WorldWideScience

Sample records for stable surface oxygen

  1. Bartolome Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17'S, 90 deg 33' W. Champion Island: 1 deg, 15'S, 90 deg, 05' W. Urvina Bay (Isabela...

  2. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta 2 H (δ 2 H) and as delta 18 O (δ 18 O), respectively. The values of δ 2 H and δ 18 O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of δ 2 H and δ 18 O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively

  3. Champion Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17 min S, 90 deg 33 min W. Champion Island: 1 deg, 15 min S, 90 deg, 05 min W. Urvina...

  4. Stable isotope oxygen-18 and deuterium analysis in surface and groundwater of the Jequitibá Creek Basin, Sete Lagoas, MG

    Energy Technology Data Exchange (ETDEWEB)

    Linhares, Giovanna Maria Gardini; Moreira, Rubens Martins; Pimenta, Rafael Colombo; Scarpelli, Raquel Pazzini; Santos, Elizangela Augusta dos, E-mail: giovannagardini@gmail.com, E-mail: rubens@cdtn.br, E-mail: colombopimenta@gmail.com, E-mail: raquelscarpelli@gmail.com, E-mail: elizangela.augusta@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Groundwater is an important source of public and industrial supplies, and inadequate exploitation of water reflects negatively on its quality and production of wells, especially when located in karstic aquifers. The study area includes the Maize and Sorghum National Research / Embrapa, located in the karst region of Sete Lagoas, within of the Jequitibá creek sub-basin, an affluent of the Velhas River. The evaluation of the content of stable isotopes of hydrogen ({sup 2}H), or deuterium, and oxygen ({sup 18}O) of surface waters (lagoons) and groundwater (production and monitoring wells) collected from the study area allowed to know directly the origin of these waters, active climatic processes and interactions between different aquifers and surface bodies, as possible mixtures of water from different sources. The collected samples were analyzed by isotopic ratio mass spectrometry, IRMS Advantege - Thermo Science, from the Center for the Development of Nuclear Technology (CDTN). The mean values found for δ{sup 18}O and δ{sup 2}H in the waters of the monitoring wells were -6.40‰ and -43.21‰, respectively. For the production wells, mean values for δ{sup 18}O and δ{sup 2}H of -5.87 ‰ and -40.09‰, respectively, were obtained. When compared to GMWL, the collected groundwater originates attributed to the precipitations. The lagoon waters had mean values for δ{sup 18}O and δ{sup 2}H of -3.73‰ and -30.08‰. The water collected in the crystalline fissured aquifer presented mean values δ{sup 18}O and δ{sup 2}H of -6.91‰ and -40.26 ‰ respectively, in its rockier portion, and -6.09‰ and -43.05‰. (author)

  5. Stable isotope oxygen-18 and deuterium analysis in surface and groundwater of the Jequitibá Creek Basin, Sete Lagoas, MG

    International Nuclear Information System (INIS)

    Linhares, Giovanna Maria Gardini; Moreira, Rubens Martins; Pimenta, Rafael Colombo; Scarpelli, Raquel Pazzini; Santos, Elizangela Augusta dos

    2017-01-01

    Groundwater is an important source of public and industrial supplies, and inadequate exploitation of water reflects negatively on its quality and production of wells, especially when located in karstic aquifers. The study area includes the Maize and Sorghum National Research / Embrapa, located in the karst region of Sete Lagoas, within of the Jequitibá creek sub-basin, an affluent of the Velhas River. The evaluation of the content of stable isotopes of hydrogen ( 2 H), or deuterium, and oxygen ( 18 O) of surface waters (lagoons) and groundwater (production and monitoring wells) collected from the study area allowed to know directly the origin of these waters, active climatic processes and interactions between different aquifers and surface bodies, as possible mixtures of water from different sources. The collected samples were analyzed by isotopic ratio mass spectrometry, IRMS Advantege - Thermo Science, from the Center for the Development of Nuclear Technology (CDTN). The mean values found for δ 18 O and δ 2 H in the waters of the monitoring wells were -6.40‰ and -43.21‰, respectively. For the production wells, mean values for δ 18 O and δ 2 H of -5.87 ‰ and -40.09‰, respectively, were obtained. When compared to GMWL, the collected groundwater originates attributed to the precipitations. The lagoon waters had mean values for δ 18 O and δ 2 H of -3.73‰ and -30.08‰. The water collected in the crystalline fissured aquifer presented mean values δ 18 O and δ 2 H of -6.91‰ and -40.26 ‰ respectively, in its rockier portion, and -6.09‰ and -43.05‰. (author)

  6. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  7. Oxygen and silicon stable isotopes of diatom silica. Reconstructing changes in surface water hydrography and silicic acid utilization in the late Pleistocene subarctic Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Edith

    2014-03-05

    Deglacial variations in upper ocean nutrient dynamics and stratification in high latitudes, as well as associated changes in thermohaline overturning circulation, are thought to have played a key role in changing atmospheric CO{sub 2} concentrations. This thesis examines the relationship between past changes in subarctic Pacific upper ocean stratification and nutrient (silicic acid) utilization, using oxygen and silicon stable isotopes of diatom silica, for the first time at millennial-scale resolution and analyzed with a new and efficient instrumentation set-up. The isotopic data, presented in three manuscripts, show a consistent picture of millennial-scale variability in upper ocean stratification and silicic acid utilization during the last ∝50 ka BP, e.g. indicating that the subarctic Pacific was a source region for atmospheric CO{sub 2} during the last deglaciation (late Heinrich Stadial 1 and the Boelling/Alleroed). The presented results demonstrate the high potential of combined diatom oxygen and silicon stable isotope analysis especially for, but not restricted to, marine regions characterized by a low biogenic carbonate content like the subarctic Pacific and the Southern Ocean.

  8. Oxygen and silicon stable isotopes of diatom silica. Reconstructing changes in surface water hydrography and silicic acid utilization in the late Pleistocene subarctic Pacific

    International Nuclear Information System (INIS)

    Maier, Edith

    2014-01-01

    Deglacial variations in upper ocean nutrient dynamics and stratification in high latitudes, as well as associated changes in thermohaline overturning circulation, are thought to have played a key role in changing atmospheric CO 2 concentrations. This thesis examines the relationship between past changes in subarctic Pacific upper ocean stratification and nutrient (silicic acid) utilization, using oxygen and silicon stable isotopes of diatom silica, for the first time at millennial-scale resolution and analyzed with a new and efficient instrumentation set-up. The isotopic data, presented in three manuscripts, show a consistent picture of millennial-scale variability in upper ocean stratification and silicic acid utilization during the last ∝50 ka BP, e.g. indicating that the subarctic Pacific was a source region for atmospheric CO 2 during the last deglaciation (late Heinrich Stadial 1 and the Boelling/Alleroed). The presented results demonstrate the high potential of combined diatom oxygen and silicon stable isotope analysis especially for, but not restricted to, marine regions characterized by a low biogenic carbonate content like the subarctic Pacific and the Southern Ocean.

  9. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted...... instability of vicinal metal surfaces is at variance with the almost generally observed stability of these surfaces. We argue that the unstable orientations undergo a defaceting transition at relatively low temperatures, driven by the high vibrational entropy of steps....

  10. Interaction of oxygen with zirconia surface

    International Nuclear Information System (INIS)

    Ivankiv, L.I.; Ketsman, I.V.

    1999-01-01

    The influence of surface heat treatment, electron (50-800) eV irradiation and UV (180-300) nM illumination of adsorption system on the state of oxygen adsorbed on zirconia surface have been investigated. On the basis of experimental results obtained by investigation of photon emission accompanying oxygen adsorption (AL) and TPD data existence of adsorption sites on the surface is suggested on which irreversible dissociative adsorption of oxygen occurs. These very sites are associated with emission processes Conclusion is made that the only type of adsorption sites connected with anion vacancy is present on zirconia surface and this is its charge state that determines the state of adsorbed oxygen. One of the important mechanisms by which the electron and UV photon excitation affects the adsorption interaction is the change of the charge state of the adsorption site

  11. Surface acoustic wave oxygen pressure sensor

    Science.gov (United States)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  12. Application of carbon and oxygen stable isotopes to the study of Brazilian precambrian

    International Nuclear Information System (INIS)

    Torquato, J.R.F.

    1980-01-01

    Samples of carbonated rocks of precambrian age are studied. The stable carbon and oxygen isotopes are applied to the study of terrestrial materials considering the variations of some element isotopic composition in function of the environment of sedimentation. The isotopic analysis was done using mass spectrometers. The analytical results and the description of region geology of the site of each sample are presented. The isotopic data are interpreted aiming to the environment of sedimentation. New techniques for better improvement of carbon and oxygen ratios, are proposed, such as: to use the analysis of surface trend and the isotopic logging in mapping of surface and subsurface. A new method for approximated determination of the ages of precambrian carbonated rocks, considering the limitations of their new technique, is also presented. (M.C.K.) [pt

  13. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  14. Late Archean Surface Ocean Oxygenation (Invited)

    Science.gov (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.

    2009-12-01

    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  15. A first-principles study of oxygen adsorption on Ir(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hengjiao, E-mail: gaohengjiao@163.com; Xiong, Yuqing, E-mail: xiongyq@hotmail.com; Liu, Xiaoli, E-mail: shantianzi@126.com; Zhao, Dongcai, E-mail: zhaodongc@163.com; Feng, Yudong, E-mail: yudong_feng@sina.com; Wang, Lanxi, E-mail: wanglanxi@live.com; Wang, Jinxiao, E-mail: coldwind716@gmail.com

    2016-12-15

    Highlights: • Adsorption of oxygen on Ir(111) surface was studied by density functional theory. • The most stable adsorption site was determined by adsorption energy calculation. • Adsorption of oxygen at bridge and top site on Ir surface was the most stable ones. • Interaction of O 2p and Ir 5d orbits is relatively strong and formed hybridization. - Abstract: In order to understand deposition mechanism of iridium thin film by atomic layer deposition, the adsorption of oxygen on Ir(111) surface was studied by use of density functional theory and a periodical slab model. By calculating the adsorption energy and structure of oxygen at four adsorption sites (top, bridge, fcc-hollow and hcp-hollow) on Ir(111) surface, the most stable adsorption site was determined. On this basis, the banding mechanism of O and Ir atoms was studied by density of states of oxygen and iridium atoms. Oxygen adsorbed at hcp(parallel) site on Ir(111) surface was the most stable one according to the adsorption energy calculation results. Orbital charge analysis indicate that charge transferred from 5p and 5d orbit to 2p orbit of adsorbed O atoms, and 6s orbit of iridium atoms. Meanwhile, density of state study indicated that adsorption of oxygen on Ir(111) surface is mainly due to the interaction between 2p orbit of O atoms and 5d orbit of iridium atoms.

  16. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    OpenAIRE

    Kimura, Yusuke

    2018-01-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface i...

  17. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  18. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  19. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  20. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Chongmin; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Wang, Xiqing; Dai, Sheng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-04-02

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H{sub 2}PtCl{sub 6}) in ethylene glycol. Pt nanoparticles of {proportional_to}3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of {proportional_to}2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials. (author)

  1. Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-07-01

    Full Text Available The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC. Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  2. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  3. Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Paoli, Elisa Antares; Chorkendorff, Ib

    2015-01-01

    Catalysts are required for the oxygen evolution reaction, which are abundant, active, and stable in acid. MnO2 is a promising candidate material for this purpose. However, it dissolves at high overpotentials. Using first-principles calculations, a strategy to mitigate this problem by decorating...... undercoordinated surface sites of MnO2 with a stable oxide is developed here. TiO2 stands out as the most promising of the different oxides in the simulations. This prediction is experimentally verified by testing sputter-deposited thin films of MnO2 and Ti-MnO2. A combination of electrochemical measurements...

  4. Regional CBF in chronic stable TBI treated with hyperbaric oxygen.

    Science.gov (United States)

    Barrett, K F; Masel, B; Patterson, J; Scheibel, R S; Corson, K P; Mader, J T

    2004-01-01

    To investigate whether Hyperbaric Oxygen Therapy (HBO2) could improve neurologic deficits and regional cerebral blood flow (rCBF) in chronic traumatic brain injuries (TBI), the authors employed a nonrandomized control pilot trial. Five subjects, at least three years post head injury, received HBO2. Five head injured controls (HIC) were matched for age, sex, and type of injury. Five healthy subjects served as normal controls. Sixty-eight normal volunteers comprised a reference data bank against which to compare SPECT brain scans. HBO2 subjects received 120 HBO2 in blocks of 80 and 40 treatments with an interval five-month break. Normal controls underwent a single SPECT brain scan, HBO2, and repeat SPECT battery. TBI subjects were evaluated by neurologic, neuropsychometric, exercise testing, and pre and post study MRIs, or CT scans if MRI was contraindicated. Statistical Parametric Mapping was applied to SPECT scans for rCBF analysis. There were no significant objective changes in neurologic, neuropsychometric, exercise testing, MRIs, or rCBF. In this small pilot study, HBO2 did not effect clinical or regional cerebral blood flow improvement in TBI subjects.

  5. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    OpenAIRE

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  6. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    OpenAIRE

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  7. The surface chemistry of metal-oxygen interactions

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Baroni, Stefano

    1997-01-01

    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium...... structure, surface energy and surface stress of the unreconstructed and (1 x 2) reconstructed structures. For the oxygen-covered surface we have performed a geometry optimization at 0.5, 1, and 2 monolayer oxygen coverages, and we present results for the equilibrium configurations, workfunctions and oxygen...

  8. Long-term stable surface modification of DLC coatings

    Directory of Open Access Journals (Sweden)

    Gotzmann Gaby

    2017-09-01

    Full Text Available The use of coatings based on diamond like carbon (DLC for medical applications was established during the last years. Main advantages of these coatings are its high hardness, good wear and friction behavior and its biocompatibility. Using low-energy electron-beam treatment, we addressed the surface modification of DLC coatings. The aim was to generate new biofunctional surface characteristics that are long-term stable.

  9. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  10. Do oxygen stable isotopes track precipitation moisture source in vascular plant dominated peatlands?

    Science.gov (United States)

    Charman, D.; Amesbury, M. J.; Newnham, R.; Loader, N.; Goodrich, J. P.; Gallego-Sala, A. V.; Royles, J.; Keller, E. D.; Baisden, W. T.

    2014-12-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature and humidity dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives. Exploitation of this record from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, has been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with limited application in the Southern Hemisphere (SH) or in peatlands dominated by vascular plants. Throughout New Zealand (NZ), the preserved root matrix of the restionaceous wire rush (Empodisma spp.) forms deep peat deposits. NZ provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because sites are ideally suited to single taxon analysis, preserve potentially high resolution full Holocene palaeoclimate records and are situated in the climatically sensitive SH mid-latitudes. Crucially, large gradients exist in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. We test the capacity for δ18O analysis of Empodisma alpha cellulose from ombrotrophic restiad peatlands in NZ to provide a methodology for developing palaeoclimate records. We took surface plant, water and precipitation samples over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. We found a strong link between the isotopic compositions of surface root water, the most likely source water for plant growth, and precipitation in both datasets. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in surface root water. The link between source water and plant

  11. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    Science.gov (United States)

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-04

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Growth history of cultured pearl oysters based on stable oxygen isotope analysis

    Science.gov (United States)

    Nakashima, R.; Furuta, N.; Suzuki, A.; Kawahata, H.; Shikazono, N.

    2007-12-01

    We investigated the oxygen isotopic ratio in shells of the pearl oyster Pinctada martensii cultivated in embayments in Mie Prefecture, central Japan, to evaluate the biomineralization of shell structures of the species and its pearls in response to environmental change. Microsamples for oxygen isotope analysis were collected from the surfaces of shells (outer, middle, and inner shell layers) and pearls. Water temperature variations were estimated from the oxygen isotope values of the carbonate. Oxygen isotope profiles of the prismatic calcite of the outer shell layer reflected seasonal variations of water temperature, whereas those of nacreous aragonites of the middle and inner shell layers and pearls recorded temperatures from April to November, June to September, and July to September, respectively. Lower temperatures in autumn and winter might slow the growth of nacreous aragonites. The oxygen isotope values are controlled by both variations of water temperature and shell structures; the prismatic calcite of this species is useful for reconstructing seasonal changes of calcification temperature.

  13. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  14. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    Science.gov (United States)

    Kimura, Yusuke

    2018-03-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface into a pair of isomorphic rational elliptic surfaces. When two rational elliptic surfaces have different complex structures, whether their sum glued along a smooth fiber admits deformation to a K3 surface can be determined by studying the structure of the K3 lattice. We investigate the lattice theoretic condition to determine whether a deformation to a K3 surface exists for pairs of extremal rational elliptic surfaces. In addition, we discuss the configurations of singular fibers under stable degeneration. The sum of two isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface, the singular fibers of which are twice that of the rational elliptic surface. For special situations, singular fibers of the resulting K3 surface collide and they are enhanced to a fiber of another type. Some K3 surfaces become attractive in these situations. We determine the complex structures and the Weierstrass forms of these attractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on these attractive K3 surfaces times a K3. E 6, E 7, E 8, SU(5), and SO(10) gauge groups arise in these compactifications.

  15. An oxygen pressure sensor using surface acoustic wave devices

    Science.gov (United States)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  16. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A.V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  17. Surface interaction of polyimide with oxygen ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P.S.; Bhoraskar, V.N.; Mandle, A.B.; Ganeshan, V.; Bhoraskar, S.V.

    2004-01-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis

  18. Surface interaction of polyimide with oxygen ECR plasma

    Science.gov (United States)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  19. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  20. Is bicarbonate stable in and on the calcite surface?

    Science.gov (United States)

    Andersson, M. P.; Rodriguez-Blanco, J. D.; Stipp, S. L. S.

    2016-03-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3- CO32- + H+, when HCO3- is included in, and adsorbed on, a calcite surface. We have used cluster models (80-100 atoms) to represent the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from -6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 < pH < 6.35, where H2CO30 is the dominant dissolved species. When bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution, 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32- is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour of the carbonate species in calcite-water systems, particularly in the pH range where the bicarbonate species dominates in water and where the carbonate species dominates at the surface, i.e. when 7.5 < pH < 10.35. Our atomic scale data for the various calcite surface sites provide the needed input to improve and constrain surface complexation modelling and are especially useful for predicting behaviour in systems where experiments are difficult or impossible, such as at high temperature and pressure.

  1. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton; Dimitrakopoulos, Georgios; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions

  2. Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes

    International Nuclear Information System (INIS)

    2009-01-01

    Stable isotope ratios of hydrogen and oxygen are tracers of choice for water cycle processes in hydrological, atmospheric and ecological studies. The use of isotopes has been limited to some extent because of the relatively high cost of isotope ratio mass spectrometers and the need for specialized operational skills. Here, the results of performance testing of a recently developed laser spectroscopic instrument for measuring stable hydrogen and oxygen isotope ratios of water samples are described, along with a procedure for instrument installation and operation. Over the last four years, the IAEA Water Resources Programme conducted prototype and production model testing of these instruments and this publication is the outcome of those efforts. One of the main missions of the IAEA is to promote the use of peaceful applications of isotope and nuclear methods in Member States and this publication is intended to facilitate the use of laser absorption based instruments for hydrogen and oxygen stable isotope analyses of liquid water samples for hydrological and other studies. The instrument uses off-axis integrated cavity output spectroscopy to measure absolute abundances of 2 HHO, HH 18 O, and HHO via laser absorption. Test results using a number of natural and synthetic water standards and samples with a large range of isotope values demonstrate adequate precision and accuracy (e.g. precisions of 1 per mille for δ 2 H and 0.2 per mille for δ 18 O). The laser instrument has much lower initial and maintenance costs than mass spectrometers and is substantially easier to operate. Thus, these instruments have the potential to bring about a paradigm shift in isotope applications by enabling researchers in all fields to measure isotope ratios by themselves. The appendix contains a detailed procedure for the installation and operation of the instrument. Using the procedure, new users should be able to install the instrument in less than two hours. It also provides step

  3. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Science.gov (United States)

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  4. Unraveling the oxygen vacancy structures at the reduced Ce O2(111 ) surface

    Science.gov (United States)

    Han, Zhong-Kang; Yang, Yi-Zhou; Zhu, Beien; Ganduglia-Pirovano, M. Verónica; Gao, Yi

    2018-03-01

    Oxygen vacancies at ceria (Ce O2 ) surfaces play an essential role in catalytic applications. However, during the past decade, the near-surface vacancy structures at Ce O2(111 ) have been questioned due to the contradictory results from experiments and theoretical simulations. Whether surface vacancies agglomerate, and which is the most stable vacancy structure for varying vacancy concentration and temperature, are being heatedly debated. By combining density functional theory calculations and Monte Carlo simulations, we proposed a unified model to explain all conflicting experimental observations and theoretical results. We find a novel trimeric vacancy structure which is more stable than any other one previously reported, which perfectly reproduces the characteristics of the double linear surface oxygen vacancy clusters observed by STM. Monte Carlo simulations show that at low temperature and low vacancy concentrations, vacancies prefer subsurface sites with a local (2 × 2) ordering, whereas mostly linear surface vacancy clusters do form with increased temperature and degree of reduction. These results well explain the disputes about the stable vacancy structure and surface vacancy clustering at Ce O2(111 ) , and provide a foundation for the understanding of the redox and catalytic chemistry of metal oxides.

  5. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Rossmeisl, Jan; Nørskov, Jens Kehlet

    2008-01-01

    The electrochemical most stable surface structures is investigated as function of pH and potential for Pt, Ag and Ni based on DFT calculations and constructed surface Pourbaix diagrams. It is also explained why metals such as Ag and Ni may be used successfully in alkaline fuel cells but not in ac......The electrochemical most stable surface structures is investigated as function of pH and potential for Pt, Ag and Ni based on DFT calculations and constructed surface Pourbaix diagrams. It is also explained why metals such as Ag and Ni may be used successfully in alkaline fuel cells...... but not in acidic PEM fuel cells. Based on density functional theory calculations we investigate the electrochemically most stable surface structures as a function of pH and electrostatic potential for Pt(111), Ag(111) and Ni(111), and we construct surface Pourbaix diagrams. We study the oxygen reduction reaction......, on the other hand, is constant vs. the standard hydrogen electrode (SHE). For Ag, this means that where the potential for dissolution and ORR are about the same at pH = 0, Ag becomes more stable relative to RHE as pH is increased. Hence the pH dependent stability offers an explanation for the possible use...

  6. Theory of the oxygen-induced restructuring of Cu(110) and Cu(100) surfaces

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1990-01-01

    A model calculation based on the effective-medium theory of the oxygen-induced reconstruction of the (110) and (100) surfaces of Cu is presented. Equilibrium structures are calculated from a minimization of the total energy of the system. Missing-row-type reconstructions are found to be most stable...... in both cases, and an analysis is presented, showing what the driving force is behind these reconstructions....

  7. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  8. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  9. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

    Science.gov (United States)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan

    2017-08-01

    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  10. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  11. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  12. Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes.

    Science.gov (United States)

    Téllez, Helena; Druce, John; Kilner, John A; Ishihara, Tatsumi

    2015-01-01

    The surface and near-surface chemical composition of electroceramic materials often shows significant deviations from that of the bulk. In particular, layered materials, such as cation-ordered LnBaCo2O(5+δ) perovskites (Ln = lanthanide), undergo surface and sub-surface restructuring due to the segregation of the divalent alkaline-earth cation. These processes can take place during synthesis and processing steps (e.g. deposition, sintering or annealing), as well as at temperatures relevant for the operation of these materials as air electrodes in solid oxide fuel cells and electrolysers. Furthermore, the surface segregation in these double perovskites shows fast kinetics, starting at temperatures as low as 400 °C over short periods of time and leading to a decrease in the transition metal surface coverage exposed to the gas phase. In this work, we use a combination of stable isotope tracer labeling and surface-sensitive ion beam techniques to study the oxygen transport properties and their relationship with the surface chemistry in ordered LnBaCo2O(5+δ) perovskites. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS) combined with (18)O isotope exchange was used to determine the oxygen tracer diffusion (D*) and surface exchange (k*) coefficients. Furthermore, Low Energy Ion Scattering (LEIS) was used for the analysis of the surface and near surface chemistry as it provides information from the first mono-atomic layer of the materials. In this way, we could relate the compositional modifications (e.g. cation segregation) taking place at the electrochemically-active surface during the exchange at high temperatures and the oxygen transport properties in double perovskite electrode materials to further our understanding of the mechanism of the surface exchange process.

  13. Water Induced Surface Reconstruction of the Oxygen (2x1) covered Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Sabine; Cabrera-Sanfelix, Pepa; Stass, Ingeborg; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

    2010-08-06

    Low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) were used to study the adsorption of water on a Ru(0001) surface covered with half monolayer of oxygen. The oxygen atoms occupy hcp sites in an ordered structure with (2x1) periodicity. DFT predicts that water is weakly bound to the unmodified surface, 86 meV compared to the ~;;200 meV water-water H-bond. Instead, we found that water adsorption causes a shift of half of the oxygen atoms from hcp sites to fcc sites, creating a honeycomb structure where water molecules bind strongly to the exposed Ru atoms. The energy cost of reconstructing the oxygen overlayer, around 230 meV per displaced oxygen atom, is more than compensated by the larger adsorption energy of water on the newly exposed Ru atoms. Water forms hydrogen bonds with the fcc O atoms in a (4x2) superstructure due to alternating orientations of the molecules. Heating to 185 K results in the complete desorption of the water layer, leaving behind the oxygen honeycomb structure, which is metastable relative to the original (2x1). This stable structure is not recovered until after heating to temperatures close to 260K.

  14. Selective and Stable Ethylbenzene Dehydrogenation to Styrene over Nanodiamonds under Oxygen-lean Conditions.

    Science.gov (United States)

    Diao, Jiangyong; Feng, Zhenbao; Huang, Rui; Liu, Hongyang; Hamid, Sharifah Bee Abd; Su, Dang Sheng

    2016-04-07

    For the first time, significant improvement of the catalytic performance of nanodiamonds was achieved for the dehydrogenation of ethylbenzene to styrene under oxygen-lean conditions. We demonstrated that the combination of direct dehydrogenation and oxidative dehydrogenation indeed occurred on the nanodiamond surface throughout the reaction system. It was found that the active sp(2)-sp(3) hybridized nanostructure was well maintained after the long-term test and the active ketonic carbonyl groups could be generated in situ. A high reactivity with 40% ethylbenzene conversion and 92% styrene selectivity was obtained over the nanodiamond catalyst under oxygen-lean conditions even after a 240 h test, demonstrating the potential of this procedure for application as a promising industrial process for the ethylbenzene dehydrogenation to styrene without steam protection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    Science.gov (United States)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of

  16. Late Quaternary changes in surface productivity and oxygen ...

    Indian Academy of Sciences (India)

    Changes in the abundance of selected planktic foraminiferal species and some sedimentological parameters at ODP site 728A were examined to understand the fluctuations in the surface productivity and deep sea oxygenation in the NW Arabian Sea during last ∼540 kyr. The increased relative abundances of high fertility ...

  17. Oxygen Evolution at Hematite Surfaces: The Impact of Structure and Oxygen Vacancies on Lowering the Overpotential

    NARCIS (Netherlands)

    Zhang, X.; Klaver, P.; van Santen, R.; van de Sanden, M. C. M.; Bieberle, A.

    2016-01-01

    Simulations of the oxygen evolution reaction (OER) are essential for understanding the limitations of water splitting. Most research has focused so far on the OER at flat metal oxide surfaces. The structure sensitivity of the OER has, however, recently been highlighted as a promising research

  18. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design.

    Science.gov (United States)

    Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; McGowan, Francis X; Kheir, John N

    2014-08-01

    Tissue hypoxia is a final common pathway that leads to cellular injury and death in a number of critical illnesses. Intravenous injections of self-assembling, lipid-based oxygen microbubbles (LOMs) can be used to deliver oxygen gas, preventing organ injury and death from systemic hypoxemia. However, current formulations exhibit high polydispersity indices (which may lead to microvascular obstruction) and poor shelf-lives, limiting the translational capacity of LOMs. In this study, we report our efforts to optimize LOM formulations using a mixture response surface methodology (mRSM). We study the effect of changing excipient proportions (the independent variables) on microbubble diameter and product loss (the dependent variables). By using mRSM analysis, the experimental data were fit using a reduced Scheffé linear mixture model. We demonstrate that formulations manufactured from 1,2-distearoyl-sn-glycero-3-phosphocholine, corn syrup, and water produce micron-sized microbubbles with low polydispersity indices, and decreased product loss (relative to previously described formulations) when stored at room temperature over a 30-day period. Optimized LOMs were subsequently tested for their oxygen-releasing ability and found to have similar release kinetics as prior formulations. © 2014 Wiley Periodicals, Inc.

  19. DFT study of oxygen adsorption on Mo{sub 2}C(001) and (201) surfaces at different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lihong, E-mail: chenglihong001@126.com [School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi (China); Li, Wenkui; Chen, Zhiqin; Ai, Jianping; Zhou, Zehua [School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi (China); Liu, Jianwen, E-mail: liujw@nsccsz.gov.cn [National Supercomputing Center in Shenzhen, Shenzhen 518055 (China)

    2017-07-31

    Highlights: • O adsorption manners on Mo{sub 2}C surfaces were calculated by DFT method. • Stable oxygen adsorption states and coverage were identified at given T and p. • O{sub 2} results in full oxidation while H{sub 2}O and CO{sub 2} cause partial oxidation of Mo{sub 2}C surfaces. • Hydrogen could be used to avoid Mo{sub 2}C surface oxidation. - Abstract: Density functional theory (DFT) calculations were performed to investigate oxygen adsorption on Mo{sub 2}C(001) and (201)surfaces at different coverage. The energies and structures of oxygen from lowest to saturated coverages were clearly identified on each surface. Thermodynamics method was introduced to reveal the roles of temperature, pressure as well as oxygen sources (O{sub 2}, H{sub 2}O and CO{sub 2}) on the surface oxygen coverage, which is related to the surface oxidation. On the basis of phase diagram, we can easily identify the stable oxygen coverage at different defined conditions. In addition, it reveals that O{sub 2} is the strongest oxidant, which results in the full coverage of oxygen on both surfaces in a wide range of temperature and pressure. Then, H{sub 2}O and CO{sub 2} are weaker oxidants, which could only cause partial oxidation of Mo{sub 2}C surfaces. These results indicate the facile oxidation of Mo{sub 2}C catalyst. The possible ways to avoid surface oxidation are keeping higher temperature and H{sub 2} pressure in the gas phase.

  20. Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity

    International Nuclear Information System (INIS)

    Bera, Susanta; Khan, Hasmat; Biswas, Indranil; Jana, Sunirmal

    2016-01-01

    Highlights: • Polyaniline (PANI) hybridized ZnO nanorods was synthesized by solution method. • Surface defects were found in the nanorods. • The hybrid material exhibited an enhancement in visible light absorption. • A long-term stable photoelectrochemical activity of the material was found. • Advancement in the properties would be PANI hybridization and surface defects. - Abstract: We report surfactant/template free precursor solution based synthesis of polyaniline (PANI) hybridized surface defective ZnO nanorods by a two-step process. Initially, ZnO nanorods have been prepared at 95 °C, followed by hybridization (coating) of PANI onto the ZnO via in situ polymerization of aniline monomer, forming ZnO-PANI nanohybrid (ZP). The structural properties of ZP have been analyzed by X-ray diffraction (XRD) and transmission electron microscopic (TEM) studies. The presence of surface defects especially the oxygen vacancies in ZnO has been characterized by photoluminescence emission, high resolution TEM, X-ray photoelectron spectroscopy (XPS) and micro-Raman spectral measurements. The chemical interaction of PANI with ZnO has been examined by Fourier transform infrared (FTIR) and XPS analyses. A significant enhancement in visible absorption of ZP sample is found as evidenced from UV–vis diffused reflectance spectral study. BET nitrogen adsorption-desorption isotherm shows an improved textural property (pore size, pore volume) of ZP. Moreover, a long-term stable photoelectrochemical activity (PEC) of ZP is found compare to pristine ZnO. The synergic effect of PANI hybridization and the presence of surface defects in ZnO NRs can enhance the PEC by prolonging the recombination rate of photogenerated charge carriers. The effect can also provide large number of active sites to make electrolyte diffusion and mass transportation easier in the nanohybrid. This simple synthesis strategy can be adopted for PANI hybridization with different metal oxide semiconductors

  1. Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Susanta; Khan, Hasmat [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India); Biswas, Indranil [Materials Characterization and Instrumentation Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India); Jana, Sunirmal, E-mail: sjana@cgcri.res.in [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India)

    2016-10-15

    Highlights: • Polyaniline (PANI) hybridized ZnO nanorods was synthesized by solution method. • Surface defects were found in the nanorods. • The hybrid material exhibited an enhancement in visible light absorption. • A long-term stable photoelectrochemical activity of the material was found. • Advancement in the properties would be PANI hybridization and surface defects. - Abstract: We report surfactant/template free precursor solution based synthesis of polyaniline (PANI) hybridized surface defective ZnO nanorods by a two-step process. Initially, ZnO nanorods have been prepared at 95 °C, followed by hybridization (coating) of PANI onto the ZnO via in situ polymerization of aniline monomer, forming ZnO-PANI nanohybrid (ZP). The structural properties of ZP have been analyzed by X-ray diffraction (XRD) and transmission electron microscopic (TEM) studies. The presence of surface defects especially the oxygen vacancies in ZnO has been characterized by photoluminescence emission, high resolution TEM, X-ray photoelectron spectroscopy (XPS) and micro-Raman spectral measurements. The chemical interaction of PANI with ZnO has been examined by Fourier transform infrared (FTIR) and XPS analyses. A significant enhancement in visible absorption of ZP sample is found as evidenced from UV–vis diffused reflectance spectral study. BET nitrogen adsorption-desorption isotherm shows an improved textural property (pore size, pore volume) of ZP. Moreover, a long-term stable photoelectrochemical activity (PEC) of ZP is found compare to pristine ZnO. The synergic effect of PANI hybridization and the presence of surface defects in ZnO NRs can enhance the PEC by prolonging the recombination rate of photogenerated charge carriers. The effect can also provide large number of active sites to make electrolyte diffusion and mass transportation easier in the nanohybrid. This simple synthesis strategy can be adopted for PANI hybridization with different metal oxide semiconductors

  2. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  3. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.

    2016-01-01

    the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68±0.18‰ during the peak flow period...... event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used......Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from...

  4. Meridional distribution and seasonal variation of stable oxygen isotope ratio of precipitation in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Kayo Nakamura

    2010-07-01

    Full Text Available The stable oxygen isotope ratio(δ^O in precipitation is known to have important meridional and seasonal variations, but there are almost no measurements of δ^O in precipitation over polar oceans. The present research took advantage of 4 opportunities for in situ observations in summer and winter at high latitudes in the Southern Ocean. In addition, we analyzed samples of precipitation at Syowa Station in 2008 to obtain year-round data. Based on these data, we consider the meridional and seasonal variations of δ^O in precipitation over the Southern Ocean. In general, δ^O decreases with increasing latitude, and is lower in winter than in summer. The latitude gradient is stronger in winter. At 60°S, δ^O is -5.4‰ and -11.3‰ in summer and winter, respectively, while the corresponding figures at 66°S are -10.5‰ and -20.8‰. These results will help us understand the mechanisms of the salinity distribution and its variation in the Antarctic Ocean.

  5. Hydrogen and oxygen stable isotope ratios of milk in the United States.

    Science.gov (United States)

    Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2010-02-24

    Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.

  6. Oxygen stable isotopes during the Last Glacial Maximum climate: perspectives from data-model (iLOVECLIM) comparison

    NARCIS (Netherlands)

    Caley, T.; Roche, D.M.V.A.P.; Waelbroeck, C.; Michel, E.

    2014-01-01

    We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (Î18O), results can be

  7. Growth of the European abalone ( Haliotis tuberculata L.) in situ: Seasonality and ageing using stable oxygen isotopes

    Science.gov (United States)

    Roussel, Sabine; Huchette, Sylvain; Clavier, Jacques; Chauvaud, Laurent

    2011-02-01

    The ormer, Haliotis tuberculata is the only European abalone species commercially exploited. The determination of growth and age in the wild is an important tool for fisheries and aquaculture management. However, the ageing technique used in the past in the field is unreliable. The stable oxygen isotope composition ( 18O/ 16O) of the shell depends on the temperature and oxygen isotope composition of the ambient sea water. The stable oxygen isotope technique, developed to study paleoclimatological changes in shellfish, was applied to three H. tuberculata specimens collected in north-west Brittany. For the specimens collected, the oxygen isotope ratios of the shell reflected the seasonal cycle in the temperature. From winter-to-winter cycles, estimates of the age and the annual growth increment, ranging from 13 to 55 mm per year were obtained. This study shows that stable oxygen isotopes can be a reliable tool for ageing and growth studies of this abalone species in the wild, and for validating other estimates.

  8. Surface Wettability of Oxygen Plasma Treated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2014-01-01

    Full Text Available Oxygen plasma treatment on porous silicon (p-Si surfaces was studied as a practical and effective means to modify wetting properties of as-fabricated p-Si surfaces, that is, contact angles of the p-Si materials. P-Si samples spanning a wide range of surface nanostructures have been fabricated which were subjected to a series of oxygen plasma treatments. Reduction of the p-Si surface contact angles has been systematically observed, and the surface activation rate constant as a function of different pore geometries has been analyzed to achieve an empirical equation. The underlying diffusion mechanisms have been discussed by taking into account of different pore diameters of p-Si samples. It is envisaged that such an approach as well as the corresponding empirical equation may be used to provide relevant process guidance in order to achieve precise control of p-Si contact angles, which is essential for many p-Si applications especially in biosensor areas.

  9. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  10. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M J; Wielunski, L S; Netterfield, R P; Martin, P J; Leistner, A [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  11. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  12. Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction

    International Nuclear Information System (INIS)

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; Wang, Haotian; Xie, Jin

    2017-01-01

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces and their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2 ) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.

  13. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  14. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces

    DEFF Research Database (Denmark)

    Man, Isabela Costinela; Su, Hai-Yan; Vallejo, Federico Calle

    2011-01-01

    with the computational standard hydrogen electrode (SHE) model. We showed that by the discovery of a universal scaling relation between the adsorption energies of HOO* vs HO*, it is possible to analyze the reaction free energy diagrams of all the oxides in a general way. This gave rise to an activity volcano......Trends in electrocatalytic activity of the oxygen evolution reaction (OER) are investigated on the basis of a large database of HO* and HOO* adsorption energies on oxide surfaces. The theoretical overpotential was calculated by applying standard density functional theory in combination...

  15. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  16. Stable carbon and oxygen isotope signatures in molluscan shells under ocean acidification

    Science.gov (United States)

    Nishida, K.; Hayashi, M.; Suzuki, A.; Sato, M.; Nojiri, Y.

    2017-12-01

    Stable carbon and oxygen isotope compositions (δ13C, δ18O) of biogenic carbonate have been widely used for many paleoclimate, paleoecological, and biomineralization studies. δ13C of molluscan shells reflects the mixing of δ13C of dissolved inorganic carbon (DIC) of seawater and respiratory carbon. Previous studies reported physiological effects on molluscs by ocean acidification, and thus the metabolic changes could potentially appear in shell δ13C as changes in a fraction of two carbon sources. In addition, shell δ18O, a commonly used proxy of seawater temperature and seawater δ18O, is also affected by seawater carbonate chemistry. As changes in the marine carbonate system, such as pH and pCO2, have occurred in the past 300 million years, to estimate pH effect on paleotemperature reconstruction is important. Here, we experimentally examined acidification effects on shell δ13C and δ18O of two species of clams for understanding of environmental and physiological proxies. Juvenile specimens of bloody clam Scapharca broughtonii and Japanese surf clam Pseudocardium sachalinense were cultured at five (400, 600, 800, 1000, and 1200 µatm, P. sachalinense) or six (280, 400, 600, 800, 1000, and 1200 µatm, S. broughtonii) different pCO2 levels using CO2 control system of the Demonstration Laboratory, MERI, Japan. Significant negative correlations between shell δ13C and pH appeared in S. broughtonii, which showed non-significant pH effects on calcification, and the slope of the relationship of shell carbonate was lower than that of seawater DIC. On the other hand, in P. sachalinense which showed a decrease in calcification at low-pH treatment, the slopes of the relationship between shell δ13C and pH was roughly the same as that of seawater DIC. Thus, the extrapallial fluid of P. sachalinense might more strongly affected by acidified seawater than S. broughtonii. The results of two species might be attributable to differences in physiological responses to

  17. Seasonal Variations in Stable Isotope Ratios of Oxygen and Hydrogen in Two Tundra Rivers in NE European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Huitu, E.; Arvola, L. [Lammi Biological Station, University of Helsinki (Finland); Sonninen, E. [Radiocarbon Dating Laboratory, University of Helsinki (Finland)

    2013-07-15

    The variability in stable isotope ratios of oxygen and hydrogen ({delta} {sup 18}O and {delta}{sup 2}H values) in river waters in northeast European Russia was studied for the period from July 2007 to october 2008. Exceptional isotope composition in precipitation obtained during the sampling period was clearly traced in the composition of river waters. Water from permafrost thawing did not make a great contribution to river flow. (author)

  18. Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Jin, Shi; Chen, Man; Dong, Haifeng; He, Bingyu; Lu, Huiting; Su, Lei; Dai, Wenhao; Zhang, Qiaochu; Zhang, Xueji

    2015-01-01

    Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter , which is vital in high performance fuel cells, batteries and nanodevices.

  19. Is bicarbonate stable in and on the calcite surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Rodriguez Blanco, Juan Diego; Stipp, Susan Louise Svane

    2016-01-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3− CO32− + H+, when HCO3− is included in, and adsorbed on, a calcite surface. We have used cluster models (80–100 atoms) to represent...... the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from −6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite...... even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution...

  20. Oxygen stable isotopes variation in water precipitation in Poland – anthropological applications

    Directory of Open Access Journals (Sweden)

    Lisowska-Gaczorek Aleksandra

    2017-03-01

    Full Text Available The main objective of oxygen isotope analysis is to determine the probable place of origin of an individual or the reconstruction of migration paths. The research are methodologically based on referencing oxygen isotope ratios of apatite phosphates (δ18Op to the range of environmental background δ18O, most frequently determined on the basis of precipitation.

  1. Thermochemistry of minerals stable near the earth's surface

    International Nuclear Information System (INIS)

    1990-01-01

    The present proposal continues the evolution, of changing emphasis from silicate melts to glass and toward crystalline minerals stable in the shallow crustal environment, particularly amphiholes, micas, and related hydrous phases adding zeolites and carbonates to our areas of interest. This is made possible both by recent advances in our high-temperature calorimetric techniques and by an interest in extending our ideas about the systematics of ionic substitutions to more complex structures. The proposal presents the following: (a) a listing of papers, theses, and abstracts in the past 3 years supported by the present grant, (b) a summary of work on glasses containing highly charged cations and on some related crystalline phases, with proposed new directions, (c) a discussion of advances in calorimetric methods and what new possibilities they open, (d) completed and planned work on amphiboles, micas, and clays, (e) completed and proposed work on amorpous low temperature materials, (f) proposed work on zeolites, and (g) proposed work on carbonates and (h) a discussion of the energy relevance of the above projects. This is followed by the required forms, budget pages, and CV. 34 refs., 5 figs., 1 tab

  2. Thermodynamics of Minerals Stable Near the Earth's Surface

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra

    2003-01-01

    OAK B262 Research and Education Activities We are working on developing calorimetric techniques for sulfide minerals. We have completed calorimetric studies of (Na, K, H3O) jarosites, of Na and K jarosite -alunite solid solutions, and of Cr6+ - containing jarosites. We are now working on phases containing As and Pb. These studies are important to issues of heavy metal pollution in the environment. A number of postdocs, graduate students, and undergrads have participated in the research. We have active collaboration with Dirk Baron, faculty at California State University, Bakersfield. In a collaboration with Peter Burns, Notre Dame University, we are working on thermochemistry of U6+ minerals. Navrotsky has participated in a number of national workshops that are helping to define the interfaces between nanotechnology and earth/environmental science. Major Findings Our first finding on uranyl minerals shows that studtite, a phase containing structural peroxide ion, is thermodynamically unstable in the absence of a source of aqueous peroxide ion but is thermodynamically stable in contact with a solution containing peroxide concentrations expected for the radiolysis of water in contact with spent nuclear fuel. This work is in press in Science. We have a consistent thermodynamic data set for the (Na, K, H3O) (Al, Fe) jarosite, alunite minerals and for Cr6+ substituting for S6+ in jarosite. The latter phases represent one of the few solid sinks for trapping toxic Cr6+ in groundwater. Contributions within Discipline Better understanding of thermodynamic driving for and constraints on geochemical and environmental processes

  3. Modelling the artic stable boundary layer and its coupling to the surface

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The impact of coupling the atmosphere to the surface energy balance is examined for the stable boundary layer, as an extension of the first GABLS (GEWEX Atmospheric Boundary-Layer Study) one-dimensional model intercomparison. This coupling is of major importance for the stable boundary-layer

  4. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands?

    Science.gov (United States)

    Amesbury, Matthew J.; Charman, Dan J.; Newnham, Rewi M.; Loader, Neil J.; Goodrich, Jordan; Royles, Jessica; Campbell, David I.; Keller, Elizabeth D.; Baisden, W. Troy; Roland, Thomas P.; Gallego-Sala, Angela V.

    2015-11-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature- and humidity-dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives, which integrate this signal over time. Applications from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, have been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with few in the Southern Hemisphere or in peatlands dominated by vascular plants. New Zealand (NZ) provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because single taxon analysis can be easily carried out, in particular using the preserved root matrix of the restionaceous wire rush (Empodisma spp.) that forms deep Holocene peat deposits throughout the country. Furthermore, large gradients are observed in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. Here, we test whether δ18O of Empodisma α-cellulose from ombrotrophic restiad peatlands in NZ can provide a methodology for developing palaeoclimate records of past precipitation δ18O. Surface plant, water and precipitation samples were taken over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. A link between the isotopic composition of root-associated water, the most likely source water for plant growth, and precipitation in both datasets was found. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in root-associated water. The link between source water and plant cellulose was less clear, although mechanistic modelling predicted mean

  5. Osteoblast response to oxygen functionalised plasma polymer surfaces

    International Nuclear Information System (INIS)

    Kelly, Jonathan M.

    2001-01-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma copolymers was studied by enzyme linked immunosorbent assays and by I 125 radiolabelling. Fibronectin adsorbed in largest amounts to surfaces with intermediate concentrations of carboxyl functionality. Spreading of ROS cells and rat bone marrow stromal cells (BMSC) was characterised by computer image analysis. Cell spreading in media containing 10% serum, on a surface deposited from a plasma of 5 O/o acrylic acid was much greater than on the octadiene plasma polymer while most extensive cell spreading was observed on these surfaces when preadsorbed with fibronectin. Growth (proliferation) of BMSC was assessed over nine days and was found to be faster on an 50% acrylic acid plasma polymer than on tissue culture polystyrene or a hydrocarbon plasma polymer, though cell growth was fastest on fibronectin precoated substrates. Expression of cellular alkaline phosphatase, collagen and calcium reached similar levels on the 50% acrylic acid plasma polymer, tissue culture

  6. Osteoblast response to oxygen functionalised plasma polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Jonathan M

    2001-07-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma copolymers was studied by enzyme linked immunosorbent assays and by I{sup 125} radiolabelling. Fibronectin adsorbed in largest amounts to surfaces with intermediate concentrations of carboxyl functionality. Spreading of ROS cells and rat bone marrow stromal cells (BMSC) was characterised by computer image analysis. Cell spreading in media containing 10% serum, on a surface deposited from a plasma of 5 O/o acrylic acid was much greater than on the octadiene plasma polymer while most extensive cell spreading was observed on these surfaces when preadsorbed with fibronectin. Growth (proliferation) of BMSC was assessed over nine days and was found to be faster on an 50% acrylic acid plasma polymer than on tissue culture polystyrene or a hydrocarbon plasma polymer, though cell growth was fastest on fibronectin precoated substrates. Expression of cellular alkaline phosphatase, collagen and calcium reached similar levels on the 50% acrylic acid plasma polymer, tissue

  7. Theoretical studies on chemisorption of oxygen on β-Mo2C catalyst and its surface oxidation

    DEFF Research Database (Denmark)

    Shi, Xue-Rong; Wang, Shengguang; Hu, Jia

    2012-01-01

    by O2 at PO2/P0 of 10−21–104 and temperature of 100–700K. For the (011) surface with O2 as the oxidant, the most stable structure is that with 1/2ML or 7/8ML oxygen coverage, depending on the temperature and PO2/P0 value. The increase of gaseous oxidant pressure or decrease of temperature can enhance...

  8. Stable perovskite solar cells by surface modification with surfactant molecules

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia, E-mail: mholandabsb@outlook.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH{sub 3}NH{sub 3}PbI{sub 3} was prepared by single step method using a solution containing PbI{sub 2} and CH{sub 3}NH{sub 3}I on DMF:DMSO (2:1) on a concentration of 0.88 mol L{sup -1}. The film was deposited over a planar film of TiO{sub 2}, previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL{sup -1} solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple

  9. Stable perovskite solar cells by surface modification with surfactant molecules

    International Nuclear Information System (INIS)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia

    2016-01-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH 3 NH 3 PbI 3 was prepared by single step method using a solution containing PbI 2 and CH 3 NH 3 I on DMF:DMSO (2:1) on a concentration of 0.88 mol L -1 . The film was deposited over a planar film of TiO 2 , previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL -1 solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple preparation method to improve the stability of

  10. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  11. Fundamental understanding of oxygen reduction and reaction behavior and developing high performance and stable hetero-structured cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2016-11-14

    New unique hetero-structured cathode has been developed in this project. La2NiO4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove the enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO2 & La2-xNiO4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.

  12. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  13. Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction

    DEFF Research Database (Denmark)

    Cavalca, Filippo Carlo; Ferragut, Rafael; Aghion, Stefano

    2017-01-01

    Oxide-derived copper (OD-Cu) electrodes exhibit higher activity than pristine copper during the carbon dioxide reduction reaction (CO2RR) and higher selectivity towards ethylene. The presence of residual subsurface oxygen in OD-Cu has been proposed to be responsible for such improvements, although...

  14. Pt-based Thin Films as Efficient and Stable Catalysts for Oxygen Electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora

    at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Herein the fabrication method, which consists of co-sputtering of thin films, is presented in detail, explaining the challenges one must face in order to fabricate oxygen-free Pt-lanthanides and Pt-early transition metals alloys......This thesis presents the fabrication and characterization of Pt-based thin film catalysts for Oxygen Reduction Reaction (ORR). Gadolinium and Yttrium have been used as alloying materials, in preparation for the replacement of the traditional but economically disadvantageous pure Pt catalysts......, and the proposed solutions. The characterization of the catalysts focused mainly on the electrochemical testing using a Rotating Ring Disk Electrode (RRDE) setup, and includes X-ray Diffraction (XRD), X-ray Photoemission Spectroscopy (XPS), Angle-Resolved X-ray Photoelectron Spectroscopy (AR-XPS), Scanning...

  15. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    OpenAIRE

    Ziveri, P.; Thoms, S.; Probert, I.; Geisen, M.; Langer, H.

    2012-01-01

    The oxygen isotopic composition (δ18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy c...

  16. Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle

    International Nuclear Information System (INIS)

    Gat, J.R.; Gonfiantini, R.

    1981-01-01

    This monograph is mainly intended for hydrologists, hydrogeologists and geochemists who want to become acquainted, rapidly but in some detail, with the theoretical background of stable isotope fractionation in natural physico-chemical processes involving fresh water, with the isotopic differences actually encountered in natural waters and with their use for practical hydrological purposes. Throughout the monograph, and in particular in the last chapter, a series of examples are discussed, giving the results obtained with stable isotope techniques in current hydrological and hydrogeological investigations or, more generally, in water resources exploration and assessment. One chapter is also dedicated to the techniques for measuring D/H and 18 O/ 16 O ratios in water

  17. Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective

    Science.gov (United States)

    Perşoiu, Aurel; Bădăluşă, Carmen

    2017-04-01

    In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for

  18. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  19. SPE (tm) regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications

    Science.gov (United States)

    Mcelroy, J. F.

    1990-01-01

    Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.

  20. (Invited) Towards the Development of Active, Stable and Abundant Catalysts for Oxygen Evolution in Acid

    DEFF Research Database (Denmark)

    Stephens, Ifan; Paoli, Elisa Antares; Frydendal, Rasmus

    2015-01-01

    Of the different water splitting technologies, polymer electrolyte membrane (PEM) electrolysers are the most amenable towards small-scale delocalized storage of renewable electricity. In order for these devices make a significant impact to the global energy landscape, they will need to be scaled...... to the TW level. State-of the art PEM electrolysers employ IrOx, which is both expensive and scarce, to catalyse oxygen evolution.(1) Around a decade’s worth of Ir production would be required to scale up PEM electrolysis to the TW scale: this is clearly untenable.(2) It turns out that RuOx has a higher...

  1. Oxygen chemistry in biology: Vibrational spectroscopy, stable isotopes, and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, G.T. [Michigan State Univ., East Lansing, MI (United States)

    1994-12-01

    Dioxygen is an ideally suited substrate for enzymatic manipulation in oxidation-reduction chemistry and in substrate transformation. It is a powerful oxidant with a midpoint potential of 0.815 at neutral pH; at the same time, however, it exists in a triplet state in its most stable electronic configuration. This latter property confers kinetic inertness as a result of spin-conservation restrictions on reaction chemistry. If these restrictions can be overcome and controlled, dioxygen`s high redox potential can be used to maximize efficiency in free-energy conversion processes and to effect activation of relatively inert substrates.

  2. Carbon and oxygen stable isotope and trace element studies in speleothems and across the J-K boundary, Central Italy

    International Nuclear Information System (INIS)

    Kudielka, G.

    2001-07-01

    Carbon and Oxygen stable isotope ratios of carbonates decisively depend on fractionation during physicochemical processes. Therefore, they represent a powerful tool to derive information on past conditions under which the carbonates formed. Isotope ratio mass spectrometry (IRMS) offers a large range of applications. This thesis presents two projects based upon investigation of carbon and oxygen stable isotope ratios combined with trace element abundances (determined by instrumental neutron activation analysis, INAA) in carbonates. (1) Palaeoclimatic investigation on speleothems from central Italy. Four speleothems from Grotta Grande del Vento, central Italy, were analyzed for stable isotope ratios and trace element abundances, and age dated to obtain a chronologically reliable stable isotope profile. The speleothems were sampled by means of a dental drill to gain a stable isotope profile with a 0.5 mm resolution, trace element abundances have been performed by INAA every 0.5 cm, and the samples for age dating were picked according to remarkable features in the stable isotope trends and analyzed by TIMS. The record covers the period from 93 ka until the early holocene with a hiatus lasting from 75 ka until 65.0 ka. Speleothem growth during the last glacial indicates moderate conditions in the Frasassi region back then. Comparison with speleothems from Ireland, France and northern Italy reveal a north-south slope in d18O, indicating, that the rain over central Italy mainly originates from the North Atlantic. Depletion of moisture in d18O during its continental trajectory is due to rainout, which primarily extracts the heavy isotopes. The stable isotope record is in good agreement with the high-resolution speleothem record from Soreq Cave, Israel. Distinct isotopic events coincide between 85 ka and 80 ka, between ∼ 60 ka and 50 ka and from the last glacial to the early holocene. An offset has been existing between the two records at any time. The speleothems of

  3. Surface oxygenation of polypropylene using an air dielectric barrier discharge: the effect of different electrode-platen combinations

    International Nuclear Information System (INIS)

    Upadhyay, D.J.; Cui, N.-Y.; Anderson, C.A.; Brown, N.M.D.

    2004-01-01

    Polypropylene film has been modified in an air dielectric barrier discharge using two different electrode-platen configurations: stainless steel wire electrode-rubber platen or ceramic electrode-aluminium platen combinations. Modified films were characterised by static contact angle measurements, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (ATR-FT-IR). Surface hydrophilic modification appears to be governed by the presence of low-molecular weight oxidised functionalities using XPS and SIMS techniques. Irrespective of the type of electrode-platen combination used to obtain the discharge, oxygenated functionalities of identical nature are formed on the polymer surface. However, the degree of oxidation obtained by the discharge using the wire electrodes with the rubber platen was considerably greater. Further increase in the observed hydrophilicity due to molecular rearrangement and development of stable oxygenated functionalities was evident after 1 month of post-processing analysis

  4. Covalent and stable CuAAC modification of silicon surfaces for control of cell adhesion

    DEFF Research Database (Denmark)

    Vutti, Surendra; Buch-Månson, Nina; Schoffelen, Sanne

    2015-01-01

    in the vapor or liquid phase. In this work, we compared these two methods for oxidized silicon surfaces and thoroughly characterized the functionalization steps by tagging and fluorescence imaging. We demonstrate that the vapor-phase functionalization only provided transient surface modification that was lost...... on extensive washing. For stable surface modification, a liquid-phase method was developed. In this method, silicon wafers were decorated with azides, either by silanization with (3-azidopropyl)triethoxysilane or by conversion of the amine groups of an aminopropylated surface by means of the azido...

  5. Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD

    Science.gov (United States)

    Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood

    1994-01-01

    Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.

  6. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet......, as well. Using this fact, we show the existence of a universal activity volcano to describe oxygen reduction electrocatalysis with a minimum overpotential, ηmin = 0.37 ± 0.1 V. Specifically, we find that the (100) facet of Pt is found to bind oxygen intermediates too strongly and is not active for oxygen...... reduction reaction (ORR). In contrast, Au(100) is predicted to be more active than Au(111) and comparable in activity to Pt alloys. Using this activity volcano, we further predict that Au alloys that bind OH more strongly could display improved ORR activity on the (100) facet. We carry out a computational...

  7. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Perched Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-13

    Fine-grained sediments associated with the Cold Creek Unit at Hanford have caused the formation of a perched water aquifer in the deep vadose zone at the B Complex area, which includes waste sites in the 200-DV-1 Operable Unit and the single-shell tank farms in Waste Management Area B-BX-BY. High levels of contaminants, such as uranium, technetium-99, and nitrate, make this aquifer a continuing source of contamination for the groundwater located a few meters below the perched zone. Analysis of deuterium (2H) and 18-oxygen (18O) of nine perched water samples from three different wells was performed. Samples represent time points from hydraulic tests performed on the perched aquifer using the three wells. The isotope analyses showed that the perched water had δ2H and δ18O ratios consistent with the regional meteoric water line, indicating that local precipitation events at the Hanford site likely account for recharge of the perched water aquifer. Data from the isotope analysis can be used along with pumping and recovery data to help understand the perched water dynamics related to aquifer size and hydraulic control of the aquifer in the future.

  8. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  9. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  10. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    OpenAIRE

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2015-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP....

  11. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  12. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  13. Oxygen and Hydrogen Stable Isotope Composition of Eocene ( ~45 million year old) Fossil Tree Cellulose

    Science.gov (United States)

    Jahren, H.

    2001-05-01

    I report on \\delta18O and \\deltaD values gained from unusually old tree fossils, collected on Axel Heiberg Island of the Canadian High Arctic. A variety of workers have measured the δ ^{18}O value of cellulose and the δ D value of cellulose nitrate isolated from modern trees and compared it to various environmental parameters (esp. Epstein et al., 1977: 14 tree species sampled at 16 sites ranging from 18 \\deg to 62 \\deg North latitude; \\delta18O of cellulose ranged from +20 to +33 \\permil; \\deltaD of cellulose nitrate ranged from -181 to +18). To date the paleoenvironmental interpretations resulting from these studies have been restricted to application in recent and Quaternary earth history due to the lack of sufficiently preserved cellulose and tree ring structure in older tree fossils. An exception to this generalization are the middle Eocene (\\sim45 my old) fossil forests of Axel Heiberg Island, which contain abundant stumps, branches, twigs, cones and leaves of Metasequoia trees in exquisite preservational condition. These deciduous trees grew at a paleolatitude of 80 ° North, and endured prolonged periods of continuous daylight in the summer and continuous darkness in the winter, making the ecosystem completely unlike any forest community existing today. Fossil wood samples from the site have been slightly compressed, but otherwise exhibit minimal alteration: %C and % cellulose (by mass) are similar to modern Metasequoia wood. δ ^{18}O analyses on cellulose isolated from 14 fossil individuals has yielded the following results: range = +17 to +20 ‰ ; mean = +19 ‰ ; variability within an individual = 0.5 to 1.0 ‰ . In presentation, I will complement these results with δ D determinations on cellulose nitrate isolated from the same individuals, as well as from small plants presently growing in the arctic. I will also discuss the surprising result that Axel Heiberg fossil trees appear to have stable isotope composition as low or lower than trees

  14. [Startup, stable operation and process failure of EBPR system under the low temperature and low dissolved oxygen condition].

    Science.gov (United States)

    Ma, Juan; Li, Lu; Yu, Xiao-Jun; Wei, Xue-Fen; Liu, Juan-Li

    2015-02-01

    A sequencing batch reactor (SBR) was started up and operated with alternating anaerobic/oxic (An/O) to perform enhanced biological phosphorus removal (EBPR) under the condition of 13-16 degrees C. The results showed that under the condition of low temperature, the EBPR system was successfully started up in a short time (<6 d). The reactor achieved a high and stable phosphorus removal performance with an influent phosphate concentration of 20 mg x L(-1) and the dissolved oxygen (DO) concentration of 2 mg x L(-1). The effluent phosphate concentration was lower than 0.5 mg x L(-1). It was found that decreasing DO had an influence on the steady operation of EBPR system. As DO concentration of aerobic phase decreased from 2 mg x L(-1) to 1 mg x L(-1), the system could still perform EBPR and the phosphorus removal efficiency was greater than 97.4%. However, the amount of phosphate released during anaerobic phase was observed to decrease slightly compared with that of 2 mg x L(-1) DO condition. Moreover, the phosphorus removal performance of the system deteriorated immediately and the effluent phosphate concentration couldn't meet the national integrated wastewater discharge standard when DO concentration was further lowered to 0.5 mg x L(-1). The experiments of increasing DO to recover phosphorus removal performance of the EBPR suggested the process failure resulted from low DO was not reversible in the short-term. It was also found that the batch tests of anoxic phosphorus uptake using nitrite and nitrate as electron acceptors had an impact on the stable operation of EBPR system, whereas the resulting negative influence could be recovered within 6 cycles. In addition, the mixed liquid suspended solids (MLSS) of the EBPR system remained stable and the sludge volume index (SVI) decreased to a certain extend in a long run, implying long-term low temperature and low DO condition favored the sludge sedimentation.

  15. Stable carbon and oxygen isotope studies of Late Weichselian lake sediments in southern Sweden and northern Poland, with palaeoclimatic implications

    International Nuclear Information System (INIS)

    Hammarlund, D.

    1994-04-01

    Late Weichselian lacustrine sediment sequences from southern Sweden and northern Poland were studied by means of stable isotope analysis in order to reconstruct the climatic development and climatically induced environmental changes in the respective regions. The methods used include analyses of the stable carbon isotope composition (δ 13 C) of bulk organic material, and the stable carbon and oxygen isotope compositions (δ 13 C, δ 18 O) of bulk carbonates and carbonate shells of aquatic organisms. These results were complemented and supported by lithological, chemical and biostratigraphic data (plant macrofossils, insects, molluscs). Chronological data were obtained by AMS radiocarbon dates and correlations based on pollen analysis. At c. 12.400 BP a climatic change from arctic, dry, and continental, to subarctic and more humid and maritime conditions occurred in southern Sweden. The Older Dryas stadial (c.12.200-12.000 BP) is characterized by a temporary return to generally colder , drier, and more continental conditions, followed by generally favourable (subarctic), although unstable, climatic conditions. At c. 11.300 BP a gradual transition towards a colder and more continental climate was initiated, followed by total absence of limnic carbonates during the Younger Dryas stadial (c. 11.000-10.200 BP), indicating arctic and continental conditions. The transition to the Holocene is characterized by a rapid and strong climatic warming. The results from northern Poland point to some important differences compared to this development. A climatic warming around 13.000 BP was followed by generally favourable climatic conditions enabling continuous sedimentation of limnic carbonates during the Late Weichselian. Distinct depletions of 13 C in lacustrine organic material at the transition to the Holocene were recorded in southern Sweden, also demonstrated by decreasing mean values obtained from an extensive compilation of δ 13 C data. A number of processes that may

  16. The surface oxide as a source of oxygen on Rh(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, E. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden)]. E-mail: edvin.lundgren@sljus.lu.se; Gustafson, J. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Resta, A. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Weissenrieder, J. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Mikkelsen, A. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Andersen, J.N. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Koehler, L. [Institut fuer Materialphysik and Centre for Computational Materials Science, Universitaet Wien, A-1090 Vienna (Austria); Kresse, G. [Institut fuer Materialphysik and Centre for Computational Materials Science, Universitaet Wien, A-1090 Vienna (Austria); Klikovits, J. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Biederman, A. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Schmid, M. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Varga, P. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria)

    2005-06-15

    The reduction of a thin surface oxide on the Rh(1 1 1) surface by CO is studied in situ by photoemission spectroscopy, scanning tunneling microscopy, and density functional theory. CO molecules are found not to adsorb on the surface oxide at a sample temperature of 100 K, in contrast to on the clean and chemisorbed oxygen covered surface. Despite this behavior, the surface oxide may still be reduced by CO, albeit in a significantly different fashion as compared to the reduction of a phase containing only chemisorbed on surface oxygen. The experimental observations combined with theoretical considerations concerning the stability of the surface oxide, result in a model of the reduction process at these pressures suggesting that the surface oxide behaves as a source of oxygen for the CO-oxidation reaction.

  17. A first principles investigation of the oxygen adsorption on Zr(0001) surface using cluster expansions

    Science.gov (United States)

    Samin, Adib J.; Taylor, Christopher D.

    2017-11-01

    The design of corrosion resistant zircalloys is important for a variety of technological applications ranging from medicine to the nuclear industry. Since corrosion resistance is mainly attributed to the formation of a surface oxide layer, developing a detailed understanding of this process may assist in future corrosion resistance design. In this work, we conduct a systematic multi-scale investigation of the early stages of oxide formation. This was accomplished by first using a database of fully relaxed DFT calculations to build a cluster-expansion description of the potential function. The developed potential was reasonably good at predicting DFT energies as evidenced by the cross-validation score of 4.4 meV/site. The effective cluster expansion parameters were indicative of repulsive adsorbate interactions in the adlayer in agreement with the literature. The potential then allowed for a systematic investigation of the oxygen configurations on the Zr(0001) surface via Monte Carlo simulations. The adsorption energy was recorded as a function of coverage and an increasing trend was observed in agreement with DFT predictions and the repulsive nature of interactions in the adlayer. The convex hull diagram was recorded indicating the most stable configuration to occur around a coverage of 0.6 ML. The adsorption isotherm was also recorded and contrasted for two temperatures relevant for different applications.

  18. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis.

    Science.gov (United States)

    Spangenberg, Jorge E

    2012-11-30

    The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen ((2)H) and oxygen ((18)O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659 days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. Changes of up to +5‰ for δ(2)H values and +2.0‰ for δ(18)O values were measured for water after more than 1 year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal™ cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original δ(2)H and δ(18)O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and

  19. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    Science.gov (United States)

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  20. Simulation of surface profile formation in oxygen laser cutting of mild steel due to combustion cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, G V; Kovalev, O B [Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of Russian Academy of Sciences, Institutskaya Str 4/1, Novosibirsk, 630090 (Russian Federation)

    2009-09-21

    A physicomathematical model of cyclic iron combustion in an oxygen flow during oxygen laser cutting of metal sheets is developed. The combustion front is set into motion by focused laser radiation and a heterogeneous oxidation reaction in oxygen. The burning rate is limited by oxygen supply from the gas phase towards the metal surface, and the interface motion depends on the local temperature. A 3D numerical simulation predicts wavy structures on the metal surface; their linear sizes depend on the scanning speed of the laser beam, the thickness of the produced liquid oxide film and the parameters of the oxygen jet flow. Simulation results help in understanding the mechanism of striation formation during oxygen gas-laser cutting of mild steel and are in qualitative agreement with experimental findings.

  1. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi, E-mail: a.hozumi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan); Yagihashi, Makoto [Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta-ku, Nagoya 456-0058 (Japan)

    2014-05-01

    A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  2. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Directory of Open Access Journals (Sweden)

    Daniel F. Miranda

    2014-05-01

    Full Text Available A fluorinated and hydrophobic ionic liquid (IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyltriethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  3. Dual-band frequency selective surface with large band separation and stable performance

    International Nuclear Information System (INIS)

    Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo

    2012-01-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua, E-mail: xuc0374@hotmail.com [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-05-01

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  5. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    International Nuclear Information System (INIS)

    Li, Peipei; Chen, Xinhua; Yang, Guangbin; Yu, Laigui; Zhang, Pingyu

    2014-01-01

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  6. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P cells expressed NKG2D at 10% oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  7. Photo-oxidation: Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W.W.C.; Laane, R.W.P.M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  8. Photo-oxidation : Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W. W. C.; Laane, R. W. P. M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  9. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    Science.gov (United States)

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.

  10. Stable functionalization of germanium surface and its application in biomolecules immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Ye, Lin [Sate Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Tang, Teng; Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Bian, Xiaojun; Zhang, Jishen [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn [Sate Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China)

    2014-10-15

    Highlights: • An effective method to immobilize biomolecules on the functionalized Ge surface. • The surface of Ge was functionalized with 11-Mercaptoundecanoic acid (11-MUA). • Stable and uniform SAMs was obtained on Ge surface after 11-MUA treatment. • The functionalized Ge was employed as substrate for protein immobilization. • Paving the way of Ge for further applications in bioelectronics field. - Abstract: As a typical semiconductor material, germanium (Ge) has the potential to be utilized in microelectronics and bioelectronics. Herein, we present a simple and effective method to immobilize biomolecules on the surface of functionalized Ge. The surface oxide of Ge was removed with the pretreatment of hydrochloric acid and the Cl-terminated Ge reacted with 11-Mercaptoundecanoic acid (11-MUA). The surface of Ge was coated with 11-MUA self-assembled monolayers (SAMs) due to the bonding reaction between the sulfhydryl group of 11-MUA and Cl-terminated Ge. Furthermore, typical biomolecule, a green fluorescent protein was chosen to be immobilized on the surface of the functionalized Ge. Contact angle analysis, atomic force microscopy and X-ray photoelectron spectroscopy were used to study the characteristics including wettability, stability, roughness and component of the functionalized Ge, respectively. Fluorescence microscopy was utilized to indicate the efficiency of protein immobilization on the surface of the functionalized Ge. With these studies, stable and uniform functionalized monolayer was obtained on the surface of Ge after 11-MUA treatment and the functionalized Ge was effectively applied in protein immobilization. Furthermore, this study may pave the way for further applications such as the integration of bioelectronics and biosensors with the attractive semiconductor material-Ge in future work.

  11. Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces.

    Science.gov (United States)

    Saeterbakken, Atle H; Fimland, Marius S

    2013-04-01

    The purpose of the study was to compare 6-repetition maximum (6RM) loads and muscle activity in bench press on 3 surfaces, namely, stable bench, balance cushion, and Swiss ball. Sixteen healthy, resistance-trained men (age 22.5 ± 2.0 years, stature 1.82 ± 6.6 m, and body mass 82.0 ± 7.8 kg) volunteered for 3 habituation/strength testing sessions and 1 experimental session. In randomized order on the 3 surfaces, 6RM strength and electromyographic activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were assessed. Relative to stable bench, the 6RM strength was approximately 93% for balance cushion (p ≤ 0.001) and approximately 92% for Swiss ball (p = 0.008); the pectoralis major electromyographic (EMG) activity was approximately 90% using the balance cushion (p = 0.080) and approximately 81% using Swiss ball (p = 0.006); the triceps EMG was approximately 79% using the balance cushion (p = 0.028) and approximately 69% using the Swiss ball (p = 0.002). Relative to balance cushion, the EMG activity in pectoralis, triceps, and erector spinae using Swiss ball was approximately 89% (p = 0.016), approximately 88% (p = 0.014) and approximately 80% (p = 0.020), respectively. In rectus abdominis, the EMG activity relative to Swiss ball was approximately 69% using stable bench (p = 0.042) and approximately 65% using the balance cushion (p = 0.046). Similar EMG activities between stable and unstable surfaces were observed for deltoid anterior, biceps brachii, and oblique external. In conclusion, stable bench press had greater 6RM strength and triceps and pectoralis EMG activity compared with the unstable surfaces. These findings have implications for athletic training and rehabilitation, because they demonstrate an inferior effect of unstable surfaces on muscle activation of prime movers and strength in bench press. If an unstable surface in bench press is desirable, a balance cushion should

  12. Chemisorption of oxygen by coke deposited on catalyst surface

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Duguay, D.G.; Houle, J.

    1988-02-01

    Chemisorption of oxygen by nickel molybdate catalyst used for hydrotreating heavy oils was shown to increase with increasing temperature and reached a maximum at about 270 degrees C. Yields of CO/sub 2/, CO and SO/sub 2/ formed during isothermal chemisorption were estimated by using a fixed-bed reactor. Experimental observations were interpreted in terms of a hydrocarbon autoxidation mechanism. 11 refs., 7 figs., 1 tab.

  13. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Energy Technology Data Exchange (ETDEWEB)

    López-Moreno, S., E-mail: sinlopez@uacam.mx [Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari 480, Campeche, Campeche 24029 (Mexico); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  14. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Science.gov (United States)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  15. Oxygen dosing the surface of SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dudy, L.; Scheiderer, P.; Schuetz, P.; Gabel, J.; Buchwald, M.; Sing, M.; Claessen, R. [Physikalisches Institut, Universitaet Wuerzburg (Germany); Denlinger, J.D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270 (United States); Schlueter, C.; Lee, T.L. [Diamond Light Source Ltd., Didcot, Oxfordshire (United Kingdom)

    2015-07-01

    The highly mobile two-dimensional electron system (2DES) on the surface of the insulating SrTiO{sub 3}(STO) offers exciting perspectives for advanced material design. This 2DES resides in a depletion layer caused by oxygen deficiency of the surface. With photoemission spectroscopy, we monitor the appearance of quasi-particle weight (QP) at the Fermi energy and oxygen vacancy induced states in the band gap (IG). Both, QP and IG weight, increase and decrease respectively upon exposure to extreme ultraviolet (XUV) light and in-situ oxygen dosing. By a proper adjustment of oxygen dosing, any intermediate state can be stabilized providing full control over the charge carrier density. From a comparison of the charge carrier concentrations obtained from an analysis of core-level spectra and the Fermi-surface volume, we conclude on a spatially inhomogeneous surface electronic structure with at least two different phases.

  16. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    International Nuclear Information System (INIS)

    López-Moreno, S.; Romero, A. H.

    2015-01-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O 2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered

  17. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology.

    Science.gov (United States)

    Roberts, Patrick; Blumenthal, Scott A; Dittus, Wolfgang; Wedage, Oshan; Lee-Thorp, Julia A

    2017-06-01

    Stable isotope analysis of primate tissues in tropical forest contexts is an increasingly popular means of obtaining information about niche distinctions among sympatric species, including preferences in feeding height, forest canopy density, plant parts, and trophism. However, issues of equifinality mean that feeding height, canopy density, as well as the plant parts and plant species consumed, may produce similar or confounding effects. With a few exceptions, researchers have so far relied largely on general principles and/or limited plant data from the study area as references for deducing the predominant drivers of primate isotope variation. Here, we explore variation in the stable carbon (δ 13 C), nitrogen (δ 15 N), and oxygen (δ 18 O) isotope ratios of 288 plant samples identified as important to the three primate species from the Polonnaruwa Nature Sanctuary, Sri Lanka, relative to plant part, season, and canopy height. Our results show that plant part and height have the greatest effect on the δ 13 C and δ 18 O measurements of plants of immediate relevance to the primates, Macaca sinica, Semnopithecus priam thersites, and Trachypithecus vetulus, living in this monsoonal tropical forest. We find no influence of plant part, height or season on the δ 15 N of measured plants. While the plant part effect is particularly pronounced in δ 13 C between fruits and leaves, differential feeding height, and plant taxonomy influence plant δ 13 C and δ 18 O differences in addition to plant organ. Given that species composition in different regions and forest types will differ, the results urge caution in extrapolating general isotopic trends without substantial local baselines studies. © 2017 Wiley Periodicals, Inc.

  18. Optical absorption and oxygen passivation of surface states in III-nitride photonic devices

    Science.gov (United States)

    Rousseau, Ian; Callsen, Gordon; Jacopin, Gwénolé; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2018-03-01

    III-nitride surface states are expected to impact high surface-to-volume ratio devices, such as nano- and micro-wire light-emitting diodes, transistors, and photonic integrated circuits. In this work, reversible photoinduced oxygen desorption from III-nitride microdisk resonator surfaces is shown to increase optical attenuation of whispering gallery modes by 100 cm-1 at λ = 450 nm. Comparison of photoinduced oxygen desorption in unintentionally and n+-doped microdisks suggests that the spectral changes originate from the unpinning of the surface Fermi level, likely taking place at etched nonpolar III-nitride sidewalls. An oxygen-rich surface prepared by thermal annealing results in a broadband Q improvement to state-of-the-art values exceeding 1 × 104 at 2.6 eV. Such findings emphasize the importance of optically active surface states and their passivation for future nanoscale III-nitride optoelectronic and photonic devices.

  19. Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.; Sawakuchi, Henrique O.; Da Cunha, Alan C.; Neu, Vania; Brito, Daimio C.; Da Silva Less, Diani F.; Diniz, Joel E. M.; De Matos Valerio, Aline; Kampel, Milton; Krusche, Alex V.; Richey, Jeffrey E.

    2017-02-07

    The Amazon River outgasses nearly an equivalent amount of CO2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO2 production since the recognition of a persistent state of CO2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capable of both decomposing high amounts of organic matter at lower trophic levels, driving CO2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O218O-O2) and O2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m3 d-1 at high water and 1.02 ± 0.55 g O m3 d-1 at low water. This translates to 41 ± 24% of the rate of O2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than

  20. First principles study of dissolved oxygen water adsorption on Fe (001 surfaces

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2018-02-01

    Full Text Available In order to study the mechanism of dissolved oxygen content on the surface corrosion behavior of Fe-based heat transfer, the first principle is used to study the adsorption of O2 monomolecular, H2O monolayer and dissolved oxygen system on Fe-based heat transfer surface. The GGA/PBE approximation is used to calculate the adsorption energy, state density and population change during the adsorption process. Calculations prove that when the dissolved oxygen is adsorbed on the Fe-based surface, the water molecule tends to adsorb at the top sites, and the oxygen molecule tends to adsorb at Griffiths. When the H2O molecule adsorbs and interacts on the Fe (001 surface, the charge distribution of the interfacial double electric layer changes to cause the Fe atoms to lose electrons, resulting in the change of the surface potential. When the O2 molecule adsorbs on the Fe (001 crystal surfaces, the electrons on the Fe (001 surface are lost and the surface potential increases. O2 molecule and the surface of the Fe atoms are prone to electron transfer, in which O atom's 2p orbit for the adsorption of O2 molecule on Fe (001 crystal surface play a major role. With the increase of the proportion of O2 molecule in the dissolved oxygen water, the absolute value of the adsorption energy increases, and the interaction of the Fe-based heat transfer surface is stronger. This study explores the influence law of different dissolved oxygen on the Fe base heat exchange surface corrosion, and the base metal corrosion mechanism for experimental study provides a theoretical reference.

  1. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  2. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    International Nuclear Information System (INIS)

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  3. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  4. Effect of surface texture and structure on the development of stable fluvial armors

    Science.gov (United States)

    Bertin, Stephane; Friedrich, Heide

    2018-04-01

    Stable fluvial armors are found in river systems under conditions of partial sediment transport and limited sediment supply, a common occurrence in nature. Stable armoring is also readily recreated in experimental flumes. Initially, this bed stabilizing phenomenon was examined for different flow discharges and solely related to surface coarsening and bedload transport reduction. The models developed suggest a specific armor composition (i.e., texture) dependent on the parent bed material and formative discharge. Following developments in topographic remote sensing, recent research suggests that armor structure is an important control on bed stability and roughness. In this paper, replicated flume runs during which digital elevation models (DEMs) were collected from both exposed and flooded gravel beds are used to interpret armoring manifestations and to assess their replicability. A range of methodologies was used for the analysis, providing information on (i) surface grain size and orientation, (ii) bed-elevation distributions, (iii) the spatial coherence of the elevations at the grain-scale, (iv) surface slope and aspect, (v) grain imbrication and (vi) the spatial variability in DEM properties. The bed-surface topography was found to be more responsive than bed-material size to changes in flow strength. Our experimental results also provide convincing evidence that gravel-beds' response to water-work during parallel degradation is unique (i.e., replicable) given the formative parameters. Based on this finding, relationships between the armors' properties and formative parameters are proposed, and are supported by adding extensive data from previous research.

  5. Hydrogen and Oxygen stable isotope analysis of water in fruits and vegetables by using cavity ring-down spectrometry

    International Nuclear Information System (INIS)

    Suzuki, Yaeko

    2016-01-01

    We determined oxygen and hydrogen stable isotope ratios (δ"1"8O and δD) of water in fruits (citrus) and vegetables (ginger) using cavity ring-down spectrometry (CRDS) for assessment of their authenticity. The δ"1"8O and δD values of fruits and straight juice had higher than those of concentrated juice. The citrus fruits from Japan had relatively lower δ"1"8O and δD values of than those from Australia, South Africa and the United States. The δD values and d-excess of ginger samples from Japan were relatively higher than those of ginger samples from China. The δ"1"8O and δD values of water in fruits and vegetables would be representative of the ambient water, depending on geographical parameters such as the latitude and altitude. These results suggested that δ"1"8O and δD values of water in fruits and vegetables by using CRDS would be potentially useful for assessment of their authenticity. (author)

  6. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    International Nuclear Information System (INIS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -C=O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  7. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Ganesh C. [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India); Bandyopadhyay, Abhijit [Department of Polymer Science and Technology, University of Calcutta, Calcutta 700 009 (India); Neogi, Sudarsan [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Bhowmick, Anil K., E-mail: anilkb@rtc.iitkgp.ernet.in [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2011-01-15

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -C=O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  8. [Distribution and sources of oxygen and sulfur heterocyclic aromatic compounds in surface soil of Beijing, China].

    Science.gov (United States)

    He, Guang-Xiu; Zhang, Zhi-Huan; Peng, Xu-Yang; Zhu, Lei; Lu, Ling

    2011-11-01

    62 surface soil samples were collected from different environmental function zones in Beijing. Sulfur and oxygen heterocyclic aromatic compounds were detected by GC/MS. The objectives of this study were to identify the composition and distribution of these compounds, and discuss their sources. The results showed that the oxygen and sulfur heterocyclic aromatic compounds in the surface soils mainly contained dibenzofuran, methyl- and C2-dibenzofuran series, dibenzothiophene, methyl-, C2- and C3-dibenzothiophene series and benzonaphthothiophene series. The composition and distribution of the oxygen and sulfur heterocyclic aromatic compounds in the surface soil samples varied in the different environmental function zones, of which some factories and the urban area received oxygen and sulfur heterocyclic aromatic compounds most seriously. In Beijing, the degree of contamination by oxygen and sulfur heterocyclic aromatic compounds in the north surface soil was higher than that in the south. There were preferable linear correlations between the concentration of dibenzofuran series and fluorene series, as well as the concentration of dibenzothiophene series and dibenzofuran series. The oxygen and sulfur heterocyclic aromatic compounds in the surface soil were mainly derived from combustion products of oil and coal and direct input of mineral oil, etc. There were some variations in pollution sources of different environmental function zones.

  9. Improved thrombogenicity on oxygen etched Ti6Al4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Nicholas A. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Smith, Barbara S. [School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Williams, John D. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Popat, Ketul C., E-mail: ketul.popat@colostate.edu [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 (United States)

    2012-07-01

    Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO{sub 2} peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V. - Highlights: Black-Right-Pointing-Pointer Oblique angle oxygen ion etching creates a high quality, uniform oxide surface. Black-Right-Pointing-Pointer Oxygen etched substrates showed fewer adhered platelets. Black-Right-Pointing-Pointer Platelet activation was reduced by the improved oxide surface. Black-Right-Pointing-Pointer Oxygen etched substrates exhibited increased whole blood clotting times. Black-Right-Pointing-Pointer Although clotting reductions were

  10. Improved thrombogenicity on oxygen etched Ti6Al4V surfaces

    International Nuclear Information System (INIS)

    Riedel, Nicholas A.; Smith, Barbara S.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO 2 peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V. - Highlights: ►Oblique angle oxygen ion etching creates a high quality, uniform oxide surface. ►Oxygen etched substrates showed fewer adhered platelets. ►Platelet activation was reduced by the improved oxide surface. ►Oxygen etched substrates exhibited increased whole blood clotting times. ►Although clotting reductions were seen, protein adsorption remained similar.

  11. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  12. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods.

    Science.gov (United States)

    Sankar, Sasidharan; Nair, Balagopal N; Suzuki, Takehiro; Anilkumar, Gopinathan M; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S; Warrier, Krishna G

    2016-03-09

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications.

  13. Adsorption of atomic oxygen (N2O) on a clean Ge(001) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Keim, Enrico G.; van Silfhout, Arend

    1990-01-01

    We present the results of a study concerning the interaction of atomic oxygen (as released by decomposition of N2O ) with the clean Ge(001)2×1 surface at 300 K. Ellipsometry in the photon energy range of 1.5–4 eV, surface conductance measurements and Auger electron spectroscopy(AES) have been used

  14. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  15. Surface activation of cyclo olefin polymer by oxygen plasma discharge: a molecular dynamics study

    International Nuclear Information System (INIS)

    Soberon, Felipe

    2014-01-01

    Thermoplastic substrates made of cyclo olefin polymer (COP) are treated with oxygen plasma discharges to introduce polar groups at the surface. This is the first step in the process of surface functionalization of COP substrates used in biosensor devices. A molecular dynamics model of basic COP structure is implemented using the second-generation reactive empirical bond order (REBO) potentials for hydrocarbon–oxygen interactions. The model includes covalent bond and Van der Waals interactions. The bombardment of a COP surface with mono-energetic atomic oxygen ions, energy in the range 1-35 eV, is simulated and reported here. The dynamics of the substrate modification reveals that the substrate top layer is de-hydrogenated and subsequently builds up an oxygen–carbon matrix layer, ∼10 Å thick. Analysis of the modified substrates indicates that surface yield is predominantly peroxide groups. (paper)

  16. Evolution of Oxygen Deficiency Center on Fused Silica Surface Irradiated by Ultraviolet Laser and Posttreatment

    Directory of Open Access Journals (Sweden)

    Hai-Bing Lü

    2014-01-01

    Full Text Available Evolution of oxygen deficiency centers (ODCs on a fused silica surface irradiated using a 355 nm ultraviolet (UV laser beam in both vacuum and atmospheric conditions was quantitatively studied using photoluminescence and X-ray photoelectron spectroscopy. When the fusedsilica surface was exposed to the UV laser in vacuum, the laser damage threshold was decreased whereas the concentration of the ODCs was increased. For the fuse silica operated under the high power lasers, creation of ODCs on their surface resulted from the UV laser irradiation, and this is more severe in a high vacuum. The laser fluence and/or laser intensity have significant effects on the increase of the ODCs concentration. The ODCs can be effectively repaired using postoxygen plasma treatment and UV laser irradiation in an excessive oxygen environment. Results also demonstrated that the “gain” and “loss” of oxygen at the silica surface is a reversible and dynamic process.

  17. A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada

    International Nuclear Information System (INIS)

    Peng, Haidong; Mayer, Bernhard; Krouse, H. Roy; Harris, Stuart

    2004-01-01

    Short-term (0.5-3 d) precipitation samples were collected from January 1992 to December 2001 in Calgary, Alberta, Canada, and the stable isotope ratios of hydrogen ( 2 H/ 1 H) and oxygen ( 18 O/ 16 O) for these samples were determined. The 10-yr amount-weighted average δ 2 H and δ 18 O values of precipitation were -136.1 per mill and -17.9 per mill, respectively. Consistent with IAEA established practice, the following local meteoric water line (LMWL) for Calgary was derived using amount-weighted monthly average δ 2 H and δ 18 O values: δ 2 H = 7.68 δ 18 O -0.21 (r 2 = 0.96, n= 104) . The correlation equation between δ 2 H and δ 18 O values from individual samples was found to be δ 2 H = 7.10 δ 18 O -13.64 (r 2 = 0.95, n= 839) , which is different from the LMWL, exhibiting lower slope and intercept values. A comparison of δ 2 H and δ 18 O correlation equations with temperature during precipitation events showed a trend of decreasing slopes and intercepts with increasing temperature. Our data suggest that this is caused by incorporation of moisture derived from evaporation from water bodies and soils along the storm paths and by secondary evaporation between the cloud base and the ground during precipitation events. These processes compromise the usefulness of d-excess values as an indicator for the meteorological conditions in the maritime source regions. The δ 18 O temperature dependence at Calgary was found to be ∼ 0.44 per mill/deg C. The study shows that short-term sampling of individual precipitation events yields valuable information, which is not obtainable by the widely used monthly collection programs

  18. A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada

    Science.gov (United States)

    Peng, Haidong; Mayer, Bernhard; Harris, Stuart; Krouse, H. Roy

    2004-04-01

    Short-term (0.5 3 d) precipitation samples were collected from January 1992 to December 2001 in Calgary, Alberta, Canada, and the stable isotope ratios of hydrogen (2H/1H) and oxygen (18O/16O) for these samples were determined. The 10-yr amount-weighted average δ2H and δ18O values of precipitation were -136.1‰ and -17.9‰, respectively. Consistent with International Atomic Energy Agency (IAEA) established practice, the following local meteoric water line (LMWL) for Calgary was derived using amount-weighted monthly average δ2H and δ18O values: δ2H = 7.68 δ18O -0.21 (r2= 0.96, n= 104). The correlation equation between δ2H and δ18O values from individual samples was found to be δ2H = 7.10 δ18O -13.64 (r2= 0.95, n= 839), which is different from the LMWL, exhibiting lower slope and intercept values. A comparison of δ2H and δ18O correlation equations with temperature during precipitation events showed a trend of decreasing slopes and intercepts with increasing temperature. Our data suggest that this is caused by incorporation of moisture derived from evaporation from water bodies and soils along the storm paths and by secondary evaporation between the cloud base and the ground during precipitation events. These processes compromise the usefulness of d-excess values as an indicator for the meteorological conditions in the maritime source regions. The δ18O temperature dependence at Calgary was found to be 0.44‰°C1. The study shows that short-term sampling of individual precipitation events yields valuable information, which is not obtainable by the widely used monthly collection programs.

  19. Different sub-monsoon signals in stable oxygen isotope in daily precipitation to the northeast of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Xiaoxin Yang

    2016-09-01

    Full Text Available This study presents a stable oxygen isotope (δ18O record in daily precipitation from two sites located to the northeast of the Tibetan Plateau (TP: Yushu on the eastern TP and Xi'an on the eastern Chinese Loess Plateau. It attempts to reveal the unique features associated with variations in atmospheric circulation patterns over inland China. For δ18O in daily precipitation at both stations, temperature effect is significant (p < 0.01 only during non-monsoon, while amount effect is significant only during monsoon. This suggests the coexistence of local recycling with large-scale atmospheric circulation on regional precipitation, which is further verified by the significant correlation of relative humidity with δ18O at both stations during monsoon season. The similarity of δ18O in regions under the supposedly same atmospheric circulation streams is tested for Yushu with that at Lhasa, Lulang and Delingha, demonstrating the lag days of δ18O depletion at Yushu with that at Lulang as varying from 15 to 25 d. This confirms the Bay of Bengal monsoon dominance over Yushu. Daily δ18O at Xi'an is compared with contemporary data at Changsha and Guangzhou, featuring a close correlation with the East Asian summer monsoon evolution processes over eastern China, and reflecting the Meiyu-Baiu front influence during July. Back-trajectory analysis in October–November at Xi'an identified the combined effect of cooling of the atmospheric column by the colder air from the west and the lifting of the warmer air from the east, which coexists with local water vapour source. Interactions of the three result in condensation at lower temperatures that is coupled with the long-distance transport of 2/3 of the available water vapour, thus leading to extremely low δ18O values in the post-monsoon precipitation.

  20. Adsorption of oxygen on low-index surfaces of the TiAl{sub 3} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Latyshev, A. M.; Bakulin, A. V.; Kulkova, S. E., E-mail: kulkova@ms.tsc.ru [National Research Tomsk State University (Russian Federation); Hu, Q. M.; Yang, R. [Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Institute of Metal Research (China)

    2016-12-15

    Method of the projector augmented waves in the plane-wave basis within the generalized-gradient approximation for the exchange-correlation functional has been used to study oxygen adsorption on (001), (100), and (110) low-index surfaces of the TiAl{sub 3} alloy. It has been established that the sites that are most energetically preferred for the adsorption of oxygen are hollow (H) positions on the (001) surface and bridge (B) positions on the (110) and (100) surfaces. Structural and electronic factors that define their energy preference have been discussed. Changes in the atomic and electronic structure of subsurface layers that occur as the oxygen concentration increases to three monolayers have been analyzed. It has been shown that the formation of chemical bonds of oxygen with both components of the alloy leads to the appearance of states that are split-off from the bottoms of their valence bands, which is accompanied by the formation of a forbidden gap at the Fermi level and by a weakening of the Ti–Al metallic bonds in the alloy. On the Al-terminated (001) and (110) surfaces, the oxidation of aluminum dominates over that of titanium. On the whole, the binding energy of oxygen on the low-index surfaces with a mixed termination is higher than that at the aluminum-terminated surface. The calculation of the diffusion of oxygen in the TiAl{sub 3} alloy has shown that the lowest barriers correspond to the diffusion between tetrahedral positions in the (001) plane; the diffusion of oxygen in the [001] direction occurs through octahedral and tetrahedral positions. An increase in the concentration of aluminum in the alloy favors a reduction in the height of the energy barriers as compared to the corresponding barriers in the γ-TiAl alloy.

  1. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    International Nuclear Information System (INIS)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone; Chorkendorff, Ib

    2012-01-01

    Highlights: ► Impedance spectroscopy of Cu/Pt(1 1 1) near-surface alloy and Pt(1 1 1). ► Presence of oxygen changes little the adsorption dynamics. ► Adsorption dynamics similar on alloy and Pt(1 1 1). ► Electrosorption phenomena on alloy shifted in potential, relative to Pt(1 1 1). - Abstract: The adsorption dynamics of *OH and *O species at Pt(1 1 1) and Cu/Pt(1 1 1) near-surface alloy (NSA) surfaces in oxygen-free and O 2 -saturated 0.1 M HClO 4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(1 1 1) surface resulting in weaker bonding to adsorbates like *OH, *H or *O. This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16 V towards more positive potentials can be clearly monitored in absence of O 2 and under the oxygen reduction reaction (ORR) conditions for the Cu/Pt(1 1 1) NSA. In both cases, for Pt(1 1 1) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when oxygen reduction takes place at the surface. A ∼5-fold improvement in the ORR activity over the Pt(1 1 1) at 0.9 V (RHE) was measured for the Cu/Pt(1 1 1) near-surface alloy.

  2. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    Science.gov (United States)

    Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang

    2011-03-01

    Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  3. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Gu Guotuan; Tian Yuping; Li Zhantie; Lu Dongfang

    2011-01-01

    Nano-sized Al 2 O 3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al 2 O 3 particles in the coating. As the Al 2 O 3 concentration in the coating was increased from 0% to 8%, WCA increased from 68 o to 165 o . Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  4. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  5. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    Science.gov (United States)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  6. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  7. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  8. Elucidation of oxidation and degradation products of oxygen containing fuel components by combined use of a stable isotopic tracer and mass spectrometry.

    Science.gov (United States)

    Frauscher, Marcella; Besser, Charlotte; Allmaier, Günter; Dörr, Nicole

    2017-11-15

    In order to reveal the degradation products of oxygen-containing fuel components, in particular fatty acid methyl esters, a novel approach was developed to characterize the oxidation behaviour. Combination of artificial alteration under pressurized oxygen atmosphere, a stable isotopic tracer, and gas chromatography electron impact mass spectrometry (GC-EI-MS) was used to obtain detailed information on the formation of oxidation products of (9Z), (12Z)-octadecadienoic acid methyl ester (C18:2 ME). Thereby, biodiesel simulating model compound C18:2 ME was oxidized in a rotating pressurized vessel standardized for lubricant oxidation tests (RPVOT), i.e., artificially altered, under 16 O 2 as well as 18 O 2 atmosphere. Identification of the formed degradation products, mainly carboxylic acids of various chain lengths, alcohols, ketones, and esters, was performed by means of GC-EI-MS. Comparison of mass spectra of compounds under both atmospheres revealed not only the degree of oxidation and the origin of oxygen atoms, but also the sites of oxidative attack and bond cleavage. Hence, the developed and outlined strategy based on a gas-phase stable isotopic tracer and mass spectrometry provides insight into the degradation of oxygen-containing fuels and fuel components by means of the accurate differentiation of oxygen origin in a degradation product. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng; Zhu, Yihan; Liu, Changxu; Zhao, Yunfeng; Liu, Zhaohui; Hedhili, Mohamed N.; Fratalocchi, Andrea; Han, Yu

    2015-01-01

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here

  10. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides

    Directory of Open Access Journals (Sweden)

    Annj Zamuner

    2017-09-01

    Full Text Available Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP mapped on [351–359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  11. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides.

    Science.gov (United States)

    Zamuner, Annj; Brun, Paola; Scorzeto, Michele; Sica, Giuseppe; Castagliuolo, Ignazio; Dettin, Monica

    2017-09-01

    Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP) mapped on [351-359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  12. Surface core level shifts of clean and oxygen covered Ir(111)

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M; Cassese, D; Cavallin, A; Comin, R; Orlando, F; Postregna, L [Universita degli Studi di Trieste, Via A Valerio 2, 34127, Trieste (Italy); Golfetto, E; Baraldi, A [Dipartimento di Fisica e CENMAT, Universita degli Studi di Trieste, Via A Valerio 2, 34127, Trieste (Italy); Lizzit, S [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, 34012 Trieste (Italy)], E-mail: alessandro.baraldi@elettra.trieste.it

    2009-06-15

    We present the results of high resolution core level photoelectron spectroscopy employed to investigate the electronic structure of clean and oxygen covered Ir(111) surface. Ir 4f{sub 7/2} core level spectra are shown to be very sensitive to the local atomic environment. For the clean surface we detected two distinct components shifted by 550 meV, originated by surface and bulk atoms. The larger Gaussian width of the bulk component is explained as due to experimentally unresolved subsurface components. In order to determine the relevance of the phonon contribution we examined the thermal behaviour of the core level lineshape using the Hedin-Rosengren theory. From the phonon-induced spectral broadening we found the Debye temperature of bulk and surface atoms to be 298 and 181 K, respectively, which confirms the softening of the vibrational modes at the surface. Oxygen adsorption leads to the appearance of new surface core level components at -200 meV and +230 meV, which are interpreted as due to first-layer Ir atoms differently coordinated with oxygen. The coverage dependence of these components demonstrates that the oxygen saturation corresponds to 0.38 ML, in good agreement with recent density functional theory calculations.

  13. Adsorption of atomic oxygen on PdAg/Pd(111) surface alloys and coadsorption of CO

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Arnold P. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Reaction Kinetics Research Group, University of Szeged, Chemical Research Center of the Hungarian Academy of Sciences, H-6720 Szeged (Hungary); Bansmann, Joachim; Diemant, Thomas; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2011-07-01

    The interaction of dissociated oxygen with structurally well-defined PdAg/Pd(111) surface alloys and the coadsorption of CO was studied by high resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). After oxygen saturation of the non-modified Pd(111) surface at RT, we observed the formation of a prominent peak in the HREEL spectra at 60 meV corresponding to the perpendicular vibration of oxygen atoms adsorbed in threefold hollow sites. Deposition of small Ag amounts does not change the signal intensity of this peak; it decreases only above 20% Ag. Beyond this Ag content, the peak intensity steeply declines and disappears at around 55-60% Ag. CO coadsorption on the oxygen pre-covered surfaces at 120 K leads to the formation of additional features in HREELS. For a surface alloy with 29% Ag, three loss features due to CO adsorption in on-top, bridge, and threefold-hollow sites can be discriminated already after the lowest CO exposure. Annealing of the co-adsorbed layer to 200 K triggers a decrease of the oxygen concentration due to CO{sub 2} formation. These findings are corroborated by TPD spectra of the CO desorption and CO{sub 2} production.

  14. Carbon and oxygen stable isotope data as paleoenvironmental indicators for limestones from the Campos, Santos and Espirito Santo Basins, Brazil

    International Nuclear Information System (INIS)

    Takaki, T.; Rodrigues, R.

    1984-01-01

    Carbon and oxygen isotope data of limestones from Campos, Santos and Espirito Santo basins provided additional information on the sedimentation environments of these carbonates. The predominance of δ 13 C values between + 1,0 per mille and - 1,0 per mille samples from the Tertiary and the middle section of the Jiquia Stage (Lower Cretaceous) could indiccate, for both carbonate sequences, deposition in a normal marine environment. However, the absence of marine fossils in the Jiquia Stage but not in the Tertiary allows to suggest a normal marine environment for the latter and saline lakes for the former. More positive δ 13 C values in the upper portion of the Jiquia Stage and in the Alagoas Stage suggest a restricted marine environment, with a tendency to hypersalinity. During the Albian the carbonate sedimentation could have occurred in a marine enrironment with an above normal salinity, as indicated by values of δ 13 C between + 3,0 per mille and + 4,0 per mille. According to δ 18 O data, the surface waters were warm, with a tendency of becoming gradually cooler towards the top of the Tertiary. (Author) [pt

  15. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  16. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  17. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  18. Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes.

    Science.gov (United States)

    Gross, A; Turner, B L; Goren, T; Berry, A; Angert, A

    2016-02-02

    Atmospheric dust deposition can be a significant source of phosphorus (P) in some tropical forests, so information on the origins and solubility of atmospheric P is needed to understand and predict patterns of forest productivity under future climate scenarios. We characterized atmospheric dust P across a seasonal cycle in a tropical lowland rain forest on Barro Colorado Nature Monument (BCNM), Republic of Panama. We traced P sources by combining remote sensing imagery with the first measurements of stable oxygen isotopes in soluble inorganic phosphate (δ(18)OP) in dust. In addition, we measured soluble inorganic and organic P concentrations in fine (1 μm) aerosol fractions and used this data to estimate the contribution of P inputs from dust deposition to the forest P budget. Aerosol dry mass was greater in the dry season (December to April, 5.6-15.7 μg m(-3)) than the wet season (May to November, 3.1-7.1 μg m(-3)). In contrast, soluble P concentrations in the aerosols were lower in the dry season (980-1880 μg P g(-1)) than the wet season (1170-3380 μg P g(-1)). The δ(18)OP of dry-season aerosols resembled that of nearby forest soils (∼19.5‰), suggesting a local origin. In the wet season, when the Trans-Atlantic Saharan dust belt moves north close to Panama, the δ(18)OP of aerosols was considerably lower (∼15.5‰), suggesting a significant contribution of long-distance dust P transport. Using satellite retrieved aerosol optical depth (AOD) and the P concentrations in aerosols we sampled in periods when Saharan dust was evident we estimate that the monthly P input from long distance dust transport during the period with highest Saharan dust deposition is 88 ± 31 g P ha(-1) month(-1), equivalent to between 10 and 29% of the P in monthly litter fall in nearby forests. These findings have important implications for our understanding of modern nutrient budgets and the productivity of tropical forests in the region under future climate scenarios.

  19. Source identification of N2O produced during simulated wastewater treatment under different oxygen conditions using stable isotopic analysis

    Directory of Open Access Journals (Sweden)

    T Azzaya

    2014-12-01

    Full Text Available Nitrous oxide (N2O, a potent greenhouse gas which is important in climate change, is predicted to be the most dominant ozone depleting substance. It is mainly produced by oxidation of hydroxylamine (NH2OH or reduction of nitrite (NO2- during microbiological processes such as nitrification and denitrification. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrification in WWTP. We investigated the N2O production mechanisms during batch experiments that simulate wastewater treatment with activated sludge under various dissolved oxygen (DO concentrations by stable isotope analysis. About 125mL of water was sampled from 30L incubation chamber for several times during the incubation, and concentration and isotopomer ratios of N2O and N-containing species were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS. Ammonium (NH4+ consumption was accompanied by increment of nitrite (NO2-, and at the same time dissolved N2O concentration gradually increased to 4850 and 5650 nmol kg-1, respectively, during the four-hour incubation when DO concentrations were 0.2 and 0.5 mg L-1. Observed low SP values (0.2-8.9‰ at DO-0.2 mg L-1, -5.3-6.3‰ at DO-0.5 mg L-1, -1.0-8.3‰ at DO-0.8 mg L-1 in N2O and relationship of nitrogen isotope ratios between N2O and its potential substrates (NH4+, NO3- suggested that N2O produced under the aerobic condition derived mainly from NO2- reduction by ammonia-oxidizing bacteria (nitrifier–denitrification.DOI: http://doi.dx.org/10.5564/mjc.v15i0.313Mongolian Journal of Chemistry  15 (41, 2014, p4-10  

  20. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  1. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    Science.gov (United States)

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  2. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. © 2014 Wiley Periodicals, Inc.

  3. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    Science.gov (United States)

    Niaz, Shanawer; Zdetsis, Aristides D.; Koukaras, Emmanuel N.; Gülseren, Oǧuz; Sadiq, Imran

    2016-11-01

    In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si29 nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  4. Stable isotope composition of surface and groundwater in Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Thomas G. [CICESE, Carret. Ensenada-Tijuana No 3819, Ensenada 22860 (Mexico); Frommen, Theresa [FU Berlin Malteserstr. 74-100, 12249 Berlin (Germany)

    2013-07-01

    Based on a total of 135 stable isotope analysis (δ{sup 18}O, δD) carried out on surface and groundwater samples, as well as on rainwater samples between 2004 and 2011 in 5 different regions in Baja California, an isotopic evaluation of the region was established. The results showed a depletion gradient of -0.25 0/00 δ{sup 18}O per 100 m rise in elevation throughout the study area. Considering an unaltered δ{sup 18}O signature for the thermal springs, the recharge areas of these waters are at elevations over 1400 m outside of the present watersheds, indicating the presence of regional flow systems next to the local flow regime feeding the cold springs and wells. The Mesa de Andrade area has a completely different signature with values of -105 for δ{sup 18}O and -13 for δD. (authors)

  5. Stable isotope composition of surface and groundwater in Baja California, Mexico

    International Nuclear Information System (INIS)

    Kretzschmar, Thomas G.; Frommen, Theresa

    2013-01-01

    Based on a total of 135 stable isotope analysis (δ 18 O, δD) carried out on surface and groundwater samples, as well as on rainwater samples between 2004 and 2011 in 5 different regions in Baja California, an isotopic evaluation of the region was established. The results showed a depletion gradient of -0.25 0/00 δ 18 O per 100 m rise in elevation throughout the study area. Considering an unaltered δ 18 O signature for the thermal springs, the recharge areas of these waters are at elevations over 1400 m outside of the present watersheds, indicating the presence of regional flow systems next to the local flow regime feeding the cold springs and wells. The Mesa de Andrade area has a completely different signature with values of -105 for δ 18 O and -13 for δD. (authors)

  6. Magnetic susceptibility of oxygen adsorbed on the surface of spherical and fibrous activated carbon.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kawamura

    2009-02-01

    Full Text Available The magnetic susceptibilities of oxygen adsorbed on the surface of bead-shaped activated carbon and activated carbon fibers were evaluated as a function of temperature between 4.2 K and 300 K, and found to exhibit a sharp peak at around 50 K. This implies that the adsorbed oxygen molecules form an antiferromagnetic state. The relation between the susceptibility and the adsorbed mass suggest that the thickness of the adsorbed oxygen is thin enough to consider a two-dimensional structure for bead–shaped activated carbon and carbon fibers across the fiber axis but thick enough to regard it as three-dimensional along the fiber axis. The result is discussed with reference to the study on one-dimensional oxygen array.

  7. Passivation of CdZnTe surfaces by oxidation in low energy atomic oxygen

    International Nuclear Information System (INIS)

    Chen, H.; Chattopadhyay, K.; Chen, K.; Burger, A.; George, M.A.; Gregory, J.C.; Nag, P.K.; Weimer, J.J.; James, R.B.

    1999-01-01

    A method of surface passivation of Cd 1-x Zn x Te (CZT) x-ray and gamma ray detectors has been established by using microwave-assisted atomic oxygen bombardment. Detector performance is significantly enhanced due to the reduction of surface leakage current. CZT samples were exposed to an atomic oxygen environment at the University of Alabama in Huntsville close-quote s Thermal Atomic Oxygen Facility. This system generates neutral atomic oxygen species with kinetic energies of 0.1 - 0.2 eV. The surface chemical composition and its morphology modification due to atomic oxygen exposure were studied by x-ray photoelectron spectroscopy and atomic force microscopy and the results were correlated with current-voltage measurements and with room temperature spectral responses to 133 Ba and 241 Am radiation. A reduction of leakage current by about a factor of 2 is reported, together with significant improvement in the gamma-ray line resolution. copyright 1999 American Vacuum Society

  8. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone

    2012-01-01

    The adsorption dynamics of *OH and *O species at Pt(111) and Cu/Pt(111) near-surface alloy (NSA) surfaces in oxygen-free and O2-saturated 0.1M HClO4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(111) surface resulting in weaker bonding to adsorbates like *OH, *H or *O....... This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16V towards more positive potentials can be clearly monitored in absence of O2 and under the oxygen reduction reaction (ORR) conditions...... for the Cu/Pt(111) NSA. In both cases, for Pt(111) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when...

  9. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Niaz, Shanawer, E-mail: shanawersi@gmail.com [Department of Physics, Bilkent University, Ankara 06800 (Turkey); Molecular Engineering Laboratory, at the Department of Physics, University of Patras, Patras, GR-26500 (Greece); Zdetsis, Aristides D.; Koukaras, Emmanuel N. [Molecular Engineering Laboratory, at the Department of Physics, University of Patras, Patras, GR-26500 (Greece); Gülseren, Oǧuz [Department of Physics, Bilkent University, Ankara 06800 (Turkey); Sadiq, Imran [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2016-11-30

    Highlights: • Understanding surface science of oxygenated silicon nanocrystals by means of their composition, stoichiometry and spatial distribution. • Drastic change observed in binding energy, localization of frontier orbitals and HOMO-LUMO gap up to 1.48 eV. • Might be a safe alternative of size dependent bandgap tunability. - Abstract: In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si{sub 29} nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  10. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    International Nuclear Information System (INIS)

    Niaz, Shanawer; Zdetsis, Aristides D.; Koukaras, Emmanuel N.; Gülseren, Oǧuz; Sadiq, Imran

    2016-01-01

    Highlights: • Understanding surface science of oxygenated silicon nanocrystals by means of their composition, stoichiometry and spatial distribution. • Drastic change observed in binding energy, localization of frontier orbitals and HOMO-LUMO gap up to 1.48 eV. • Might be a safe alternative of size dependent bandgap tunability. - Abstract: In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si 29 nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  11. Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage

    Energy Technology Data Exchange (ETDEWEB)

    Gurwitz, Ron; Cohen, Rotem; Shalish, Ilan, E-mail: shalish@ee.bgu.ac.il [Ben Gurion University, Beer Sheva 84105 (Israel)

    2014-01-21

    ZnO surfaces adsorb oxygen in the dark and emit CO{sub 2} when exposed to white light, reminiscent of the lungs of living creatures. We find that this exchange of oxygen with the ambient affects the integrity of the ZnO surface. Thus, it forms a basis for several interesting surface phenomena in ZnO, such as photoconductivity, photovoltage, and gas sensing, and has a role in ZnO electrical conduction. Using x-ray photoelectron spectroscopy on ZnO nanowires, we observed a decomposition of ZnO under white light and formation of oxygen-depleted surface, which explains photoconductivity by the electron donation of oxygen vacancies. Our findings suggest that the observed decomposition of the ZnO lattice may only take place due to photon-induced reduction of ZnO by carbon containing molecules (or carbo-photonic reduction), possibly from the ambient gas, accounting in a consistent way for both the reduced demands on the energy required for decomposition and for the observed emission of lattice oxygen in the form of CO{sub 2}. The formation of oxygen-vacancy rich surface is suggested to induce surface delta doping, causing accumulation of electrons at the surface, which accounts for both the increase in conductivity and the flattening of the energy bands. Using surface photovoltage spectroscopy in ultra high vacuum, we monitored changes in the deep level spectrum. We observe a wide optical transition from a deep acceptor to the conduction band, which energy position coincides with the position of the so called “green luminescence” in ZnO. This green transition disappears with the formation of surface oxygen vacancies. Since the oxygen vacancies are donors, while the green transition involves surface acceptors, the results suggest that the initial emission of oxygen originates at the defect sites of the latter, thereby eliminating each other. This suggests that the green transition originates at surface Zn vacancy acceptors. Removing an oxygen atom from a Zn vacancy

  12. Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage

    International Nuclear Information System (INIS)

    Gurwitz, Ron; Cohen, Rotem; Shalish, Ilan

    2014-01-01

    ZnO surfaces adsorb oxygen in the dark and emit CO 2 when exposed to white light, reminiscent of the lungs of living creatures. We find that this exchange of oxygen with the ambient affects the integrity of the ZnO surface. Thus, it forms a basis for several interesting surface phenomena in ZnO, such as photoconductivity, photovoltage, and gas sensing, and has a role in ZnO electrical conduction. Using x-ray photoelectron spectroscopy on ZnO nanowires, we observed a decomposition of ZnO under white light and formation of oxygen-depleted surface, which explains photoconductivity by the electron donation of oxygen vacancies. Our findings suggest that the observed decomposition of the ZnO lattice may only take place due to photon-induced reduction of ZnO by carbon containing molecules (or carbo-photonic reduction), possibly from the ambient gas, accounting in a consistent way for both the reduced demands on the energy required for decomposition and for the observed emission of lattice oxygen in the form of CO 2 . The formation of oxygen-vacancy rich surface is suggested to induce surface delta doping, causing accumulation of electrons at the surface, which accounts for both the increase in conductivity and the flattening of the energy bands. Using surface photovoltage spectroscopy in ultra high vacuum, we monitored changes in the deep level spectrum. We observe a wide optical transition from a deep acceptor to the conduction band, which energy position coincides with the position of the so called “green luminescence” in ZnO. This green transition disappears with the formation of surface oxygen vacancies. Since the oxygen vacancies are donors, while the green transition involves surface acceptors, the results suggest that the initial emission of oxygen originates at the defect sites of the latter, thereby eliminating each other. This suggests that the green transition originates at surface Zn vacancy acceptors. Removing an oxygen atom from a Zn vacancy completes

  13. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  14. The surface structure of SrTiO3 at high temperatures under influence of oxygen

    International Nuclear Information System (INIS)

    Hesselberth, M. B. S.; Molen, S. J. van der; Aarts, J.

    2014-01-01

    We use low energy electron microscopy to investigate the structure of the SrTiO 3 (001) surface at elevated temperatures and different oxygen pressures. Upon varying the temperature between 500 °C and 900 °C in oxygen pressures ranging from 10 −9 millibar to 10 −4 millibar, two surface transitions are found to be present. The lower temperature (1 × 1) → (2 × 1) transition that is known to occur in ultrahigh vacuum can be reversed by increasing the oxygen pressure. At higher temperatures, we observe a (2 × 1) → disordered (1 × 1) transition which is irreversible in the experimental parameter range. The observations are expected to have a strong bearing on the growth of interface structures

  15. Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective

    Science.gov (United States)

    Navas, Javier; Araujo, Daniel; Piñero, José Carlos; Sánchez-Coronilla, Antonio; Blanco, Eduardo; Villar, Pilar; Alcántara, Rodrigo; Montserrat, Josep; Florentin, Matthieu; Eon, David; Pernot, Julien

    2018-03-01

    Phenomena related with the diamond surface of both power electronic and biosensor devices govern their global behaviour. In particular H- or O-terminations lead to wide variations in their characteristics. To study the origins of such aspects in greater depth, different methods to achieve oxygen terminated diamond were investigated following a multi-technique approach. DFT calculations were then performed to understand the different configurations between the C and O atoms. Three methods for O-terminating the diamond surface were performed: two physical methods with ozone at different pressures, and an acid chemical treatment. X-ray photoelectron spectroscopy, spectroscopic ellipsometry, HRTEM, and EELS were used to characterize the oxygenated surface. Periodic-DFT calculations were undertaken to understand the effect of the different ways in which the oxygen atoms are bonded to carbon atoms on the diamond surface. XPS results showed the presence of hydroxyl or ether groups, composed of simple Csbnd O bonds, and the acid treatment resulted in the highest amount of O on the diamond surface. In turn, ellipsometry showed that the different treatments led to the surface having different optical properties, such as a greater refraction index and extinction coefficient in the case of the sample subjected to acid treatment. TEM analysis showed that applying temperature treatment improved the distribution of the oxygen atoms at the interface and that this generates a thinner amount of oxygen at each position and higher interfacial coverage. Finally, DFT calculations showed both an increase in the number of preferential electron transport pathways when π bonds and ether groups appear in the system, and also the presence of states in the middle of the band gap when there are π bonds, Cdbnd C or Cdbnd O.

  16. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  17. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect

    International Nuclear Information System (INIS)

    Wang Yingjun; Yin Shiheng; Ren Li; Zhao Lianna

    2009-01-01

    Chitosan has received considerable attention for biomedical applications in recent years because of its biocompatibility and biodegradability. In this paper, angle-resolved x-ray photoelectron spectroscopy (ARXPS) was carried out to investigate the chemical groups' spatial orientation on the chitosan membrane surface. Oxygen plasma treatment was also employed to improve the surface hydrophilicity of the chitosan membrane. The results of ARXPS revealed the distribution of surface polar groups, such as-OH and O=CNH 2 toward the membrane bulk, which was the origin of the chitosan membrane surface hydrophobicity. The contact angle measurements and XPS results indicated that oxygen plasma treatment can markedly improve the surface hydrophilicity and surface energy of the chitosan membrane by incorporating oxygen-containing polar groups. With the existence of the aging process, the influence of plasma treatment was not permanent, it faded with storage time. The ARXPS result discovered that the reorientation of polar functional groups generated by plasma treatment toward the membrane bulk was primarily responsible for the aging effect.

  18. The modification of nanocomposite hybrid polymer surfaces by exposure to oxygen containing plasmas

    Science.gov (United States)

    Figueiredo, Ashley; Zimmermann, Katherine; Augustine, Brian; Hughes, Chris; Chusuei, Charles

    2006-11-01

    The wetting properties of the surfaces of the nanocomposite hybrid polymer poly[(propylmethacryl-heptaisobutyl- polyhedral oligomeric silsequioxane)-co-(methylmethacrylate)] (POSS-PMMA)has been studied before and after exposure to plasmas containing oxygen. The contact angle of water droplets on the surface showed a substantial decrease after plasma exposure indicating an increase in the hydrophilicity of the surface. A model was developed in which the plasma preferentially removed organic material including both the PMMA backbone and isobutyl groups from the corners of the POSS cages leaving behind a surface characterized by the silicon oxide-like POSS material. Measurements of surface concentrations of oxygen, silicon, and carbon by x-ray photoelectron spectroscopy (XPS) showed an increase in the amount of oxygen and silicon compared to carbon and the appropriate chemical shifts were observed in the XPS data to support the model of Si-O enrichment on the surface. Variable angle spectroscopic ellipsometry (VASE) and atomic force microscopy (AFM) measurements also supported the model and these results will be presented.

  19. Combustion of methane-oxygen and methane-oxygen-CFC mixtures initiated by a high-current slipping surface discharge

    International Nuclear Information System (INIS)

    Kossyi, I.A.; Silakov, V.P.; Tarasova, N.M.

    2001-01-01

    Results are presented from experimental studies of the destruction of chlorofluorocarbon (CF 2 Cl 2 ) molecules in a methane-oxygen (air) gas mixture whose combustion is initiated by a high-current slipping surface discharge. It is found that a three-component CH 4 + O 2 (air)+ CF 2 Cl 2 gas mixture (even with a considerable amount of the third component) demonstrates properties of explosive combustion involving chain reactions that are typical of two-component CH 4 + O 2 mixtures. Experiments show the high degree of destruction (almost complete decomposition) of chlorofluorocarbons contained in the mixture during one combustion event. The combustion dynamics is studied. It is shown that the combustion initiated by a slipping surface discharge has a number of characteristic features that make it impossible to identify the combustion dynamics with the formation of a combustion or detonation wave. The features of the effects observed can be related to intense UV radiation produced by a pulsed high-current surface discharge

  20. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  1. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  2. Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation.

    Science.gov (United States)

    Cayado, P; Sánchez-Valdés, C F; Stangl, A; Coll, M; Roura, P; Palau, A; Puig, T; Obradors, X

    2017-05-31

    The kinetics of oxygen incorporation (in-diffusion process) and excorporation (out-diffusion process), in YBa 2 Cu 3 O 6+x (YBCO) epitaxial thin films prepared using the chemical solution deposition (CSD) methodology by the trifluoroacetate route, was investigated by electrical conductivity relaxation measurements. We show that the oxygenation kinetics of YBCO films is limited by the surface exchange process of oxygen molecules prior to bulk diffusion into the films. The analysis of the temperature and oxygen partial pressure influence on the oxygenation kinetics has drawn a consistent picture of the oxygen surface exchange process enabling us to define the most likely rate determining step. We have also established a strategy to accelerate the oxygenation kinetics at low temperatures based on the catalytic influence of Ag coatings thus allowing us to decrease the oxygenation temperature in the YBCO thin films.

  3. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    Science.gov (United States)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  4. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  5. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  6. Atomic structure of diamond {111} surfaces etched in oxygen water vapor

    International Nuclear Information System (INIS)

    Theije, F.K. de; Reedijk, M.F.; Arsic, J.; Enckevort, W.J.P. van; Vlieg, E.

    2001-01-01

    The atomic structure of the {111} diamond face after oxygen-water-vapor etching is determined using x-ray scattering. We find that a single dangling bond diamond {111} surface model, terminated by a full monolayer of -OH fits our data best. To explain the measurements it is necessary to add an ordered water layer on top of the -OH terminated surface. The vertical contraction of the surface cell and the distance between the oxygen atoms are generally in agreement with model calculations and results on similar systems. The OH termination is likely to be present during etching as well. This model experimentally confirms the atomic-scale mechanism we proposed previously for this etching system

  7. Hydrogen and oxygen behaviors on Porous-Si surfaces observed using a scanning ESD ion microscope

    International Nuclear Information System (INIS)

    Itoh, Yuki; Ueda, Kazuyuki

    2004-01-01

    A scanning electron-stimulated desorption (ESD) ion microscope (SESDIM) measured the 2-D images of hydrogen and oxygen distribution on solid surfaces. A primary electron beam at 600 eV, with a pulse width of 220 ns, resulted in ion yields of H + and O + . This SESDIM is applied to the surface analysis of Porous-Si (Po-Si) partially covered with SiN films. During the heating of a specimen of the Po-Si at 800 deg. C under ultra-high-vacuum (UHV) conditions, the components of the surface materials were moved or diffused by thermal decomposition accompanied by a redistribution of hydrogen and oxygen. After cyclic heating of above 800 deg. C, the dynamic behaviors of H + and O + accompanied by the movements of the SiN layers were observed as images of H + and O + . This was because the H + and O + ions have been identified as composite materials by their kinetic energies

  8. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2011-06-01

    Understanding nanodiamond functionalisation is of great importance for biological and medical applications. Here we examine the stabilities of oxygen, hydroxyl, and water functionalisation of the nanodiamonds using the self-consistent charge density functional tight-binding simulations. We find that the oxygen and hydroxyl termination are thermodynamically favourable and form strong C–O covalent bonds on the nanodiamond surface in an O2 and H2 gas reservoir, which confirms previous experiments. Yet, the thermodynamic stabilities of oxygen and hydroxyl functionalisation decrease dramatically in a water vapour reservoir. In contrast, H2O molecules are found to be physically adsorbed on the nanodiamond surface, and forced chemical adsorption results in decomposition of H2O. Moreover, the functionalisation efficiency is found to be facet dependent. The oxygen functionalisation prefers the {100} facets as opposed to alternative facets in an O2 and H2 gas reservoir. The hydroxyl functionalisation favors the {111} surfaces in an O2 and H2 reservoir and the {100} facets in a water vapour reservoir, respectively. This facet selectivity is found to be largely dependent upon the environmental temperature, chemical reservoir, and morphology of the nanodiamonds.

  9. Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation

    Science.gov (United States)

    Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu

    2018-04-01

    SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.

  10. Role of oxygen in surface segregation of metal impurities in silicon poly- and bicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Amarray, E.; Deville, J.P.

    1987-07-01

    Metal impurities at surfaces of polycrystalline silicon ribbons have been characterized by surface sensitive methods. Oxygen and heat treatments were found to be a driving force for surface segregation of these impurities. To better analyse their influence and their possible incidence in gettering, model studies were undertaken on Czochralski grown silicon bicrystals. Two main factors of surface segregation have been studied: the role of an ultra-thin oxide layer and the effect of heat treatments. The best surface purification was obtained after an annealing process at 750/sup 0/C of a previously oxidized surface at 450/sup 0/C. This was related to the formation of SiO clusters, followed by a coalescence of SiO/sub 4/ units leading to the subsequent injection of silicon self-interstitials in the lattice.

  11. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    Science.gov (United States)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  12. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  13. Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH

    Directory of Open Access Journals (Sweden)

    B. Haese

    2013-09-01

    Full Text Available In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31. A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ18O in precipitation also shows variations from −4‰ up to 4‰. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the δ18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil and also fractionation included in both evaporation and transpiration (from water transport through plants fluxes. While the isotopic composition of the soil water may change for δ18O by up to +8&permil:, the simulated δ18O in precipitation shows only slight differences on the order of ±1‰. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation database.

  14. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Farzin; Nouranian, Sasan, E-mail: sasan@olemiss.edu; Mahdavi, Mina [University of Mississippi, Department of Chemical Engineering (United States); Al-Ostaz, Ahmed [University of Mississippi, Department of Civil Engineering (United States)

    2016-11-15

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (−16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (−13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (−7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  15. Stable-isotope analysis of a combined nitrification-denitrification sustained by thermophilic methanotrophs under low-oxygen conditions

    NARCIS (Netherlands)

    Pel, R; Oldenhuis, R; Brand, W; Vos, A; Gottschal, JC; Zwart, KB

    To simulate growth conditions experienced by microbiota at O-2-limited interfaces of organic matter in compost, an experimental system capable of maintaining dual limitations of oxygen and carbon for extended periods, i.e., a pO(2)-auxostat, has been used. N-15 tracer studies on thermophilic (53

  16. Stable-isotope analysis of a combined nitrification- denitrification sustained by thermophilic methanotrophs under low-oxygen conditions

    NARCIS (Netherlands)

    Pel, R.; Oldenhuis, R.; Brand, W.; Vos, A.; Gottschal, J.C.; Zwart, K.B.

    1997-01-01

    To simulate growth conditions experienced by microbiota at O-2- limited interfaces of organic matter in compost, an experimental system capable of maintaining dual limitations of oxygen and carbon for extended periods, i.e., a pO(2)-auxostat, has been used. N-15 tracer studies on thermophilic (53

  17. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    Science.gov (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  18. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Liu, Zhi; Grass, Michael E.; Biegalski, Michael D.; Lee, Yueh-Lin; Morgan, Dane; Christen, Hans M.; Bluhm, Hendrik; Shao-Horn, Yang

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  19. The change of steel surface chemistry regarding oxygen partial pressure and dew point

    Science.gov (United States)

    Norden, Martin; Blumenau, Marc; Wuttke, Thiemo; Peters, Klaus-Josef

    2013-04-01

    By investigating the surface state of a Ti-IF, TiNb-IF and a MnCr-DP after several series of intercritical annealing, the impact of the annealing gas composition on the selective oxidation process is discussed. On behalf of the presented results, it can be concluded that not the general oxygen partial pressure in the annealing furnace, which is a result of the equilibrium reaction of water and hydrogen, is the main driving force for the selective oxidation process. It is shown that the amounts of adsorbed gases at the strip surface and the effective oxygen partial pressure resulting from the adsorbed gases, which is mainly dependent on the water content of the annealing furnace, is driving the selective oxidation processes occurring during intercritical annealing. Thus it is concluded, that for industrial applications the dew point must be the key parameter value for process control.

  20. Oxygen-vacancy defects on BaTiO3 (001) surface: a quantum chemical study

    International Nuclear Information System (INIS)

    Duque, Carlos; Stashans, Arvids

    2003-01-01

    A quantum-chemical study of technologically important BaTiO 3 crystal and oxygen-vacancy defects on its (001) surface is reported in the present work. The computations are made using a quantum-chemical method developed for periodic systems (crystals), which is based on the Hartree-Fock theory. The atomic rearrangement due to the surface creation is obtained for a pure BaTiO 3 by means of the periodic large unit cell (LUC) model and using an automated geometry optimisation procedure. The same technique is employed to study the electronic and structural properties of the material due to the presence of an O vacancy and F centre (two electrons trapped in an oxygen vacancy). The computations are carried out for both cubic and tetragonal lattices

  1. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    Science.gov (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  2. Influence of Power Modulation on Ozone Production Using an AC Surface Dielectric Barrier Discharge in Oxygen

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Pekárek, S.; Prukner, Václav

    2010-01-01

    Roč. 30, č. 5 (2010), s. 607-617 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA202/09/0176 Institutional research plan: CEZ:AV0Z20430508 Keywords : Ozone * Surface DBD * Oxygen * Production efficiency Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.798, year: 2010 http://www.springerlink.com/content/28539775w5243513/

  3. Novel structures of oxygen adsorbed on a Zr(0001) surface predicted from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); Wang, Jianyun [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Lv, Jian [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Gao, Xingyu [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Zhao, Yafan [CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Wang, Yanchao, E-mail: wyc@calypso.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Song, Haifeng, E-mail: song_haifeng@iapcm.ac.cn [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China)

    2017-01-30

    Highlights: • Two stable structures of O adsorbed on a Zr(0001) surface are predicted with SLAM. • A stable structure of O adsorbed on a Zr(0001) surface is proposed with MLAM. • The calculated work function change is agreement with experimental value. - Abstract: The structures of O atoms adsorbed on a metal surface influence the metal properties significantly. Thus, studying O chemisorption on a Zr surface is of great interest. We investigated O adsorption on a Zr(0001) surface using our newly developed structure-searching method combined with first-principles calculations. A novel structural prototype with a unique combination of surface face-centered cubic (SFCC) and surface hexagonal close-packed (SHCP) O adsorption sites was predicted using a single-layer adsorption model (SLAM) for a 0.5 and 1.0 monolayer (ML) O coverage. First-principles calculations based on the SLAM revealed that the new predicted structures are energetically favorable compared with the well-known SFCC structures for a low O coverage (0.5 and 1.0 ML). Furthermore, on basis of our predicted SFCC + SHCP structures, a new structure within multi-layer adsorption model (MLAM) was proposed to be more stable at the O coverage of 1.0 ML, in which adsorbed O atoms occupy the SFCC + SHCP sites and the substitutional octahedral sites. The calculated work functions indicate that the SFCC + SHCP configuration has the lowest work function of all known structures at an O coverage of 0.5 ML within the SLAM, which agrees with the experimental trend of work function with variation in O coverage.

  4. Determination of Oxygen in Zircaloy Surfaces by Means of Charged Particle Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, J; Brune, D

    1973-01-15

    Oxygen in zircaloy surfaces has been determined by means of charged particle activation analysis employing the following two reactions I. 16O (d, n) 17F ->(beta+decay) 17O Q = - 1.63 MeV; II. 16O (d, pgamma) 17O Q = + 1.05 MeV. The detection limits for oxygen in such surfaces has been investigated by measuring the promptly emitted 0.87 MeV gamma rays (reaction II) and also the 511 keV annihilation radiation which arises from beta-decay of 17F (reaction I). The correlation between the detection limit for oxygen in zircaloy, the particle energy and the surface thickness analyzed has been evaluated. At a deuteron energy of 3 MeV a detection limit of 0.7 x 10-7 g/cm2 was obtained from the measurement of the prompt gamma radiation arising from the second of these reactions. The analysis carried out by means of this technique is characterized by a high rapidity

  5. Chemisorption of oxygen and subsequent reactions on low index surfaces of β-Mo2C

    DEFF Research Database (Denmark)

    Shi, Xue Rong; Wang, Shengguang; Wang, Jianguo

    2016-01-01

    to the carbon vacancy were identified. We examined the effect of oxygen coverage on the morphology of β-Mo2C by plotting the equilibrium crystal shape. Thermodynamic effect of temperature and reactant or product pressure on the CO/CO2 desorption were investigated. The CO/CO2 desorption is more favorable...... at the saturated oxygen coverage than the low oxygen coverage thermodynamically. The subsequent oxygen diffusion to the carbon vacancy after CO/CO2 desorption may happen depending on the surfaces and oxygen coverage....

  6. Effect of the surface oxygen groups on methane adsorption on coals

    Energy Technology Data Exchange (ETDEWEB)

    Hao Shixiong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Wen Jie [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu Xiaopeng [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Chu Wei, E-mail: chuwei1965_scu@yahoo.com [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We modified one coal with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. Black-Right-Pointing-Pointer The oxygen groups on coal surface were characterized by XPS. Black-Right-Pointing-Pointer The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Black-Right-Pointing-Pointer The adsorption behaviors were measured by volumetric method. Black-Right-Pointing-Pointer There was a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. - Abstract: To investigate the influence of surface oxygen groups on methane adsorption on coals, one bituminous coal was modified with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. The oxygen groups on coal surface were characterized by X-ray photoelectron spectroscopy (XPS). The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Their surface morphologies were analyzed by scanning electron microscopy (SEM). The methane adsorption behaviors of these coal samples were measured at 303 K in pressure range of 0-5.3 MPa by volumetric method. The adsorption data of methane were fitted to the Langmuir model and Dubinin-Astakhov (D-A) model. The fitting results showed that the D-A model fitted the isotherm data better than the Langmuir model. It was observed that there was, in general, a positive correlation between the methane saturated adsorption capacity and the micropore volume of coals while a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. The methane adsorption capacity was determined by the coal surface chemistry when the microporosity parameters of two samples were similar. Coal with a higher amount of oxygen surface groups, and consequently with a less

  7. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform......A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  8. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L S; Kenny, M J; Wieczorek, L [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  9. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J.; Wieczorek, L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  10. Synthesis of surface oxygen-deficient BiPO{sub 4} nanocubes with enhanced visible light induced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Bingtao; Yin, Haoyong; Li, Tao; Gong, Jianying; Lv, Shumei; Nie, Qiulin, E-mail: yhy@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou (China)

    2017-05-15

    The visible light driven BiPO{sub 4} nanocubes with sufficient surface oxygen deficiency were fabricated by a hydrothermal process and subsequently ultrasonic assistant Fe reduction process. The products were characterized by XRD, DRS, XPS, SEM and TEM which showed that the BiPO{sub 4} had cuboid-like shape with a smooth surface and clear edges and the oxygen vacancies were successfully introduced on the surface of the BiPO{sub 4} nanocubes. The as prepared oxygen-deficient BiPO{sub 4} nanocubes showed greatly enhanced visible light induced photocatalytic activity in degradation of Rhodamine B. The enhanced photocatalytic performance and expanded visible light response of BiPO{sub 4} may be due to the introduction of surface oxygen vacancies which can generate the oxygen vacancies mid-gap states lower to the conduction band of BiPO{sub 4}. (author)

  11. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Guosong; Lu, Qiuyuan [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Jun [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Xu, Ruizhen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Yeung, Kelvin W.K., E-mail: wkkyeung@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-02-01

    Magnesium alloys are potential biodegradable materials and have attracted much attention due to their outstanding biological performance and mechanical properties. However, their rapid degradation inside the human body cannot meet clinical needs. In order to improve the corrosion resistance, dual titanium and oxygen ion implantation is performed to modify the surface of the WE43 magnesium alloy. X-ray photoelectron spectroscopy is used to characterize the microstructures in the near surface layer and electrochemical impedance spectroscopy, potentiodynamic polarization, and immersion tests are employed to investigate the corrosion resistance of the implanted alloys in simulated body fluids. The results indicate that dual titanium and oxygen ion implantation produces a TiO{sub 2}-containing surface film which significantly enhances the corrosion resistance of WE43 magnesium alloy. Our data suggest a simple and practical means to improve the corrosion resistance of degradable magnesium alloys. - Highlights: ► Surface modification of WE43 magnesium alloy using dual ion implantation ► Dual Ti and O ion implantation produces a homogeneous TiO{sub 2}-containing surface film ► Significant improvement of the alloy corrosion resistance after the dual ion implantation.

  12. Lentivirus display: stable expression of human antibodies on the surface of human cells and virus particles.

    Directory of Open Access Journals (Sweden)

    Ran Taube

    Full Text Available BACKGROUND: Isolation of human antibodies using current display technologies can be limited by constraints on protein expression, folding and post-translational modifications. Here we describe a discovery platform that utilizes self-inactivating (SIN lentiviral vectors for the surface display of high-affinity single-chain variable region (scFv antibody fragments on human cells and lentivirus particles. METHODOLOGY/PRINCIPAL FINDINGS: Bivalent scFvFc human antibodies were fused in frame with different transmembrane (TM anchoring moieties to allow efficient high-level expression on human cells and the optimal TM was identified. The addition of an eight amino acid HIV-1 gp41 envelope incorporation motif further increased scFvFc expression on human cells and incorporation into lentiviral particles. Both antibody-displaying human cells and virus particles bound antigen specifically. Sulfation of CDR tyrosine residues, a property recently shown to broaden antibody binding affinity and antigen recognition was also demonstrated. High level scFvFc expression and stable integration was achieved in human cells following transduction with IRES containing bicistronic SIN lentivectors encoding ZsGreen when scFvFc fusion proteins were expressed from the first cassette. Up to 10(6-fold enrichment of antibody expressing cells was achieved with one round of antigen coupled magnetic bead pre-selection followed by FACS sorting. Finally, the scFvFc displaying human cells could be used directly in functional biological screens with remarkable sensitivity. CONCLUSIONS/SIGNIFICANCE: This antibody display platform will complement existing technologies by virtue of providing properties unique to lentiviruses and antibody expression in human cells, which, in turn, may aid the discovery of novel therapeutic human mAbs.

  13. Comparison of the effects of an eight-week push-up program using stable versus unstable surfaces.

    Science.gov (United States)

    Chulvi-Medrano, Iván; Martínez-Ballester, Esteban; Masiá-Tortosa, Laura

    2012-12-01

    Recently, the trend among physical training and rehabilitation professionals is the use of resistance exercise on unstable equipment in order to increase the effort of the agonist and stabilizing muscles. It is unknown if performing exercises on unstable surfaces provides a greater training stimulus as compared to training on a stable training surface. Therefore, the purpose of this research was to compare the effect that push-up training on stable and unstable surfaces had on strength performance in healthy young men. Thirty subjects with experience in resistance training participated in push-up training two days per week for eight weeks on one of three different surfaces: the floor (Tp), the T-Bow® (TBp) or the BOSU® (Bp). Strength, as measured by one repetition maximum (1-RM) and muscle endurance, as measured by number of pushups performed did not improve significantly (p>0.05) for any of the intervention groups. The addition of unstable surfaces in push-up training does not provide greater improvement in muscular strength and endurance than push up training performed on a stable surface in young men. 3b.

  14. Surface reactivity of mercury on the oxygen-terminated hematite(0001) surface: a first-principle study

    Science.gov (United States)

    Jung, J. E.; Wilcox, J.

    2016-12-01

    Hematite (α-Fe2O3) is a common mineral found in Earth's near-surface environment. Due to its nontoxicity, corrosion-resistance, and high thermal stability, α-Fe2O3 has attracted attentions as materials for various applications such as photocatalysts, gas sensors, as well as for the removal of heavy metals. In this study, α-Fe2O3 is chosen for potential mercury (Hg) sorbent in order to remove Hg from coal-fired power plants. Specifically, theoretical approaches using density functional theory (DFT) is used to understand surface reactivity of Hg on oxygen (O) terminated α-Fe2O3(0001) surface. The most probable adsorption sites of Hg, chlorine (Cl), and mercury chloride (HgCl) on the α-Fe2O3 surface are found based on adsorption energy calculations, and the oxidation states of the adsorbates are determined by Bader charge analysis. Additionally, projected density of states (PDOS) analysis characterizes the surface-adsorbate bonding mechanism. The results of adsorption energy calculation proposes that Hg physisorbs to the α-Fe2O3(0001) surface with adsorption energy of -0.278 eV, and the subsequent Bader charge analysis confirms that Hg is slightly oxidized. In addition, Cl introduced to the Hg-adsorbed surface strengthens Hg stability on the α-Fe2O3(0001) surface as evidenced by a shortened Hg-surface equilibrium distance. The PDOS analysis also suggests that Cl enhances the chemical bonding between the surface and the adsorbate, thereby increasing adsorption strength. In summary, α-Fe2O3 has ability to adsorb and oxidize Hg, and this reactivity is enhanced in the presence of Cl.

  15. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  16. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  17. Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co3O4 mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution

    DEFF Research Database (Denmark)

    Sun, Hongyu; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    in superior electrochemical properties when used as the anode materials for lithium-ion batteries and as an electrocatalyst for the oxygen evolution reaction. The excellent electrochemical performance is attributed to the synergistic effects of novel hierarchical morphology, crystal structure of the active...... materials, the improvement of intrinsic conductivity and inner surface area induced by the oxygen vacancies. The present strategy not only provides a facile method to assemble novel hierarchical architectures, but also paves a way to control surface structures (chemical composition and crystal defects...

  18. Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst.

    Science.gov (United States)

    Hwang, Hyojin; Yeon, Young Joo; Lee, Sumi; Choe, Hyunjun; Jang, Min Gee; Cho, Dae Haeng; Park, Sehkyu; Kim, Yong Hwan

    2015-06-01

    The use of biocatalysts to convert CO2 into useful chemicals is a promising alternative to chemical conversion. In this study, the electro-biocatalytic conversion of CO2 to formate was attempted with a whole cell biocatalyst. Eight species of Methylobacteria were tested for CO2 reduction, and one of them, Methylobacterium extorquens AM1, exhibited an exceptionally higher capability to synthesize formate from CO2 by supplying electrons with electrodes, which produced formate concentrations of up to 60mM. The oxygen stability of the biocatalyst was investigated, and the results indicated that the whole cell catalyst still exhibited CO2 reduction activity even after being exposed to oxygen gas. From the results, we could demonstrate the electro-biocatalytic conversion of CO2 to formate using an obligate aerobe, M. extorquens AM1, as a whole cell biocatalyst without providing extra cofactors or hydrogen gas. This electro-biocatalytic process suggests a promising approach toward feasible way of CO2 conversion to formate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Novel Metal-Sulfur-Based Air-Stable Passivation of GaAs with Very Low Surface State Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I.H.; Baca, Albert G.; Chang, P.-C; Hafich, M.J.; Hammons, B.E.; Zavadil, Kevin R.

    1999-08-09

    A new air-stable electronic surface passivation for GaAs and other III-V compound semiconductors that employs sulfur and a suitable metal ion, e.g., Zn, and that is robust towards plasma dielectric deposition has been developed. Initial improvements in photoluminescence are twice that of S-only treatments and have been preserved for >11 months with SiO{sub x}N{sub y} dielectric encapsulation. Photoluminescence and X-ray photoelectron spectroscopies indicate that the passivation consists of two major components with one being stable for >2 years in air. This process improves heterojunction bipolar transistor current gain for both large and small area devices.

  20. Minimization of gully erosion on reclaimed surface mines using the stable slope and sediment transport computer model

    International Nuclear Information System (INIS)

    McKenney, R.A.; Gardner, T.G.

    1992-01-01

    Disequilibrium between slope form and hydrologic and erosion processes on reclaimed surface coal mines in the humid temperate northeastern US, can result in gully erosion and sediment loads which are elevated above natural, background values. Initial sheetwash erosion is surpassed by gully erosion on reclamation sites which are not in equilibrium with post-mining hydrology. Long-term stability can be attained by designing a channel profile which is in equilibrium with the increased peak discharges found on reclaimed surface mines. The Stable Slope and Sediment transport model (SSAST) was developed to design stable longitudinal channel profiles for post-mining hydrologic and erosional processes. SSAST is an event based computer model that calculates the stable slope for a channel segment based on the post-mine hydrology and median grain size of a reclaimed surface mine. Peak discharge, which drives post-mine erosion, is calculated from a 10-year, 24-hour storm using the Soil Conservation Service curve number method. Curve number calibrated for Pennsylvania surface mines are used. Reclamation sites are represented by the rectangle of triangle which most closely fits the shape of the site while having the same drainage area and length. Sediment transport and slope stability are calculated using a modified Bagnold's equation with a correction factor for the irregular particle shapes formed during the mining process. Data from three reclaimed Pennsylvania surface mines were used to calibrate and verify SSAST. Analysis indicates that SSAST can predict longitudinal channel profiles for stable reclamation of surface mines in the humid, temperate northeastern US

  1. Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study

    Science.gov (United States)

    Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun

    2018-04-01

    To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.

  2. Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres.

    Science.gov (United States)

    Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A

    2017-05-17

    A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.

  3. Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction

    International Nuclear Information System (INIS)

    Di Bari, Chiara; Goñi-Urtiaga, Asier; Pita, Marcos; Shleev, Sergey; Toscano, Miguel D.; Sainz, Raquel; De Lacey, Antonio L.

    2016-01-01

    High surface area graphene electrodes were prepared by simultaneous electrodeposition and electroreduction of graphene oxide. The electrodeposition process was optimized in terms of pH and conductivity of the solution and the obtained graphene electrodes were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and electrochemical methods (cyclic voltammetry and impedance spectroscopy). Electrodeposited electrodes were further functionalized to carry out covalent immobilization of two oxygen-reducing multicopper oxidases: laccase and bilirubin oxidase. The enzymatic electrodes were tested as direct electron transfer based biocathodes and catalytic currents as high as 1 mA/cm 2 were obtained. Finally, the mechanism of the enzymatic oxygen reduction reaction was studied for both enzymes calculating the Tafel slopes and transfer coefficients.

  4. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells

    KAUST Repository

    Mutoro, Eva; Crumlin, Ethan J.; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2011-01-01

    Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La 0.8Sr 0.2CoO 3-δ (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr)oxides/carbonates. "Sr"-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k q, by an order of magnitude while "La"- decoration and "Co"-decoration led to no change and reduction in k q, respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k q enhancement for "Sr"-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. © 2011 The Royal Society of Chemistry.

  5. A stable high-order perturbation of surfaces method for numerical simulation of diffraction problems in triply layered media

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu

    2017-02-01

    The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution of dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.

  6. Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ

    Science.gov (United States)

    Tropin, E. S.; Ananyev, M. V.; Farlenkov, A. S.; Khodimchuk, A. V.; Berenov, A. V.; Fetisov, A. V.; Eremin, V. A.; Kolchugin, A. A.

    2018-06-01

    Surface oxygen exchange kinetics and diffusion in La2-xCaxNiO4+δ (x = 0; 0.1; 0.3) have been studied by the isotope exchange method with gas phase equilibration in the temperature range of 600-800 °C and oxygen pressure range 0.13-2.5 kPa. Despite an enhanced electrical conductivity of La2-xCaxNiO4+δ theirs oxygen surface exchange (k*) and oxygen tracer diffusion (D*) coefficients were significantly lower in comparison with La2NiO4+δ. The rates of the elementary stages of oxygen exchange have been calculated. Upon Ca doping the change of the rate-determining stage was observed. The surface of the oxides was found to be inhomogeneous towards oxygen exchange process according to the recently developed model. The reasons of such inhomogeneity are discussed as well as Ca influence on the surface defect chemistry and oxygen surface exchange and diffusivity.

  7. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  8. Comparison of oxygen liquefaction methods for use on the Martian surface

    Science.gov (United States)

    Johnson, W. L.; Hauser, D. M.; Plachta, D. W.; Wang, X.-Y. J.; Banker, B. F.; Desai, P. S.; Stephens, J. R.; Swanger, A. M.

    2018-03-01

    In order to use oxygen that is produced on the surface of Mars from In-Situ production processes in a chemical propulsion system, the oxygen must first be converted from vapor phase to liquid phase and then stored within the propellant tanks of the propulsions system. There are multiple ways that this can be accomplished, from simply attaching a liquefaction system onto the propellant tanks to carrying separate tanks for liquefaction and storage of the propellant and loading just prior to launch (the way that traditional rocket launches occur on Earth). A study was done into these various methods by which the oxygen (and methane) could be liquefied and stored on the Martian surface. Five different architectures or cycles were considered: Tube-on-Tank (also known as Broad Area Cooling or Distributed Refrigeration), Tube-in-Tank (also known as Integrated Refrigeration and Storage), a modified Linde open liquefaction/refrigeration cycle, the direct mounting of a pulse tube cryocooler onto the tank, and an in-line liquefier at ambient pressure. Models of each architecture were developed to give insight into the performance and losses of each of the options. The results were then compared across eight categories: Mass, Power (both input and heat rejection), Operability, Cost, Manufacturability, Reliability, Volume-ility, and Scalability. The result was that Tube-on-Tank and Tube-in-Tank architectures were the most attractive solutions, with NASA's engineering management choosing to pursue tube on tank development rather than further differentiate the two. As a result NASA is focusing its Martian surface liquefaction activities and technology development on Tube-on-Tank liquefaction cycles.

  9. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation

    Science.gov (United States)

    Ma, Xia-Xia; Li, Ze-Sheng

    2018-01-01

    Oxygen molecule has a negative effect on perovskite solar cells, which has been investigated experimentally. However, detailed theoretical research is still rare. This study presents a microscopic view to reveal the interaction mechanism between O2 and perovskite based on the first-principles calculation. The results show that O2 is adsorbed on the (100) surface of MAPbI3 perovskite mainly by Van der Waals force. O2 adsorption makes the MAPbI3 surface generate a small number of positive charges, which leads to the increase of the work function of the MAPbI3 surface. This is in agreement with the experimental measurement. And increased work function of MAPbI3 surface is not beneficial to electron transfer from perovskite to electronic extraction layer (such as TiO2). Comparison of the density of states (DOS) of the clean (100) surface and the adsorbed system shows that an in-gap state belonging to O2 appears, which can explain the phenomenon observed from experiments that electron transfers from the surface of perovskite to O2 to form superoxide. The theoretical power conversion efficiency of the system with and without O2 adsorption is evaluated, and it turns out that the power conversion efficiency of the system with O2 adsorption is slightly lower than that of the system without O2 adsorption. This result indicates that avoiding the introduction of O2 molecules between perovskite and electronic extraction layer is beneficial to the perovskite solar cell.

  10. Paleoecologies and paleoclimates of late cenozoic mammals from Southwest China: Evidence from stable carbon and oxygen isotopes

    Science.gov (United States)

    Biasatti, Dana; Wang, Yang; Gao, Feng; Xu, Yingfeng; Flynn, Lawrence

    2012-01-01

    To examine paleodiets and habitats of extinct taxa and to understand long-term regional climate change, we determined the carbon and oxygen isotopic compositions of fossil herbivore teeth and soil samples from six localities in Yunnan Province, Southwest China, ranging in age from ˜10 Ma to the present. Although limited in spatial and temporal coverage, these initial results reveal significant changes in the environments and diets of mammalian taxa over the last 10 million years. Prior to 2-3 Ma, while most mammals examined had pure or nearly pure C 3 diets, some individuals consumed a small amount of C 4 grasses (up to 20% C 4). Since then, C 4 grasses became a significant dietary component for most herbivores as indicated by higher enamel-δ 13C values in the Pleistocene Yuanmou Formation and at Shangri-La, most likely reflecting an increased C 4 biomass in the region. The carbon isotope results show that the diets of mammals of ˜2.5-1.75 Ma from Shangri-La ranged from pure C 3 to pure C 4 while 1.7 Ma horses from Yuanmou had 0-70% C 4 grasses in their diets. Mammals living at ˜8-7 Ma in the Yuanmou and Lufeng region had very similar diets and habitats, with similar climatic conditions. Increased C 4 biomass after ˜3-4 Ma suggests a significant change in certain aspects of regional climate, such as increased seasonality of rainfall or an increase in seasonal drought and fires as these factors are important to modern grasslands. The data also show that unlike the Siwalik fauna in the Indian subcontinent, mammals in Yunnan on the southeast side of the Himalayan-Tibetan Plateau lived in an environment dominated by dense forests until ˜3-4 Ma. Nonetheless, both δ 13C values of paleosol carbonates and fossil enamels indicate that C 4 grasses were present in the Yuanmou region in the latest Miocene and Pliocene (˜8-3.5 Ma), likely in greatly dispersed, small patches of open habitats where the forest canopy was broken or on flood plains, and the C 4 biomass

  11. Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition

    Science.gov (United States)

    Rajab, Fatema H.; Liu, Zhu; Li, Lin

    2018-01-01

    Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method

  12. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration

    International Nuclear Information System (INIS)

    Nandakumar, A; Tahmasebi Birgani, Z; Santos, D; Mentink, A; Auffermann, N; Moroni, L; Van Blitterswijk, C; Habibovic, P; Van der Werf, K; Bennink, M

    2013-01-01

    Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, we used electrospinning to fabricate fibrous three-dimensional scaffolds made of a poly (ethylene oxide terephthalate)/poly (butylene terephthalate) copolymer to mimic the physical microenvironment of extracellular matrix and applied radio-frequency oxygen plasma treatment to create nanoscale roughness. Scanning electron microscopy (SEM) analysis revealed a fibre diameter of 5.49 ± 0.96 µm for as-spun meshes. Atomic force microscopy (AFM) measurements determined an exponential increase of surface roughness with plasma treatment time. An increase in hydrophilicity after plasma treatment was observed, which was associated with higher oxygen content in plasma treated scaffolds compared to untreated ones. A more pronounced adsorption of bovine serum albumin occurred on scaffolds treated with plasma for 15 and 30 min compared to untreated fibres. Clinically relevant human mesenchymal stromal cells (hMSCs) were cultured on untreated, 15 and 30 min treated scaffolds. SEM analysis confirmed cell attachment and a pronounced spindle-like morphology on all scaffolds. No significant differences were observed between different scaffolds regarding the amount of DNA, metabolic activity and alkaline phosphatase (ALP) activity after 7 days of culture. The amount of ALP positive cells increased between 7 and 21 days of culture on both untreated and 30 min treated meshes. In addition, ALP staining of cells on plasma treated meshes appeared more pronounced than on untreated meshes after 21 days of culture. Quantitative polymerase chain reaction showed significant upregulation of bone sialoprotein and osteonectin expression on oxygen plasma treated fibres compared to untreated fibres in

  13. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  14. Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures

    International Nuclear Information System (INIS)

    Salapare, Hernando S.; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Graphical abstract: - Highlights: • Reactive-ion etching (RIE) is employed to nylon 6,6 fabrics to achieve surface texturing and improved wettability. • FTIR spectra of the treated samples exhibited decreased transmittance of amide and carboxylic acid groups due to etching. • Etching is enhanced for higher power plasma treatments and for samples with larger mesh sizes. • Decreased crystallinity was achieved after plasma treatment. • Higher power induced higher negative DC self-bias voltage on the samples that favored anisotropic and aggressive etching. - Abstract: A facile one-step oxygen plasma irradiation in reactive ion etching (RIE) configuration is employed to nylon 6,6 fabrics with different mesh sizes to achieve surface nanostructures and improved wettability for textile and filtration applications. To observe the effects of power and irradiation time on the samples, the experiments were performed using constant irradiation time in varying power and using constant power in varying irradiation times. Results showed improved wettability after the plasma treatment. The FTIR spectra of all the treated samples exhibited decreased transmittance of the amide and carboxylic acid groups due to surface etching. The changes in the surface chemistry are supported by the SEM data wherein etching and surface nanostructures were observed for the plasma-treated samples. The etching of the surfaces is enhanced for higher power plasma treatments. The thermal analysis showed that the plasma treatment resulted in decreased crystallinity. Surface chemistry showed that the effects of the plasma treatment on the samples have no significant difference for all the mesh sizes. However, surface morphology showed that the sizes of the surface cracks are the same for all the mesh sizes but samples with larger mesh sizes exhibited enhanced etching as compared to the samples with smaller mesh sizes. Higher power induced higher negative DC self-bias voltage on the samples that

  15. USGS42 and USGS43: Human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results

    Science.gov (United States)

    Coplen, T.B.; Qi, H.

    2012-01-01

    Because there are no internationally distributed stable hydrogen and oxygen isotopic reference materials of human hair, the U.S. Geological Survey (USGS) has prepared two such materials, USGS42 and USGS43. These reference materials span values commonly encountered in human hair stable isotope analysis and are isotopically homogeneous at sample sizes larger than 0.2 mg. USGS42 and USGS43 human-hair isotopic reference materials are intended for calibration of δ(2)H and δ(18)O measurements of unknown human hair by quantifying (1) drift with time, (2) mass-dependent isotopic fractionation, and (3) isotope-ratio-scale contraction. While they are intended for measurements of the stable isotopes of hydrogen and oxygen, they also are suitable for measurements of the stable isotopes of carbon, nitrogen, and sulfur in human and mammalian hair. Preliminary isotopic compositions of the non-exchangeable fractions of these materials are USGS42(Tibetan hair)δ(2)H(VSMOW-SLAP) = -78.5 ± 2.3‰ (n = 62) and δ(18)O(VSMOW-SLAP) = +8.56 ± 0.10‰ (n = 18) USGS42(Indian hair)δ(2)H(VSMOW-SLAP) = -50.3 ± 2.8‰ (n = 64) and δ(18)O(VSMOW-SLAP) = +14.11 ± 0.10‰ (n = 18). Using recommended analytical protocols presented herein for δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurements, the least squares fit regression of 11 human hair reference materials is δ(2)H(VSMOW-SLAP) = 6.085δ(2)O(VSMOW-SLAP) - 136.0‰ with an R-square value of 0.95. The δ(2)H difference between the calibrated results of human hair in this investigation and a commonly accepted human-hair relationship is a remarkable 34‰. It is critical that readers pay attention to the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) of isotopic reference materials in publications, and they need to adjust the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurement results of human hair in previous publications, as needed, to ensure all results on are on the same scales.

  16. Oxygen and Hydrogen Isotopic Characteristics of the Kaveri River Surface Waters, Southern Peninsular India

    International Nuclear Information System (INIS)

    Achyuthan, Hema; Michelini, Marzia; Sengupta, Somasis D.; Kale, Vishwas S.; Stenni, Barbara; Flora, Onelio

    2010-12-01

    We present in this paper the spatial distribution of stable isotopic composition (δ 18 O and δD) of Kaveri River surface waters to understand how the evaporation and precipitation affect the isotopic signature and dynamics of surface river waters. In the southern peninsular India, Kaveri River is one of the longest tropical river. Our stable isotope data indicate that the upper Kaveri region is influenced strongly by the SW monsoon. There is a narrow range between the δ 18 O values found from the origin of the Kaveri River to its delta, and there is no significant orographic impact of the Western Ghats. A decreasing trend of d values is found along the course of the river. This is attributed to evaporation effects, which nevertheless are not very strong. This difference in deuterium excess due to evaporation is also an indication of the moisture recycling in the lower Kaveri area, which is primarily controlled by evaporation from the wetlands in the delta plain but also from the surface waters and as such from the rivers. (author)

  17. Summer precipitation influences the stable oxygen and carbon isotopic composition of tree-ring cellulose in Pinus ponderosa.

    Science.gov (United States)

    Roden, John S; Ehleringer, James R

    2007-04-01

    The carbon and oxygen isotopic composition of tree-ring cellulose was examined in ponderosa pine (Pinus ponderosa Dougl.) trees in the western USA to study seasonal patterns of precipitation inputs. Two sites (California and Oregon) had minimal summer rainfall inputs, whereas a third site (Arizona) received as much as 70% of its annual precipitation during the summer months (North American monsoon). For the Arizona site, both the delta(18)O and delta(13)C values of latewood cellulose increased as the fraction of annual precipitation occurring in the summer (July through September) increased. There were no trends in latewood cellulose delta(18)O with the absolute amount of summer rain at any site. The delta(13)C composition of latewood cellulose declined with increasing total water year precipitation for all sites. Years with below-average total precipitation tended to have a higher proportion of their annual water inputs during the summer months. Relative humidity was negatively correlated with latewood cellulose delta(13)C at all sites. Trees at the Arizona site produced latewood cellulose that was significantly more enriched in (18)O compared with trees at the Oregon or California site, implying a greater reliance on an (18)O-enriched water source. Thus, tree-ring records of cellulose delta(18)O and delta(13)C may provide useful proxy information about seasonal precipitation inputs and the variability and intensity of the North American monsoon.

  18. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate

    International Nuclear Information System (INIS)

    Wang Na; Yang Haifeng; Zhu Xuan; Zhang Rui; Wang Yao; Huang Guanfeng; Zhang Zongrang

    2009-01-01

    We report a novel method of synthesizing a kind of silver nanoparticles aided by the inositol hexakisphosphoric micelle as a soft template and stabilizer. By controlling the reaction time, UV-vis and TEM observations of the size growth of the nanoparticles are performed. Careful examinations of surface enhanced Raman scattering (SERS) spectra of 2-mercaptopyridine (2-Mpy) on the as-produced silver nanoparticles exhibit very stable and reproducible Raman signals within about 4 months.

  19. Stable, metastable and unstable solutions of a spin-1 Ising system based on the free energy surfaces

    Science.gov (United States)

    Keskİin, Mustafa; Özgan, Şükrü

    1990-04-01

    Stable, metastable and unstable solutions of a spin-1 Ising model with bilinear and biquadratic interactions are found by using the free energy surfaces. The free energy expression is obtained in the lowest approximation of the cluster variation method. All these solutions are shown in the two-dimensional phase space, especially the unstable solutions which in some cases are difficult to illustrate in the two-dimensional phase space, found by Keskin et al. recently.

  20. Stable carbon and oxygen isotope ratios of annual rings of pinus radiata provide an integrative record of canopy gas exchange

    International Nuclear Information System (INIS)

    Barbour, M.M.; Farquhar, G.D.

    2000-01-01

    Full text: Seasonal variation in δ 13 C and δ 18 O of cellulose from annual rings of Pinus radiata growing at each of three sites in New Zealand was measured. The three sites differed in annual water balance, temperature, and vapour pressure deficit, and these differences were reflected in cellulose δ 13 C and δ 18 O. Specific events such as drought or heavy rain were recorded as peaks and troughs in enrichment. A canopy-level combined photosynthesis and conductance model was linked to a model of soil water content and δ 18 O of xylem water to allow daily prediction of δ 13 C and δ 18 O of cellulose. A photosynthesis-weighted average of δ 13 C and δ 18 O was calculated for each sampling period. Each sample represented between 3 and 30 days, depending on stem growth rate. The timing and amplitude of changes in δ 13 C were predicted accurately by the model, while general seasonal patterns and event related peaks in δ 18 O enrichment were well predicted. These results suggest that stable isotope ratios of cellulose from annual rings reflect the canopy response to interactions between site-specific and seasonal variation in climatic conditions and soil water availability

  1. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  2. Behaviour of oxygen atoms near the surface of nanostructured Nb2O5

    International Nuclear Information System (INIS)

    Cvelbar, U; Mozetic, M

    2007-01-01

    Recombination of neutral oxygen atoms on oxidized niobium foil was studied. Three sets of samples have been prepared: a set of niobium foils with a film of polycrystalline niobium oxide with a thickness of 40 nm, another one with a film thickness of about 2 μm and a set of foils covered with dense bundles of single-crystal Nb 2 O 3 nanowires. All the samples were prepared by oxidation of a pure niobium foil. The samples with a thin oxide film were prepared by exposure of as-received foils to a flux of O-atoms, the samples with a thick polycrystalline niobium oxide were prepared by baking the foils in air at a temperature of 800 deg. C, while the samples covered with nanowires were prepared by oxidation in a highly reactive oxygen plasma. The samples were exposed to neutral oxygen atoms from a remote oxygen plasma source. Depending on discharge parameters, the O-atom density in the postglow chamber, as measured with a catalytic probe, was between 5 x 10 20 and 8 x 10 21 m -3 . The O-atom density in the chamber without the samples was found rather independent of the probe position. The presence of the samples caused a decrease in the O-atom density. Depending on the distance from the samples, the O-atom density was decreased up to 5 times. The O-atom density also depended on the surface morphology of the samples. The strongest decrease in the O-atom density was observed with the samples covered with dense bundles of nanowires. The results clearly showed that niobium oxide nanowires exhibit excellent catalytic behaviour for neutral radicals and can be used as catalysts of exhaust radicals found in many applications

  3. Screening nitrogen-rich bases and oxygen-rich acids by theoretical calculations for forming highly stable salts.

    Science.gov (United States)

    Zhang, Xueli; Gong, Xuedong

    2014-08-04

    Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  5. XPS studies of SiO2 surface layers formed by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Schulze, D.; Finster, J.

    1983-01-01

    SiO 2 surface layers of 160 nm thickness formed by 16 O + ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO 2 . There is no evidence for Si or SiO/sub x/ (0 2 and Si is similar to that of thin grown oxide layers. Only its thickness is somewhat larger than in thermal oxide

  6. Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae, a recent freshwater colonizer

    Directory of Open Access Journals (Sweden)

    Carolina A. Freire

    2017-10-01

    Full Text Available ABSTRACT Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836 dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu and experimental salinities (10, 20, 30 psu, for four and eight hours (n = 8 in each group. The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO, ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimp’s hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC. Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50% and MWC decreased (~4% at 30 psu. The expected reduction in oxygen consumption was not observed. This shrimp is able to tolerate significant changes in water salt concentrations for a few hours by keeping its metabolism in aerobic mode, and putatively shutting down branchial salt uptake to avoid massive salt

  7. Biofilm formation in geometries with different surface curvature and oxygen availability

    International Nuclear Information System (INIS)

    Chang, Ya-Wen; Fragkopoulos, Alexandros A; Kim, Harold D; Fernández-Nieves, Alberto; Marquez, Samantha M; Angelini, Thomas E

    2015-01-01

    Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth. (paper)

  8. Effect of oxygen on the surface morphology of CuGaS{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Smaili, F., E-mail: fethi.smaili@voila.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2009-08-01

    Since the effect of oxygen is very significant during the heat treatment of the thin films, we study the effect of this during the annealing of CuGaS{sub 2} thin films by two different types. In this study, CuGaS{sub 2} thin films were deposited by vacuum thermal evaporation of CuGaS{sub 2} powder on heated glass substrates at 200 deg. C submitted to a thermal gradient. The films are annealed in air and under nitrogen atmosphere at 400 deg. C for 2 h. In order to improve our understanding of the influence of oxygen during two annealing types on device performance, we have investigated our CuGaS{sub 2} material by X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) and spectrophotometry. A correlation was established between the surface roughness, growth morphology and optical properties, of the annealed CuGaS{sub 2} thin films. It was found that annealing of CuGaS{sub 2} film in nitrogen atmosphere leads to a decrease of the mean grain size and to an evolution of a (112) preferred film orientation. Annealing in air results in the growth of oxide phases such as CuO and modifies the films structure and their surface morphology.

  9. Current Options for Measuring the Surface Temperature of Dairy Cattle in a Stable Technology: Review

    Directory of Open Access Journals (Sweden)

    Kateřina Švejdová

    2016-05-01

    Full Text Available Regular measurement of the body surface temperature can help to assess the health status of animals. There are many technological possibilities of contactless temperature measurement of body surface. The important thing is to find the right part of the body whose temperature will point to the first possible symptoms and immediately react to the first signs of the disease. Disagreements about how to measure body surface temperature and accuracy of the method can occur when different measures are used. We review work showing possibilities of contactless surface temperature measurements using 1 thermography, 2 electronic transponders and 3 other possibilities of measuring the body surface temperature of dairy cattle. For example, when we scan the surface temperature with the thermal imager there can operate in individual animals confounding factors such as the nature or degree of muscular coat, which may significantly affect the results.

  10. Stable oxygen isotope analysis reveal vegetation influence on soil water movement and ecosystem water fluxes in a semi-arid oak woodland

    Science.gov (United States)

    Piayda, Arndt; Dubbert, Maren; Werner, Christiane; Cuntz, Matthias

    2015-04-01

    Mechanistically disentangling the role and function of vegetation within the hydrological cycle is one of the key questions in the interdisciplinary field of ecohydrology. The presence of vegetation can have various impacts on soil water relations: transpiration of active vegetation causes great water losses, rainfall is intercepted, soil evaporation can be reduced and infiltration, hydraulic redistribution and translatory flow might be altered. In drylands, covering around 40% of the global land surface, the carbon cycle is closely coupled to water availability due to (seasonal) droughts. Specifically savannah type ecosystems, which cover large areas worldwide, are, due to their bi-layered structure, very suitable to study the effects of distinct vegetation types on the ecosystem water cycle. Oxygen isotope signatures (δ18O) have been used to partition ecosystem evapotranspiration (ET ) because of the distinct isotopic compositions of water transpired by leaves relative to soil evaporated vapor. Recent developments in laser spectroscopy enable measurements of δ18O in the vapor phase with high temporal resolution in the field and bear a novel opportunity to trace water movement within the ecosystem. In the present study, the effects of distinct vegetation layers (i.e. trees and herbaceous vegetation) on soil water infiltration and redistribution as well as ecosystem water fluxes in a Mediterranean cork-oak woodland are disentangled. An irrigation experiment was carried out using δ18O labeled water to quantify the distinct effects of trees and herbaceous vegetation on 1) infiltration and redistribution of water in the soil profile and 2) to disentangle the effects of tree cover on the contribution of unproductive soil evaporation and understory transpiration to total ET . First results proof that stable δ18O isotopes measured onsite with laser spectroscopy is a valuable tool to trace water movement in the soil showing a much higher sensitivity than common TDR

  11. Production of an {sup 15}O beam using a stable oxygen ion beam for in-beam PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Akram, E-mail: mohammadi.akram@qst.go.jp; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-21

    In advanced ion therapy, the {sup 15}O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an {sup 15}O beam by projectile fragmentation of a stable {sup 16}O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors’ group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of {sup 15}O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of {sup 15}O fragments. The highest production rate of {sup 15}O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the {sup 16}O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the {sup 15}O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the {sup 16}O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is

  12. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    Science.gov (United States)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  13. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  14. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons

    Science.gov (United States)

    Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.

    2017-01-01

    In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the , , and orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377

  15. Analysis of oxygen and hydrogen adsorption on Nb(100) surface by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    An, Bai; Wen, Mao; Fukuyama, Seiji; Yokogawa, Kiyoshi; Ichimura, Shingo; Yoshimura, Masamichi

    2006-01-01

    The surface structure of Nb(100) under the condition of cleaning, oxidation and hydrogen adsorption is observed by STM (scanning tunneling microscopy). The results obtained are followings; (1) (3 x 1)-O→(4 x 1)-O→c(2 x 2)-O→clean(1 x 1)structure was observed by atom level, and these atomic models of structures and STM images were verified by the first-principles calculations, (2) when the clean(1 x 1) structure exposed to hydrogen, dissociative adsorption of hydrogen was observed and Nb hydride cluster formed on the surface at room temperature. It was heated at about 450 - 670 K in UHV, the cluster decomposed into hydrogen and (1 x 1) structure with linear defect was formed. The c(2 x 2)-O structure by oxygen adsorption transformed into (1 x 1)-H structure with OH and Nb hydride cluster under hydrogen gas at room temperature. When it was heated in UHV at 640 K, OH desorbed from the surface and (1 x 1) structure with linear defect was generated. The surface of (3 x 1)-O structure was not changed by hydrogen. (S.Y.)

  16. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu, E-mail: yu.sun@xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yilun [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Xuefeng; Zhai, Zhi [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Fei [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yijun [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)

    2017-06-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  17. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-01-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  18. Oxygen adsorption on the Al9Co2(001) surface: first-principles and STM study

    International Nuclear Information System (INIS)

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Dubois, J-M; Gaudry, É; Gille, P

    2013-01-01

    Atomic oxygen adsorption on a pure aluminum terminated Al 9 Co 2 (001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a ‘bridge’ type site between the cluster entities exposed at the (001) surface termination. The Al–O bonding between the adsorbate and the substrate presents a covalent character, with s–p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al–O distances are in agreement with those reported in Al 2 O and Al 2 O 3 oxides and for oxygen adsorption on Al(111). (paper)

  19. Improvement of Surface Wettability and Hydrophilization of Poly-paraphenylene benzobisoxazole Fiber with Fibrillation Combined Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Xiwen Wang

    2012-01-01

    Full Text Available A new surface modification method fibrillation combined with oxygen plasma treatment to improve the wettability and hydrophily of PBO fiber was studied in this paper. The surface chemical structure and morphology of PBO fiber were characterized by the methods of FTIR, XPS and SEM. The wettability and hydrophlic characters changes on the surface were evaluated by the dynamic contact angle system and image analysis. The results show that the increase surface roughness by fibrillation could improve the wettability. Fibrillation combined oxygen plasma treatment has a better effect than oxygen plasma treatment to improve the wettability and hdyrophlization of PBO fiber. The specific area of PBO fiber increased to 10.7 m2/g from 0.7 m2/g, contact angle decreased to 43.2° from 84.4° and WRV increased to 208.4% from 13.7%. The modified fibers have a good dispersion in water for hydrophilization improvement.

  20. A high resolution photoemission study of surface core-level shifts in clean and oxygen-covered Ir(2 1 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gladys, M.J.; Ermanoski, I.; Jackson, G.; Quinton, J.S.; Rowe, J.E.; Madey, T.E. E-mail: madey@physics.rutgers.edu

    2004-04-01

    High resolution soft X-ray photoemission electron spectroscopy (SXPS), using synchrotron radiation, is employed to investigate 4f core-level features of four differently-prepared Ir(2 1 0) surfaces: clean planar, oxygen-covered planar, oxygen-induced faceted, and clean faceted surfaces. Surface and bulk peak identifications are supported by measurements at different photon energies (thus probing different electron escape depths) and variable emission angles. Iridium 4f{sub 7/2} photoemission spectra are fitted with Doniach-Sunjic lineshapes. The surface components are identified with core levels positioned at lower binding energies than the bulk components, in contrast to previous reports of binding energy inversion on Ir(1 0 0) (1x1) and (5x1) surfaces. For clean planar Ir(2 1 0) three surface Ir 4f{sub 7/2} features are observed with core-level shifts of -765, -529, and -281 meV, with respect to the bulk; these are associated with the first, second and third layers of atoms, respectively, for atomically rough Ir(2 1 0). Adsorption of oxygen onto the planar Ir(2 1 0) surface is found to cause a suppression and shift of the surface features to higher binding energies. Annealing at T{>=}600 K in oxygen produces a faceted surface as verified by low energy electron diffraction (LEED). A comparison of planar and faceted oxygen-covered surfaces reveals minor differences in the normal emission SXPS spectra, while grazing emission spectra exhibit differences. The SXPS spectrum of the clean, faceted Ir(2 1 0) exhibits small differences in comparison to the clean planar case, with surface features having binding energy shifts of -710, -450, and -230 meV.

  1. Optical characterization of surface and interface oxygen content in YBa2Cu3O/sub x/

    International Nuclear Information System (INIS)

    Kelly, M.K.; Chan, S.; Jenkin, K. II; Aspnes, D.E.; Barboux, P.; Tarascon, J.

    1988-01-01

    Because YBa 2 Cu 3 O/sub x/ exists over a range of oxygen content and low oxygen material is nonsuperconducting, it is important to be able to measure and control this parameter for application purposes. We present an optical technique for determining oxygen loss at surfaces and interfaces, where processing and contacts with other materials may affect composition and where usual techniques are insensitive. Using a strong absorption feature at 4.1 eV which appears at low oxygen composition, we find that overlayers of Al and In remove oxygen from YBa 2 Cu 3 O/sub x/, but Ag, Au, and room-temperature exposure to moderate vacuum do not

  2. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide.

    Science.gov (United States)

    Hirakawa, Hiroaki; Hashimoto, Masaki; Shiraishi, Yasuhiro; Hirai, Takayuki

    2017-08-09

    Ammonia (NH 3 ) is an essential chemical in modern society. It is currently manufactured by the Haber-Bosch process using H 2 and N 2 under extremely high-pressure (>200 bar) and high-temperature (>673 K) conditions. Photocatalytic NH 3 production from water and N 2 at atmospheric pressure and room temperature is ideal. Several semiconductor photocatalysts have been proposed, but all suffer from low efficiency. Here we report that a commercially available TiO 2 with a large number of surface oxygen vacancies, when photoirradiated by UV light in pure water with N 2 , successfully produces NH 3 . The active sites for N 2 reduction are the Ti 3+ species on the oxygen vacancies. These species act as adsorption sites for N 2 and trapping sites for the photoformed conduction band electrons. These properties therefore promote efficient reduction of N 2 to NH 3 . The solar-to-chemical energy conversion efficiency is 0.02%, which is the highest efficiency among the early reported photocatalytic systems. This noble-metal-free TiO 2 system therefore shows a potential as a new artificial photosynthesis for green NH 3 production.

  3. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  4. Colossal positive magnetoresistance in surface-passivated oxygen-deficient strontium titanite

    KAUST Repository

    David, Adrian

    2015-05-15

    Modulation of resistance by an external magnetic field, i.e. magnetoresistance effect, has been a long-lived theme of research due to both fundamental science and device applications. Here we report colossal positive magnetoresistance (CPMR) (>30,000% at a temperature of 2 K and a magnetic field of 9 T) discovered in degenerate semiconducting strontium titanite (SrTiO3) single crystals capped with ultrathin SrTiO3/LaAlO3 bilayers. The low-pressure high-temperature homoepitaxial growth of several unit cells of SrTiO3 introduces oxygen vacancies and high-mobility carriers in the bulk SrTiO3, and the three-unit-cell LaAlO3 capping layer passivates the surface and improves carrier mobility by suppressing surface-defect-related scattering. The coexistence of multiple types of carriers and inhomogeneous transport lead to the emergence of CPMR. This unit-cell-level surface engineering approach is promising to be generalized to others oxides, and to realize devices with high-mobility carriers and interesting magnetoelectronic properties.

  5. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  6. Creation of oxygen-enriched layers at the surface of GaAs single crystal

    International Nuclear Information System (INIS)

    Kulik, M.; Maczka, D.; Kobzev, A.P.

    1999-01-01

    The optical properties and the element depth profiles at the (100) plane high resistant and noncomposite GaAs single crystals implanted with In ions were investigated. The results have been compared with those obtained for virgin samples. The optic properties for all of the samples (implanted and not implanted, annealed and not annealed) have been measured using the ellipsometric method. The element depth profiles for the same samples have been obtained by the RBS and NRA techniques. It has been shown that the post-implantation annealing at a temperature more than 600 deg C leads to a ten time increase in contents of oxygen atoms in the implanted layer with respect to the not annealed sample. The thickness of the transparence layer at the surface of GaAs single crystal increases also after implantation with In ions and subsequent annealing

  7. Deuterium, oxygen-18 and tritium in precipitation, surface and groundwater in the far east of Russia

    Energy Technology Data Exchange (ETDEWEB)

    Chelnokov, George; Kharitonova, Natalia; Bragin, Ivan; Vasil' eva, Maria [Far East Geological Insitute Rus. Acad. of Sci., 690022, Prospect 100 letya 159, Vladivostok (Russian Federation)

    2013-07-01

    This is the first report describing the parallel measurement of deuterium (δD), tritium ({sup 3}H), and oxygen-18 (δ{sup 18}O) in precipitation, seawater, surface and groundwater in relation to the Russian Far East. dD and δ{sup 18}O demonstrate that the studied waters have a meteoric origin, and variations are the result of water-rock-gas interactions. All studied waters reveal obvious 'latitudinal' and 'continental' effects: there is a universal decrease in δ{sup 18}O and δD from the south to the north, and from the ocean inland. The background level of {sup 3}H is 20 TU in Amursky region's rivers, 13 TU in Primorsky region's rivers, and 5.5 TU in one of the Kuril Islands. The majority of studied groundwaters have short residence times. (authors)

  8. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  9. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    Science.gov (United States)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  10. Stable Weyl points, trivial surface states, and particle-hole compensation in WP2

    Science.gov (United States)

    Razzoli, E.; Zwartsenberg, B.; Michiardi, M.; Boschini, F.; Day, R. P.; Elfimov, I. S.; Denlinger, J. D.; Süss, V.; Felser, C.; Damascelli, A.

    2018-05-01

    A possible connection between extremely large magnetoresistance and the presence of Weyl points has garnered much attention in the study of topological semimetals. Exploration of these concepts in transition-metal diphosphides WP2 has been complicated by conflicting experimental reports. Here we combine angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to disentangle surface and bulk contributions to the ARPES intensity, the superposition of which has plagued the determination of the band structure in WP2. Our results show that while the hole- and electronlike Fermi surface sheets originating from surface states have different areas, the bulk-band structure of WP2 is electron-hole compensated in agreement with DFT. Furthermore, the ARPES band structure is compatible with the presence of at least four temperature-independent Weyl points, confirming the topological nature of WP2 and its stability against lattice distortions.

  11. Adsorption and dissociation of oxygen molecules on Si(111)-(7×7) surface

    International Nuclear Information System (INIS)

    Niu, Chun-Yao; Wang, Jian-Tao

    2013-01-01

    The adsorption and dissociation of O 2 molecules on Si(111)-(7×7) surface have been studied by first-principles calculations. Our results show that all the O 2 molecular species adsorbed on Si(111)-(7×7) surface are unstable and dissociate into atomic species with a small energy barrier about 0.1 eV. The single O 2 molecule adsorption tends to form an ins×2 or a new metastable ins×2* structure on the Si adatom sites and the further coming O 2 molecules adsorb on those structures to produce an ad-ins×3 structure. The ad-ins×3 structure is indeed highly stable and kinetically limited for diving into the subsurface layer to form the ins×3-tri structure by a large barrier of 1.3 eV. Unlike the previous views, we find that all the ad-ins, ins×2, and ad-ins×3 structures show bright images, while the ins×2*, ins×3, and ins×3-tri structures show dark images. The proposed oxidation pathways and simulated scanning tunneling microscope images account well for the experimental results and resolve the long-standing confusion and issue about the adsorption and reaction of O 2 molecules on Si(111) surface

  12. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  13. Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay.

    Science.gov (United States)

    Guo, Jie; Yang, Fuchao; Guo, Zhiguang

    2016-03-15

    We report a simple and rapid method to fabricate superhydrophobic films on copper substrates via Fe(3+) etching and octadecanethiol (ODT) modification. The etching process can be as short as 5 min and the ODT treatment only takes several seconds. In addition, the whole process is quite flexible in reaction time. The superhydrophobicity of as-prepared surfaces is mechanically durable and chemically stable, which have great performance in oil-water separation and ice-over resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Directory of Open Access Journals (Sweden)

    Konstantinos Fiotakis

    2009-02-01

    Full Text Available Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR and spin- trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2·- and hydroxyl (HO· radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis.Also, we observed synergistic effects in the generation of HO·, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc. and ambient particulate matter (PM, such as PM10, PM2.5 and diesel exhaust particles (DEP. The highest synergistic effects was observed with the asbestos fibres (freshly grounded, PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.

  15. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Science.gov (United States)

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos

    2009-01-01

    Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2•−) and hydroxyl (HO•) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO•, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM10, PM2.5 and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase. PMID:19440393

  16. Connecting long term species changes and their water competitions in temperate forest Mt. Baegun, Rep. of Korea using hydrogen and oxygen stable isotope analysis

    Science.gov (United States)

    Jeon, J.; Lee, H.; Lee, M.; Song, W.; Byeon, S.; Lee, B.; Cho, S.; Park, J.; Kim, H. S.

    2017-12-01

    Many dynamic vegetation model simulations have predicted dramatic changes in species composition of temperate forests due to climate changes and successional reasons. Especially, conifer species are expected to lose their habitats and to be replaced by broadleaf species. Similarly, our more than 15-years-long 880 permenant plots tree survey data in Mt. Baegun, Rep. of Korea, showed substantial decrease of conifer species and their productivities and increase of broadleaved species. One of main reasons for these changes in species could be attributed to the water competition among tree species in the same stand. Therefore, we investigated the differences in water uptake scheme between conifer and broadleaf species from the temperate forests of Korea using stable isotopes. Six study plots showing high competition (conifers vs. broadleaf species) based on previous vegetation survey were chosen and the species-specific water uptake depth was estimated by measuring hydrogen(δ2H) and oxygen(δ18O) ratio from the xylem sap and leaves of individual species and by comparing them with those of soil water from 5 depths, (10, 30, 50, 100 and 120 cm), which extracted by lysimeter. The collection was conducted from April 2016 to Nov 2017. The conifer species included Pinus densiflora and Chamaecyparis obtusa vs. broadleaved species included Carpinus laxiflora, Prunus sargentii, Styrax obassia, Lindera erythrocarpa and Quercus species such as Q. mongolica, Q. serrata, Q. accuticima. Preliminary results showed the stable isotope signatures of soil water was increased from 10 cm to 30 cm, and then decreased gradually until 120 cm. In addition, current dominant canopy species, Chamaecyparis obtusa absorbed majority of their water from 10 to 30 cm depth. In comparison, current mid canopy but one of upcoming dominant species, Styrax obassia's major water source was 30 cm and deeper of soil. Our results could be essential for the prediction of species composition under climate change

  17. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    Science.gov (United States)

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.

    2015-02-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.

  18. Ignitability of hydrogen/oxygen/diluent mixtures in the presence of hot surfaces

    International Nuclear Information System (INIS)

    Kumar, R.K.; Koroll, G.W.

    1995-01-01

    In the licensing process for CANDU nuclear power stations it is necessary to demonstrate tolerance to a wide range of low-probability accidents. These include loss of moderator accidents that may lead to the formation of flammable mixtures of deuterium, oxygen, helium, and steam in the reactor calandria vessel. Uncovered adjuster or control rods are considered as possible sources of ignition when a flammable mixture is present. A knowledge of the minimum hot-surface temperature required for ignition is important in assessing the reactor safety. These hot surface temperatures were measured using electrically heated adjuster rod simulators in a large spherical vessel (2.3-m internal diameter). Whereas the effects of geometry on ignition temperature were studied in the large-scale apparatus, some of the effects, such as those produced by a strong radiation field, were studied using a small-scale apparatus. Investigations carried our over a range of hydrogen and diluent concentrations indicated that, although the ignition temperatures were fairly insensitive to the hydrogen concentration, they were strongly affected by the presence of steam The addition of 30% steam to a dry combustible mixture increased the minimum surface temperature required for ignition by approximates 100 degrees C of the diluents investigated, steam had the most effect on ignition. The effect of initial temperature of the mixture on the ignition temperature was small, whereas the effect of initial pressure was significant. The effect of substituting deuterium for hydrogen on ignition temperature was small. The effect of a high-intensity gamma-radiation field on the minimum hot-surface temperature required for ignition was investigated using a 2-dm 3 ignition vessel placed in a linear accelerator. Radiation had no measurable effect on ignition temperature

  19. High Rate and Stable Li-Ion Insertion in Oxygen-Deficient LiV3O8 Nanosheets as a Cathode Material for Lithium-Ion Battery.

    Science.gov (United States)

    Song, Huanqiao; Luo, Mingsheng; Wang, Aimei

    2017-01-25

    Low performance of cathode materials has become one of the major obstacles to the application of lithium-ion battery (LIB) in advanced portable electronic devices, hybrid electric vehicles, and electric vehicles. The present work reports a versatile oxygen-deficient LiV 3 O 8 (D-LVO) nanosheet that was synthesized successfully via a facile oxygen-deficient hydrothermal reaction followed by thermal annealing in Ar. When used as a cathode material for LIB, the prepared D-LVO nanosheets display remarkable capacity properties at various current densities (a capacity of 335, 317, 278, 246, 209, 167, and 133 mA h g -1 at 50, 100, 200, 500, 1000, 2000, and 4000 mA g -1 , respectively) and excellent lithium-ion storage stability, maintaining more than 88% of the initial reversible capacity after 200 cycles at 1000 mA g -1 . The outstanding electrochemical properties are believed to arise largely from the introduction of tetravalent V (∼15% V 4+ ) and the attendant oxygen vacancies into LiV 3 O 8 nanosheets, leading to intrinsic electrical conductivity more than 1 order of magnitude higher and lithium-ion diffusion coefficient nearly 2 orders of magnitude higher than those of LiV 3 O 8 without detectable V 4+ (N-LVO) and thus contributing to the easy lithium-ion diffusion, rapid phase transition, and the excellent electrochemical reversibility. Furthermore, the more uniform nanostructure, as well as the larger specific surface area of D-LVO than N-LVO nanosheets may also improve the electrolyte penetration and provide more reaction sites for fast lithium-ion diffusion during the discharge/charge processes.

  20. Density functional study of NO adsorption on undefected and oxygen defective Au–BaO(1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Añez, Rafael, E-mail: ranez@ivic.gob.ve [Laboratorio de Química Física y Catálisis Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Sierraalta, Aníbal; Bastardo, Anelisse [Laboratorio de Química Física y Catálisis Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Coll, David [Laboratorio de Físico Química Teórica de Materiales, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Garcia, Belkis [Instituto Universitario de Tecnología de Valencia IUTVAL, Valencia, Edo. Carabobo (Venezuela, Bolivarian Republic of)

    2014-07-01

    A periodic density functional approach has been used in order to explore the interaction of NO with undoped and Au doped BaO(1 0 0) surface. Due to oxygen vacancies increase the interaction between the doping metal and the surface, F{sub S} and F{sub S}{sup +} vacancies were studied and compared with the results obtained on the undefected doped BaO(1 0 0). Our results indicate that the high basicity of the BaO surface, besides the electron density changes produced by the oxygen vacancies, modify considerably how the Au atom interacts with the surface increasing the ionic character of the interaction. F{sub S} vacancy shows to be a promise center to activate de NO bond on the BaO(1 0 0) surface.

  1. Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods

    Directory of Open Access Journals (Sweden)

    Kaili Wang

    2017-06-01

    Full Text Available Mussel-inspired polydopamine (PDA chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure hierarchical roughness. Additionally, the coating acted as a stable bridge between the substrate and hydrophobic groups. The morphology and chemical components of the prepared superhydrophobic wood surfaces were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS. The PDA and octadecylamine (OA modified surface showed excellent superhydrophobicity with a water contact angle (CA of about 153° and a rolling angle (RA of about 9°. The CA further increased to about 157° and RA reduced to about 5° with the Cu metallization. The superhydrophobic material exhibited outstanding stability in harsh conditions including ultraviolet aging, ultrasonic washing, strong acid-base and organic solvent immersion, and high-temperature water boiling. The results suggested that the PDA/OA layers were good enough to confer robust, degradation-resistant superhydrophobicity on wood substrates. The Cu metallization was likely unnecessary to provide significant improvements in superhydrophobic property. However, due to the amazing adhesive capacity of PDA, the electroless deposition technique may allow for a wide range of potential applications in biomimetic materials.

  2. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.

    2010-11-04

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  3. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Ahn, Sung-Jin; la O’ , Gerardo Jose; Leonard, Donovan N.; Borisevich, Albina; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  4. Hierarchical Mesoporous NiO/MnO2@PANI Core-Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions.

    Science.gov (United States)

    He, Junkai; Wang, Mingchao; Wang, Wenbo; Miao, Ran; Zhong, Wei; Chen, Sheng-Yu; Poges, Shannon; Jafari, Tahereh; Song, Wenqiao; Liu, Jiachen; Suib, Steven L

    2017-12-13

    We report on the new facile synthesis of mesoporous NiO/MnO 2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm -2 for the OER and -3 mA cm -2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.

  5. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    Science.gov (United States)

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  6. Observation of ferromagnetic ordering in a stable α -Co (OH) 2 phase grown on a Mo S2 surface

    Science.gov (United States)

    Debnath, Anup; Bhattacharya, Shatabda; Saha, Shyamal K.

    2017-12-01

    Because of the potential application of Co (OH) 2 in a magnetic cooling system as a result of its superior magnetocaloric effect many people have investigated magnetic properties of Co (OH) 2 . Unfortunately, most of the works have been carried out on the β -Co (OH) 2 phase due to the fact that the α -Co (OH) 2 phase is very unstable and continuously transformed into the stable β -Co (OH) 2 phase. However, in the present work, using a Mo S2 sheet as a two-dimensional template, we have been able to synthesize a stable α -Co (OH) 2 phase in addition to a β -Co (OH) 2 phase by varying the layer thickness. It is seen that for thinner samples the β phase, while for thicker samples α phase, is grown on the Mo S2 surface. Magnetic measurements are carried out for the samples over the temperature range from 2 to 300 K and it is seen that for the β phase, ferromagnetic ordering with fairly large coercivity (1271 Oe) at 2 K is obtained instead of the usual antiferromagnetism. The most interesting result is the observation of ferromagnetic ordering with a transition temperature (Curie temperature) more than 100 K in the α -Co (OH) 2 phase. Complete saturation in the hysteresis curve under application of very low field having coercivity of ˜162 Oe at 2 K and 60 Oe at 50 K is obtained. A thin stable α -Co (OH) 2 phase grown on Mo S2 surface with very soft ferromagnetic ordering will be very useful as the core material in electromagnets.

  7. γ radiolysis of thymine in oxygen-free aqueous solution in the presence of electron affinic radiosensitizers: identification of stable products

    International Nuclear Information System (INIS)

    Cadet, J.; Guttin-Lombard, M.; Teoule, R.

    1976-01-01

    Radiosensitizers react with nucleic radicals by addition and by electron transfer reactions. A study has been made of the steady-state γ radiolysis of 1 mM thymine in oxygen-free aqueous solutions containing different classes of radiosensitizing drugs: N-oxyl-free radicals (TAN and TMPN), quinones (menadione and naphthoquinone), nitroheterocyclic compounds (metronidazole and 5-nitro-2-furoic acid) and N-ethylmaleimide. Two classes of thymine degradation products were isolated by thin-layer chromatography and characterized by spectroscopic measurements. The main products, irrespective of radiosensitizers, resulting from oxidation reaction were identified as the cis and trans isomers of 5,6-dihydroxy-5, 6-dihydrothymine, N-pyruvyl-N'-formylurea, 6-hydroxy-5,6-dihydrothymine and 5-hydroxy-5,6-dihydrothymine. In the experimental conditions used only N-oxyls and to a lesser extent NEM reacted with 5-hydroxy-5,6-dihydrothymine-6-yl radical, giving stable covalently-bonded addition products with a high yield. TAN showed a higher binding ability with respect to TMPN, which is in good agreement with the rate-constants previously reported for these bimolecular reactions. (author)

  8. The Use of an Edible Mushroom-Derived Renewable Carbon Material as a Highly Stable Electrocatalyst towards Four-Electron Oxygen Reduction

    Directory of Open Access Journals (Sweden)

    Chaozhong Guo

    2015-12-01

    Full Text Available The development of highly stable and efficient electrocatalysts for sluggish oxygen reduction reaction (ORR is exceedingly significant for the commercialization of fuel cells but remains a challenge. We here synthesize a new nitrogen-doped biocarbon composite material (N-BC@CNP-900 as a nitrogen-containing carbon-based electrocatalyst for the ORR via facile all-solid-state multi-step pyrolysis of bioprotein-enriched enoki mushroom as a starting material, and inexpensive carbon nanoparticles as the inserting matrix and conducting agent at controlled temperatures. Results show that the N-BC@CNP-900 catalyst exhibits the best ORR electrocatalytic activity with an onset potential of 0.94 V (versus reversible hydrogen electrode, RHE and high stability. Meanwhile, this catalyst significantly exhibits good selectivity of the four-electron reaction pathway in an alkaline electrolyte. It is notable that pyridinic- and graphtic-nitrogen groups that play a key role in the enhancement of the ORR activity may be the catalytically active structures for the ORR. We further propose that the pyridinic-nitrogen species can mainly stabilize the ORR activity and the graphitic-nitrogen species can largely enhance the ORR activity. Besides, the addition of carbon support also plays an important role in the pyrolysis process, promoting the ORR electrocatalytic activity.

  9. The Use of an Edible Mushroom-Derived Renewable Carbon Material as a Highly Stable Electrocatalyst towards Four-Electron Oxygen Reduction.

    Science.gov (United States)

    Guo, Chaozhong; Sun, Lingtao; Liao, Wenli; Li, Zhongbin

    2015-12-23

    The development of highly stable and efficient electrocatalysts for sluggish oxygen reduction reaction (ORR) is exceedingly significant for the commercialization of fuel cells but remains a challenge. We here synthesize a new nitrogen-doped biocarbon composite material (N-BC@CNP-900) as a nitrogen-containing carbon-based electrocatalyst for the ORR via facile all-solid-state multi-step pyrolysis of bioprotein-enriched enoki mushroom as a starting material, and inexpensive carbon nanoparticles as the inserting matrix and conducting agent at controlled temperatures. Results show that the N-BC@CNP-900 catalyst exhibits the best ORR electrocatalytic activity with an onset potential of 0.94 V ( versus reversible hydrogen electrode, RHE) and high stability. Meanwhile, this catalyst significantly exhibits good selectivity of the four-electron reaction pathway in an alkaline electrolyte. It is notable that pyridinic- and graphtic-nitrogen groups that play a key role in the enhancement of the ORR activity may be the catalytically active structures for the ORR. We further propose that the pyridinic-nitrogen species can mainly stabilize the ORR activity and the graphitic-nitrogen species can largely enhance the ORR activity. Besides, the addition of carbon support also plays an important role in the pyrolysis process, promoting the ORR electrocatalytic activity.

  10. Western Indian Ocean circulation and climate variability on different time scales. A study based on stable oxygen and carbon isotopes, benthic foraminiferal assemblages and Mg/Ca paleothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Romahn, Sarah

    2014-08-19

    In order to understand the Earth's climate evolution it is crucial to evaluate the role of low-latitude oceans in the global climate system, as they are connected to both hemispheres via atmospheric and oceanic circulation and thus hold the potential to disentangle the asynchronicity of short-term Pleistocene climate variability. However, the potential of low latitude oceans to respond to and force large-scale changes of the climate system is still debated. The aim of this thesis is to examine and to understand the causal relationship of both atmospheric and oceanic changes in the tropical western Indian Ocean on centennial-, millennial and glacial-interglacial timescales. For this purpose I investigated stable oxygen and carbon isotope compositions of both planktic and benthic foraminiferal tests, Mg/Ca ratios of planktic foraminiferal tests as well as benthic foraminiferal assemblages and sedimentary geochemical parameters on two sediment cores (GeoB12615-4, 446 m and GeoB12616-4, 1449 m) from the continental slope off Tanzania, East Africa.

  11. Western Indian Ocean circulation and climate variability on different time scales. A study based on stable oxygen and carbon isotopes, benthic foraminiferal assemblages and Mg/Ca paleothermometry

    International Nuclear Information System (INIS)

    Romahn, Sarah

    2014-01-01

    In order to understand the Earth's climate evolution it is crucial to evaluate the role of low-latitude oceans in the global climate system, as they are connected to both hemispheres via atmospheric and oceanic circulation and thus hold the potential to disentangle the asynchronicity of short-term Pleistocene climate variability. However, the potential of low latitude oceans to respond to and force large-scale changes of the climate system is still debated. The aim of this thesis is to examine and to understand the causal relationship of both atmospheric and oceanic changes in the tropical western Indian Ocean on centennial-, millennial and glacial-interglacial timescales. For this purpose I investigated stable oxygen and carbon isotope compositions of both planktic and benthic foraminiferal tests, Mg/Ca ratios of planktic foraminiferal tests as well as benthic foraminiferal assemblages and sedimentary geochemical parameters on two sediment cores (GeoB12615-4, 446 m and GeoB12616-4, 1449 m) from the continental slope off Tanzania, East Africa.

  12. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  13. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  14. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  15. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    Science.gov (United States)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  16. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, Shichun [Institute of Modern Physics (IMP)/Chinese Academy of Sciences (CAS), Lanzhou (China)

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  17. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    International Nuclear Information System (INIS)

    Flavel, Benjamin S.; Garrett, David J.; Lehr, Joshua; Shapter, Joseph G.; Downard, Alison J.

    2010-01-01

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH 3 ) 6 +3/+2 couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10 -3 cm s -1 at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  18. The surface structure of SrTiO{sub 3} at high temperatures under influence of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Hesselberth, M. B. S.; Molen, S. J. van der; Aarts, J. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2014-02-03

    We use low energy electron microscopy to investigate the structure of the SrTiO{sub 3} (001) surface at elevated temperatures and different oxygen pressures. Upon varying the temperature between 500 °C and 900 °C in oxygen pressures ranging from 10{sup −9} millibar to 10{sup −4} millibar, two surface transitions are found to be present. The lower temperature (1 × 1) → (2 × 1) transition that is known to occur in ultrahigh vacuum can be reversed by increasing the oxygen pressure. At higher temperatures, we observe a (2 × 1) → disordered (1 × 1) transition which is irreversible in the experimental parameter range. The observations are expected to have a strong bearing on the growth of interface structures.

  19. Modifying TiO{sub 2} surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rajmohan, Gayathri Devi [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Dai, Xiujuan J., E-mail: jane.dai@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Tsuzuki, Takuya; Lamb, Peter R. [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001 (Australia); Huang, Fuzhi; Cheng, Yi-Bing [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia)

    2013-10-31

    Oxygen plasma treatment of TiO{sub 2} films has been used to improve the efficiency of dye sensitized solar cells. Both a commercial TiO{sub 2} sample and a TiO{sub 2} thin film synthesized by a sol-gel technique were treated using a custom built inductively coupled plasma apparatus. X-ray photoelectron spectroscopy revealed that oxygen-plasma treatment increased the number of oxygen functional groups (hydroxyl groups) and introduced some Ti{sup 3+} species on the surface of TiO{sub 2}. A sample solar cell with plasma treated TiO{sub 2} showed an overall solar-to-electricity conversion efficiency of 4.3%, about a 13% increase over untreated TiO{sub 2}. The photon conversion efficiency for the plasma treated TiO{sub 2} was 34% higher than untreated TiO{sub 2}. This enhanced cell-performance is partly due to increased dye adsorption from an increase in surface oxygen functional groups and also may be partly due to Ti{sup 3+} states on the surface of TiO{sub 2}. - Highlights: • Oxygen plasma is used to generate hydroxyl groups on the surface of TiO{sub 2} • Parallel study was conducted using a spin coated TiO{sub 2} and a Commercial TiO{sub 2} film. • The plasma functionalization caused increased dye uptake. • Some species in Ti{sup 3+} state are also generated after oxygen plasma. • Dye sensitised solar cell with functionalised electrode showed improved efficiency.

  20. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate

    Science.gov (United States)

    Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun

    2016-12-01

    Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC

  1. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Flavel, Benjamin S., E-mail: ben.flavel@flinders.edu.a [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5001 (Australia); Garrett, David J.; Lehr, Joshua [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Private Bag 4800, Christchurch 8140 (New Zealand); Shapter, Joseph G. [School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5001 (Australia); Downard, Alison J., E-mail: alison.downard@canterbury.ac.n [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Private Bag 4800, Christchurch 8140 (New Zealand)

    2010-04-30

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH{sub 3}){sub 6}{sup +3/+2} couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10{sup -3} cm s{sup -1} at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  2. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    Science.gov (United States)

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  3. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Macková, Hana [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine); Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich [R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 45 Vasylkivska St., 03022 Kiev (Ukraine); Kuzmenko, Oleksandr Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine)

    2015-04-15

    Maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe{sub 2}O{sub 3} nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe{sub 2}O{sub 3} nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe{sub 2}O{sub 4} particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed.

  4. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments

    International Nuclear Information System (INIS)

    Tichomirowa, Marion; Junghans, Manuela

    2009-01-01

    Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO 4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O 2 ) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O 2 ) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO 4 and water was observed over a pH range of 0-2 only at 50 deg. C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 deg. C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T ≤ 25 deg. C, pH ≥ 3) for decades. Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O 2 to pyrite surface sites. The sorption of molecular O 2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO 4 . The calculated bulk contribution of atmospheric O 2 in the dissolved SO 4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O 2 in the early-formed sulfates, chemisorption and electron transfer of molecular O 2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction

  5. Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals

    Science.gov (United States)

    Rodrigues, Lisa J.; Grottoli, Andréa G.

    2006-06-01

    We tested the effectiveness of stable isotopes as recorders of physiological changes that occur during coral bleaching and recovery. Montipora capitata and Porites compressa fragments were bleached in outdoor tanks with seawater temperature raised to 30 °C (treatment corals) for one month. Additional fragments were maintained at 27 °C in separate tanks (control corals). After one month, (0 months recovery), buoyant weight was measured and a subset of fragments was frozen. Remaining fragments were returned to the reef for recovery. After 1.5, 4, and 8 months, fragments were collected, measured for buoyant weight, and frozen. Fragments were analyzed for stable carbon and oxygen isotopic compositions of the skeleton (δ 13C s; δ 18O s) and nitrogen and carbon isotopic compositions of the host tissue (δ 15N h; δ 13C h) and zooxanthellae (δ 15N z; δ 13C z). δ 13C s decreased immediately after bleaching in M. capitata, but not in P. compressa. δ 18O s of both species failed to record the warming event. During the remaining months of recovery, δ 13C s and δ 18O s were more enriched in treatment than control corals due to decreases in calcification and metabolic fractionation during that time. Increased δ 15N h of treatment P. compressa may be due to expelled zooxanthellae during bleaching and recovery. Increased δ 15N z at 1.5 months in treatment fragments of both species reflects the increased incorporation of dissolved inorganic nitrogen to facilitate mitotic cell division and/or chl a/cell recovery. Changes in δ 13C h and δ 13C z at 1.5 months in treatment M. capitata indicated a large increase in heterotrophically acquired carbon relative to photosynthetically fixed carbon. We experimentally show that isotopes in coral skeleton, host tissue and zooxanthellae can be used to verify physiological changes during bleaching and recovery, but their use as a proxy for past bleaching events in the skeletal record is limited.

  6. CONDITIONS FOR STABLE CHIP BREAKING AND PROVISION OF MACHINED SURFACE QUALITY WHILE TURNING WITH ASYMMETRIC TOOL VIBRATIONS

    Directory of Open Access Journals (Sweden)

    V. K. Sheleh

    2015-01-01

    Full Text Available The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration amplitude on a cutting process and quality of the machined surfaces machining must be carried out with its minimum value. In this case certain ratio of the tool vibration frequency to the work-piece rotation speed has been ensured in the paper. A formula has been obtained for calculation of this ratio with due account of the expected length of chip elements and coefficient of vibration cycle asymmetry.Influence of the asymmetric coefficient of the tool vibration cycle on roughness of the machined surfaces and cutting tool wear has been determined in the paper. According to the results pertaining to machining of work-pieces made of 45 and ШХ15 steel the paper presents mathematical relationships of machined surface roughness with cutting modes and asymmetry coefficient of tool vibration cycle. Tool feeding being one of the cutting modes exerts the most significant impact on the roughness value and increase of the tool feeding entails increase in roughness. Reduction in coefficient of vibration cycle asymmetry contributes to surface roughness reduction. However, the cutting tool wear occurs more intensive. Coefficient of the vibration cycle asymmetry must be increased in order to reduce wear rate. Therefore, the choice of the coefficient of the vibration cycle asymmetry is based on the parameters of surface roughness which must be obtained after machining and intensity of tool wear rate.The paper considers a process of turning structural steel with asymmetric

  7. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    Directory of Open Access Journals (Sweden)

    Adriana Ibarra-Hernández

    2018-02-01

    Full Text Available Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A. These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation.

  8. The role of energetic ions from plasma in the creation of nanostructured materials and stable polymer surface treatments

    International Nuclear Information System (INIS)

    Bilek, M.M.M.; Newton-McGee, K.; McKenzie, D.R.; McCulloch, D.G.

    2006-01-01

    Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment

  9. A theoretical study of stability and vacancy replenishing of MoO{sub 3}(0 1 0) surfaces in oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yan-Hua; Chen, Zhao-Xu, E-mail: zxchen@nju.edu.cn

    2016-01-15

    Graphical abstract: - Highlights: • Under normal experimental conditions perfect surface of MoO{sub 3}(0 1 0) is favorable. • Line defects along asymmetric oxygen direction in lean oxygen condition are favored. • Vacancy replenishing occurs on vacancies formed by terminal and asymmetrical oxygen. - Abstract: Oxygen vacancies on transition metal oxide surfaces are catalytically very important. The stability, shape and replenishing process of the vacancies are critical to understanding reactions happening on the surfaces. In this paper we investigate the stability of various defective MoO{sub 3}(0 1 0) surfaces and examine the influence of environmental oxygen on the stability as well as the active sites for the replenishing process. Our calculations reveal that the line oxygen defect along a (asymmetric oxygen) direction is thermodynamically most favorable at higher defect concentration whereas point defect surfaces are unfavorable. Under normal experimental conditions the perfect surface dominates the MoO{sub 3}(0 1 0). We show that for stoichiometric surfaces of any oxides (A{sub x}O{sub y}) the formation energy per vacancy controls the favorable defect shape (line or point defects). Calculations indicate that O{sub 2} can dissociate readily on the surfaces that double vacancies share one Mo atom. The replenishing process of the oxygen vacancies through O{sub 2} dissociation most likely occurs on the double-vacancy containing one terminal and one asymmetrical oxygen vacancies.

  10. Identification of Bottled Zam Zam Water in Malaysian Market using Hydrogen and Oxygen Stable Isotobe Ratios (δ2H and δ18O)

    International Nuclear Information System (INIS)

    Roslanzairi Mostapa; Abdul Kadir Ishak; Kamaruzaman Mohamad; Rohaimah Demanah

    2014-01-01

    The water drawn from the well of Zam Zam is believed by the adherents of Islam to be blessed and capable of treating a variety of ailments. The water originates from a well in an alluvium area, located in Mecca, Saudi Arabia and has been in use since 4000 years ago. Due to the religious significance of the water drawn from this well, bottled versions are very popular among Malaysians. Unfortunately, this disproportionate popularity may entice some unscrupulous dealers to engage in fraudulent behaviour, such as selling ordinary water purported to be Zam Zam water. This unethical practice might very well pose a physical and economical hazard to consumers. Therefore, for the purpose of this preliminary study, five samples of Zam Zam bottled water from different brands were purchased and analyzed using Isotope Ratio Mass Spectrometer (IRMS). For comparison purpose, four samples of zam zam water from Mecca, and two more types of water samples originating from Malaysian were also analyzed, namely, bottled drinking water and tap water. The sources of these water samples are from groundwater and surface water (river), respectively. Results of hydrogen (ε 2 H) and oxygen (ε 18 O) isotope ratios of zam zam water from mecca are in the range of -13.62 % to -10.60 %, and -2.17 % to 0.06 %, respectively, while the hydrogen (ε 2 H) and oxygen (δ 18 O) isotope ratios of five samples from the bottled Zam Zam water are within the range of -50.74 % to -7.95 % to -5.39 %, respectively. The results from the measured values of all the water samples, and might be immensely useful for the purpose of regulatory monitoring of bottled water products. (author)

  11. Facile Synthesis of N-Doped Graphene-Like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction

    Science.gov (United States)

    Gu, Daguo; Zhou, Yao; Ma, Ruguang; Wang, Fangfang; Liu, Qian; Wang, Jiacheng

    2018-06-01

    A series of N-doped carbon materials (NCs) were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile one-step pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C3N4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6, show the highest N content of 6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of 66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal-air batteries.

  12. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  13. Ocean circulation and shelf processes in the Arctic, Mediterranean traced by radiogenic neodymium isotopes, rare earth elements and stable oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Laukert, Georgi

    2017-02-20

    Disentangling the sources, distribution and mixing of water masses involved in the transport and transfer of heat and freshwater in the Arctic Mediterranean (i.e. the Arctic Ocean and the Nordic Seas, AM) is critical for the understanding of present and future hydrological changes in the high-latitude regions. This study refines the knowledge of water mass circulation in the AM and provides new insights into the processes occurring on the Arctic shelves and in high-latitude estuaries. A multi-proxy approach is used combining dissolved radiogenic Nd isotopes (ε{sub Nd}), rare earth elements (REEs) and stable oxygen isotopes (δ{sup 18}O) together with standard hydrographic tracers. The sources, distribution and mixing of water masses that circulate in the AM and pass the Fram Strait are assessed through evaluation of dissolved ε{sub Nd} and REE, and δ{sup 18}O data obtained from samples recovered in 2012, 2014 and 2015, and through a compilation and reassessment of literature Nd isotope and concentration data previously reported for other sites within the AM. The Nd isotope and REE distribution in the central Fram Strait and the open AM is shown to primarily reflect the lateral advection of water masses and their mixing, whereas seawater-particle interactions exert important control only above the shelf regions. New insights into the processes occurring in high latitude estuaries are provided by dissolved Nd isotope and REE compositions together with δ{sup 18}O data for the Laptev Sea based on filtered samples recovered in 2012, 2013 and 2014. A combination of REE removal through coagulation of nanoparticles and colloids and REE redistribution within the water column through formation and melting of sea ice and river ice is suggested to account for the distribution of all REEs, while no REE release from particles is observed. The ice-related processes contribute to the redistribution of other elements and ultimately may also affect primary productivity in high

  14. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    Science.gov (United States)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  15. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng

    2015-08-13

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the phase segregation of Au and Ag encountered in conventional synthesis. The resulting core–shell structured bimetallic nanorods (AuNR@AuAg) have well-mixed Au and Ag atoms in their shell without discernible domains. This degree of mixing allows AuNR@AuAg to combine the high stability of Au with the superior plasmonic activity of Ag, thus outperforming seemingly similar nanostructures with monometallic shells (e.g., Ag-coated Au NRs (AuNR@Ag) and Au-coated Au NRs (AuNR@Au)). AuNR@AuAg is comparable to AuNR@Ag in plasmonic activity, but that it is markedly more stable toward oxidative treatment. Specifically, AuNR@AuAg and AuNR@Ag exhibit similarly strong signals in surface-enhanced Raman spectroscopy that are some 30-fold higher than that of AuNR@Au. When incubated with a H2O2 solution (0.5 m), the plasmonic activity of AuNR@Ag immediately and severely decayed, whereas AuNR@AuAg retained its activity intact. Moreover, the longitudinal SPR frequency of AuNR@AuAg can be tuned throughout the red wavelengths (≈620–690 nm) by controlling the thickness of the AuAg alloy shell. The synthetic strategy is versatile to fabricate AuAg alloyed shells on different shaped Au, with prospects for new possibilities in the synthesis and application of plasmonic nanocrystals.

  16. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-11-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  17. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sungjoon [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Joonhyub [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Park, Chanwon [Department of Electrical and Electronic Engineering, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jin, Joon-Hyung, E-mail: jj1023@chol.com [Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227 (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.kr [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2017-07-15

    Graphical abstract: Superhydrophilic single-walled carbon nanotube obtained by O{sub 2} plasma treatment voluntarily and non-reversibly reverts to a metastable state. This aerobic aging is an essential process to develop a stable carbon nanotube-based sensor. - Highlights: • Superhydrophilic single-walled carbon nanotube network can be obtained by O{sub 2} plasma-based surface modification. • The modified carbon nanotube surface invariably reverts to a metastable state in a non-reversible manner. • Aerobic aging is essential to stabilize the modified carbon nanotube and the carbon nanotube-based sensing device due to minimized sensor-to-sensor variation. - Abstract: Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH{sub 3} gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response

  18. On the nature of oxygen-containing surface groups on carbon nanofibers and their role for platinum deposition—an xps and titration study

    NARCIS (Netherlands)

    Plomp, A.J.; Su, D.S.; de Jong, K.P.; Bitter, J.H.

    2009-01-01

    XPS and acid−base titrations were used to investigate the nature and stability of oxygen-containing surface groups on carbon nanofibers (CNF) and platinum-containing CNF. During heat treatments in inert atmosphere at 973 K all acidic (carboxylic) oxygen surface groups were removed for CNF.

  19. Solid oxide fuel cell cathode infiltrate particle size control and oxygen surface exchange resistance determination

    Science.gov (United States)

    Burye, Theodore E.

    Over the past decade, nano-sized Mixed Ionic Electronic Conducting (MIEC) -- micro-sized Ionic Conducting (IC) composite cathodes produced by the infiltration method have received much attention in the literature due to their low polarization resistance (RP) at intermediate (500-700°C) operating temperatures. Small infiltrated MIEC oxide nano-particle size and low intrinsic MIEC oxygen surface exchange resistance (Rs) have been two critical factors allowing these Nano-Micro-Composite Cathodes (NMCCs) to achieve high performance and/or low temperature operation. Unfortunately, previous studies have not found a reliable method to control or reduce infiltrated nano-particle size. In addition, controversy exists on the best MIEC infiltrate composition because: 1) Rs measurements on infiltrated MIEC particles are presently unavailable in the literature, and 2) bulk and thin film Rs measurements on nominally identical MIEC compositions often vary by up to 3 orders of magnitude. Here, two processing techniques, precursor nitrate solution desiccation and ceria oxide pre-infiltration, were developed to systematically produce a reduction in the average La0.6Sr0.4Co0.8Fe 0.2O3-delta (LSCF) infiltrated nano-particle size from 50 nm to 22 nm. This particle size reduction reduced the SOFC operating temperature, (defined as the temperature where RP=0.1 Ocm 2) from 650°C to 540°C. In addition, Rs values for infiltrated MIEC particles were determined for the first time through finite element modeling calculations on 3D Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) reconstructions of electrochemically characterized infiltrated electrodes.

  20. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes

    Science.gov (United States)

    Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.

    2010-05-01

    Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.

  1. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path

    International Nuclear Information System (INIS)

    Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Juergen

    2011-01-01

    Highlights: → Oxygen exchange kinetics of Pt on YSZ investigated by means of Pt model electrodes. → Two different geometry dependencies of the polarization resistance identified. → At higher temperatures the oxygen exchange reaction proceeds via a Pt surface path. → At lower temperatures a bulk path through the Pt thin film electrode is discussed. - Abstract: The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 deg. C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 deg. C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  2. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    Science.gov (United States)

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ 2 H and δ 18 O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ 2 H and δ 18 O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as

  3. Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents: a randomized controlled trial.

    Science.gov (United States)

    Granacher, Urs; Schellbach, Jörg; Klein, Katja; Prieske, Olaf; Baeyens, Jean-Pierre; Muehlbauer, Thomas

    2014-01-01

    It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the

  4. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution

    Science.gov (United States)

    Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun

    2018-01-01

    The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.

  5. Initial oxidation behavior of Ni{sub 3}Al (210) surface induced by supersonic oxygen molecular beam at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ya, E-mail: XU.Ya@nims.go.jp [Hydrogen Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakurai, Junya [Hydrogen Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Teraoka, Yuden; Yoshigoe, Akitaka [Quantum Beam Science Center, Japan Atomic Energy Research Agency, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Demura, Masahiko; Hirano, Toshiyuki [Hydrogen Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-01-01

    Graphical abstract: - Highlights: • Initial oxidation of Ni{sub 3}Al (210) induced by O{sub 2} beam was investigated. • This was done using real-time synchrotron radiation XPS. • Both the Al and the Ni atoms on the surface were oxidized. • Oxidation of Al progressed much faster than that of Ni. - Abstract: The initial oxidation behavior of a clean Ni{sub 3}Al (210) surface was studied at 300 K using a supersonic O{sub 2} molecular beam (O{sub 2} SSMB) having an O{sub 2} translational energy of 2.3 eV, and real-time photoemission spectroscopy performed with high-brilliance synchrotron radiation. The evolution behaviors of the O 1s, Ni 2p, Al 2p, and Ni 3p spectra were examined during irradiation with the O{sub 2} SSMB. The spectral analysis revealed that both the Al atoms and the Ni atoms on the surface were oxidized; however, the oxidation of Al progressed much faster than that of Ni. The oxidation of Al began to occur and AlO{sub x} was formed at an oxygen coverage of 0.26 monolayer (ML) (1 ML was defined as the atomic density of the Ni{sub 3}Al (210) surface) and saturated at an oxygen coverage of 2.5 ML. In contrast, the oxidation of Ni commenced a little late at an oxygen coverage of 1.6 ML and slowly progressed to saturation, which occurred at an oxygen coverage of 4.89 ML.

  6. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  7. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    Directory of Open Access Journals (Sweden)

    W. G. Darling

    2003-01-01

    Full Text Available The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic 'baseline' for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003 considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers

  8. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  9. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    Science.gov (United States)

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  10. Metal nanoinks as chemically stable surface enhanced scattering (SERS) probes for the analysis of blue BIC ballpoint pens.

    Science.gov (United States)

    Alyami, A; Saviello, D; McAuliffe, M A P; Mirabile, A; Lewis, L; Iacopino, D

    2017-06-07

    Metal nanoinks constituted by Ag nanoparticles and Au nanorods were employed as probes for the Surface Enhanced Raman Scattering (SERS) analysis of a blue BIC ballpoint pen. The dye components of the pen ink were first separated by thin layer chromatography (TLC) and subsequently analysed by SERS at illumination wavelengths of 514 nm and 785 nm. Compared to normal Raman conditions, enhanced spectra were obtained for all separated spots, allowing easy identification of phthalocyanine Blue 38 and triarylene crystal violet in the ink mixture. A combination of effects such as molecular resonance, electromagnetic and chemical effects were the contributing factors to the generation of spectra enhanced compared to normal Raman conditions. Enhancement factors (EFs) between 5 × 10 3 and 3 × 10 6 were obtained, depending on the combination of SERS probes and laser illumination used. In contrast to previous conflicting reports, the metal nanoinks were chemically stable, allowing the collection of reproducible spectra for days after deposition on TLC plates. In addition and in advance to previously reported SERS probes, no need for additional aggregating agents or correction of electrostatic charge was necessary to induce the generation of enhanced SERS spectra.

  11. Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens

    Science.gov (United States)

    Alyami, Abeer; Saviello, Daniela; McAuliffe, Micheal A. P.; Cucciniello, Raffaele; Mirabile, Antonio; Proto, Antonio; Lewis, Liam; Iacopino, Daniela

    2017-08-01

    Au nanorods were used as an alternative to commonly used Ag nanoparticles as Surface Enhanced Raman Scattering (SERS) probes for identification of dye composition of blue BIC ballpoint pens. When used in combination with Thin Layer Chromatography (TLC), Au nanorod colloids allowed identification of the major dye components of the BIC pen ink, otherwise not identifiable by normal Raman spectroscopy. Thanks to their enhanced chemical stability compared to Ag colloids, Au nanorods provided stable and reproducible SERS signals and allowed easy identification of phthalocyanine and triarylene dyes in the pen ink mixture. These findings were supported by FTIR and MALDI analyses, also performed on the pen ink. Furthermore, the self-assembly of Au nanorods into large area ordered superstructures allowed identification of BIC pen traces. SERS spectra of good intensity and high reproducibility were obtained using Au nanorod vertical arrays, due to the high density of hot spots and morphological reproducibility of these superstructures. These results open the way to the employment of SERS for fast screening analysis and for quantitative analysis of pens and faded pens which are relevant for the fields of forensic and art conservation sciences.

  12. Intense and stable surface-enhanced Raman scattering from Ag@mesoporous SiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yongjin; Wang, Xiaolong; Chen, Dong; Jiang, Tao, E-mail: jiangtao@nbu.edu.cn; Zhao, Ziqi; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn

    2016-09-15

    A surface-enhanced Raman scattering (SERS) film consisting of mesoporous silica (MSiO{sub 2}) coated Ag nanoparticles (NPs) was achieved. The as-prepared hybrid NPs were uniform in size and formed large amount of aggregates in the film. “Hot spots” were supposed to appear in the MSiO{sub 2} shells with an average size as small as 15 nm. Such a novel core–shell structure therefore induced the enhancement of SERS intensity compared to the film of bare Ag NPs and polymer film of Ag-CMC. The homogeneity and stability of SERS signals from the Ag@MSiO{sub 2} film were also tested. A relative standard deviation of SERS intensity lower than 20% from Raman mapping and a stable SERS signal with excitation power of 100 mW were observed, which were both better than the other two films. Moreover, the obtained Ag@MSiO{sub 2} film was applied to detect thiram pesticides and a detection limit as low as 1×10{sup −8} M was reached, which indicates the advantages of the Ag@MSiO{sub 2} film in biosensor.

  13. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Nazaruk, D E; Blokhin, S A; Maleev, N A; Bobrov, M A; Pavlov, M M; Kulagina, M M; Vashanova, K A; Zadiranov, Yu M; Ustinov, V M; Kuzmenkov, A G; Vasil'ev, A P; Gladyshev, A G; Blokhin, A A; Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" data-affiliation=" (JSV Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" >Fefelov, A G

    2014-01-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range

  14. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    Science.gov (United States)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    atmospheric turbulence and wind speed. GEM enriched in stable isotope 198 (GEM-198) was released into the room from source at elevated but environmentally relevant concentrations of GEM-198 for several days. Uptake of GEM-198 from deciduous and conifer trees, grass turf, 3 types of soil, sand, concrete, asphalt, and adsorbent coated deposition coupons were quantified over several days. Exposures were conducted between 10oC and 30oC, in dark and light conditions. Mercury was recovered from the samples using acidic digestions and surface leaches, and then analyzed for the content of GEM-198 by high resolution ICPMS. Experimental results demonstrated that uptake by White Ash, White Spruce, and Kentucky bluegrass were significantly higher than uptakes measured for two Wisconsin soils, peat, sand, concrete and asphalt at all of the conditions studied. Deposition resistances for surface transfer processes for were calculated for each of the substrates across the conditions studied for use in atmospheric model simulations.

  15. Secondary electron emission influenced by oxidation on the aluminum surface: the roles of the chemisorbed oxygen and the oxide layer

    Science.gov (United States)

    Li, Jiangtao; Hoekstra, Bart; Wang, Zhen-Bin; Qiu, Jie; Pu, Yi-Kang

    2018-04-01

    A relationship between the apparent secondary electron yield ({γ }{{se}}) and the oxygen coverage/oxide layer thickness on an aluminum cathode is obtained in an experiment under a controlled environment. The apparent secondary electron yield ({γ }{{se}}) is deduced from the breakdown voltage between two parallel plate electrodes in a 360 mTorr argon environment using a simple Townsend breakdown model with the assumption that the variation of the apparent secondary electron yield is dominated by the variation of the argon ion induced processes. The oxygen coverage/oxide layer thickness on the aluminum cathode is measured by a semi in situ x-ray photoemission spectroscopy equipment which is directly attached to the discharge chamber. It is found that three phases exist: (1) in the monomonolayer regime, as the oxygen coverage increases from 0 to 0.3, {γ }{{se}} decreases by nearly 40 % , (2) as the oxygen coverage increases from 0.3 to 1, {γ }{{se}} keeps nearly constant, (3) as the oxide layer thickness increases from about 0.3 nm to about 1.1 nm, {γ }{{se}} increases by 150 % . We propose that, in the submonolayer regime, the chemisorbed oxygen on the aluminum surface causes the decrease of {γ }{{se}} by creating a local potential barrier, which reduces the Auger neutralization rate and the energy gained by the Auger electrons. In the multilayer regime, as the oxide layer grows in thickness, there are three proposed mechanisms which cause the increase of {γ }{{se}}: (1) the work function decreases; (2) resonance neutralization and Auger de-excitation may exist. This is served as another channel for secondary electron production; (3) the kinetic energy of Auger electrons is increased on average, leading to a higher probability for electrons to overcome the surface potential barrier.

  16. Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media

    Directory of Open Access Journals (Sweden)

    Nagappan Ramaswamy

    2012-01-01

    Full Text Available Complex electrochemical reactions such as Oxygen Reduction Reaction (ORR involving multi-electron transfer is an electrocatalytic inner-sphere electron transfer process that exhibit strong dependence on the nature of the electrode surface. This criterion (along with required stability in acidic electrolytes has largely limited ORR catalysts to the platinum-based surfaces. New evidence in alkaline media, discussed here, throws light on the involvement of surface-independent outer-sphere electron transfer component in the overall electrocatalytic process. This surface non-specificity gives rise to the possibility of using a wide-range of non-noble metal surfaces as electrode materials for ORR in alkaline media. However, this outer-sphere process predominantly leads only to peroxide intermediate as the final product. The importance of promoting the electrocatalytic inner-sphere electron transfer by facilitation of direct adsorption of molecular oxygen on the active site is emphasized by using pyrolyzed metal porphyrins as electrocatalysts. A comparison of ORR reaction mechanisms between acidic and alkaline conditions is elucidated here. The primary advantage of performing ORR in alkaline media is found to be the enhanced activation of the peroxide intermediate on the active site that enables the complete four-electron transfer. ORR reaction schemes involving both outer- and inner-sphere electron transfer mechanisms are proposed.

  17. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  18. Carbon and oxygen stable isotopes in large herbivore tooth enamel illustrate a mid-Miocene precipitation increase in the interior Pacific Northwest

    Science.gov (United States)

    Drewicz, A.; Kohn, M. J.

    2017-12-01

    The mid-Miocene Climatic Optimum (MMCO; 13.75-16.9 Ma), represents the warmest period in Earth's history during the last 35 Ma, and is distinguished by low ice volume and high ocean water temperatures. The MMCO has been associated with high atmospheric CO2 (pCO2) similar to levels anticipated in the next century. Thus, understanding MMCO climate may help enlighten predictions of future climate change. Here, using new stable oxygen and carbon isotopes of fossil ungulate tooth enamel from before, during, and after the MMCO, we show that high pCO2 corresponds with warm-wet conditions, whereas low pCO2 corresponds with cool-dry conditions. We specifically show that mean annual precipitation (MAP), as inferred from tooth enamel δ13C values and corrected for atmospheric δ13C values (Δ13C), increased with increasing pCO2. Values of Δ13C > 19.5 ‰ in the lower John Day ( 27 Ma) and Mascall ( 15.3 Ma) localities imply relatively high mean annual precipitation (MAP = 550-850 mm/yr). Values of Δ 13C < 18.5 ‰ at 18 Ma and at four levels between 15 and 3 Ma imply low MAP (≤250 mm/yr), similar to modern climate. High MAP values generally correlate with high pCO2 levels, as inferred from marine records, implicating pCO2 as a principal driver of MAP in the Pacific Northwest. A climate oscillation model best explains our δ 13C data, such that warm-wet conditions during high pCO2 events alternated with cool-dry conditions during low pCO2 events on timescales of 100 kyr. The MMCO may have been more dynamic than originally considered, with wet-warm and cool-dry cycles reflecting Milankovitch cycles. High δ18O values in specimens from the John Day (21.8±0.6 ‰ V-SMOW) and Mascall (21.3±0.5 ‰) Formations may reflect lower elevations for the upwind Cascade Range prior to 7 Ma, or its proximity to the coast compared to more inland sites (δ18O = 17.7±0.9 to 19.6±1.1 ‰). Unusually high δ18O values of Dromomeryx sp. from Red Basin (27.4±0.6 ‰) most likely reflect

  19. The role of (sub)-surface oxygen on the surface electronic structure of hydrogen terminated (100) CVD diamond

    NARCIS (Netherlands)

    Deferme, W.; Tanasa, G.; Amir, J.; Haenen, K.; Nesladek, M.; Flipse, C.F.J.

    2006-01-01

    In this work, scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) were applied to investigate the surface morphol. and the surface electronic structure of plasma-treated (100)-oriented CVD diamond films. These films were hydrogenated using a conventional MWPE-CVD

  20. Modelling of the heat transfer during oxygen atoms recombination on metallic surfaces in a plasma reactor

    NARCIS (Netherlands)

    Cavadias, S; Cauquot, P; Amouroux, J

    1997-01-01

    Space shuttle overheating during the re-entry phase, due to catalytic oxygen recombination on the thermal protection system, is a problem of practical and theoretical interest. The energy transfer is characterised by the product of the accommodation and the recombination coefficients. Previous

  1. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  2. Investigation of the niobium-oxygen system under low pressure and between 550 K and 2350 K: solid solution, surface overlay and reactivity

    International Nuclear Information System (INIS)

    Jupille, Jacques

    1974-09-01

    This research thesis addresses the behaviour of transition metals when interacting with oxygen, more particularly in the case of phase formation, but also adsorption and desorption which occur in the case of interaction with low pressure oxygen. It focuses on the case of niobium in solid solution. After a description of phases present in the niobium-oxygen system, and a discussion of reactivities of oxygen and water vapour, the author describes the experimental methods (apparatus and installations, samples, measured values), discusses the study of the surface-volume transfer constant of the niobium-oxygen solution, and the niobium-oxygen interaction mechanisms at high (superior to 1700 K) and low (inferior to 1000 K) temperatures: oxide desorption, oxygen reaction kinetics

  3. Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3-δ

    NARCIS (Netherlands)

    Berenov, A.; Atkinson, A.; Kilner, J.; Ananyev, M.; Eremin, V.; Porotnikova, N.; Farlenkov, A.; Kurumchin, E.; Bouwmeester, Henricus J.M.; Bucher, E.; Sitte, W.

    2014-01-01

    The oxygen tracer diffusion coefficient, Db⁎, and the oxygen tracer surface exchange coefficient, k, were measured in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ (BSCF5582) over the temperature range of 310–800 °C and the oxygen partial pressure range of 1.3 × 10−3–0.21 bar. Several measurement techniques were used:

  4. Electronic excitation of Ti atoms sputtered by energetic Ar+ and He+ from clean and monolayer oxygen covered surfaces

    International Nuclear Information System (INIS)

    Pellin, M.J.; Gruen, D.M.; Young, C.E.; Wiggins, M.D.; Argonne National Lab., IL

    1983-01-01

    Electronic excitation of Ti atoms ejected during energetic ion bombardment (Ar + , He + ) of well characterized clean and oxygen covered polycrystalline Ti metal surfaces has been determined. For states with 0 to 2 eV and 3 to 5.5 eV of electronic energy, static mode laser fluorescence spectroscopy (LFS) and static mode spontaneous fluorescence spectroscopy (SFS) were used respectively. These experiments which were carried out in a UHV ( -10 Torr) system equipped with an Auger spectrometer provide measurements of the correlation between oxygen coverage (0 to 3 monolayers) and the excited state distribution of sputtered Ti atoms. The experimentally determined electronic partition function of Ti atoms does not show an exponential dependence on energy (E) above the ground state but rather an E -2 or E -3 power law dependence. (orig.)

  5. The Role of Ru Redox in pH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A.; Rao, Reshma R.; Wang, Xiao Renshaw; Hong, Wesley T.; Rouleau, Christopher M.; Shao-Horn, Yang

    2017-05-01

    Rutile RuO2 is known to exhibit high catalytic activity for the oxygen evolution reaction (OER) and large pseudocapacitance associated with redox of surface Ru, however the mechanistic link between these properties and the role of pH is yet to be understood. Here we report that the OER activities of the (101), (001) and (111) RuO2 surfaces were found to increase while the potential of a pseudocapacitive feature just prior to OER shifted to lower potentials (“super-Nernstian” shift) with increasing pH on the reversible hydrogen electrode (RHE) scale. This behavior is in contrast to the (100) and (110) surfaces that have pH-independent Ru redox and OER activity. The link in catalytic and pseudocapacitive behavior illustrates the importance of this redox feature in generating active sites, building new mechanistic understanding of the OER.

  6. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian; Namura, Kyoko; Duran Retamal, Jose Ramon; Ho, Chin-Hsiang; Minamitake, Haruhiko; Wei, Tzu-Chiao; Tsai, Dung-Sheng; Lin, Chun-Ho; Suzuki, Motofumi; He, Jr-Hau

    2015-01-01

    be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  7. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, R., E-mail: roland.steinberger@jku.at [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Celedón, C.E., E-mail: carlos.celedon@usm.cl [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Departamento de Física, Universidad Técnica Federico Santa María, Valaparaíso, Casilla 110-V (Chile); Bruckner, B., E-mail: barbara.bruckner@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Roth, D., E-mail: dietmar.roth@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Duchoslav, J., E-mail: jiri.duchoslav@jku.at [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Arndt, M., E-mail: martin.arndt@voestalpine.com [voestalpine Stahl GmbH, voestalpine-Straße 3, 4031 Linz (Austria); Kürnsteiner, P., E-mail: p.kuernsteiner@mpie.de [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); and others

    2017-07-31

    Highlights: • Investigation on the impact of residual gas prevailing in UHV chambers. • For some metals detrimental oxygen uptake could be observed within shortest time. • Totally different behavior was found: no changes, solely adsorption and oxidation. • The UHV residual gas may severely corrupt results obtained from depth profiling. • A well-considered data acquisition sequence is the key for reliable depth profiles. - Abstract: Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  8. Quantification of long-term wastewater fluxes at the surface water/groundwater-interface: an integrative model perspective using stable isotopes and acesulfame.

    Science.gov (United States)

    Engelhardt, I; Barth, J A C; Bol, R; Schulz, M; Ternes, T A; Schüth, C; van Geldern, R

    2014-01-01

    The suitability of acesulfame to trace wastewater-related surface water fluxes from streams into the hyporheic and riparian zones over long-term periods was investigated. The transport behavior of acesulfame was compared with the transport of water stable isotopes (δ(18)O or δ(2)H). A calibrated model based on a joint inversion of temperature, acesulfame, and piezometric pressure heads was employed in a model validation using data sets of acesulfame and water stable isotopes collected over 5months in a stream and groundwater. The spatial distribution of fresh water within the groundwater resulting from surface water infiltration was estimated by computing groundwater ages and compared with the predicted acesulfame plume obtained after 153day simulation time. Both, surface water ratios calculated with a mixing equation from water stable isotopes and simulated acesulfame mass fluxes, were investigated for their ability to estimate the contribution of wastewater-related surface water inflow within groundwater. The results of this study point to limitations for the application of acesulfame to trace surface water-groundwater interactions properly. Acesulfame completely missed the wastewater-related surface water volumes that still remained in the hyporheic zone under stream-gaining conditions. In contrast, under stream-losing conditions, which developed after periods of stagnating hydraulic exchange, acesulfame based predictions lead to an overestimation of the surface water volume of up to 25% in the riparian zone. If slow seepage velocities prevail a proportion of acesulfame might be stored in smaller pores, while when released under fast flowing water conditions it will travel further downstream with the groundwater flow direction. Therefore, under such conditions acesulfame can be a less-ideal tracer in the hyporheic and riparian zones and additional monitoring with other environmental tracers such as water stable isotopes is highly recommended. © 2013 Elsevier

  9. Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation

    NARCIS (Netherlands)

    Hu, Bobing; Wang, Yunlong; Zhu, Zhuoying; Xia, Changrong; Bouwmeester, Henricus J.M.

    2015-01-01

    The oxygen release kinetics of mixed-conducting Sr2Fe1.5Mo0.5O6 d–Sm0.2Ce0.8O2 d (SFM–SDC) dualphase composites has been investigated, at 750 C, as a function of the SDC phase volume fraction using electrical conductivity relaxation (ECR) under reducing atmospheres, extending our previous work on

  10. Origin of the brines near WIPP from the drill holes ERDA-6 and WIPP-12 based on stable isotope concentrations of hydrogen and oxygen

    International Nuclear Information System (INIS)

    Spiegler, P.; Updegraff, D.

    1983-03-01

    Pathways which might alter the isotopic compositions of deuterium and oxygen-18 meteoric water, seawaters, and in hydration waters in gypsum to the isotopic compositions of brines encountered at ERDA-6 and WIPP-12 are discussed. Present geologic conditions do not favor the alteration of the isotopic compositions of waters that exist near the WIPP site to those of the brines by these pathways. It is concluded that the brines encountered at ERDA-6 and WIPP-12 are probably derived from ancient ocean waters that have been isotopically enriched in oxygen-18 by exchange interaction with rock. The dehydration of gypsum as a process of origin of these brines cannot be ruled out

  11. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes.

    Science.gov (United States)

    Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong

    2018-02-19

    A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Science.gov (United States)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  13. First-principles studies on the adsorption of molecular oxygen on Ba(110) surface

    International Nuclear Information System (INIS)

    Li, S.F.; Xue Xinlian; Li Pinglin; Li Xinjian; Jia Yu

    2006-01-01

    The adsorption of O 2 on Ba(110) surface is studied with first-principles calculations based on density functional theory. Our calculations predict that O 2 may prefer to dissociative adsorption on Ba(110) surface without obvious barrier. Also our results do not support the model of charge transfer from the surface to the molecule as a bond breaking mechanism. Instead, the increasing hybridization between O 2 orbitals and the d states of Ba(110) surface may play an important role in the dissociation adsorption

  14. Oxygen 18 concentration profile measurements near the surface by 18O(p,α)15N resonance reaction

    International Nuclear Information System (INIS)

    Amsel, G.; David, D.

    1975-01-01

    The method of spectrum reduction in nuclear reaction microanalysis does not allow to obtain depth resolutions better than the order of 2000A. Resolutions of the order of 200A may be obtained by using the narrow resonance technique, when applied to thin films. The latter technique was extended to thick targets, with deep concentration profiles presenting a sharp gradient near the surface. This method is presented and illustrated by the study of 18 O profiles in oxygen diffusion measurements in growing ZrO 2 , using the 629keV resonance of the reaction 18 O(p,α) 15 N [fr

  15. Carbon and oxygen stable isotopes of selected Cenomanian and Turonian rudists from Egypt and Czech Republic, and a note on changes in rudist diversity

    Czech Academy of Sciences Publication Activity Database

    El-Shazly, S.; Košťák, M.; Abdel-Gawad, G.; Kloučková, B.; Saber, G. S.; Salama, Y. F.; Mazuch, M.; Žák, Karel

    2011-01-01

    Roč. 86, č. 2 (2011), s. 209-226 ISSN 1214-1119 Institutional research plan: CEZ:AV0Z30130516 Keywords : rudists * Upper Cretaceous * Cenomanian * Turonian * paleoecology * C and O stable isotopes * Upper Cretaceous (Egypt) * Upper Cretaceous (Czech Republic) Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.099, year: 2011

  16. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  17. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  18. Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles

    DEFF Research Database (Denmark)

    Hellman, Anders; Iandolo, Beniamino; Wickman, Bjorn

    2015-01-01

    The oxygen evolution reaction on hydroxyl- and oxygen-terminated hematite was investigated using first-principle calculations within a theoretical electrochemical framework. Both pristine hematite and hematite containing oxygen vacancies were considered. The onset potential was determined to be 1...... on hematite occurs on the oxygen-terminated hematite, containing oxygen vacancies. (C) 2015 Elsevier B.V. All rights reserved....

  19. Effects of oxygen annealing on the physical properties and surface microstructures of La0.8Ba0.2MnO3 films

    International Nuclear Information System (INIS)

    Murugavel, P; Lee, J H; Lee, K-B; Park, J H; Chung, J-S; Yoon, J-G; Noh, T W

    2002-01-01

    We have investigated the effects of oxygen annealing on the transport properties and surface microstructures of epitaxial La 0.8 Ba 0.2 MnO 3 (LBMO) films deposited on SrTiO 3 substrate at different oxygen pressures using the pulsed laser deposition technique. The thickness dependence of the transport properties was strongly affected by the oxygen pressure during the deposition and the oxygen annealing temperature. Oxygen stoichiometry, in addition to the substrate-induced strain, was found to be a very important factor in controlling the physical properties of low-doped LBMO. Oxygen annealing seemed to induce strain and the strain accommodated in the films was relaxed by forming a secondary phase in an ordered rod-like shape or in particulate form

  20. Enzymatic scavenging of oxygen dissolved in water: Application of response surface methodology in optimization of conditions

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available In this work, removal of dissolved oxygen in water through reduction by glucose, which was catalyzed by glucose oxidase – catalase enzyme, was studied. Central composite design (CCD technique was applied to achieve optimum conditions for dissolved oxygen scavenging. Linear, square and interactions between effective parameters were obtained to develop a second order polynomial equation. The adequacy of the obtained model was evaluated by the residual plots, probability-value, coefficient of determination, and Fisher’s variance ratio test. Optimum conditions for activity of two enzymes in water deoxygenation were obtained as follows: pH=5.6, T=40°C, initial substrate concentration [S] = 65.5 mmol/L and glucose oxidase activity [E] = 252 U/Lat excess amount of catalase. The deoxygenation process during 30 seconds, in the optimal conditions, was predicted 98.2%. Practical deoxygenation in the predicted conditions was achieved to be 95.20% which was close to the model prediction.

  1. XPS studies of SiO/sub 2/ surface layers formed by oxygen ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D.; Finster, J. (Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Chemie); Hensel, E.; Skorupa, W.; Kreissig, U. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1983-03-16

    SiO/sub 2/ surface layers of 160 nm thickness formed by /sup 16/O/sup +/ ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO/sub 2/. There is no evidence for Si or SiO/sub x/ (0

  2. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt

    International Nuclear Information System (INIS)

    Chen, Zhigang; Gu, Yuxing; Du, Kaifa; Wang, Xu; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2017-01-01

    Highlights: •The potential of electrolytic carbon as catalyst for oxygen reduction was evaluated. •A molten salt method for electrolytic-carbon modification was demonstrated. •The electrolytic carbon was activated for the ORR by the molten salt sulfidation. •Sulfur and cobalt dual modification further improved the ORR activity of the carbon. -- Abstract: The electrolytic carbon (E-carbon) derived from greenhouse gas CO 2 in molten carbonates at mild temperature possesses high electrical conductivity and suitable specific surface area. In this work, its potential as catalyst is investigated towards oxygen reduction reaction (ORR). It is revealed that the pristine E-carbon has no electrocatalytic activity for the ORR due to its high surface content of carboxyl group. The carbon was then treated in a Li 2 SO 4 containing Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 molten salt at 550 °C. Sulfur modified E-carbon was obtained in the melt via a galvanic sulfidation reaction, in which Li 2 SO 4 served as a nontoxic sulfur source and an oxidant. The sulfur modified E-carbon showed a significantly improved electrocatalytic activity. Subsequently, a sulfur/cobalt dual modified carbon with much higher catalysis activity was successfully prepared by treating an E-carbon/CoSO 4 composite in the same melt. The dual modified E-carbon showed excellent catalytic performance with activity close to the commercial Pt/C catalyst but a high tolerance towards methanol.

  3. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.

    Science.gov (United States)

    Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian

    2018-05-01

    Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.

    Science.gov (United States)

    Gephart, Raymond T; Coneski, Peter N; Wynne, James H

    2013-10-23

    Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light.

  5. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  6. Quantification of long-term wastewater fluxes at the surface water/groundwater-interface: An integrative model perspective using stable isotopes and acesulfame

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, I., E-mail: i.engelhardt@fz-juelich.de [Forschungszentrum Jülich, Institute of Bio- and Geosciences, Agrosphere — IBG-3 (Germany); Technical University of Darmstadt, Institute of Applied Geosciences (Germany); Barth, J.A.C. [GeoZentrum Nordbayern, University of Erlangen-Nuremberg (Germany); Bol, R. [Forschungszentrum Jülich, Institute of Bio- and Geosciences, Agrosphere — IBG-3 (Germany); Schulz, M.; Ternes, T.A. [Federal Institute of Hydrology (BfG) (Germany); Schüth, C. [Technical University of Darmstadt, Institute of Applied Geosciences (Germany); van Geldern, R. [GeoZentrum Nordbayern, University of Erlangen-Nuremberg (Germany)

    2014-01-01

    The suitability of acesulfame to trace wastewater-related surface water fluxes from streams into the hyporheic and riparian zones over long-term periods was investigated. The transport behavior of acesulfame was compared with the transport of water stable isotopes (δ{sup 18}O or δ{sup 2}H). A calibrated model based on a joint inversion of temperature, acesulfame, and piezometric pressure heads was employed in a model validation using data sets of acesulfame and water stable isotopes collected over 5 months in a stream and groundwater. The spatial distribution of fresh water within the groundwater resulting from surface water infiltration was estimated by computing groundwater ages and compared with the predicted acesulfame plume obtained after 153 day simulation time. Both, surface water ratios calculated with a mixing equation from water stable isotopes and simulated acesulfame mass fluxes, were investigated for their ability to estimate the contribution of wastewater-related surface water inflow within groundwater. The results of this study point to limitations for the application of acesulfame to trace surface water–groundwater interactions properly. Acesulfame completely missed the wastewater-related surface water volumes that still remained in the hyporheic zone under stream-gaining conditions. In contrast, under stream-losing conditions, which developed after periods of stagnating hydraulic exchange, acesulfame based predictions lead to an overestimation of the surface water volume of up to 25% in the riparian zone. If slow seepage velocities prevail a proportion of acesulfame might be stored in smaller pores, while when released under fast flowing water conditions it will travel further downstream with the groundwater flow direction. Therefore, under such conditions acesulfame can be a less-ideal tracer in the hyporheic and riparian zones and additional monitoring with other environmental tracers such as water stable isotopes is highly recommended

  7. IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Jarquin, J.; Fernandez-Guasti, M.; Haro-Poniatowski, E.; Hernandez-Pozos, J.L. [Laboratorio de Optica Cuantica, Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico D.F. (Mexico)

    2005-08-01

    We irradiated silicon (100) wafers with IR (1064 nm) and UV (355 nm) nanosecond laser pulses with energy densities within the ablation regime and used scanning electron microscopy to analyze the morphological changes induced on the Si surface. The changes in the wafer morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however if the experiment is carried out in O{sub 2} the final result is an array of microcones. We also employed a random scanning technique to irradiate the silicon wafer over large areas, in this case the microstructure patterns consist of a ''semi-ordered'' array of micron-sized cones. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  9. Effect of laser fluence on surface, structural and mechanical properties of Zr after irradiation in the ambient environment of oxygen

    International Nuclear Information System (INIS)

    Jelani, M.; Bashir, S.; Khaleeq-ur Rehman, M.; Ahamad, R.; Ul-Haq, F.; Yousaf, D.; Akram, M.; Afzal, N.; Umer Chaudhry, M.; Mahmood, K.; Hayat, A.; Ahmad, Sajjad

    2013-01-01

    The laser irradiation effects on surface, structural and mechanical properties of zirconium (Zr) have been investigated. For this purpose, Zr samples were irradiated with Excimer (KrF) laser (λ = 248 nm, τ = 18 ns, repetition rate ∼ 30 Hz). The irradiation was performed under the ambient environment of oxygen gas at filling pressure of 20 torr by varying laser fluences ranging from 3.8 to 5.1 cm -2 . The surface and structural modification of irradiated targets was investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD). In order to explore the mechanical properties of irradiated Zr, the tensile testing and Vickers micro hardness testing techniques were employed. SEM analysis reveals the grain growth on the irradiated Zr surfaces for all fluences. However, the largest sized grains are grown for the lowest fluence of 3.8 J/cm 2 . With increasing fluence from 4.3 to 5.1 J cm -2 , the compactness and density of grains increase whereas their size decreases. XRD analysis reveals the appearance of new phases of ZrO 2 and Zr 3 O. The variation in the peak intensity is observed to be anomalous whereas decreasing trend in the crystallite size and residual stresses has been observed with increasing fluence. Micro hardness analysis reveals the increasing trend in surface hardness with increasing fluence. The tensile testing exhibits the increasing trend of yield stress (YS), decreasing trend of percentage elongation and anomalous behaviour of ultimate tensile strength with increasing fluence. (authors)

  10. Coupling of carbon monoxide molecules over oxygen-defected UO2(111) single crystal and thin film surfaces.

    Science.gov (United States)

    Senanayake, S D; Waterhouse, G I N; Idriss, H; Madey, Theodore E

    2005-11-22

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO2(111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene.

  11. Coupling of Carbon Monoxide Molecules over Oxygen Defected UO2 (111) Single Crystal and Thin Film Surfaces

    International Nuclear Information System (INIS)

    Senanayake, S.; Waterhouse, G.; Idriss, H.; Madey, T.

    2005-01-01

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C 2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO 2 (111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U 4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene

  12. Faunal and oxygen isotopic evidence for surface water salinity changes during sapropel formation in the eastern Mediterranean

    International Nuclear Information System (INIS)

    Williams, D.F.; Thunell, R.C.

    1979-01-01

    The discovery of the widespread anaerobic deposits (sapropels) in late Cenozoic sediments of the eastern Mediteranean has prompted many workers to propose the periodic occurrence of extremely low surface salinites in the Mediterranean. Oxygen isotopic determinations and total faunal analyses were made at 1000-year intervals across two equivalent sapropels in two piston cores from the Levantine Basin. The sapropel layers were deposited approximately 9000 y.B.P. (Sapropel A) and 80, 000 y. B.P. (Sapropel B). Significant isotopic anomalies were recorded by the foraminiferal species within Sapropels A and B in both cores. The surface dwelling species record a larger 18 O depletion than the mesopelagic species suggesting that surface salinities were reduced by 2-3per 1000 during sapropel formation. The faunal changes associated with the sapropels also indicate that the oceanographic conditions which lead to anoxic conditions in the eastern Mediteranean involve the formation of a low salinity surface layer. The source of the low salinity water might be meltwater produced by disintegration of the Fennoscandian Ice Sheet which drained into the Black Sea, into the Aegean Sea and finally into the eastern Mediterranean. (Auth.)

  13. Three-ring stable oxygen isotope ratios indicating cooler and wetter climate conditions and high flood frequency periods in the Red River Basin, Manitoba, Canada

    International Nuclear Information System (INIS)

    Buhay, W.M.; Harms, P.; Marcino, D.; Mayer, B.; St. George, S.; Nielsen, E.

    2002-01-01

    In the Red River region of southern Manitoba, Canada, the frequency of flood events tends to increase during cooler and wetter climate conditions. Predictably, recorded Red River flood stages are primarily a result of meteorological conditions which produce an increase runoff due to excess snowmelt and heavy spring precipitation. Winter skewed precipitation periods corresponding to cooler and wetter conditions in the Red River Basin may provide traceable oxygen isotope signals in hydrologically sensitive trees occupying the basin. To test this hypothesis, three overlapping oak tree-ring chronologies (KPO1: 1990 to 1795; STVO1: 1985 to 1797; STVO2: 1990 to 1845) were annually sampled and processed for their cellulose

  14. Ab-initio modeling of oxygen on the surface passivation of 3C-SiC nanostructures

    International Nuclear Information System (INIS)

    Cuevas, J.L.; Trejo, A.; Calvino, M.; Carvajal, E.; Cruz-Irisson, M.

    2012-01-01

    In this work the effect of OH on the electronic states of H-passivated 3C-SiC nanostructures, was studied by means of Density Functional Theory. We compare the electronic band structure for a [1 1 1]-oriented nanowire with total H, OH passivation and a combination of both. Also the electronic states of a porous silicon carbide case (PSiC) a C-rich pore surface in which the dangling bonds on the surface are saturated with H and OH was studied. The calculations show that the surface replacement of H with OH radicals is always energetically favorable and more stable. In all cases the OH passivation produced a similar effect than the H passivation, with electronic band gap of lower energy value than the H-terminated phase. When the OH groups are attached to C atoms, the band gap feature is changed from direct to indirect. The results indicate the possibility of band gap engineering on SiC nanostructures through the surface passivation species.

  15. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    International Nuclear Information System (INIS)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-01-01

    Highlights: • H 2 dissociates in heterolytic way following H atoms migration to form O−H bond. • H 2 dissociation occurs at low temperature on perfect and oxygen defective Co 3 O 4 . • Oxygen vacancy promotes hydrogenation thermodynamically and kinetically. • O−H bond is weakened on oxygen defective surface. • Hydrogenation requires compromise between H−H activation and O−H breakage. - Abstract: Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co 3 O 4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H 2 dissociation on Co 3 O 4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co 3 O 4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of O−H bond is a crucial factor for the hydrogenation reaction which involves the breakage of O−H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of O−H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  16. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  17. Reaction pathways of biomass-derived oxygenates on noble metal surfaces

    Science.gov (United States)

    McManus, Jesse R.

    As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway

  18. Conditions for Stable Chip Breaking and Provision of Machined Surface Quality While Turning with Asymmetric Tool Vibrations

    OpenAIRE

    Шелег, В. К.; Молочко, В. И.; Данильчик, С. С.

    2015-01-01

    The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration a...

  19. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(0001¯) surfaces: First-principles density-functional calculations

    Science.gov (United States)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-11-01

    Density functional theory calculations of oxygen adsorption and incorporation at the polar GaN(0001) and GaN(0001¯) surfaces have been carried out to explain the experimentally observed reduced oxygen concentration in GaN samples grown by molecular beam epitaxy in the presence of high energy (˜10keV) electron beam irradiation [Myers , J. Vac. Sci. Technol. B 18, 2295 (2000)]. Using a model in which the effect of the irradiation is to excite electrons from the valence to the conduction band, we find that both the energy cost of incorporating oxygen impurities in deeper layers and the oxygen adatom diffusion barriers are significantly reduced in the presence of the excitation. The latter effect leads to a higher probability for two O adatoms to recombine and desorb, and thus to a reduced oxygen concentration in the irradiated samples, consistent with experimental observations.

  20. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  1. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    Science.gov (United States)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  2. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment

    Science.gov (United States)

    De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana

    2018-03-01

    In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.

  3. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.

    Science.gov (United States)

    Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun

    2017-10-01

    Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O 2 and CO 2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1737-1746, 2017. © 2016 Wiley Periodicals, Inc.

  4. Stable Isotope (delta OXYGEN-18, Delta Deuterium, Delta CARBON-13) Dendroclimatological Studies in the Waterloo Region of Southern Ontario, Canada, Between AD 1610 and 1990.

    Science.gov (United States)

    Buhay, William Mark

    Oxygen (delta^{18} O), hydrogen (delta^2H) and carbon (delta^{13}C) isotopes were measured in wood cellulose from elm, white pine and maple trees that grew in southwestern Ontario, Canada. The measured oxygen and hydrogen isotopic data were used for model-based reconstructions of delta^{18}{O}_{meteoric water}, mean annual temperature (MAT) and relative humidity for a period, AD 1610 to 1880, that precedes instrumental records of climate. The carbon isotope measurements were compared with the Cellulose Model inferred climate data to reveal additional environmental information. Modifications made to the Cellulose Model focused on the dynamics of oxygen and hydrogen isotopic fractionation in plants during evapotranspiration and photosynthetic assimilation. For instance, kinetic fractionation of ^{18}O was found to be predictable from theoretical considerations of leaf energy balance and boundary layer dynamics. Kinetic fractionation during evapotranspiration is sensitive to the nature of the boundary layer, which is controlled by leaf size and morphology. Generally, plants with small segmented leaves have a lower component of turbidity in the leaf boundary layer, which results in higher kinetic fractionation values, than do plants having large simple leaves and more turbulent boundary layers. Kinetic ^2H enrichment in plant leaf water can also be rationalized in terms of leaf size and morphology when an apparent temperature-dependent isotope effect, acting in opposition to evaporative enrichment, is taken into account. Accounting for this temperature -dependent isotope effect helps to: (1) reconcile hydrogen kinetic fractionation inconsistencies for different leaves; (2) explain a temperature effect previously attributed to variable biochemical fractionation during cellulose synthesis, and; (3) verify hydrogen biochemical effects in plants. This improved characterization of the oxygen and hydrogen isotopic effects in plants, using the modified Cellulose Model, helped

  5. Precursor state of oxygen molecules on the Si(001) surface during the initial room-temperature adsorption

    Science.gov (United States)

    Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul

    2012-10-01

    The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.

  6. The adsorption of NO on an oxygen pre-covered Pt(1 1 1) surface: in situ high-resolution XPS combined with molecular beam studies

    Science.gov (United States)

    Zhu, J. F.; Kinne, M.; Fuhrmann, T.; Tränkenschuh, B.; Denecke, R.; Steinrück, H.-P.

    2003-12-01

    Adsorption of NO on a Pt(1 1 1) surface pre-covered with a p(2 × 2) atomic oxygen layer has been studied in situ by high-resolution X-ray photoelectron spectroscopy and temperature-programmed XPS using third-generation synchrotron radiation at BESSY II, Berlin, combined with molecular beam techniques and ex situ by low energy electron diffraction and temperature-programmed desorption. O 1s XP spectra reveal that an ordered p(2 × 2)-O layer dramatically changes the adsorption behavior of NO as compared to the clean surface. The atomic oxygen occupies fcc hollow sites, and therefore blocks NO adsorption on these sites, which are energetically preferred on clean Pt(1 1 1). As a consequence, NO populates on-top sites at low coverage. At 110 K for higher coverages, NO can additionally adsorb on hcp hollow sites, thereby inducing a shift of the O 1s binding energy of atomic oxygen towards lower energies by about 0.25 eV. The bond strength of the hcp hollow NO species to the substrate is weakened by the presence of atomic oxygen. A sharp p(2 × 2) LEED pattern is observed for NO adsorption on the oxygen pre-covered surface, up to saturation coverage. The total saturation coverage of NO on Pt(1 1 1) pre-covered with varying amounts of oxygen (below 0.25 ML) decreases linearly with the coverage of oxygen. The initial sticking coefficient of NO is reduced from 0.96 on clean Pt(1 1 1) to 0.88 on a p(2 × 2) oxygen pre-covered surface.

  7. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  8. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  9. Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: nuclear fuel durability enhancement

    Czech Academy of Sciences Publication Activity Database

    Škarohlíd, J.; Ashcheulov, Petr; Škoda, R.; Taylor, Andrew; Čtvrtlík, R.; Tomaštík, J.; Fendrych, František; Kopeček, Jaromír; Cháb, Vladimír; Cichoň, Stanislav; Sajdl, P.; Macák, J.; Xu, P.; Partezana, J.M.; Lorinčík, J.; Prehradná, J.; Steinbrück, M.; Kratochvílová, Irena

    2017-01-01

    Roč. 7, Jul (2017), 1-14, č. článku 6469. ISSN 2045-2322 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR(CZ) GA15-05095S; GA ČR(CZ) GA16-03085S; GA TA ČR TA04020156 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * zirconium alloys * corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 4.259, year: 2016

  10. CO oxidation on PdO surfaces

    DEFF Research Database (Denmark)

    Hirvi, Janne T.; Kinnunen, Toni-Jani J.; Suvanto, Mika

    2010-01-01

    Density functional calculations were performed in order to investigate CO oxidation on two of the most stable bulk PdO surfaces. The most stable PdO(100) surface, with oxygen excess, is inert against CO adsorption, whereas strong adsorption on the stoichiometric PdO(101) surface leads to favorable...... oxidation via the Langmuir–Hinshelwood mechanism. The reaction with a surface oxygen atom has an activation energy of 0.66 eV, which is comparable to the lowest activation energies observed on metallic surfaces. However, the reaction rate may be limited by the coverage of molecular oxygen. Actually...... adsorption, following the Eley–Rideal mechanism and taking advantage of the reaction tunnel provided by the adjacent palladium atom, has an activation energy of only 0.24 eV. The reaction mechanism and activation energy for the palladium activated CO oxidation on the most stable PdO(100)–O surface...

  11. Effects of chlorine and oxygen coverage on the structure of the Au(111) surface

    International Nuclear Information System (INIS)

    Baker, Thomas A.; Friend, Cynthia M.; Kaxiras, Efthimios

    2009-01-01

    We investigate the effects of Cl and O coverage on the atomic structure of the Au(111) surface using density functional theory calculations. We find that the release and incorporation of gold atoms in the adsorbate layer becomes energetically favorable only at high coverages of either O or Cl (>0.66 ML (monolayer) for O and >0.33 ML for Cl), whereas adsorption without the incorporation of gold is favorable at lower coverages. The bonding between the adsorbate and gold substrate changes significantly with coverage, becoming more covalent (less ionic) at higher Cl and O coverage. This is based on the fact that at higher coverages there is less ionic charge transfer to the adsorbate, while the electron density in the region between the adsorbate and a surface gold atom is increased. Our results illustrate that the O and Cl coverage on Au(111) can dramatically affect its structure and bonding, which are important features in any application of gold involving these adsorbates.

  12. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues

    Science.gov (United States)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Kalaitzopoulou, Electra; Quinn, Richard C.

    2017-04-01

    The present study demonstrates that γ-radiolyzed perchlorate-containing Mars soil salt analogues (in a CO2 atmosphere) generate upon H2O wetting the reactive oxygen species (ROS) superoxide radical (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). This study also validates that analogue radiolysis forms oxychlorine species that, in turn, can UV-photolyze to •OH upon UV photolysis. This investigation was made possible by the development of a new assay for inorganic-origin O2•- and H2O2 determination and by the modification of a previous assay for soil •OH. Results show that radiolyzed Mg(ClO4)2 generates H2O2 and •OH; and when included as part of a mixture analogous to the salt composition of samples analyzed at the Mars Phoenix site, the analogue generated O2•-, H2O2, and •OH, with •OH levels 150-fold higher than in the radiolyzed Mg(ClO4)2 samples. Radiolyzed Mars Phoenix site salt analogue that did not contain Mg(ClO4)2 generated only •OH also at 150-fold higher concentration than Mg(ClO4)2 alone. Additionally, UV photolysis of the perchlorate γ radiolysis product chlorite (ClO2-) generated the oxychlorine products trihalide (Cl3-), chlorine dioxide (ClO2•), and hypochlorite (ClO-), with the formation of •OH by UV photolysis of ClO-. While the generation of ROS may have contributed in part to 14CO2 production in the Viking Labeled Release (LR) experiment and O2 (g) release in the Viking Gas Exchange (GEx) experiment, our results indicate that they are not likely to be the major contributor to the LR and GEx results. However, due to their highly reactive nature, they are expected to play a significant role in the alteration of organics on Mars. Additionally, experiments with hypochlorite show that the thermal stability of NaClO is in the range of the thermal stability observed for thermally liable oxidant responsible for the Viking LR results.

  13. The dynamics of ultraviolet-induced oxygen vacancy at the surface of insulating SrTiO{sub 3}(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Suwanwong, S. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Program in General Science Teaching, Faculty of Education, Vongchavalitkul University, Nakhon Ratchasima 30000 (Thailand); Eknapakul, T. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Rattanachai, Y. [Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000 (Thailand); Masingboon, C. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000 (Thailand); Rattanasuporn, S.; Phatthanakun, R.; Nakajima, H. [Synchrotron Light Research Institute, Nakhon Ratchasima 30000 (Thailand); King, P.D.C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS (United Kingdom); Hodak, S.K. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Meevasana, W., E-mail: worawat@g.sut.ac.th [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Thailand Center of Excellence in Physics, CHE, Bangkok 10400 (Thailand)

    2015-11-15

    Highlights: • The dynamics of UV-induced oxygen vacancy is studied from the change of surface resistance. • The formation of 2DEG at the insulating surface of SrTiO{sub 3} is confirmed by ARPES. • The UV-induced change in resistance responds differently to oxygen/gas exposure. • The behavior of resistance recovery suggests an alternative method of low-pressure sensing. - Abstract: The effect of ultra-violet (UV) irradiation on the electronic structure and the surface resistance of an insulating SrTiO{sub 3}(0 0 1) crystal is studied in this work. Upon UV irradiation, we show that the two-dimensional electron gas (2DEG) emerges at the insulating SrTiO{sub 3} surface and there is a pronounced change in the surface resistance. By combining the observations of the change in valance band and the resistance change under different environments of gas pressure and gas species, we find that UV-induced oxygen vacancies at the surface plays a major role in the resistance change. The dynamic of the resistance change at different oxygen pressures also suggests an alternative method of low-pressure sensing.

  14. The dynamics of ultraviolet-induced oxygen vacancy at the surface of insulating SrTiO_3(0 0 1)

    International Nuclear Information System (INIS)

    Suwanwong, S.; Eknapakul, T.; Rattanachai, Y.; Masingboon, C.; Rattanasuporn, S.; Phatthanakun, R.; Nakajima, H.; King, P.D.C.; Hodak, S.K.; Meevasana, W.

    2015-01-01

    Highlights: • The dynamics of UV-induced oxygen vacancy is studied from the change of surface resistance. • The formation of 2DEG at the insulating surface of SrTiO_3 is confirmed by ARPES. • The UV-induced change in resistance responds differently to oxygen/gas exposure. • The behavior of resistance recovery suggests an alternative method of low-pressure sensing. - Abstract: The effect of ultra-violet (UV) irradiation on the electronic structure and the surface resistance of an insulating SrTiO_3(0 0 1) crystal is studied in this work. Upon UV irradiation, we show that the two-dimensional electron gas (2DEG) emerges at the insulating SrTiO_3 surface and there is a pronounced change in the surface resistance. By combining the observations of the change in valance band and the resistance change under different environments of gas pressure and gas species, we find that UV-induced oxygen vacancies at the surface plays a major role in the resistance change. The dynamic of the resistance change at different oxygen pressures also suggests an alternative method of low-pressure sensing.

  15. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    Science.gov (United States)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-05-01

    Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co3O4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H2 dissociation on Co3O4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co3O4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of Osbnd H bond is a crucial factor for the hydrogenation reaction which involves the breakage of Osbnd H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of Osbnd H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  16. M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions.

    Science.gov (United States)

    Fan, Xiujun; Peng, Zhiwei; Ye, Ruquan; Zhou, Haiqing; Guo, Xia

    2015-07-28

    Transition metal carbide nanocrystalline M3C (M: Fe, Co, Ni) encapsulated in graphitic shells supported with vertically aligned graphene nanoribbons (VA-GNRs) are synthesized through a hot filament chemical vapor deposition (HF-CVD) method. The process is based on the direct reaction between iron group metals (Fe, Co, Ni) and carbon source, which are facilely get high purity carbide nanocrystals (NCs) and avoid any other impurity at relatively low temperature. The M3C-GNRs exhibit superior enhanced electrocatalystic activity for oxygen reduction reaction (ORR), including low Tafel slope (39, 41, and 45 mV dec(-1) for Fe3C-GNRs, Co3C-GNRs, and Ni3C-GNRs, respectively), positive onset potential (∼0.8 V), high electron transfer number (∼4), and long-term stability (no obvious drop after 20 000 s test). The M3C-GNRs catalyst also exhibits remarkable hydrogen evolution reaction (HER) activity with a large cathodic current density of 166.6, 79.6, and 116.4 mA cm(-2) at an overpotential of 200 mV, low onset overpotential of 32, 41, and 35 mV, small Tafel slope of 46, 57, and 54 mV dec(-1) for Fe3C-GNRs, Co3C-GNRs, and Ni3C-GNRs, respectively, as well as an excellent stability in acidic media.

  17. Porous VO(x)N(y) nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction.

    Science.gov (United States)

    Huang, K; Bi, K; Lu, Y K; Zhang, R; Liu, J; Wang, W J; Tang, H L; Wang, Y G; Lei, M

    2015-11-30

    Novel nanocomposites of carbon nanotubes supported porous VO(x)N(y) nonoribbons (VO(x)N(y)-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VO(x)N(y)-CNTs. Inspiringly, the results indicate that VO(x)N(y)-CNTs catalyst exhibits a 0.4 mA/cm(2) larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VO(x)N(y)-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells.

  18. Stable isotopic investigations of early development in extant and fossil chambered cephalopods I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus

    Science.gov (United States)

    Crocker, Kimberley C.; DeNiro, Michael J.; Ward, Peter D.

    1985-12-01

    Eggwaters from the chambered cephalopod Nautilus are depleted in both 18O and deuterium relative to ambient seawater. Eggwaters from six other species, including the related chambered cephalopod Sepia, do not show such depletion. These observations indicate that the previously observed step towards more positive δ 18O values in calcium carbonate laid down after Nautilus hatches, relative to carbonate precipitated prior to hatching, can be explained by equilibration of the carbonate with water in the egg before hatching and with seawater after hatching. The presence of an oxygen isotope difference between eggwater and seawater for Nautilus and its absence for Sepia suggest that hatching will be recorded in the δ 18O values of shell carbonates for some but not all extinct and extant chambered cephalopods. The δ 13C values of the organic fraction of the siphuncle in Nautilus do not show any consistent pattern with regard to the time of formation before or after hatching. This observation suggests that the minimum in δ 13C values previously observed for calcium carbonate precipitated after Nautilus hatches is not caused by a change in food sources once the animal becomes free-swimming, as has been suggested.

  19. Layout designs of surface barrier coatings for boosting the capability of oxygen/vapor obstruction utilized in flexible electronics

    Science.gov (United States)

    Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan

    2018-04-01

    Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.

  20. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  1. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn2O3 and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V...

  2. Oxygen Electrode Kinetics and Surface Composition of Dense (La0.75Sr0.25)0.95MnO3 on YSZ

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Norrman, Kion

    2013-01-01

    in situ at temperatures from 660 to 860 C using a controlled atmosphere high temperature scanning probe microscope (CAHT-SPM) setup for measurements of impedance spectroscopy and potential sweep. The oxygen partial pressure, pO2, was varied. Further, ex situ surface analysis by time of flight secondary...... ion mass spectrometry (TOF-SIMS) and structure examination by scanning electron microscopy (SEM) were performed. Segregation of Sr and La oxides to LSM surfaces and Mn rich oxide to the three phase boundary (TPB) was observed. YSZ and LSM attract different oxides/impurities. The oxygen electrode...

  3. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  4. Study, using stable isotopes, of flow distribution, surface-groundwater relations and evapotranspiration in the Okavango Swamp, Botswana

    International Nuclear Information System (INIS)

    Dincer, T.; Hutton, L.G.; Kupee, B.B.J.

    1979-01-01

    Stable isotope data collected in the Okavango Delta have confirmed that the central distributary system is more active at present than the peripheral systems. The data also show that there is no groundwater outflow at the western and southern margins of the delta. A salinity-isotope model of the deltaic swamp has been developed to study the relation between the salinity and isotopic composition of the swamp waters. An attempt has been made to separate the atmospheric losses from the swamp into its evapotranspiration components. The results indicate that in winter, when high water levels prevail, these losses are almost entirely due to evaporation whilst in summer, when the water levels are low, evaporation and transpiration contribute almost equally to the total atmospheric losses. (author)

  5. On a free-surface problem with moving contact line: From variational principles to stable numerical approximations

    Science.gov (United States)

    Fumagalli, Ivan; Parolini, Nicola; Verani, Marco

    2018-02-01

    We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.

  6. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  7. Spring-Summer Temperatures Since AD 1780 Reconstructed from Stable Oxygen Isotope Ratios in White Spruce Tree-Rings from the Mackenzie Delta, Northwestern Canada

    Science.gov (United States)

    Porter, Trevor J.; Pisaric, Michael F. J.; Field, Robert D.; Kokelj, Steven V.; Edwards, Thomas W. D.; deMontigny, Peter; Healy, Richard; LeGrande, Allegra N.

    2013-01-01

    High-latitude delta(exp 18)O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring delta(exp 18)O record (AD 1780-2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring delta(exp 18)O-temperature signal. Over the instrumental period (AD 1892-2003), tree-ring delta(exp 18)O explained 29% of interannual variability in April-July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the delta(exp 18)O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the delta(exp 18)O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric delta(exp 18)O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other delta(exp 18)O records from this region. Our delta(exp 18)O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.

  8. Radial Oxygen Loss in the Rhizosphere of Wild Rice as a Control On Root Surface Mineral Precipitation

    Science.gov (United States)

    Murphy, K.; Trejo, B.; LaFond-Hudson, S.

    2017-12-01

    Wild rice (Zizania palustris) is an aquatic plant native to the Great Lakes region that is culturally and nutritionally significant for the Ojibwe people of Northern Minnesota. Concern for the future health of wild rice populations has increased amidst ongoing pressures from proposed mining projects that risk sulfate contamination to natural waters. Although sulfate itself is not toxic to wild rice, bacteria living in anoxic sediments use the sulfate as an electron acceptor, converting it to sulfide, which subsequently precipitates in the form of iron-sulfide on the root surface of wild rice. These precipitates are linked to lowered viability of wild rice. Most wetland plants are able to shield against the harmful accumulation of these precipitates through a process known as radial oxygen loss (ROL), in which oxygen leaches from roots into anoxic sediments to form protective iron-oxide plaques. This mechanism, however, had yet to be experimentally confirmed in wild rice. In this study, we eliminated the potential for ROL to occur in wild rice prior to the reproductive phase, and measured the rates of iron-sulfide accumulation on the roots and in associated sediments. We compared these data with the geochemical composition of roots and sediment from wild rice that accumulated iron-sulfide precipitate during the reproductive phase. In doing so, we demonstrate that ROL is indeed a mechanism by which wild rice protects itself against sulfide exposure, and examine the nuances of ROL as it relates to the life cycle of wild rice. The better we understand the vulnerability of wild rice across its life cycle and comparative rates of both toxic and protective precipitate accumulation, the better we can approach wild rice conservation.

  9. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S D; Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M [Australian National Univ., Canberra, ACT (Australia)

    1997-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  10. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D. [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  11. Unraveling the facet-dependent and oxygen vacancy role for ethylene hydrogenation on Co_3O_4 (110) surface: A DFT+U study

    International Nuclear Information System (INIS)

    Zhang, Yong-Chao; Pan, Lun; Lu, Jinhui; Song, Jiajia; Li, Zheng; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2017-01-01

    Highlights: • The mechanism of ethylene hydrogenation on perfect and oxygen defective Co_3O_4(110) is investigated by using DFT + U. • Oxygen vacancy promotes ethylene hydrogenation thermodynamically and kinetically. • The Co3O4 (110) facet is more active than the (111) one for ethylene hydrogenation. - Abstract: Crystal facet engineering and defect engineering are both critical strategies to improve the catalytic hydrogenation performance of catalyst. Herein, ethylene hydrogenation on the perfect and oxygen defective Co_3O_4(110) surfaces has been studied by using periodic density functional theory calculations. The results are compared with that on Co_3O_4(111) surface to clarify the problem of which facet for Co_3O_4 is more reactive, and to illuminate the role of oxygen vacancy. The low oxygen vacancy formation energy suggests that Co_3O_4(110) surface with defective site is easily formed. The whole mechanism of H_2 dissociation and stepwise hydrogenation of ethylene to ethane is examined, and the most favorable pathway is heterolytic dissociation of H_2 follows two stepwise hydrogenation of ethylene process. The results show that ethyl hydrogenation to ethane on perfect Co_3O_4(110) surface is the rate limiting step with an activation energy of 1.19 eV, and the presence of oxygen vacancy strongly reduces the activation energies of main elementary steps, and the activation energy of rate limiting step is only 0.47 eV. Compared with that on Co_3O_4(111), ethylene hydrogenation is preferred on Co_3O_4(110) surface. Therefore, Co_3O_4 with exposed (110) facet is predicted as an excellent catalyst for ethylene hydrogenation.

  12. Unraveling the facet-dependent and oxygen vacancy role for ethylene hydrogenation on Co{sub 3}O{sub 4} (110) surface: A DFT+U study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Chao; Pan, Lun; Lu, Jinhui; Song, Jiajia; Li, Zheng; Zhang, Xiangwen; Wang, Li [Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University (China); Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Zou, Ji-Jun, E-mail: jj_zou@tju.edu.cn [Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University (China); Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2017-04-15

    Highlights: • The mechanism of ethylene hydrogenation on perfect and oxygen defective Co{sub 3}O{sub 4}(110) is investigated by using DFT + U. • Oxygen vacancy promotes ethylene hydrogenation thermodynamically and kinetically. • The Co3O4 (110) facet is more active than the (111) one for ethylene hydrogenation. - Abstract: Crystal facet engineering and defect engineering are both critical strategies to improve the catalytic hydrogenation performance of catalyst. Herein, ethylene hydrogenation on the perfect and oxygen defective Co{sub 3}O{sub 4}(110) surfaces has been studied by using periodic density functional theory calculations. The results are compared with that on Co{sub 3}O{sub 4}(111) surface to clarify the problem of which facet for Co{sub 3}O{sub 4} is more reactive, and to illuminate the role of oxygen vacancy. The low oxygen vacancy formation energy suggests that Co{sub 3}O{sub 4}(110) surface with defective site is easily formed. The whole mechanism of H{sub 2} dissociation and stepwise hydrogenation of ethylene to ethane is examined, and the most favorable pathway is heterolytic dissociation of H{sub 2} follows two stepwise hydrogenation of ethylene process. The results show that ethyl hydrogenation to ethane on perfect Co{sub 3}O{sub 4}(110) surface is the rate limiting step with an activation energy of 1.19 eV, and the presence of oxygen vacancy strongly reduces the activation energies of main elementary steps, and the activation energy of rate limiting step is only 0.47 eV. Compared with that on Co{sub 3}O{sub 4}(111), ethylene hydrogenation is preferred on Co{sub 3}O{sub 4}(110) surface. Therefore, Co{sub 3}O{sub 4} with exposed (110) facet is predicted as an excellent catalyst for ethylene hydrogenation.

  13. Evolution of subpolar North Atlantic surface circulation since the early Holocene inferred from planktic foraminifera faunal and stable isotope records

    DEFF Research Database (Denmark)

    Staines-Urias, Francisca; Kuijpers, Antoon; Korte, Christoph

    2013-01-01

    of the Faroe Islands, are located in the transitional area where surface waters of subpolar and subtropical origin mix before entering the Arctic Mediterranean. In these areas, large-amplitude millennial variability in the characteristics of the upper-water column appears modulated by changes in the intensity...

  14. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    Science.gov (United States)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  15. Scientific study of 13C/12C carbon and 18O/16O oxygen stable isotopes biological fractionation in grapes in the Black Sea, Don Basin and the Western Caspian regions

    Directory of Open Access Journals (Sweden)

    Kolesnov Alexander

    2017-01-01

    Full Text Available The report presents the results of a study of carbon and oxygen stable isotopes in carbohydrates and intracellular water of red and white grapes of 2016 wine-growing season in the Crimean peninsula areas, South-west coast of the Greater Caucasus, the Don basin and the Western Caspian region. The mass concentration of reducing sugars in the studied grape samples has been from 17.5 to 25.0 g/100 ml, titrated acids concentration (based on tartaric acid – from 6.0 to 9.1 g/l, the buffer capacity 34.1–63.2 mg-Eq/l. Red and white wine made from respective grapes contained from 0.5 to 3.6 g/l of residual sugar; from 11.1 to 14.5% ethanol by volume; buffer capacity was 35.2–52.6 mg-Eq/l. It has been found that the δ13CVPDB values for carbohydrates of red and white grape varieties as a result of biological fractionation of carbon isotopes in the agro-climatic conditions of plant growth for the studied geographical areas are ranging from − 26.74 to − 20.74‰ (the Crimean peninsula; from − 27.31 to − 21.58‰ (South West Coast of the Greater Caucasus, from − 27.33 to − 24.73‰ (Don Basin and from − 26.64 to − 23.17‰ (West Caspian. The δ13CVPDB values for ethanol of the red and white dry wines range from − 28.52 to − 24.26‰ (the Crimean peninsula; from − 29.23 to − 24.52‰ (South West Coast of the Greater Caucasus; from − 28.97 to − 26.22‰ (Don Basin; from − 29.14 to − 25.22‰ (Western Caspian. Compared with the surface water and groundwater (averages from δ18OVSMOW− 13.90 to − 6.38‰ and with precipitation (averages from δ18OVSMOW − 10.30 to − 9.04‰ the δ18OVSMOW values in intracellular water of grapes are the following: for the Crimean peninsula grapes, from 0.40 to 4.97‰; the South West Coast of the Greater Caucasus, from -2.11 to 6.29‰; the Don Basin, from − 2.21 to 6.26‰; the Western Caspian, from − 0.24 to 1.44‰. It has been noted that in conditions of

  16. Stable isotope analyses of oxygen (18O:17O:16O) and chlorine (37Cl:35Cl) in perchlorate: reference materials, calibrations, methods, and interferences

    Science.gov (United States)

    Böhlke, John Karl; Mroczkowski, Stanley J.; Sturchio, Neil C.; Heraty, Linnea J.; Richman, Kent W.; Sullivan, Donald B.; Griffith, Kris N.; Gu, Baohua; Hatzinger, Paul B.

    2017-01-01

    RationalePerchlorate (ClO4−) is a common trace constituent of water, soils, and plants; it has both natural and synthetic sources and is subject to biodegradation. The stable isotope ratios of Cl and O provide three independent quantities for ClO4− source attribution and natural attenuation studies: δ37Cl, δ18O, and δ17O (or Δ17O or 17Δ) values. Documented reference materials, calibration schemes, methods, and interferences will improve the reliability of such studies.MethodsThree large batches of KClO4 with contrasting isotopic compositions were synthesized and analyzed against VSMOW-SLAP, atmospheric O2, and international nitrate and chloride reference materials. Three analytical methods were tested for O isotopes: conversion of ClO4− to CO for continuous-flow IRMS (CO-CFIRMS), decomposition to O2 for dual-inlet IRMS (O2-DIIRMS), and decomposition to O2 with molecular-sieve trap (O2-DIIRMS+T). For Cl isotopes, KCl produced by thermal decomposition of KClO4 was reprecipitated as AgCl and converted into CH3Cl for DIIRMS.ResultsKClO4 isotopic reference materials (USGS37, USGS38, USGS39) represent a wide range of Cl and O isotopic compositions, including non-mass-dependent O isotopic variation. Isotopic fractionation and exchange can affect O isotope analyses of ClO4− depending on the decomposition method. Routine analyses can be adjusted for such effects by normalization, using reference materials prepared and analyzed as samples. Analytical errors caused by SO42−, NO3−, ReO42−, and C-bearing contaminants include isotope mixing and fractionation effects on CO and O2, plus direct interference from CO2 in the mass spectrometer. The results highlight the importance of effective purification of ClO4− from environmental samples.ConclusionsKClO4 reference materials are available for testing methods and calibrating isotopic data for ClO4− and other substances with widely varying Cl or O isotopic compositions. Current ClO4−extraction, purification

  17. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds

    KAUST Repository

    Song, Hyon Min

    2013-01-01

    SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80°C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs. This journal is © 2013 The Royal Society of Chemistry.

  18. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds.

    Science.gov (United States)

    Song, Hyon Min; Deng, Lin; Khashab, Niveen M

    2013-05-21

    SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80 °C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs.

  19. Activity of type i methanotrophs dominates under high methane concentration: Methanotrophic activity in slurry surface crusts as influenced by methane, oxygen, and inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun Feng; Reinsch, Sabine; Ambus, Per

    2017-01-01

    Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy for inorg......Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy...... for inorganic N transformations, in intact crusts using microsensors. This was combined with laboratory incubations of crust material to investigate the effects of O2, CH4, and inorganic N on CH4 oxidation, using 13CH4 to trace C incorporation into lipids of MOB. Oxygen penetration into the crust was 2 to 14 mm...

  20. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  1. Searching for stable Si(n)C(n) clusters: combination of stochastic potential surface search and pseudopotential plane-wave Car-Parinello simulated annealing simulations.

    Science.gov (United States)

    Duan, Xiaofeng F; Burggraf, Larry W; Huang, Lingyu

    2013-07-22

    To find low energy Si(n)C(n) structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each Si(n)C(n) cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to Si(n)C(n) (n = 4-12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each Si(n)C(n) cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  2. Searching for Stable SinCn Clusters: Combination of Stochastic Potential Surface Search and Pseudopotential Plane-Wave Car-Parinello Simulated Annealing Simulations

    Directory of Open Access Journals (Sweden)

    Larry W. Burggraf

    2013-07-01

    Full Text Available To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA. We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12 clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  3. Unifying the 2eand 4e Reduction of Oxygen on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    Understanding trends in selectivity is of paramount importance for multi-electron electrochemical reactions. The goal of this work is to address the issue of 2e– versus 4e– reduction of oxygen on metal surfaces. Using a detailed thermodynamic analysis based on density functional theory calculatio...

  4. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study.

    Science.gov (United States)

    Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L

    2018-01-01

    We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.

  5. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study

    Science.gov (United States)

    Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.

    2018-01-01

    Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391

  6. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Science.gov (United States)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  7. Ni-Doping Effects on Oxygen Removal from an Orthorhombic Mo 2 C (001) Surface: A Density Functional Theory Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mingxia [Department; Cheng, Lei [Materials; Choi, Jae-Soon [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, Unites States; Liu, Bin [Department; Curtiss, Larry A. [Materials; Assary, Rajeev S. [Materials

    2018-01-11

    Density functional theory (DFT) calculations were used to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T-Mo) and C-terminated (Tc) Mo2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such as Ni adsorbed on T-Mo and Tc Mo2C(001) surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T-Mo Mo2C(001) and Tc Mo2C(001) surfaces. This computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo2C and Ni-doped Mo2C catalysts, which had been passivated and stored in an oxygen environment.

  8. Atomic structure of a stable high-index Ge surface: G2(103)-(4x1)

    DEFF Research Database (Denmark)

    Seehofer, L.; Bunk, O.; Falkenberg, G.

    1997-01-01

    Based on scanning tunneling microscopy and surface X-ray diffraction, we propose a complex structural model for the Ge(103)-(4 x 1) reconstruction. Each unit cell contains two (103) double steps, which gives rise to the formation of stripes of Ge atoms oriented in the [] direction....... The stripes and the spaces between them are covered with threefold-coordinated Ge adatoms. Charge is transferred from the bulk-like edge atoms of the double steps to the adatoms. The formation of the reconstruction can be explained in terms of stress relief, charge transfer, and minimization of the dangling...

  9. Effects of oxygen and ethanol on recombinant yeast fermentation for hepatitis B virus surface antigen production: modeling and simulation studies.

    Science.gov (United States)

    Shi, Y; Ryu, D D; Yuan, W K

    1993-01-05

    A model was formulated to examine the competitive growth of two phenotypes (Leu(+) and Leu(-)) and the product formation with recombinant Saccharomyces cerevisiae strain DBY-745, which contains the shuttle vector pYGH3-16-s with the foreign gene HBsAg (hepatitis B virus surface antigen) as well as experimental fedbatch fermentation data. The important state variables and the process parameters evaluated include (1) the ratio of the plasmid-free cell concentration to the plasmid-containing cell concentration (rho = X(-)X(+)), (2) the expression of human hepatitis B surface antigen g (CH), (3) the glucose consumption (S), (4) the ethanol production (/), (5) the change of working volume (V) in the fermentor, (6) the different specific growth rates of two phenotype cells, and (7) the plasmid loss frequency coefficient (alpha ). These variables and other parameters were carefully defined, their correlations were studied, and a mathematical model using a set of nonlinear ordinary differential equations (ODEs) for fed-batch fermentation was then obtained based on the theoretical considerations and the experimental results. The extended Kalman filter (EKF) methods was applied for the best estimate of these variables based on the experimentally observable variables: rhoV, and g (CH). Each of these variable was affected by random measuring errors under the different operating conditions. Simulation results presented for verification of the model agreed with our observations and provided useful information relevant to the operation and the control of the fedbatch recombinant yeast fermentation. The method of predicting an optimal profile of the cell growth was also demonstrated under the different dissolved oxygen concentrations.

  10. Effects of wastewater discharge on formation of Fe plaque on root surface and radial oxygen loss of mangrove roots

    Energy Technology Data Exchange (ETDEWEB)

    Pi, N. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Tam, N.F.Y., E-mail: bhntam@cityu.edu.h [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Wong, M.H. [Croucher Institute for Environmental Sciences, Baptist University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2010-02-15

    Effects of wastewater discharge on radial oxygen loss (ROL), formation of iron (Fe) plaque on root surface, and their correlations in Bruguiera gymnorrhiza (L.) Poir and Excoecaria agallocha L. were investigated. ROL along a lateral root increased more rapidly in control than that in strong wastewater (with pollutant concentrations ten times of that in municipal sewage, 10NW) treatment, but less Fe plaque was formed in control for both plants. For B. gymnorrhiza receiving 10NW, Fe plaque formation was more at basal and mature zones than at root tip, while opposite trend was shown in E. agallocha. At day 0, the correlation between ROL and Fe plaque was insignificant, but negative and positive correlations were found in 10NW and control, respectively, at day 105, suggesting that more ROL was induced leading to more Fe plaque. However, excess Fe plaque also served as a 'barrier' to prevent excessive ROL in 10NW plants. - Correlation between Fe plaque formation and ROL.

  11. Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies

    Science.gov (United States)

    Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang

    2018-01-01

    Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.

  12. Doubly versus singly positively charged oxygen ions back-scattered from a silicon surface under dynamic O2+ bombardment

    International Nuclear Information System (INIS)

    Franzreb, Klaus; Williams, Peter; Loerincik, Jan; Sroubek, Zdenek

    2003-01-01

    Mass-resolved (and emission-charge-state-resolved) low-energy ion back-scattering during dynamic O 2 + bombardment of a silicon surface was applied in a Cameca IMS-3f secondary ion mass spectrometry (SIMS) instrument to determine the bombarding energy dependence of the ratio of back-scattered O 2+ versus O + . While the ratio of O 2+ versus O + drops significantly at reduced bombarding energies, O 2+ back-scattered from silicon was still detectable at an impact energy (in the lab frame) as low as about 1.6 keV per oxygen atom. Assuming neutralization prior to impact, O 2+ ion formation in an asymmetric 16 O→ 28 Si collision is expected to take place via 'collisional double ionization' (i.e. by promotion of two outer O 2p electrons) rather than by the production of an inner-shell (O 2s or O 1s) core hole followed by Auger-type de-excitation during or after ejection. A molecular orbital (MO) correlation diagram calculated for a binary 'head-on' O-Si collision supports this interpretation

  13. Role of oxygen adsorption in modification of optical and surface electronic properties of MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kumar, Sanjeev; Mohanty, Tanuja

    2018-04-01

    In this work, the effect of surface oxidation of molybdenum disulfide (MoS2) nanosheets induced by hydrogen peroxide (H2O2) on the work function and bandgap of MoS2 has been investigated for tuning its optical and electronic properties. Transmission electron microscopy studies reveal the existence of varying morphologies of few layers of MoS2 as well as quantum dots due to the different absorbing effects of two mixed solvents on MoS2. The X-ray diffraction, electron paramagnetic resonance, and Raman studies indicate the presence of physical as well as chemical adsorption of oxygen atoms in MoS2. The photoluminescence spectra show the tuning of bandgap arising from the passivation of trapping centers leading to radiative recombination of excitons. The value of work function obtained from scanning Kelvin probe microscopy of MoS2 in mixed solvents of H2O2 and N-methyl-2-pyrrolidone increases with an increase in the concentration of H2O2. A linear relationship could be established between H2O2 content in mixed solvent and measured values of work function. This work gives the alternative route towards the commercial use of defect engineered transition metal dichalcogenide materials in diverse fields.

  14. Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2005-02-01

    Full Text Available Surface modification of the electrodes was conducted from sulfuric acid solutions containing the corresponding metal–chloride complexes using cyclic voltammetry. Comparing the charges of the hydrogen underpotential deposition region, and the corresponding oxide reduction regions, it is concluded that a platinum overlayer on gold forms 3D islands, while gold on platinum forms 2D islands. Foreign metals present in an amount of up to one monolayer exert an influence on the change in reaction rate with respect to both hydrogen evolution (HER and oxygen reduction (ORR reactions. Aplatinum overlayer on a gold substrate increases the activity forHER and for ORR, compared with pure gold. These results can be understood in terms of a simple model, in which the change in the H and OH binding energies are directly proportional to the shift of the d-bond center of the overlayer. On the contrary, a gold layer on platinum slightly decreases the activity for both reactions compared with pure platinum.

  15. An oxygen-insensitive degradable resist for fabricating metallic patterns on highly curved surfaces by UV-nanoimprint lithography.

    Science.gov (United States)

    Hu, Xin; Huang, Shisong; Gu, Ronghua; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2014-10-01

    In this paper, an oxygen-insensitive degradable resist for UV-nanoimprint is designed, com-prising a polycyclic degradable acrylate monomer, 2,10-diacryloyloxymethyl-1,4,9,12-tetraoxa-spiro [4.2.4.2] tetradecane (DAMTT), and a multifunctional thiol monomer pentaerythritol tetra(3-mercaptopropionate) (PETMP). The resist can be quickly UV-cured in the air atmosphere and achieve a high monomer conversion of over 98%, which greatly reduce the adhesion force between the resist and the soft mold. High conversion, in company with an adequate Young's modulus (about 1 GPa) and an extremely low shrinkage (1.34%), promises high nanoimprint resolution of sub-50 nm. The cross-linked resist is able to break into linear molecules in a hot acid solvent. As a result, metallic patterns are fabricated on highly curved surfaces via the lift off process without the assistance of a thermoplastic polymer layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cardiac function and oxygen saturation during maximal breath-holding in air and during whole-body surface immersion.

    Science.gov (United States)

    Marabotti, Claudio; Piaggi, Paolo; Menicucci, Danilo; Passera, Mirko; Benassi, Antonio; Bedini, Remo; L'Abbate, Antonio

    2013-09-01

    The magnitude of the oxygen-sparing effect induced by the diving response in humans is still under debate. We wished to compare cardiovascular changes during maximal breath-holding (BH) in air and during whole-body immersion at the surface in a group of BH divers. Twenty-one divers performed a maximal static apnea in air or during whole-body immersion. Dopplerechocardiography, arterial blood pressure and haemoglobin saturation (SaO₂) were obtained at the beginning of, and at 1/3, 2/3 and maximal BH time. BH time was on the average 3.6 ± 0.4 min, with no differences between the two conditions. SaO₂ significantly decreased during BH in both conditions, but was significantly higher during immersion as compared to the dry (P = 0.04). In both conditions, BH induced a significant linear increase in right ventricular diameter (P whole-body immersion, associated with reduced LV ejection fraction and progressive hindrance to diastolic filling. For a similar apnea duration, SaO₂ decreased less during immersed BH, indicating an O₂-sparing effect of diving, suggesting that interruption of apnea was not triggered by a threshold critical value of blood O₂ desaturation.

  17. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    Science.gov (United States)

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), Pexercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (Pmotor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  18. PECVD-ONO: A New Deposited Firing Stable Rear Surface Passivation Layer System for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Hofmann

    2008-01-01

    Full Text Available A novel plasma-enhanced chemical vapour deposited (PECVD stack layer system consisting of a-SiOx:H, a-SiNx:H, and a-SiOx:H is presented for silicon solar cell rear side passivation. Surface recombination velocities below 60 cm/s (after firing and below 30 cm/s (after forming gas anneal were achieved. Solar cell precursors without front and rear metallisation showed implied open-circuit voltages Voc values extracted from quasi-steady-state photoconductance (QSSPC measurements above 680 mV. Fully finished solar cells with up to 20.0% energy conversion efficiency are presented. A fit of the cell's internal quantum efficiency using software tool PC1D and a comparison to a full-area aluminium-back surface field (Al-BSF and thermal SiO2 is shown. PECVD-ONO was found to be clearly superior to Al-BSF. A separation of recombination at the metallised and the passivated area at the solar cell's rear is presented using the equations of Fischer and Kray. Nuclear reaction analysis (NRA has been used to evaluate the hydrogen depth profile of the passivation layer system at different stages.

  19. The Interaction between Graphene and Oxygen Atom

    Directory of Open Access Journals (Sweden)

    Hao Yifan

    2016-01-01

    Full Text Available Based on the density function theory (DFT method, the interaction between the graphene and oxygen atom is simulated by the B3LYP functional with the 6-31G basis set. Due to the symmetry of graphene (C54H18, D6h, a representative patch is put forward to represent the whole graphene to simplify the description. The representative patch on the surface is considered to gain the potential energy surface (PES. By the calculation of the PES, four possible stable isomers of the C54H18-O radical can be obtained. Meanwhile, the structures and energies of the four possible stable isomers, are further investigated thermodynamically, kinetically, and chemically. According to the transition states, the possible reaction mechanism between the graphene and oxygen atom is given.

  20. Tracing the origin of Pb using stable Pb isotopes in surface sediments along the Korean Yellow Sea coast

    Science.gov (United States)

    Park, Jong-Kyu; Choi, Man-Sik; Song, Yunho; Lim, Dhong-Il

    2017-06-01

    To investigate the factors controlling lead (Pb) concentration and identify the sources of Pb in Yellow Sea sediments along the Korean coast, the concentration of Pb and Pb isotopes in 87 surface and 6 core sediment samples were analyzed. The 1 M HCl leached Pb concentrations had a similar geographic distribution to those of fine-grained sediments, while the distribution of residual Pb concentrations resembled that of coarse-grained sediments. Leached Pb was presumed to be associated with manganese (Mn) oxide and iron (Fe) oxy/hydroxide, while residual Pb was associated with potassium (K)-feldspar, based on good linear relationships between the leached Pb and the Fe/Mn concentrations, and the residual Pb and K concentrations. Based on a ratio-ratio plot with three isotopes (207Pb/206Pb and 208Pb/206Pb) and the geographic location of each sediment, sediments were categorized into two groups of samples as group1 and group2. Group 1 sediments, which were distributed in Gyeonggi Bay and offshore (north of 36.5°N), were determined to be a mixture of anthropogenic and natural Pb originating from the Han River, based on a 208Pb/206Pb against a Cs/Pbleached mixing plot of core and surface sediments. Group 2 sediments, which were distributed in the south of 36.5°N, also showed a two endmembers mixing relationship between materials from the Geum River and offshore materials, which had very different Pb concentrations and isotope ratios. Based on the isotopes and their concentrations in core and surface sediments, this mixing relationship was interpreted as materials from two geographically different origins being mixed, rather than anthropogenic or natural mixing of materials with the same origin. Therefore, the relative percentage of materials supplied from the Geum River was calculated using a two endmembers mixing model and estimated to be as much as about 50% at 35°N. The spatial distribution of materials derived from the Geum River represented that of fine

  1. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  2. The influence of oxygen exposure time on the composition of macromolecular organic matter as revealed by surface sediments on the Murray Ridge (Arabian Sea)

    Science.gov (United States)

    Nierop, Klaas G. J.; Reichart, Gert-Jan; Veld, Harry; Sinninghe Damsté, Jaap S.

    2017-06-01

    The Arabian Sea represents a prime example of an open ocean extended oxygen minimum zone (OMZ) with low oxygen concentrations (down to less than 2 μM) between 200 and 1000 m water depth. The OMZ impinges on the ocean floor, affecting organic matter (OM) mineralization. We investigated impact of oxygen depletion on the composition of macromolecular OM (MOM) along a transect through the OMZ on the slopes of the Murray Ridge. This sub-marine high in the northern Arabian Sea, with the top at approximately 500 m below sea surface (mbss), intersects the OMZ. We analyzed sediments deposited in the core of OMZ (suboxic conditions), directly below the OMZ (dysoxic conditions) and well below the OMZ (fully oxic conditions). The upper 18 cm of sediments from three stations recovered at different depths were studied. MOM was investigated by Rock Eval and flash pyrolysis techniques. The MOM was of a predominant marine origin and inferred from their pyrolysis products, most biomolecules (tetra-alkylpyrrole pigments, polysaccharides, proteins and their transformation products, and polyphenols including phlorotannins), showed a progressive relative degradation with increasing exposure to oxygen. Alkylbenzenes and, in particular, aliphatic macromolecules increased relatively. The observed differences in MOM composition between sediment deposited under various bottom water oxygen conditions (i.e. in terms of concentration and exposure time) was much larger than within sediment cores, implying that early diagenetic alteration of organic matter depends largely on bottom water oxygenation rather than subsequent anaerobic degradation within the sediments, even at longer time scales.

  3. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    Science.gov (United States)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  4. Near-Surface Profiles of Water Stable Isotope Components and Indicated Transitional History of Ice-Wedge Polygons Near Barrow

    Science.gov (United States)

    Iwahana, G.; Wilson, C.; Newman, B. D.; Heikoop, J. M.; Busey, R.

    2017-12-01

    Wetlands associated with ice-wedge polygons are commonly distributed across the Arctic Coastal Plain of northern Alaska, a region underlain by continuous permafrost. Micro-topography of the ice-wedge polygons controls local hydrology, and the micro-topography could be altered due to factors such like surface vegetation, wetness, freeze-thaw cycles, and permafrost degradation/aggradation under climate change. Understanding status of the wetlands in the near future is important because it determines biogeochemical cycle, which drives release of greenhouse gases from the ground. However, transitional regime of the ice-wedge polygons under the changing climate is not fully understood. In this study, we analyzed geochemistry of water extracted from frozen soil cores sampled down to about 1m depth in 2014 March at NGEE-Arctic sites in the Barrow Environmental Observatory. The cores were sampled from troughs/rims/centers of five different low-centered or flat-centered polygons. The frozen cores are divided into 5-10cm cores for each location, thawed in sealed plastic bags, and then extracted water was stored in vials. Comparison between the profiles of geochemistry indicated connection of soil water in the active layer at different location in a polygon, while it revealed that distinctly different water has been stored in permafrost layer at troughs/rims/centers of some polygons. Profiles of volumetric water content (VWC) showed clear signals of freeze-up desiccation in the middle of saturated active layers as low VWC anomalies at most sampling points. Water in the active layer and near-surface permafrost was classified into four categories: ice wedge / fresh meteoric / transitional / highly fractionated water. The overall results suggested prolonged separation of water in the active layer at the center of low-centered polygons without lateral connection in water path in the past.

  5. Impact of the structural anisotropy of La{sub 2}NiO{sub 4+δ} on on high temperature surface modifications and diffusion of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Gauquelin, Nicolas

    2010-11-29

    La{sub 2}NiO{sub 4+δ} was first studied due to its structural similarities with the High Temperature superconductor La{sub 2}NiO{sub 4+δ} and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K{sub 2}NiF{sub 4} layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La{sub 2}NiO{sub 4+δ} were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich