WorldWideScience

Sample records for stable ultra-relativistic attosecond

  1. Plasma effects in attosecond pulse generation from ultra-relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Boyd, T.J.M.

    2010-01-01

    Complete text of publication follows. Particle-in-cell simulations were performed to examine the influence of plasma effects on high harmonic spectra from the interaction of ultra-intense p-polarized laser pulses with overdense plasma targets. Furthermore, a theoretical model is proposed to explain the radiation mechanism that leads to attosecond pulse generation in the reflected field. It is shown that plasma harmonic emission affects the spectral characteristics, causing deviations in the harmonic power decay as compared with the so-called universal 8/3-decay. These deviations may occur, in a varying degree, as a consequence of the extent to which the plasma line and its harmonics affect the emission. It is also found a strong correlation of the emitted attosecond pulses with electron density structures within the plasma, responsible to generate intense localised electrostatic fields. A theoretical model based on the excitation of Langmuir waves by the re-entrant Brunel electron beams in the plasma and their electromagnetic interaction with the laser field is proposed to explain the flatter power spectral emission - described by a weaker 5/3 index and observed in numerical simulations - than that of the universal decay.

  2. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    International Nuclear Information System (INIS)

    MCLERRAN, L.

    1999-01-01

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities

  3. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  4. Hydrodynamics of ultra-relativistic bubble walls

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo, E-mail: lleitao@mdp.edu.ar; Mégevand, Ariel, E-mail: megevand@mdp.edu.ar

    2016-04-15

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  5. On the time delay between ultra-relativistic particles

    International Nuclear Information System (INIS)

    Fleury, Pierre

    2016-01-01

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  6. On the time delay between ultra-relativistic particles

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Pierre, E-mail: pierre.fleury@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Department of Physics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa)

    2016-09-10

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  7. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  8. Pion interferometry of ultra-relativistic hadronic collisions

    International Nuclear Information System (INIS)

    Kolehmainen, K.

    1986-05-01

    Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs

  9. Ultra-relativistic ion acceleration in the laser-plasma interactions

    International Nuclear Information System (INIS)

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin; Xueqing Yan

    2012-01-01

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t 4/5 , where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  10. Ultra-relativistic ion acceleration in the laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin [China Institute of Atomic Energy, Beijing 102413 (China); Xueqing Yan [Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-09-15

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t{sup 4/5}, where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  11. Attosecond science

    Science.gov (United States)

    Villeneuve, D. M.

    2018-01-01

    Scientists have been developing sources of light with ever-shorter pulse durations, in order to study motion in systems ranging from a golfer's swing to the motion of atoms within molecules. The shortest pulses produced to date are under 60 attoseconds, i.e. ? s. One attosecond is to one second as one second is to the age of the universe. For comparison, the classical orbital period of an electron in a hydrogen atom is 150 attoseconds. Attosecond pulses were first produced in 2001. This article describes how attosecond pulses are generated and how they are measured. Some applications of attosecond pulses are described, such as measuring the delay in photoionisation, or observing molecular dissociation dynamics.

  12. Ultra-relativistic heavy ions and cosmic rays

    International Nuclear Information System (INIS)

    McLerran, L.

    1983-05-01

    The collisions of ultra-relativistic heavy ions, E/sub /N/ greater than or equal to 1 TeV/nucleon are most interesting, since, at these energies, matter is produced at sufficiently high energy density that a quark-gluon plasma has a good chance to form. Very heavy ions are also most interesting since the matter forms in a larger volume than for light ions, and the matter is at a somewhat higher energy density. At very high energies with very heavy ions there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. The fragmentation region and central region provide different environments where a plasma might form. The former is baryon rich while the central region is high temperature with low baryon number density and is not accessible except at very high energies

  13. Ultra-relativistic heavy ions and the CBA

    International Nuclear Information System (INIS)

    McLerran, L.D.

    1982-01-01

    The study of ultra-relativistic heavy ions at an accelerator such as the CBA provides a unique glimpse of matter as it may have appeared in the early universe. This hot dense matter very probably appears as a quark-gluon plasma which expands and cools into hadronic matter. The CBA would provide data at the very highest energies, and produce matter at the highest energy densities. The possibility of using a cyclotron to inject very heavy ions into the AGS and then into the CBA would also allow the production of quark-gluon matter at higher energy densities than would light ions, and would make the matter in a larger volume where surface effects are minimized. At the highest energies with very heavy ions, there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. Some of the possibilities are discussed

  14. Photons from Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    Sarkar, S

    2000-01-01

    It is believed that a novel state of matter - Quark Gluon Plasma (QGP) will be transiently produced if normal hadronic matter is subjected to sufficiently high temperature and/or density. We have investigated the possibility of QGP formation in the ultra-relativistic collisions of heavy ions through the electromagnetic probes - photons and dileptons. The formulation of the real and virtual photon production rate from strongly interacting matter is studied in the framework of Thermal Field Theory. Since signals from the QGP will pick up large backgrounds from hadronic matter we have performed a detailed study of the changes in the hadronic properties induced by temperature within the ambit of the Quantum Hadrodynamic model, gauged linear and non-linear sigma models, hidden local symmetry approach and QCD sum rule approach. The possibility of observing the direct thermal photons and lepton pairs from quark gluon plasma has been contrasted with that from hot hadronic matter with and without medium effects for va...

  15. Two views on the Bjorken scenario for ultra-relativistic heavy-ion collisions

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch describes the Bjorken scenario foreseen for the collision of ultra-relativistic heavy-ions, leading to the creation of strongly-interacting hot and dense deconfined matter, the so-called Quark-Gluon Plasma (QGP).

  16. Ultra-relativistic heavy-ion physics with AFTER@LHC

    DEFF Research Database (Denmark)

    Rakotozafindrabe, A.; Arnaldi, R.; Brodsky, Stanley

    2013-01-01

    We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.......We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal....

  17. INFN what next ultra-relativistic heavy-ion collisions

    CERN Document Server

    Dainese, A.; Usai, G.; Antonioli, P.; Arnaldi, R.; Beraudo, A.; Bruna, E.; Bruno, G.E.; Bufalino, S.; Di Nezza, P.; Lombardo, M.P.; Nania, R.; Noferini, F.; Oppedisano, C.; Piano, S.; Prino, F.; Rossi, A.; Agnello, M.; Alberico, W.M.; Alessandro, B.; Alici, A.; Andronico, G.; Antinori, F.; Arcelli, S.; Badala, A.; Barbano, A.M.; Barbera, R.; Barile, F.; Basile, M.; Becattini, F.; Bedda, C.; Bellini, F.; Beole, S.; Bianchi, L.; Bianchin, C.; Bonati, C.; Bossu, F.; Botta, E.; Caffarri, D.; Camerini, P.; Carnesecchi, F.; Casula, E.; Cerello, P.; Cicalo, C.; Cifarelli, M.L.; Cindolo, F.; Colamaria, F.; Colella, D.; Colocci, M.; Corrales Morales, Y.; Cortese, P.; De Caro, A.; De Cataldo, G.; De Falco, A.; De Gruttola, D.; D'Elia, M.; De Marco, N.; De Pasquale, S.; Di Bari, D.; Elia, D.; Fantoni, A.; Feliciello, A.; Ferretti, A.; Festanti, A.; Fionda, F.; Fiorenza, G.; Fragiacomo, E.; Fronze, G.G.; Girard, M. Fusco; Gagliardi, M.; Gallio, M.; Garg, K.; Giubellino, P.; Greco, V.; Grossi, E.; Guerzoni, B.; Hatzifotiadou, D.; Incani, E.; Innocenti, G.M.; Jacazio, N.; Das, S. Kumar; La Rocca, P.; Lea, R.; Leardini, L.; Leoncino, M.; Lunardon, M.; Luparello, G.; Mantovani Sarti, V.; Manzari, V.; Marchisone, M.; Margagliotti, G.V.; Masera, M.; Masoni, A.; Mastroserio, A.; Mazzilli, M.; Mazzoni, M.A.; Meninno, E.; Mesiti, M.; Milano, L.; Moretto, S.; Muccifora, V.; Nappi, E.; Nardi, M.; Nicassio, M.; Pagano, P.; Pappalardo, G.S.; Pastore, C.; Paul, B.; Petta, C.; Pinazza, O.; Plumari, S.; Preghenella, R.; Puccio, M.; Puddu, G.; Ramello, L.; Ratti, C.; Ravasenga, I.; Riggi, F.; Ronchetti, F.; Rucci, A.; Ruggieri, M.; Rui, R.; Sakai, S.; Scapparone, E.; Scardina, F.; Scarlassara, F.; Scioli, G.; Siddhanta, S.; Sitta, M.; Soramel, F.; Suljic, M.; Terrevoli, C.; Trogolo, S.; Trombetta, G.; Turrisi, R.; Vercellin, E.; Vino, G.; Virgili, T.; Volpe, G.; Williams, M.C.S.; Zampolli, C.

    2016-01-01

    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target p...

  18. Coupling of (ultra- relativistic atomic nuclei with photons

    Directory of Open Access Journals (Sweden)

    M. Apostol

    2013-11-01

    Full Text Available The coupling of photons with (ultra- relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare nuclei (fully stripped of electrons are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance, or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  19. Next Generation Driver for Attosecond and Laser-plasma Physics.

    Science.gov (United States)

    Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L

    2017-07-12

    The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20  W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

  20. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  1. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paquet, Jean-François

    2017-01-01

    An introductory overview of electromagnetic probe production in ultra-relativistic heavy ion collisions is provided. Experimental evidence supporting the production of thermal photons and dileptons in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are reviewed. Thermal electromagnetic probe production from hydrodynamical models of collisions is discussed. (paper)

  2. Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN Explorer

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Bezchastnov, Victor G.; Solov'yov, Ilia

    2013-01-01

    A newly developed code, implemented as a part of the MBN Explorer package (Solov'yov et al., 2012; http://www.mbnexplorer.com/, 2012) [1] and [2] to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically b...

  3. Femtoscopic analysis of baryon correlations in ultra-relativistic heavy-ion collisions registered by ALICE

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361630

    Heavy-ion collisions at ultra-relativistic energies give a unique possibility to create and to analyse the Quark-Gluon Plasma predicted by the theory of Quantum Chromodynamics. The research on the properties of such state of matter is crucial for understanding the features of the strongly interacting system. Experimental results reveal the collective behaviour of matter created in the heavy-ion collisions at ultra-relativistic energies. The existence of this effect can be verified by the measurement of the transverse mass dependence of the source size extracted using different particle species. Such characteristics can be determined using the analysis technique called femtoscopy. This method is based on the correlations of particles with small relative momenta which originate from the effects of Quantum Statistics as well as the strong and Coulomb Final State Interactions. A recent analysis of the particle production at the highest available collision energies of heavy-ion collisions reveals the puzzling res...

  4. Open heavy-flavor measurements in ultra-relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, Ralf

    2016-12-15

    Recent results from open heavy-flavor measurements in proton-proton (pp), proton/deuteron-nucleus (p/d-A), and nucleus-nucleus collisions (A-A) at RHIC and at the LHC are presented. Predictions from theoretical models are compared with the data, and implications for the properties of the hot and dense medium produced in ultra-relativistic heavy-ion collisions are discussed.

  5. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    OpenAIRE

    Uphoff, Jan

    2014-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of...

  6. Ultra-relativistic heavy ion collisions in a multi-string model

    International Nuclear Information System (INIS)

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e + e - or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs

  7. Ultra relativistic heavy ions collisions or the search for quark-gluon plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1985-03-01

    This paper reviews some aspects of the physics of ultra-relativistic heavy ion collisions. The qualitative changes expected in the properties of hadronic matter at high temperature and/or large baryon density are described in terms of simple models. We discuss a scenario giving the space-time evolution of a quark-gluon plasma. Finally we address the difficult question of the possible signatures of the formation of a quark-gluon plasma in heavy ion collisions

  8. Macroscopic damping model for zero degree energy distribution in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gao Chongshou; Wang Chengshing

    1993-01-01

    A macroscopic damping model is proposed to calculate the zero degree energy distribution in ultra-relativistic heavy ion collisions. The main features of the measured distributions are reproduced, good agreement is obtained in the middle energy region while overestimation results on the high energy side. The average energy loss coefficient of incident nucleons, varying in the reasonable region 0.2-0.6, depends on beam energy and target size

  9. Dynamics of hadronization in ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Friman, B.L.

    1986-01-01

    One of the main problems in the search for quark-gluon plasma in ultra-relativistic nucleus-nucleus collisions is finding a reliable signature for deconfinement. Several signatures have been suggested, e.g., dileptons with a spectrum characteristic of the plasma, an increase in the number of strange particles and effects due to the hadronization of the plasma. In this talk I will describe some recent work on the effects of the hadronization transition in the central rapidity region within the hydrodynamic model of Bjorken, Kajantie and McLerran. (orig.)

  10. Phase transition dynamics in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Kapusta, J.I.; Kluge, G.Y.; Zabrodin, E.E.

    1992-11-01

    The authors investigate various problems related to the dynamics of a first-order phase transition from quark-gluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. 10 refs., 7 figs

  11. Ultra-relativistic heavy-ion collisions - a hot cocktail of hydrodynamics, resonances and jets

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2015-01-01

    Full Text Available Ultra-relativistic heavy-ion collisions at energies of RHIC and LHC are considered. For comparison with data the HYDJET++ model, which contains the treatment of both soft and hard processes, is employed. The study focuses mainly on the interplay of ideal hydrodynamics, final state interactions and jets, and its influence on the development of harmonics of the anisotropic flow. It is shown that jets are responsible for violation of the number-of-constituent-quark (NCQ scaling at LHC energies. The interplay between elliptic and triangular flows and their contribution to higher flow harmonics and dihadron angular correlations, including ridge, is also discussed.

  12. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    International Nuclear Information System (INIS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-01-01

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He + , He ++ ) and hydrogen (H + ) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas

  13. Studies of nuclear matter under extreme conditions: Heavy-ion interactions at ultra-relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Nystrand, J

    1996-10-01

    The charged particle production in ultra-relativistic nucleus-nucleus collisions in the energy range 4-200 A GeV has been studied. Two different experimental techniques have been utilized: nuclear emulsions and multi-step avalanche chambers. The performance of the chambers in the experiment as well as the analysis of the chamber data are described in the thesis. The reconstructed particle momenta have been used to study transverse momentum distribution of negatively charged particles, and to perform intensity interferometry analyses in order to determine the source size and study the time-evolution of the interactions. Multiplicity and pseudorapidity distributions of singly charged particles obtained from interactions in nuclear emulsion have been studied. Simulations have been performed with various Monte-Carlo models, and particularly the effects of the hadronic rescattering have been studied. The results of the analysis have illustrated the great importance of the nuclear geometry in ultra-relativistic nucleus-nucleus collisions. Based on gaussian parametrizations a method of predicting the pseudorapidity distributions in systems of different sizes and at different energies has been developed. Furthermore, the multiplicity and angular distributions of slow, target associated particles have been analyzed. 99 refs, 19 figs.

  14. Studies of nuclear matter under extreme conditions: Heavy-ion interactions at ultra-relativistic energies

    International Nuclear Information System (INIS)

    Nystrand, J.

    1996-10-01

    The charged particle production in ultra-relativistic nucleus-nucleus collisions in the energy range 4-200 A GeV has been studied. Two different experimental techniques have been utilized: nuclear emulsions and multi-step avalanche chambers. The performance of the chambers in the experiment as well as the analysis of the chamber data are described in the thesis. The reconstructed particle momenta have been used to study transverse momentum distribution of negatively charged particles, and to perform intensity interferometry analyses in order to determine the source size and study the time-evolution of the interactions. Multiplicity and pseudorapidity distributions of singly charged particles obtained from interactions in nuclear emulsion have been studied. Simulations have been performed with various Monte-Carlo models, and particularly the effects of the hadronic rescattering have been studied. The results of the analysis have illustrated the great importance of the nuclear geometry in ultra-relativistic nucleus-nucleus collisions. Based on gaussian parametrizations a method of predicting the pseudorapidity distributions in systems of different sizes and at different energies has been developed. Furthermore, the multiplicity and angular distributions of slow, target associated particles have been analyzed. 99 refs, 19 figs

  15. Fundamentals of attosecond optics

    CERN Document Server

    Chang, Zenghu

    2011-01-01

    Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances th

  16. Effect of phase transition on QGP fluid in ultra-relativistic heavy ion collision

    International Nuclear Information System (INIS)

    Nonaka, Chiho; Miyamura, Osamu; Muroya, Shin

    2001-01-01

    A full (3+1)-dimensional calculation using the Lagrangian hydrodynamics is proposed for relativistic nuclear collisions. The calculation enables us to evaluate anisotropic flow of hot and dense matter which appears in non-central and/or asymmetrical relativistic nuclear collisions. The relativistic hydrodynamical model is related to the equation of the state and the useful for the verification of quark-gluon plasma state. By virtue of the Lagrangian hydrodynamics we can easily trace the trajectory which corresponds to the adiabatic paths in the T-μ plane. We evaluate the directly of the influence of the phase transition to physical phenomena in the ultra-relativistic nuclear collisions. Using our relativistic hydrodynamical model, we discuss the effect of the phase transition on the collective flow. (author)

  17. Dispersion characteristics of anisotropic unmagnetized ultra-relativistic transverse plasma wave with arbitrary electron degeneracy

    Science.gov (United States)

    Sarfraz, M.; Farooq, H.; Abbas, G.; Noureen, S.; Iqbal, Z.; Rasheed, A.

    2018-03-01

    Thermal momentum space anisotropy is ubiquitous in many astrophysical and laboratory plasma environments. Using Vlasov-Maxwell's model equations, a generalized polarization tensor for a collisionless ultra-relativistic unmagnetized electron plasma is derived. In particular, the tensor is obtained by considering anisotropy in the momentum space. The integral of moments of Fermi-Dirac distribution function in terms of Polylog functions is used for describing the border line plasma systems (T/e TF e ≈1 ) comprising arbitrary electron degeneracy, where Te and TF e, are thermal and Fermi temperatures, respectively. Furthermore, the effects of variation in thermal momentum space anisotropy on the electron equilibrium number density and the spectrum of electromagnetic waves are analyzed.

  18. Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN

    CERN Document Server

    Schukraft, Jurgen

    2015-01-01

    Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD Phase boundary. We describe 3 decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultra-relativistic heavy ion physics has evolved today into a central pillar of contemporary nuclear physics and forms a significant part of the LHC program.

  19. In-medium Modifications of Hadron Masses and Chemical Freeze-out in Ultra-relativistic Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Florkowski, W.; Broniowski, W.

    1999-10-01

    We confront the hypothesis of chemical freeze-out in ultra-relativistic heavy-ion collisions with the hypothesis of large modifications of hadron masses in nuclear medium. We find that the thermal-model predictions for the ratios of particle multiplicities are sensitive to the values of in-medium hadronic masses. In particular, the π + /p ratio decreases by 35% when the masses of all hadrons (except for pseudo-Goldstone bosons) are scaled down by 30%. (author)

  20. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    Science.gov (United States)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  1. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  2. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan

    2013-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of the running coupling is small and their interactions should be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but also addresses the suppression of light parton jets, in particular to highlight differences due to the mass. For light partons, radiative processes are the dominant contribution to their energy loss. For heavy quarks, we show that also binary interactions with a running coupling and an improved Debye screening matched to hard-thermal-loop calculations play an important role. Furthermore, the impact of the mass in radiative interactions, prominently named the dead cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are studied in great detail. Since the transport model BAMPS has access to all medium properties and the space time information of heavy quarks, it is the ideal tool to study the dissociation and regeneration of J/ψ mesons, which is also investigated in this thesis.

  3. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    Directory of Open Access Journals (Sweden)

    Domanski Jaroslaw

    2018-01-01

    Full Text Available One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  4. Approximative analytic study of fermions in magnetar's crust; ultra-relativistic plane waves, Heun and Mathieu solutions and beyond

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-10-01

    Working with a magnetic field periodic along Oz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.

  5. Suitability of high-current standing-wave linac technology for ultra-relativistic electron beam propagation experiments

    International Nuclear Information System (INIS)

    Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.

    1981-01-01

    Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division

  6. Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions''

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich W. Heinz

    2012-11-09

    In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at

  7. Population of multi-quark states in exotic multiplets and thermalization in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Scherer, S.; Bleicher, M.; Haussler, S.; Stoecker, H.

    2008-01-01

    The recent discussion about experimental evidence for pentaquark states has revitalized the interest in exotic hadrons. If such states really exist, it is natural to assume that they will be formed at the late hadronization stage of ultra-relativistic heavy ion collisions, given the success of quark recombination models in the description of hadronization. Here, we apply the qMD model to study the formation of color neutral exotic multi-quark clusters at hadronization. We search for color neutral clusters made up of up to six color charges, respectively. We thus obtain estimates for the numbers and phase space distributions of exotic hadronic states produced by clustering in heavy ion collisions, including the members of the pentaquark multiplets. We obtain particle abundances that are smaller than thermal model predictions. Moreover, the results obtained in recombination from ultra-relativistic heavy ion collisions can be compared to the estimates based on equal population of the corresponding multiplets, and to results from fully thermalized systems. We find that the distribution of exotic hadrons from recombination over large multiplets provides a sensitive signal for thermalization and decorrelation of the initial, non-equilibrium state of the collision. (author)

  8. Probing the specific entropy produced in ultra-relativistic heavy-ion collisions with a silicon pixel multiplicity detector: a simulation study

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Balada, A.; Barbera, R.; Staroba, Pavel; Závada, Petr

    2000-01-01

    Roč. 452, - (2000), s. 323-337 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z1010920 Keywords : ultra-relativistic * heavy-ion collisions * nuclear matter * phase diagram * hadron gas * Quark Gluon Plasma * particle multiplicity * transverse momentum spectra Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.964, year: 2000

  9. Search for free quarks produced in ultra-relativistic collisions at BNL [Brookhaven National Laboratory] and CERN [European Organization for Nuclear Research

    International Nuclear Information System (INIS)

    Matis, H.S.; Pugh, H.G.; Alba, G.P.; Bland, R.W.; Calloway, D.H.; Dickson, S.; Hodges, C.L.; Palmer, T.L.; Stricker, D.A.; Johnson, R.T.

    1990-07-01

    A high intensity experiment was performed to search for free quarks at BNL and CERN using ultra-relativistic beams. The experiment was designed to trap quarks in a Hg target or liquid Ar tank. No free quark candidate was found. Limits from 10 -7 to 10 -10 quarks per incident ion are reported. 7 refs., 2 figs., 2 tabs

  10. Explaining the Diverse Response of the Ultra-relativistic Van Allen Radiation Belt to Solar Wind Forcing

    Science.gov (United States)

    Mann, I. R.; Ozeke, L.; Murphy, K. R.; Claudepierre, S. G.; Rae, J.; Milling, D. K.; Kale, A.; Baker, D. N.

    2017-12-01

    The NASA Van Allen Probes have opened a new window on the dynamics of ultra-relativistic electrons in the Van Allen radiation belts. Under different solar wind forcing the outer belt is seen to respond in a variety of apparently diverse and sometimes remarkable ways. For example, sometimes a third radiation belt is carved out (e.g., September 2012), or the belts can remain depleted for 10 days or more (September 2014). More usually there is a sequential response of a strong and sometimes rapid depletion followed by a re-energization, the latter increasing outer belt electron flux by orders of magnitude on hour timescales during some of the strongest storms of this solar cycle (e.g., March 2013, March 2015). Such dynamics also appear to be often bounded at low-L by an apparently impenetrable barrier at L 2.8 through which ultra-relativistic electrons do not penetrate. Many studies in the Van Allen Probes era have sought explanations for these apparently diverse features, often incorporating the effects from multiple plasma waves. In contrast, we show how this apparently diverse behaviour can instead be explained by one dominant process: ULF wave radial transport. Once ULF wave transport rates are accurately specified by observations, and coupled to the dynamical variation of the outer boundary condition at the edge of the outer belt, the observed diverse responses can all be explained. However, in order to get good agreement with observations, the modeling reveals the importance of still currently unexplained very fast loss in the main phase which results in an almost total extinction of the belts and decouples pre- and post-storm ultra-relativistic electron flux on hour timescales. Similarly, varying plasmasheet source populations are seen to be of critical importance such that near-tail dynamics play a crucial role in Van Allen belt dynamics. Nonetheless, simple models incorporating accurate transport rates derived directly from ULF wave measurements are shown to

  11. Total spectrum of photon emission by an ultra-relativistic positron channelling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Department of Physics, St Petersburg State Maritime Technical University, Leninskii prospect 101, St Petersburg 198262; Solov'yov, A.V.; AF Ioffe Physical-Technical Institute of the Academy of Sciences of Russia, Polytechnicheskaya 26, St Petersburg 194021; Greiner, W.

    2000-01-01

    We present the results of numerical calculations of the channelling and undulator radiation generated by ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due to either the propagation of a transverse acoustic wave through the crystal, or the static strain as it occurs in superlattices. The periodically bent crystal serves as an undulator. We investigate the dependence of the intensities of both the ordinary channelling and the undulator radiations on the parameters of the periodically bent channel with simultaneous account for the de-channelling effect of the positrons. We demonstrate that there is a range of parameters in which the undulator radiation dominates over the channelling one and the characteristic frequencies of both types of radiation are well separated. This result is important, because the undulator radiation can be used to create a tunable source of x-ray and γ-radiation. (author). Letter-to-the-editor

  12. On a temporal evolution of the ultra-relativistic electron spectrum by action of synchrotron losses and turbulent acceleration

    International Nuclear Information System (INIS)

    Samsonov, A.M.; Fedorenko, V.N.

    1981-01-01

    The kinetic equation describing temporal evolution of the ultra-relativistic electrons' energy spectrum effected by synchrotron losses and turbulent acceleration is solved for the isotropic part of the electrons' distribution function. The original distribution is assumed to be given in the form of a power spectrum. Turbulence properties are stated by means of the turbulent acceleration coefficient depending on epsilon energy D(epsilon)=D 0 epsilon 3 which is related to the synchrotron losses coefficient b(epsilon)=b 0 epsilon 3 so that the isotropization of the distribution function is provided without essential acceleration of particles. The initial spectrum is conserved up to some values of time t and energy epsilon connected by inequality epsilonb 0 t 0 /D 0 -2 if epsilonD 0 t>>1 and b 0 >>D 0 . Finally, are possible applications of the solution to description of processes in supernova shells and radio galaxies are discussed [ru

  13. Multiphoton Processes and Attosecond Physics

    CERN Document Server

    Midorikawa, Katsumi; 12th International Conference on Multiphoton Processes; 3rd International Conference on Attosecond Physics

    2012-01-01

    Recent advances in ultrashort pulsed laser technology have opened new frontiers in atomic, molecular and optical sciences. The 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3), held jointly in Sapporo, Japan, during July 3-8, showcased studies at the forefront of research on multiphoton processes and attosecond physics. This book summarizes presentations and discussions from these two conferences.

  14. Reconstruction of Attosecond Pulse Trains

    Science.gov (United States)

    Mairesse, Y.; Agostini, P.; Breger, P.; Carre, B.; Merdji, A.; Monchicourt, P.; Salieres, P.; Varju, K.; Gustafsson, E.; Johnsson, P.; Mauritsson, J.; Remetter, T.; L'Huillier, A.; Frasinski, L. J.

    2006-11-01

    We show that it is possible to completely reconstruct the intensity profile of the attosecond bursts emitted as a superposition of high harmonics from a series of RABBIT measurements carried out at different infrared intensities. The electric field can be recovered from a measurement of the central harmonic chirp. Timing, chirp and variations of the carrier-to-envelope phase of the attosecond bursts are accessible to the proposed method.

  15. Decoherence in attosecond photoionization.

    Science.gov (United States)

    Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin

    2011-02-04

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  16. Attosecond interference control of XUV photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Cao Wei; Lu Peixiang; Lan Pengfei; Li Yuhua; Wang Xinlin [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: lupeixiang@mail.hust.edu.cn

    2008-04-28

    The characterizing of attosecond pulses has great importance for the investigation of ultrafast phenomena. Here, we proposed a novel and efficient scheme for measuring attosecond XUV pulses, which is based on laser-dressed XUV photoionization. The ultrashort attosecond gating of photoionization leads to an interference structure in the photoelectron spectrum. Then the duration of the attosecond XUV pulse can be retrieved directly from the photoelectron spectrum with a rather high resolution.

  17. Attosecond interference control of XUV photoionization

    International Nuclear Information System (INIS)

    Cao Wei; Lu Peixiang; Lan Pengfei; Li Yuhua; Wang Xinlin

    2008-01-01

    The characterizing of attosecond pulses has great importance for the investigation of ultrafast phenomena. Here, we proposed a novel and efficient scheme for measuring attosecond XUV pulses, which is based on laser-dressed XUV photoionization. The ultrashort attosecond gating of photoionization leads to an interference structure in the photoelectron spectrum. Then the duration of the attosecond XUV pulse can be retrieved directly from the photoelectron spectrum with a rather high resolution

  18. Measurement and Control of Attosecond Pulses

    Science.gov (United States)

    2016-04-25

    highest power or the shortest duration attosecond pulses. Results: We have adapted the attosecond lighthouse to gases and confirmed isolated...simplifying attosecond metrology so it becomes more widely accessible. Result: This goal was completely accomplished. Aim 2: To exploit few- cycle ...μm driver. Aim 3: To compare attosecond gating methods, selecting the most efficient way to produce the highest power or the shortest duration

  19. The Alice experiment for the study of ultra relativistic heavy ion collisions; Experience ALICE pour l'etude des collisions d'ions lourds ultra-relativistes au CERN-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Forestier, B

    2003-12-01

    Alice is the detector dedicated to the study of heavy ions at the LHC (large hadron collider). It will allow scientists to investigate all the signatures of quark-gluon plasma (QGP). The spectrometer of the dimuon arm of Alice has been designed to study the production of high mass resonances through their dimuon decay. The first chapter is dedicated to some aspects of the physics of ultra-relativistic heavy ion: confinement and de-confinement of quarks, the absence of heavy resonances as a signature for the presence of QGP. The second chapter presents Alice and its ancillary detectors. The third chapter deals with the trigger system of the dimuon spectrometer, a detailed algorithm of this system is given. A method for the optimization of the trigger response is presented in the fourth chapter. The fifth chapter describes the testing of a prototype of the trigger system, this testing with muons has shown that the efficiency of the track reconstruction of the trigger system and the efficiency of the resistive plate chamber reach 98%.In the sixth chapter the author comments the simulations of the production of heavy resonances from Pb-Pb collisions as a function of centrality. (A.C.)

  20. Spectral Caustics in Attosecond Science

    Directory of Open Access Journals (Sweden)

    Dudovich N.

    2013-03-01

    Full Text Available A unique type of singularity common in wave phenomena, known as caustics, links processes observed in many different branches of physics [1]. We investigate the role of caustics in attosecond science and in particular the physical process behind high harmonic generation. By exploiting singularities of the three-step model that describes HHG, we can manipulate and enhance specific features in the emitted harmonic spectrum. This new level of control holds promises in both scientific and technological aspects of attosecond science, and provides a deeper insight into the basic mechanism underlying the high harmonic generation process.

  1. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is currently experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. The more than a factor 10 increase of collision energy at LHC, relative to the previously achieved maximal energy at other collider facilities, results in an increase of production rates of hard probes. This review presents selected experimental results focusing on observables probing hard processes in heavy-ion collisions delivered during the first three years of the LHC operation. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large Hadron Collider, Heavy-ion collisions, High energy physics

  2. Attosecond ionization gating for isolated attosecond electron wave packet and broadband attosecond xuv pulses

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    An attosecond ionization gating is achieved using a few-cycle laser pulse in combination with its second harmonic. With this gating, the generation of the electron wave packet (EWP) is coherently controlled, and an isolated EWP of about 270 as is generated. An isolated broadband attosecond extreme ultraviolet pulse with a bandwidth of about 75 eV can also be generated using this gating, which can be used for EWP measurements as efficiently as a 50-as pulse, allowing one to measure a wide range of ultrafast dynamics not normally accessible before

  3. EDITORIAL: Focus on Attosecond Physics

    Science.gov (United States)

    Bandrauk, André D.; Krausz, Ferenc; Starace, Anthony F.

    2008-02-01

    Investigations of light-matter interactions and motion in the microcosm have entered a new temporal regime, the regime of attosecond physics. It is a main 'spin-off' of strong field (i.e., intense laser) physics, in which nonperturbative effects are fundamental. Attosecond pulses open up new avenues for time-domain studies of multi-electron dynamics in atoms, molecules, plasmas, and solids on their natural, quantum mechanical time scale and at dimensions shorter than molecular and even atomic scales. These capabilities promise a revolution in our microscopic knowledge and understanding of matter. The recent development of intense, phase-stabilized femtosecond (10-15 s) lasers has allowed unparalleled temporal control of electrons from ionizing atoms, permitting for the first time the generation and measurement of isolated light pulses as well as trains of pulses on the attosecond (1 as = 10-18 s) time scale, the natural time scale of the electron itself (e.g., the orbital period of an electron in the ground state of the H atom is 152 as). This development is facilitating (and even catalyzing) a new class of ultrashort time domain studies in photobiology, photochemistry, and photophysics. These new coherent, sub-fs pulses carried at frequencies in the extreme ultraviolet and soft-x-ray spectral regions, along with their intense, synchronized near-infrared driver waveforms and novel metrology based on sub-fs control of electron-light interactions, are spawning the new science of attosecond physics, whose aims are to monitor, to visualize, and, ultimately, to control electrons on their own time and spatial scales, i.e., the attosecond time scale and the sub-nanometre (Ångstrom) spatial scale typical of atoms and molecules. Additional goals for experiment are to advance the enabling technologies for producing attosecond pulses at higher intensities and shorter durations. According to theoretical predictions, novel methods for intense attosecond pulse generation may in

  4. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  5. Attosecond electron wave packet interferometry

    International Nuclear Information System (INIS)

    Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.

    2006-01-01

    Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.

  6. Nondipole effects in attosecond photoelectron streaking

    DEFF Research Database (Denmark)

    Spiewanowski, Maciek; Madsen, Lars Bojer

    2012-01-01

    The influence of nondipole terms on the time delay in photoionization by an extreme-ultraviolet attosecond pulse in the presence of a near-infrared femtosecond laser pulse from 1s, 2s, and 2p states in hydrogen is investigated. In this attosecond photoelectron streaking process, the relative...

  7. Extracting attosecond delays from spectrally overlapping interferograms

    Science.gov (United States)

    Jordan, Inga; Wörner, Hans Jakob

    2018-02-01

    Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.

  8. Attosecond physics attosecond measurements and control of physical systems

    CERN Document Server

    Torres, Ricardo; Zaïr, Amelle

    2013-01-01

    Attophysics is an emerging field in physics devoted to the study and characterization of matter dynamics in the sub-femtosecond time scale. This book gives coverage of a broad set of selected topics in this field, exciting by their novelty and their potential impact. The book is written review-like. It also includes fundamental chapters as introduction to the field for non-specialist physicists. The book is structured in four sections: basics, attosecond pulse technology, applications to measurements and control of physical processes and future perspectives. It is a valuable reference tool for researchers in the field as well as a concise introduction to non-specialist readers.

  9. Attosecond physics at the nanoscale

    Czech Academy of Sciences Publication Activity Database

    Ciappina, Marcelo F.; Perez-Hernandez, J.A.; Landsman, A.S.; Okell, W.A.; Zherebtsov, S.; Foerg, B.; Schoetz, J.; Seiffert, L.; Fennel, T.; Shaaran, T.; Zimmermann, T.; Chacon, A.; Guichard, R.; Zair, A.; Tisch, J.W.G.; Marangos, J.P.; Witting, T.; Braun, A.; Maier, S. A.; Roso, L.; Krueger, M.; Hommelhoff, P.; Kling, M.F.; Krausz, F.; Lewenstein, M.

    2017-01-01

    Roč. 80, č. 5 (2017), 1-50, č. článku 054401. ISSN 0034-4885 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : attosecond physics * plasmonic fields * strong field physics Subject RIV: BH - Optics, Masers, Laser s OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 14.311, year: 2016

  10. Laser-plasma accelerator-based single-cycle attosecond undulator source

    Science.gov (United States)

    Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.

    2018-06-01

    Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

  11. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies...... of the hole in this manner. In a second example, a hole is created in an inner shell by the first pulse, and the second probe pulse couples an even more tightly bound state to that hole. The hole decays in this example by Auger electron emission, and the absorption spectroscopy follows the decay of the hole...

  12. Attosecond Delays in Molecular Photoionization.

    Science.gov (United States)

    Huppert, Martin; Jordan, Inga; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob

    2016-08-26

    We report measurements of energy-dependent photoionization delays between the two outermost valence shells of N_{2}O and H_{2}O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N_{2}O, whereas the delays in H_{2}O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N_{2}O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to ∼110 as. The unstructured continua of H_{2}O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.

  13. Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae

    Science.gov (United States)

    Gelfand, Joseph

    Core-collapse supernovae, the powerful explosions triggered by the gravitational collapse of massive stars, play an important role in evolution of star-forming galaxies like our Milky Way. Not only do these explosions eject the outer envelope of the progenitor star with extremely high velocities, creating a supernova remnant (SNR), the rotational energy of the resultant neutron star powers an ultra-relativistic outflow called a pulsar wind which creates a pulsar wind nebula (PWN) as it expands into its surroundings. Despite almost a century of study, many fundamental questions remain, including: How is a neutron star formed during a core-collapse supernova? How are particles created in the neutron star magnetosphere? How are particles accelerated to the PeV energies inside PWNe? Answering these questions requires measuring the properties of the progenitor star and pulsar wind for a diverse collection of neutron stars. Currently, this is best done by studying those PWNe inside a SNR, since their evolution is very sensitive to the initial spin period of the neutron star, the mass and initial kinetic energy of the supernova ejecta, and the magnetization and particle spectrum of the pulsar wind - quantities critical for answering the above questions. To this end, we propose to measure these properties for 17 neutron stars whose spin-down inferred dipole surface magnetic field strengths and characteristic ages differ by 1.5 orders of magnitude by fitting the broadband spectral energy distribution (SED) and dynamical properties of their associated PWNe with a model for the dynamical and spectral evolution of a PWN inside SNR. To do so, we will first re-analyze all archival X-ray (e.g., XMM, Chandra, INTEGRAL, NuSTAR) and gamma-ray (e.g., Fermi-LAT Pass 8) data on each PWN to ensure consistent measurements of the volume-integrated properties (e.g., X-ray photon index and unabsorbed flux, GeV spectrum) needed for this analysis. Additionally, we will use a Markoff Chain

  14. Attosecond transient absorption spectroscopy of molecular hydrogen

    International Nuclear Information System (INIS)

    Martín, Fernando; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Cheng, Yan; Chini, Michael; Wang, Xiaowei; Chang, Zenghu

    2015-01-01

    We extend attosecond transient absorption spectroscopy (ATAS) to the study of hydrogen molecules, demonstrating the potential of the technique to resolve – simultaneously and with state resolution – both the electronic and nuclear dynamics. (paper)

  15. Attosecond electron dynamics in molecules and liquids

    Science.gov (United States)

    WöRner, Hans Jakob

    The ultrafast motion of electrons and holes following light-matter interaction is fundamental to a broad range of chemical and biophysical processes. In this lecture, I will discuss some of our recent experiments that measure the atomic-scale motion of charge with attosecond temporal resolution (1 as = 10-18s). The first experiment is carried out on isolated, spatially oriented molecules in the gas phase. Using high-harmonic spectroscopy, we resolve the migration of an electron hole across the molecule with a resolution of 100 as and simultaneously demonstrate extensive control over charge migration. In the second class of experiments, we use an attosecond pulse train synchronized with a near-infrared laser pulse to temporally resolve the process of photoemission from molecules in the gas phase and from a liquid-water microjet, resolving electron transport through liquid water on the attosecond time scale.

  16. Practical issues of retrieving isolated attosecond pulses

    International Nuclear Information System (INIS)

    Wang He; Chini, Michael; Khan, Sabih D; Chen, Shouyuan; Gilbertson, Steve; Feng Ximao; Mashiko, Hiroki; Chang Zenghu

    2009-01-01

    The attosecond streaking technique is used for the characterization of isolated extreme ultraviolet (XUV) attosecond pulses. This type of measurement suffers from low photoelectron counts in the streaked spectrogram, and is thus susceptible to shot noise. For the retrieval of few- or mono-cycle attosecond pulses, high-intensity streaking laser fields are required, which cause the energy spectrum of above-threshold ionized (ATI) electrons to overlap with that of the streaked photoelectrons. It is found by using the principal component generalized projections algorithm that the XUV attosecond pulse can accurately be retrieved for simulated and experimental spectrograms with a peak value of 50 or more photoelectron counts. Also, the minimum streaking intensity is found to be more than 50 times smaller than that required by the classical streaking camera for retrieval of pulses with a spectral bandwidth supporting 90 as transform-limited pulse durations. Furthermore, spatial variation of the streaking laser intensity, collection angle of streaked electrons and time delay jitter between the XUV pulse and streaking field can degrade the quality of the streaked spectrogram. We find that even when the XUV and streaking laser focal spots are comparable in size, the streaking electrons are collected from a 4π solid angle, or the delay fluctuates by more than the attosecond pulse duration, the attosecond pulses can still be accurately retrieved. In order to explain the insusceptibility of the streaked spectrogram to these factors, the linearity of the streaked spectrogram with respect to the streaking field is derived under the saddle point approximation.

  17. Few-cycle isolated attosecond pulses

    International Nuclear Information System (INIS)

    Sansone, G.; Benedetti, E.; Calegari, F.; Stagira, S.; Vozzi, C.; Silvestri De, S.; Nisoli, M.

    2006-01-01

    Complete test of publication follows. In the last few years the field of attosecond science has shown impressive and rapid progress, mainly due to the introduction of novel experimental methods for the characterization of extreme ultraviolet (XUV) pulses and attosecond electron wave packets. This development has been also triggered by significant improvements in the control of the electric field of the driving infrared pulses. Particularly interesting for the applications is the generation of isolated attosecond XUV pulses using few-cycle driving pulses. In this case significant progresses have been achieved thanks to the stabilization of the carrier-envelope phase (CEP) of amplified light pulses. In this work we demonstrate that the polarization gating (PG) method with few-cycle phase-stabilized driving pulses allows one to generate few-cycle isolated attosecond pulses tunable on a very broad spectral region. The PG method is based on temporal modulation of the ellipticity of a light pulse, which confines the XUV emission in the temporal gate where the polarization is close to linear. The time-dependent polarization of phase-stabilized sub-6-fs pulses, generated by the hollow fiber technique, has been obtained using two birefringent plates. It is possible to create a linear polarization gate, whose position is imposed by the intensity profile of the pulse whilst the emission time is linked to the CEP of the electric field. The pulses have been analyzed by using a flat-field spectrometer. Continuous XUV spectra, corresponding to the production of isolated attosecond pulses, have been generated for particular CEP values. Upon changing the rotation of the first plate it was possible to tune the XUV emission in a broad spectra range. We have then achieved a complete temporal characterization of the generated isolated attosecond pulses using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG CRAB). The measured parabolic phase

  18. Macroscopic effects in attosecond pulse generation

    International Nuclear Information System (INIS)

    Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L'Huillier, A; Hauri, C P; Lopez-Martens, R

    2008-01-01

    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium

  19. Macroscopic effects in attosecond pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Hauri, C P; Lopez-Martens, R [Laboratoire d' Optique Appliquee, Ecole Nationale Superieure des Techniques Avancees (ENSTA)-Ecole Polytechnique CNRS UMR 7639, 91761 Palaiseau (France)], E-mail: anne.lhuillier@fysik.lth.se

    2008-02-15

    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium.

  20. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Bulk properties and dynamical evolution

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. Following the Run 1 period, LHC also successfully delivered Pb–Pb collisions at the collision energy sNN= 5.02 TeV at the end of 2015. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. This review presents selected experimental results from heavy-ion collisions delivered during the first three years of the LHC operation focusing on the bulk matter properties and the dynamical evolution of the created system. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large hadron collider, Heavy-ion collisions, High energy physics

  1. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC

    International Nuclear Information System (INIS)

    Vernet, R.

    2006-02-01

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H 0 in the Λpπ - decay mode was calculated thanks to a dedicated simulation. The search for the H 0 , and for the Ξ - p resonance as well, was performed in the STAR Au+Au data at √(s NN ) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons Λ, Ξ and Ω, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H 0 and (Ξ 0 p) b and to the ΛΛ resonance were calculated as well. (author)

  2. Theory of attosecond delays in molecular photoionization.

    Science.gov (United States)

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-03-28

    We present a theoretical formalism for the calculation of attosecond delays in molecular photoionization. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith delays, can be obtained from the complex dipole matrix elements provided by molecular quantum scattering theory. These results are used to derive formulae for the delays measured by two-photon attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared pulse. These effective delays are first expressed in the molecular frame where maximal information about the molecular photoionization dynamics is available. The effects of averaging over the emission direction of the electron and the molecular orientation are introduced analytically. We illustrate this general formalism for the case of two polyatomic molecules. N 2 O serves as an example of a polar linear molecule characterized by complex photoionization dynamics resulting from the presence of molecular shape resonances. H 2 O illustrates the case of a non-linear molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our theory establishes the foundation for interpreting measurements of the photoionization dynamics of all molecules by attosecond metrology.

  3. Atomic and molecular phases through attosecond streaking

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2011-01-01

    phase of the atomic or molecular ionization matrix elements from the two states through the interference from the two channels. The interference may change the phase of the photoelectron streaking signal within the envelope of the infrared field, an effect to be accounted for when reconstructing short...... pulses from the photoelectron signal and in attosecond time-resolved measurements....

  4. Laser plasma as a source of intense attosecond pulses via high-order harmonic generation

    International Nuclear Information System (INIS)

    Ozaki, T.

    2013-01-01

    change in the morphology of these targets. This prevents us from using this intense harmonic source in applications, or to perform attosecond measurements, which require stable harmonics. In this paper, I will describe our recent results on the generation of high-order harmonics from graphitic carbon plasma, whose efficiency is measured to be higher than that from indium (> 10-4), and at the same time spans over five harmonic orders, from the 11th to the 19th harmonic. The energy per pulse of each of the 11th to the 19th harmonic is greater than 1 µJ, and the broad bandwidth over which such intense harmonics are generated is ideal for producing intense single-cycle attosecond pulses. Furthermore, we have started to explore the generation of intense, isolated attosecond pulses using the Double Optical Gating (DOG) method. Experiments show that we can generate continuum high-order harmonic spectra from carbon plasma, spanning an energy range from 17 to 25 eV. The conversion efficiency of these continuum harmonics are found to be 10 times more energetic than those generated from gas, which is the first step towards the generation of intense isolated attosecond pulses. (author)

  5. Attosecond-resolved photoionization of chiral molecules.

    Science.gov (United States)

    Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y

    2017-12-08

    Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Large-scale laser-microwave synchronization for attosecond photon science facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shafak, Kemal

    2017-04-15

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  7. Large-scale laser-microwave synchronization for attosecond photon science facilities

    International Nuclear Information System (INIS)

    Shafak, Kemal

    2017-04-01

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  8. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  9. Frequency chirp of harmonic and attosecond pulses

    International Nuclear Information System (INIS)

    Varju, K.; Johansson, P; L'Huillier, A.L.; Mairesse, Y.; Salieres, P.

    2005-01-01

    Full text: We have explored in detail the first- and second-order variations of the atomic phase as a function of the laser intensity and harmonic order. This unravels the similitudes and differences existing between the chirp of individual harmonic pulses and the chirp of the attosecond pulses. We show that the two techniques XFROG and RABITT used to characterize the two chirps (respectively) converge to give the same information, namely the values of the mixed partial derivatives of the atomic phase. This underlines the common physical origin of all these phenomena and provides a unified frame for their description and understanding. Ref. 1 (author)

  10. Control of the launch of attosecond pulses

    International Nuclear Information System (INIS)

    Cao Wei; Lu Peixiang; Lan Pengfei; Wang Xinlin; Li Yuhua

    2007-01-01

    We propose an approach to steer the launch of attosecond (as) pulses with a high precision. We numerically demonstrate that by adding a weak second-harmonic (SH) field to the fundamental beam the ionization and recollision process of the electron will be perturbed, which can induce a variation of the emission time of high harmonics. Through modifying the relative intensity of the SH and fundamental fields, the launch of as pulses can be manipulated with a resolution less than 40 as. This will show significant potential for ultrafast optics

  11. Towards attosecond X-ray pulses from the FEL

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Fawley, William M.

    2004-01-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10 18 sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results

  12. Reconstruction of Attosecond Pulse Trains Using an Adiabatic Phase Expansion

    International Nuclear Information System (INIS)

    Varju, K.; Gustafsson, E.; Johnsson, P.; Mauritsson, J.; L'Huillier, A.; Mairesse, Y.; Agostini, P.; Breger, P.; Carre, B.; Merdji, H.; Monchicourt, P.; Salieres, P.; Frasinski, L.J.

    2005-01-01

    We propose a new method to reconstruct the electric field of attosecond pulse trains. The phase of the high-order harmonic emission electric field is Taylor expanded around the maximum of the laser pulse envelope in the time domain and around the central harmonic in the frequency domain. Experimental measurements allow us to determine the coefficients of this expansion and to characterize the radiation with attosecond accuracy over a femtosecond time scale. The method gives access to pulse-to-pulse variations along the train, including the timing, the chirp, and the attosecond carrier envelope phase

  13. Generation and Characterization of Attosecond Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ian A. Walmsley; Robert W. Boyd

    2006-04-24

    The research undertaken in this project has been directed toward the area of attoscience, in particular the problem of attosecond metrology. That is, the accurate determination of the electric field of attosecond XUV radiation. This outstanding problem has been identified as a critical technology for further development of the field, and our research adds to the area by providing the first method for characterization using the harmonic radiation itself as a tool. The technical effectiveness of this approach is very high, since it is vastly easier to detect XUV radiation directly than via the spectrum of photoelectrons liberated from atoms by it. This means that the experimental data rate can be much higher in principle using all-optical detection that electron detection, which will greatly aid the utility of harmonic XUV sources in attoscience applications. There are as yet no direct public benefits from this area of scientific research, though access to material structural dynamics on unprecedented brief timescales are expected to yield significant benefits for the future.

  14. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC; Recherche de matiere etrange (exotique) dans les experiences STAR et ALICE aupres des collisionneurs d'ions lourds ultra-relativistes RHIC et LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, R

    2006-02-15

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H{sup 0} in the {lambda}p{pi}{sup -} decay mode was calculated thanks to a dedicated simulation. The search for the H{sup 0}, and for the {xi}{sup -}p resonance as well, was performed in the STAR Au+Au data at {radical}(s{sub NN}) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons {lambda}, {xi} and {omega}, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H{sup 0} and ({xi}{sup 0}p){sub b} and to the {lambda}{lambda} resonance were calculated as well. (author)

  15. Connecting Lab-Based Attosecond Science with FEL research

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is perfo...

  16. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  17. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    International Nuclear Information System (INIS)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-01-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup

  18. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Science.gov (United States)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  19. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Frassetto, F.; Poletto, L., E-mail: poletto@dei.unipd.it [National Research Council, Institute of Photonics and Nanotechnologies, via Trasea 7, 35131 Padova (Italy); Trabattoni, A.; Anumula, S.; Sansone, G. [Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Calegari, F. [National Research Council, Institute of Photonics and Nanotechnologies, Piazza L. da Vinci 32, 20133 Milano (Italy); Nisoli, M. [Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); National Research Council, Institute of Photonics and Nanotechnologies, Piazza L. da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10{sup 11} W/cm{sup 2}.

  20. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities

    International Nuclear Information System (INIS)

    Frassetto, F.; Poletto, L.; Trabattoni, A.; Anumula, S.; Sansone, G.; Calegari, F.; Nisoli, M.

    2014-01-01

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10 11 W/cm 2

  1. Attosecond photoelectron spectroscopy of electron transport in solids

    International Nuclear Information System (INIS)

    Magerl, Elisabeth

    2011-01-01

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  2. Attosecond photoelectron spectroscopy of electron transport in solids

    Energy Technology Data Exchange (ETDEWEB)

    Magerl, Elisabeth

    2011-03-31

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  3. Generation of atto-second pulses on relativistic mirror plasma

    International Nuclear Information System (INIS)

    Vincenti, H.

    2012-12-01

    When an ultra intense femtosecond laser (I > 10 16 W.cm -2 ) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called 'plasma mirror'. When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of atto-second pulses. The goals of my work were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated atto-second pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated atto-second on plasma mirrors. This brand new approach is based on a totally new physical effect: 'the atto-second lighthouse effect'. Its principle consists in sending the atto-second pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despite its simplicity, this technique is very general and applies to any high harmonic generation mechanism. Moreover, the atto-second lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to atto-second pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the atto-second lighthouse effect and get

  4. Coherent control of atto-second emission from aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Boutu, W; Haessler, S; Merdji, H; Breger, P; Monchicourt, P; Carre, B; Salieres, P [CEA Saclay, DSM, Serv Photons Atomes Mol, F-91191 Gif Sur Yvette, (France); Waters, G [Univ Reading, JJ Thomson Phys Lab, Reading RG6 6AF, Berks, (United Kingdom); Stankiewicz, M [Jagiellonian Univ, Inst Phys, PL-30059 Krakow, (Poland); Frasinski, L J [Univ London Imperial Coll Sci Technol and Med, Blackett Lab, London SW7 2BW, (United Kingdom); Taieb, R; Caillat, J; Maquet, A [Univ Paris 06, UMR 7614, Lab Chim Phys Matiere Rayonnement, F-75231 Paris 05, (France); Taieb, R; Caillat, J; Maquet, A [LCPMR, UMR 7614, CNRS, F-75005 Paris, (France)

    2008-07-01

    Controlling atto-second electron wave packets and soft X-ray pulses represents a formidable challenge of general implication to many areas of science. A strong laser field interacting with atoms or molecules drives ultrafast intra-atomic/molecular electron wave packets on a sub femtosecond timescale, resulting in the emission of atto-second bursts of extreme-ultraviolet light. Controlling the intra-atomic/molecular electron dynamics enables steering of the atto-second emission. Here, we carry out a coherent control in linear molecules, where the interaction of the laser-driven electron wave packet with the core leads to quantum interferences. We demonstrate that these interferences can be finely controlled by turning the molecular axis relative to the laser polarization, that is, changing the electron re-collision angle. The wave-packet coulombic distortion modifies the spectral phase jump measured in the extreme-ultraviolet emission. Our atto-second control of the interference results in atto-second pulse shaping, useful for future applications in ultrafast coherent control of atomic and molecular processes. (authors)

  5. Volkov transform generalized projection algorithm for attosecond pulse characterization

    International Nuclear Information System (INIS)

    Keathley, P D; Bhardwaj, S; Moses, J; Laurent, G; Kärtner, F X

    2016-01-01

    An algorithm for characterizing attosecond extreme ultraviolet pulses that is not bandwidth-limited, requires no interpolation of the experimental data, and makes no approximations beyond the strong-field approximation is introduced. This approach fully incorporates the dipole transition matrix element into the retrieval process. Unlike attosecond retrieval methods such as phase retrieval by omega oscillation filtering (PROOF), or improved PROOF, it simultaneously retrieves both the attosecond and infrared (IR) pulses, without placing fundamental restrictions on the IR pulse duration, intensity or bandwidth. The new algorithm is validated both numerically and experimentally, and is also found to have practical advantages. These include an increased robustness to noise, and relaxed requirements for the size of the experimental dataset and the intensity of the streaking pulse. (paper)

  6. Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

    International Nuclear Information System (INIS)

    Mauritsson, J.; Johnsson, P.; Mansten, E.; Swoboda, M.; Ruchon, T.; L'Huillier, A.; Schafer, K. J.

    2008-01-01

    We demonstrate a quantum stroboscope based on a sequence of identical attosecond pulses that are used to release electrons into a strong infrared (IR) laser field exactly once per laser cycle. The resulting electron momentum distributions are recorded as a function of time delay between the IR laser and the attosecond pulse train using a velocity map imaging spectrometer. Because our train of attosecond pulses creates a train of identical electron wave packets, a single ionization event can be studied stroboscopically. This technique has enabled us to image the coherent electron scattering that takes place when the IR field is sufficiently strong to reverse the initial direction of the electron motion causing it to rescatter from its parent ion

  7. Atto-second control of collective electron motion in plasmas

    International Nuclear Information System (INIS)

    Borot, Antonin; Malvache, Arnaud; Chen, Xiaowei; Jullien, Aurelie; Lopez-Martens, Rodrigo; Geindre, Jean-Paul; Audebert, Patrick; Mourou, Gerard; Quere, Fabien

    2012-01-01

    Today, light fields of controlled and measured waveform can be used to guide electron motion in atoms and molecules with atto-second precision. Here, we demonstrate atto-second control of collective electron motion in plasmas driven by extreme intensity (approximate to 10 18 W cm -2 ) light fields. Controlled few-cycle near-infrared waves are tightly focused at the interface between vacuum and a solid-density plasma, where they launch and guide sub-cycle motion of electrons from the plasma with characteristic energies in the multi-kilo-electron-volt range-two orders of magnitude more than has been achieved so far in atoms and molecules. The basic spectroscopy of the coherent extreme ultraviolet radiation emerging from the light-plasma interaction allows us to probe this collective motion of charge with sub-200 as resolution. This is an important step towards atto-second control of charge dynamics in laser-driven plasma experiments. (authors)

  8. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  9. Attosecond experiments on plasmonic nanostructures principles and experiments

    CERN Document Server

    Schötz, Johannes

    2016-01-01

    Johannes Schötz presents the first measurements of optical electro-magnetic near-fields around nanostructures with subcycle-resolution. The ability to measure and understand light-matter interactions on the nanoscale is an important component for the development of light-wave-electronics, the control and steering of electron dynamics with the frequency of light, which promises a speed-up by several orders of magnitude compared to conventional electronics. The experiments presented here on metallic nanotips, widely used in experiments and applications, do not only demonstrate the feasibility of attosecond streaking as a unique tool for fundamental studies of ultrafast nanophotonics but also represent a first important step towards this goal. Contents Electron Scattering in Solids Attosecond Streaking from Metal Nanotips Target Groups Lecturers and students of physics, especially in the area of nanophotonics and attosecond physics About the Author Johannes Schötz received his Master's degree in physics and cu...

  10. Amplitude and phase control of attosecond light pulses

    International Nuclear Information System (INIS)

    Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan; Persson, Anders; Svanberg, Sune; Wahlstroem, Claes-Goeran; L'Huillier, Anne; Mairesse, Yann; Salieres, Pascal; Gaarde, Mette B.; Schafer, Kenneth J.

    2005-01-01

    We report the generation, compression, and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. Broadband harmonic radiation is first generated by focusing an infrared laser with a carefully chosen intensity into a gas cell containing argon atoms. The emitted light then goes through a hard aperture and a thin aluminum filter that selects a 30-eV bandwidth around a 30-eV photon energy and synchronizes all of the components, thereby enabling the formation of a train of almost Fourier-transform-limited single-cycle 170 attosecond pulses. Our experiment demonstrates a practical method for synthesizing and controlling attosecond waveforms

  11. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain......Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  12. Theory of laser-assisted autoionization by attosecond light pulses

    International Nuclear Information System (INIS)

    Zhao, Z.X.; Lin, C.D.

    2005-01-01

    We present a quantum theory of the decay of an autoionizing state created in the attosecond xuv (extreme ultraviolet) pump and laser probe measurements within the strong field approximation employing resonance parameters from Fano's theory. From the electron spectra versus the pump-probe time delay, we show how the lifetimes of the resonances can be extracted directly from the time domain measurements

  13. Attosecond pulse trains generated using two color laser fields

    International Nuclear Information System (INIS)

    Mauritsson, J.; Louisiana State University, Baton Rouge, LA; Johnsson, P.; Gustafsson, E.; L'Hullier, A.; Schafer, K.J.; Gaarde, M.B.

    2006-01-01

    Complete test of publication follows. We present the generation of attosecond pulse trains from a superposition of an infrared (IR) laser field and its second harmonic. Our attosecond pulses are synthesized by selecting a number of synchronized harmonics generated in argon. By adding the second harmonic to the driving field the inversion symmetry of generation process is broken and both odd and even harmonics are generated. Consecutive half cycles in the two color field differ beyond the simple sign change that occurs in a one color field and have very different shapes and amplitudes. This sub-cycle structure of the field, which governs the generation of the attosecond pulses, depends strongly on the relative phase and intensity of the two fields, thereby providing additional control over the generation process. The generation of attosecond pulses is frequently described using the semi-classical three step model where an electron is: (1) ionized through tunneling ionization during one half cycle; (2) reaccelerated back towards the ion core by the next half cycle; where it (3) recombines with the ground-state releasing the access energy in a short burst of light. In the two color field the symmetry between the ionizing and reaccelerating field is broken, which leads to two possible scenarios: the electron can either be ionized during a strong half cycle and reaccelerated by a weaker field or vice versa. The periodicity is a full IR cycle in both cases and hence two trains of attosecond pulses are generated which are offset from each other. The generation efficiency, however, is very different for the two cases since it is determined mainly by the electric field strength at the time of tunneling and one of the trains will therefore dominate the other. We investigate experimentally both the spectral and temporal structure of the generated attosecond pulse trains as a function of the relative phase between the two driving fields. We find that for a wide range of

  14. Reconstruction and study of the multi-strange baryons in ultra-relativistic heavy ion collisions at a center-of-mass energy of 200 GeV, with the Star experiment at RHIC

    International Nuclear Information System (INIS)

    Faivre, J.

    2004-10-01

    The study of strangeness production is essential for the understanding of processes occurring in ultra-relativistic heavy ion collisions. Strangeness production is directly linked to the phase of deconfined partons that followed these collisions: the quark and gluon plasma. STAR, one of the 4 experiments at RHIC collider, is a perfect tool for studying the multi-strange Ξ and Ω particles. We have devised a Ξ and Ω reconstruction program using signals from the STAR time projection chamber. We have worked out a multi-variable selection method for extracting the signals from the combinative background: the linear discriminant analysis. We have applied it to Au-Au collisions at 200 GeV (in the center of mass frame) to improve the accuracy of previous results. The Ω and anti-Ω production rates have been obtained for 3 ranges of centrality as well as their radial flow and their kinetic uncoupling temperatures. The gain on the relative uncertainty is between 15 and 30% according to the variable. The average speed of the radial flow is 0.50 ± 0.02 and the kinetic uncoupling temperature is 132 ± 20 MeV which indicates that multi-strange baryons uncouple in hadronic medium earlier that lighter particles like pions, kaons and protons. However, uncertainty intervals remain too broad to draw strong conclusions. (A.C.)

  15. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  16. Attosecond control of electron beams at dielectric and absorbing membranes

    Science.gov (United States)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  17. Attosecond pulse trains from long laser-gas interaction targets

    International Nuclear Information System (INIS)

    Hauri, C.P.; Lopez-Martens, R.; Varju, K.; Ruchon, T.; Gustafsson, E.; L'Huillier, A.

    2006-01-01

    Complete test of publication follows. Many experiments in attosecond physics require high XUV photon flux as well as a clean attosecond pulse train (APT) temporal structure. Temporal characterization of high-order harmonic generation (HHG) in long interaction targets is thus of high interest. HHG being a very inefficient process, a large effort has been made to increase the amount of XUV photons emitted per infrared laser pulse. Besides quasi phase-matching in a modulated capillary, loose driving laser focusing conditions and subsequent self-channeling have shown to significantly increase the conversion efficiency. We characterized the temporal structure of APTs generated during the self-channeling of an intense IR driving laser pulse. Our first results indicate, however, that the temporal structure of the APT generated during the HHG process might be affected by quantum path interference and spectral phase distortion due to the self-channeling process itself. In particular, our measurements show that the relative spectral phase between consecutive harmonics can strongly vary depending on the target length and the position of the laser focus with respect to the target. In general for short gas targets, no clean APT structure can be expected since the individual attosecond pulses carry significant chirp. For longer targets, however, we observe a flattening of the harmonic spectral phase, resulting in near-transform-limited attosecond pulse trains. A complete analysis of the process is complex and involves detailed knowledge of the spatial and temporal evolution of the self-channeling driver laser pulse throughout the gas target.

  18. Isolated sub-100-attosecond pulse generation via controlling electron dynamics

    OpenAIRE

    Lan, Pengfei; Lu, Peixiang; Cao, Wei; Li, Yuhua; Wang, Xinlin

    2007-01-01

    A new method to coherently control the electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp, then an isolated 80-as pulse is straightforwardly obtained and even shorter pulse is achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes which have never be a...

  19. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented.

  20. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    Science.gov (United States)

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-01-01

    We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785

  1. How can attosecond pulse train interferometry interrogate electron dynamics?

    Science.gov (United States)

    Arnold, C. L.; Isinger, M.; Busto, D.; Guénot, D.; Nandi, S.; Zhong, S.; Dahlström, J. M.; Gisselbrecht, M.; l'Huillier, A.

    2018-04-01

    Light pulses of sub-100 as (1 as=10-18 s) duration, with photon energies in the extreme-ultraviolet (XUV) spectral domain, represent the shortest event in time ever made and controlled by human beings. Their first experimental observation in 2001 has opened the door to investigating the fundamental dynamics of the quantum world on the natural time scale for electrons in atoms, molecules and solids and marks the beginning of the scientific field now called attosecond science.

  2. Temporal Talbot effect in propagation of attosecond electron waves

    International Nuclear Information System (INIS)

    Varro, S.

    2010-01-01

    Complete text of publication follows. The rapid development in extreme strong-field and extreme short-pulse laser physics provide us with many potentials to explore the dynamics of fundamental processes taking place in light-matter interactions and in propagation of electromagnetic or matter waves. The present paper discusses the propagation of above-threshold electron waves generated by (not necessary ultra-short) strong laser fields. Recently we have shown that - in analogy with the formation of attosecond light pulses by interference of high-order harmonics - the wave components of photoelectrons are naturally assembled in attosecond spikes, through the Fourier synthesis of these de Broglie waves. We would like to emphasize that the proposed scheme does not presupposes an a priori ultrashort excitation. Owing to the inherent dispersion of electron waves even in vacuum, the clean attosecond structure (emanating perpendicularly from a metal target surface) is gradually spoiled due to destructive interference. Fortunately the collapsed fine structure recovers itself at certain distances from the source within well-defined 'revival layers'. This is a temporal analogon of the optical Talbot effect representing the self-imaging of a grating, which is illuminated by stationary plane waves, in the near field. The 'collaps bands' and the 'revival layers' introduced in ref. 3 have been found merely on the basis of some attosecond layers turned out to show certain regularities. In the meantime we have derived approximate analytic formulae for the propagation characteristics, with the help of which we can keep track of the locations of the 'collaps bands' and the 'revival layers' on a larger scale. We shall report on these semiclassical results, and also discuss their possible connection with the recently found entropy remnants in multiphoton Compton scattering by electronic wave packets. Acknowledgement. This work has been supported by the Hungarian National Scientific

  3. Attosecond delays in photoionization: time and quantum mechanics

    International Nuclear Information System (INIS)

    Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2014-01-01

    This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10 −18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter–operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics. (tutorial)

  4. Diffraction and microscopy with attosecond electron pulse trains

    Science.gov (United States)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  5. Assembly and application of an instrument for attosecond-time-resolved ionization chronoscopy

    International Nuclear Information System (INIS)

    Uphues, T.

    2006-11-01

    In the framework of this thesis a new setup for attosecond time-resolved measurements has been built and observations of ionization dynamics in rare gas atoms have been made. This new technique is entitled Ionization Chronoscopy and gives further evidence that time-resolved experiments in the attosecond regime will become a powerful tool for investigations in atomic physics. (orig.)

  6. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Science.gov (United States)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  7. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    International Nuclear Information System (INIS)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-01-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  8. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  9. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  10. Attosecond dynamics of electrons in molecules and liquids

    Science.gov (United States)

    Woerner, Hans Jakob

    2016-05-01

    The ultrafast motion of electrons and holes following light-matter interaction is fundamental to a broad range of chemical and biophysical processes. In this lecture, I will discuss two recent experiments carried out in our group that measure the atomic-scale motion of charge with attosecond temporal resolution (1 as = 10-18 s). The first experiment is carried out on isolated, spatially oriented molecules in the gas phase. We advance high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately following ionization of iodoacetylene, while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement of both even and odd harmonic orders, enables us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~ 100 as. We separately reconstruct quasi-field-free and laser-controlled charge migration as a function of the spatial orientation of the molecule and determine the shape of the hole created by ionization. The second experiment is carried out on a free-flowing microjet of liquid water. We use an attosecond pulse train synchronized with a near-infrared laser pulse to temporally resolve the process of photoemission from liquid water using the RABBIT technique. We measure a delay on the order of 50 as between electrons emitted from the HOMO of liquid water compared to that of gas-phase water and a substantially reduced modulation contrast of the corresponding sidebands. Since our measurements on solvated water molecules are referenced to isolated ones, the measured delays reflect (i) the photoionization delays caused by electron transport through the aqueous environment and (ii) the effect of solvation on the parent molecule. The relative modulation contrast, in turn, contains information on (iii) the modification of transition amplitudes and (iv) dephasing processes. These experiments make the liquid phase and its fascinating

  11. Generation of atto-second pulses in atoms and molecules

    International Nuclear Information System (INIS)

    Haessler, St.

    2009-12-01

    When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually re-collide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent X-UV light and the macroscopic gas medium then becomes a source of X-UV light pulses of atto-second (1 as equals 10 -18 s) duration. This is the natural time-scale of electron dynamics in atoms and molecules. The largest part of this thesis deals with experiments where molecules are the harmonic generation medium and the re-colliding electron wave packet acts as a 'self-probe'. In several experiments, we demonstrate the potential of this scheme to observe or image ultra-fast intra-molecular electronic and nuclear dynamics. In particular, we have performed the first phase measurements of the high harmonic emission from aligned molecules and we have extracted the recombination dipole matrix element. This observable contains signatures of quantum interference between the continuum and bound parts of the total electronic wavefunction. It is shown how this quantum interference can be utilized to shape the atto-second light emission from the molecules. In a second part of this thesis, we use the well characterized coherent X-UV light emitted by rare gas atoms to photo-ionize molecules. Measuring the ejected photoelectron wave packet then allows to extract information on the photoionization process itself, and possibly about the initial bound and final continuum states of the electron. The last chapter of this manuscript describes studies of high harmonic and atto-second light pulse generation in a different medium: ablation plasmas. (author)

  12. Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    High-order harmonic generation from asymmetric molecules is investigated, and the concept of phase-stabilized infrared ultrashort laser pulses is extended to the extreme ultraviolet regime. It is shown that the ionization symmetry in consecutive half optical cycles is broken for asymmetric molecules, and both even and odd harmonics with comparable intensity are produced. In the time domain, only one attosecond pulse is generated in each cycle of the driving field, and the carrier-envelope phases of the attosecond pulses are equal. Consequently, a clean attosecond pulse train with the same carrier-envelope phase from pulse to pulse is obtained in the extreme ultraviolet regime

  13. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-01-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  14. Generation and Characterization of Attosecond Pulses. Final report

    International Nuclear Information System (INIS)

    Ian A. Walmsley; Robert W. Boyd

    2006-01-01

    The research undertaken in this project has been directed toward the area of attoscience, in particular the problem of attosecond metrology. That is, the accurate determination of the electric field of attosecond XUV radiation. This outstanding problem has been identified as a critical technology for further development of the field, and our research adds to the area by providing the first method for characterization using the harmonic radiation itself as a tool. The technical effectiveness of this approach is very high, since it is vastly easier to detect XUV radiation directly than via the spectrum of photoelectrons liberated from atoms by it. This means that the experimental data rate can be much higher in principle using all-optical detection that electron detection, which will greatly aid the utility of harmonic XUV sources in attoscience applications. There are as yet no direct public benefits from this area of scientific research, though access to material structural dynamics on unprecedented brief timescales are expected to yield significant benefits for the future

  15. Attosecond time delay in the valence photoionization of C240 versus C60

    International Nuclear Information System (INIS)

    Shi, Kele; Magrakvelidze, Maia; Anstine, Dylan; Chakraborty, Himadri; Madjet, Mohamed

    2015-01-01

    We investigate effects of electron correlations on the attosecond time delay of the photoionization from HOMO and HOMO-1 electrons in C 240 . A comparison with earlier C 60 results assesses the molecular size effect. (paper)

  16. Mapping the spectral phase of isolated attosecond pulses by extreme-ultraviolet emission spectrum.

    Science.gov (United States)

    Liu, Candong; Zeng, Zhinan; Li, Ruxin; Xu, Zhizhan; Nisoli, Mauro

    2015-04-20

    An all-optical method is proposed for the measurement of the spectral phase of isolated attosecond pulses. The technique is based on the generation of extreme-ultraviolet (XUV) radiation in a gas by the combination of an attosecond pulse and a strong infrared (IR) pulse with controlled electric field. By using a full quantum simulation, we demonstrate that, for particular temporal delays between the two pulses, the IR field can drive back to the parent ions the photoelectrons generated by the attosecond pulse, thus leading to the generation of XUV photons. It is found that the generated XUV spectrum is notably sensitive to the chirp of the attosecond pulse, which can then be reliably retrieved. A classical quantum-path analysis is further used to quantitatively explain the main features exhibited in the XUV emission.

  17. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  18. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, Alexander

    2004-09-01

    We present preliminary analysis for the feasibility of the attosecond x-ray pulses at a proposed FERMI@ELETTRA free electron laser (FEL) [1]. In part 1 we restrict ourselves to minimal modifications to the proposed FEL and consider a scheme for attosecond x-ray production which can be qualified as a small add-on to a primary facility. We demonstrate that at 5-nm wavelength our scheme is capable for production of pulses with an approximate duration of 100 attoseconds at approximately 2 MW peak power and with an absolute temporal synchronization to a pump laser pulse. In part 2 we propose to use an FEL amplifier seeded by a VUV signal and to follow it by the scheme for attosecond x-ray production described in part 1.

  19. Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules

    Science.gov (United States)

    Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten

    2016-05-01

    Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.

  20. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  1. Optical circular deflector with attosecond resolution for ultrashort electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-05-01

    Full Text Available A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM_{01^{*}} in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ∼100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  2. Control and dynamics of attosecond electron wave packets in strong laser fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.

    2005-01-01

    Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses

  3. Attosecond delay in the molecular photoionization of asymmetric molecules.

    Science.gov (United States)

    Chacón, Alexis; Ruiz, Camilo

    2018-02-19

    We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process. For this we apply two techniques: The attosecond streak camera and the time of flight technique. Although they should provide the same results we have found large discrepancies of up to 36 in the case of HOMO, while for the HOMO-1 we obtain the same results with the two techniques. We have found that the large time delays observed in the HOMO orbital with the streaking technique are a consequence of the resonant transition triggered by the streaking field. This resonant transition produces a bound electron wavepacket that modifies the measurements of delay in photoionization. As a result of this observation, our technique allows us to reconstruct the bound wavepacket dynamics induced by the streaking field. By measuring the expected value of the electron momentum along the polarization direction after the streaking field has finished, we can recover the relative phase between the complex amplitudes of the HOMO and LUMO orbitals. These theoretical calculations pave the way for the measurement of ultrafast bound-bound electron transitionsand its crucial role for the delay in photoemission observation.

  4. Kinematical vortices in double photoionization of helium by attosecond pulses

    Science.gov (United States)

    Djiokap, J. M. Ngoko; Meremianin, A. V.; Manakov, N. L.; Hu, S. X.; Madsen, L. B.; Starace, Anthony F.

    2017-07-01

    Two-armed helical vortex structures are predicted in the two-electron momentum distributions produced in double photoionization (DPI) of the He atom by a pair of time-delayed elliptically polarized attosecond pulses with opposite helicities. These predictions are based upon both a first-order perturbation theory analysis and numerical solutions of the two-electron, time-dependent Schrödinger equation in six spatial dimensions. The helical vortex structures originate from Ramsey interference of a pair of ionized two-electron wave packets, each having a total angular momentum of unity, and appear in the sixfold differential DPI probability distribution for any energy partitioning between the two electrons. The vortex structures are exquisitely sensitive to the time delay between the two pulses, their relative phase, their ellipticity, and their handedness; moreover, they occur in a variety of electron detection geometries. However, the vortex structures only occur when the angular separation β =cos-1(p̂1.p̂2) between the electron momenta p1 and p2 is held fixed. The vortex structures can also be observed in the fourfold differential DPI probability distribution obtained by averaging the sixfold differential probability over the emission angles of one electron. Such kinematical vortices are a general phenomenon that may occur in any ionization process, initiated by two time-delayed short pulses with opposite ellipticities, for particular detection geometries.

  5. Reflection of attosecond x-ray free electron laser pulses

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.; Chapman, Henry N.

    2007-01-01

    In order to utilize hard x-ray free electron lasers (XFEL's) when they are extended to attosecond pulse lengths, it is necessary to choose optical elements with minimal response time. Specular grazing-incidence optics made of low-Z materials are popular candidates for reflectors since they are likely to withstand x-ray damage and provide sufficiently large reflectivities. Using linear-optics reflection theory, we calculated the transient reflectivity of a delta-function electric pulse from a homogenous semi-infinite medium as a function of angle of incidence for s- and p-polarized light. We specifically considered the pulse response of beryllium, diamond, silicon carbide, and silicon, all of which are of relevance to the XFEL's that are currently being built. We found that the media emit energy in a damped oscillatory way, and that the impulse-response times are shorter than 0.3 fs for normal incidence. For grazing incidence, the impulse-response time is substantially shorter, making grazing-incidence mirrors a good choice for deep subfemtosecond reflective optics

  6. Attosecond control of orbital parity mix interferences and the relative phase of even and odd harmonics in an attosecond pulse train.

    Science.gov (United States)

    Laurent, G; Cao, W; Li, H; Wang, Z; Ben-Itzhak, I; Cocke, C L

    2012-08-24

    We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train.

  7. Measurement of the attosecond emission from aligned molecules

    International Nuclear Information System (INIS)

    Boutu, W.; Merdji, H.; Fitour, R.; Monchicourt, P.; Breger, P.; Carre, B.; Salieres, P.

    2006-01-01

    Complete test of publication follows. Recently, a number of papers have demonstrated the interest of high-order harmonic generation (HHG) from molecules aligned with respect to the laser polarization. Itatani et al. (Nature 432, 867 (2004)) have shown that a precise characterization of the harmonic emission allows performing a tomographic reconstruction of the molecular orbitals that radiate. Kanai et al. (Nature 435, 470 (2005)) have evidenced quantum interferences in the recombination process of HHG that are directly related to the molecular structure. In all of these papers, only the HHG intensity was measured. The relative harmonic phase, though more difficult to measure, contains important information on the interference process, and is needed for an ab initio tomographic reconstruction. Finally, while the attosecond emission from atoms has been thoroughly studied, in particular by our group (Mairesse et al., Science (302, 1540 (2003)), it has not been investigated in molecules. In a first experiment (Wabnitz et al., EPJD (2006)), we measured the amplitude and relative phase of harmonics radiated by un-aligned nitrogen molecules. Small but reproducible deviations from the phase of harmonics generated in argon (same ionization potential as nitrogen) were measured for low orders. In a recent experiment, we have measured, up to high order, the harmonic amplitude and relative phase for aligned molecules (N 2 and CO 2 ). In order to align the molecules, we used the so-called nonadiabatic technique: a rotational wavepacket is created by a strong enough and short aligning pulse, so that a field-free alignment is obtained at the revival (a few ps after the aligning pulse). The measurement of phase locking between neighboring harmonics was performed through the photoionization of a target gas by the harmonic beam in presence of a sufficiently intense 'dressing' laser beam (RABITT technique). The harmonic phase measured when the CO 2 molecules are aligned parallel to

  8. Génération d'impulsions attosecondes sur miroir plasma à très haute cadence

    OpenAIRE

    Borot , Antonin

    2012-01-01

    Focusing an intense laser pulse onto a solid surface leads to the almost complete ionisation of matter and the creation of a plasma of near-solid electronic density. Collective charge dynamic of the plasma electrons is then driven by the laser field and can give birth to a train of XUV attosecond pulses. This work aims at demonstrating that plasma dynamics can be driven with attosecond precison by the laser field in order to generate reproducible attosecond XUV pulses. Therfore we built up th...

  9. Interaction of attosecond electromagnetic pulses with atoms: The exactly solvable model

    International Nuclear Information System (INIS)

    Popov, Yu. V.; Kouzakov, K. A.; Vinitsky, S. I.; Gusev, A. A.

    2007-01-01

    We consider the exactly solvable model of interaction of zero-duration electromagnetic pulses with an atom. The model has a number of peculiar properties which are outlined in the cases of a single pulse and two opposite pulses. In perspective, it can be useful in different fields of physics involving interaction of attosecond laser pulses with quantum systems

  10. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    Science.gov (United States)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  11. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    Science.gov (United States)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  12. Propagation of an attosecond pulse in a dense two-level medium

    International Nuclear Information System (INIS)

    Song Xiaohong; Gong Shangqing; Yang Weifeng; Xu Zhizhan

    2004-01-01

    We investigate the propagation of attosecond pulse in a dense two-level medium by using an iterative predictor-corrector finite-difference time-domain method. We find when attosecond pulse is considered, that the standard area theorem will break down even for small area pulses: ideal self-induced transparency cannot occur even for a 2π pulse, while the pulses whose areas are not integer multiples of 2π, such as 1.8π and 2.2π pulses, cannot evolve to 2π pulses as predicted by the standard area theorem. Significantly higher spectra components can occur on all these small area propagating pulses due to strong carrier reshaping. Furthermore, these higher spectral components dependent sensitively on the pulse area: the larger the pulse area is, the more evident are these higher spectral components

  13. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  14. Investigation of attosecond ionization dynamics in gases and solids with intense few-cycle laser pulses

    International Nuclear Information System (INIS)

    Mitrofanov, A. V.

    2011-01-01

    Interaction of intense light fields with dielectric materials has fascinated scientists since the invention of pulsed lasers in the early sixties. Despite the many decades of research, the interest in the field keeps growing because of the potential technological applications of optical (meta-) materials and the prospects of light-controlled peta-Hertz electronics as well as the improving understanding of the fundamental processes behind light-matter interactions. The progress in the short-pulse laser technology that delivered ever-shorter light pulses was echoed by the discoveries of different progressively shorter time scales in the cycle of excitation and energy/charge relaxation in transparent solids, many parts of which are now well understood. The ultimate challenge lies in recovering the earliest stages of the dynamics which are linked to optical-field-ionization that proceeds within a fraction of an optical cycle. One of the complications of advancing the attosecond science to the bulk media is the problem of inducing and detecting a synchronized attosecond response. The charged particles spectroscopy, well developed in gaseous media during last decade and capable of reaching an attosecond temporal resolution cannot be used as an experimental tool for investigation since direct detection of charged particles is impossible in the volume of a solid material. However, solids are the natural place where electronic processes on the sub-femtosecond or attosecond time scale are expected. Very recently several methods for measuring attosecond dynamics in condensed media have been proposed utilizing optical fields in the transparency range of the material. In this thesis a method, suggested in our scientific group is presented. It is an all-optical method based on the detection of optical harmonics originating from ultrafast modulation of a free electron current due to ionization in the field of intense few-cycle laser pulses. This technique will allow retrieving

  15. Generation of attosecond soft X-ray pulses in a longitudinal space charge amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Schneidmiller, E.A.; Yurkov, M.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    A longitudinal space charge amplifier (LSCA), operating in soft X-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane) and a short radiator undulator in the end. Broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond X-ray pulses. It is shown that a compact and cheap addition to the soft X-ray free electron laser facility FLASH would allow to generate 60 attosecond (FWHM) long X-ray pulses with the peak power at 100 MW level and a contrast above 98%. (orig.)

  16. Generation of attosecond soft X-ray pulses in a longitudinal space charge amplifier

    International Nuclear Information System (INIS)

    Dohlus, M.; Schneidmiller, E.A.; Yurkov, M.V.

    2011-03-01

    A longitudinal space charge amplifier (LSCA), operating in soft X-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane) and a short radiator undulator in the end. Broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond X-ray pulses. It is shown that a compact and cheap addition to the soft X-ray free electron laser facility FLASH would allow to generate 60 attosecond (FWHM) long X-ray pulses with the peak power at 100 MW level and a contrast above 98%. (orig.)

  17. Attosecond Charge Migration with TDDFT: Accurate Dynamics from a Well-Defined Initial State.

    Science.gov (United States)

    Bruner, Adam; Hernandez, Samuel; Mauger, François; Abanador, Paul M; LaMaster, Daniel J; Gaarde, Mette B; Schafer, Kenneth J; Lopata, Kenneth

    2017-09-07

    We investigate the ability of time-dependent density functional theory (TDDFT) to capture attosecond valence electron dynamics resulting from sudden X-ray ionization of a core electron. In this special case the initial state can be constructed unambiguously, allowing for a simple test of the accuracy of the dynamics. The response following nitrogen K-edge ionization in nitrosobenzene shows excellent agreement with fourth-order algebraic diagrammatic construction (ADC(4)) results, suggesting that a properly chosen initial state allows TDDFT to adequately capture attosecond charge migration. Visualizing hole motion using an electron localization picture (ELF), we provide an intuitive chemical interpretation of the charge migration as a superposition of Lewis dot resonance structures.

  18. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  19. Charge migration induced by attosecond pulses in bio-relevant molecules

    International Nuclear Information System (INIS)

    Calegari, Francesca; Castrovilli, Mattea C; Nisoli, Mauro; Trabattoni, Andrea; Palacios, Alicia; Ayuso, David; Martín, Fernando; Greenwood, Jason B; Decleva, Piero

    2016-01-01

    After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed. (topical review)

  20. Generation of attosecond soft x-ray pulses in a longitudinal space charge amplifier

    Directory of Open Access Journals (Sweden)

    M. Dohlus

    2011-09-01

    Full Text Available A longitudinal space charge amplifier (LSCA, operating in soft x-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane and a short radiator undulator in the end. The broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond x-ray pulses. It is shown that a compact and cheap addition to the soft x-ray free-electron laser facility FLASH would allow one to generate 60 attosecond (FWHM long x-ray pulses with the peak power at the 100 MW level and a contrast above 98%.

  1. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  2. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  3. Generation of isolated attosecond pulses using a plasmonic funnel-waveguide

    International Nuclear Information System (INIS)

    Choi, Joonhee; Kim, Seungchul; Park, In-Yong; Lee, Dong-Hyub; Han, Seunghwoi; Kim, Seung-Woo

    2012-01-01

    We theoretically investigated the possibility of generating attosecond pulses by means of plasmonic field enhancement induced in a nano-structured metallic funnel-waveguide. This study was motivated by our recent experimental demonstration of ultrashort extreme-ultraviolet (EUV) pulses using the same type of three-dimensional waveguides. Here, with emphasis on generation of isolated attosecond pulses, the finite-domain time-difference method was used to analyze the funnel-waveguide with respect to the geometry-dependent plasmonic features such as the field enhancement factor, enhanced plasmonic field profile and hot-spot location. Then an extended semi-classical model of high-order harmonic generation was adopted to predict the EUV spectra generated from the funnel-waveguide in consideration of the spatial inhomogeneity of the plasmonic field within the hot-spot volume. Our simulation finally proved that isolated attosecond pulses can be produced at fast repetition rates directly from a few-cycle femtosecond laser or by synthesizing a two-color laser consisting of two multi-cycle pulses of cross-polarized configuration. (paper)

  4. Monitoring conical intersections in the ring opening of furan by attosecond stimulated X-ray Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Weijie Hua

    2016-03-01

    Full Text Available Attosecond X-ray pulses are short enough to capture snapshots of molecules undergoing nonadiabatic electron and nuclear dynamics at conical intersections (CoIns. We show that a stimulated Raman probe induced by a combination of an attosecond and a femtosecond pulse has a unique temporal and spectral resolution for probing the nonadiabatic dynamics and detecting the ultrafast (∼4.5 fs passage through a CoIn. This is demonstrated by a multiconfigurational self-consistent-field study of the dynamics and spectroscopy of the furan ring-opening reaction. Trajectories generated by surface hopping simulations were used to predict Attosecond Stimulated X-ray Raman Spectroscopy signals at reactant and product structures as well as representative snapshots along the conical intersection seam. The signals are highly sensitive to the changes in nonadiabatically coupled electronic structure and geometry.

  5. Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liqiang, E-mail: lqfeng-lngy@126.com [College of Science, Liaoning University of Technology, Jinzhou, 121000 (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian 116023 (China); Liu, Hang [School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121000 (China)

    2015-01-15

    A promising method to generate the attosecond extreme ultraviolet (XUV) sources has been theoretically investigated emerging from the two-dimensional Ar{sup +} cluster driven by the spatially inhomogeneous field. The results show that with the introduction of the Ar{sup +} cluster model, not only the harmonic cutoffs are enhanced, but also the harmonic yields are reinforced. Furthermore, by properly moderating the inhomogeneity as well as the laser parameters of the inhomogeneous field, the harmonic cutoff can be further extended. As a result, three almost linearly polarized XUV pulses with durations of 40 as, 42 as, and 45 as can be obtained.

  6. Attosecond control of dissociative ionization of O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Siu, W.; Kelkensberg, F.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Dowek, D. [Laboratoire des Collisions Atomiques et Moleculaires (UMR Universite Paris-Sud et CNRS, 8625), Batiment 351, Universite Paris-Sud, F-91405 Orsay Cedex (France); Lucchini, M.; Calegari, F. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); De Giovannini, U.; Rubio, A. [Nano-bio Spectroscopy Group, ETSF Scientific Development Centre, Universidad del Pais Vasco, Avenida Tolosa 72, E-20018 San Sebastian (Spain); Lucchese, R. R. [Department of Chemistry, Texas A and M University, Post Office Box 30012, College Station, Texas 77842-3012 (United States); Kono, H. [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Lepine, F. [Universite Lyon 1/CNRS/LASIM, UMR 5579, 43 Boulevard Du 11 Novembre 1918, F-69622 Villeurbane (France)

    2011-12-15

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  7. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    International Nuclear Information System (INIS)

    Makarov, D.N.; Matveev, V.I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  8. High level harmonic radiation: atto-second impulse generation, application to coherent radiation

    International Nuclear Information System (INIS)

    Kovacev, Milutin

    2003-01-01

    The work presented in this thesis is dedicated to the characterization and optimization of the unique properties of high order harmonic generation in a rare gas: high brilliance, short pulse duration (femtosecond to atto-second, 1 as = 10"-"1"8 s and good mutual coherence. In the first part of this work, we concentrate on the exploitation of a scaling law using a high-energy laser loosely focused inside an extended gaseous medium. For the first time, the generated harmonic energy exceeds the 1 μJ level per laser pulse using the fifteenth harmonic order at a wavelength of 53 nm. The conversion efficiency reaches 4.10"-"5, which results from the combination of a strong dipolar response and a good phase matching within a generating volume that is extended by self guiding of the generating laser pulse. In the second part, our interest is devoted to the temporal profile of the harmonic emission and its atto-second structure. We first demonstrate the feasibility of a spatial/spectral selection of the contributions associated to the two main electronic trajectories, allowing thereby the generation of regular atto-second pulse trains. We then characterize such a pulse train by the measurement of the relative phases of consecutive harmonics. Finally, we describe an original technique for the temporal confinement of the harmonic emission by manipulating the ellipticity of the generating laser beam. In the third part, our interest is dedicated to the mutual coherence properties of the harmonic emission. We first demonstrate the precise control of the relative phase of the harmonic pulses by multiple beam interference in the XUV. This frequency-domain interferometry using four phase-locked temporally separated pulses shows an extreme sensitivity to the relative phase of the pulses on an atto-second time scale. We then measure the first order autocorrelation trace of the harmonic beam thanks to the generation of two harmonic sources mutually coherent and spatially separated

  9. Fractional high-harmonic combs by attosecond-precision split-spectrum pulse control

    Directory of Open Access Journals (Sweden)

    Laux Martin

    2013-03-01

    Full Text Available Few-cycle laser fields enable pulse-shaping control of high-order harmonic generation by time delaying variable broadband spectral sections. We report the experimental generation of fractional (noninteger high-harmonic combs by the controlled interference of two attosecond pulse trains. Additionally the energy of the high harmonics is strongly tuned with the relative time delay. We quantify the tuning to directly result from the controlled variation of the instantaneous laser frequency at the shaped driver pulse intensity maximum.

  10. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen

    International Nuclear Information System (INIS)

    Haessler, S.; Ruchon, T.; Breger, P.; Carre, B.; Salieres, P.; Fabre, B.; Higuet, J.; Constant, E.; Mevel, E.; Mairesse, Y.; Caillat, J.; Maquet, A.; Taieeb, R.

    2009-01-01

    We photoionize nitrogen molecules with a train of extreme ultraviolet attosecond pulses together with a weak infrared field. We measure the phase of the two-color two-photon ionization transition (molecular phase) for different states of the ion. We observe a 0.9π shift for the electrons produced in the ionization channels leading to the X 2 Σ g + , v ' =1, and v ' =2 states. We relate this phase shift to the presence of a complex resonance in the continuum. By providing both a high spectral and temporal resolution, this general approach gives access to the evolution of extremely short-lived states, which is often not accessible otherwise.

  11. Generation of Attosecond Light Pulses from Gas and Solid State Media

    Directory of Open Access Journals (Sweden)

    Stefanos Chatziathanasiou

    2017-03-01

    Full Text Available Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. While femtosecond (fs pulses are successfully used to investigate vibrational dynamics in molecular systems, real time observation of electron motion in all states of matter requires temporal resolution in the attosecond (1 attosecond (asec = 10−18 s time scale. During the last decades, continuous efforts in ultra-short pulse engineering led to the development of table-top sources which can produce asec pulses. These pulses have been synthesized by using broadband coherent radiation in the extreme ultraviolet (XUV spectral region generated by the interaction of matter with intense fs pulses. Here, we will review asec pulses generated by the interaction of gas phase media and solid surfaces with intense fs IR laser fields. After a brief overview of the fundamental process underlying the XUV emission form these media, we will review the current technology, specifications and the ongoing developments of such asec sources.

  12. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    Science.gov (United States)

    Boll, D. I. R.; Fojón, O. A.

    2017-12-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.

  13. Angular dependence of the attosecond time delay in the H 2 + ion

    Science.gov (United States)

    Kheifets, Anatoli; Serov, Vladislav

    2016-05-01

    Angular dependence of attosecond time delay relative to polarization of light can now be measured using combination of RABBITT and COLTRIMS techniques. This dependence brings particularly useful information in molecules where it is sensitive to the orientation of the molecular axis. Here we extend the theoretical studies of and consider a molecular ion H2+in combination of an attosecond pulse train and a dressing IR field which is a characteristic set up of a RABBIT measurement. We solve the time-dependent Schrödinger equation using a fast spherical Bessel transformation (SBT) for the radial variable, a discrete variable representation for the angular variables and a split-step technique for the time evolution. The use of SBT ensures correct phase of the wave function for a long time evolution which is especially important in time delay calculations. To speed up computations, we implement an expanding coordinate (EC) system which allows us to reach space sizes and time periods unavailable by other techniques. Australian Research Council DP120101805.

  14. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    Science.gov (United States)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  15. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    Science.gov (United States)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  16. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  17. The Work Function Associated with Ultra-relativistic Electron ...

    Indian Academy of Sciences (India)

    The energy required to liberate an electron in the Fermi level is the work function and is ... potential difference will be developed across a thin gap, called the polar gap. This ... The emission of electrons from the polar region of neutron stars is.

  18. Prospects of ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Waheed, A.; Furlan, G.

    1995-04-01

    A review of theoretical models and experimental features of Quark-Gluon Plasma (QGP) phenomenology has been given in this article. String models for incoherent particle production in nucleus-nucleus collisions have been discussed with a comparison of their main features. Experimental results in relation to the model calculation and QGP signatures are analysed. Suggestions have been put forward for the new experiments. (author). 152 refs, 43 figs, 2 tabs

  19. Proton-nucleus dynamics at ultra-relativistic energies

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1988-01-01

    Some of the basic properties of proton-nucleus (pA) collisions at ultrarelativistic energies are reviewed. These include total and 'partonic' cross-sections, and the differential cross-sections as functions of rapidity, transverse energy, and particle p T , with particular emphasis in all cases on the A dependence. The aim is to introduce a nuclear physics audience to the main trends and ideas; experts in the field will find nothing very new here. (orig.)

  20. Lepton production in ultra-relativistic ion-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1987-01-01

    This paper addresses the production of heavy lepton pairs out of the vacuum using nonperturbative methods. The formal details of the method result in a simple picture, in which the propagation of the vacuum is obtained by solving the time-dependent Dirac equation in the presence of the electromagnetic fields of the colliding nuclei. In the current work, a simple model is discussed, in detail, which production cross sections are a function of the transverse momentum and rapidity. 10 refs., 4 figs

  1. Simulating ultra-relativistic nuclear collisions: Screening corrections

    Indian Academy of Sciences (India)

    werner@nanhp2 (Klaus WERNER,,,)

    It is an effective theory based on the Gribov–Regge formalism, ... sidering particle production (in particular in Monte–Carlo applications), but not for cross- .... That means the interaction's probability of proton's components is decreased by.

  2. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence.

    Science.gov (United States)

    Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng

    2018-02-19

    The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.

  3. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kärtner, F.X., E-mail: franz.kaertner@cfel.de [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA (United States); Ahr, F. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Calendron, A.-L. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Çankaya, H. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Carbajo, S. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Chang, G.; Cirmi, G. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Dörner, K. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Dorda, U. [DESY, Hamburg (Germany); Fallahi, A. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Hartin, A. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Hemmer, M. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); and others

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  4. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  5. Measuring the electric field of few-cycle laser pulses by attosecond cross correlation

    International Nuclear Information System (INIS)

    Bandrauk, Andre D.; Chelkowski, Szczepan; Shon, Nguyen Hong

    2002-01-01

    A new technique for directly measuring the electric field of linearly polarized few-cycle laser pulses is proposed. Based on the solution of the time-dependent Schroedinger equation (TDSE) for an H atom in the combined field of infrared (IR) femtosecond (fs) and ultraviolet (UV) attosecond (as) laser pulses we show that, as a function of the time delay between two pulses, the difference (or equivalently, asymmetry) of photoelectron signals in opposite directions (along the polarization vector of laser pulses) reproduces very well the profile of the electric field (or vector potential) in the IR pulse. Such ionization asymmetry can be used for directly measuring the carrier-envelope phase difference (i.e., the relative phase of the carrier frequency with respect to the pulse envelope) of the IR fs laser pulse

  6. Investigation of novel shape-controlled linearly and circularly polarized attosecond pulse sources

    International Nuclear Information System (INIS)

    Tóth, György; Tibai, Zoltán; Nagy-Csiha, Zsuzsanna; Márton, Zsuzsanna; Almási, Gábor; Hebling, János

    2016-01-01

    In this article, we investigate the temporal shape of one- or few-cycle, 20–180 nm central wavelength attosecond pulses that are produced in a scheme based on coherent undulator radiation. It is demonstrated, that the carrier–envelope phase (CEP) of the radiated electric field can be chosen arbitrarily by shaping the magnetic field of the radiator undulator appropriately. It is shown that the temporal shape and the spectrum of the generated electric field are influenced by the spatial shape and amplitude of the magnetic field of the radiator undulator for different central wavelength pulses, while both are practically independent of the energy of the initial electron bunch. Shape distortions at high K undulator parameters are also discussed.

  7. Attosecond Time Delay in Photoionization of Noble-Gas and Halogen Atoms

    Directory of Open Access Journals (Sweden)

    Liang-Wen Pi

    2018-02-01

    Full Text Available Ultrafast processes are now accessible on the attosecond time scale due to the availability of ultrashort XUV laser pulses. Noble-gas and halogen atoms remain important targets due to their giant dipole resonance and Cooper minimum. Here, we calculate photoionization cross section, asymmetry parameter and Wigner time delay using the time-dependent local-density approximation (TDLDA, which includes the electron correlation effects. Our results are consistent with experimental data and other theoretical calculations. The asymmetry parameter provides an extra layer of access to the phase information of the photoionization processes. We find that halogen atoms bear a strong resemblance on cross section, asymmetry parameter and time delay to their noble-gas neighbors. Our predicted time delay should provide a guidance for future experiments on those atoms and related molecules.

  8. Attosecond relative delay among xenon 5p, 5s, and 4d photoionization

    Science.gov (United States)

    Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Attosecond Wigner-Smith (WS) time delays of the photoemissions of Xe valence 5p, 5s, and core 4d electrons are investigated in details using the time-dependent local density approximation (TDLDA). Electron correlations determine the energy-dependent structures in ionization phases of the dipole channels and in the resulting WS delays at various shape resonances, induced by the collective motion of 4d electrons, and at various Cooper minima. We find that our calculation closely agrees with the streaking measurement for the delay of 4d relative to 5s, and predicts accelerated emission of 5p with respect to 4d as was experimentally observed at similar photon energies for Xe atoms adsorbed on the tungsten surface. This work was supported by the U.S. National Science Foundation.

  9. Robust enhancement of high harmonic generation via attosecond control of ionization.

    Science.gov (United States)

    Bruner, Barry D; Krüger, Michael; Pedatzur, Oren; Orenstein, Gal; Azoury, Doron; Dudovich, Nirit

    2018-04-02

    High-harmonic generation (HHG) is a powerful tool to generate coherent attosecond light pulses in the extreme ultraviolet. However, the low conversion efficiency of HHG at the single atom level poses a significant practical limitation for many applications. Enhancing the efficiency of the process defines one of the primary challenges in the application of HHG as an advanced XUV source. In this work, we demonstrate a new mechanism, which in contrast to current methods, enhances the HHG conversion efficiency purely on a single particle level. We show that using a bichromatic driving field, sub-optical-cycle control and enhancement of the tunnelling ionization rate can be achieved, leading to enhancements in HHG efficiency by up to two orders of magnitude. Our method advances the perspectives of HHG spectroscopy, where isolating the single particle response is an essential component, and offers a simple route toward scalable, robust XUV sources.

  10. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    Energy Technology Data Exchange (ETDEWEB)

    Beznosyuk, Sergey A., E-mail: bsa1953@mail.ru; Maslova, Olga A., E-mail: maslova-o.a@mail.ru [Altai State University, Barnaul, 656049 (Russian Federation); Zhukovsky, Mark S., E-mail: zhukovsky@list.ru [Altai State Technical University, Barnaul, 656038 (Russian Federation)

    2015-10-27

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru{sub 256}, Rh{sub 256}, Pd{sub 256}) accumulate next storage energies: E{sub Ru} = 2.27 eV/at, E{sub Rh} = 1.67 eV/at, E{sub Pd} = 3.02 eV/at.

  11. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  12. Investigation of novel shape-controlled linearly and circularly polarized attosecond pulse sources

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, György [MTA-PTE High-Field Terahertz Research Group, 7624 Pécs (Hungary); Tibai, Zoltán; Nagy-Csiha, Zsuzsanna [Institute of Physics, University of Pécs, 7624 Pécs (Hungary); Márton, Zsuzsanna [MTA-PTE High-Field Terahertz Research Group, 7624 Pécs (Hungary); Institute of Physics, University of Pécs, 7624 Pécs (Hungary); Almási, Gábor; Hebling, János [MTA-PTE High-Field Terahertz Research Group, 7624 Pécs (Hungary); Institute of Physics, University of Pécs, 7624 Pécs (Hungary); Szentágothai Research Centre, 7624 Pécs (Hungary)

    2016-02-15

    In this article, we investigate the temporal shape of one- or few-cycle, 20–180 nm central wavelength attosecond pulses that are produced in a scheme based on coherent undulator radiation. It is demonstrated, that the carrier–envelope phase (CEP) of the radiated electric field can be chosen arbitrarily by shaping the magnetic field of the radiator undulator appropriately. It is shown that the temporal shape and the spectrum of the generated electric field are influenced by the spatial shape and amplitude of the magnetic field of the radiator undulator for different central wavelength pulses, while both are practically independent of the energy of the initial electron bunch. Shape distortions at high K undulator parameters are also discussed.

  13. Self-referencing, spectrally, or spatially encoded spectral interferometry for the complete characterization of attosecond electromagnetic pulses

    International Nuclear Information System (INIS)

    Cormier, Eric; Walmsley, Ian A.; Wyatt, Adam S.; Corner, Laura; Kosik, Ellen M.; DiMauro, Louis F.

    2005-01-01

    We propose a method for the complete characterization of attosecond duration electromagnetic pulses produced by high harmonic generation in an atomic gas. Our method is based on self-referencing spectral interferometry of two spectrally sheared extreme ultraviolet pulses, which is achieved by pumping the harmonic source with two sheared optical driving pulses. The resulting interferogram contains sufficient information to completely reconstruct the temporal behavior of the electric field. We demonstrate that such a method is feasible, and outline two possible experimental configurations

  14. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse

    International Nuclear Information System (INIS)

    Feng Liqiang; Chu Tianshu

    2012-01-01

    Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.

  15. Attosecond pulse generation in noble gases in the presence of extreme high intensity THz pulses

    International Nuclear Information System (INIS)

    Balogh, E.; Varju, K.

    2010-01-01

    Complete text of publication follows. The shortest - attosecond - light pulses available today are produced by high harmonic generation (HHG) of near-infrared (NIR) laser pulses in noble gas jets, providing a broad spectral plateau of XUV radiation ending in a cutoff. The minimum pulse duration is determined by the achievable bandwidth (i.e. the position of the cutoff), and the chirp of the produced pulses. The extension of the cutoff by increasing the laser intensity is limited by the depletion and phase matching problems of the medium. An alternative method demonstrated to produce higher harmonic orders is by using longer pump pulse wavelength, with the disadvantage of decreased efficiency. Recently it was shown that application of a quasi-DC high strength electric field results in an increase of more than a factor of two in the order of efficiently generated high harmonics. However, the possibility to implement the method proposed in [3] of using a CO 2 laser to create a quasi-DC field for assisting HHG of the NIR laser is questionable, because it's technically very challenging to synchronize pulses from different laser sources. Alternatively, synchronous production of THz pulses with the NIR laser pulse offers a more promising route. The first numerical test of this idea has been reported in [4]. In this contribution we further investigate the method for realistic THz field strengths and short driving pulses, exploring the effect of longer pump laser wavelength on the process. We assume the presence of high intensity THz pulses for supplying the high-strength quasi-DC electric field. The spectrum as well as the chirp of the produced radiation is calculated. We use the non-adiabatic saddle point method to determine the generated radiation described in [6]. We simulate harmonic generation in noble gas atoms, with few cycle NIR pulses of peak intensity at and above 2 x 10 14 W/cm 2 (388 MV/cm) and wavelengths 800 nm and 1560 nm. The THz field strength is varied

  16. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  17. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    Science.gov (United States)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  18. Breaking the Attosecond, Angstrom and TV/m Field Barriers with Ultrafast Electron Beams

    International Nuclear Information System (INIS)

    Rosenzweig, J. B.; Andonian, G.; Fukasawa, A.; Hemsing, E.; Marcus, G.; Marinelli, A.; Musumeci, P.; O'Shea, B.; O'Shea, F.; Pellegrini, C.; Schiller, D.; Travish, G.; Bucksbaum, P.; Hogan, M.; Krejcik, Patrick; Ferrario, M.; Muggli, Patric

    2010-01-01

    Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This scheme uses very low charge beams, which may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the Stanford X-ray FEL (LCLS, first of its kind, built with essential UCLA leadership) have produced ∼2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments at UCLA in cryogenic undulator technology, to create compact accelerator/undulator systems that can lase below 0.15 Angst , or be used to permit 1.5 Angst operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications. We discuss the experimental issues associated with this initiative.

  19. Relativistic attosecond electron bunch emission from few-cycle laser irradiated nanoscale droplets

    Directory of Open Access Journals (Sweden)

    Laura Di Lucchio

    2015-02-01

    Full Text Available Attosecond electron bunches produced at the surface of nanometer-scale droplets illuminated by a two-cycle laser pulse are investigated for the purpose of determining their optimal emission characteristics. Significant departures from Mie theory are found for electron bunch emission from droplets whose radii satisfy the condition δ_{r}

  20. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime

    KAUST Repository

    Ahn, B.

    2017-02-07

    Metal nanotip photoemitters have proven to be versatile in fundamental nanoplasmonics research and applications, including, e.g., the generation of ultrafast electron pulses, the adiabatic focusing of plasmons, and as light-triggered electron sources for microscopy. Here, we report the generation of high energy photoelectrons (up to 160 eV) in photoemission from single-crystalline nanowire tips in few-cycle, 750-nm laser fields at peak intensities of (2-7.3) × 1012 W/cm2. Recording the carrier-envelope phase (CEP)-dependent photoemission from the nanowire tips allows us to identify rescattering contributions and also permits us to determine the high-energy cutoff of the electron spectra as a function of laser intensity. So far these types of experiments from metal nanotips have been limited to an emission regime with less than one electron per pulse. We detect up to 13 e/shot and given the limited detection efficiency, we expect up to a few ten times more electrons being emitted from the nanowire. Within the investigated intensity range, we find linear scaling of cutoff energies. The nonlinear scaling of electron count rates is consistent with tunneling photoemission occurring in the absence of significant charge interaction. The high electron energy gain is attributed to field-induced rescattering in the enhanced nanolocalized fields at the wires apex, where a strong CEP-modulation is indicative of the attosecond control of photoemission.

  1. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  2. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  3. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  4. Velocity map imaging of attosecond and femtosecond dynamics in atoms and small molecules in strong laser fields

    International Nuclear Information System (INIS)

    Kling, M.F.; Ni, Yongfeng; Lepine, F.; Khan, J.I.; Vrakking, M.J.J.; Johnsson, P.; Remetter, T.; Varju, K.; Gustafsson, E.; L'Huillier, A.; Lopez-Martens, R.; Boutu, W.

    2005-01-01

    Full text: In the past decade, the dynamics of atomic and small molecular systems in strong laser fields has received enormous attention, but was mainly studied with femtosecond laser fields. We report on first applications of attosecond extreme ultraviolet (XUV) pulse trains (APTs) from high-order harmonic generation (HHG) for the study of atomic and molecular electron and ion dynamics in strong laser fields utilizing the Velocity Map Imaging Technique. The APTs were generated in argon from harmonics 13 to 35 of a 35 fs Ti:sapphire laser, and spatially and temporally overlapped with an intense IR laser field (up to 5x10 13 W/cm 2 ) in the interaction region of a Velocity Map Imaging (VMI) machine. In the VMI setup, electrons and ions that were created at the crossing point of the laser fields and an atomic or molecular beam were accelerated in a dc-electric field towards a two-dimensional position-sensitive detector, allowing to reconstruct the full initial three-dimensional velocity distribution. The poster will focus on results that were obtained for argon atoms. We recorded the velocity distribution of electron wave packets that were strongly driven in the IR laser field after their generation in Ar via single-photon ionization by attosecond XUV pulses. The 3D evolution of the electron wave packets was observed on an attosecond timescale. In addition to earlier experiments with APTs using a magnetic bottle electron time-of-flight spectrometers and with single attosecond pulses, the angular dependence of the electrons kinetic energies can give further insight into the details of the dynamics. Initial results that were obtained for molecular systems like H 2 , D 2 , N 2 , and CO 2 using the same powerful approach will be highlighted as well. We will show, that detailed insight into the dynamics of these systems in strong laser fields can be obtained (e.g. on the alignment, above-threshold ionization, direct vs. sequential two-photon ionization, dissociation, and

  5. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  6. Generation of Attosecond x-ray pulse using Coherent Relativistic Nonlinear Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Tae; Park, Seong Hee; Cha, Yong Ho; Jeong, Young Uk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-07-01

    Relativistic plasma, a new regime in physics, has been opened due to the development in ultra-intense laser technology during the past decade. Not only the fundamental aspect of relativistic plasma are attractive but also its potential application seems to be significant especially in the area of the generation of high energy particles such as electrons, ions, positrons, and {gamma}-rays. The generation of x-ray radiation with a pulse width of sub-femtoseconds presently draws much attention because such a radiation allows one to explore ultra-fast dynamics of electrons and nucleons. Several schemes have been proposed and/or demonstrated to generate an ultra-short x-ray pulse: the relativistic Doppler shift of a backscattered laser pulse by a relativistic electron beam, the harmonic frequency upshift of a laser pulse by relativistic nonlinear motion of electrons, high order harmonic generation in the interaction of intense laser pulse with noble gases and solids The train of a few 100 attosecond pulses has been observed in the case of laser-noble gas interaction. When a low-intensity laser pulse is irradiated on an electron, the electron undergoes a harmonic oscillatory motion and generates a dipole radiation with the same frequency as the incident laser pulse, which is called Thomson scattering. As the laser intensity increases, the oscillatory motion of the electron becomes relativistically nonlinear, which leads to the generation of harmonic radiations, referred to as Relativistic Nonlinear Thomson Scattered (RNTS) radiation. The motion of the electron begins to be relativistic as the following normalized vector potential approaches to unity: a{sub 0}=8.5 x 10{sup -10} {lambda}{iota}{sup 1/2} , (1) where {lambda} is the laser wavelength in {mu}m and I the laser intensity in W/cm{sup 2} The RNTS radiation has been investigated in analytical ways. Recently, indebted to the development of the ultra-intense laser pulse, experiments on RNTS radiation have been carried

  7. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  8. News and views from the attosecond generation, characterization and applications frontier

    International Nuclear Information System (INIS)

    Tzallas, P.; Kalpouzos, C.; Kruse, J.; Skatzakis, E.; Charalambidis, D.

    2010-01-01

    Complete text of publication follows. We report on recent results in the generation, characterization and applications of energetic attosecond pulse trains and ultra-broad coherent XUV continua: 1) Generation: 1a) We report experimental results confirming contribution of both long and short trajectories in on-axis harmonic generation before, at and after an atomic gas jet, i.e. under three different phase matching conditions. The contribution of both trajectories is manifested through their interference leading to a modulated harmonic (and side band) yield as a function of the driving intensity. 1b) We report the generation of sub-fs pulse trains at the 40 μJ pulse energy level from laser surface plasma, measured through 2 nd order intensity volume autocorrelation (2 nd order IVAC). 2) Characterization: We present comparative studies between RABITT and 2 nd order IVAC in on axis harmonic generation before, at and after an atomic gas jet. We find that the two techniques give fairly different results that are compatible with the differently weighted but unavoidable presence of the long and short trajectory in the generation process in all three phase matching conditions. We show that the relative contributions of the two trajectories can be estimated through RABITT measurements, while spatiotemporal mean pulse durations can be extracted from 2 nd order IVAC traces. 3) Applications: 3a) We present time resolved VUV spectroscopy of ultrafast dynamics in molecular ethylene. 3b) We present time resolved XUV spectroscopy at the 1 fs temporal scale and ultra-broad band XUV Fourier Transform Spectroscopy in a manifold of doubly excited autoionizing and inner-shell Auger decaying states excited simultaneously through a coherent broadband XUV continuum. Acknowledgments. This work is supported in part by the European Community's Human Potential Program under contract MTKD-CT-2004-517145 (X-HOMES), the Ultraviolet Laser Facility (ULF) operating at FORTH-IESL (contract PHRI

  9. Mathematical modeling of the infrastructure of attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials

    Science.gov (United States)

    Beznosyuk, Sergey A.; Maslova, Olga A.; Zhukovsky, Mark S.; Valeryeva, Ekaterina V.; Terentyeva, Yulia V.

    2017-12-01

    The task of modeling the multiscale infrastructure of quantum attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials is considered. Computer design and calculation of supra-atomic femtosecond sensors of nonequilibrium physical media in materials based on layered graphene-transition metal nanosystems are carried out by vdW-DF and B3LYP methods. It is shown that the molybdenum substrate provides fixation of graphene nanosheets by Van der Waals forces at a considerable distance (5.3 Å) from the metal surface. This minimizes the effect of the electronic and nuclear subsystem of the substrate metal on the sensory properties of "pure" graphene. The conclusion is substantiated that graphene-molybdenum nanosensors are able to accurately orient and position one molecule of carbon monoxide. It is shown that graphene selectively adsorbs CO and fixes the oxygen atom of the molecule at the position of the center of the graphene ring C6.

  10. High-order harmonic and attosecond pulse generation for a few-cycle laser pulse in modulated hollow fibres

    International Nuclear Information System (INIS)

    Zhang Xiangyun; Sun Zhenrong; Wang Yufeng; Chen Guoliang; Wang Zugeng; Li Ruxin; Zeng Zhinan; Xu Zhizhan

    2007-01-01

    High harmonic generation from Ar and He atoms by a few-cycle laser pulse in periodic and chirped hollow fibres is investigated theoretically by a self-consistent model. Based on enhanced high harmonics in a periodic hollow fibre, a chirped hollow fibre is proposed to improve quasi-phase matching for the generated harmonics near the cutoff. The results show that the extended and enhanced harmonics near the cutoff are well phase-matched, and a single x-ray pulse with a duration of 279 as in Ar gas and 255 as in He gas can be achieved by frequency synthesizing of high harmonics in the well-selected cutoff bandwidth. The results show that this technique is a potential candidate to generate an intense isolated attosecond pulse in the 'water window' spectrum

  11. Characterization of electron-deficient chemical bonding of diborane with attosecond electron wavepacket dynamics and laser response

    International Nuclear Information System (INIS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2009-01-01

    We report a theoretical study of non-adiabatic electrons-nuclei coupled dynamics of diborane H 2 BH 2 BH 2 under several types of short pulse lasers. This molecule is known to have particularly interesting geometrical and electronic structures, which originate from the electron-deficient chemical bondings. We revisit the chemical bonding of diborane from the view point of electron wavepacket dynamics coupled with nuclear motions, and attempt to probe the characteristics of it by examining its response to intense laser fields. We study in the following three aspects, (i) bond formation of diborane by collision between two monoboranes, (ii) attosecond electron wavepacket dynamics in the ground state and first excited state by circularly polarized laser pulse, and (iii) induced fragmentation back to monoborane molecules by linearly polarized laser. The wave lengths of two types of laser field employed are 200 nm (in UV range) and 800 nm (in IR range), and we track the dynamics from hundreds of attoseconds up to few tens of femtoseconds. To this end, we apply the ab initio semiclassical Ehrenfest theory, into which the classical vector potential of a laser field is introduced. Basic features of the non-adiabatic response of electrons to the laser fields is elucidated in this scheme. To analyze the electronic wavepackets thus obtained, we figure out bond order density that is a spatial distribution of the bond order and bond order flux density arising only from the bonding regions, and so on. Main findings in this work are: (i) dimerization of monoboranes to diborane is so efficient that even intense laser is hard to prevent it; (ii) collective motions of electron flux emerge in the central BHHB bonding area in response to the circularly polarized laser fields; (iii) laser polarization with the direction of central two BH bonding vector is efficient for the cleavage of BH 3 -BH 3 ; and (iv) nuclear derivative coupling plays a critical role in the field induced

  12. Control of quantum paths of high-order harmonics and attosecond pulse generation in the presence of a static electric field

    International Nuclear Information System (INIS)

    Hong Weiyi; Lu Peixiang; Cao Wei; Lan Pengfei; Wang Xinlin

    2007-01-01

    The time-frequency properties of high-order harmonic generation in the presence of a static electric field are investigated. It is found that the quantum paths contributing to the harmonics can be controlled by adding a static electric field. The highest photon energies of harmonics emitted in the adjacent half-cycles of the laser field are modulated by the static electric field, and then an attosecond pulse train with one burst per optical cycle can be extracted. For the ratio between the laser and the static field of 0.39, the harmonic spectrum is extended to I p + 9.1U p , and the harmonics above I p + 0.7U p are emitted almost in phase. The phase-locked harmonics covered by a broad bandwidth are produced, and then a regular attosecond pulse train with a pulse duration of 80 as is generated

  13. Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

    Science.gov (United States)

    2016-05-23

    2 Department of Physics and JILA, University of Colorado and NIST, Boulder, CO 80309, USA 3Department of Physics and Optical Engineering, Ort Braude...polarized high harmonic generation, phase matching, ultrafast chiral physics, attosecond pulses (Some figures may appear in colour only in the online...temporal resolution and in spectral regions unavailable to circular polarization thus far. Acknowledgments This work was supported by the USA –Israel

  14. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  15. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  16. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    International Nuclear Information System (INIS)

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Enhanced asymmetry in few-cycle attosecond pulse ionization of He in the vicinity of autoionizing resonances

    International Nuclear Information System (INIS)

    Djiokap, J M Ngoko; Starace, Anthony F; Hu, S X; Jiang Weichao; Peng Liangyou

    2012-01-01

    By solving the two-active-electron, time-dependent Schrödinger equation in its full dimensionality, we investigate the carrier-envelope phase (CEP) dependence of single ionization of He to the He + (1s) state triggered by an intense few-cycle attosecond pulse with carrier frequency ω corresponding to the energy ℏω = 36 eV. Effects of electron correlations are probed by comparing projections of the final state of the two-electron wave packet onto field-free highly correlated Jacobi matrix wave functions with projections onto uncorrelated Coulomb wave functions. Significant differences are found in the vicinity of autoionizing resonances. Owing to the broad bandwidths of our 115 and 230 as pulses and their high intensities (1–2 PW cm −2 ), asymmetries are found in the differential probability for ionization of electrons parallel and antiparallel to the linear polarization axis of the laser pulse. These asymmetries stem from interference of the one- and two-photon ionization amplitudes for producing electrons with the same momentum along the linear polarization axis. Whereas these asymmetries generally decrease with increasing ionized electron kinetic energy, we find a large enhancement of the asymmetry in the vicinity of two-electron doubly excited (autoionizing) states on an energy scale comparable to the widths of the autoionizing states. The CEP dependence of the energy-integrated asymmetry agrees very well with the predictions of time-dependent perturbation theory (Pronin et al 2009 Phys. Rev. A 80 063403). (paper)

  18. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  19. Angina Pectoris (Stable Angina)

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Aug 21,2017 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, ...

  20. How to understand the tunneling in attosecond experiment?. Bohr-Einstein photon box Gedanken experiment, tunneling time and the wave particle duality

    Science.gov (United States)

    Kullie, Ossama

    2018-02-01

    The measurement of the tunneling time (T-time) in today's attosecond and strong field (low-frequency) experiments, despite its controversial discussion, offers a fruitful opportunity to understand time measurement and the time in quantum mechanics. In addition, as we will see in this work, a related controversial issue is the particulate nature of the radiation. The T-time in attosecond experiment and its different aspects and models, is discussed in this work, especially in relation to my model of real T-time (Kullie, 2015), where a good agreement with the experiment and an intriguing similarity to the Bohr-Einstein photon box Gedanken experiment was found. The tunneling process itself is still not well understood, but I am arguing that a scattering mechanism (by the laser wave packet) offers a possibility to understand the tunneling process in the tunneling region. This is related to the question about the corpuscular nature of light which is widely discussed in modern quantum optics experiments.

  1. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  2. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  3. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  4. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  5. A tale of tails: Photon rates and flow in ultra-relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, Larry [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Dept., China Central Normal University, Wuhan (China); Schenke, Björn, E-mail: bschenke@quark.phy.bnl.gov [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    We consider the possibility that quark and gluon distributions in the medium created in high energy heavy ion collisions may be modified by a power law tail at energies much higher than the temperature. We parametrize such a tail by Tsallis distributions with an exponent motivated by phenomenology. These distributions are characterized by an effective temperature scale that we assume to evolve in time like the temperature for thermal distributions. We find that including such a tail increases the rates for photon production and significantly delays the emission times for photons of a fixed energy. We argue that these effects should modify photon yields and flow patterns in a way that will help the agreement of theoretical calculations with data from LHC and RHIC experiments.

  6. (Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions)

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  7. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy ( 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ''best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon 129 Xe with 197 Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon 12 C with 197 Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated

  8. Modeling and Analysis of Ultra-Relativistic Heavy-Ion Collisions. Final Report

    International Nuclear Information System (INIS)

    Bass, Steffen A.

    2008-01-01

    Hadronic, i.e. strongly interacting, matter is described by the theory of quantum chromodynamics (QCD). The basic constituents of QCD, quarks and gluons, are normally confined to hadrons, but it is believed that under extreme conditions, such as shortly after the creation of the universe, quarks and gluons can exist as independent particles in a new state of matter, called a quark-gluon plasma (QGP). Due to the rapid expansion of the universe, this plasma went through a phase transition to form hadrons - most importantly nucleons - which constitute the building blocks of matter as we know it today. The investigation of the QGP under laboratory conditions will yield important novel insights into the development of the early universe and the behavior of matter under extreme conditions. This study is presently the subject of the physics program of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. First data from the √s NN = 130 GeV and √s NN = 200 GeV Au+Au runs at RHIC have yielded many interesting and sometimes surprising results. While many theoretical predictions have been confirmed, some of the experimental results have brought surprises and indicate that RHIC is, indeed, probing a new physics regime of QCD matter.

  9. Riemann problems and their application to ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Plohr, B.J.; Sharp, D.H.

    1986-07-01

    Heavy ion collisions at sufficiently high energies to form quark-gluon plasma are considered. The phase transformation from a quark-gluon phase to hadrons as the nuclear matter cools is modeled as a hydrodynamical flow. Nonlinear waves are the predominant feature of this type of flow and the Riemann problem of a relativistic gas undergoing a phase transformation is explored as a method to numerically model this phase transition process in nuclear matter. The solution of the Riemann problem is outlined and results of preliminary numerical computations of the flow are presented. 10 refs., 2 figs

  10. Electromagnetically-induced nuclear-charge pickup observed in ultra-relativistic Pb collisions

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Aumann, T.; Pshenichnov, I.A.; Russian Academy of Sciences, Moscow

    2002-01-01

    A strong increase of inclusive nuclear-charge pickup cross sections, forming 83 Bi from 158 A GeV 82 Pb ions, is observed in comparison to similar measurements at 10.6 A GeV. From the dependence of these cross sections on target atomic number, this increase is attributed to the electromagnetic process of pion production by equivalent photons. The observed cross sections can be reproduced quantitatively using the recently developed RELDIS code. (orig.)

  11. Anti-baryon puzzle in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Rapp, R.; Shuryak, E.V.

    2002-01-01

    The evolution of (non-strange) antibaryon abundances in the hadronic phase of central heavy-ion collisions is studied within a thermal equilibrium framework, based on the well-established picture of subsequent chemical and thermal freezeout. Due to large annihilation cross sections, antiprotons are, a priori, not expected to comply with this scheme. However, we show that a significant regeneration of their abundance occurs upon inclusion of the inverse reaction of multipion fusion, n π π → p anti p (with n π =5-6), necessary to ensure detailed balance. Especially at SPS energies, the build-up of large pion-chemical potentials between chemical and thermal freezeout reinforces this mechanism, rendering the p/p ratio in reasonable agreement with the observed one (reflecting chemical freezeout). Explicit solutions of the pertinent rate equation, which account for chemical off-equilibrium effects, corroborate this explanation. (orig.)

  12. High energy cosmic ray events of ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Burnett, T.H.; Dake, S.; Derricson, J.H.; Fountain, W.; Fuki, M.; Gregory, J.C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W.V.; Jurak, A.; Lord, J.J.; Meegan, C.A.; Miyamura, O.; Oda, H.; Ogata, T.; Parnell, T.A.; Roberts, E.; Saito, T.; Strauss, S.; Tabuki, T.; Takahashi, Y.; Tominaga, T.; Watts, J.W.; Wilczynska, B.; Wilkes, R.J.; Wolter, W.; Bosiek, B.

    1985-01-01

    Japanese American Cooperative Emulsion Experiment (JACEE) has been measuring ultrarelativistic comic ray nucleus and sampling the events in the energy regions both 10 to 100 GeV/A and above TeV/A by balloon emulsion chamber since 1979. In this report main results obtained up to now will be described. (orig./HSI)

  13. CSR Wake for a Short Magnet in Ultra-Relativistic Limit

    International Nuclear Information System (INIS)

    Emma, Paul J

    2002-01-01

    Using results for the CSR wake in a short magnet [1] we obtain expressions for the wake in the limit of very large values of the relativistic factor γ, γ → ∞, for both the entrance and exit of the magnet. The analytical results are illustrated with numerical computation of the wakes, energy loss and energy spread for magnets of different lengths

  14. Ultra-relativistic Au+Au and d+Au collisions:

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  15. CHARGED PARTICLE MULTIPLICITIES IN ULTRA-RELATIVISTIC AU+AU AND CU+CU COLLISIONS

    Science.gov (United States)

    Back, B. B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Vannieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyngaardt, S.; Wyslouch, B.

    The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5° to 179.5° corresponding to |η| <5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.

  16. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  17. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  18. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  19. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  20. Applications of anomalous diffraction systems, generation of attosecond electron and photon pulses and Raman amplification by stimulated emission of radiation

    Science.gov (United States)

    Vartak, Sameer Dinkar

    1998-10-01

    efficient delivery of this power to the screen. We describe a method based on optical rectification to create an electron acceleration process which can act simultaneously on a femtosecond photo-electron pulse as well as cancel space-charge effects. This method can be used to produce attosecond electron and photon pulses. Narrow linewidth high intensity tunable light pulses are very useful for applications such as spectroscopic studies and remote sensing. Tunable lasers and stimulated Raman scattering (SRS) process are commonly used for this purpose. SRS process has high threshold because of small spontaneous Raman scattering cross-sections. We combined amplified spontaneous emission (ASE) from dye molecules with SRS process in solvent molecules in which dye molecules are dissolved. ASE seeds SRS process and SRS peak is further amplified by stimulated emission gain. We got amplifications ~100 over SRS from pure solvent. This peak can be tuned over gain bandwidth of dye molecules.

  1. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  2. Calcium stable isotope geochemistry

    International Nuclear Information System (INIS)

    Gausonne, Nikolaus; Schmitt, Anne-Desiree; Heuser, Alexander; Wombacher, Frank; Dietzel, Martin; Tipper, Edward; Schiller, Martin

    2016-01-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  3. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  4. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  5. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  6. Stable radiographic scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    Stable compositions which are useful in the preparation of Technetium-99m-based scintigraphic agents are discussed. They are comprised of ascorbic acid or a pharmaceutically acceptable salt or ester thereof in combination with a pertechnetate reducing agent or dissolved in oxidized pertechnetate-99m (sup(99m)TcO 4 - ) solution

  7. Some stable hydromagnetic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J L; Oberman, C R; Kulsrud, R M; Frieman, E A [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    We have been able to find and investigate the properties of equilibria which are hydromagnetically stable. These equilibria can be obtained, for example, by wrapping conductors helically around the stellarator tube. Systems with I = 3 or 4 are indicated to be optimum for stability purposes. In some cases an admixture of I = 2 fields can be advantageous for achieving equilibrium. (author)

  8. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  9. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  10. Generation of single attosecond pulse within one atomic unit by using multi-cycle inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    Science.gov (United States)

    Feng, Liqiang; Liu, Hang

    2018-04-01

    The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.

  11. Theory of stable allocations

    Directory of Open Access Journals (Sweden)

    Pantelić Svetlana

    2014-01-01

    Full Text Available The Swedish Royal Academy awarded the 2012 Nobel Prize in Economics to Lloyd Shapley and Alvin Roth, for the theory of stable allocations and the practice of market design. These two American researchers worked independently from each other, combining basic theory and empirical investigations. Through their experiments and practical design they generated a flourishing field of research and improved the performance of many markets. Born in 1923 in Cambridge, Massachusetts, Shapley defended his doctoral thesis at Princeton University in 1953. For many years he worked at RAND, and for more than thirty years he was a professor at UCLA University. He published numerous scientific papers, either by himself or in cooperation with other economists.

  12. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  13. One-dimensional stable distributions

    CERN Document Server

    Zolotarev, V M

    1986-01-01

    This is the first book specifically devoted to a systematic exposition of the essential facts known about the properties of stable distributions. In addition to its main focus on the analytic properties of stable laws, the book also includes examples of the occurrence of stable distributions in applied problems and a chapter on the problem of statistical estimation of the parameters determining stable laws. A valuable feature of the book is the author's use of several formally different ways of expressing characteristic functions corresponding to these laws.

  14. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing

  15. Stable configurations in social networks

    Science.gov (United States)

    Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael

    2018-06-01

    We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.

  16. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  17. Hard processes and fragmentation in a unified model for interactions at ultra-relativistic energies; Les processus durs et la fragmentation dans un modele unifie pour les interactions aux energies ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J

    1999-06-11

    In this work we have developed hard processes and string fragmentation in the framework of interactions at relativistic energies. The hypothesis of the universality of high energy interactions means that many elements of heavy ion collisions can be studied and simulated in simpler nuclear reactions. In particular this hypothesis implies that the fragmentation observed in the reaction e{sup +}e{sup -} follows the same rules as in the collision of 2 lead ions. This work deals with 2 nuclear processes: the e{sup +}e{sup -} annihilation reaction and the deep inelastic diffusion. For the first process the string model has been developed to simulate fragmentation by adding an artificial breaking of string due to relativistic effects. A monte-Carlo method has been used to determine the points in a Minkowski space where this breaking occurs. For the second reaction, the theory of semi-hard pomerons is introduced in order to define elementary hadron-hadron interactions. The model of fragmentation proposed in this work can be applied to more complicated reactions such as proton-proton or ion-ion collisions.

  18. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  19. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  20. French days on stable isotopes

    International Nuclear Information System (INIS)

    2000-01-01

    These first French days on stable isotopes took place in parallel with the 1. French days of environmental chemistry. Both conferences had common plenary sessions. The conference covers all aspects of the use of stable isotopes in the following domains: medicine, biology, environment, tracer techniques, agronomy, food industry, geology, petroleum geochemistry, cosmo-geochemistry, archaeology, bio-geochemistry, hydrology, climatology, nuclear and particle physics, astrophysics, isotope separations etc.. Abstracts available on CD-Rom only. (J.S.)

  1. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  2. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  3. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  4. Spontaneous and stimulated undulator radiation by an ultra-relativistic positron channeling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Solov'yov, A.V.; Greiner, W.

    2001-01-01

    We discuss the radiation generated by positrons channeling in a crystalline undulator. The undulator is produced by periodically bending a single crystal with an amplitude much larger than the interplanar spacing. Different approaches for bending the crystal are described and the restrictions on the parameters of the bending are discussed. We also present numeric calculations of the spontaneous emitted radiation and estimate the conditions for stimulated emission. Our investigations show that the proposed mechanism could be an interesting source for high energy photons and is worth to be studied experimentally

  5. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: Real-time synchrotron simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, Erik [Department of Physics, Umeå University, SE–901 87 Umeå (Sweden); Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden); Gonoskov, Arkady [Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden); Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Marklund, Mattias [Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden)

    2015-03-15

    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.

  6. Laser-Driven Ultra-Relativistic Plasmas - Nuclear Fusion in Coulomb Shock Waves, Rouge Waves, and Background Matter

    Science.gov (United States)

    2015-05-05

    the time-scale of Big Bang , and the most significant time scale posts on the road to it. In his work [2], this PI also proposed specific mechanisms and...recently: (1) fully QED/relativistic theory of light pressure of 15.  SUBJECT TERMS plasmas Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18...large moving man-made objects in the ocean. A 2D and 3D expansion of the theory may need to be developed for other potential appli- cations of G

  7. Inclusive large mass muon pair production in ultra-relativistic nucleus-nucleus collisions for colliding beams

    International Nuclear Information System (INIS)

    Roberts, L.E.

    1988-01-01

    For colliding beams of several species of ions we compare thermal to perturbative quantum chromodynamic contributions for inclusive large mass muon pair production by using a hydrodynamic model to estimate the temperatures of the quark-gluon plasma produced by each species. The production of high energy dimuons with M ≅-4 GeV, will be favored energetically by the quark-gluon plasma. 10 refs., 4 figs., 2 tabs

  8. Experimental status of the search for the quark-gluon plasma in ultra-relativistic heavy ion interactions

    International Nuclear Information System (INIS)

    Salmeron, R.A.

    1992-01-01

    The deconfinement of quarks, antiquarks and gluons, and the phase transition from a hadron phase to a quark-gluon plasma phase are presented after recalling some elementary notions about normal nuclear matter. Eight proposed signatures of the quark-gluon plasma are described and a summary is given of the experiments concerning three of them: Bose-Einstein interference, the suppression of the J/ψ production and strange particles production. (author)

  9. Attosecond sublevel beating and nonlinear dressing on the 3d-to-5p and 3p-to-5s core-transitions at 91.3 eV and 210.4 eV in krypton.

    Science.gov (United States)

    Seres, Enikoe; Seres, Jozsef; Namba, Shinichi; Afa, John; Serrat, Carles

    2017-12-11

    Applying extreme ultraviolet (XUV) transient absorption spectroscopy, the dynamics of the two laser dressed transitions 3d 5/2 -to-5p 3/2 and 3p 3/2 -to-5s 1/2 at photon energies of 91.3 eV and 210.4 eV were examined with attosecond temporal resolution. The dressing process was modeled with density matrix equations which are found to describe very accurately both the experimentally observed transmission dynamics and the linear and nonlinear dressing oscillations at 0.75 PHz and 1.5 PHz frequencies. Furthermore, using Fourier transform XUV spectroscopy, quantum beats from the 3d 5/2 -3d 3/2 and 3p 3/2 -3p 1/2 sublevels at 0.3 PHz and 2.0 PHz were experimentally identified and resolved.

  10. [Current Treatment of Stable Angina].

    Science.gov (United States)

    Toggweiler, Stefan; Jamshidi, Peiman; Cuculi, Florim

    2015-06-17

    Current therapy for stable angina includes surgical and percutaneous revascularization, which has been improved tremendously over the last decades. Smoking cessation and regular exercise are the cornerstone for prevention of further cerebrovascular events. Medical treatment includes treatment of cardiovascular risk factors and antithrombotic management, which can be a challenge in some patients. Owing to the fact the coronary revascularization is readily accessible these days in many industrialized countries, the importance of antianginal therapy has decreased over the past years. This article presents a contemporary overview of the management of patients with stable angina in the year 2015.

  11. Possibility of stable quark stars

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.

    1976-08-01

    A recent zero temperature equation of state which contains quark-partons separated from conventional baryons by a phase transition is used to investigate the stability of quark stars. The sensitivity to the input physics is also considered. The conclusions, which are found to be relatively model independent, indicate that a separately identifiable class of stable objects called quark stars does not exist

  12. Radiation-stable polyolefin compositions

    International Nuclear Information System (INIS)

    Rekers, J.W.

    1986-01-01

    This invention relates to compositions of olefinic polymers suitable for high energy radiation treatment. In particular, the invention relates to olefinic polymer compositions that are stable to sterilizing dosages of high energy radiation such as a gamma radiation. Stabilizers are described that include benzhydrol and benzhydrol derivatives; these stabilizers may be used alone or in combination with secondary antioxidants or synergists

  13. Toward Practical Secure Stable Matching

    Directory of Open Access Journals (Sweden)

    Riazi M. Sadegh

    2017-01-01

    Full Text Available The Stable Matching (SM algorithm has been deployed in many real-world scenarios including the National Residency Matching Program (NRMP and financial applications such as matching of suppliers and consumers in capital markets. Since these applications typically involve highly sensitive information such as the underlying preference lists, their current implementations rely on trusted third parties. This paper introduces the first provably secure and scalable implementation of SM based on Yao’s garbled circuit protocol and Oblivious RAM (ORAM. Our scheme can securely compute a stable match for 8k pairs four orders of magnitude faster than the previously best known method. We achieve this by introducing a compact and efficient sub-linear size circuit. We even further decrease the computation cost by three orders of magnitude by proposing a novel technique to avoid unnecessary iterations in the SM algorithm. We evaluate our implementation for several problem sizes and plan to publish it as open-source.

  14. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1986-08-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56. All requests for the loan of samples should be submitted with a summary of the purpose of the loan to: Iotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval

  15. Stable isotopes and the environment

    International Nuclear Information System (INIS)

    Krouse, H.R.

    1990-01-01

    Whereas traditionally, stable isotope research has been directed towards resource exploration and development, it is finding more frequent applications in helping to assess the impacts of resource utilization upon ecosystems. Among the many pursuits, two themes are evident: tracing the transport and conversions of pollutants in the environment and better understanding of the interplay among environmental receptors, e.g. food web studies. Stable isotope data are used primarily to identify the presence of pollutants in the environment and with a few exceptions, the consequence of their presence must be assessed by other techniques. Increasing attention has been given to the isotopic composition of humans with many potential applications in areas such as paleodiets, medicine, and criminology. In this brief overview examples are used from the Pacific Rim to illustrate the above concepts. 26 refs., 1 tab., 3 figs

  16. Towards stable acceleration in LINACS

    CERN Document Server

    Dubrovskiy, A D

    2014-01-01

    Ultra-stable and -reproducible high-energy particle beams with short bunches are needed in novel linear accelerators and, in particular, in the Compact Linear Collider CLIC. A passive beam phase stabilization system based on a bunch compression with a negative transfer matrix element R56 and acceleration at a positive off-crest phase is proposed. The motivation and expected advantages of the proposed scheme are outlined.

  17. Stable Structures for Distributed Applications

    OpenAIRE

    Eugen DUMITRASCU; Ion IVAN

    2008-01-01

    For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we ...

  18. Organic synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Daub, G.H.; Kerr, V.N.; Williams, D.L.; Whaley, T.W.

    1978-01-01

    Some general considerations concerning organic synthesis with stable isotopes are presented. Illustrative examples are described and discussed. The examples include DL-2-amino-3-methyl- 13 C-butanoic-3,4- 13 C 2 acid (DL-valine- 13 C 3 ); methyl oleate-1- 13 C; thymine-2,6- 13 C 2 ; 2-aminoethanesulfonic- 13 C acid (taurine- 13 C); D-glucose-6- 13 C; DL-2-amino-3-methylpentanoic-3,4- 13 C 2 acid (DL-isoleucine- 13 C 2 ); benzidine- 15 N 2 ; and 4-ethylsulfonyl-1-naphthalene-sulfonamide- 15 N

  19. Stable isotopes - separation and application

    International Nuclear Information System (INIS)

    Lockhart, I.M.

    1980-01-01

    In this review, methods used for the separation of stable isotopes ( 12 C, 13 C, 14 N, 15 N, 16 O, 17 O, 18 O, 34 S) will be described. The synthesis of labelled compounds, techniques for detection and assay, and areas of application will also be discussed. Particular attention will be paid to the isotopes of carbon, nitrogen, and oxygen; to date, sulphur isotopes have only assumed a minor role. The field of deuterium chemistry is too extensive for adequate treatment; it will therefore be essentially excluded. (author)

  20. Stable agents for imaging investigations

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    This invention concerns highly stable compounds useful in preparing technetium 99m based scintiscanning exploration agents. The compounds of this invention include a pertechnetate reducing agent or a solution of oxidized pertechnetate and an efficient proportion, sufficient to stabilize the compounds in the presence of oxygen and of radiolysis products, of ascorbic acid or a pharmaceutically acceptable salt or ester of this acid. The invention also concerns a perfected process for preparing a technetium based exploration agent, consisting in codissolving the ascorbic acid or a pharmaceutically acceptable salt or ester of such an acid and a pertechnetate reducing agent in a solution of oxidized pertechnetate [fr

  1. Stable cosmology in chameleon bigravity

    Science.gov (United States)

    De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele; Watanabe, Yota

    2018-02-01

    The recently proposed chameleonic extension of bigravity theory, by including a scalar field dependence in the graviton potential, avoids several fine-tunings found to be necessary in usual massive bigravity. In particular it ensures that the Higuchi bound is satisfied at all scales, that no Vainshtein mechanism is needed to satisfy Solar System experiments, and that the strong coupling scale is always above the scale of cosmological interest all the way up to the early Universe. This paper extends the previous work by presenting a stable example of cosmology in the chameleon bigravity model. We find a set of initial conditions and parameters such that the derived stability conditions on general flat Friedmann background are satisfied at all times. The evolution goes through radiation-dominated, matter-dominated, and de Sitter eras. We argue that the parameter space allowing for such a stable evolution may be large enough to encompass an observationally viable evolution. We also argue that our model satisfies all known constraints due to gravitational wave observations so far and thus can be considered as a unique testing ground of gravitational wave phenomenologies in bimetric theories of gravity.

  2. Stable Heavy Hadrons in ATLAS

    CERN Document Server

    Mackeprang, Rasmus

    2007-01-01

    Several extensions to the SM feature heavy long-lived particles with masses of O(10^2-10^3 GeV) and mean lifetimes fulfilling $CT \\geq 10m$. Among such theories are supersymmetric scenarios as well as extra-dimensional models in which the heavy new particles are seen as Kaluza-Klein excitations of the well-known SM particles. Such particles will, from the point of view of a collider experiment be seen as stable. This thesis is concerned with the case where the exotic heavy particles emph{can} be considered stable while traversing the detector. Specifically the case is considered where the particles in question carry the charge of the strong nuclear force, commonly referred to as emph{colour charge}. A simulation kit has been developed using GEANT4. This framework is the current standard in experimental particle physics for the simulation of interactions of particles with matter, and it is used extensively for detector simulation. The simulation describes the interactions of these particles with matter which i...

  3. Stable isotope mass spectrometry in petroleum exploration

    International Nuclear Information System (INIS)

    Mathur, Manju

    1997-01-01

    The stable isotope mass spectrometry plays an important role to evaluate the stable isotopic composition of hydrocarbons. The isotopic ratios of certain elements in petroleum samples reflect certain characteristics which are useful for petroleum exploration

  4. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.

    2006-01-01

    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  5. Tempered stable laws as random walk limits

    OpenAIRE

    Chakrabarty, Arijit; Meerschaert, Mark M.

    2010-01-01

    Stable laws can be tempered by modifying the L\\'evy measure to cool the probability of large jumps. Tempered stable laws retain their signature power law behavior at infinity, and infinite divisibility. This paper develops random walk models that converge to a tempered stable law under a triangular array scheme. Since tempered stable laws and processes are useful in statistical physics, these random walk models can provide a basic physical model for the underlying physical phenomena.

  6. Stable States of Biological Organisms

    Science.gov (United States)

    Yukalov, V. I.; Sornette, D.; Yukalova, E. P.; Henry, J.-Y.; Cobb, J. P.

    2009-04-01

    A novel model of biological organisms is advanced, treating an organism as a self-consistent system subject to a pathogen flux. The principal novelty of the model is that it describes not some parts, but a biological organism as a whole. The organism is modeled by a five-dimensional dynamical system. The organism homeostasis is described by the evolution equations for five interacting components: healthy cells, ill cells, innate immune cells, specific immune cells, and pathogens. The stability analysis demonstrates that, in a wide domain of the parameter space, the system exhibits robust structural stability. There always exist four stable stationary solutions characterizing four qualitatively differing states of the organism: alive state, boundary state, critical state, and dead state.

  7. Super-stable Poissonian structures

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2012-01-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics. (paper)

  8. Super-stable Poissonian structures

    Science.gov (United States)

    Eliazar, Iddo

    2012-10-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.

  9. Periodicity of the stable isotopes

    CERN Document Server

    Boeyens, J C A

    2003-01-01

    It is demonstrated that all stable (non-radioactive) isotopes are formally interrelated as the products of systematically adding alpha particles to four elementary units. The region of stability against radioactive decay is shown to obey a general trend based on number theory and contains the periodic law of the elements as a special case. This general law restricts the number of what may be considered as natural elements to 100 and is based on a proton:neutron ratio that matches the golden ratio, characteristic of biological and crystal growth structures. Different forms of the periodic table inferred at other proton:neutron ratios indicate that the electronic configuration of atoms is variable and may be a function of environmental pressure. Cosmic consequences of this postulate are examined. (author)

  10. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  11. The Myopic Stable Set for Social Environments

    NARCIS (Netherlands)

    Demuynck, Thomas; Herings, P. Jean-Jacques; Saulle, Riccardo; Seel, Christian

    2017-01-01

    We introduce a new solution concept for models of coalition formation, called the myopic stable set. The myopic stable set is defined for a very general class of social environments and allows for an infinite state space. We show that the myopic stable set exists and is non-empty. Under minor

  12. Effectiveness and risks of stable iodine prophylaxis

    International Nuclear Information System (INIS)

    Waight, P.J.

    1995-01-01

    The factors upon which the efficacy of stable iodine prophylaxis depends are reviewed, with particular reference to the dose of stable iodine, the timing of the dose, the influence of dietary iodine and the impact of the other prospective actions. The risks of stable iodine ingestion are estimated, and their application to the principle of Justification in outlined. (Author)

  13. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  14. Moltex Energy's stable salt reactors

    International Nuclear Information System (INIS)

    O'Sullivan, R.; Laurie, J.

    2016-01-01

    A stable salt reactor is a molten salt reactor in which the molten fuel salt is contained in fuel rods. This concept was invented in 1951 and re-discovered and improved recently by Moltex Energy Company. The main advantage of using molten salt fuel is that the 2 problematic fission products cesium and iodine do not exist in gaseous form but rather in a form of a salt that present no danger in case of accident. Another advantage is the strongly negative temperature coefficient for reactivity which means the reactor self-regulates. The feasibility studies have been performed on a molten salt fuel composed of sodium chloride and plutonium/uranium/lanthanide/actinide trichloride. The coolant fluid is a mix of sodium and zirconium fluoride salts that will need low flow rates. The addition of 1 mol% of metal zirconium to the coolant fluid reduces the risk of corrosion with standard steels and the addition of 2% of hafnium reduces the neutron dose. The temperature of the coolant is expected to reach 650 Celsius degrees at the exit of the core. This reactor is designed to be modular and it will be able to burn actinides. (A.C.)

  15. Rare stable isotopes in meteorites

    International Nuclear Information System (INIS)

    Wilson, G.C.

    1981-01-01

    Secondary Ion Mass Spectrometry (SIMS) using accelerators has been applied with success to cosmic ray exposure ages and terrestrial residence times of meteorites by measuring cosmogenic nuclides of Be, Cl, and I. It is proposed to complement this work with experiments on rare stable isotopes, in the hope of setting constraints on the processes of solar nebula/meteoritic formation. The relevant species can be classified as: a) daughter products of extinct nuclides (halflife less than or equal to 2 x 10 8 y) -chronology of the early solar system; b) products of high temperature astrophysical processes - different components incorporated into the solar nebula; and c) products of relatively low temperature processes, stellar winds and cosmic ray reactions - early solar system radiation history. The use of micron-scale primary ion beams will allow detailed sampling of phases within meteorites. Strategies of charge-state selection, molecular disintegration and detection should bring a new set of targets within analytical range. The developing accelerator field is compared to existing (keV energy) ion microprobes

  16. Stable piecewise polynomial vector fields

    Directory of Open Access Journals (Sweden)

    Claudio Pessoa

    2012-09-01

    Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.

  17. Stable Structures for Distributed Applications

    Directory of Open Access Journals (Sweden)

    Eugen DUMITRASCU

    2008-01-01

    Full Text Available For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we define the estimated measure indicators for a level. The influence of the factors of stability and the ways for increasing it are thus identified, and at the same time the costs of development stages, the costs of usage and the costs of maintenance to be keep on between limits that assure the global efficiency of application. It is presented the base aspects for distributed applications: definition, peculiarities and importance. The aspects for the development cycle of distributed application are detailed. In this article, we alongside give the mechanisms for building the defined structures and analyze the complexity of the defined structures for a distributed application of a virtual store.

  18. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  19. Population Games, Stable Games, and Passivity

    Directory of Open Access Journals (Sweden)

    Michael J. Fox

    2013-10-01

    Full Text Available The class of “stable games”, introduced by Hofbauer and Sandholm in 2009, has the attractive property of admitting global convergence to equilibria under many evolutionary dynamics. We show that stable games can be identified as a special case of the feedback-system-theoretic notion of a “passive” dynamical system. Motivated by this observation, we develop a notion of passivity for evolutionary dynamics that complements the definition of the class of stable games. Since interconnections of passive dynamical systems exhibit stable behavior, we can make conclusions about passive evolutionary dynamics coupled with stable games. We show how established evolutionary dynamics qualify as passive dynamical systems. Moreover, we exploit the flexibility of the definition of passive dynamical systems to analyze generalizations of stable games and evolutionary dynamics that include forecasting heuristics as well as certain games with memory.

  20. Applications of stable isotopes in clinical pharmacology

    NARCIS (Netherlands)

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the

  1. Stable isotopes and biomarkers in microbial ecology

    NARCIS (Netherlands)

    Boschker, H.T.S.; Middelburg, J.J.

    2002-01-01

    The use of biomarkers in combination with stable isotope analysis is a new approach in microbial ecology and a number of papers on a variety of subjects have appeared. We will first discuss the techniques for analysing stable isotopes in biomarkers, primarily gas chromatography-combustion-isotope

  2. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled:

    Modelling Stable Atmospheric Boundary Layers over Snow

    H.A.M. Sterk

    Wageningen, 29th of April, 2015

    Summary

    The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs

  3. Gas phase thermal diffusion of stable isotopes

    International Nuclear Information System (INIS)

    Eck, C.F.

    1979-01-01

    The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes

  4. Structure of acid-stable carmine.

    Science.gov (United States)

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound.

  5. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  6. Development of stable isotope manufacturing in Russia

    International Nuclear Information System (INIS)

    Pokidychev, A.; Pokidycheva, M.

    1999-01-01

    For the past 25 years, Russia has relied heavily on the electromagnetic separation process for the production of middle and heavy mass stable isotopes. The separation of most light isotopes had been centered in Georgia which, after the collapse of the USSR, left Russia without this capability. In the mid-1970s, development of centrifuge technology for the separation of stable isotopes was begun. Alternative techniques such as laser separation, physical-chemical methods, and ion cyclotron resonance have also been investigated. Economic considerations have played a major role in the development and current status of the stable isotope enrichment capabilities of Russia

  7. Stable Isotope Group 1982 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1983-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences during 1982, in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation, is described

  8. Bartolome Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17'S, 90 deg 33' W. Champion Island: 1 deg, 15'S, 90 deg, 05' W. Urvina Bay (Isabela...

  9. Stable Isotope Group 1983 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1984-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and related fields, and mass spectrometer instrumentation, during 1983, is described

  10. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  11. Local Search Approaches in Stable Matching Problems

    Directory of Open Access Journals (Sweden)

    Toby Walsh

    2013-10-01

    Full Text Available The stable marriage (SM problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or, more generally, to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order over the members of the other sex. Solving an SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI (Stable Marriage with Ties and Incomplete lists where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists, and we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We empirically evaluate our algorithm for SM problems by measuring its runtime behavior and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behavior and its ability to find a maximum cardinality stable marriage. Experimental results suggest that for SM problems, the number of steps of our algorithm grows only as O(n log(n, and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages. Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size, despite the

  12. Metabolic studies in man using stable isotopes

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Krumbiegel, P.

    1993-01-01

    In this project, stable isotope compounds and stable isotope pharmaceuticals were used (with emphasis on the application of 15 N) to study several aspects of nitrogen metabolism in man. Of the many methods available, the 15 N stable isotope tracer technique holds a special position because the methodology for application and nitrogen isotope analysis is proven and reliable. Valid routine methods using 15 N analysis by emission spectrometry have been demonstrated. Several methods for the preparation of biological material were developed during our participation in the Coordinated Research Programme. In these studies, direct procedures (i.e. use of diluted urine as a samples without chemical preparation) or rapid isolation methods were favoured. Within the scope of the Analytical Quality Control Service (AQCS) enriched stable isotope reference materials for medical and biological studies were prepared and are now available through the International Atomic Energy Agency. The materials are of special importance as the increasing application of stable isotopes as tracers in medical, biological and agricultural studies has focused interest on reliable measurements of biological material of different origin. 24 refs

  13. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  14. Concentration of stable elements in food products

    International Nuclear Information System (INIS)

    Montford, M.A.; Shank, K.E.; Hendricks, C.; Oakes, T.W.

    1980-01-01

    Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentration of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed

  15. Stable Chimeras and Independently Synchronizable Clusters

    Science.gov (United States)

    Cho, Young Sul; Nishikawa, Takashi; Motter, Adilson E.

    2017-08-01

    Cluster synchronization is a phenomenon in which a network self-organizes into a pattern of synchronized sets. It has been shown that diverse patterns of stable cluster synchronization can be captured by symmetries of the network. Here, we establish a theoretical basis to divide an arbitrary pattern of symmetry clusters into independently synchronizable cluster sets, in which the synchronization stability of the individual clusters in each set is decoupled from that in all the other sets. Using this framework, we suggest a new approach to find permanently stable chimera states by capturing two or more symmetry clusters—at least one stable and one unstable—that compose the entire fully symmetric network.

  16. On some topological properties of stable measures

    DEFF Research Database (Denmark)

    Nielsen, Carsten Krabbe

    1996-01-01

    Summary The paper shows that the set of stable probability measures and the set of Rational Beliefs relative to a given stationary measure are closed in the strong topology, but not closed in the topology of weak convergence. However, subsets of the set of stable probability measures which...... are characterized by uniformity of convergence of the empirical distribution are closed in the topology of weak convergence. It is demonstrated that such subsets exist. In particular, there is an increasing sequence of sets of SIDS measures who's union is the set of all SIDS measures generated by a particular...... system and such that each subset consists of stable measures. The uniformity requirement has a natural interpretation in terms of plausibility of Rational Beliefs...

  17. Faster and Simpler Approximation of Stable Matchings

    Directory of Open Access Journals (Sweden)

    Katarzyna Paluch

    2014-04-01

    Full Text Available We give a 3 2 -approximation algorithm for finding stable matchings that runs in O(m time. The previous most well-known algorithm, by McDermid, has the same approximation ratio but runs in O(n3/2m time, where n denotes the number of people andm is the total length of the preference lists in a given instance. In addition, the algorithm and the analysis are much simpler. We also give the extension of the algorithm for computing stable many-to-many matchings.

  18. Moving stable solitons in Galileon theory

    International Nuclear Information System (INIS)

    Masoumi, Ali; Xiao Xiao

    2012-01-01

    Despite the no-go theorem Endlich et al. (2011) which rules out static stable solitons in Galileon theory, we propose a family of solitons that evade the theorem by traveling at the speed of light. These domain-wall-like solitons are stable under small fluctuations-analysis of perturbation shows neither ghost-like nor tachyon-like instabilities, and perturbative collision of these solitons suggests that they pass through each other asymptotically, which maybe an indication of the integrability of the theory itself.

  19. Bordism, stable homotopy and adams spectral sequences

    CERN Document Server

    Kochman, Stanley O

    1996-01-01

    This book is a compilation of lecture notes that were prepared for the graduate course "Adams Spectral Sequences and Stable Homotopy Theory" given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peter

  20. Stable isotopes in Lithuanian bioarcheological material

    Science.gov (United States)

    Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas

    2015-04-01

    Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger

  1. Unconditionally stable microwave Si-IMPATT amplifiers

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1986-07-01

    The purpose of this investigation has been the development of an improved understanding of the design and analysis of microwave reflection amplifiers employing the negative resistance property of the IMPATT devices. Unconditionally stable amplifier circuit using a Silicon IMPATT diode is designed. The problems associated with the design procedures and the stability criterion are discussed. A computer program is developed to perform the computations. The stable characteristics of a reflection-type Si-IMPATT amplifier, such as gain, frequency and bandwidth are examined. It was found that at large signal drive levels, 7 dB gain with bandwidth of 800 MHz at 22,5 mA was obtained. (author)

  2. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Science.gov (United States)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  3. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions]. Nuclear chemistry progress report, August 1, 1990--August 1, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ``best`` semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  4. Basic features of proton-proton interactions at ultra-relativistic energies and RFT-based quark-gluon string model

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2017-01-01

    Full Text Available Proton-proton collisions at energies from √s = 200 GeV up to √s = 14 TeV are studied within the microscopic quark-gluon string model. The model is based on Gribov’s Reggeon Field Theory accomplished by string phenomenology. Comparison with experimental data shows that QGSM describes well particle yields, rapidity - and transverse momentum spectra, rise of mean 〈 pT 〉 and forward-backward multiplicity correlations. The latter arise in QGSM because of the addition of various processes with different mean multiplicities. The model also indicates fulfillment of extended longitudinal scaling and violation of Koba-Nielsen-Olesen scaling at LHC. The origin of both features is traced to short-range particle correlations in the strings. Predictions are made for √s = 14 TeV.

  5. Validity of the negative binomial multiplicity distribution in case of ultra-relativistic nucleus-nucleus interaction in different azimuthal bins

    International Nuclear Information System (INIS)

    Ghosh, D.; Deb, A.; Haldar, P.K.; Sahoo, S.R.; Maity, D.

    2004-01-01

    This work studies the validity of the negative binomial distribution in the multiplicity distribution of charged secondaries in 16 O and 32 S interactions with AgBr at 60 GeV/c per nucleon and 200 GeV/c per nucleon, respectively. The validity of negative binomial distribution (NBD) is studied in different azimuthal phase spaces. It is observed that the data can be well parameterized in terms of the NBD law for different azimuthal phase spaces. (authors)

  6. Mass, quark-number, and sqrt sNN dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti, M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo, Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs, P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein, S.R.; Kocoloski, A.; Koetke, D.D.

    2007-01-01

    We present STAR measurements of the azimuthal anisotropy parameter v 2 for pions, kaons, protons, Lambda, bar Lambda, Xi+bar Xi,and Omega + bar Omega, along with v 4 for pions, kaons, protons, and Lambda + bar Lambda at mid-rapidity for Au+Au collisions at sqrt sNN=62.4and 200 GeV. The v 2 (p T ) values for all hadron species at 62.4 GeV are similar to those observed in 130 and 200 GeV collisions. For observed kinematic ranges, v 2 values at 62.4, 130, and 200 GeV are as little as 10 percent-15 percent larger than those in Pb+Pb collisions at sqrt s NN=17.3 GeV. At intermediate transverse momentum (p T from 1.5-5 GeV/c),the 62.4 GeV v 2 (p T ) and v 4 (p T ) values are consistent with the quark-number scaling first observed at 200 GeV. A four-particle cumulant analysis is used to assess the non-flow contributions to pions and protons and some indications are found for a smaller non-flow contribution to protons than pions. Baryon v 2 is larger than anti-baryon v 2 at 62.4 and 200 GeV perhaps indicating either that the initial spatial net-baryon distribution is anisotropic, that the mechanism leading to transport of baryon number from beam- to mid-rapidity enhances v 2 , or that anti-baryon and baryon annihilation is larger in the in-plane direction

  7. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    Science.gov (United States)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  8. Melting hadrons, boiling quarks from Hagedorn temperature to ultra-relativistic heavy-ion collisions at CERN : with a tribute to Rolf Hagedorn

    CERN Document Server

    2015-01-01

    This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma - announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gázdzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and t...

  9. petrography, compositional characteristics and stable isotope ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Subsurface samples of the predominantly carbonate Ewekoro Formation, obtained from Ibese core hole within the Dahomey basin were used in this study. Investigations entail petrographic, elemental composition as well as stable isotopes (carbon and oxygen) geochemistry in order to deduce the different microfacies and ...

  10. Working conditions remain stable in the Netherlands

    NARCIS (Netherlands)

    Houtman, I.; Hooftman, W.

    2008-01-01

    Despite significant changes in the national questionnaires on work and health, the quality of work as well as health complaints in the Netherlands appear to be relatively stable. Pace of work seems to be on the increase again and more people are working in excess of their contractual hours.

  11. Thermally stable sintered porous metal articles

    International Nuclear Information System (INIS)

    Gombach, A.L.; Thellmann, E.L.

    1980-01-01

    A sintered porous metal article is provided which is essentially thermally stable at elevated temperatures. In addition, a method for producing such an article is also provided which method comprises preparing a blend of base metal particles and active dispersoid particles, forming the mixture into an article of the desired shape, and heating the so-formed article at sintering temperatures

  12. TOF for heavy stable particle identification

    International Nuclear Information System (INIS)

    Chang, C.Y.

    1983-01-01

    Searching for heavy stable particle production in a new energy region of hadron-hadron collisions is of fundamental theoretical interest. Observation of such particles produced in high energy collisions would indicate the existence of stable heavy leptons or any massive hadronic system carrying new quantum numbers. Experimentally, evidence of its production has not been found for PP collisions either at FNAL or at the CERN ISR for √S = 23 and 62 GeV respectively. However, many theories beyond the standard model do predict its existence on a mass scale ranging from 50 to a few hundred GeV. If so, it would make a high luminosity TeV collider an extremely ideal hunting ground for searching the production of such a speculated object. To measure the mass of a heavy stable charged particle, one usually uses its time of flight (TOF) and/or dE/dX information. For heavy neutral particle, one hopes it may decay at some later time after its production. Hence a pair of jets or a jet associated with a high P/sub t/ muon originated from some places other than the interacting point (IP) of the colliding beams may be a good signal. In this note, we examine the feasibility of TOF measurement on a heavy stable particle produced in PP collisions at √S = 1 TeV and a luminosity of 10 33 cm -2 sec -1 with a single arm spectrometer pointing to the IP

  13. Axisymmetric MHD stable sloshing ion distributions

    International Nuclear Information System (INIS)

    Berk, H.L.; Dominguez, N.; Roslyakov, G.V.

    1986-07-01

    The MHD stability of a sloshing ion distribution is investigated in a symmetric mirror cell. Fokker-Planck calculations show that stable configurations are possible for ion injection energies that are at least 150 times greater than the electron temperture. Special axial magnetic field profiles are suggested to optimize the favorable MHD properties

  14. Exact simulation of max-stable processes.

    Science.gov (United States)

    Dombry, Clément; Engelke, Sebastian; Oesting, Marco

    2016-06-01

    Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.

  15. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    Verwer, J.G.; Bochev, Mikhail A.

    Numerical integration of Maxwell's equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit finite difference

  16. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    J.G. Verwer (Jan); M.A. Botchev

    2008-01-01

    htmlabstractNumerical integration of Maxwell''s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction

  17. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    J.G. Verwer (Jan); M.A. Botchev

    2009-01-01

    textabstractNumerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit –

  18. Method of producing thermally stable uranium carbonitrides

    International Nuclear Information System (INIS)

    Ugajin, M.; Takahashi, I.

    1975-01-01

    A thermally stable uranium carbonitride can be produced by adding tungsten and/or molybdenum in the amount of 0.2 wt percent or more, preferably 0.5 wt percent or more, to a pure uranium carbonitride. (U.S.)

  19. Champion Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17 min S, 90 deg 33 min W. Champion Island: 1 deg, 15 min S, 90 deg, 05 min W. Urvina...

  20. 26 S proteasomes function as stable entities

    DEFF Research Database (Denmark)

    Hendil, Klavs B; Hartmann-Petersen, Rasmus; Tanaka, Keiji

    2002-01-01

    , shuttles between a free state and the 26-S proteasome, bringing substrate to the complex. However, S5a was not found in the free state in HeLa cells. Besides, all subunits in PA700, including S5a, exchanged at similar low rates. It therefore seems that 26-S proteasomes function as stable entities during...

  1. Formal derivation of a stable marriage algorithm.

    NARCIS (Netherlands)

    Bijlsma, A.

    1991-01-01

    In this paper the well-known Stable Marriage Problem is considered once again. The name of this programming problem comes from the terms in which it was first described [2]: A certain community consists of n men and n women. Each person ranks those of the opposite sex in accordance with his or

  2. The Nature of Stable Insomnia Phenotypes

    Science.gov (United States)

    Pillai, Vivek; Roth, Thomas; Drake, Christopher L.

    2015-01-01

    Study Objectives: We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Design: Longitudinal. Setting: Urban, community-based. Participants: Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). Interventions: None. Measurements and results: At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the “neither criterion” phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. Conclusions: By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With

  3. Strontium stable isotope behaviour accompanying basalt weathering

    Science.gov (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  4. Development of a Safety Management Web Tool for Horse Stables.

    Science.gov (United States)

    Leppälä, Jarkko; Kolstrup, Christina Lunner; Pinzke, Stefan; Rautiainen, Risto; Saastamoinen, Markku; Särkijärvi, Susanna

    2015-11-12

    Managing a horse stable involves risks, which can have serious consequences for the stable, employees, clients, visitors and horses. Existing industrial or farm production risk management tools are not directly applicable to horse stables and they need to be adapted for use by managers of different types of stables. As a part of the InnoEquine project, an innovative web tool, InnoHorse, was developed to support horse stable managers in business, safety, pasture and manure management. A literature review, empirical horse stable case studies, expert panel workshops and stakeholder interviews were carried out to support the design. The InnoHorse web tool includes a safety section containing a horse stable safety map, stable safety checklists, and examples of good practices in stable safety, horse handling and rescue planning. This new horse stable safety management tool can also help in organizing work processes in horse stables in general.

  5. Fundamentals of the LISA stable flight formation

    International Nuclear Information System (INIS)

    Dhurandhar, S V; Nayak, K Rajesh; Koshti, S; Vinet, J-Y

    2005-01-01

    The joint NASA-ESA mission, LISA, relies crucially on the stability of the three-spacecraft constellation. Each of the spacecraft is in heliocentric orbit forming a stable triangle. In this paper we explicitly show with the help of the Clohessy-Wiltshire equations that any configuration of spacecraft lying in the planes making angles of ±60 0 with the ecliptic and given suitable initial velocities within the plane, can be made stable in the sense that the inter-spacecraft distances remain constant to first order in the dimensions of the configuration compared with the distance to the Sun. Such analysis would be useful in order to carry out theoretical studies on the optical links, simulators, etc

  6. A model for a stable coronal loop

    International Nuclear Information System (INIS)

    Hoven, G.V.; Chiuderi, C.; Giachetti, R.

    1977-01-01

    We present here a new plasma-physics model of a stable active-region arch which corresponds to the structure observed in the EUV. Pressure gradients are seen, so that the equilibrium magnetic field must depart from the force-free form valid in the surrounding corona. We take advantage of the data and of the approximate cylindrical symmetry to develop a modified form of the commonly assumed sheared-spiral structure. The dynamic MHD behavior of this new pressure/field model is then evaluated by the Newcomb criterion, taken from controlled-fusion physics, and the results show short-wavelength stability in a specific parameter range. Thus we demonstrate the possibility, for pressure profiles with widths of the order of the magnetic-field scale, that such arches can persist for reasonable periods. Finally, the spatial proportions and magnetic fields of a characteristic stable coronal loop are described

  7. Utilization of stable isotopes in medicine

    International Nuclear Information System (INIS)

    1980-11-01

    The ten lectures given at this round table are presented together with a discussion. Five lectures, relating to studies in which deuterium oxide was employed as a tracer of body water, dealt with pulmonary water measurements in man and animals, the total water pool in adipose subjects, and liquid compartments in children undergoing hemodyalisis. The heavy water is analysed by infrared spectrometry and a new double spectrodoser is described. Two studies using 13 C as tracer, described the diagnosis of liver troubles and diabetes respectively. A general review of the perspectives of the application of stable isotopes in clinical medicine is followed by a comparison of the use of stable and radioactive isotopes in France [fr

  8. Stable isotope enrichment: Current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities

  9. Stable plastid transformation in Scoparia dulcis L.

    Science.gov (United States)

    Muralikrishna, Narra; Srinivas, Kota; Kumar, Kalva Bharath; Sadanandam, Abbagani

    2016-10-01

    In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR / t rnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.

  10. On The Roman Domination Stable Graphs

    Directory of Open Access Journals (Sweden)

    Hajian Majid

    2017-11-01

    Full Text Available A Roman dominating function (or just RDF on a graph G = (V,E is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2. The weight of an RDF f is the value f(V (G = Pu2V (G f(u. The Roman domination number of a graph G, denoted by R(G, is the minimum weight of a Roman dominating function on G. A graph G is Roman domination stable if the Roman domination number of G remains unchanged under removal of any vertex. In this paper we present upper bounds for the Roman domination number in the class of Roman domination stable graphs, improving bounds posed in [V. Samodivkin, Roman domination in graphs: the class RUV R, Discrete Math. Algorithms Appl. 8 (2016 1650049].

  11. Design of optically stable image reflector system.

    Science.gov (United States)

    Tsai, Chung-Yu

    2013-08-01

    The design of a partially optically stable (POS) reflector system, in which the exit ray direction and image pose are unchanged as the reflector system rotates about a specific directional vector, was presented in an earlier study by the current group [Appl. Phys. B100, 883-890 (2010)]. The present study further proposes an optically stable image (OSI) reflector system, in which not only is the optical stability property of the POS system retained, but the image position and total ray path length are also fixed. An analytical method is proposed for the design of OSI reflector systems comprising multiple reflectors. The validity of the proposed approach is demonstrated by means of two illustrative examples.

  12. Formation of stable radicals during perfluoroalkane radiolysis

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Demidov, S.V.; Kiryukhin, D.P.; Mikhajlov, A.I.; Barkalov, I.M.

    1984-01-01

    Accumulation and stabilization kinetics of perfluoroalkyls during α-radiolysis ( 60 Co) of perfluoralkanes (PFA) in a wide temperature range for different PFA fractions differing in the average molecular weight, is investigated. It is noted that low temperature (PFA) radiolysis (77 K) is of a linear nature of accumulation of stabilized radicals up to doses of approximately 700 KGy. In the case of PFA radiolysis at 300 K radiation yields of stable radicals are somewhat lower than at 47 K and at doses of 200-300 KGy, their accumulation ceases. It is shown that kinetics of formation and accumulation of stable radicals does not depend on molecular mass and PFA fraction viscosity. Perfluoroalkyl stability is explained by intra molecular conformation spheric insulation of the free valency. Perfluoroalkyl stability in different PFA fractions in a wide time range in different media is investigated

  13. Stable isotope enrichment - current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL. This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities. (orig.)

  14. Optimization of Parameters of Asymptotically Stable Systems

    Directory of Open Access Journals (Sweden)

    Anna Guerman

    2011-01-01

    Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.

  15. Multi-Stable Morphing Cellular Structures

    Science.gov (United States)

    2015-05-14

    stiffness on critical buckling load and arch stres - ses. It should be noted that although the arches in these studies snapped-through, they did not...switch roles in moving the VMT back from the second to the first stable equilibrium state. A prototype is designed and fabricated and the transition...pulling forward on the insert on the right blade and assisting its deployment. During this process the cable 3-4-1 goes slack and plays no role , but if

  16. The nature of stable insomnia phenotypes.

    Science.gov (United States)

    Pillai, Vivek; Roth, Thomas; Drake, Christopher L

    2015-01-01

    We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Longitudinal. Urban, community-based. Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). None. At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the 'neither criterion' phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With the exception of daytime sleepiness, few clinical differences are apparent across stable phenotypes.

  17. Strongly stable real infinitesimally symplectic mappings

    NARCIS (Netherlands)

    Cushman, R.; Kelley, A.

    We prove that a mapA εsp(σ,R), the set of infinitesimally symplectic maps, is strongly stable if and only if its centralizerC(A) insp(σ,R) contains only semisimple elements. Using the theorem that everyB insp(σ,R) close toA is conjugate by a real symplectic map to an element ofC(A), we give a new

  18. A belief-based evolutionarily stable strategy

    OpenAIRE

    Deng, Xinyang; Wang, Zhen; Liu, Qi; Deng, Yong; Mahadevan, Sankaran

    2014-01-01

    As an equilibrium refinement of the Nash equilibrium, evolutionarily stable strategy (ESS) is a key concept in evolutionary game theory and has attracted growing interest. An ESS can be either a pure strategy or a mixed strategy. Even though the randomness is allowed in mixed strategy, the selection probability of pure strategy in a mixed strategy may fluctuate due to the impact of many factors. The fluctuation can lead to more uncertainty. In this paper, such uncertainty involved in mixed st...

  19. Mechanical Properties of Stable Glasses Using Nanoindentation

    Science.gov (United States)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  20. Detonation of Meta-stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  1. Clinically stable angina pectoris is not necessarily associated with histologically stable atherosclerotic plaques

    NARCIS (Netherlands)

    van der Wal, A. C.; Becker, A. E.; Koch, K. T.; Piek, J. J.; Teeling, P.; van der Loos, C. M.; David, G. K.

    1996-01-01

    OBJECTIVE: To investigate the extent of plaque inflammation in culprit lesions of patients with chronic stable angina. DESIGN: Retrospective study. SETTING: Amsterdam reference centre. SUBJECTS: 89 consecutive patients who underwent directional coronary atherectomy, 58 of whom met the following

  2. Stable isogeometric analysis of trimmed geometries

    Science.gov (United States)

    Marussig, Benjamin; Zechner, Jürgen; Beer, Gernot; Fries, Thomas-Peter

    2017-04-01

    We explore extended B-splines as a stable basis for isogeometric analysis with trimmed parameter spaces. The stabilization is accomplished by an appropriate substitution of B-splines that may lead to ill-conditioned system matrices. The construction for non-uniform knot vectors is presented. The properties of extended B-splines are examined in the context of interpolation, potential, and linear elasticity problems and excellent results are attained. The analysis is performed by an isogeometric boundary element formulation using collocation. It is argued that extended B-splines provide a flexible and simple stabilization scheme which ideally suits the isogeometric paradigm.

  3. The observation of a stable dibaryon

    International Nuclear Information System (INIS)

    Shakhbazyan, B.A.; Sashin, V.A.; Kecheryan, A.O.; Martynov, A.S.

    1989-01-01

    V 0 -particle which is unambiguously interpreted as a weak decay of the stable dibaryon value of cross section H→p+Σ - ,Σ→n+π - is observed. Its mass is M H =(2218+-12) MeV c 2 with a standard deviation S=12 MeV/c 2 and the error of the mean σ=2.8 MeV/c 2 . The investigation has been performed at the Laboratory of High energies, JINR. 10 refs.; 1 fig.; 3 tabs

  4. Protein labelling with stable isotopes: strategies

    International Nuclear Information System (INIS)

    Lirsac, P.N.; Gilles, N.; Jamin, N.; Toma, F.; Gabrielsen, O.; Boulain, J.C.; Menez, A.

    1994-01-01

    A protein labelling technique with stable isotopes has been developed at the CEA: a labelled complete medium has been developed, performing as well as the Luria medium, but differing from it because it contains not only free aminated acids and peptides, but also sugars (96% of D-glucopyrannose) and labelled nucleosides. These precursors are produced from a labelled photosynthetic micro-organisms biomass, obtained with micro-algae having incorporated carbon 13, nitrogen 15 and deuterium during their culture. Labelling costs are reduced. 1 fig., 1 tab., 3 refs

  5. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  6. Remarks on stable and quasi-stable k-strings at large N

    International Nuclear Information System (INIS)

    Armoni, A.; Shifman, M.

    2003-01-01

    We discuss k-strings in the large-N Yang-Mills theory and its supersymmetric extension. Whereas the tension of the bona fide (stable) QCD string is expected to depend only on the N-ality of the representation, tensions that depend on specific representation R are often reported in the lattice literature. In particular, adjoint strings are discussed and found in certain simulations. We clarify this issue by systematically exploiting the notion of the quasi-stable strings which becomes well-defined at large N. The quasi-stable strings with representation-dependent tensions decay, but the decay rate (per unit length per unit time) is suppressed as Λ 2 F(N) where F(N) falls off as a function of N. It can be determined on the case-by-case basis. The quasi-stable strings eventually decay into stable strings whose tension indeed depends only on the N-ality. We also briefly review large-N arguments showing why the Casimir formula for the string tension cannot be correct, and present additional arguments in favor of the sine formula. Finally, we comment on the relevance of our estimates to Euclidean lattice measurements

  7. Stable isotope measurements of atmospheric CO2

    International Nuclear Information System (INIS)

    White, J.W.C.; Ferretti, D.F.; Vaughn, B.H.; Francey, R.J.; Allison, C.E.

    2002-01-01

    The measurement of stable carbon isotope ratios of atmospheric carbon dioxide, δ 13 CO 2 are useful for partitioning surface-atmospheric fluxes into terrestrial and oceanic components. δC 18 OO also has potential for segregating photosynthetic and respiratory fluxes in terrestrial ecosystems. Here we describe in detail the techniques for making these measurements. The primary challenge for all of the techniques used to measure isotopes of atmospheric CO 2 is to achieve acceptable accuracy and precision and to maintain them over the decades needed to observe carbon cycle variability. The keys to success such an approach are diligent intercalibrations of laboratories from around the world, as well as the use of multiple techniques such as dual inlet and GC-IRMS and the intercomparison of such measurements. We focus here on two laboratories, the Stable Isotope Lab at the Institute for Arctic and Alpine Research (INSTAAR) at the University of Colorado is described and the Commonwealth Scientific and Industrial Research Organisation - Atmospheric Research (CSIRO). Different approaches exist at other laboratories (e.g. programs operated by Scripps Institution of Oceanography (SIO) and The Center for Atmospheric and Oceanic Studies, Toboku University (TU)) however these are not discussed here. Finally, we also discuss the recently developed Gas Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS) technique which holds significant promise for measuring ultra-small samples of gas with good precision. (author)

  8. Stable statistical representations facilitate visual search.

    Science.gov (United States)

    Corbett, Jennifer E; Melcher, David

    2014-10-01

    Observers represent the average properties of object ensembles even when they cannot identify individual elements. To investigate the functional role of ensemble statistics, we examined how modulating statistical stability affects visual search. We varied the mean and/or individual sizes of an array of Gabor patches while observers searched for a tilted target. In "stable" blocks, the mean and/or local sizes of the Gabors were constant over successive displays, whereas in "unstable" baseline blocks they changed from trial to trial. Although there was no relationship between the context and the spatial location of the target, observers found targets faster (as indexed by faster correct responses and fewer saccades) as the global mean size became stable over several displays. Building statistical stability also facilitated scanning the scene, as measured by larger saccadic amplitudes, faster saccadic reaction times, and shorter fixation durations. These findings suggest a central role for peripheral visual information, creating context to free resources for detailed processing of salient targets and maintaining the illusion of visual stability.

  9. Color stable manganese-doped phosphors

    Science.gov (United States)

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  10. Protein-based stable isotope probing.

    Science.gov (United States)

    Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten

    2010-12-01

    We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.

  11. Multivariate Max-Stable Spatial Processes

    KAUST Repository

    Genton, Marc G.

    2014-01-06

    Analysis of spatial extremes is currently based on univariate processes. Max-stable processes allow the spatial dependence of extremes to be modelled and explicitly quantified, they are therefore widely adopted in applications. For a better understanding of extreme events of real processes, such as environmental phenomena, it may be useful to study several spatial variables simultaneously. To this end, we extend some theoretical results and applications of max-stable processes to the multivariate setting to analyze extreme events of several variables observed across space. In particular, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. Then, we define a Poisson process construction in the multivariate setting and introduce multivariate versions of the Smith Gaussian extremevalue, the Schlather extremal-Gaussian and extremal-t, and the BrownResnick models. Inferential aspects of those models based on composite likelihoods are developed. We present results of various Monte Carlo simulations and of an application to a dataset of summer daily temperature maxima and minima in Oklahoma, U.S.A., highlighting the utility of working with multivariate models in contrast to the univariate case. Based on joint work with Simone Padoan and Huiyan Sang.

  12. Multivariate Max-Stable Spatial Processes

    KAUST Repository

    Genton, Marc G.

    2014-01-01

    Analysis of spatial extremes is currently based on univariate processes. Max-stable processes allow the spatial dependence of extremes to be modelled and explicitly quantified, they are therefore widely adopted in applications. For a better understanding of extreme events of real processes, such as environmental phenomena, it may be useful to study several spatial variables simultaneously. To this end, we extend some theoretical results and applications of max-stable processes to the multivariate setting to analyze extreme events of several variables observed across space. In particular, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. Then, we define a Poisson process construction in the multivariate setting and introduce multivariate versions of the Smith Gaussian extremevalue, the Schlather extremal-Gaussian and extremal-t, and the BrownResnick models. Inferential aspects of those models based on composite likelihoods are developed. We present results of various Monte Carlo simulations and of an application to a dataset of summer daily temperature maxima and minima in Oklahoma, U.S.A., highlighting the utility of working with multivariate models in contrast to the univariate case. Based on joint work with Simone Padoan and Huiyan Sang.

  13. Wall-crossing between stable and co-stable ADHM data

    Science.gov (United States)

    Ohkawa, Ryo

    2018-06-01

    We prove formula between Nekrasov partition functions defined from stable and co-stable ADHM data for the plane following method by Nakajima and Yoshioka (Kyoto J Math 51(2):263-335, 2011) based on the theory of wall-crossing formula developed by Mochizuki (Donaldson type invariants for algebraic surfaces: transition of moduli stacks, Lecture notes in mathematics, vol 1972, Springer, Berlin, 2009). This formula is similar to conjectures by Ito et al. [J High Energy Phys 2013(5):045, 2013, (4.1), (4.2)] for A1 singularity.

  14. Stable CSR in storage rings: A model

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Venturini, Marco; Abo-Bakr, Michael; Feikes, Jorge; Holldack, Karsten; Kuske, Peter; Wustefeld, Godehart; Hubers, Heinz-Willerm; Warnock, Robert

    2005-01-01

    A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user s shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring

  15. Stable CSR in Storage Rings: A Model

    International Nuclear Information System (INIS)

    Sannibale, F.

    2005-01-01

    A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user's shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring

  16. Tukey max-stable processes for spatial extremes

    KAUST Repository

    Xu, Ganggang; Genton, Marc G.

    2016-01-01

    We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max

  17. Chance and stability stable distributions and their applications

    CERN Document Server

    Uchaikin, Vladimir V

    1999-01-01

    An introduction to the theory of stable distributions and their applications. It contains a modern outlook on the mathematical aspects of the theory. The authors explain numerous peculiarities of stable distributions and describe the principle concept of probability theory and function analysis. A significant part of the book is devoted to applications of stable distributions. Another notable feature is the material on the interconnection of stable laws with fractals, chaos and anomalous transport processes.

  18. Stable orbits for lunar landing assistance

    Science.gov (United States)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

  19. The Search for Stable, Massive, Elementary Particles

    International Nuclear Information System (INIS)

    Kim, Peter C.

    2001-01-01

    In this paper we review the experimental and observational searches for stable, massive, elementary particles other than the electron and proton. The particles may be neutral, may have unit charge or may have fractional charge. They may interact through the strong, electromagnetic, weak or gravitational forces or through some unknown force. The purpose of this review is to provide a guide for future searches--what is known, what is not known, and what appear to be the most fruitful areas for new searches. A variety of experimental and observational methods such as accelerator experiments, cosmic ray studies, searches for exotic particles in bulk matter and searches using astrophysical observations is included in this review

  20. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M; Iglesias, J; Casas, J; Saviron, J M; Quintanilla, M

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  1. Multivariate max-stable spatial processes

    KAUST Repository

    Genton, Marc G.; Padoan, S. A.; Sang, H.

    2015-01-01

    Max-stable processes allow the spatial dependence of extremes to be modelled and quantified, so they are widely adopted in applications. For a better understanding of extremes, it may be useful to study several variables simultaneously. To this end, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. We define a Poisson process construction and introduce multivariate versions of the Smith Gaussian extreme-value, the Schlather extremal-Gaussian and extremal-t, and the Brown–Resnick models. We develop inference for the models based on composite likelihoods. We present results of Monte Carlo simulations and an application to daily maximum wind speed and wind gust.

  2. Bounded excursion stable gravastars and black holes

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, P [Instituto de Fisica, Universidade Federal Fluminense, Avenida Litoranea, s/n, Boa Viagem 24210-340, Niteroi, RJ (Brazil); Miguelote, A Y; Chan, R [Coordenacao de Astronomia e Astrofisica, Observatorio Nacional, Rua General Jose Cristino, 77, Sao Cristovao 20921-400, Rio de Janeiro, RJ (Brazil); Da Silva, M F; Wang, Anzhong [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana 20550-900, Rio de Janeiro-RJ (Brazil); Santos, N O, E-mail: pedrosennarocha@gmail.com, E-mail: yasuda@on.br, E-mail: chan@on.br, E-mail: mfasnic@gmail.com, E-mail: N.O.Santos@qmul.ac.uk, E-mail: anzhong_wang@baylor.edu [LERMA/CNRS-FRE 2460, Universite Pierre et Marie Curie, ERGA, Boite 142, 4 Place Jussieu, 75005 Paris Cedex 05 (France)

    2008-06-15

    Dynamical models of prototype gravastars were constructed in order to study their stability. The models are the Visser-Wiltshire three-layer gravastars, in which an infinitely thin spherical shell of stiff fluid divides the whole spacetime into two regions, where the internal region is de Sitter, and the external one is Schwarzschild. It is found that in some cases the models represent the 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes occurs. In the phase space, the region for the 'bounded excursion' gravastars is very small in comparison to that of black holes, but not empty. Therefore, although the possibility of the existence of gravastars cannot be excluded from such dynamical models, our results indicate that, even if gravastars do indeed exist, that does not exclude the possibility of the existence of black holes.

  3. Use of stable isotopes in agriculture

    International Nuclear Information System (INIS)

    Ali, F. K.

    2011-01-01

    Scientific research is considered to be one of the most important steps to achieve sustainable agriculture development. This paper is focused on the role of stable isotopes and their applications in agriculture for plant and animal production, and to study the relationship between soil, plant, air, water, nutrients and agricultural pests. Symbiotic N 2 fixation and efficient use of chemical and organic N fertilizers using 15 N were reported. Factors affecting 13 C values and application of carbon isotope discrimination to physiological and eco-physiological studies and selection of genotypes with improved water-use efficiency and drought tolerance and the recent progress in this field are reviewed. Moreover, the use of carbon isotope compositions in monitoring environmental changes and its various applications in food technology, animal production and entomology are discussed. (author)

  4. Multivariate max-stable spatial processes

    KAUST Repository

    Genton, Marc G.

    2015-02-11

    Max-stable processes allow the spatial dependence of extremes to be modelled and quantified, so they are widely adopted in applications. For a better understanding of extremes, it may be useful to study several variables simultaneously. To this end, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. We define a Poisson process construction and introduce multivariate versions of the Smith Gaussian extreme-value, the Schlather extremal-Gaussian and extremal-t, and the Brown–Resnick models. We develop inference for the models based on composite likelihoods. We present results of Monte Carlo simulations and an application to daily maximum wind speed and wind gust.

  5. Perceptually stable regions for arbitrary polygons.

    Science.gov (United States)

    Rocha, J

    2003-01-01

    Zou and Yan have recently developed a skeletonization algorithm of digital shapes based on a regularity/singularity analysis; they use the polygon whose vertices are the boundary pixels of the image to compute a constrained Delaunay triangulation (CDT) in order to find local symmetries and stable regions. Their method has produced good results but it is slow since its complexity depends on the number of contour pixels. This paper presents an extension of their technique to handle arbitrary polygons, not only polygons of short edges. Consequently, not only can we achieve results as good as theirs for digital images, but we can also compute skeletons of polygons of any number of edges. Since we can handle polygonal approximations of figures, the skeletons are more resilient to noise and faster to process.

  6. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  7. A belief-based evolutionarily stable strategy.

    Science.gov (United States)

    Deng, Xinyang; Wang, Zhen; Liu, Qi; Deng, Yong; Mahadevan, Sankaran

    2014-11-21

    As an equilibrium refinement of the Nash equilibrium, evolutionarily stable strategy (ESS) is a key concept in evolutionary game theory and has attracted growing interest. An ESS can be either a pure strategy or a mixed strategy. Even though the randomness is allowed in mixed strategy, the selection probability of pure strategy in a mixed strategy may fluctuate due to the impact of many factors. The fluctuation can lead to more uncertainty. In this paper, such uncertainty involved in mixed strategy has been further taken into consideration: a belief strategy is proposed in terms of Dempster-Shafer evidence theory. Furthermore, based on the proposed belief strategy, a belief-based ESS has been developed. The belief strategy and belief-based ESS can reduce to the mixed strategy and mixed ESS, which provide more realistic and powerful tools to describe interactions among agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Stable computation of generalized singular values

    Energy Technology Data Exchange (ETDEWEB)

    Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.

  9. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  10. Stable isotopes as tracers for radionuclides

    International Nuclear Information System (INIS)

    Giussani, A.; Bartolo, D. de; Cantone, M.C.; Zilker, T.; Greim, H.; Roth, P.; Werner, E.

    2000-01-01

    The assessment of internal dose after incorporation of radionuclides requires as input data the knowledge of the uptake into the systemic circulation, the distribution and retention in selected organs, the excretion pathways. Realistic biokinetic models are needed for reliable estimates, correct interpretation of bioassay measurements, appropriate decision-making in radiological emergencies. For many radionuclides, however, the biokinetic models currently recommended are often generic, with very few specific parameters, due to the lack of experimental human data. The use of stable isotopes as tracers enables to determine important biokinetic parameters such as the fractional uptake, the clearance from the transfer compartment, the excretion patterns under experimentally controlled conditions. The subjects investigated are not exposed to any radiation risk, so this technique enables to obtain biokinetic information also for sensitive groups of the population, such as children or pregnant women, and to determine age- and gender-specific model parameters. Sophisticated analytical method, able to discriminate and quantitate different isotopes of the same element in complex matrices such as biological fluids, have to be purposely developed and optimized. Activation analysis and mass spectrometry are the most proper techniques of choice. Experiments were conducted with molybdenum, tellurium, ruthenium and zirconium. Activation analysis with protons, thermal ionization mass spectrometry and inductively coupled mass spectrometry were employed for the determination of stable isotopes of these elements in blood plasma and urine samples. Several deviations from the predictions of the ICRP models were observed. For example, modifications to the current model for molybdenum have been suggested on the basis of these results. The dose coefficients to the target regions calculated with this proposed model are even of one order of magnitude different than the ICRP estimates

  11. A Note on Interpolation of Stable Processes | Nassiuma | Journal of ...

    African Journals Online (AJOL)

    Interpolation procedures tailored for gaussian processes may not be applied to infinite variance stable processes. Alternative techniques suitable for a limited set of stable case with index α∈(1,2] were initially studied by Pourahmadi (1984) for harmonizable processes. This was later extended to the ARMA stable process ...

  12. Stable cycling in discrete-time genetic models.

    OpenAIRE

    Hastings, A

    1981-01-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  13. Stable cycling in discrete-time genetic models.

    Science.gov (United States)

    Hastings, A

    1981-11-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  14. Malaria infection during pregnancy in area of stable transmission ...

    African Journals Online (AJOL)

    Malaria infection during pregnancy in area of stable transmission. ... (LBW), a leading cause of neonatal death in areas of stable malaria transmission. ... areas of stable malaria transmission and the effective strategies for prevention and control. Keywords: malaria, pregnancy, semi-immune women, anaemia, low birthweight

  15. Study of the production of {phi}, {rho}, {omega} mesons in the ultra-relativistic heavy ion collisions at the SPS of CERN; Etude de la production des mesons {phi}, {rho} et {omega} dans les collisions d'ions lourds ultra-relativistes au SPS du CERN (dans l'experience NA50)

    Energy Technology Data Exchange (ETDEWEB)

    Villatte, L

    2001-03-28

    The NA50 experiment is one of the experiment using the SPS (Super Proton Synchrotron) beam at CERN (european laboratory for particle physics). One of the common aim of the SPS experiment is to look for the existence of a new state of the nuclear matter: the quark-gluon plasma. Among the proposed signatures of the quark-gluon plasma is the enhanced production of particles containing strange quarks. In the current work, the NA50/NA38 experiment data are analysed and the relative production of the {phi} and {rho} + {omega} mesons are obtained from Pb-Pb collisions at 158 and S-U at 200 GeV per nucleon. The measured ({phi}/({rho} +{omega})){mu}{mu} ratio as a function of the transverse mass does not present any unexpected behavior, however, central collisions as compared to peripheral collisions show an increase by a factor 1.7. The {phi} and {rho}+{omega} multiplicities are extracted for the Pb-Pb collisions and show that the enhancement of the ({phi}/({rho}+{omega})){mu}{mu} ratio is due to the {phi} meson production increase. The evolution of the {phi} meson multiplicity, versus the number of participant nucleus (N{sub part}), is different from that of the multi-strange baryons. The effective temperatures are deduced from the study of the {phi} and {rho} + {omega} production cross sections with respect to the transverse mass and compared to those obtained by other experiments and other particles. An additional study is done to extract the K/{pi} ratio versus N{sub part}. (authors)

  16. Influence of horse stable environment on human airways.

    Science.gov (United States)

    Elfman, Lena; Riihimäki, Miia; Pringle, John; Wålinder, Robert

    2009-05-25

    Many people spend considerable amount of time each day in equine stable environments either as employees in the care and training of horses or in leisure activity. However, there are few studies available on how the stable environment affects human airways. This study examined in one horse stable qualitative differences in indoor air during winter and late summer conditions and assessed whether air quality was associated with clinically detectable respiratory signs or alterations to selected biomarkers of inflammation and lung function in stable personnel. The horse stable environment and stable-workers (n = 13) in one stable were investigated three times; first in the winter, second in the interjacent late summer and the third time in the following winter stabling period. The stable measurements included levels of ammonia, hydrogen sulphide, total and respirable dust, airborne horse allergen, microorganisms, endotoxin and glucan. The stable-workers completed a questionnaire on respiratory symptoms, underwent nasal lavage with subsequent analysis of inflammation markers, and performed repeated measurements of pulmonary function. Measurements in the horse stable showed low organic dust levels and high horse allergen levels. Increased viable level of fungi in the air indicated a growing source in the stable. Air particle load as well as 1,3-beta-glucan was higher at the two winter time-points, whereas endotoxin levels were higher at the summer time-point. Two stable-workers showed signs of bronchial obstruction with increased PEF-variability, increased inflammation biomarkers relating to reported allergy, cold or smoking and reported partly work-related symptoms. Furthermore, two other stable-workers reported work-related airway symptoms, of which one had doctor's diagnosed asthma which was well treated. Biomarkers involved in the development of airway diseases have been studied in relation to environmental exposure levels in equine stables. Respirable dust and 1

  17. Stability properties of nonlinear dynamical systems and evolutionary stable states

    Energy Technology Data Exchange (ETDEWEB)

    Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)

    2017-03-18

    Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.

  18. Influence of horse stable environment on human airways

    Directory of Open Access Journals (Sweden)

    Pringle John

    2009-05-01

    Full Text Available Abstract Background Many people spend considerable amount of time each day in equine stable environments either as employees in the care and training of horses or in leisure activity. However, there are few studies available on how the stable environment affects human airways. This study examined in one horse stable qualitative differences in indoor air during winter and late summer conditions and assessed whether air quality was associated with clinically detectable respiratory signs or alterations to selected biomarkers of inflammation and lung function in stable personnel. Methods The horse stable environment and stable-workers (n = 13 in one stable were investigated three times; first in the winter, second in the interjacent late summer and the third time in the following winter stabling period. The stable measurements included levels of ammonia, hydrogen sulphide, total and respirable dust, airborne horse allergen, microorganisms, endotoxin and glucan. The stable-workers completed a questionnaire on respiratory symptoms, underwent nasal lavage with subsequent analysis of inflammation markers, and performed repeated measurements of pulmonary function. Results Measurements in the horse stable showed low organic dust levels and high horse allergen levels. Increased viable level of fungi in the air indicated a growing source in the stable. Air particle load as well as 1,3-β-glucan was higher at the two winter time-points, whereas endotoxin levels were higher at the summer time-point. Two stable-workers showed signs of bronchial obstruction with increased PEF-variability, increased inflammation biomarkers relating to reported allergy, cold or smoking and reported partly work-related symptoms. Furthermore, two other stable-workers reported work-related airway symptoms, of which one had doctor's diagnosed asthma which was well treated. Conclusion Biomarkers involved in the development of airway diseases have been studied in relation to

  19. Stable isotope analysis in primatology: a critical review.

    Science.gov (United States)

    Sandberg, Paul A; Loudon, James E; Sponheimer, Matt

    2012-11-01

    Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine-grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. © 2012 Wiley Periodicals, Inc.

  20. Crystal engineering of stable temozolomide cocrystals.

    Science.gov (United States)

    Babu, N Jagadeesh; Sanphui, Palash; Nangia, Ashwini

    2012-10-01

    The antitumor prodrug temozolomide (TMZ) decomposes in aqueous medium of pH≥7 but is relatively stable under acidic conditions. Pure TMZ is obtained as a white powder but turns pink and then brown, which is indicative of chemical degradation. Pharmaceutical cocrystals of TMZ were engineered with safe coformers such as oxalic acid, succinic acid, salicylic acid, d,l-malic acid, and d,l-tartaric acid, to stabilize the drug as a cocrystal. All cocrystals were characterized by powder X-ray diffraction (PXRD), single crystal X-ray diffraction, and FT-IR as well as FT-Raman spectroscopy. Temozolomide cocrystals with organic acids (pK(a) 2-6) were found to be more stable than the reference drug under physiological conditions. The half-life (T(1/2)) of TMZ-oxalic and TMZ-salicylic acid measured by UV/Vis spectroscopy in pH 7 buffer is two times longer than that of TMZ (3.5 h and 3.6 h vs. 1.7 h); TMZ-succinic acid, TMZ-tartaric acid, and TMZ-malic acid also exhibited a longer half-life (2.3, 2.5, and 2.8 h, respectively). Stability studies at 40 °C and 75 % relative humidity (ICH conditions) showed that hydrolytic degradation of temozolomide in the solid state started after one week, as determined by PXRD, whereas its cocrystals with succinic acid and oxalic acid were intact at 28 weeks, thus confirming the greater stability of cocrystals compared to the reference drug. The intrinsic dissolution rate (IDR) profile of TMZ-oxalic acid and TMZ-succinic acid cocrystals in buffer of pH 7 is comparable to that of temozolomide. Among the temozolomide cocrystals examined, those with succinic acid and oxalic acid exhibited both an improved stability and a comparable dissolution rate to the reference drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stable nuclear transformation of Eudorina elegans

    Directory of Open Access Journals (Sweden)

    Lerche Kai

    2013-02-01

    Full Text Available Abstract Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii and a multicellular alga with differentiated cell types (Volvox carteri. Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold at elevated temperatures. Long-term stability and both constitutive and

  2. Microsatellites grant more stable flanking genes

    Directory of Open Access Journals (Sweden)

    Joukhadar Reem

    2012-10-01

    Full Text Available Abstract Background Microsatellites, or simple sequence repeats (SSRs, are DNA sequences that include tandem copies of specific sequences no longer than six bases. SSRs are ubiquitous in all genomes and highly mutable. Presentation of the hypothesis Results from previous studies suggest that flanking regions of SSR are exhibit high stability in a wide range of organisms. We hypothesized that the SSRs ability to discard weak DNA polymerases could be responsible for this unusual stability. . When the weak polymerases are being decayed over SSRs, the flanking sequences would have higher opportunity to be replicated by more stable DNA polymerases. We present evidence of the molecular basis of our hypothesis. Testing the hypothesis The hypothesis could be tested by examining the activity of DNA polymerase during and after a number of PCRs. The PCR reactions should be run with the same SSR locus possessing differences in the SSR length. The hypothesis could also be tested by comparing the mutational rate of a transferred gene between two transformations. The first one has a naked T-DNA (transferred DNA, while the second one has the same T-DNA flanked with two SSRs. Implications of the hypothesis In any transformation experiment, flanking the T-DNA fragment with SSR sequences would result in more stably transferred genes. This process would decrease the unpredictable risks that may occur because of the mutational pressure on this foreign segment.

  3. LHC Report: Towards stable beams and collisions

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Over the past two weeks, the LHC re-commissioning with beam has continued at a brisk pace. The first collisions of 2011 were produced on 2 March, with stable beams and collisions for physics planned for the coming days. Low intensity beams with just a few bunches of particles were used to test the energy ramp to 3.5 TeV and the squeeze. The results were successful and, as a by-product, the first collisions of 2011 were recorded 2 March. One of the main activities carried out by the operation teams has been the careful set-up of the collimation system, and the injection and beam dump protection devices. The collimation system provides essential beam cleaning, preventing stray particles from impacting other elements of the machine, particularly the superconducting magnets. In addition to the collimation system, also the injection and beam dump protection devices perform a vital machine protection role, as they detect any beam that might be mis-directed during rare, but not totally unavoidable, hardware hiccups...

  4. Shelf-stable foods through irradiation processing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This survey has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of earlier reports, the last published in 1990. The information presented refers mostly to reference materials for trace element constituents; however, information is also included on a number of other selected measurands of relevance to IAEA programmes, i.e. radionuclides, stable isotopes, anions, cations, organometallic compounds and organic contaminants. The database presently contains over 10,000 analyte values for 455 measurands in 650 reference materials produced by 30 different suppliers. Additional information on the cost of the materials, the unit size supplied, and recommended minimum weight of material for analysis is also provided, if this information is available to the authors. It is expected that this survey will help analysts to select reference materials for quality assurance purposes that match as closely as possible, with respect to matrix type and concentrations of the measurands of interest, their samples to be analyzed. 22 refs, 2 tabs.

  5. Organized polysaccharide fibers as stable drug carriers

    Science.gov (United States)

    Janaswamy, Srinivas; Gill, Kristin L.; Campanella, Osvaldo H.; Pinal, Rodolfo

    2013-01-01

    Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non–toxic. PMID:23544530

  6. Shelf-stable foods through irradiation processing

    International Nuclear Information System (INIS)

    1995-11-01

    This survey has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of earlier reports, the last published in 1990. The information presented refers mostly to reference materials for trace element constituents; however, information is also included on a number of other selected measurands of relevance to IAEA programmes, i.e. radionuclides, stable isotopes, anions, cations, organometallic compounds and organic contaminants. The database presently contains over 10,000 analyte values for 455 measurands in 650 reference materials produced by 30 different suppliers. Additional information on the cost of the materials, the unit size supplied, and recommended minimum weight of material for analysis is also provided, if this information is available to the authors. It is expected that this survey will help analysts to select reference materials for quality assurance purposes that match as closely as possible, with respect to matrix type and concentrations of the measurands of interest, their samples to be analyzed. 22 refs, 2 tabs

  7. Geochemistry of the stable isotopes of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Douthitt, C B [California Inst. of Tech., Pasadena (USA). Div. of Geological and Planetary Sciences

    1982-08-01

    One hundred thirty two new measurements of the relative abundances of the stable isotopes of silicon in terrestrial materials are presented. The total variation of delta/sup 30/Si found is 6.2 parts per thousand, centered on the mean of terrestrial mafic and ultramafic igneous rocks, delta/sup 30/Si = -0.4 parts per thousand. Igneous rocks show limited variation; coexisting minerals exhibit small, systematic silicon isotopic fractionations that are roughly 1/3 the magnitude of concomitant oxygen isotopic fractionations at 1150/sup 0/C. In both igneous minerals and rocks, delta/sup 30/Si shows a positive correlation with silicon content, as does delta/sup 18/O. Opal from both sponge spicules and sinters is light, with delta/sup 30/Si = -2.3 and -1.4 parts per thousand respectively. Large delta/sup 30/Si values of both positive and negative sign are reported for the first time from clay minerals, opaline phytoliths, and authigenic quartz. All highly fractionated samples were precipitated from solution at low temperatures; however, aqueous silicon is not measurably fractionated relative to quartz at equilibrium. A kinetic isotope fractionation of approximately 3.5 parts per thousand is postulated to occur during the low temperature precipitation of opal and, possibly, poorly ordered phyllosilicates, with the silicate phase being enriched in /sup 28/Si. This fractionation, coupled with a Rayleigh precipitation model, is capable of explaining most non-magmatic delta/sup 30/Si variations.

  8. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    Science.gov (United States)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  9. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  10. Introducing Stable Radicals into Molecular Machines.

    Science.gov (United States)

    Wang, Yuping; Frasconi, Marco; Stoddart, J Fraser

    2017-09-27

    Ever since their discovery, stable organic radicals have received considerable attention from chemists because of their unique optical, electronic, and magnetic properties. Currently, one of the most appealing challenges for the chemical community is to develop sophisticated artificial molecular machines that can do work by consuming external energy, after the manner of motor proteins. In this context, radical-pairing interactions are important in addressing the challenge: they not only provide supramolecular assistance in the synthesis of molecular machines but also open the door to developing multifunctional systems relying on the various properties of the radical species. In this Outlook, by taking the radical cationic state of 1,1'-dialkyl-4,4'-bipyridinium (BIPY •+ ) as an example, we highlight our research on the art and science of introducing radical-pairing interactions into functional systems, from prototypical molecular switches to complex molecular machines, followed by a discussion of the (i) limitations of the current systems and (ii) future research directions for designing BIPY •+ -based molecular machines with useful functions.

  11. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  12. Stable Isotope Group 1984 progress report

    International Nuclear Information System (INIS)

    Lyon, G.L.

    1985-04-01

    The work of the group in 1984 is described and includes studies in isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation. Geothermal studies have decreased compared to other years, but major data summaries were made for Wairakei and Ngawha. The hydrology of Whakarewarewa and Rotorua is being elucidated using water isotopes. Models of the subsurface flows at Kawerau and Ngawha are being made to relate fluid to mineral isotope compositions. A study of the δ 13 C and δ 34 S compositions of New Zealand oils has been started. Groups of oils of related origin are being defined, and compositions will be compared with those of potential source rocks. A method was developed for isotope analysis of sulphur in rocks. The isotopic composition of water is being used to identify and characterise groundwater aquifers in the Wairarapa and at Poverty Bay. Stable carbon isotopes have been used to identify food sources for invertebrates, and to show biochemical pathways in lactation by cows. The geochronology group is involved in major studies in Antarctica, using U-Pb, Rb-Sr and K-Ar methods. Rocks from North Victoria Land, Marie Byrd Land and the USARP mountains are being compared with possible correlatives in New Zealand and Argentina. Strontium isotope data is being applied to the origin of magmas in several regions of New Zealand. The K-Ar data is being stored on computer files. Fission track measurements are being applied to unravel uplift histories in Westland and Taranaki

  13. ROBUST MPC FOR STABLE LINEAR SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.A. Rodrigues

    2002-03-01

    Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.

  14. Canonical, stable, general mapping using context schemes.

    Science.gov (United States)

    Novak, Adam M; Rosen, Yohei; Haussler, David; Paten, Benedict

    2015-11-15

    Sequence mapping is the cornerstone of modern genomics. However, most existing sequence mapping algorithms are insufficiently general. We introduce context schemes: a method that allows the unambiguous recognition of a reference base in a query sequence by testing the query for substrings from an algorithmically defined set. Context schemes only map when there is a unique best mapping, and define this criterion uniformly for all reference bases. Mappings under context schemes can also be made stable, so that extension of the query string (e.g. by increasing read length) will not alter the mapping of previously mapped positions. Context schemes are general in several senses. They natively support the detection of arbitrary complex, novel rearrangements relative to the reference. They can scale over orders of magnitude in query sequence length. Finally, they are trivially extensible to more complex reference structures, such as graphs, that incorporate additional variation. We demonstrate empirically the existence of high-performance context schemes, and present efficient context scheme mapping algorithms. The software test framework created for this study is available from https://registry.hub.docker.com/u/adamnovak/sequence-graphs/. anovak@soe.ucsc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Minute synthesis of extremely stable gold nanoparticles.

    Science.gov (United States)

    Zhou, Min; Wang, Baoxiang; Rozynek, Zbigniew; Xie, Zhaohui; Fossum, Jon Otto; Yu, Xiaofeng; Raaen, Steinar

    2009-12-16

    We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.

  16. Minute synthesis of extremely stable gold nanoparticles

    International Nuclear Information System (INIS)

    Zhou Min; Wang Baoxiang; Rozynek, Zbigniew; Xie Zhaohui; Fossum, Jon Otto; Yu Xiaofeng; Raaen, Steinar

    2009-01-01

    We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl 4 in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 μM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.

  17. Stable boron nitride diamondoids as nanoscale materials

    International Nuclear Information System (INIS)

    Fyta, Maria

    2014-01-01

    We predict the stability of diamondoids made up of boron and nitrogen instead of carbon atoms. The results are based on quantum-mechanical calculations within density functional theory (DFT) and show some very distinct features compared to the regular carbon-based diamondoids. These features are evaluated with respect to the energetics and electronic properties of the boron nitride diamondoids as compared to the respective properties of the carbon-based diamondoids. We find that BN-diamondoids are overall more stable than their respective C-diamondoid counterparts. The electronic band-gaps (E g ) of the former are overall lower than those for the latter nanostructures but do not show a very distinct trend with their size. Contrary to the lower C-diamondoids, the BN-diamondoids are semiconducting and show a depletion of charge on the nitrogen site. Their differences in the distribution of the molecular orbitals, compared to their carbon-based counterparts, offer additional bonding and functionalization possibilities. These tiny BN-based nanostructures could potentially be used as nanobuilding blocks complementing or substituting the C-diamondoids, based on the desired properties. An experimental realization of boron nitride diamondoids remains to show their feasibility. (paper)

  18. Unit of stable isotopic N15 analysis

    International Nuclear Information System (INIS)

    Cabrera de Bisbal, Evelin; Paredes U, Maria

    1997-01-01

    The continuous and growing demand of crops and cattle for the domestic inhabitants, forces the search of technical solutions in agriculture. One of the solutions able to be covered in a near future it is the escalation of agricultural production in lands already being cultivated, either by means of an intensification of cultivation and / or increasing the unitary yields. In the intensive cropping systems, the crops extract substantial quantities of nutriments that is recovered by means of the application of fertilizers. Due to the lack of resources and to the increase of commercial inputs prices, it has been necessary to pay attention to the analysis and improvement of low inputs cropping systems and to the effective use of resources. Everything has made to establish a concept of plant nutrition focused system, which integrate the sources of nutriments for plants and the production factors of crops in a productive cropping system, to improve the fertility of soils, the agricultural productivity and profitability. This system includes the biggest efficiency of chemical fertilizers as the maximum profit of alternative sources of nutriments, such as organic fertilizers, citrate-phosphate rocks and biological nitrogen fixation. By means of field experiments under different environmental conditions (soils and climate) it can be determined the best combination of fertilizers practice (dose, placement, opportunity and source) for selected cropping systems. The experimentation with fertilizer, marked with stable and radioactive isotopes, provides a direct and express method to obtain conclusive answers to the questions: where, when and how should be applied. The fertilizers marked with N 1 5 have been used to understand the application of marked fertilizer to the cultivations, and the determination of the proportion of crops nutritious element derived from fertilizer. The isotopic techniques offer a fast and reliable mean to obtain information about the distribution of

  19. Stable gastric pentadecapeptide BPC 157 and bupivacaine.

    Science.gov (United States)

    Zivanovic-Posilovic, Gordana; Balenovic, Diana; Barisic, Ivan; Strinic, Dean; Stambolija, Vasilije; Udovicic, Mario; Uzun, Sandra; Drmic, Domagoj; Vlainic, Josipa; Bencic, Martina Lovric; Sindic, Aleksandra; Seiwerth, Sven; Sikiric, Predrag

    2016-12-15

    Bupivacaine toxicity following accidental overdose still lacks therapeutic solution. However, there are major arguments for testing BPC 157 against bupivacaine toxicity in vivo in rats, in particular, and then finally, in vitro. These are: the lack of any known BPC 157 toxicity, a lifesaving effect via the mitigation of arrhythmias in rats underwent hyperkalemia or digitalis toxicity, the elimination of hyperkalemia and arrhythmias in rats underwent succinylcholine toxicity and finally, the reduction of potassium-induced depolarization in vitro (in HEK293 cells) in severe hyperkalemia. Most importantly, BPC 157 successfully prevents and counteracts bupivacaine cardiotoxicity; BPC 157 is effective even against the worst outcomes such as a severely prolonged QRS complex. Here, rats injected with bupivacaine (100mg/kg IP) exhibited bradycardia, AV-block, ventricular ectopies, ventricular tachycardia, T-wave elevation and asystole. All of the fatalities had developed T-wave elevation, high-degree AV-block, respiratory arrest and asystole. These were largely counteracted by BPC 157 administration (50µg/kg, 10µg/kg, 10ng/kg, or 10pg/kg IP) given 30min before or 1min after the bupivacaine injection. When BPC 157 was given 6min after bupivacaine administration, and after the development of prolonged QRS intervals (20ms), the fatal outcome was markedly postponed. Additionally, the effect of bupivacaine on cell membrane depolarization was explored by measuring membrane voltages (Vm) in HEK293 cells. Bupivacaine (1mM) alone caused depolarization of the cells, while in combination with BPC 157 (1µm), the bupivacaine-induced depolarization was inhibited. Together, these findings suggest that the stable gastric pentadecapeptide BPC 157 should be a potential antidote for bupivacaine cardiotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Stable isotope separation by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2001-01-01

    Thermal diffusion in both gaseous and liquid phase has been subject of extensive experimental and theoretical investigations, especially after the invention of K. Clusius and G. Dickel of the thermal diffusion column, sixty three years ago. This paper gives a brief overview of the most important research and developments performed during the time at the National Institute for Research and Development for Isotopic and Molecular Technology (ITIM) at Cluj - Napoca, Romania in the field of separation of stable isotopes by thermal diffusion. An retrospective analysis of the research and results concerning isotope separation by thermal diffusion entails the following conclusions: - thermal diffusion is an adequate method for hydrogen isotope separation (deuterium and tritium) and for noble gas isotope separation (He, Ne, Ar, Kr, Xe); - thermal diffusion is attractive also for 13 C enrichment using methane as raw material for separation, when annual yields of up to 100 g are envisaged; - lately, the thermal diffusion appears to be chosen as a final enrichment step for 17 O. An obvious advantage of this method is its non-specificity, i.e. the implied equipment can be utilized for isotope separation of other chemical elements too. Having in view the low investment costs for thermal diffusion cascades the method appears economically attractive for obtaining low-scale, laboratory isotope production. The paper has the following content: 1. The principle of method; 2. The method's application; 3. Research in the field of thermal diffusion at ITIM; 4. Thermal diffusion cascades for N, C, Ne, Ar and Kr isotope separation; 5. Conclusion

  1. Applications of stable isotopes in agriculture

    International Nuclear Information System (INIS)

    Koren'kov, D.A.; Faust, Kh.

    1977-01-01

    The stable isotope 15 N has become widely used in agricultural studies. With it one can determine the true uptake of fertilizer and soil nitrogen by different crops as a function of their particular biological characteristics. Under field conditions, the extent of fertilizer nitrogen uptake by plants does not as a rule exceed 50%, being less for winter cereals and significantly more for perennial grasses. Applied fertilizer nitrogen, by intensifying the mobilization processes, increases the mobility of soil nitrogen. As a result, the accessibility of soil nitrogen to plants increases, and there is a greater chance of its being lost through washing-out. A considerable fraction of fertilizer nitrogen (on average 20-30%) becomes fixed in the soil in compounds which are not easily hydrolized and hence not readily available to plants. Nitrogen fixed in fulvic acids and non-specific compounds is the most mobile and can be used by plants. Fertilizer nitrogen in the soil undergoes various changes, as a result of which some is lost in the form of gaseous compounds. A certain amount of fertilizer nitrogen may become lost through washing-out. On the basis of 15 N investigations, it is possible to find ways of increasing the effectiveness of nitrogenous fertilizers and reducing nitrogen losses - for example, fertilizer application closer to the beginning of the period of active utilization of nutrients by plants, selection of more efficient fertilizer forms and the use of nitrification inhibitors. The wider employment of 15 N in agricultural studies should become possible through the use of cheaper compounds depleted or slightly enriched in 15 N. (author)

  2. Stable configurations of graphene on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Ravikumar, Abhilash [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India); Hegde, G.M. [Center for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); Rizwan, M.R. [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India)

    2017-08-31

    Highlights: • Simulations of epitaxial growth process for silicon–graphene system is performed. • Identified the most favourable orientation of graphene sheet on silicon substrate. • Atomic local strain due to the silicon–carbon bond formation is analyzed. - Abstract: Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon–silicon dimer formation is changed due to silicon–carbon bonding. These results may help further in band structure engineering of silicon–graphene lattice.

  3. Tempered stable distributions stochastic models for multiscale processes

    CERN Document Server

    Grabchak, Michael

    2015-01-01

    This brief is concerned with tempered stable distributions and their associated Levy processes. It is a good text for researchers interested in learning about tempered stable distributions.  A tempered stable distribution is one which takes a stable distribution and modifies its tails to make them lighter. The motivation for this class comes from the fact that infinite variance stable distributions appear to provide a good fit to data in a variety of situations, but the extremely heavy tails of these models are not realistic for most real world applications. The idea of using distributions that modify the tails of stable models to make them lighter seems to have originated in the influential paper of Mantegna and Stanley (1994). Since then, these distributions have been extended and generalized in a variety of ways. They have been applied to a wide variety of areas including mathematical finance, biostatistics,computer science, and physics.

  4. Applications of stable isotope analysis in mammalian ecology.

    Science.gov (United States)

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  5. Tukey max-stable processes for spatial extremes

    KAUST Repository

    Xu, Ganggang

    2016-09-21

    We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max-stable process are demonstrated theoretically and numerically. Simulation studies and an application to Swiss rainfall data indicate the effectiveness of the proposed process. © 2016 Elsevier B.V.

  6. Stable SU(5) monopoles with higher magnetic charge

    International Nuclear Information System (INIS)

    Miyamoto, S.; Sato, H.; Tomohiro, S.

    1985-01-01

    Taking into account the electroweak breaking effects, some multiply charged monopoles were shown to be stable by Gardner and Harvey. We give the explicit Ansa$uml: tze for finite-energy, nonsingular solutions of these stable higher-strength monopoles with eg = 1,(3/2),3. We also give the general stability conditions and the detailed behavior of the interaction potentials between two monopoles which produce the stable higher-strength monopoles

  7. Sense of Humor, Stable Affect, and Psychological Well-Being

    Directory of Open Access Journals (Sweden)

    Arnie Cann

    2014-08-01

    Full Text Available A good sense of humor has been implicated as a quality that could contribute to psychological well-being. The mechanisms through which sense of humor might operate include helping to reappraise threats, serving as a character strength, or facilitating happiness. The current research attempts to integrate these possibilities by examining whether a good sense of humor might operate globally by helping to maintain a more stable positive affect. Stable positive affect has been shown to facilitate more effective problem solving and to build resilience. However, not all humor is adaptive humor, so we also examine the roles that different styles of humor use might play. Individual differences in humor styles were used to predict stable levels of affect. Then, in a longitudinal design, humor styles and stable affect were used to predict subsequent resilience and psychological health. The results indicated that stable affect was related to resilience and psychological well-being, and that a sense of humor that involves self-enhancing humor, humor based on maintaining a humorous perspective about one’s experiences, was positively related to stable positive affect, negatively related to stable negative affect, and was mediated through stable affect in influencing resilience, well-being and distress. Thus, while a good sense of humor can lead to greater resilience and better psychological health, the current results, focusing on stable affect, find only self-enhancing humor provides reliable benefits.

  8. Tellurium Stable Isotopes as a Paleoredox Proxy

    Science.gov (United States)

    Wasserman, N.; Johnson, T. M.

    2017-12-01

    Despite arguments for variably-oxygenated shallow waters and anoxic deep marine waters, which delayed animal development until the Neoproterozoic Oxidation Event, the magnitude of atmospheric oxygen during the Proterozoic is still uncertain [1]. The evidence for low pO2 (<0.1-1% PAL) is based on geochemical and isotopic proxies, which track the mobilization of Fe and Mn on the continents. For example, large chromium isotope shifts occur at the Neoproterozoic Oxidation Event due to the initiation of Cr redox cycling, but this proxy is insensitive to fluctuations in the lower-pO2 conditions at other times during the Proterozoic. Tellurium, a metalloid with a lower threshold to oxidation, may be sensitive to pO2 shifts in a lower range. In the reduced forms, Te(-II) and Te(0), the element is insoluble and immobile. However, in the more oxidized phases, Te(IV) and Te(VI), Te can form soluble oxyanions (though it tends to adsorb to Fe-oxyhydroxides and clays) [2]. Te stable isotopes have been shown to fractionate during abiotic or biologic reduction of Te(VI) or Te(IV) to elemental Te(0) [3, 4]. Utilizing hydride generation MC-ICP-MS, we are able to obtain high precision (2σ 0.04‰) measurements of δ128Te/125Te for natural samples containing < 10 ng of Te. A suite of Phanerozoic and Proterozoic ironstones show significant variation in δ128Te/125Te (<0.5‰), suggesting that the Te redox cycle was active during the Proterozoic. Future directions will include Te isotope measurements of Precambrian paleosols to determine natural isotope variation before the Great Oxidation Event and experiments to determine fractionation during adsorption to Fe-oxyhydroxides. [1] Planavsky et al. (2014) Science 346 (6209), pp. 635-638 [2] Qin et al. (2017) Environmental Science and Technology 51 (11), pp 6027-6035 [3] Baesman et al. (2007) Applied Environmental Microbiology 73 (7), pp 2135-2143 [4] Smithers and Krause (1968) Canadian Journal of Chemistry 46(4): pp 583-591

  9. Use of FISH-translocations analyses for retrospective biological dosimetry: How stable are stable chromosome aberrations?

    International Nuclear Information System (INIS)

    Darroudi, F.

    2000-01-01

    Chromosome aberrations, in particular dicentrics, in peripheral blood lymphocytes are used to estimate the absorbed dose immediately following a radiation accident. However, difficulties for dose estimation arise with old exposures, due to a decline of cells containing unstable dicentric aberrations. The fluorescence in situ hybridisation (FISH) technique employing chromosome specific DNA libraries to 'paint' individual human chromosomes has opened new perspectives for rapid and reliable detection of stable chromosome aberrations such as translocations. The inherent stability of translocations over cell generations has enabled them to be used as a biodosemeter. However, due to the limited life of circulating T-lymphocytes, a level of uncertainty exists on the long-term persistence of stable translocations. The objectives of the present work are to present the current state of knowledge on the stability of translocations detected by FISH. The following aspects have been considered; (1) experience so far of retrospective biological dosimetry in humans following accidental and occupational over-exposure, (2) animal studies using mice and monkeys, (3) the influence of subsequent cell divisions on the yield and persistence of translocations following in vitro irradiation of human lymphocytes, and (4) the needs for further work to standardise and validate the use of FISH as a biological dosemeter, and to investigate the influence of various parameters such as radiation quality, dose rate and the discrimination of sub-types of translocations on persistence. (author)

  10. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  11. Stable isotope methodology and its application to nutrition and gastroenterology

    International Nuclear Information System (INIS)

    Klein, P.D.; Hachey, D.L.; Wong, W.W.; Abrams, S.A.

    1993-01-01

    This report describes the activities of the Stable Isotope Laboratory in its function as a core resource facility for stable isotope applications in human nutrition research. Three aspects are covered: Training of visitors, assessment of new instrumentation, and development of new methodology. The research achievements of the laboratory are indicated in the publications that appeared during this period. (author). 23 refs

  12. Optimization for getting stable plasma initiation in JT-60

    International Nuclear Information System (INIS)

    Yoshino, Ryuji; Neyatani, Yuzuru; Abe, T.

    1988-06-01

    This paper analyses the plasma current build-up just after the breakdown, and investigates the method for obtaining more stable plasma initiation with reduced Volt-second consumption. Control of the amount of particles contained in the wall is necessary for getting the optimum plasma density just after the breakdown, and is essential for obtaining the stable current build-up. (author)

  13. Biomedical applications of mass spectrometry. Clinical uses of stable isotopes

    International Nuclear Information System (INIS)

    Krahmer, U.I.; McCloskey, J.A.

    1978-01-01

    The review covers typical or important examples of stable isotope usage in clinical fields during the period since the last triennial mass spectrometry conference in 1973. Items are included which involve uses of stable isotopes in human or clinically oriented studies, including measurements carried out on materials of human origin. 163 references. (U.K.)

  14. Solutions for the stable roommates problem with payments

    NARCIS (Netherlands)

    Biró, Péter; Bomhoff, M.J.; Golovach, Petr A.; Kern, Walter

    2014-01-01

    The stable roommates problem with payments has as input a graph G = (V , E ) with an edge weighting w : E → R≥0 and the problem is to find a stable solution. By pinpointing a relationship to the accessibility of the coalition structure core of matching games, we give a constructive proof for showing

  15. DFT computations of the lattice constant, stable atomic structure and ...

    African Journals Online (AJOL)

    This paper presents the most stable atomic structure and lattice constant of Fullerenes (C60). FHI-aims DFT code was used to predict the stable structure and the computational lattice constant of C60. These were compared with known experimental structures and lattice constants of C60. The results obtained showed that ...

  16. Formulation of stable protein powders by supercritical fluid drying

    NARCIS (Netherlands)

    Jovanović, N.

    2007-01-01

    Protein pharmaceuticals are potent drugs for the treatment of several chronic and life-threatening diseases. However, the complex and sensitive nature of protein molecules requires special attention in the development of stable dosage forms. Developing stable aqueous protein formulations is often a

  17. Method for recovering or recirculating stable nitroxide radicals

    NARCIS (Netherlands)

    Heeres, Andre; Van Doren, Hendrik Arend; Bleeker, Ido Pieter; Gotlieb, Kornelis Fester.

    1996-01-01

    The invention relates fo a method for recovering stable nitroxide radicals, wherein at least a part of a reaction mixt. consisting of a soln. or suspension, or a filtrate or supernatant of a suspension, in which stable nitroxide radicals are present in non-solid form, is subjected to an azeotropic

  18. Stability of Picard Bundle Over Moduli Space of Stable Vector ...

    Indian Academy of Sciences (India)

    Abstract. Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable.

  19. Stable isotope geochemistry. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Hoefs, J.

    1987-01-01

    Stable Isotope Geochemistry is an authoritative book comprising theoretical and experimental principles; surveying important fractionation mechanisms affecting the most important elements; discussing the natural variations of geologically important reservoirs. This updated 3rd edition, with a completely rewritten and extended main part, contains two new chapters on stable isotope composition of mantle material and on changes of the ocean during the geological past. (orig.)

  20. Trophic position of coexisting krill species: a stable isotope approach

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Bode, Antonio; Nielsen, Torkel Gissel

    2014-01-01

    Four krill species with overlapping functional biology coexist in Greenland waters. Here, we used stable isotopes to investigate and discuss their trophic role and mode of coexistence. Bulk carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of Thysanoessa longicaudata, T. inermis, T. raschii...

  1. Stable isotopes for improving human nutrition

    International Nuclear Information System (INIS)

    Uauy, Ricardo

    2001-01-01

    recent FAO review of nutrition programs in 19 Latin American countries found that over 20 percent of the population - approximately 83 million people out of an estimated 414 million in the study countries - receives some level of benefits in nutrition-related programs. The allocation of limited national and international assistance resources for these activities in the region is on the order of several billion dollars annually. Undoubtedly these programs are influencing child growth. Significant reductions in underweight and wasting have occurred; but stunting has been more resistant to change. In this setting providing food supplements may be beneficial for some while it may be detrimental for others. The definition of who should benefit from the programs and what is the right combination of nutrients/foods, education, and lifestyle interventions that is required to optimise nutrition and health at each stage of the life cycle is a truly complex problem. This demands the use of the best scientific tools to define who should benefit, what should done and measured as an outcome, how programs should be evaluated, when programs should be expanded, and when they should be stopped. Isotopic and nuclear techniques are tools, not solutions. This presentation will serve to demonstrate how isotopes can contribute to refining nutrition interventions and their impact on public health. Isotopic methods can shorten the time needed to evaluate impact, because they provide sensitive measurements of biological effects. They are faster than traditional methods such as anthropometry for detecting changes in growth and body composition. Micronutrient malnutrition, and especially the bioavailability of vitamins and minerals from traditional foods, are not well evaluated using routine biochemical methods. Radioisotopes have been used successfully in the past. But recent developments in stable isotope techniques offer unique advantages for the design and evaluation of programmes that address

  2. Stable glomerular filtration rate in normotensive IDDM patients with stable microalbuminuria. A 5-year prospective study

    DEFF Research Database (Denmark)

    Mathiesen, E R; Feldt-Rasmussen, B; Hommel, E

    1997-01-01

    patients with persistent microalbuminuria (mean urinary albumin excretion [UAE] 84 mg/24 h [range 30-300]) were followed prospectively for 5 years of clinical examinations that included the measurement of GFR (51Cr-labeled EDTA clearance) at least once a year. The mean GFR at baseline was 120 +/- 18 ml x....... Out of 40 patients, 14 progressed to diabetic nephropathy (UAE > 300 mg/24 h). These patients had a significant reduction in GFR (mean -2.2 +/- 3.8 ml x min-1 x year-1; P = 0.05), while GFR remained stable in the remaining 26 patients with nonprogressive microalbuminuria (change in GFR 0.5 +/- 2.1 ml...

  3. High-Order Entropy Stable Formulations for Computational Fluid Dynamics

    Science.gov (United States)

    Carpenter, Mark H.; Fisher, Travis C.

    2013-01-01

    A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.

  4. Stable black phosphorus quantum dots for alkali PH sensor

    Science.gov (United States)

    Guo, Weilan; Song, Haizeng; Yan, Shancheng

    2018-01-01

    Black phosphorus, as a new two-dimensional material has been widely used in sensors, photovoltaic devices, etc. However, thin layered black phosphorus chemically degrades rapidly under ambient and aqueous conditions, which hinders the application of it in the chemical sensors. In this work, stable black phosphorus quantum dots (BPQDs) in solution are successfully synthesized by functionalization with 4-nitrobenzene-diazonium (4-NBD). The stable BPQDs are investigated by TEM, AFM, Raman, and UV-absorption. As a potential application, the stable BPQDs are used as sensors in alkali solution, which exhibit outstanding performance. Our work paves the way towards a new application with BPQDs in solution.

  5. Use of stable isotopes in human nutrition in Senegal

    International Nuclear Information System (INIS)

    2016-01-01

    In Senegal, the Laboratory of Nutrition of the Department of Animal Biology of the Faculty of Science and Technology of UCAD has been using stable isotopic techniques for nearly twenty years. Stable isotopes were applied to different target populations to measure milk production, exclusive breastfeeding, body composition, micronutrient bioavailability and total energy expenditure.The application of stable isotopic techniques in nutrition has contributed to advocacy for exclusive breastfeeding for up to 6 months in Senegal. It enabled government decision-makers to obtain essential information on the quality of foods needed for optimal effect during pregnancy and for infant growth and the results were reflected in the national policy on micronutrient supplementation.

  6. Stable monopole-antimonopole string background in SU(2) QCD

    International Nuclear Information System (INIS)

    Cho, Y.M.; Pak, D.G.

    2006-01-01

    Motivated by the instability of the Savvidy-Nielsen-Olesen (SNO) vacuum we make a systematic search for a stable magnetic background in pure SU(2) QCD. It is shown that a pair of axially symmetric monopole and antimonopole strings is stable, provided that the distance between the two strings is less than a critical value. The existence of a stable monopole-antimonopole string background strongly supports that a magnetic condensation of monopole-antimonopole pairs can generate a dynamical symmetry breaking, and thus the magnetic confinement of color in QCD

  7. Application of stable isotopes in ecological research : it's all elemental

    International Nuclear Information System (INIS)

    Rogers, K.M.

    2005-01-01

    Stable isotopes have been used traditionally in the physical sciences, primarily in geochemistry, sedimentology, and oceanography. Increasingly, however, stable isotopes are also being used in the biological sciences. Application of stable isotopes in ecological studies can provide new and innovative ways of examining a host of topics of fundamental importance to biologists. These topics include, among others, feeding ecology and food webs, nutrient flow and assimilation, habitat use, migration patterns, and distribution and discrimination of species subpopulations. Furthermore, ecological research with isotopes can be applied at many levels (i.e. tissue and organ, whole animal, population, community, and ecosystem). (author). 38 refs., 2 figs

  8. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  9. A model describing stable coherent synchrotron radiation in storage rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wuestefeld, G.; Huebers, H.-W.; Warnock, R.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  10. Stable isotope labeling strategy based on coding theory

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori, E-mail: kigawa@riken.jp [RIKEN Quantitative Biology Center (QBiC), Laboratory for Biomolecular Structure and Dynamics (Japan)

    2015-10-15

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells.

  11. Stable isotope labeling strategy based on coding theory

    International Nuclear Information System (INIS)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori

    2015-01-01

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells

  12. A theory of stable-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Pickup, J.F.; McPherson, C.K.

    1977-01-01

    In order to perform quantitative analysis using stable isotope dilution with mass spectrometry, an equation is derived which describes the relationship between the relative proportions of natural and labelled material and measured isotope ratios

  13. On the classification of complex vector bundles of stable rank

    Indian Academy of Sciences (India)

    , the tuples of cohomology classes on a compact, complex manifold, corresponding to the Chern classes of a complex vector bundle of stable rank. This classification becomes more effective on generalized flag manifolds, where the Lie ...

  14. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  15. A new intermediate for the production of flexible stable polymers

    Science.gov (United States)

    Webster, J. A.

    1973-01-01

    Method of incorporating ether linkages into perfluoroalkylene segment of a dianydride intermediate yields intermediate that may be used in synthesis of flexible, stable polyimides for use as high-temperature, solvent-resistant sealants.

  16. Stable Blind Deconvolution over the Reals from Additional Autocorrelations

    KAUST Repository

    Walk, Philipp; Hassibi, Babak

    2017-01-01

    that under a sufficient zero separation of the corresponding signal in the $z-$domain, a stable reconstruction against additive noise is possible. Moreover, the stability constant depends on the signal dimension and on the signals magnitude of the first

  17. Distribution of radiocesium and stable elements within a pine tree

    International Nuclear Information System (INIS)

    Yoshida, S.; Watanabe, M.; Suzuki, A.

    2011-01-01

    Distributions of 137 Cs and stable elements in different parts of a pine tree collected in Chernobyl-contaminated area in Belarus were determined. Samples include annual tree rings of wood, branches and needles with different ages. The concentrations of 137 Cs and stable Cs in annual tree rings were the highest in cambium and decreased sharply towards inside. The youngest needles and branches contained higher 137 Cs and stable Cs than older ones. The concentration of 137 Cs being highest in growing parts suggests the highest radiation dose to the radiation-sensitive parts of tree. Distribution patterns of stable elements in pine tree differ among the elements. Distributions similar to those of Cs were observed for K and Rb, suggesting that alkaline metals tend to be translocated to young growing parts of pine tree. A similar distribution was also observed for phosphorus. Distributions of alkaline earth metals and several heavy metals were different from those of alkaline metals. (authors)

  18. Development of stable marker-free nuclear transformation strategy ...

    African Journals Online (AJOL)

    Development of stable marker-free nuclear transformation strategy in the green microalga Chlorella vulgaris. ... into Chlorella by electroporation has very low stability and it is hard to screen the transformants without antibiotic marker genes.

  19. The use of stable isotopes in medicinal chemistry

    International Nuclear Information System (INIS)

    Halliday, D.; Thompson, G.N.

    1988-01-01

    Stable isotopes have been employed increasingly as tracers over the last decade both to provide the clinician with the opportunity to broaden, in a quantitative manner, discrete areas of diagnosis and research, and the clinical chemist with definitive methodology for specific analyte analysis. These non-radioactive 'heavy' isotopes contain one or more extra neutrons in the nucleus compared with their more abundant 'lighter' analogues. Impetus in the application of stable isotopes for in vivo studies has come from an increased awareness of the possible harmful effects in the use of radionuclides, and a realisation of several positive advantages conferred by the use of stable isotopes in their own right - certain elements of clinical importance (especially nitrogen) lack a useable radio-nuclide equivalent; use of a 'cocktail' of stable isotopes permits a range of studies to be performed in the same patient simultaneously and, within specific constraints, serial studies can be performed in the same patients. (author)

  20. (2+1)-dimensional stable spatial Raman solitons

    International Nuclear Information System (INIS)

    Shverdin, M.Y.; Yavuz, D.D.; Walker, D.R.

    2004-01-01

    We analyze the formation, propagation, and interaction of stable two-frequency (2+1)-dimensional solitons, formed in a Raman media driven near maximum molecular coherence. The propagating light is trapped in the two transverse dimensions

  1. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  2. Stable isotopes: essential tools in biological and medical research

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P. D.; Hachey, D. L.; Kreek, M. J.; Schoeller, D. A.

    1977-01-01

    Recent developments in the use of the stable isotopes, /sup 13/C, /sup 15/N, /sup 17/O, and /sup 18/O, as tracers in research studies in the fields of biology, medicine, pharmacology, and agriculture are briefly reviewed. (CH)

  3. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...... findings can find application in off-shore, seismic and other engi- neering practice, or inspire new branches of research and modelling wherever dynamic, cyclic or transient loaded sand is encountered....

  4. A constrained variational calculation for beta-stable matter

    International Nuclear Information System (INIS)

    Howes, C.; Bishop, R.F.; Irvine, J.M

    1978-01-01

    A method of lowest-order constrained variation previously applied by the authors to asymmetric nuclear matter is extended to include electrons and muons making the nucleon fluid electrically neutral and stable against beta decay. The equilibrium composition of a nucleon fluid is calculated as a function of baryon number density and an equation of state for beta-stable matter is deduced for the Reid soft-core interaction. (author)

  5. [Fractionation of hydrogen stable isotopes in the human body].

    Science.gov (United States)

    Siniak, Iu E; Grigor'ev, A I; Skuratov, V M; Ivanova, S M; Pokrovskiĭ, B G

    2006-01-01

    Fractionation of hydrogen stable isotopes was studied in 9 human subjects in a chamber with normal air pressure imitating a space cabin. Mass-spectrometry of isotopes in blood, urine, saliva, and potable water evidenced increases in the contents of heavy H isotope (deuterium) in the body liquids as compared with water. These results support one of the theories according to which the human organism eliminates heavy stable isotopes of biogenous chemical elements.

  6. Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching

    Science.gov (United States)

    2013-01-01

    REPORT Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The stable matching...Franceschetti 858-822-2284 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Jealousy Graphs: Structure and...market. Using this structure, we are able to provide a ner analysis of the complexity of a subclass of decentralized matching markets. Jealousy

  7. Selection of medical treatment in stable angina pectoris

    DEFF Research Database (Denmark)

    Ardissino, D; Savonitto, S; Egstrup, K

    1995-01-01

    pectoris. BACKGROUND: The characteristics of anginal symptoms and the results of exercise testing are considered of great importance for selecting medical treatment in patients with chronic stable angina pectoris. However, little information is available on how this first evaluation may be used to select....... CONCLUSIONS: The results of a baseline exercise test, but not the characteristics of anginal symptoms, may offer useful information for selecting medical treatment in stable angina pectoris....

  8. Refining a brief decision aid in stable CAD: cognitive interviews

    OpenAIRE

    Kelly-Blake, Karen; Clark, Stacie; Dontje, Katherine; Olomu, Adesuwa; Henry, Rebecca C; Rovner, David R; Rothert, Marilyn L; Holmes-Rovner, Margaret

    2014-01-01

    Background We describe the results of cognitive interviews to refine the “Making Choices©” Decision Aid (DA) for shared decision-making (SDM) about stress testing in patients with stable coronary artery disease (CAD). Methods We conducted a systematic development process to design a DA consistent with International Patient Decision Aid Standards (IPDAS) focused on Alpha testing criteria. Cognitive interviews were conducted with ten stable CAD patients using the “think aloud” interview techniq...

  9. Risk following hospitalization in stable chronic systolic heart failure

    DEFF Research Database (Denmark)

    Abrahamsson, Putte; Swedberg, Karl; Borer, Jeffrey S

    2013-01-01

    We explored the impact of being hospitalized due to worsening heart failure (WHF) or a myocardial infarction (MI) on subsequent mortality in a large contemporary data set of patients with stable chronic systolic heart failure (HF).......We explored the impact of being hospitalized due to worsening heart failure (WHF) or a myocardial infarction (MI) on subsequent mortality in a large contemporary data set of patients with stable chronic systolic heart failure (HF)....

  10. A parallel approach to the stable marriage problem

    DEFF Research Database (Denmark)

    Larsen, Jesper

    1997-01-01

    This paper describes two parallel algorithms for the stable marriage problem implemented on a MIMD parallel computer. The algorithms are tested against sequential algorithms on randomly generated and worst-case instances. The results clearly show that the combination fo a very simple problem...... and a commercial MIMD system results in parallel algorithms which are not competitive with sequential algorithms wrt. practical performance. 1 Introduction In 1962 the Stable Marriage Problem was....

  11. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  12. Medieval Horse Stable; The Results of Multi Proxy Interdisciplinary Research

    Science.gov (United States)

    Dejmal, Miroslav; Lisá, Lenka; Fišáková Nývltová, Miriam; Bajer, Aleš; Petr, Libor; Kočár, Petr; Kočárová, Romana; Nejman, Ladislav; Rybníček, Michal; Sůvová, Zdenka; Culp, Randy; Vavrčík, Hanuš

    2014-01-01

    A multi proxy approach was applied in the reconstruction of the architecture of Medieval horse stable architecture, the maintenance practices associated with that structure as well as horse alimentation at the beginning of 13th century in Central Europe. Finally, an interpretation of the local vegetation structure along Morava River, Czech Republic is presented. The investigated stable experienced two construction phases. The infill was well preserved and its composition reflects maintenance practices. The uppermost part of the infill was composed of fresh stabling, which accumulated within a few months at the end of summer. Horses from different backgrounds were kept in the stable and this is reflected in the results of isotope analyses. Horses were fed meadow grasses as well as woody vegetation, millet, oat, and less commonly hemp, wheat and rye. Three possible explanations of stable usage are suggested. The stable was probably used on a temporary basis for horses of workers employed at the castle, courier horses and horses used in battle. PMID:24670874

  13. Wideband quin-stable energy harvesting via combined nonlinearity

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2017-04-01

    Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.

  14. Multi-stable perception balances stability and sensitivity

    Directory of Open Access Journals (Sweden)

    Alexander ePastukhov

    2013-03-01

    Full Text Available We report that multi-stable perception operates in a consistent, dynamical regime, balancing the conflicting goals of stability and sensitivity. When a multi-stable visual display is viewed continuously, its phenomenal appearance reverses spontaneously at irregular intervals. We characterized the perceptual dynamics of individual observers in terms of four statistical measures: the distribution of dominance times (mean and variance and the novel, subtle dependence on prior history (correlation and time-constant.The dynamics of multi-stable perception is known to reflect several stabilizing and destabilizing factors. Phenomenologically, its main aspects are captured by a simplistic computational model with competition, adaptation, and noise. We identified small parameter volumes (~3% of the possible volume in which the model reproduced both dominance distribution and history-dependence of each observer. For 21 of 24 data sets, the identified volumes clustered tightly (~15% of the possible volume, revealing a consistent `operating regime' of multi-stable perception. The `operating regime' turned out to be marginally stable or, equivalently, near the brink of an oscillatory instability. The chance probability of the observed clustering was <0.02.To understand the functional significance of this empirical `operating regime', we compared it to the theoretical `sweet spot' of the model. We computed this `sweet spot' as the intersection of the parameter volumes in which the model produced stable perceptual outcomes and in which it was sensitive to input modulations. Remarkably, the empirical `operating regime' proved to be largely coextensive with the theoretical `sweet spot'. This demonstrated that perceptual dynamics was not merely consistent but also functionally optimized (in that it balances stability with sensitivity. Our results imply that multi-stable perception is not a laboratory curiosity, but reflects a functional optimization of perceptual

  15. Dynamics and control of twisting bi-stable structures

    Science.gov (United States)

    Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.

    2018-02-01

    Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states

  16. Effectiveness of Ivabradine in Treating Stable Angina Pectoris.

    Science.gov (United States)

    Ye, Liwen; Ke, Dazhi; Chen, Qingwei; Li, Guiqiong; Deng, Wei; Wu, Zhiqin

    2016-04-01

    Many studies show that ivabradine is effective for stable angina.This meta-analysis was performed to determine the effect of treatment duration and control group type on ivabradine efficacy in stable angina pectoris.Relevant articles in the English language in the PUBMED and EMBASE databases and related websites were identified by using the search terms "ivabradine," "angina," "randomized controlled trials," and "Iva." The final search date was November 2, 2015.Articles were included if they were published randomized controlled trials that related to ivabradine treatment of stable angina pectoris.Patients with stable angina pectoris were included.The patients were classified according to treatment duration (Angina outcomes were heart rate at rest or peak, exercise duration, and time to angina onset.Seven articles were selected. There were 3747 patients: 2100 and 1647 were in the ivabradine and control groups, respectively. The ivabradine group had significantly longer exercise duration when they had been treated for at least 3 months, but not when treatment time was less than 3 months. Ivabradine significantly improved time to angina onset regardless of treatment duration. Control group type did not influence the effect of exercise duration (significant) or time to angina onset (significant).Compared with beta-blocker and placebo, ivabradine improved exercise duration and time to onset of angina in patients with stable angina. However, its ability to improve exercise duration only became significant after at least 3 months of treatment.

  17. Ranking stability and super-stable nodes in complex networks.

    Science.gov (United States)

    Ghoshal, Gourab; Barabási, Albert-László

    2011-07-19

    Pagerank, a network-based diffusion algorithm, has emerged as the leading method to rank web content, ecological species and even scientists. Despite its wide use, it remains unknown how the structure of the network on which it operates affects its performance. Here we show that for random networks the ranking provided by pagerank is sensitive to perturbations in the network topology, making it unreliable for incomplete or noisy systems. In contrast, in scale-free networks we predict analytically the emergence of super-stable nodes whose ranking is exceptionally stable to perturbations. We calculate the dependence of the number of super-stable nodes on network characteristics and demonstrate their presence in real networks, in agreement with the analytical predictions. These results not only deepen our understanding of the interplay between network topology and dynamical processes but also have implications in all areas where ranking has a role, from science to marketing.

  18. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  19. Do planetary seasons play a role in attaining stable climates?

    Science.gov (United States)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2018-05-01

    A simple phenomenological account for planetary climate instabilities is presented. The description is based on the standard model where the balance of incoming stellar radiation and outward thermal radiation is described by the effective planet temperature. Often, it is found to have three different points, or temperatures, where the influx of radiation is balanced with the out-flux, even with conserved boundary conditions. Two of these points are relatively long-term stable, namely the point corresponding to a cold climate and the point corresponding to a hot climate. In a classical sense these points are equilibrium balance points. The hypothesis promoted in this paper is the possibility that the intermediate third point can become long-term stable by being driven dynamically. The initially unstable point is made relatively stable over a long period by the presence of seasonal climate variations.

  20. Self-similar anomalous diffusion and Levy-stable laws

    International Nuclear Information System (INIS)

    Uchaikin, Vladimir V

    2003-01-01

    Stochastic principles for constructing the process of anomalous diffusion are considered, and corresponding models of random processes are reviewed. The self-similarity and the independent-increments principles are used to extend the notion of diffusion process to the class of Levy-stable processes. Replacing the independent-increments principle with the renewal principle allows us to take the next step in generalizing the notion of diffusion, which results in fractional-order partial space-time differential equations of diffusion. Fundamental solutions to these equations are represented in terms of stable laws, and their relationship to the fractality and memory of the medium is discussed. A new class of distributions, called fractional stable distributions, is introduced. (reviews of topical problems)

  1. Stable isotope customer list and summary of shipments:

    International Nuclear Information System (INIS)

    Tracy, J.G.

    1988-03-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: alphabetical lists of domestic and foreign customers;alphabetical lists of isotopes and services;alphabetical lists of states and countries;tabulation of the shipments, quantities, and dollars for each isotope and dollars for services divided into domestic, foreign, and DOE project categories. During FY 1987 sales of stable isotope products and services were made to 272 differnt customers, of whom 159 were domestic and 113 were foreign, representing 18 different foreign countries. The total revenue was $3,785,609 of which 12.3% was from sales to DOE project customers, 60.4% was from sales to other domestic customers, and 27.3% was from sales to foreign customers. this represented sales of 189 different stable isotopes plus associated services and was a 16.5% increase over FY 1986

  2. Stable radio frequency dissemination by simple hybrid frequency modulation scheme.

    Science.gov (United States)

    Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang

    2014-09-15

    In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.

  3. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  4. Design of partially optically stable reflector systems and prisms

    Science.gov (United States)

    Tsai, Chuang-Yu

    2010-09-01

    The characteristics and design method of the total optically stable (TOS) reflector systems/prisms were introduced in an early paper (Tsai and Lin in Appl. Opt. 47:4158-4163, 2008), where only two types of TOS reflector system exist, namely preservation or retroreflection. In this paper, we introduce the partially optically stable (POS) reflector system, which is only optically stable about a specific directional vector; nevertheless, the exiting light ray is not restricted to preservation or retroreflection. The proposed paper also presents an analytic method for the design of POS reflector systems comprised of multiple reflectors. Furthermore, it is shown that a POS prism can be obtained by adding two refracting flat boundary surfaces with specific conditions at the entrance and exit positions of the light ray in an optical system with multiple reflectors.

  5. Dynamical SUSY breaking in meta-stable vacua

    International Nuclear Information System (INIS)

    Intriligator, Kenneth; Seiberg, Nathan; Shih, David

    2006-01-01

    Dynamical supersymmetry breaking in a long-lived meta-stable vacuum is a phenomenologically viable possibility. This relatively unexplored avenue leads to many new models of dynamical supersymmetry breaking. Here, we present a surprisingly simple class of models with meta-stable dynamical supersymmetry breaking: N = 1 supersymmetric QCD, with massive flavors. Though these theories are strongly coupled, we definitively demonstrate the existence of meta-stable vacua by using the free-magnetic dual. Model building challenges, such as large flavor symmetries and the absence of an R-symmetry, are easily accommodated in these theories. Their simplicity also suggests that broken supersymmetry is generic in supersymmetric field theory and in the landscape of string vacua

  6. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  7. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.

    Science.gov (United States)

    Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S

    2009-12-01

    Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.

  8. Application of enriched stable isotopes as tracers in biological systems

    DEFF Research Database (Denmark)

    Stürup, Stefan; Hansen, Helle Rüsz; Gammelgaard, Bente

    2008-01-01

    The application of enriched stable isotopes of minerals and trace elements as tracers in biological systems is a rapidly growing research field that benefits from the many new developments in inorganic mass spectrometric instrumentation, primarily within inductively coupled plasma mass spectrometry...... (ICP-MS) instrumentation, such as reaction/collision cell ICP-MS and multicollector ICP-MS with improved isotope ratio measurement and interference removal capabilities. Adaptation and refinement of radioisotope tracer experiment methodologies for enriched stable isotope experiments......, and the development of new methodologies coupled with more advanced compartmental and mathematical models for the distribution of elements in living organisms has enabled a broader use of enriched stable isotope experiments in the biological sciences. This review discusses the current and future uses of enriched...

  9. Stable isotope tracers and exercise physiology: past, present and future.

    Science.gov (United States)

    Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J

    2017-05-01

    Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Stable propagation of interacting crack systems and modeling of damage

    International Nuclear Information System (INIS)

    Bazant, Z.P.; Tabbara, M.R.

    1989-01-01

    This paper presents general thermodynamic criteria for the stable states and stable path of structures with an interacting system of cracks. In combination with numerical finite element results for various cracked structure geometries, these criteria indicate that the crack response path of structures may exhibit bifurcations, after which the symmetry of the crack system is broken and some cracks grow preferentially. The problem is of interest for the prediction of ultimate loads, ductility and energy absorption capability of nuclear concrete structures as well as structures made of composites and ceramics

  11. Remarks on search methods for stable, massive, elementary particles

    International Nuclear Information System (INIS)

    Perl, Martin L.

    2001-01-01

    This paper was presented at the 69th birthday celebration of Professor Eugene Commins, honoring his research achievements. These remarks are about the experimental techniques used in the search for new stable, massive particles, particles at least as massive as the electron. A variety of experimental methods such as accelerator experiments, cosmic ray studies, searches for halo particles in the galaxy and searches for exotic particles in bulk matter are described. A summary is presented of the measured limits on the existence of new stable, massive particle

  12. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers

    Science.gov (United States)

    Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.

    2018-01-01

    We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.

  13. Enriching stable isotopes: Alternative use for Urenco technology

    International Nuclear Information System (INIS)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D.

    1996-01-01

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope 235 U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company's uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco's stable isotopes business

  14. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2005-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. (author). 52 refs., 11 figs., 2 tabs

  15. Stable isotope customer list and summary of shipments: FY 1975

    International Nuclear Information System (INIS)

    Davis, W.C.

    1975-10-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: an alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; an alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; an alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and a tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope, with the totals for loaned isotopes shown at the end of the table. (auth)

  16. Stable-carbon isotope variability in tree foliage and wood

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1986-01-01

    This study documents variation of stable-carbon isotope ratios ( 13 C/ 12 C) in trees of genera Juniperus and Pinus under field conditions. Results are from cellulose analysis on leaves, twigs, and wood from a number of localities in the southwestern US. Substantial variability, typically 1-3%, exists among leaves, within wood (radially, vertically, circumferentially), and between individuals at a site. These results may help guide sampling in tracer-type studies with stable-carbon isotope ratios and aid in the interpretation of isotopic results from such studies

  17. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  18. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    Science.gov (United States)

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  19. Target-like pigmentation after minipunch grafting in stable vitiligo

    Directory of Open Access Journals (Sweden)

    Nelee Bisen

    2014-01-01

    Full Text Available Surgical treatment for vitiligo has been ever evolving. Each surgical modality has its own benefits and limitations. Miniature punch grafting is the most extensively performed surgery, which gives good results in stable vitiligo. Herein we report an unusual type of repigmentation observed after minipunch grafting in a patient of stable vitiligo, which resembled target-like lesions with a "perigraft halo" surrounding individual grafts. Such pigment spread occurred despite the use of 0.5 mm larger graft from the donor site.

  20. SIMPLE ESTIMATOR AND CONSISTENT STRONGLY OF STABLE DISTRIBUTIONS

    Directory of Open Access Journals (Sweden)

    Cira E. Guevara Otiniano

    2016-06-01

    Full Text Available Stable distributions are extensively used to analyze earnings of financial assets, such as exchange rates and stock prices assets. In this paper we propose a simple and strongly consistent estimator for the scale parameter of a symmetric stable L´evy distribution. The advantage of this estimator is that your computational time is minimum thus it can be used to initialize intensive computational procedure such as maximum likelihood. With random samples of sized n we tested the efficacy of these estimators by Monte Carlo method. We also included applications for three data sets.