculated to be 0.425, 0.366 and 0.227, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    Science.gov (United States)

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-07-01

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na + effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na + uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na + into the xylem constitute the major pathway for the accumulation of Na + in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na + accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na + transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na + could not be accumulated. In contrast, in NaCl the plants that accumulated Na + lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na + uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  14. Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks

    Science.gov (United States)

    2012-09-21

    Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks Paulo Shakarian1*, J. Kenneth Wickiser2 1 Paulo Shakarian...significantly attacked. Citation: Shakarian P, Wickiser JK (2012) Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks...to 00-00-2012 4. TITLE AND SUBTITLE Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks 5a. CONTRACT NUMBER 5b

  15. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis

    DEFF Research Database (Denmark)

    Ma, Ligeng; Chen, Chen; Liu, Xigang

    2005-01-01

    Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional...... with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression...... patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice...

  16. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Yan-Zhuo Yang

    Full Text Available The plant hormone abscisic acid (ABA plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  17. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Science.gov (United States)

    Yang, Yan-Zhuo; Tan, Bao-Cai

    2014-01-01

    The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  18. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana

    Science.gov (United States)

    2011-01-01

    Background All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing. Results This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely related sister species

  19. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation.

    Science.gov (United States)

    Nakamura, Shinya; Mano, Shoji; Tanaka, Yuji; Ohnishi, Masato; Nakamori, Chihiro; Araki, Masami; Niwa, Tomoko; Nishimura, Mikio; Kaminaka, Hironori; Nakagawa, Tsuyoshi; Sato, Yutaka; Ishiguro, Sumie

    2010-01-01

    We constructed two series of Gateway binary vectors, pGWBs and R4pGWBs, possessing the bialaphos resistance gene (bar) as a selection marker for plant transformation. The reporters and tags employed in this system are sGFP, GUS, LUC, EYFP, ECFP, G3GFP, mRFP, TagRFP, 6xHis, FLAG, 3xHA, 4xMyc, 10xMyc, GST, T7 and TAP. Selection of Arabidopsis transformants with BASTA was successfully carried out using both plate-grown and soil-grown seedlings. Transformed rice calli and suspension-cultured tobacco cells were selected on plates containing BASTA or glufosinate-ammonium. These vectors are compatible with existing pGWB and R4pGWB vectors carrying kanamycin and hygromycin B resistance.

  20. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection

    Science.gov (United States)

    Pseudomonas syringae is a Gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful ...

  1. Adsorption and inhibition of CuO nanoparticles on Arabidopsis thaliana root

    Science.gov (United States)

    Xu, Lina

    2018-02-01

    CuO NPs, the size ranging from 20 to 80 nm were used to detect the adsorption and inhibition on the Arabidopsis thaliana roots. In this study, CuO NPs were adsorbed and agglomerated on the surface of root top after exposed for 7 days. With the increasing of CuO NPs concentrations, CuO NPs also adsorbed on the meristernatic zone. The growth of Arabidopsis thaliana lateral roots were also inhibited by CuO NPs exposure. The Inhibition were concentration dependent. The number of root top were 246, 188 and 123 per Arabidopsis thaliana, respectively. The number of root tops after CuO NPs exposure were significantly decreased compared with control groups. This results suggested the phytotoxicity of CuO NPs on Arabidopsis thaliana roots.

  2. Isolation and characterization of CNGC17 gene from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Yamagami, Mutsumi; Kobayashi, Daisuke; Hisamatsu, Shun'ichi

    2007-01-01

    Phytoremediation is a possible countermeasure for cleaning up soil contaminated by 137 Cs, and development of plants which can effectively absorb 137 Cs is important for it. It is expected that capability of Cs extraction from soil can be strengthened by genetic alteration of the Cs + root-uptake mechanism of plants. This study aimed at elucidating the uptake mechanism of Cs + for future genetic engineering. Plant roots take up Cs + from the soil solution via transport proteins at the plasma membrane of root cells. Voltage-insensitive cation channels (VICCs) are a possible transfer route of Cs + , and they are encoded by cyclic-nucleotide gated channel (CNGC) and glutamate receptor (GLR) gene families. The genome of Arabidopsis thaliana contains 20 CNGC genes. We have cloned a putative AtCNGC17 gene from cDNAs which were generated with total-RNA obtained from leaves of Arabidopsis thaliana by RT-PCR. The cDNA contained 2163 bp with an ORF that encoded a protein consisting of 721 amino acids residues. The plasmid prepared by the insertion of the gene under a Taq promoter was used to transform an E. coli deficient in the three major K + uptake systems (Kdp, Trk, and Kup). Only the E. coli with AtCNGC17 gene grew in low K + concentration minimal medium. This result suggested that the AtCNGC17 protein has a function of K + uptake. Growth rates of the E. coli cells expressing the gene were strongly inhibited by CsCl in low K + concentration minimal medium, suggesting that the AtCNGC17 transporter also carries Cs + . (author)

  3. Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Morales Andrea

    2008-05-01

    Full Text Available Abstract Background The isolation of green fluorescent protein (GFP and the development of spectral variants over the past decade have begun to reveal the dynamic nature of protein trafficking and organelle motility. In planta analyses of this dynamic process have typically been limited to only two organelles or proteins at a time in only a few cell types. Results We generated a transgenic Arabidopsis plant that contains four spectrally different fluorescent proteins. Nuclei, plastids, mitochondria and plasma membranes were genetically tagged with cyan, red, yellow and green fluorescent proteins, respectively. In addition, methods to track nuclei, mitochondria and chloroplasts and quantify the interaction between these organelles at a submicron resolution were developed. These analyzes revealed that N-ethylmaleimide disrupts nuclear-mitochondrial but not nuclear-plastids interactions in root epidermal cells of live Arabidopsis seedlings. Conclusion We developed a tool and associated methods for analyzing the complex dynamic of organelle-organelle interactions in real time in planta. Homozygous transgenic Arabidopsis (Kaleidocell is available through Arabidopsis Biological Resource Center.

  4. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery.

    Science.gov (United States)

    Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi

    2017-07-01

    The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.

  5. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Science.gov (United States)

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  6. Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-09-01

    Full Text Available Stilbene synthase (STS is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid, that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

  7. Comparative analysis of drought resistance genes in Arabidopsis and rice

    NARCIS (Netherlands)

    Trijatmiko, K.R.

    2005-01-01

    Keywords: rice, Arabidopsis, drought, genetic mapping,microarray, transcription factor, AP2/ERF, SHINE, wax, stomata, comparative genetics, activation tagging, Ac/Ds, En/IThis thesis describes the use of genomics information and tools from Arabidopsis and

  8. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    DEFF Research Database (Denmark)

    Lindermayr, C.; Saalbach, G.; Durner, J.

    2005-01-01

    Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues...... to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S......-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were...

  9. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  10. Biolistic transformation of Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.).

    Science.gov (United States)

    Wu, Hao; Acanda, Yosvanis; Jia, Hongge; Wang, Nian; Zale, Janice

    2016-09-01

    The development of transgenic citrus plants by the biolistic method. A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.

  11. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  12. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species.

    Science.gov (United States)

    Dai, Ziyu; Deng, Shuang; Culley, David E; Bruno, Kenneth S; Magnuson, Jon K

    2017-08-01

    Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces

  13. Comparison of the spaceflight transcriptome of four commonly used Arabidopsis thaliana ecotypes

    Data.gov (United States)

    National Aeronautics and Space Administration — This experiment compared the spaceflight transcriptomes of four commonly used natural variants (ecotypes) of Arabidopsis thaliana using RNAseq. In nature Arabidopsis...

  14. Update History of This Database - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Arabidopsis Phenome Database Update History of This Database Date Update contents 2017/02/27 Arabidopsis Phenome Data...base English archive site is opened. - Arabidopsis Phenome Database (http://jphenom...e.info/?page_id=95) is opened. About This Database Database Description Download License Update History of This Database... Site Policy | Contact Us Update History of This Database - Arabidopsis Phenome Database | LSDB Archive ...

  15. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  16. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic Arabidopsis thaliana lateral branches.

    Science.gov (United States)

    Zhao, Daqiu; Xia, Xing; Wei, Mengran; Sun, Jing; Meng, Jiasong; Tao, Jun

    2017-12-01

    microRNAs (miRNAs) play critical regulatory roles in plant growth and development. In the present study, the function of herbaceous peony ( Paeonia lactiflora Pall.) miR156e-3p in the regulation of color formation has been investigated. Firstly, P. lactiflora miR156e-3p precursor sequence (pre-miR156e-3p) was isolated. Subsequently, the overexpression vector of pre-miR156e-3p was constructed and transformed into Arabidopsis thaliana . Moreover, the medium screening, GUS staining, polymerase chain reaction (PCR) of the GUS region and real-time quantitative PCR (qRT-PCR) of miR156e-3p all confirmed that the purpose gene had been successfully transferred into Arabidopsis plants and expressed, which resulted in apparent purple lateral branches. And this change in color was caused by the improved anthocyanin accumulation. In addition, expression analysis had shown that the level of miR156e-3p transcript was increased, while transcription level of target gene squamosa promoter binding protein-like gene ( SPL1 ), encoding SPL transcription factor that negatively regulated anthocyanin accumulation, was repressed in miR156e-3p-overexpressing transgenic plants, and its downstream gene dihydroflavonol 4-reductase gene ( DFR ) that was directly involved in anthocyanin biosynthesis was strongly expressed, which resulted in anthocyanin accumulation of Arabidopsis lateral branches. These findings would improve the understanding of miRNAs regulation of color formation in P. lactiflora .

  17. A difference tracking algorithm based on discrete sine transform

    Science.gov (United States)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  18. A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis

    DEFF Research Database (Denmark)

    Næsted, Henrik; Fennema, M.; Hao, L.

    1999-01-01

    , including Arabidopsis, tobacco, oil seed rape and rice, do not express detectable haloalkane dehalogenase activities, and that wild-type Arabidopsis grows in the presence of DCE. In contrast, DCE applied as a volatile can be used to select on plates or in soil transgenic Arabidopsis which express dhl...

  19. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei

    International Nuclear Information System (INIS)

    Lorkovic, Zdravko J.; Hilscher, Julia; Barta, Andrea

    2008-01-01

    SR proteins are multidomain splicing factors which are important for spliceosome assembly and for regulation of alternative splicing. In mammalian nuclei these proteins localise to speckles from where they are recruited to transcription sites. By using fluorescent protein fusion technology and different experimental approaches it has been shown that Arabidopsis SR proteins, in addition to diffuse nucleoplasmic staining, localise into an irregular nucleoplasmic network resembling speckles in mammalian cells. As Arabidopsis SR proteins fall into seven conserved sub-families we investigated co-localisation of members of the different sub-families in transiently transformed tobacco protoplast. Here we demonstrate the new finding that members of different SR protein sub-families localise into distinct populations of nuclear speckles with no, partial or complete co-localisation. This is particularly interesting as we also show that these proteins do interact in a yeast two-hybrid assay as well as in pull-down and in co-immunopreciptiation assays. Our data raise the interesting possibility that SR proteins are partitioned into distinct populations of nuclear speckles to allow a more specific recruitment to the transcription/pre-mRNA processing sites of particular genes depending on cell type and developmental stage

  20. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants.

    Science.gov (United States)

    Ceasar, S Antony; Ignacimuthu, S

    2011-09-01

    A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM L: -cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R(1) progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R(1) progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.

  1. Infection and RNA recombination of Brome mosaic virus in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Dzianott, Aleksandra; Bujarski, Jozef J.

    2004-01-01

    Ecotypes of Arabidopsis thaliana supported the replication and systemic spread of Brome mosaic virus (BMV) RNAs. Infection was induced either by manual inoculation with viral RNA or by BMV virions, demonstrating that virus disassembly did not prevent infection. When in vitro-transcribed BMV RNAs 1-3 were used, production of subgenomic RNA4 was observed, showing that BMV RNA replication and transcription had occurred. Furthermore, inoculations of the transgenic Arabidopsis line that expressed a suppressor of RNA interference (RNAi) pathway markedly increased the BMV RNA concentrations. Inoculations with designed BMV RNA3 recombination vectors generated both homologous and nonhomologous BMV RNA-RNA recombinants. Thus, all cellular factors essential for BMV RNA replication, transcription, and RNA recombination were shown to be present in Arabidopsis. The current scope of understanding of the model Arabidopsis plant system should facilitate the identification of these factors governing the BMV life cycle

  2. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hamama Islam Butt

    Full Text Available Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.

  3. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  4. Reference: 21 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ication of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis...cation of mutants of Arabidopsis defective in acclimation of photosynthesis to th

  5. Structure and biochemical function of a prototypical Arabidopsis U-box domain

    DEFF Research Database (Denmark)

    Andersen, Pernille; Kragelund, Birthe B; Olsen, Addie N

    2004-01-01

    U-box proteins, as well as other proteins involved in regulated protein degradation, are apparently over-represented in Arabidopsis compared with other model eukaryotes. The Arabidopsis protein AtPUB14 contains a typical U-box domain followed by an Armadillo repeat region, a domain organization t...

  6. Reassessing the role of phospholipase D in the Arabidopsis wounding response

    NARCIS (Netherlands)

    Bargmann, Bastiaan O.R.; Laxalt, Ana M.; Riet, Bas ter; Testerink, Christa; Merquiol, Emmanuelle; Mosblech, Alina; Leon Reyes, H.A.; Pieterse, C.M.J.; Haring, Michel A.; Heilmann, Ingo; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    Plants respond to wounding by means of a multitude of reactions, with the purpose of stifling herbivore assault. Phospholipase D (PLD) has previously been implicated in the wounding response. Arabidopsis (Arabidopsis thaliana) AtPLDa1 has been proposed to be activated in intact cells, and the

  7. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  8. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...

  9. MicroRNA-200b Suppresses Arsenic-transformed Cell Migration by Targeting Protein Kinase Cα and Wnt5b-Protein Kinase Cα Positive Feedback Loop and Inhibiting Rac1 Activation*

    Science.gov (United States)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2014-01-01

    MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3′-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation. PMID:24841200

  10. MicroRNA-200b suppresses arsenic-transformed cell migration by targeting protein kinase Cα and Wnt5b-protein kinase Cα positive feedback loop and inhibiting Rac1 activation.

    Science.gov (United States)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2014-06-27

    MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3'-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation. © 2014 by The American Society for Biochemistry and Molecular

  11. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongyan eGuo

    2015-05-01

    Full Text Available Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid, a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice.

  12. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.; Sanchez-Serrano, J.J.; Salinas, J.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  13. Reference: 150 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ridization, Pht1;4 was found mainly expressed in inorgan...physiological characterization of Arabidopsis pht1;4 high affinity phosphate transporter mutants. Using GUS-gene trap and in situ hyb

  14. Reference: 306 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of the endoreduplication cycle in Arabidopsis requires a plant homologue of archaeal DNA topoisomerase (topo) VI. To further understa...nd how DNA is endoreduplicated and how this process is r

  15. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Deng, Shuang; Culley, David E.; Bruno, Kenneth S.; Magnuson, Jon K.

    2017-06-19

    Background: Because of interest in the production of renewable bio-hydrocarbon fuels, various living organisms have been explored for their potential use in producing fuels and chemicals. The oil-producing (oleaginous) yeast Lipomyces starkeyi is the subject of active research regarding the production of lipids using a wide variety of carbon and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements using the tools of synthetic biology and metabolic engineering. However, using these tools for strain improvement requires the establishment of effective and reliable transformation methods with suitable selectable markers (antibiotic resistance or auxotrophic marker genes) and the necessary genetic elements (promoters and terminators) for expression of introduced genes. Chemical-based methods have been published, but suffer from low efficiency or the requirement for targeting to rRNA loci. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. Results: In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species and that the introduced DNA can be reliably integrated into the chromosomes of these species. The gene deletion of Ku70 and Pex10 was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial -glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1 promoter was also stably expressed in seven different Lipomyces species. Conclusion: The results from this study clearly demonstrate that Agrobacterium-mediated transformation is a reliable genetic tool for gene deletion and integration and expression of heterologous genes in L. starkeyi and other Lipomyces species.

  16. Nucleotide variation in ATHK1 region of Arabidopsis thaliana and its ...

    African Journals Online (AJOL)

    The ATHK1 gene in Arabidopsis encodes a putative histidine kinase that is transcriptionally upregulated in response to changes in external osmolarity. In this work, we investigated the nucleotide variability of the ATHK1 gene in a sample of 32 core Arabidopsis accessions originating from different ecoclimatic regions and ...

  17. Nictaba Homologs from Arabidopsis thaliana Are Involved in Plant Stress Responses

    Directory of Open Access Journals (Sweden)

    Lore Eggermont

    2018-01-01

    Full Text Available Plants are constantly exposed to a wide range of environmental stresses, but evolved complicated adaptive and defense mechanisms which allow them to survive in unfavorable conditions. These mechanisms protect and defend plants by using different immune receptors located either at the cell surface or in the cytoplasmic compartment. Lectins or carbohydrate-binding proteins are widespread in the plant kingdom and constitute an important part of these immune receptors. In the past years, lectin research has focused on the stress-inducible lectins. The Nicotiana tabacum agglutinin, abbreviated as Nictaba, served as a model for one family of stress-related lectins. Here we focus on three non-chimeric Nictaba homologs from Arabidopsis thaliana, referred to as AN3, AN4, and AN5. Confocal microscopy of ArathNictaba enhanced green fluorescent protein (EGFP fusion constructs transiently expressed in N. benthamiana or stably expressed in A. thaliana yielded fluorescence for AN4 and AN5 in the nucleus and the cytoplasm of the plant cell, while fluorescence for AN3 was only detected in the cytoplasm. RT-qPCR analysis revealed low expression for all three ArathNictabas in different tissues throughout plant development. Stress application altered the expression levels, but all three ArathNictabas showed a different expression pattern. Pseudomonas syringae infection experiments with AN4 and AN5 overexpression lines demonstrated a significantly higher tolerance of several transgenic lines to P. syringae compared to wild type plants. Finally, AN4 was shown to interact with two enzymes involved in plant defense, namely TGG1 and BGLU23. Taken together, our data suggest that the ArathNictabas represent stress-regulated proteins with a possible role in plant stress responses. On the long term this research can contribute to the development of more stress-resistant plants.

  18. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium.

  19. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium.

  20. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...... lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results...

  1. Reference: 510 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available in support of PSII activity, whereas the interaction of PsbO2 with PSII regulates the turnover... its degradation. The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem

  2. Genetic analysis of seed development in Arabidopsis thaliana = [Genetische analyse van de zaadontwikkeling in Arabidopsis thaliana

    NARCIS (Netherlands)

    Leon - Kloosterziel, K.

    1997-01-01


    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection

  3. Reference: 346 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available th a function in purine turnover in Arabidopsis. To our knowledge this is the fir...ock in allantoate catabolism. AtAAH transcript was detected in all tissues examined by RT-PCR, consistent wi

  4. Reference: 278 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects...gnaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsi

  5. The next generation of training for Arabidopsis researchers: bioinformatics and quantitative biology

    Science.gov (United States)

    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (P...

  6. Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering.

    Science.gov (United States)

    Dong, Wei; Stockwell, Virginia O; Goyer, Aymeric

    2015-12-01

    Thiamin is an essential nutrient in the human diet. Severe thiamin deficiency leads to beriberi, a lethal disease which is common in developing countries. Thiamin biofortification of staple food crops is a possible strategy to alleviate thiamin deficiency-related diseases. In plants, thiamin plays a role in the response to abiotic and biotic stresses, and data from the literature suggest that boosting thiamin content could increase resistance to stresses. Here, we tested an engineering strategy to increase thiamin content in Arabidopsis. Thiamin is composed of a thiazole ring linked to a pyrimidine ring by a methylene bridge. THI1 and THIC are the first committed steps in the synthesis of the thiazole and pyrimidine moieties, respectively. Arabidopsis plants were transformed with a vector containing the THI1-coding sequence under the control of a constitutive promoter. Total thiamin leaf content in THI1 plants was up approximately 2-fold compared with the wild type. THI1-overexpressing lines were then crossed with pre-existing THIC-overexpressing lines. Resulting THI1 × THIC plants accumulated up to 3.4- and 2.6-fold more total thiamin than wild-type plants in leaf and seeds, respectively. After inoculation with Pseudomonas syringae, THI1 × THIC plants had lower populations than the wild-type control. However, THI1 × THIC plants subjected to various abiotic stresses did not show any visible or biochemical changes compared with the wild type. We discuss the impact of engineering thiamin biosynthesis on the nutritional value of plants and their resistance to biotic and abiotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Reference: 356 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 006 Mar Plant molecular biology Deng Xingwang|Dong Li|Wang Lei|Xue Yongbiao|Zhang Yansheng|Zhang Yu'e ...ein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. 4 599-615 16525894 2

  8. Reference: 627 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available omal processing protease (GPP) from the fat-storing cotyledons of watermelon (Citrullus vulgaris) by column ...ptidase, and a Lon-protease. Specific antibodies against the peroxisomal Deg-protease from Arabidopsis (Deg15) identify the watermelo

  9. Identification of proteins interacting with Arabidopsis ACD11

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Joensen, Jan; McKinney, Lea V

    2009-01-01

    The Arabidopsis ACD11 gene encodes a sphingosine transfer protein and was identified by the accelerated cell death phenotype of the loss of function acd11 mutant, which exhibits heightened expression of genes involved in the disease resistance hypersensitive response (HR). We used ACD11 as bait...... in a yeast two-hybrid screen of an Arabidopsis cDNA library to identify ACD11 interacting proteins. One interactor identified is a protein of unknown function with an RNA recognition motif (RRM) designated BPA1 (binding partner of ACD11). Co-immunoprecipitation experiments confirmed the ACD11-BPA1...

  10. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  11. From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research[OA

    Science.gov (United States)

    Lavagi, Irene; Estelle, Mark; Weckwerth, Wolfram; Beynon, Jim; Bastow, Ruth M.

    2012-01-01

    In the face of an increasing world population and climate instability, the demands for food and fuel will continue to rise. Plant science will be crucial to help meet these exponentially increasing requirements for food and fuel supplies. Fundamental plant research will play a major role in providing key advances in our understanding of basic plant processes that can then flow into practical advances through knowledge sharing and collaborations. The model plant Arabidopsis thaliana has played a major role in our understanding of plant biology, and the Arabidopsis community has developed many tools and resources to continue building on this knowledge. Drawing from previous experience of internationally coordinated projects, The international Arabidopsis community, represented by the Multinational Arabidopsis Steering Committee (MASC), has drawn up a road map for the next decade of Arabidopsis research to inform scientists and decision makers on the future foci of Arabidopsis research within the wider plant science landscape. This article provides a summary of the MASC road map. PMID:22751212

  12. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    Energy Technology Data Exchange (ETDEWEB)

    Gaibelet, Gérald [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France); Tercé, François [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Bertrand-Michel, Justine [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Lipidomic Platform Metatoul, Toulouse (France); Allart, Sophie [Plateau Technique d’Imagerie Cellulaire, INSERM U1043, Toulouse (France); Azalbert, Vincent [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Lecompte, Marie-France [INSERM U563, Faculté de Médecine de Rangueil, Toulouse (France); Collet, Xavier [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Orlowski, Stéphane, E-mail: stephane.orlowski@cea.fr [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France)

    2013-11-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  13. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    International Nuclear Information System (INIS)

    Gaibelet, Gérald; Tercé, François; Bertrand-Michel, Justine; Allart, Sophie; Azalbert, Vincent; Lecompte, Marie-France; Collet, Xavier; Orlowski, Stéphane

    2013-01-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  14. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana

    Science.gov (United States)

    Moseyko, N.; Feldman, L. J.

    2001-01-01

    This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.

  15. Reference: 789 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis...d CHL27 proteins. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene exp

  16. Reference: 689 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the high affinity of MOT1 allows plants to obtain scarce Mo from soil. An Arabidopsis thaliana high-affinity... molybdate transporter required for efficient uptake of molybdate from soil. 47 18807-12 18003916 2007 Nov P

  17. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    International Nuclear Information System (INIS)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  18. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  19. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.

    Science.gov (United States)

    Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

  20. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

    Directory of Open Access Journals (Sweden)

    Stephan B Jekat

    2013-07-01

    Full Text Available Structural phloem proteins (P-proteins are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently evidenced to be encoded by the widespread SEO gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. 

  1. Reference: 438 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ity and drought tolerance in Arabidopsis thaliana. 18 6902-12 16943431 2006 Sep Molecular and cellular bio...logy Chen Zhizhong|Gong Zhizhong|Hong Xuhui|Jablonowski Daniel|Ren Xiaozhi|Schaffrath Raffael|Zhang Hairong|Zhou Xiaofeng|Zhu Jian-Kang

  2. Reference: 439 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available or IID (TFIID) complex. Overexpression of atTAF10 under the control of the 35S promoter in Arabidopsis impro...is TATA box-binding protein (TBP)-associated factor 10 (atTAF10), which constitutes the transcriptional fact

  3. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis

    NARCIS (Netherlands)

    Dekkers, B.J.W.; Schuurmans, J.A.M.J.; Smeekens, J.C.M.

    2008-01-01

    Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between

  4. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  5. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status

    KAUST Repository

    Lu, Shiyou; Zhao, Huayan; Des Marais, David L.; Parsons, Eugene P.; Wen, Xiaoxue; Xu, Xiaojing; Bangarusamy, Dhinoth Kumar; Wang, Guangchao; Rowland, Owen; Juenger, Thomas E.; Bressan, Ray Anthony; Jenks, Matthew A.

    2012-01-01

    Mutation of the ECERIFERUM9 (CER9) gene in Arabidopsis (Arabidopsis thaliana) causes elevated amounts of 18-carbon-length cutin monomers and a dramatic shift in the cuticular wax profile (especially on leaves) toward the very-long-chain free fatty

  6. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis

    Science.gov (United States)

    Xu, Chunxiao; Yin, Xiao; Lv, Yan; Wu, Changzhe; Zhang, Yuxia; Song, Tao

    2012-03-01

    The blue light receptor, cryptochrome, has been suggested to act as a magnetoreceptor based on the proposition that photochemical reactions are involved in sensing the geomagnetic field. But the effects of the geomagnetic field on cryptochrome remain unclear. Although the functions of cryptochrome have been well demonstrated for Arabidopsis, the effect of the geomagnetic field on the growth of Arabidopsis and its mechanism of action are poorly understood. We eliminated the local geomagnetic field to grow Arabidopsis in a near-null magnetic field and found that the inhibition of Arabidopsis hypocotyl growth by white light was weakened, and flowering time was delayed. The expressions of three cryptochrome-signaling-related genes, PHYB, CO and FT also changed; the transcript level of PHYB was elevated ca. 40%, and that of CO and FT was reduced ca. 40% and 50%, respectively. These data suggest that the effects of a near-null magnetic field on Arabidopsis are cryptochrome-related, which may be revealed by a modification of the active state of cryptochrome and the subsequent signaling cascade.

  7. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haibing [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Wei, Hui [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Ma, Guojie [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Antunes, Mauricio S. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Vogt, Stefan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; Cox, Joseph [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Zhang, Xiao [Department of Horticulture, Purdue University, West Lafayette IN USA; Liu, Xiping [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Bu, Lintao [National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Gleber, S. Charlotte [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; Carpita, Nicholas C. [Department of Biological Sciences, Purdue University, West Lafayette IN USA; Department of Botany and Plant Pathology, Purdue University, West Lafayette IN USA; Makowski, Lee [Department of Bioengineering, Northeastern University, Boston MA USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston MA USA; Himmel, Michael E. [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Tucker, Melvin P. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; McCann, Maureen C. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Murphy, Angus S. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park MD USA; Peer, Wendy A. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park MD USA; Department of Environmental Science and Technology, University of Maryland, College Park MD USA

    2016-04-07

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.

  8. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  10. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana.

    Science.gov (United States)

    Nahar, Noor; Rahman, Aminur; Nawani, Neelu N; Ghosh, Sibdas; Mandal, Abul

    2017-11-01

    We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition. Furthermore, when exposed to 100μM arsenate for 35days the amount of arsenic accumulated in the shoots of transgenic plants was significantly lower (28μg/g d wt.) than that found in the shoots of non-transgenic controls (40μg/g d wt.). However, the arsenic content in the roots of transgenic plants was significantly higher (2400μg/g d. wt.) than that (2100μg/g d. wt.) observed in roots of wild type plants. We have demonstrated that Arabidopsis thaliana AtACR2 gene is a potential candidate for genetic engineering of plants to develop new crop cultivars that can be grown on arsenic contaminated fields to reduce arsenic content of the soil and can become a source of food containing no arsenic or exhibiting substantially reduced amount of this metalloid. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes

    Science.gov (United States)

    Nallu, Sumitha; Wang, Lin; Botanga, Christopher J.; Gomez, S. Karen; Costa, Liliana M.; Harrison, Maria J.; Samac, Deborah A.; Glazebrook, Jane; Katagiri, Fumiaki; Gutierrez-Marcos, Jose F.; VandenBosch, Kathryn A.

    2013-01-01

    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species. PMID:23527067

  12. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  13. Divergent regulation of Arabidopsis SAUR genes

    NARCIS (Netherlands)

    Mourik, van Hilda; Dijk, van Aalt D.J.; Stortenbeker, Niek; Angenent, Gerco C.; Bemer, Marian

    2017-01-01

    Background: Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we

  14. Reference: 359 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 359 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16531491i Cnops Gerda...leaf development in Arabidopsis thaliana. 4 852-66 16531491 2006 Apr The Plant cell Azmi Abdelkrim|Cnops Gerda

  15. Reference: 671 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available with distinct vegetative or constitutive and reproductive expression patterns. In Arabidopsis thaliana, ectopic...ractions among the major classes of actins and ABPs, we ectopically coexpressed reproductive profilin (PRF4)...coexpression of these reproductive, but not vegetative, ABP isovariants suppressed the ectopic

  16. Arabidopsis CDS blastp result: AK106306 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106306 002-101-C10 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 3e-89 ...

  17. Arabidopsis CDS blastp result: AK109848 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109848 002-148-F05 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-73 ...

  18. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J

    2008-07-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.

  19. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang [Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Chen, Fan [Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080 (China); Lu, Congming, E-mail: lucm@ibcas.ac.cn [Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  20. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    International Nuclear Information System (INIS)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang; Chen, Fan; Lu, Congming

    2012-01-01

    Highlights: ► Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. ► Region conferring tissue specific and light inducible expression of Rca was identified. ► −58 to +43 bp region mediates tissue-specific expression of rice Rca. ► Light inducible expression of rice Rca is mediated by −297 to −58 bp region. ► Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene β-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from −297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (−1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from −58 to +43 bp, while light-inducible expression of Rca is mediated by the region from −297 to −58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  1. Exploring valid reference genes for quantitative real - time rt - pce studies of hydrogenperoxide signaling in arabidopsis

    International Nuclear Information System (INIS)

    Zhou, H.; Han, B.; Xie, Y.; Zhang, J.; Shen, W.

    2015-01-01

    Hydrogen peroxide (H/sub 2/O/sub 2/ ) acts as a signaling molecule modulating the expression of various genes in plants. However, the reference gene(s) used for gene expression analysis of H/sub 2/O/sub 2/ signaling is still arbitrary. A reliable result obtained by quantitative real-time RT-PCR (RT-qPCR) highly depends on accurate transcript normalization using stably expressed reference genes, whereas the inaccurate normalization could easily lead to the false conclusions. In this report, by using geNorm and NormFinder algorithms, 12 candidate reference genes were evaluated and compared in root and shoot tissues of Arabidopsis upon different doses of H/sub 2/O/sub 2/. The results revealed that, in our experimental conditions, three novel reference genes (TIP41-like, UKN, and UBC21) were identified and validated as suitable reference genes for RT-qPCR normalization in both root and shoot tissues under oxidative stress. This conclusion was further confirmed by publicly available microarray data of methyl viologen and drought stress. In comparison with a single reference gene (EF-1a), the expression pattern of ZAT12 modulated by H/sub 2/O/sub 2/, when using TIP41-like, UKN, and UBC21 as multiple reference gene(s), was similar with the previous reports by using northern blotting. Thus, we proposed that these three reference genes might be good candidates for other researchers to include in their reference gene validation in gene expression studies under H/sub 2/O/sub 2/ related oxidative stress. (author)

  2. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  3. Comparative radioresistance of chronically irradiated populations of Arabidopsis thaliana (L.) Heynh

    International Nuclear Information System (INIS)

    Dineva, S.B.; Abramov, V.I.; Shevchenko, V.A.

    1994-01-01

    The radioresistance of seeds of populations of Arabidopsis thaliana (L.) Heynh. growing for 5 years in the regions with different levels of radioactive contamination within 30 km zone of Chernobyl NPP was studied. The analysis of comparative radiosensitivity by root test was performed. It has been shown that plants from arabidopsis population growing under chronic irradiation did not gain an increased radioresistance. The data obtained shown that they are more radiosensitive

  4. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  5. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    Science.gov (United States)

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-30

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower.

  6. Reference: 751 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 751 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18390806i Sitaraman ...unctions during Arabidopsis embryo and floral development. 2 672-81 18390806 2008 Jun Plant physiology Bui Minh|Liu Zhongchi|Sitaraman Jayashree

  7. The Arabidopsis cytosolic proteome

    DEFF Research Database (Denmark)

    Ito, Jun; Parsons, Harriet Tempé; Heazlewood, Joshua L.

    2014-01-01

    compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted...

  8. Reference: 119 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of the Arabidopsis homolog of MSH4 (AtMSH4). We demonstrate that AtMSH4 expression can only be detected in floral tissues, consisten...chromosomes. A T-DNA insertional mutant (Atmsh4) exhibited normal vegetative growth but a severe reduction in fertility, consistent

  9. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor

    DEFF Research Database (Denmark)

    Pedersen, U B; Norby, B; Jensen, Anders A.

    1994-01-01

    Human dopamine D1a and D1b receptors were stably expressed in Baby Hamster Kidney (BHK) or Chinese Hamster Ovary (CHO) cells. [3H]SCH23390 saturation experiments indicated the presence of only a single binding site in the D1a expressing cell line with a Kd of 0.5 nM. In D1b expressing cell lines...

  10. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.

    Science.gov (United States)

    Zhong, Chunmei; Xu, Hao; Ye, Siting; Wang, Shiyi; Li, Lingfei; Zhang, Shengchun; Wang, Xiaojing

    2015-11-01

    The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Arabidopsis CDS blastp result: AK104980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104980 001-125-D09 At1g70550.2 expressed protein similar to hypothetical protein ...GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabido

  12. Arabidopsis CDS blastp result: AK287673 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287673 J065121E18 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-17 ...

  13. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  14. Arabidopsis CDS blastp result: AK241712 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241712 J065197H24 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-27 ...

  15. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  16. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 2e-45 ...

  17. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-88 ...

  18. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-28 ...

  19. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-85 ...

  20. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes.

    Science.gov (United States)

    Krzyczmonik, Katarzyna; Wroblewska-Swiniarska, Agata; Swiezewski, Szymon

    2017-07-03

    Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.

  1. Radiosensitivity of Arabidopsis thaliana L. in condition of influence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Shershunova, V.I.

    2000-01-01

    Arabidopsis thaliana is a convenient genetic object. This work represents the date of laboratory experiments concerning research of influence of chronic γ-irradiation on plants of arabidopsis at rosette stage (short stemmed mutant Lansberg Erecta). The findings contribute to the high sensitivity of rosette stage of arabidopsis to irradiation by γ-rays in low doses (0.67-10.0 cGy). It is shown in depressing effects of ionising radiation on growth, development, vitality and bearing of plants, but also in hightened output morphological anomalies of plants and embryonic lethalities in pods. (authors)

  2. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    International Nuclear Information System (INIS)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-01-01

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis

  3. A comparative map viewer integrating genetic maps for Brassica and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Erwin Timothy A

    2007-07-01

    Full Text Available Abstract Background Molecular genetic maps provide a means to link heritable traits with underlying genome sequence variation. Several genetic maps have been constructed for Brassica species, yet to date, there has been no simple means to compare this information or to associate mapped traits with the genome sequence of the related model plant, Arabidopsis. Description We have developed a comparative genetic map database for the viewing, comparison and analysis of Brassica and Arabidopsis genetic, physical and trait map information. This web-based tool allows users to view and compare genetic and physical maps, search for traits and markers, and compare genetic linkage groups within and between the amphidiploid and diploid Brassica genomes. The inclusion of Arabidopsis data enables comparison between Brassica maps that share no common markers. Analysis of conserved syntenic blocks between Arabidopsis and collated Brassica genetic maps validates the application of this system. This tool is freely available over the internet on http://bioinformatics.pbcbasc.latrobe.edu.au/cmap. Conclusion This database enables users to interrogate the relationship between Brassica genetic maps and the sequenced genome of A. thaliana, permitting the comparison of genetic linkage groups and mapped traits and the rapid identification of candidate genes.

  4. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  5. Arabidopsis CDS blastp result: AK103126 [KOME

    Lifescience Database Archive (English)

    Full Text Available 0S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-129 ...

  6. Arabidopsis CDS blastp result: AK073288 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073288 J033028L24 At1g70550.2 expressed protein similar to hypothetical protein G...B:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabidop

  7. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  8. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  9. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  10. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  11. Arabidopsis CDS blastp result: AK110467 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110467 002-166-G08 At3g03050.1 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-7 (gi:962

  12. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  13. Arabidopsis CDS blastp result: AK058440 [KOME

    Lifescience Database Archive (English)

    Full Text Available 20S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-92 ...

  14. Reference: 486 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available time in many plant species through the photoperiod and vernalization pathways, re...cipates in both the photoperiod and vernalization pathways in Arabidopsis thaliana by regulating expression ... of VIN3 in a photoperiod-dependent manner. A PHD finger protein involved in both the vernalization and photoperiod pathways

  15. Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation.

    Science.gov (United States)

    Nahampun, Hartinio N; López-Arredondo, Damar; Xu, Xing; Herrera-Estrella, Luis; Wang, Kan

    2016-05-01

    Bacterial phosphite oxidoreductase gene and chemical phosphite can be used as a selection system for Agrobacterium -mediated maize transformation. Application of phosphite (Phi) on plants can interfere the plant metabolic system leading to stunted growth and lethality. On the other hand, ectopic expression of the ptxD gene in tobacco and Arabidopsis allowed plants to grow in media with Phi as the sole phosphorous source. The phosphite oxidoreductase (PTXD) enzyme catalyzes the conversion of Phi into phosphate (Pi) that can then be metabolized by plants and utilized as their essential phosphorous source. Here we assess an alternative selectable marker based on a bacterial ptxD gene for Agrobacterium-mediated maize transformation. We compared the transformation frequencies of maize using either the ptxD/Phi selection system or a standard herbicide bar/bialaphos selection system. Two maize genotypes, a transformation amenable hybrid Hi II and an inbred B104, were tested. Transgene presence, insertion copy numbers, and ptxD transcript levels were analyzed and compared. This work demonstrates that the ptxD/Phi selection system can be used for Agrobacterium-mediated maize transformation of both type I and type II callus culture and achieve a comparable frequency as that of the herbicide bar/bialaphos selection system.

  16. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shinozaki, Kazuo [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 (Japan); Yamaguchi-Shinozaki, Kazuko, E-mail: akys@mail.ecc.u-tokyo.ac.jp [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-07-18

    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.

  17. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  18. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  19. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  20. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  1. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  2. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    Science.gov (United States)

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    Science.gov (United States)

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. © 2011 Blackwell Publishing Ltd.

  4. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    Science.gov (United States)

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  5. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Directory of Open Access Journals (Sweden)

    Uppalapati Srinivasa R

    2011-10-01

    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to

  6. Arabidopsis CDS blastp result: AK107208 [KOME

    Lifescience Database Archive (English)

    Full Text Available Ala hydrolase, putative virtually identical to gr1-protein from [Arabidopsis thaliana] GI:3559811; similar t...AK107208 002-125-B11 At1g44350.1 IAA-amino acid hydrolase 6, putative (ILL6) / IAA-

  7. Arabidopsis CDS blastp result: AK099152 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099152 J023070H02 At4g01900.1 P II nitrogen sensing protein (GLB I) identical to P II nitrogen... sensing protein GLB I (GI:7268574) [Arabidopsis thaliana]; similar to nitrogen regulatory prot

  8. Arabidopsis CDS blastp result: AK068407 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068407 J013149B08 At4g01900.1 P II nitrogen sensing protein (GLB I) identical to P II nitrogen... sensing protein GLB I (GI:7268574) [Arabidopsis thaliana]; similar to nitrogen regulatory prot

  9. Arabidopsis CDS blastp result: AK242707 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242707 J090040M15 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  10. Arabidopsis CDS blastp result: AK241860 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241860 J065216G12 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  11. Arabidopsis CDS blastp result: AK242707 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242707 J090040M15 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  12. Arabidopsis CDS blastp result: AK241860 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241860 J065216G12 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  13. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  14. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  15. Arabidopsis CDS blastp result: AK073859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073859 J033073L16 At4g22260.1 alternative oxidase, putative / immutans protein (I...M) identical to IMMUTANS from Arabidopsis thaliana [gi:4138855]; contains Pfam profile PF01786 alternative oxidase 5e-21 ...

  16. Arabidopsis CDS blastp result: AK067891 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067891 J013124H21 At4g22260.1 alternative oxidase, putative / immutans protein (I...M) identical to IMMUTANS from Arabidopsis thaliana [gi:4138855]; contains Pfam profile PF01786 alternative oxidase 1e-110 ...

  17. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  18. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  19. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  20. Reference: 169 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available e M et al. 2005 Mar. Plant J. 41(5):744-54. The recessive Arabidopsis thalianafumonisin B1-resistant (fbr6) ...opment and sensitivity to fumonisin B1. 5 744-54 15703061 2005 Mar The Plant journal Liang Xinwen|Nekl Emily R|Stiers Justin J|Stone Julie M

  1. Reference: 590 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 590 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17450124i Caro Elena et al. 2007 May. Nature... to root epidermis patterning in Arabidopsis. 7141 213-7 17450124 2007 May Nature Caro Elena|Castellano M Mar|Gutierrez Crisanto

  2. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  3. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silence...... suggests that 3-on-3 hemoglobins apart from a role in hypoxic stress play a general role under non-stressed conditions where they are essential for normal development by controlling the level of NO which tends to accumulate in floral buds and leaf hydathodes of plants......In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...

  4. Arabidopsis CDS blastp result: AK243131 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243131 J100030A12 At1g21450.1 68414.m02682 scarecrow-like transcription factor 1 ...(SCL1) identical to scarecrow-like 1 GB:AAF21043 GI:6644390 from [Arabidopsis thaliana] 4e-46 ...

  5. Arabidopsis CDS blastp result: AK242412 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242412 J080076J05 At1g21450.1 68414.m02682 scarecrow-like transcription factor 1 ...(SCL1) identical to scarecrow-like 1 GB:AAF21043 GI:6644390 from [Arabidopsis thaliana] 1e-36 ...

  6. Arabidopsis CDS blastp result: AK119904 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119904 002-182-A05 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-78 ...

  7. Arabidopsis CDS blastp result: AK070528 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070528 J023060D13 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  8. Arabidopsis CDS blastp result: AK104030 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104030 001-020-C01 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  9. Arabidopsis CDS blastp result: AK104160 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104160 006-211-E09 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  10. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  11. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  12. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  13. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  14. Gene expression in response to cryoprotectant and liquid nitrogen exposure in Arabidopsis shoot tips

    Science.gov (United States)

    Arabidopsis thaliana is an ideal model system to study plant cryopreservation at the molecular level. We have developed reliable cryopreservation methods for Arabidopsis shoot tips using Plant Vitrification Solution 2 and Plant Vitrification Solution 3 (PVS3) cryoprotectants. We have made use of th...

  15. An Atlas of Type I MADS Box Gene Expression during Female Gametophyte and Seed Development in Arabidopsis[W].

    NARCIS (Netherlands)

    Bemer, M.; Heijmans, K.; Airoldi, C.A.; Davies, B.; Angenent, G.C.

    2010-01-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally

  16. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis.

    Science.gov (United States)

    Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu

    2016-06-01

    Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.

  17. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    Science.gov (United States)

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  18. PDV2 has a dosage effect on chloroplast division in Arabidopsis.

    Science.gov (United States)

    Chang, Ning; Sun, Qingqing; Li, Yiqiong; Mu, Yajuan; Hu, Jinglei; Feng, Yue; Liu, Xiaomin; Gao, Hongbo

    2017-03-01

    PDV2 has a dosage effect on chloroplast division in Arabidopsis thaliana , but this effect may vary in different plants. Chloroplasts have to be divided as plants grow to maintain an optimized number in the cell. Chloroplasts are divided by protein complexes across the double membranes from the stroma side to the cytosolic side. PDV2 is a chloroplast division protein on the chloroplast outer membrane. It recruits the dynamin-related GTPase ARC5 to the division site. The C-terminus of PDV2 and the C-terminus of ARC6 interact in the intermembrane space, which is important for the localization of PDV2. Previously, it was shown that overexpression of PDV2 can increase the division of chloroplasts in Arabidopsis and moss, so the authors concluded that PDV2 determines the rate of chloroplast division in land plants. PDV2 was also shown to inhibit the GTPase activity of ARC5 by in vitro experiment. These results look to be contradictory. Here, we identified a null allele of PDV2 in Arabidopsis and studied plants with different levels of PDV2. Our results suggested that the chloroplast division phenotype in Arabidopsis is sensitive to the level of PDV2, while this is not the case for ARC6. The level of PDV2 protein is reduced sharply in fast-growing leaves, while the level of ARC6 is not. The levels of PDV2 and ARC6 in several other plant species at different developmental stages were also investigated. The results indicated that their expression pattern varies in different species. Thus, PDV2 is an important positive factor of chloroplast division with an apparent dosage effect in Arabidopsis, but this effect for different chloroplast division proteins in different plants may vary.

  19. Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2012-01-01

    Full Text Available In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.

  20. Reference: 632 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Ludmila et al. 2007 Sep. Plant J. 51(5):874-85. One of the earliest responses of plants to environmental str...elopment in reaction to adverse environmental conditions. We show that the AtCHR12 chromatin-remodeling gene...R12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental

  1. Reference: 223 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 223 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15923347i Dohmann Es... cause the cop/det/fus mutant phenotype in Arabidopsis. 7 1967-78 15923347 2005 Jul The Plant cell Dohmann Esther M N|Kuhnle Carola|Schwechheimer Claus

  2. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    International Nuclear Information System (INIS)

    Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang; Chan, F.L.

    2009-01-01

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newly developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.

  3. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress

  4. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    Science.gov (United States)

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  5. Roles of DNA methyltransferases in Arabidopsis development ...

    African Journals Online (AJOL)

    Mutations that cause severe loss of DNA methylation often leads to abnormal development. In the present review, we summarized recent findings of the three major DNA methyltransferases mutants playing vital role in development of Arabidopsis thaliana. Keywords: DNA methylation, epigenetics, methyltransferase, mutant ...

  6. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  7. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  8. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  9. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  10. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  11. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At5g46200.1 68418.m05684 expressed protein contains similarity to carboxyl-term...inal proteinase contains Pfam profile PF03080: Arabidopsis proteins of unknown function; expression supported by MPSS 2e-33 ...

  12. Arabidopsis CDS blastp result: AK289251 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289251 J100081E23 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 6e-21 ...

  13. Arabidopsis CDS blastp result: AK287737 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287737 J065143M09 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 7e-14 ...

  14. Arabidopsis CDS blastp result: AK288338 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288338 J090023E14 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 9e-22 ...

  15. Arabidopsis CDS blastp result: AK288935 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288935 J090082J19 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 8e-21 ...

  16. Arabidopsis CDS blastp result: AK241112 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241112 J065091K02 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 1e-16 ...

  17. Arabidopsis CDS blastp result: AK240855 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240855 J065021H02 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 7e-25 ...

  18. Arabidopsis CDS blastp result: AK288753 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288753 J090065M09 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 3e-29 ...

  19. Arabidopsis CDS blastp result: AK288612 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288612 J090053J15 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 5e-24 ...

  20. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 0.0 ...

  1. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 0.0 ...

  2. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  3. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-26 ...

  4. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-47 ...

  5. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-31 ...

  6. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-28 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  8. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-126 ...

  9. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-45 ...

  10. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-25 ...

  11. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 2e-65 ...

  12. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-24 ...

  13. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-29 ...

  14. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 3e-66 ...

  15. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-124 ...

  16. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-45 ...

  17. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-130 ...

  18. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 1e-125 ...

  19. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-98 ...

  20. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  1. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  2. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 4e-27 ...

  3. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-50 ...

  4. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-48 ...

  5. Arabidopsis CDS blastp result: AK287434 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287434 J043012F24 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 2e-27 ...

  6. Arabidopsis CDS blastp result: AK241784 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241784 J065206N09 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 4e-11 ...

  7. Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana.

    Science.gov (United States)

    Groux, Raphaël; Hilfiker, Olivier; Gouhier-Darimont, Caroline; Peñaflor, Maria Fernanda Gomes Villalba; Erb, Matthias; Reymond, Philippe

    2014-07-01

    Plants attacked by herbivores have evolved different strategies that fend off their enemies. Insect eggs deposited on leaves have been shown to inhibit further oviposition through visual or chemical cues. In some plant species, the volatile methyl salicylate (MeSA) repels gravid insects but whether it plays the same role in the model species Arabidopsis thaliana is currently unknown. Here we showed that Pieris brassicae butterflies laid fewer eggs on Arabidopsis plants that were next to a MeSA dispenser or on plants with constitutively high MeSA emission than on control plants. Surprisingly, the MeSA biosynthesis mutant bsmt1-1 treated with egg extract was still repellent to butterflies when compared to untreated bsmt1-1. Moreover, the expression of BSMT1 was not enhanced by egg extract treatment but was induced by herbivory. Altogether, these results provide evidence that the deterring activity of eggs on gravid butterflies is independent of MeSA emission in Arabidopsis, and that MeSA might rather serve as a deterrent in plants challenged by feeding larvae.

  8. Reference: 239 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 239 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16015335i Bundock Paul et al. 2005 Jul. Natur...functions. An Arabidopsis hAT-like transposase is essential for plant development. 7048 282-4 16015335 2005 Jul Nature Bundock Paul|Hooykaas Paul

  9. Sulfinylated Azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils

    Science.gov (United States)

    Qin, Yuan; Wysocki, Ronald J; Somogyi, Arpad; Feinstein, Yelena; Franco, Jessica Y; Tsukamoto, Tatsuya; Dunatunga, Damayanthi; Levy, Clara; Smith, Steven; Simpson, Robert; Gang, David; Johnson, Mark A; Palanivelu, Ravishankar

    2011-01-01

    SUMMARY Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pistils on pollen germination and the pistil factors that stimulate pollen germination remain poorly characterized. Here, we demonstrate that stigma, style, and ovules in Arabidopsis pistils stimulate pollen germination. We isolated an Arabidopsis pistil extract fraction that stimulates Arabidopsis pollen germination, and employed ultrahigh resolution ESI FT-ICR and MS/MS techniques to accurately determine the mass (202.126 daltons) of a compound that is specifically present in this pistil extract fraction. Using the molecular formula (C10H19NOS) and tandem mass spectral fragmentation patterns of the m/z (mass to charge ratio) 202.126 ion, we postulated chemical structures, devised protocols, synthesized N-Methanesulfinyl 1- and 2-azadecalins that are close structural mimics of the m/z 202.126 ion, and showed that they are sufficient to stimulate Arabidopsis pollen germination in vitro (30 µM stimulated ~50% germination) and elicit accession-specific response. Although N-Methanesulfinyl 2-azadecalin stimulated pollen germination in three species of Lineage I of Brassicaceae, it did not induce a germination response in Sisymbrium irio (Lineage II of Brassicaceae) and tobacco, indicating that activity of the compound is not random. Our results show that Arabidopsis pistils promote germination by producing azadecalin-like molecules to ensure rapid fertilization by the appropriate pollen. PMID:21801250

  10. The Hidden Geometries of the Arabidopsis thaliana Epidermis

    KAUST Repository

    Staff, Lee; Hurd, Patricia; Reale, Lara; Seoighe, Cathal; Rockwood, Alyn; Gehring, Christoph A

    2012-01-01

    The quest for the discovery of mathematical principles that underlie biological phenomena is ancient and ongoing. We present a geometric analysis of the complex interdigitated pavement cells in the Arabidopsis thaliana (Col.) adaxial epidermis

  11. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    Science.gov (United States)

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  12. Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network

    Directory of Open Access Journals (Sweden)

    Chamovitz Daniel A

    2009-09-01

    Full Text Available Abstract Background Analyses of gene expression data from microarray experiments has become a central tool for identifying co-regulated, functional gene modules. A crucial aspect of such analysis is the integration of data from different experiments and different laboratories. How to weigh the contribution of different experiments is an important point influencing the final outcomes. We have developed a novel method for this integration, and applied it to genome-wide data from multiple Arabidopsis microarray experiments performed under a variety of experimental conditions. The goal of this study is to identify functional globally co-regulated gene modules in the Arabidopsis genome. Results Following the analysis of 21,000 Arabidopsis genes in 43 datasets and about 2 × 108 gene pairs, we identified a globally co-expressed gene network. We found clusters of globally co-expressed Arabidopsis genes that are enriched for known Gene Ontology annotations. Two types of modules were identified in the regulatory network that differed in their sensitivity to the node-scoring parameter; we further showed these two pertain to general and specialized modules. Some of these modules were further investigated using the Genevestigator compendium of microarray experiments. Analyses of smaller subsets of data lead to the identification of condition-specific modules. Conclusion Our method for identification of gene clusters allows the integration of diverse microarray experiments from many sources. The analysis reveals that part of the Arabidopsis transcriptome is globally co-expressed, and can be further divided into known as well as novel functional gene modules. Our methodology is general enough to apply to any set of microarray experiments, using any scoring function.

  13. Arabidopsis CDS blastp result: AK065124 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065124 J013001P04 At1g44446.1 chlorophyll a oxygenase (CAO) / chlorophyll b synthase identical to chloroph...yll a oxygenase GI:5853117 from [Arabidopsis thaliana]; contains Pfam PF00355 Rieske [2Fe-2S] domain 0.0 ...

  14. Arabidopsis CDS blastp result: AK067730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067730 J013116K15 At1g44446.1 chlorophyll a oxygenase (CAO) / chlorophyll b synthase identical to chloroph...yll a oxygenase GI:5853117 from [Arabidopsis thaliana]; contains Pfam PF00355 Rieske [2Fe-2S] domain 0.0 ...

  15. Arabidopsis CDS blastp result: AK063367 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063367 001-114-D11 At1g44446.1 chlorophyll a oxygenase (CAO) / chlorophyll b synthase identical to chlorop...hyll a oxygenase GI:5853117 from [Arabidopsis thaliana]; contains Pfam PF00355 Rieske [2Fe-2S] domain 0.0 ...

  16. Arabidopsis CDS blastp result: AK071899 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071899 J013059G06 At1g44446.1 chlorophyll a oxygenase (CAO) / chlorophyll b synthase identical to chloroph...yll a oxygenase GI:5853117 from [Arabidopsis thaliana]; contains Pfam PF00355 Rieske [2Fe-2S] domain 1e-154 ...

  17. Arabidopsis CDS blastp result: AK064663 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064663 002-115-A10 At2g34450.1 high mobility group (HMG1/2) family protein simila...r to HMG protein [Arabidopsis thaliana] GI:2832361; contains Pfam profile PF00505: HMG (high mobility group) box 2e-27 ...

  18. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  19. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  20. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  1. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  2. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  3. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  4. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  5. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  6. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  7. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  8. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  9. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  10. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  11. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  12. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  13. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  14. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  15. Proteomics of Arabidopsis seed germination and priming

    NARCIS (Netherlands)

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D.

    2003-01-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and

  16. Arabidopsis CDS blastp result: AK072001 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072001 J013094L17 At2g22670.2 auxin-responsive protein / indoleacetic acid-induce...d protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 2e-11 ...

  17. Arabidopsis CDS blastp result: AK069892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069892 J023039N11 At2g33310.1 auxin-responsive protein / indoleacetic acid-induce...d protein 13 (IAA13) identical to SP|Q38831 Auxin-responsive protein IAA13 (Indoleacetic acid-induced protein 13) {Arabidopsis thaliana} 3e-41 ...

  18. Arabidopsis CDS blastp result: AK061037 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061037 006-205-B07 At5g65670.2 auxin-responsive protein / indoleacetic acid-induc...ed protein 9 (IAA9) identical to SP|Q38827 Auxin-responsive protein IAA9 (Indoleacetic acid-induced protein 9) {Arabidopsis thaliana} 2e-25 ...

  19. Arabidopsis CDS blastp result: AK102396 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102396 J033092H03 At2g22670.1 auxin-responsive protein / indoleacetic acid-induce...d protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 2e-50 ...

  20. Arabidopsis CDS blastp result: AK059838 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059838 006-206-C11 At3g04730.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 16 (IAA16) identical to SP|O24407 Auxin-responsive protein IAA16 (Indoleacetic acid-induced protein 16) {Arabidopsis thaliana} 8e-45 ...

  1. Arabidopsis CDS blastp result: AK061495 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061495 006-309-C06 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 3e-50 ...

  2. Arabidopsis CDS blastp result: AK099253 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099253 J013168H04 At2g22670.1 auxin-responsive protein / indoleacetic acid-induce...d protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 4e-51 ...

  3. Arabidopsis CDS blastp result: AK063854 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063854 001-122-D03 At3g04730.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 16 (IAA16) identical to SP|O24407 Auxin-responsive protein IAA16 (Indoleacetic acid-induced protein 16) {Arabidopsis thaliana} 2e-22 ...

  4. Arabidopsis CDS blastp result: AK104018 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104018 001-007-H11 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 4e-51 ...

  5. Arabidopsis CDS blastp result: AK106181 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106181 001-208-D03 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 4e-51 ...

  6. Arabidopsis CDS blastp result: AK109363 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109363 006-206-E12 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 2e-51 ...

  7. Arabidopsis CDS blastp result: AK073365 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073365 J033030K18 At3g23030.1 auxin-responsive protein / indoleacetic acid-induce...d protein 2 (IAA2) identical to SP|P49678 Auxin-responsive protein IAA2 (Indoleacetic acid-induced protein 2) {Arabidopsis thaliana} 4e-20 ...

  8. Arabidopsis CDS blastp result: AK066518 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066518 J013070M23 At2g46990.1 auxin-responsive protein / indoleacetic acid-induce...d protein 20 (IAA20) identical to SP|O24410 Auxin-responsive protein IAA20 (Indoleacetic acid-induced protein 20) {Arabidopsis thaliana} 3e-25 ...

  9. Arabidopsis CDS blastp result: AK106121 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106121 001-207-E11 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 7e-51 ...

  10. Arabidopsis CDS blastp result: AK104802 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104802 001-040-C05 At2g33310.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 13 (IAA13) identical to SP|Q38831 Auxin-responsive protein IAA13 (Indoleacetic acid-induced protein 13) {Arabidopsis thaliana} 3e-41 ...

  11. Arabidopsis CDS blastp result: AK100988 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100988 J023145H17 At1g63440.1 copper-exporting ATPase, putative / responsive-to-a...ntagonist 1, putative / copper-transporting ATPase, putative similar to ATP dependent copper transporter SP|Q9S7J8 [Arabidopsis thaliana] 0.0 ...

  12. Arabidopsis CDS blastp result: AK063759 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063759 001-121-A10 At1g63440.1 copper-exporting ATPase, putative / responsive-to-...antagonist 1, putative / copper-transporting ATPase, putative similar to ATP dependent copper transporter SP|Q9S7J8 [Arabidopsis thaliana] 0.0 ...

  13. Arabidopsis CDS blastp result: AK072990 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072990 J023144D18 At1g63440.1 copper-exporting ATPase, putative / responsive-to-a...ntagonist 1, putative / copper-transporting ATPase, putative similar to ATP dependent copper transporter SP|Q9S7J8 [Arabidopsis thaliana] 0.0 ...

  14. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica

    Science.gov (United States)

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  15. Development of an Agrobacterium-mediated stable transformation method for the sensitive plant Mimosa pudica.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mano

    Full Text Available The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium. We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP. Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholinoethanesulfonic acid (MES buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max and pea (Pisum sativum. The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.

  16. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture

    DEFF Research Database (Denmark)

    Ostergaard, L; Abelskov, A K; Mattsson, O

    1996-01-01

    The predominant peroxidase (pI 3.5) (E.C. 1.11.1.7) of an Arabidopsis thaliana cell suspension culture was purified and partially sequenced. Oligonucleotides were designed and a specific probe was obtained. A cDNA clone was isolated from an Arabidopsis cell suspension cDNA library and completely ...

  17. Reference: 241 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 241 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16024589i Calderon-V...development of Arabidopsis thaliana. 9 2473-85 16024589 2005 Sep The Plant cell Bevan Mike|Calderon-Villalobos Luz I A|Dohmann Esther M N|Kuhnle Carola|Li Hanbing|Schwechheimer Claus

  18. Reference: 418 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 418 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16856986i Chai Mao-Feng...cid responses in Arabidopsis. 5 665-74 16856986 2006 Sep The Plant journal An Rui|Chai Mao-Feng|Chen Jia|Chen Qi-Jun|Wang Xue-Chen|Wei Peng-Cheng|Yang Shuhua

  19. Reference: 295 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 295 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16284313i Fujita Yas...ng that enhances drought stress tolerance in Arabidopsis. 12 3470-88 16284313 200...5 Dec The Plant cell Fujita Miki|Fujita Yasunari|Hiratsu Keiichiro|Maruyama Kyonoshin|Ohme-Takagi Masaru|Par

  20. Reference: 749 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available former mutant had decreased electron transport rates, a lower DeltapH gradient across the grana membranes, r...the PSII particles of these plants were organized in unusual two-dimensional arrays in the grana membranes. ...d the electron transport rate in grana membranes of Arabidopsis. 4 1012-28 18381925 2008 Apr The Plant cell

  1. Cytokinins induce transcriptional reprograming and improve Arabidopsis plant performance under drought and salt stress conditions.

    Directory of Open Access Journals (Sweden)

    Natali Shirron

    2016-10-01

    Full Text Available In nature, annual plants respond to abiotic stresses by activating a specific genetic program leading to early flowering and accelerated senescence. Although, in nature, this phenomenon supports survival under unfavorable environmental conditions, it may have negative agro-economic impacts on crop productivity. Overcoming this genetic programing by cytokinins (CK has recently been shown in transgenic plants that overproduce CK. These transgenic plants displayed a significant increase in plant productivity under drought stress conditions. We investigated the role of CK in reverting the transcriptional program that is activated under abiotic stress conditions and allowing sustainable plant growth. We employed 2 complementary approaches: Ectopic overexpression of CK, and applying exogenous CK to detached Arabidopsis leaves. Transgenic Arabidopsis plants transformed with the isopentyltransferase (IPT gene under the regulation of the senescence associated receptor kinase (SARK promoter displayed a significant drought resistance. A transcriptomic analysis using RNA sequencing was performed to explore the response mechanisms under elevated CK levels during salinity stress. This analysis showed that under such stress, CK triggered transcriptional reprograming that resulted in attenuated stress-dependent inhibition of vegetative growth and delayed premature plant senescence. Our data suggest that elevated CK levels led to stress tolerance by retaining the expression of genes associated with plant growth and metabolism whose expression typically decreases under stress conditions. In conclusion, we hypothesize that CK allows sustainable plant growth under unfavorable environmental conditions by activating gene expression related to growth processes and by preventing the expression of genes related to the activation of premature senescence.

  2. carboxylate synthase gene family in Arabidopsis, rice, grapevine

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... evolutionary relationships of ACS genes in the four plant species. Chromosomal .... classification was consistent with the report from. Jakubowicz et al. ..... Analysis of the genome sequence of the flowering plant Arabidopsis ...

  3. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism

    DEFF Research Database (Denmark)

    Muller, Renate; Morant, Marc; Jarmer, Hanne Østergaard

    2007-01-01

    Global gene expression was analyzed in Arabidopsis (Arabidopsis thaliana) by microarrays comprising 21,500 genes. Leaf segments derived from phosphorus (P)-starved and P-replenished plants were incubated with or without sucrose (Suc) to obtain tissues with contrasting combinations of P and carboh...

  4. Arabidopsis CDS blastp result: AK108796 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108796 002-151-C01 At2g25320.1 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 3e-97 ...

  5. Arabidopsis CDS blastp result: AK102133 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102133 J033085E13 At5g43560.2 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 1e-146 ...

  6. Arabidopsis CDS blastp result: AK105718 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105718 001-201-F09 At5g43560.2 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 5e-22 ...

  7. Arabidopsis CDS blastp result: AK105724 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105724 001-201-G07 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  8. Arabidopsis CDS blastp result: AK072243 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072243 J023003N10 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  9. Arabidopsis CDS blastp result: AK065086 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065086 J013001L18 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  10. Arabidopsis CDS blastp result: AK069285 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069285 J023011N22 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  11. Arabidopsis CDS blastp result: AK120871 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120871 J023026D19 At1g48900.1 signal recognition particle 54 kDa protein 3 / SRP5...4 (SRP-54C) identical to SP|P49967 Signal recognition particle 54 kDa protein 3 (SRP54) {Arabidopsis thaliana} 0.0 ...

  12. Arabidopsis CDS blastp result: AK068433 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068433 J013156D16 At1g20620.2 catalase 3 (SEN2) almost identical to catalase 3 SP...:Q42547, GI:3123188 from [Arabidopsis thaliana]; identical to catalase 3 (SEN2) mRNA, partial cds GI:3158369 1e-63 ...

  13. Stable transformation of the gram-positive phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus with several cloning vectors.

    Science.gov (United States)

    Laine, M J; Nakhei, H; Dreier, J; Lehtilä, K; Meletzus, D; Eichenlaub, R; Metzler, M C

    1996-05-01

    In this paper we describe transformation of Clavibacter michiganensis subsp. sepedonicus, the potato ring rot bacterium, with plasmid vectors. Three of the plasmids used, pDM100, pDM302, and pDM306, contain the origin of replication from pCM1, a native plasmid of C. michiganensis subsp. michiganensis. We constructed two new cloning vectors, pHN205 and pHN216, by using the origin of replication of pCM2, another native plasmid of C. michiganensis subsp. michiganensis. Plasmids pDM302, pHN205, and pHN216 were stably maintained without antibiotic selection in various strains of C. michiganensis subsp. sepedonicus. We observed that for a single plasmid, different strains of C. michiganensis subsp. sepedonicus showed significantly different transformation efficiencies. We also found unexplained strain-to-strain differences in stability with various plasmid constructions containing different arrangements of antibiotic resistance genes and origins of replication. We examined the effect of a number of factors on transformation efficiency. The best transformation efficiencies were obtained when C. michiganensis subsp. sepedonicus cells were grown on DM agar plates, harvested during the early exponential growth phase, and used fresh (without freezing) for electroporation. The maximal transformation efficiency obtained was 4.6 x 10(4) CFU/microgram of pHN216 plasmid DNA. To demonstrate the utility of this transformation system, we cloned a beta-1,4-endoglucanase-encoding gene from C. michiganensis subsp. sepedonicus into pHN216. When this construction, pHN216:C8, was electroporated into competent cells of a cellulase-deficient mutant, it restored cellulase production to almost wild-type levels.

  14. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  15. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Hyoung Yool; Back, Kyoungwhan

    2018-05-16

    In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen ( 1 O 2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O 2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O 2 - production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Mos1 transposon-based transformation of fish cell lines using baculoviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Yokoo, Masako [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Fujita, Ryosuke [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213 (Japan); Yoshimizu, Mamoru; Kasai, Hisae [Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 (Japan); Asano, Shin-ichiro [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Bando, Hisanori, E-mail: hban@abs.agr.hokudai.ac.jp [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan)

    2013-09-13

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.

  17. Mos1 transposon-based transformation of fish cell lines using baculoviral vectors

    International Nuclear Information System (INIS)

    Yokoo, Masako; Fujita, Ryosuke; Nakajima, Yumiko; Yoshimizu, Mamoru; Kasai, Hisae; Asano, Shin-ichiro; Bando, Hisanori

    2013-01-01

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells

  18. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  19. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics

    Science.gov (United States)

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F. X.

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db. PMID:14681437

  20. PNL1 and PNL2 : Arabidopsis homologs of maize PAN1

    OpenAIRE

    Clark, Lauren Gail

    2010-01-01

    PNL1 and PNL2 are the closest Arabidopsis relatives of maize pan1. pan1 and the PNL family of 11 genes encode leucine-rich repeat, receptor-like kinases, however none of these putative kinases is predicted to have actual kinase function, due to one or more amino acid substitutions in residues necessary for kinase function. Because PAN1 plays a role in subsidiary cell formation in maize, it is hypothesized that PNL1 and PNL2 are involved in stomatal formation in Arabidopsis. YFP fusions of the...

  1. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Mundy, John; Skriver, Karen

    2002-01-01

    Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence...... similarity to Rapid Alkalinization Factor (RALF), a peptide isolated from tobacco. We therefore refer to this peptide family as RALFL for RALF-Like. RT-PCR analysis confirmed that several of the Arabidopsis genes are expressed and that their expression patterns vary. The identification of a large gene family...

  2. Differential Effects of Carbohydrates on Arabidopsis Pollen Germination.

    Science.gov (United States)

    Hirsche, Jörg; García Fernández, José M; Stabentheiner, Edith; Großkinsky, Dominik K; Roitsch, Thomas

    2017-04-01

    Pollen germination as a crucial process in plant development strongly depends on the accessibility of carbon as energy source. Carbohydrates, however, function not only as a primary energy source, but also as important signaling components. In a comprehensive study, we analyzed various aspects of the impact of 32 different sugars on in vitro germination of Arabidopsis pollen comprising about 150 variations of individual sugars and combinations. Twenty-six structurally different mono-, di- and oligosaccharides, and sugar analogs were initially tested for their ability to support pollen germination. Whereas several di- and oligosaccharides supported pollen germination, hexoses such as glucose, fructose and mannose did not support and even considerably inhibited pollen germination when added to germination-supporting medium. Complementary experiments using glucose analogs with varying functional features, the hexokinase inhibitor mannoheptulose and the glucose-insensitive hexokinase-deficient Arabidopsis mutant gin2-1 suggested that mannose- and glucose-mediated inhibition of sucrose-supported pollen germination depends partially on hexokinase signaling. The results suggest that, in addition to their role as energy source, sugars act as signaling molecules differentially regulating the complex process of pollen germination depending on their structural properties. Thus, a sugar-dependent multilayer regulation of Arabidopsis pollen germination is supported, which makes this approach a valuable experimental system for future studies addressing sugar sensing and signaling. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Proteomics investigation of endogenous S-nitrosylation in Arabidopsis

    International Nuclear Information System (INIS)

    Fares, Abasse; Rossignol, Michel; Peltier, Jean-Benoît

    2011-01-01

    Highlights: ► Identification and quantification of nitrosothiols. ► A first dataset of endogenously nitrosylated cysteines in Arabidopsis cells. ► Nitrosothiols display apolar motifs not located in close vicinity of cysteines. ► Salt stress alters the endogenous nitrosylation of specific cysteines in Arabidopsis. -- Abstract: S-Nitrosylation emerges as an important protein modification in many processes. However, most data were obtained at the protein level after addition of a NO donor, particularly in plants where information about the cysteines nitrosylated in these proteins is scarce. An adapted work-flow, combining the classical biotin switch method and labeling with isotope-coded affinity tags (ICAT), is proposed. Without addition of NO donor, a total of 53 endogenous nitrosocysteines was identified in Arabidopsis cells, in proteins belonging to all cell territories, including membranes, and covering a large panel of functions. This first repertoire of nitrosothiols in plants enabled also preliminary structural description. Three apolar motifs, not located in close vicinity of cysteines and accounting for half the dataset, were detected and are proposed to complement nitrosylation prediction algorithms, poorly trained with plant data to date. Analysis of changes induced by a brief salt stress showed that NaCl modified the nitrosylation level of a small proportion of endogenously nitrosylated proteins and did not concern all nitrosothiols in these proteins. The possible role of some NO targets in the response to salt stress was discussed.

  4. Arabidopsis CDS blastp result: AK106106 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106106 001-207-C12 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 9e-39 ...

  5. Arabidopsis CDS blastp result: AK105066 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105066 001-044-F12 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 1e-166 ...

  6. Non-Coding RNAs in Arabidopsis

    DEFF Research Database (Denmark)

    van Wonterghem, Miranda

    This work evolves around elucidating the mechanisms of micro RNAs (miRNAs) in Arabidopsis thaliana. I identified a new class of nuclear non-coding RNAs derived from protein coding genes. The genes are miRNA targets with extensive gene body methylation. The RNA species are nuclear localized and de...

  7. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  8. A nanosized Ag–silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis

    International Nuclear Information System (INIS)

    Chu, Hyosub; Kim, Hwa-Jung; Su Kim, Joong; Kim, Min-Soo; Yoon, Byung-Dae; Park, Hae-Jun; Kim, Cha Young

    2012-01-01

    Silver nanoparticles have antimicrobial activity against many pathogenic microbes. Here, the preparation of a nanosized Ag–silica hybrid complex (NSS) prepared by γ-irradiation is described. The effects of both NSS and reduced Ag nanoparticles (Ag 0 ) on the growth of the model plant Arabidopsis thaliana were tested. The application of 1–10 ppm NSS complex improved Arabidopsis growth in soil, whereas 100 ppm NSS resulted in weakly curled leaves. In addition, supplementation of Murashige and Skoog (MS) growth medium with 1 ppm NSS promoted the root growth of Arabidopsis seedlings, but root growth was inhibited by supplementation with 10 ppm NSS. To investigate whether the NSS complex could induce plant defense responses, the expression of pathogenesis-related (PR) genes that are implicated in systemic acquired resistance (SAR) in Arabidopsis plants was examined. PR1, PR2 and PR5 were significantly up-regulated by each application of 10 ppm NSS complex or Ag 0 to the rosette leaves. Furthermore, pretreatment with the NSS complex induced more pathogen resistance to the virulent pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) compared to water treatment in Arabidopsis plants. - Research highlights: ► We describe the preparation of silver nanoparticles using γ-irradiation technique. ► We examine the effects of silver nanoparticles on the growth of Arabidopsis. ► Silver nanoparticles induced the expression of SAR marker genes. ► Silver nanoparticles exhibited enhanced disease resistance to the bacterial pathogen.

  9. GUN4-Porphyrin Complexes Bind the ChlH/GUN5 Subunit of Mg-Chelatase and Promote Chlorophyll Biosynthesis in Arabidopsis[W

    Science.gov (United States)

    Adhikari, Neil D.; Froehlich, John E.; Strand, Deserah D.; Buck, Stephanie M.; Kramer, David M.; Larkin, Robert M.

    2011-01-01

    The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex. PMID:21467578

  10. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera).

    Science.gov (United States)

    Hu, Yang; Li, Yajuan; Hou, Fengjuan; Wan, Dongyan; Cheng, Yuan; Han, Yongtao; Gao, Yurong; Liu, Jie; Guo, Ye; Xiao, Shunyuan; Wang, Yuejin; Wen, Ying-Qiang

    2018-02-01

    Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H 2 O 2 . In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A nanosized Ag-silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis

    Science.gov (United States)

    Chu, Hyosub; Kim, Hwa-Jung; Su Kim, Joong; Kim, Min-Soo; Yoon, Byung-Dae; Park, Hae-Jun; Kim, Cha Young

    2012-02-01

    Silver nanoparticles have antimicrobial activity against many pathogenic microbes. Here, the preparation of a nanosized Ag-silica hybrid complex (NSS) prepared by γ-irradiation is described. The effects of both NSS and reduced Ag nanoparticles (Ag 0) on the growth of the model plant Arabidopsis thaliana were tested. The application of 1-10 ppm NSS complex improved Arabidopsis growth in soil, whereas 100 ppm NSS resulted in weakly curled leaves. In addition, supplementation of Murashige and Skoog (MS) growth medium with 1 ppm NSS promoted the root growth of Arabidopsis seedlings, but root growth was inhibited by supplementation with 10 ppm NSS. To investigate whether the NSS complex could induce plant defense responses, the expression of pathogenesis-related ( PR) genes that are implicated in systemic acquired resistance (SAR) in Arabidopsis plants was examined. PR1, PR2 and PR5 were significantly up-regulated by each application of 10 ppm NSS complex or Ag 0 to the rosette leaves. Furthermore, pretreatment with the NSS complex induced more pathogen resistance to the virulent pathogen Pseudomonas syringae pv. tomato DC3000 ( Pst) compared to water treatment in Arabidopsis plants.

  12. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis.

    Science.gov (United States)

    Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin

    2017-09-04

    Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.

  13. Similarities between Reproductive and Immune Pistil Transcriptomes of Arabidopsis Species.

    Science.gov (United States)

    Mondragón-Palomino, Mariana; John-Arputharaj, Ajay; Pallmann, Maria; Dresselhaus, Thomas

    2017-07-01

    Independent lines of evidence suggest that members from ancient and polymorphic gene families such as defensins and receptor-like kinases mediate intercellular communication during both the immune response and reproduction. Here, we report a large-scale analysis to investigate the extent of overlap between these processes by comparing differentially expressed genes (DEGs) in the pistil transcriptomes of Arabidopsis thaliana and Arabidopsis halleri during self-pollination and interspecific pollination and during infection with Fusarium graminearum In both Arabidopsis species, the largest number of DEGs was identified in infected pistils, where genes encoding regulators of cell division and development were most frequently down-regulated. Comparison of DEGs between infection and various pollination conditions showed that up to 79% of down-regulated genes are shared between conditions and include especially defensin-like genes. Interspecific pollination of A. thaliana significantly up-regulated thionins and defensins. The significant overrepresentation of similar groups of DEGs in the transcriptomes of reproductive and immune responses of the pistil makes it a prime system in which to study the consequences of plant-pathogen interactions on fertility and the evolution of intercellular communication in pollination. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Reference: 497 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available hal albino phenotype. Rescue of tha2 mutants and tha1 tha2 double mutants by overproduction of feedback-inse...-specific expression of feedback-insensitive Thr deaminase in both tha1 and tha2 Thr aldolase mutants greatl...nsitive Thr deaminase (OMR1) shows that Gly formation by THA1 and THA2 is not essential in Arabidopsis. Seed

  15. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Castleden Ian

    2010-11-01

    Full Text Available Abstract Background Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa. To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Results Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. Conclusions These results reveal significant divergence between Arabidopsis and rice, in terms of the

  16. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins

    Science.gov (United States)

    Zhang, Kewei; Novak, Ondrej; Wei, Zhaoyang; Gou, Mingyue; Zhang, Xuebin; Yu, Yong; Yang, Huijun; Cai, Yuanheng; Strnad, Miroslav; Liu, Chang-Jun

    2014-02-01

    Cytokinins are a major group of phytohormones regulating plant growth, development and stress responses. However, in contrast to the well-defined polar transport of auxins, the molecular basis of cytokinin transport is poorly understood. Here we show that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins. AtABCG14 is expressed primarily in the pericycle and stelar cells of roots. Knocking out AtABCG14 strongly impairs the translocation of trans-zeatin (tZ)-type cytokinins from roots to shoots, thereby affecting the plant’s growth and development. AtABCG14 localizes to the plasma membrane of transformed cells. In planta feeding of C14 or C13-labelled tZ suggests that it acts as an efflux pump and its presence in the cells directly correlates with the transport of the fed cytokinin. Therefore, AtABCG14 is a transporter likely involved in the long-distance translocation of cytokinins in planta.

  17. Toxicity and transfer of CuO Nanoparticles on Arabidopsis thaliana

    Science.gov (United States)

    Zhao, Shilin; Dai, Yanhui; Xu, Lina

    2018-02-01

    CuO engineered nanoparticles (ENPs) are widely used in commercial applications. With increasing CuO ENPs production, CuO ENPs are likely to present in the environment and cause a potential threaten to ecosystem. In this work, Arabidopsis thaliana (Bay-0) was chosen to take the toxic experiment after exposed to CuO ENPs (0, 20, and 50 mg/L) and Cu2+ (0.15 mg/L). And the copper content of shoots at 50 mg/L CuO ENPs was about 20 times of control, indicating that CuO ENPs could be absorbed into Arabidopsis thaliana seedlings and transfered from root to shoot in a certain way.

  18. Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum.

    Science.gov (United States)

    Qiu, Jian; Sun, Shuquan; Luo, Shiqiao; Zhang, Jichuan; Xiao, Xianzhou; Zhang, Liqun; Wang, Feng; Liu, Shizhong

    2014-04-01

    This study developed a new purple coloured Taraxacum brevicorniculatum plant through genetic transformation using the Arabidopsis AtPAP1 gene, which overproduced anthocyanins in its vegetative tissues. Rubber-producing Taraxacum plants synthesise high-quality natural rubber (NR) in their roots and so are a promising alternative global source of this raw material. A major factor in its commercialization is the need for multipurpose exploitation of the whole plant. To add value to the aerial tissues, red/purple plants of the rubber-producing Taraxacum brevicorniculatum species were developed through heterologous expression of the production of anthocyanin pigment 1 (AtPAP1) transcription factor from Arabidopsis thaliana. The vegetative tissue of the transgenic plants showed an average of a 48-fold increase in total anthocyanin content over control levels, but with the exception of pigmentation, the transgenic plants were phenotypically comparable to controls and displayed similar growth vigor. Southern blot analysis confirmed that the AtPAP1 gene had been integrated into the genome of the high anthocyanin Taraxacum plants. The AtPAP1 expression levels were estimated by quantitative real-time PCR and were highly correlated with the levels of total anthocyanins in five independent transgenic lines. High levels of three cyanidin glycosides found in the purple plants were characterized by high performance liquid chromatography-mass spectrum analysis. The presence of NR was verified by NMR and infrared spectroscopy, and confirmed that NR biosynthesis had not been affected in the transgenic Taraxacum lines. In addition, other major phenylpropanoid products such as chlorogenic acid and quercetin glycosides were also enhanced in the transgenic Taraxacum. The red/purple transgenic Taraxacum lines described in this study would increase the future application of the species as a rubber-producing crop due to its additional health benefits.

  19. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie

    2003-03-01

    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  20. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea.

    Science.gov (United States)

    Zhang, Bin; Qiu, Han-Lin; Qu, Dong-Hai; Ruan, Ying; Chen, Dong-Hong

    2018-04-05

    Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.

  1. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Dan Qian

    Full Text Available Cyanate is toxic to all organisms. Cyanase converts cyanate to CO₂ and NH₃ in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN. Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.

  2. Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies.

    Science.gov (United States)

    Huang, Yu S; Horton, Matthew; Vilhjálmsson, Bjarni J; Seren, Umit; Meng, Dazhe; Meyer, Christopher; Ali Amer, Muhammad; Borevitz, Justin O; Bergelson, Joy; Nordborg, Magnus

    2011-01-01

    With large-scale genomic data becoming the norm in biological studies, the storing, integrating, viewing and searching of such data have become a major challenge. In this article, we describe the development of an Arabidopsis thaliana database that hosts the geographic information and genetic polymorphism data for over 6000 accessions and genome-wide association study (GWAS) results for 107 phenotypes representing the largest collection of Arabidopsis polymorphism data and GWAS results to date. Taking advantage of a series of the latest web 2.0 technologies, such as Ajax (Asynchronous JavaScript and XML), GWT (Google-Web-Toolkit), MVC (Model-View-Controller) web framework and Object Relationship Mapper, we have created a web-based application (web app) for the database, that offers an integrated and dynamic view of geographic information, genetic polymorphism and GWAS results. Essential search functionalities are incorporated into the web app to aid reverse genetics research. The database and its web app have proven to be a valuable resource to the Arabidopsis community. The whole framework serves as an example of how biological data, especially GWAS, can be presented and accessed through the web. In the end, we illustrate the potential to gain new insights through the web app by two examples, showcasing how it can be used to facilitate forward and reverse genetics research. Database URL: http://arabidopsis.usc.edu/

  3. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    Science.gov (United States)

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  4. The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation1[W][OA

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J.

    2008-01-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance. PMID:18467466

  5. Arabidopsis CDS blastp result: AK288349 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288349 J090023P19 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 1e-23 ...

  6. Arabidopsis CDS blastp result: AK241364 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241364 J065152E11 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-20 ...

  7. Arabidopsis CDS blastp result: AK241438 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241438 J065162G03 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 4e-98 ...

  8. Arabidopsis CDS blastp result: AK241312 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241312 J065141L09 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 2e-19 ...

  9. Arabidopsis CDS blastp result: AK243352 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243352 J100060L07 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 1e-103 ...

  10. Arabidopsis CDS blastp result: AK289177 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289177 J100024E07 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 4e-98 ...

  11. The Theobroma cacao B3 domain transcription factor TcLEC2 plays a duel role in control of embryo development and maturation.

    Science.gov (United States)

    Zhang, Yufan; Clemens, Adam; Maximova, Siela N; Guiltinan, Mark J

    2014-04-24

    The Arabidopsis thaliana LEC2 gene encodes a B3 domain transcription factor, which plays critical roles during both zygotic and somatic embryogenesis. LEC2 exerts significant impacts on determining embryogenic potential and various metabolic processes through a complicated genetic regulatory network. An ortholog of the Arabidopsis Leafy Cotyledon 2 gene (AtLEC2) was characterized in Theobroma cacao (TcLEC2). TcLEC2 encodes a B3 domain transcription factor preferentially expressed during early and late zygotic embryo development. The expression of TcLEC2 was higher in dedifferentiated cells competent for somatic embryogenesis (embryogenic calli), compared to non-embryogenic calli. Transient overexpression of TcLEC2 in immature zygotic embryos resulted in changes in gene expression profiles and fatty acid composition. Ectopic expression of TcLEC2 in cacao leaves changed the expression levels of several seed related genes. The overexpression of TcLEC2 in cacao explants greatly increased the frequency of regeneration of stably transformed somatic embryos. TcLEC2 overexpressing cotyledon explants exhibited a very high level of embryogenic competency and when cultured on hormone free medium, exhibited an iterative embryogenic chain-reaction. Our study revealed essential roles of TcLEC2 during both zygotic and somatic embryo development. Collectively, our evidence supports the conclusion that TcLEC2 is a functional ortholog of AtLEC2 and that it is involved in similar genetic regulatory networks during cacao somatic embryogenesis. To our knowledge, this is the first detailed report of the functional analysis of a LEC2 ortholog in a species other then Arabidopsis. TcLEC2 could potentially be used as a biomarker for the improvement of the SE process and screen for elite varieties in cacao germplasm.

  12. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  13. Expression of human ARGONAUTE 2 inhibits endogenous microRNA activity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ira eDeveson

    2013-04-01

    Full Text Available Plant and animal microRNA (miRNA pathways share many analogous components, the ARGONAUTE (AGO proteins being foremost among them. We sought to ascertain the degree of functional conservation shared by Homo sapiens ARGONAUTE 2 (HsAGO2 and Arabidopsis thaliana ARGONAUTE 1 (AtAGO1, which are the predominant AGO family members involved with miRNA activity in their respective species. Transgenic Arabidopsis plants expressing HsAGO2 were indistinguishable from counterparts over-expressing AtAGO1, each group exhibiting the morphological and molecular hallmarks of miRNA-pathway loss-of-function alleles. However, unlike AtAGO1, HsAGO2 was unable to rescue the ago1-27 allele. We conclude that, despite the evolutionary gulf between them, HsAGO2 is likely capable of interacting with some component/s of the Arabidopsis miRNA pathway, thereby perturbing its operation, although differences have arisen such that HsAGO2 alone is insufficient to confer efficient silencing of miRNA targets in planta.

  14. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

    Science.gov (United States)

    MacLean, Allyson M; Sugio, Akiko; Makarova, Olga V; Findlay, Kim C; Grieve, Victoria M; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A

    2011-10-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.

  15. Arabidopsis CDS blastp result: AK062262 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062262 001-047-H04 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, put...ative / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:1...154627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  16. Arabidopsis CDS blastp result: AK069545 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069545 J023025I06 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  17. Arabidopsis CDS blastp result: AK067323 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067323 J013106B16 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  18. Arabidopsis CDS blastp result: AK060612 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060612 001-025-F03 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, put...ative / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:1...154627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  19. Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age.

    Science.gov (United States)

    Miyamoto, Yutaka; Kanzaki, Hiroyuki; Wada, Satoshi; Tsuruoka, Sari; Itohiya, Kanako; Kumagai, Kenichi; Hamada, Yoshiki; Nakamura, Yoshiki

    2017-12-01

    Mandibular condylar cartilage (MCC) exhibits dual roles both articular cartilage and growth center. Of many growth factors, TGF-β has been implicated in the growth of articular cartilage including MCC. Recently, Asporin, decoy to TGF-β, was discovered and it blocks TGF-β signaling. Asporin is expressed in a variety of tissues including osteoarthritic articular cartilage, though there was no report of Asporin expression in MCC. In the present study, we investigated the temporal and spatial expression of Asporin in MCC. Gene expression profile of MCC and epiphyseal cartilage in tibia of 5 weeks old ICR mice were firstly compared with microarray analysis using the laser capture microdissected samples. Variance of gene expression was further confirmed by real-time RT-PCR and immunohistochemical staining at 1,3,10, and 20 weeks old. TGF-β and its signaling molecule, phosphorylated Smad-2/3 (p-Smad2/3), were also examined by immunohistochemical staining. Microarray analysis revealed that Asporin was highly expressed in MCC. Real-time RT-PCR analysis confirmed that the fibrous layer of MCC exhibited stable higher Asporin expression at any time points as compared to epiphyseal cartilage. This was also observed in immunohistochemical staining. Deeper layer in MCC augmented Asporin expression with age. Whereas, TGF-β was stably highly observed in the layer. The fibrous layer of MCC exhibited weak staining of p-Smad2/3, though the proliferating layer of MCC was strongly stained as compared to epiphyseal cartilage of tibia at early time point. Consistent with the increase of Asporin expression in the deeper layer of MCC, the intensity of p-Smad-2/3 staining was decreased with age. In conclusion, we discovered that Asporin was stably expressed at the fibrous layer of MCC, which makes it possible to manage both articular cartilage and growth center at the same time.

  20. Reference: 584 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ing in Arabidopsis thaliana shoot and root stem cell organizers. 7137 811-4 17429400 2007 Apr Nature Hashimo...nda K et al. 2007 Apr. Nature 446(7137):811-4. Throughout the lifespan of a plant, which in some cases can l... 584 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17429400i Sarkar Ana

  1. Reference: 435 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Arabidopsis. 7107 106-9 16936718 2006 Sep Nature Fobis-Loisy Isabelle|Gaude Thierry|Jaillais Yvon|Miège Christine|Rollin Claire ... 435 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16936718i Jaillais Yvon et al. 2006 Sep. Natu...re 443(7107):106-9. Polarized cellular distribution of the phytohormone auxin and i

  2. An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.

    Science.gov (United States)

    Heard, Jeffrey J; Phung, Ivy; Potes, Mark I; Tamanoi, Fuyuhiko

    2018-01-10

    RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB. To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays. We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines. RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established

  3. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells.

    Science.gov (United States)

    Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  4. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  5. Identification of a Xylogalacturonan Xylosyltransferase Involved in Pectin Biosynthesis in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Markus; Sorensen, Susanne Oxenboll; Harholt, Jesper; Geshi, Naomi; Sakuragi, Yumiko; Moller, Isabel; Zandleven, Joris; Bernal, Adriana J.; Jensen, Niels Bjerg; Sorensen, Charlotte; Jensen, Jacob K.; Beldman, Gerrit; Willats, William G.T.; Scheller, Henrik

    2009-08-19

    Xylogalacturonan (XGA) is a class of pectic polysaccharide found in plant cell walls. The Arabidopsis thaliana locus At5g33290 encodes a predicted Type II membrane protein, and insertion mutants of the At5g33290 locus had decreased cell wall xylose. Immunological studies, enzymatic extraction of polysaccharides, monosaccharide linkage analysis, and oligosaccharide mass profiling were employed to identify the affected cell wall polymer. Pectic XGA was reduced to much lower levels in mutant than in wild-type leaves, indicating a role of At5g33290 in XGA biosynthesis. The mutated gene was designated xylogalacturonan deficient1 (xgd1). Transformation of the xgd1-1 mutant with the wild-type gene restored XGA to wild-type levels. XGD1 protein heterologously expressed in Nicotiana benthamiana catalyzed the transfer of xylose from UDP-xylose onto oligogalacturonides and endogenous acceptors. The products formed could be hydrolyzed with an XGA-specific hydrolase. These results confirm that the XGD1 protein is a XGA xylosyltransferase. The protein was shown by expression of a fluorescent fusion protein in N. benthamiana to be localized in the Golgi vesicles as expected for a glycosyltransferase involved in pectin biosynthesis.

  6. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas

    2015-10-07

    The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Arabidopsis CDS blastp result: AK103940 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103940 001-013-G08 At5g54190.1 protochlorophyllide reductase A, chloroplast / PCR A / NADPH-protochlorophy...llide oxidoreductase A (PORA) identical to SP:Q42536 protochlorophyllide reductase ...A, chloroplast precursor (EC 1.3.1.33) (PCR A) (NADPH-protochlorophyllide oxidoreductase A) (POR A) [Arabidopsis thaliana] 1e-130 ...

  8. Arabidopsis CDS blastp result: AK104855 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104855 001-043-B11 At5g54190.1 protochlorophyllide reductase A, chloroplast / PCR A / NADPH-protochlorophy...llide oxidoreductase A (PORA) identical to SP:Q42536 protochlorophyllide reductase ...A, chloroplast precursor (EC 1.3.1.33) (PCR A) (NADPH-protochlorophyllide oxidoreductase A) (POR A) [Arabidopsis thaliana] 1e-130 ...

  9. Arabidopsis CDS blastp result: AK065420 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065420 J013022D10 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 1e-166 ...

  10. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  11. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  12. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  13. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  14. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system.

  15. Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.

    Science.gov (United States)

    Xiao, Xiang; Cheng, Xi; Yin, Kangquan; Li, Huali; Qiu, Jin-Long

    2017-08-01

    Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.

  16. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway.

    Science.gov (United States)

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-05-18

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.

  17. Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects

    Science.gov (United States)

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...

  18. Proteomic analysis of Arabidopsis seed germination and priming

    NARCIS (Netherlands)

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D.

    2001-01-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and

  19. A potato NOA gene increased salinity tolerance in Arabidopsis ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... in Arabidopsis thaliana salt stress responses and increased its salinity tolerance. Key words: StNOA1 ... (NR)-dependent pathways (Cueto et al., 1996; Delledonne ..... plastome-encoded proteins uncovers a mechanism for the.

  20. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Directory of Open Access Journals (Sweden)

    Miao Tan

    2017-08-01

    Full Text Available We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i the work function of the transparent conductive oxide layer, (ii the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si interface, (iii the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H layer, and (iv the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  2. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Science.gov (United States)

    Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong

    2017-08-01

    We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  3. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  4. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis

    DEFF Research Database (Denmark)

    Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.

    2007-01-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae...... was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins...... from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both...

  5. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    International Nuclear Information System (INIS)

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  6. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  7. An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vaughan Martha M

    2011-03-01

    Full Text Available Abstract Background Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. Results We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat. Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. Conclusions A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack.

  8. Reference: 495 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available . Emission of methanethiol from Arabidopsis plants supplied with 10 mM L-methionine was undetectable (cation in an alternat...>homocysteine-->cystathionine-->cysteine) in which methanethiol is an intermediate. Functional characterizat...wth on L-methionine as sole nitrogen source and conferred a high rate of methanethiol emission. The purified...mol min(-1) g(-1) FW), suggesting that AtMGL is not an important source of volatile methanethiol. Knocking o

  9. Reference: 2 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available at share 60 to 80% protein sequence identity. Gene disruptions of the yeast (Saccharomyces cerevisiae) ortho... that these syntaxins are not essential for growth in yeast. However, we have isolated and characterized gene disruption...s in two genes from each family, finding that disruption of individual syntaxins from these fami...lies is lethal in the male gametophyte of Arabidopsis. Complementation of the syp21-1 gene disruption

  10. Reference: 468 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available five NPR1 paralogs in Arabidopsis. Here we report knockout analysis of two of these, NPR3 and NPR4. npr3 single mutants have elevat...t complemented by either wild-type NPR3 or NPR4, and is not associated with an elevat...with our previous finding that basal PR-1 levels are also elevated in the tga2 tga5 tga6 triple mutant, we p

  11. Arabidopsis genotypes resistant and susceptible to diamondback moth (Lepidoptera: Putellidea): No net effects on insect growth

    Science.gov (United States)

    Plutella xylostella (L.), diamondback moth (DBM) is a destructive pest of the Brassicaceae including Arabidopsis thaliana (L.) Heynhold. Ecotypes of Arabidopsis vary in the amounts of leaf area consumed when fed on by DBM, which has been used as a measure of resistance to DBM. Recombinant inbred lin...

  12. Arabidopsis CDS blastp result: AK068893 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068893 J023001G24 At4g15090.1 far-red impaired response protein (FAR1) / far-red impai...red responsive protein (FAR1) identical to far-red impaired response protein FAR1 [Arabidopsis thaliana] gi|5764395|gb|AAD51282; contains Pfam:PF03101 domain: FAR1 family 1e-39 ...

  13. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  14. Transcriptome Responses to Combinations of Stresses in Arabidopsis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Barah, Pankaj; Suarez-Rodriguez, Maria Cristina

    2013-01-01

    In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure...

  15. Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea ...

    African Journals Online (AJOL)

    A two-dimensional liquid chromatography (2D LC) system, ProteomeLab PF 2D, was employed to study the defence proteome of Arabidopsis following infection with the necrotrophic fungal pathogen, Botrytis cinerea. This system demonstrated differential protein expression in control and treated samples in some fractions.

  16. Cleaning the GenBank Arabidopsis thaliana data set

    DEFF Research Database (Denmark)

    Korning, Peter G.; Hebsgaard, Stefan M.; Rouze, Pierre

    1996-01-01

    Data driven computational biology relies on the large quantities of genomic data stored in international sequence data banks. However, the possibilities are drastically impaired if the stored data is unreliable. During a project aiming to predict splice sites in the dicot Arabidopsis thaliana, we...... through anonymous FTP....

  17. Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide.

    Science.gov (United States)

    Xue, Meizhao; Yi, Huilan

    2018-01-01

    Sulfur dioxide (SO 2 ) is a common air pollutant that has complex impacts on plants. The effect of prior exposure to 30mgm -3 SO 2 on defence against Botrytis cinerea (B. cinerea) in Arabidopsis thaliana and the possible mechanisms of action were investigated. The results indicated that pre-exposure to 30mgm -3 SO 2 resulted in significantly enhanced resistance to B. cinerea infection. SO 2 pre-treatment significantly enhanced the activities of defence-related enzymes including phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), β-1,3-glucanase (BGL) and chitinase (CHI). Transcripts of the defence-related genes PAL, PPO, PR2, and PR3, encoding PAL, PPO, BGL and CHI, respectively, were markedly elevated in Arabidopsis plants pre-exposed to SO 2 and subsequently inoculated with B. cinerea (SO 2 + treatment group) compared with those that were only treated with SO 2 (SO 2 ) or inoculated with B. cinerea (CK+). Moreover, SO 2 pre-exposure also led to significant increases in the expression levels of MIR393, MIR160 and MIR167 in Arabidopsis. Meanwhile, the expression of known targets involved in the auxin signalling pathway, was negatively correlated with their corresponding miRNAs. Additionally, the transcript levels of the primary auxin-response genes GH3-like, BDL/IAA12, and AXR3/IAA17 were markedly repressed. Our findings indicate that 30mgm -3 SO 2 pre-exposure enhances disease resistance against B. cinerea in Arabidopsis by priming defence responses through enhancement of defence-related gene expression and enzyme activity, and miRNA-mediated suppression of the auxin signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid.

    Directory of Open Access Journals (Sweden)

    Sujit Roy

    Full Text Available Abscisic acid (ABA acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ pathway genes, and mutants related to homologous recombination (HR pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0 during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0 and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis.

  19. Physiological genomics of response to soil drying in diverse Arabidopsis accessions.

    Science.gov (United States)

    Des Marais, David L; McKay, John K; Richards, James H; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E

    2012-03-01

    Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.

  20. Comparative interactomics: analysis of arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants.

    Science.gov (United States)

    Paul, Anna-Lisa; Liu, Li; McClung, Scott; Laughner, Beth; Chen, Sixue; Ferl, Robert J

    2009-04-01

    As a first step in the broad characterization of plant 14-3-3 multiprotein complexes in vivo, stringent and specific antibody affinity purification was used to capture 14-3-3s together with their interacting proteins from extracts of Arabidopsis cell suspension cultures. Approximately 120 proteins were identified as potential in vivo 14-3-3 interacting proteins by mass spectrometry of the recovered complexes. Comparison of the proteins in this data set with the 14-3-3 interacting proteins from a similar study in human embryonic kidney cell cultures revealed eight interacting proteins that likely represent reasonably abundant, fundamental 14-3-3 interaction complexes that are highly conserved across all eukaryotes. The Arabidopsis 14-3-3 interaction data set was also compared to a yeast in vivo 14-3-3 interaction data set. Four 14-3-3 interacting proteins are conserved in yeast, humans, and Arabidopsis. Comparisons of the data sets based on biochemical function revealed many additional similarities in the human and Arabidopsis data sets that represent conserved functional interactions, while also leaving many proteins uniquely identified in either Arabidopsis or human cells. In particular, the Arabidopsis interaction data set is enriched for proteins involved in metabolism.