WorldWideScience

Sample records for stable structural color

  1. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  2. Color stable manganese-doped phosphors

    Science.gov (United States)

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  3. Physics of structural colors

    International Nuclear Information System (INIS)

    Kinoshita, S; Yoshioka, S; Miyazaki, J

    2008-01-01

    In recent years, structural colors have attracted great attention in a wide variety of research fields. This is because they are originated from complex interaction between light and sophisticated nanostructures generated in the natural world. In addition, their inherent regular structures are one of the most conspicuous examples of non-equilibrium order formation. Structural colors are deeply connected with recent rapidly growing fields of photonics and have been extensively studied to clarify their peculiar optical phenomena. Their mechanisms are, in principle, of a purely physical origin, which differs considerably from the ordinary coloration mechanisms such as in pigments, dyes and metals, where the colors are produced by virtue of the energy consumption of light. It is generally recognized that structural colors are mainly based on several elementary optical processes including thin-layer interference, diffraction grating, light scattering, photonic crystals and so on. However, in nature, these processes are somehow mixed together to produce complex optical phenomena. In many cases, they are combined with the irregularity of the structure to produce the diffusive nature of the reflected light, while in some cases they are accompanied by large-scale structures to generate the macroscopic effect on the coloration. Further, it is well known that structural colors cooperate with pigmentary colors to enhance or to reduce the brilliancy and to produce special effects. Thus, structure-based optical phenomena in nature appear to be quite multi-functional, the variety of which is far beyond our understanding. In this article, we overview these phenomena appearing particularly in the diversity of the animal world, to shed light on this rapidly developing research field

  4. Typography, Color, and Information Structure.

    Science.gov (United States)

    Keyes, Elizabeth

    1993-01-01

    Focuses on how typography and color complement and differ from each other in signaling an underlying content structure; the synergism between typography, color, and page layout (use of white space) that aids audience understanding and use; and the characteristics of typography and of color that are most important in these contexts. (SR)

  5. Stable Structures for Distributed Applications

    OpenAIRE

    Eugen DUMITRASCU; Ion IVAN

    2008-01-01

    For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we ...

  6. Fresh meat color evaluation using a structured light imaging system

    DEFF Research Database (Denmark)

    Trinderup, Camilla Himmelstrup; Kim, Yuan H. Brad

    2015-01-01

    an equivalent meat color assessment compared to the colorimeter. The CVS had a significantly higher correlation with the panel scores for the lighter and more color stable samples compared to the colorimeter. These results indicate that the CVS with structured light could be an appropriate alternative...... to the traditional colorimeter by offering improved precision and accuracy over the colorimeter....

  7. Tree Colors: Color Schemes for Tree-Structured Data.

    Science.gov (United States)

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  8. Plasmonic Structural Colors for Plastic Consumer Products

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2014-01-01

    Today colorants, such as pigments or dyes, are used to color plastic-based consumer products, either as base for solid colored bulk polymer or in inks for surface decoration. After usage, the products must be mechanically sorted by color before recycling, limiting any large-scale efficient...... can be avoided in the recycling state. Plasmon color technology based on aluminum has recently been firmly established as a route towards structural coloring of polymeric materials. We report on the fabrication of colors by localized surface plasmon resonances (LSPR) using roll-to-roll printing...

  9. Stable Structures for Distributed Applications

    Directory of Open Access Journals (Sweden)

    Eugen DUMITRASCU

    2008-01-01

    Full Text Available For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we define the estimated measure indicators for a level. The influence of the factors of stability and the ways for increasing it are thus identified, and at the same time the costs of development stages, the costs of usage and the costs of maintenance to be keep on between limits that assure the global efficiency of application. It is presented the base aspects for distributed applications: definition, peculiarities and importance. The aspects for the development cycle of distributed application are detailed. In this article, we alongside give the mechanisms for building the defined structures and analyze the complexity of the defined structures for a distributed application of a virtual store.

  10. Mechanochromic Fibers with Structural Color.

    Science.gov (United States)

    Li, Houpu; Sun, Xuemei; Peng, Huisheng

    2015-12-21

    Responsive photonic crystals have been widely developed to realize tunable structural colors by manipulating the flow of light. Among them, mechanochromic photonic crystals attract increasing attention due to the easy operation, high safety and broad applications. Recently, mechanochromic photonic crystal fibers were proposed to satisfy the booming wearable smart textile market. In this Concept, the fundamental mechanism, fabrication, and recent progress on mechanochromic photonic crystals, especially in fiber shape, are summarized to represent a new direction in sensing and displaying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Super-stable Poissonian structures

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2012-01-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics. (paper)

  12. Super-stable Poissonian structures

    Science.gov (United States)

    Eliazar, Iddo

    2012-10-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.

  13. Photonic shape memory polymer with stable multiple colors

    NARCIS (Netherlands)

    Moirangthem, M.; Engels, T.A.P.; Murphy, J.; Bastiaansen, C.W.M.; Schenning, A.P.H.J.

    2017-01-01

    A photonic shape memory polymer film that shows large color response (∼155 nm) in a wide temperature range has been fabricated from a semi-interpenetrating network of a cholesteric polymer and poly(benzyl acrylate). The large color response is achieved by mechanical embossing of the photonic film

  14. Nanoscale surface topographies for structural colors

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik

    The thesis describes and demonstrates the possibilities for utilization of structural colors in mass fabricated plastic products as replacement for or in combination with pigments and inks. The motivation is the possible advantages related to re-cycling and re-use of plastic by limiting the number......-polymer interface is suppressed. This improves the ability to see through a clear plastic in the presence of specular reflection. The tapered nanostructures are also utilized to enhance the chroma of pigmented polymers. Larger tapered structures fabricated in a similar manor are shown to work as color filters....... Through an experimental study is the color of the transmitted light linked directly to the random topography of the surface by use of diffraction theory. The color effects from periodic structures and how these might be employed to create bright colors are investigated. This is done both for opaque...

  15. Angle-independent structural colors of silicon

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Weirich, Johannes; Nørregaard, Jesper

    2014-01-01

    Structural colors are optical phenomena of physical origin, where microscale and nanoscale structures determine the reflected spectrum of light. Artificial structural colors have been realized within recent years. However, multilayer structures require substantial fabrication. Instead we considered...... one-layer surface textures of silicon.We explored four patterns of square structures in a square lattice with periods of 500, 400, 300, and 200 nm. The reflectivity and daylight-colors were measured and compared with simulations based on rigorously coupledwave analysis with excellent agreement. Based...... on the 200-nm periodic pattern, it was found that angle-independent specular colors up to 60 deg of incidence may be provided. The underlying mechanisms include (1) the suppression of diffraction and (2) a strong coupling of light to localized surface states. The strong coupling yields absorption anomalies...

  16. Structure of acid-stable carmine.

    Science.gov (United States)

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound.

  17. Bioinspired Omnidirectional Self-Stable Reflectors with Multiscale Hierarchical Structures.

    Science.gov (United States)

    Han, Zhiwu; Mu, Zhengzhi; Li, Bo; Feng, Xiaoming; Wang, Ze; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2017-08-30

    Structured surfaces, demonstrating various wondrous physicochemical performances, are ubiquitous phenomena in nature. Butterfly wings with impressive structural colors are an interesting example for multiscale hierarchical structures (MHSs). However, most natural structural colors are relatively unstable and highly sensitive to incident angles, which limit their potential practical applications to a certain extent. Here, we reported a bioinspired color reflector with omnidirectional reflective self-stable (ORS) properties, which is inspired by the wing scales of Papilio palinurus butterfly. Through experimental exploration and theoretical analysis, it was found that the vivid colors of such butterfly wings are structure-based and possess novel ORS properties, which attributes to the multiple optical actions between light and the complex structures coupling the inverse opal-like structures (IOSs) and stacked lamellar ridges (SLRs). On the basis of this, we designed and successfully fabricated the SiO 2 -based bioinspired color reflectors (BCRs) through a facile and effective biotemplate method. It was confirmed that the MHSs in biotemplate are inherited by the obtained SiO 2 -based BCRs. More importantly, the SiO 2 -based BCRs also demonstrated the similar ORS properties in a wide wavelength range. We forcefully anticipate that the reported MHS-based ORS performance discovered in butterfly wing scales here could offer new thoughts for scientists to solve unstable reflection issues in particular optical field. The involved biotemplate fabrication method offers a facile and effective strategy for fabricating functional nanomaterials or bioinspired nanodevices with 3D complex nanostructures, such as structured optical devices, displays, and optoelectronic equipment.

  18. Transmissive/Reflective Structural Color Filters: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2014-01-01

    Full Text Available Structural color filters, which obtain color selection by varying structures, have attracted extensive research interest in recent years due to the advantages of compactness, stability, multifunctions, and so on. In general, the mechanisms of structural colors are based on the interaction between light and structures, including light diffraction, cavity resonance, and surface plasmon resonance. This paper reviews recent progress of various structural color techniques and the integration applications of structural color filters in CMOS image sensors, solar cells, and display.

  19. Self-assembled structural color in nature

    Science.gov (United States)

    Parnell, Andrew

    The vibrancy and variety of structural color found in nature has long been well-known; what has only recently been discovered is the sophistication of the physics that underlies these effects. In the talk I will discuss some of our recent studies of the structures responsible for color in bird feathers and beetle elytra, based on structural characterization using small angle x-ray scattering, x-ray tomography and optical modeling. These have enabled us to study a large number of structural color exhibiting materials and look for trends in the structures nature uses to provide these optical effects. In terms of creating the optical structure responsible for the color of the Eurasian Jay feathers (Garrulus glandarius) the nanostructure is produced by a phase-separation process that is arrested at a late stage; mastery of the color is achieved by control over the duration of this phase-separation process. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. AJP acknowledges financial support via the APS/DPOLY exchange lectureship 2017.

  20. Conjugated polymer dots for ultra-stable full-color fluorescence patterning.

    Science.gov (United States)

    Chang, Kaiwen; Liu, Zhihe; Chen, Haobin; Sheng, Lan; Zhang, Sean Xiao-An; Chiu, Daniel T; Yin, Shengyan; Wu, Changfeng; Qin, Weiping

    2014-11-12

    Stable full-color fluorescence patterning are achieved by multicolor polymer-dot inks. The fluorescent patterns show extraordinary stability upon various treatments, offering a superior combination of bright fluorescence, excellent photostability, chemical resistance, and eco-friendship. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group

    International Nuclear Information System (INIS)

    Katzgraber, Helmut G.; Bombin, H.; Andrist, Ruben S.; Martin-Delgado, M. A.

    2010-01-01

    We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respect to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.

  2. Structural Color Tuning: Mixing Melanin-Like Particles with Different Diameters to Create Neutral Colors.

    Science.gov (United States)

    Kawamura, Ayaka; Kohri, Michinari; Yoshioka, Shinya; Taniguchi, Tatsuo; Kishikawa, Keiki

    2017-04-18

    We present the ability to tune structural colors by mixing colloidal particles. To produce high-visibility structural colors, melanin-like core-shell particles composed of a polystyrene (PSt) core and a polydopamine (PDA) shell, were used as components. The results indicated that neutral structural colors could be successfully obtained by simply mixing two differently sized melanin-like PSt@PDA core-shell particles. In addition, the arrangements of the particles, which were important factors when forming structural colors, were investigated by mathematical processing using a 2D Fourier transform technique and Voronoi diagrams. These findings provide new insights for the development of structural color-based ink applications.

  3. Range and stability of structural colors generated by Morpho-inspired color reflectors.

    Science.gov (United States)

    Chung, Kyungjae; Shin, Jung H

    2013-05-01

    The range and stability of structural colors generated by Morpho-inspired color reflectors are investigated. We find that despite the internal randomness of such structures that gives rise to their Morpho-like angle-independent iridescence, their colors under ambient lighting condition can be predicted by simple transfer-matrix calculations of corresponding planar multilayer structures. By calculating the possible range of colors generated by multilayers of different structures and material combinations using such transfer-matrix methods, we find that low-refractive index multilayers with intrastructure absorption, such as the melanin-containing chitin/air multilayer structure from the Morpho butterflies, can provide not only the most pure structural colors with the largest color gamut, but also the highest stability of color against variations in multilayer structure.

  4. Color-tunable and stable-efficiency white organic light-emitting diode fabricated with fluorescent-phosphorescent emission layers

    International Nuclear Information System (INIS)

    Yang, Su-Hua; Shih, Po-Jen; Wu, Wen-Jie; Huang, Yi-Hua

    2013-01-01

    White organic light emitting diodes (OLEDs) were fabricated for color-tunable lighting applications. Fluorescent and phosphorescent hybrid emission layers (EMLs) were used to enhance the luminance and stability of the devices, which have blue-EML/CBP interlayer/green-EML/phosphorescent-sensitized-EML/red-EML structures. The influence of the composition and structure of the EMLs on the electroluminescence properties of the devices were investigated from the viewpoint of their emission spectra. The possible exciton harvesting, diffusion, transport, and annihilation processes occurring in the EMLs were also evaluated. A maximum luminance intensity of 7400 cd/m 2 and a highly stable current efficiency of 3.2 cd/A were obtained. Good color tunability was achieved for the white OLEDs; the chromatic coordinates linearly shifted from pure white (0.300, 0.398) to cold white (0.261, 0.367) when the applied voltage was varied from 10 to 14 V. -- Highlights: • Exciton harvesting, diffusion, transport, and annihilation processes were evaluated. • The electroluminescence properties were investigated from the viewpoint of the emission spectra. • Good color tunability and stable-efficiency were achieved for the white OLEDs

  5. Full color organic light-emitting devices with microcavity structure and color filter.

    Science.gov (United States)

    Zhang, Weiwei; Liu, Hongyu; Sun, Runguang

    2009-05-11

    This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.

  6. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Science.gov (United States)

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  7. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  8. Learning color receptive fields and color differential structure

    NARCIS (Netherlands)

    ter Haar Romenij, B.M.

    2016-01-01

    In this paper we study the role of brain plasticity, and investigate the emergence and self-emergence of receptive fields from scalar and color natural images by principal component analysis of image patches. We describe the classical experiment on localized PCA on center-surround weighted patches

  9. Scalable, ultra-resistant structural colors based on network metamaterials

    KAUST Repository

    Galinski, Henning; Favraud, Gael; Dong, Hao; Gongora, J. S. Totero; Favaro, Gré gory; Dö beli, Max; Spolenak, Ralph; Fratalocchi, Andrea; Capasso, Federico

    2017-01-01

    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors

  10. Structural Color of Rock Dove’s Neck Feather

    Science.gov (United States)

    Nakamura, Eri; Yoshioka, Shinya; Kinoshita, Shuichi

    2008-12-01

    It is well known that some kinds of animal have surprisingly brilliant colors showing beautiful iridescence. These colors are called structural colors, and are thought to originate from optical interference caused by periodic microstructures that have sizes comparable with the wavelength of light. However, much larger structural modifications can also play an important role in the coloration mechanism. In this paper, we show through careful optical and structural investigations that the structural color of the neck feather of rock dove, Columba livia, has a very comprehensive mechanism: the thin-layer optical interference phenomenon fundamentally produces the iridescence, while the layer structure is accompanied by various kinds of larger-size structural modifications that control the angular range of the reflection. Further, it is found that the granules containing melanin pigment exist in a localized manner to effectively enhance the contrast of the color caused by optical interference.

  11. Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors.

    Science.gov (United States)

    Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki

    2016-09-23

    The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles' diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications.

  12. The structure and properties of color spaces and the representation of color images

    CERN Document Server

    Dubois, Eric

    2009-01-01

    This lecture describes the author's approach to the representation of color spaces and their use for color image processing. The lecture starts with a precise formulation of the space of physical stimuli (light). The model includes both continuous spectra and monochromatic spectra in the form of Dirac deltas. The spectral densities are considered to be functions of a continuous wavelength variable. This leads into the formulation of color space as a three-dimensional vector space, with all the associated structure. The approach is to start with the axioms of color matching for normal human vie

  13. Color effects from scattering on random surface structures in dielectrics

    DEFF Research Database (Denmark)

    Clausen, Jeppe; Christiansen, Alexander B; Garnæs, Jørgen

    2012-01-01

    We show that cheap large area color filters, based on surface scattering, can be fabricated in dielectric materials by replication of random structures in silicon. The specular transmittance of three different types of structures, corresponding to three different colors, have been characterized...

  14. Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors

    Directory of Open Access Journals (Sweden)

    Chun-Feng Lai

    2016-05-01

    Full Text Available Polystyrene (PS colloidal photonic crystals (CPhCs containing silver nanoparticles (AgNPs present tunable structural colors. PS CPhC color films containing a high concentration of AgNPs were prepared using self-assembly process through gravitational sedimentation method. High-concentration AgNPs were deposited on the bottom of the substrate and acted as black materials to absorb background and scattering light. Brilliant structural colors were enhanced because of the absorption of incoherent scattering light, and color saturation was increased by the distribution AgNPs on the PS CPhC surfaces. The vivid iridescent structural colors of AgNPs/PS hybrid CPhC films were based on Bragg diffraction and backward scattering absorption using AgNPs. The photonic stop band of PS CPhCs and AgNPs/PS hybrid CPhCs were measured by UV–visible reflection spectrometry and calculated based on the Bragg–Snell law. In addition, the tunable structural colors of AgNPs/PS hybrid CPhC films were evaluated using color measurements according to the Commission International d’Eclairage standard colorimetric system. This paper presents a simple and inexpensive method to produce tunable structural colors for numerous applications, such as textile fabrics, bionic colors, catalysis, and paints.

  15. DFT computations of the lattice constant, stable atomic structure and ...

    African Journals Online (AJOL)

    This paper presents the most stable atomic structure and lattice constant of Fullerenes (C60). FHI-aims DFT code was used to predict the stable structure and the computational lattice constant of C60. These were compared with known experimental structures and lattice constants of C60. The results obtained showed that ...

  16. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    Science.gov (United States)

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Easy approach to assembling a biomimetic color film with tunable structural colors.

    Science.gov (United States)

    Wang, Wentao; Tang, Bingtao; Ma, Wei; Zhang, Jian; Ju, Benzhi; Zhang, Shufen

    2015-06-01

    The self-assembly of silica microspheres into a close-packed array is a simple method of fabricating three-dimensional photonic crystal structural color films. However, the color is very dull because of the interferences of scattering and background light. In this study, we added a small quantity of surface-modified carbon black (CB) to the system of colloidal silica in n-propanol. The use of n-propanol as a dispersant is beneficial to the rapid development of photonic crystal films during the process of dip-coating. The doping of CB into silica microspheres can absorb background and scattering light, resulting in vivid structural colors.

  18. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  19. Multi-Stable Morphing Cellular Structures

    Science.gov (United States)

    2015-05-14

    stiffness on critical buckling load and arch stres - ses. It should be noted that although the arches in these studies snapped-through, they did not...switch roles in moving the VMT back from the second to the first stable equilibrium state. A prototype is designed and fabricated and the transition...pulling forward on the insert on the right blade and assisting its deployment. During this process the cable 3-4-1 goes slack and plays no role , but if

  20. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  1. Hybrid white organic light emitting diodes with low efficiency roll-off, stable color and extreme brightness

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baiquan; Zou, Jianhua [Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory of Luminescent Materials and Devices, Guangzhou 510640 (China); Su, Yueju; Gao, Dongyu [New Vision Opto-Electronic Technology Co., Ltd, Guangzhou 510640 (China); Lan, Linfeng [Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory of Luminescent Materials and Devices, Guangzhou 510640 (China); Tao, Hong, E-mail: tao.h@scut.edu.cn [Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory of Luminescent Materials and Devices, Guangzhou 510640 (China); Peng, Junbiao [Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory of Luminescent Materials and Devices, Guangzhou 510640 (China)

    2014-07-01

    Highly efficient and bright hybrid white organic light emitting diodes (WOLEDs) based on simple architectures have been successfully fabricated and characterized. The optimized device can reach a maximum forward-viewing power efficiency (PE) of 20.2 lm/W, a peak forward-viewing current efficiency (CE) of 30.7 cd/A, an extremely high brightness of 95,683 cd/m{sup 2}, and a Commission International de l’E clairage chromaticity coordinates of (0. 436, 0.425) at 12 V. Even at the illumination-relevant brightness of 1000 cd/m{sup 2}, a forward-viewing PE of 17.0 lm/W and CE of 30.7 cd/A are obtained. Moreover, it is found that the device not only suffers slight efficiency roll-off but also exhibits a stable color during a large range of brightness, indicating that the device can satisfy the future commercial requirements. Undoubtedly, the results will be beneficial to the design of both material and device architecture for high-performance WOLEDs and next-generation solid-state lighting sources. - Highlights: • A simple HWOLED with B/O/B structure has been successfully developed. • A extremely high brigthness of 95,683 cd/m{sup 2} is obtained. • A high forward-viewing CE of 30.7 cd/A and PE of 20.2 lm/W are achieved. • Efficiency roll-off is very low and color is relatively stable.

  2. Material design and structural color inspired by biomimetic approach

    International Nuclear Information System (INIS)

    Saito, Akira

    2011-01-01

    Generation of structural color is one of the essential functions realized by living organisms, and its industrial reproduction can result in numerous applications. From this viewpoint, the mechanisms, materials, analytical methods and fabrication technologies of the structural color are reviewed in this paper. In particular, the basic principles of natural photonic materials, the ideas developed from these principles, the directions of applications and practical industrial realizations are presented by summarizing the recent research results. (topical review)

  3. Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching

    Science.gov (United States)

    2013-01-01

    REPORT Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The stable matching...Franceschetti 858-822-2284 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Jealousy Graphs: Structure and...market. Using this structure, we are able to provide a ner analysis of the complexity of a subclass of decentralized matching markets. Jealousy

  4. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  5. Structure of a Stable G-Hairpin

    Czech Academy of Sciences Publication Activity Database

    Gajarský, M.; Zivkovic, M.L.; Stadlbauer, Petr; Pagano, B.; Fiala, R.; Amato, J.; Tomáška, L´.; Šponer, Jiří; Plavec, J.; Trantírek, L.

    2017-01-01

    Roč. 139, č. 10 (2017), s. 3591-3594 ISSN 0002-7863 R&D Projects: GA ČR GA13-28310S; GA ČR(CZ) GA16-13721S Institutional support: RVO:68081707 Keywords : g-quadruplex structures * human telomeric dna * single-stranded-dna * g-triplex Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 13.858, year: 2016

  6. Rediscovering Red: Full-Spectrum Structural Color in Colloidal Glasses

    Science.gov (United States)

    Magkiriadou, Sofia; Park, Jin-Gyu; Kim, Young-Seok; Yi, Gi-Ra; Manoharan, Vinothan N.

    2014-03-01

    We use colloidal glasses to develop pigments with structural color: color that arises from interference rather than absorption. This pigmentation mechanism is common in blue birds, whose feather barbs often contain glassy microstructures. When a glass is illuminated, the spatial correlations between neighboring particles can give rise to constructive interference for a small range of wavelengths. Unlike the colors arising from Bragg diffraction in crystals, the colors of these ``photonic glasses'' are independent of angle due to the disordered, isotropic structure. However, there are no known examples of photonic glasses with pure structural red color, either in nature or in the lab. We present both experimental evidence and a model showing that the absence of red is due to the wavelength-dependence of the single-particle scattering cross-section. We show that this problem can be solved in ``inverse glasses,'' namely glasses composed of particles with refractive index lower than that of their medium. Although these systems are similar to those in birds, no known species uses this mechanism to create red. We use inverse glasses to make full-spectrum, angle-independent structural colors. This will enable the use of colloidal glasses as a new type of long-lasting, non-bleaching pigment.

  7. Non-iridescent structural colors from uniform-sized SiO2 colloids

    Science.gov (United States)

    Topçu, Gökhan; Güner, Tuğrul; Demir, Mustafa M.

    2018-05-01

    Structural colors have recently attracted interest from diverse fields of research due to their ease of fabrication and eco-friendliness. These types of colors are, in principle, achieved by periodically arranged submicron-diameter colloidal particles. The interaction of light with a structure containing long-range ordered colloidal particles leads to coloration; this usually varies depending on the angle of observation (iridescence). However, the majority of the applications demand constant color that is independent of the viewing angle (non-iridescence). In this work, silica colloids were obtained using the Stöber method at different sizes from 150 to 300 nm in an alcoholic dispersion. The casting of the dispersion on a substrate leaves behind a photonic crystal showing a colorful iridescent film. However, centrifugation and redispersion of the SiO2 particles into fresh solvent may cause the formation of small, aggregated silica domains in the new dispersion. The casting of this dispersion allows for the development of photonic glass, presumably due to the accumulation of aggregates showing stable colloidal film independent of viewing angle. Moreover, depending on the size of the silica colloids, non-iridescent photonic glasses with various colors (violet, blue, green, and orange) are obtained.

  8. Structural colors from Morpho peleides butterfly wing scales

    KAUST Repository

    Ding, Yong; Xu, Sheng; Wang, Zhong Lin

    2009-01-01

    A male Morpho peleides butterfly wing is decorated by two types of scales, cover and ground scales. We have studied the optical properties of each type of scales in conjunction with the structural information provided by cross-sectional transmission electron microscopy and computer simulation. The shining blue color is mainly from the Bragg reflection of the one-dimensional photonic structure, e.g., the shelf structure packed regularly in each ridges on cover scales. A thin-film-like interference effect from the base plate of the cover scale enhances such blue color and further gives extra reflection peaks in the infrared and ultraviolet regions. The analogy in the spectra acquired from the original wing and that from the cover scales suggests that the cover scales take a dominant role in its structural color. This study provides insight of using the biotemplates for fabricating smart photonic structures. © 2009 American Institute of Physics.

  9. Detailed electromagnetic simulation for the structural color of butterfly wings.

    Science.gov (United States)

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  10. Enhancing Color Purity and Stable Efficiency of White Organic Light Diodes by Using Hole-Blocking Layer

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The organic light-emitting diodes with triple hole-blocking layer (THBL formation sandwich structure which generate white emission were fabricated. The 5,6,11,12-tetraphenylnapthacene (Rubrene, (4,4′-N,N′-dicarbazolebiphenyl (CBP, and 4,4′-bis(2,2′diphenylvinil-1,1′-biphenyl (DPVBi were used as emitting materials in the device. The function of CBP layer is not only an emitting layer but also a hole-blocking layer (HBL, and the Rubrene was doped into the CBP. The optimal configuration structure was indium tin oxide (ITO/Molybdenum trioxide (MoO3 (5 nm/[4,4-bis[N-(1-naphthyl-N-phenylamino]biphenyl (NPB (35 nm/CBP (HBL1 (5 nm/DPVBi (I (10 nm/CBP (HBL2 : Rubrene (4 : 1 (3 nm/DPVBi (II (30 nm/CBP (HBL3 (2 nm/4,7-diphenyl-1,10-phenanthroline (BPhen (10 nm/Lithium fluoride (LiF/aluminum (Al. The result showed that the device with Rubrene doped in CBP (HBL2 exhibited a stable white emission with the color coordinates of (0.322, 0.368, and the coordinate with the slight shift of ±Δx,y = (0.001, 0.011 for applied voltage of 8–12 V was observed.

  11. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  12. Dynamics and control of twisting bi-stable structures

    Science.gov (United States)

    Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.

    2018-02-01

    Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states

  13. Genetic manipulation of structural color in bacterial colonies

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Catón, Laura; Hamidjaja, Raditijo

    2018-01-01

    analysis, we obtained a detailed correlation of how genetic modifications alter structural color in bacterial colonies. Understanding of genotype and phenotype relations in this system opens the way to genetic engineering of on-demand living optical materials, for use as paints and living sensors.......Naturally occurring photonic structures are responsible for the bright and vivid coloration in a large variety of living organisms. Despite efforts to understand their biological functions, development, and complex optical response, little is known of the underlying genes involved...

  14. Biotemplated Morpho Butterfly Wings for Tunable Structurally Colored Photocatalysts.

    Science.gov (United States)

    Rodríguez, Robin E; Agarwal, Sneha P; An, Shun; Kazyak, Eric; Das, Debashree; Shang, Wen; Skye, Rachael; Deng, Tao; Dasgupta, Neil P

    2018-02-07

    Morpho sulkowskyi butterfly wings contain naturally occurring hierarchical nanostructures that produce structural coloration. The high aspect ratio and surface area of these wings make them attractive nanostructured templates for applications in solar energy and photocatalysis. However, biomimetic approaches to replicate their complex structural features and integrate functional materials into their three-dimensional framework are highly limited in precision and scalability. Herein, a biotemplating approach is presented that precisely replicates Morpho nanostructures by depositing nanocrystalline ZnO coatings onto wings via low-temperature atomic layer deposition (ALD). This study demonstrates the ability to precisely tune the natural structural coloration while also integrating multifunctionality by imparting photocatalytic activity onto fully intact Morpho wings. Optical spectroscopy and finite-difference time-domain numerical modeling demonstrate that ALD ZnO coatings can rationally tune the structural coloration across the visible spectrum. These structurally colored photocatalysts exhibit an optimal coating thickness to maximize photocatalytic activity, which is attributed to trade-offs between light absorption and catalytic quantum yield with increasing coating thickness. These multifunctional photocatalysts present a new approach to integrating solar energy harvesting into visually attractive surfaces that can be integrated into building facades or other macroscopic structures to impart aesthetic appeal.

  15. Grapheme-color synesthesia subtypes: stable individual differences reflected in posterior alpha-band oscillations

    NARCIS (Netherlands)

    Cohen, M.X.; Weidacker, K.S.; Tankink, J.; Scholte, H.S.; Rouw, R.

    2015-01-01

    Grapheme-color synesthesia is a condition in which seeing letters and numbers produces sensations of colors (e.g., the letter R may elicit a sky-blue percept). Recent evidence implicates posterior parietal areas, in addition to lower-level sensory processing regions, in the neurobiological

  16. Using cuttlefish ink as an additive to produce -non-iridescent structural colors of high color visibility.

    Science.gov (United States)

    Zhang, Yafeng; Dong, Biqin; Chen, Ang; Liu, Xiaohan; Shi, Lei; Zi, Jian

    2015-08-26

    Non-iridescent structural colors of high color visibility are produced by amorphous photonic structures, in which -natural cuttlefish ink is used as an additive to break down the long-range order of the structures. The color hue and its spectral purity can be tuned by adjusting the diameter of the polystyrene (PS) spheres and the proportion of ink particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A data analysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise

    Energy Technology Data Exchange (ETDEWEB)

    Patanarapeelert, K. [Faculty of Science, Department of Mathematics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Frank, T.D. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany)]. E-mail: tdfrank@uni-muenster.de; Friedrich, R. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany); Beek, P.J. [Faculty of Human Movement Sciences and Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam (Netherlands); Tang, I.M. [Faculty of Science, Department of Physics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand)

    2006-12-18

    A method is proposed to identify deterministic components of stable and unstable time-delayed systems subjected to noise sources with finite correlation times (colored noise). Both neutral and retarded delay systems are considered. For vanishing correlation times it is shown how to determine their noise amplitudes by minimizing appropriately defined Kullback measures. The method is illustrated by applying it to simulated data from stochastic time-delayed systems representing delay-induced bifurcations, postural sway and ship rolling.

  18. Polymer nanoimprinting using an anodized aluminum mold for structural coloration

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-06-01

    Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.

  19. Structural coloration in a fossil feather.

    Science.gov (United States)

    Vinther, Jakob; Briggs, Derek E G; Clarke, Julia; Mayr, Gerald; Prum, Richard O

    2010-02-23

    Investigation of feathers from the famous Middle Eocene Messel Oil Shale near Darmstadt, Germany shows that they are preserved as arrays of fossilized melanosomes, the surrounding beta-keratin having degraded. The majority of feathers are preserved as aligned rod-shaped eumelanosomes. In some, however, the barbules of the open pennaceous, distal portion of the feather vane are preserved as a continuous external layer of closely packed melanosomes enclosing loosely aligned melanosomes. This arrangement is similar to the single thin-film nanostructure that generates an iridescent, structurally coloured sheen on the surface of black feathers in many lineages of living birds. This is, to our knowledge, the first evidence of preservation of a colour-producing nanostructure in a fossil feather and confirms the potential for determining colour differences in ancient birds and other dinosaurs.

  20. Scalable, ultra-resistant structural colors based on network metamaterials

    KAUST Repository

    Galinski, Henning

    2017-05-05

    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications.

  1. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  2. Blue and Black Cloth Targets: Effects of Size, Shape, and Color on Stable Fly (Diptera: Muscidae) Attraction.

    Science.gov (United States)

    Hogsette, Jerome A; Foil, Lane D

    2018-04-02

    Stable fly management is challenging because of the fly's dispersal behavior and its tendency to remain on the host only while feeding. Optically attractive traps have been used to survey and sometimes reduce adult populations. Insecticide-treated blue and black cloth targets developed for tsetse fly management in Africa were found to be attractive to stable flies in the United States, and various evaluations were conducted in Louisiana and Florida. Tests using untreated targets were designed to answer questions about configuration, size, and color relative to efficacy and stability in high winds. Studies with electric grid targets and with targets paired with Olson traps showed cloth target color attraction in the following decreasing order: black > blue-black > blue. A solid black target is easier to make than a blue-black target because no sewing is involved. Attraction was not affected when flat 1-m2 targets were formed into cylinders, despite the limited view of the blue and black colors together. There was no reduction in attraction when the 1-m2 cylindrical targets were compared with smaller (63 × 30 cm high) cylindrical targets. In addition, there was no difference in attraction between the small blue-black, blue, and black targets. Significance of findings and implications of potential uses for treated targets are discussed. Target attraction was indicated by the numbers of stable flies captured on an Olson sticky trap placed 30 cm from the target. Although this system is adequate for field research, it greatly underestimates the actual numbers of stable flies attracted to treated targets.

  3. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications

    Science.gov (United States)

    Lee, Taejun; Jang, Jaehyuck; Jeong, Heonyeong; Rho, Junsuk

    2018-01-01

    Structural coloring is production of color by surfaces that have microstructure fine enough to interfere with visible light; this phenomenon provides a novel paradigm for color printing. Plasmonic color is an emergent property of the interaction between light and metallic surfaces. This phenomenon can surpass the diffraction limit and achieve near unlimited lifetime. We categorize plasmonic color filters according to their designs (hole, rod, metal-insulator-metal, grating), and also describe structures supported by Mie resonance. We discuss the principles, and the merits and demerits of each color filter. We also discuss a new concept of color filters with tunability and reconfigurability, which enable printing of structural color to yield dynamic coloring at will. Approaches for dynamic coloring are classified as liquid crystal, chemical transition and mechanical deformation. At the end of review, we highlight a scale-up of fabrication methods, including nanoimprinting, self-assembly and laser-induced process that may enable real-world application of structural coloring.

  4. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  5. Recent developments in low cost stable structures for space

    International Nuclear Information System (INIS)

    Thompson, T.C.; Grastataro, C.; Smith, B.G.

    1994-01-01

    The Los Alamos National Laboratory (LANL) in partnership with Composite Optics Incorporated (COI) is advancing the development of low cost, lightweight, composite technology for use in spacecraft and stable structures. The use of advanced composites is well developed, but the application of an all-composite tracker structure has never been achieved. This paper investigates the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small satellites, using technology directly applicable to central tracking in a high luminosity environment. The satellite program Fast On-Orbit Recording of Transient Events (FORTE) is the second in a series of satellites to be launched into orbit for the US Department of Energy (DOE). This paper will discuss recent developments in the area of low cost composites, used for either spacecraft or ultra stable applications in high energy physics (HEP) detectors. The use of advanced composites is a relatively new development in the area of HEP. The Superconducting Super Collider (SSC) spawned a new generation of Trackers which made extensive use of graphite fiber reinforced plastic (GFRP) composite systems. LANL has designed a structure employing new fabrication technology. This concept will lower the cost of composite structures to a point that they may now compete with conventional materials. This paper will discuss the design, analysis and proposed fabrication of a small satellite structure. Central tracking structures using advanced materials capable of operating in an adverse environment typical of that found in a high luminosity collider could use identical concepts

  6. Disruptive Effects of Colorful versus Non-Colorful Play Area on Structured Play – a Pilot Study with Preschoolers

    Directory of Open Access Journals (Sweden)

    Keren Stern-Ellran

    2016-10-01

    Full Text Available To contribute to young children's development, sensory enrichment is often provided via colorful play areas. However, little is known about the effects of colorful environments on children while they engage in age-appropriate tasks and games. Studies in adults suggest that aspects of color can distract attention and impair performance, and children are known to have less developed attentional and executive abilities than adults. Preliminary studies conducted in children aged 5-8 suggest that the colorfulness of both distal (e.g., wall decorations and proximal (e.g., the surface of the desktop environments can have a disruptive effect on children's performance. The present research seeks to extend the previous studies to an even younger age group and focus on proximal colorfulness. With a sample of 15 pre-schoolers (3-4 years old we examined whether a colorful play surface compared to a non-colorful (white play surface would affect engagement in developmentally appropriate structured play. Our pilot findings suggest that a colorful play surface interfered with preschoolers' structured play, inducing more behaviors indicating disruption in task execution compared with a non-colorful play surface. The implications of the current study for practice and further research are discussed.

  7. Confined Growth of ZIF-8 Nanocrystals with Tunable Structural Colors

    DEFF Research Database (Denmark)

    Chang, Bingdong; Yang, Yuanqing; Jansen, Henri

    2018-01-01

    Zeolitic imidazolate frameworks (ZIF-8) have promising applications as sensors or catalysts due to their highly porous crystalline structures. While most of the previous studies are based on ZIF-8 crystals either in isolated particles in aqueous environments or in a compact colloidal form, here...... down to ≈100 nm. A wide range of structural colors generated by the ZIF-8 nanocrystals is also observed, which can be attributed to the size-dependent resonant scattering as verified by finite-difference time-domain simulations and classical Mie theory. The scalable fabrication of wafer-based ZIF-8...

  8. Color centers in KCN: a structural analysis of crystalline domains

    International Nuclear Information System (INIS)

    Carmo, L.C.S. do.

    1976-03-01

    Pure singlecrystals of KCN exposed to X-rays showed several color centers detected by EPR. The F center was identified through the correlation of its optical absorption band which satisfies the Ivey law for the KCN lattice parameter and the EPR spectrum typical of a center in an anionic site. Two other color centers were identified: N - 2 and HCN - . Two centers assigned to hydrogen atoms have their models proposed: U 2 and U 3 centers. Two other centers remain unidentified: an anionic and an extrinsic centers. The orthorhombic character of the N - 2 center EPR parameters allowed an structural analysis of the crystal line domains in the orthorhombic phase. The optical absorption spectrum of the HCN - center in KCl matrix was investigated and showed a set of resolved bands with a constant energy splitting; this splitting was associated to a vibrational mode of the excited state of this molecular ion. (author) [pt

  9. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.

    Science.gov (United States)

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen

    2017-01-01

    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stable structures of coalitions in competitive and altruistic military teams

    Science.gov (United States)

    Aurangzeb, M.; Mikulski, D.; Hudas, G.; Lewis, F. L.; Gu, Edward

    2013-05-01

    In heterogeneous battlefield teams, the balance between team and individual objectives forms the basis for the internal topological structure of teams. The stability of team structure is studied by presenting a graphical coalitional game (GCG) with Positional Advantage (PA). PA is Shapley value strengthened by the Axioms of value. The notion of team and individual objectives is studied by defining altruistic and competitive contribution made by an individual; altruistic and competitive contributions made by an agent are components of its total or marginal contribution. Moreover, the paper examines dynamic team effects by defining three online sequential decision games based on marginal, competitive and altruistic contributions of the individuals towards team. The stable graphs under these sequential decision games are studied and found to be structurally connected, complete, or tree respectively.

  11. Exploring Individual and Structural Factors Associated with Employment Among Young Transgender Women of Color Using a No-Cost Transgender Legal Resource Center.

    Science.gov (United States)

    Hill, Brandon J; Rosentel, Kris; Bak, Trevor; Silverman, Michael; Crosby, Richard; Salazar, Laura; Kipke, Michele

    2017-01-01

    The purpose of this study was to explore individual and structural factors associated with employment among young transgender women (TW) of color. Sixty-five trans women of color were recruited from the Transgender Legal Defense and Education Fund to complete a 30-min interviewer-assisted survey assessing sociodemographics, housing, workplace discrimination, job-seeking self-efficacy, self-esteem, perceived public passability, and transactional sex work. Logistic regression models revealed that stable housing (structural factor) and job-seeking self-efficacy (individual factor) were significantly associated with currently being employed. Our findings underscore the need for multilevel approaches to assist TW of color gain employment.

  12. Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions

    Science.gov (United States)

    Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.

    2016-02-01

    The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.

  13. Printable and Rewritable Full Block Copolymer Structural Color.

    Science.gov (United States)

    Kang, Han Sol; Lee, Jinseong; Cho, Suk Man; Park, Tae Hyun; Kim, Min Ju; Park, Chanho; Lee, Seung Won; Kim, Kang Lib; Ryu, Du Yeol; Huh, June; Thomas, Edwin L; Park, Cheolmin

    2017-08-01

    Structural colors (SCs) of photonic crystals (PCs) arise from selective constructive interference of incident light. Here, an ink-jet printable and rewritable block copolymer (BCP) SC display is demonstrated, which can be quickly written and erased over 50 times with resolution nearly equivalent to that obtained with a commercial office ink-jet printer. Moreover, the writing process employs an easily modified printer for position- and concentration-controlled deposition of a single, colorless, water-based ink containing a reversible crosslinking agent, ammonium persulfate. Deposition of the ink onto a self-assembled BCP PC film comprising a 1D stack of alternating layers enables differential swelling of the written BCP film and produces a full-colored SC display of characters and images. Furthermore, the information can be readily erased and the system can be reset by application of hydrogen bromide. Subsequently, new information can be rewritten, resulting in a chemically rewritable BCP SC display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  15. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    OpenAIRE

    Kimura, Yusuke

    2018-01-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface i...

  16. Vortex structure in superfluid color-flavor locked quark matter

    Directory of Open Access Journals (Sweden)

    Alford Mark G.

    2016-01-01

    Full Text Available The core region of a neutron star may feature quark matter in the color-flavor-locked (CFL phase. The CFL condensate breaks the baryon number symmetry, such that the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will form in the superfluid, carrying the quanta of angular momentum. In a previous study we have solved the question of stability of these vortices, where we found numerical proof of a conjectured instability, according to which superfluid vortices will decay into an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an extension of our framework that allows us to study multi-vortex dynamics. This will in turn enable us to investigate the structure of semi-superfluid string lattices, which could be relevant to study pinning phenomena at the boundary of the core.

  17. Design of structurally colored surfaces based on scalar diffraction theory

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole

    2014-01-01

    In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly...... reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...

  18. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces.

    Science.gov (United States)

    Jiang, Hao; Kaminska, Bozena

    2018-04-24

    To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.

  19. Structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure

    International Nuclear Information System (INIS)

    Yoshioka, S; Shimizu, Y; Kinoshita, S; Matsuhana, B

    2013-01-01

    We investigated the structural color of the green wing of the lycaenid butterfly Chrysozephyrus brillantinus. Electron microscopy revealed that the bottom plate of the cover scale on the wing consists of an alternating air–cuticle multilayer structure. However, the thicknesses of the layers were not constant but greatly differed depending on the layer, unlike the periodic multilayer designs often adopted for artificial laser-reflecting mirrors. The agreement between the experimentally determined and theoretically calculated reflectance spectra led us to conclude that the multilayer interference in the aperiodic system is the primary origin of the structural color. We analyzed optical interference in this aperiodic system using a simple analytical model and found that two spectral peaks arise from constructive interference among different parts of the multilayer structure. We discuss the advantages and disadvantages of the aperiodic system over a periodic one. (paper)

  20. Shaded Relief with Height as Color, Iturralde Structure, Bolivia

    Science.gov (United States)

    2002-01-01

    An 8-kilometer (5-mile) wide crater of possible impact origin is shown in this view of an isolated part of the Bolivian Amazon from the Shuttle Radar Topography Mission. The circular feature at the center-left of the image, known as the Iturralde Structure, is possibly the Earth's most recent 'big' impact event recording collision with a meteor or comet that might have occurred between 11,000 and 30,000 years ago.Although the structure was identified on satellite photographs in the mid-1980s, its location is so remote that it has only been visited by scientific investigators twice, most recently by a team from NASA's Goddard Space Flight Center in September 2002. Lying in an area of very low relief, the landform is a quasi-circular closed depression only about 20 meters (66 feet) in depth, with sharply defined sub-angular 'rim' materials. It resembles a 'cookie cutter' in that its appearance 'cuts' the heavily vegetated soft-sediments and pampas of this part of Bolivia. The SRTM data have provided investigators with the first topographic map of the site and will allow studies of its three-dimensional structure crucial to determining whether it actually is of impact origin.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with brown and green at the lower elevations, rising through yellow and brown to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was

  1. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    International Nuclear Information System (INIS)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. (topical review)

  2. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  3. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Science.gov (United States)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  4. Probing Xe electronic structure by two-color HHG

    International Nuclear Information System (INIS)

    Faccialà, D; Ciriolo, A G; De Silvestri, S; Devetta, M; Negro, M; Stagira, S; Vozzi, C; Pabst, S; Bruner, B D; Dudovich, N; Soifer, H

    2015-01-01

    The aim of this study is probing the multi-electron behavior in xenon by two-color driven high harmonic generation. By changing the relative polarization of the two colors we were able to study different aspects of the multi-electron response. (paper)

  5. Enhanced color purity of blue OLEDs based on well-design structure

    Science.gov (United States)

    Du, Qianqian; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Xia, Shuzhen; Zhang, Bingyuan; Wang, Minghong; Fan, Quli

    2016-09-01

    We have fabricated blue organic light-emitting devices (OLEDs) with higher color purity and stability by optimizing the structure of the Glass/ITO/NPB(50 nm)/ BCzVBi (30 nm)/ TPBi (x nm)/Alq3(20 nm)/LiF/Al. The results show that the introducing of hole blocking layer(HBL) TPBi greatly can improve not only the color purity but the color stability, which owe to its higher the Highest Occupied Molecular Orbital (HOMO) energy levels of 6.2 eV. We expect our work will be useful to optimizing the blue OLEDs structure to enhancing the color property.

  6. Artificial selection for structural color on butterfly wings and comparison with natural evolution.

    Science.gov (United States)

    Wasik, Bethany R; Liew, Seng Fatt; Lilien, David A; Dinwiddie, April J; Noh, Heeso; Cao, Hui; Monteiro, Antónia

    2014-08-19

    Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.

  7. Structural Color Palettes of Core-Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals.

    Science.gov (United States)

    Lee, Sang Seok; Seo, Hyeon Jin; Kim, Yun Ho; Kim, Shin-Hyun

    2017-06-01

    Photonic microcapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light-handedness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement

    Directory of Open Access Journals (Sweden)

    Mehmet Nergiz

    2017-11-01

    Full Text Available Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is applied to the response of the Frangi Filter and a 4-D tensor field is obtained. After decomposing the Eigenvalues of the tensor field, the anisotropy between the principal Eigenvalues are enhanced exponentially. Furthermore, this 4-D tensor field is converted to the 3-D space which is composed of energy, anisotropy and orientation and then a Contrast Limited Adaptive Histogram Equalization algorithm is applied to the energy space. Later, the obtained energy space is multiplied by the enhanced mean surface curvature of itself and the modified 3-D space is converted back to the 4-D tensor field. Lastly, the vessel segmentation is performed by using Otsu algorithm and tensor coloring method which is inspired by the ellipsoid tensor visualization technique. Finally, some post-processing techniques are applied to the segmentation result. In this study, the proposed method achieved mean sensitivity of 0.8123, 0.8126, 0.7246 and mean specificity of 0.9342, 0.9442, 0.9453 as well as mean accuracy of 0.9183, 0.9442, 0.9236 for DRIVE, STARE and CHASE_DB1 datasets, respectively. The mean execution time of this study is 6.104, 6.4525 and 18.8370 s for the aforementioned three datasets respectively.

  9. Characterization of Structural and Pigmentary Colors in Common Emigrant (Catopsilia Pomona) Butterfly

    International Nuclear Information System (INIS)

    Ghate, Ekata; Kulkarni, G. R.; Bhoraskar, S. V.; Adhi, K. P.

    2011-01-01

    Study of structural colors in case of insects and butterflies is important for their biomimic and biophotonics applications. Structural color is the color which is produced by physical structures and their interaction with light while pigmentary color is produced by absorption of light by pigments. Common Emigrant butterfly is widely distributed in India. It is of moderate size with wing span of about 60-80 mm. The wings are broadly white with yellow or sulphur yellow coloration at places as well as few dark black patches. It belongs to family Pieridae. A study of structural color in case of Common Emigrant butterfly has been carried out in the present work. The characterization of wing color was performed using absorption spectroscopy. Scanning electron microscopic study of the wings of Common Emigrant butterfly showed that three different types of scales are present on the wing surface dorsally. Diffracting structures are present in certain parts of the surfaces of the various scales. Bead like structures are embedded in the intricate structures of the scales. Absorption spectra revealed that a strong absorption peak is seen in the UV-range. Crystalline structure of beads was confirmed by the X-ray diffraction analysis.

  10. Red, green, blue equals 1, 2, 3: Digit-color synesthetes can use structured digit information to boost recall of color sequences.

    Science.gov (United States)

    Teichmann, A Lina; Nieuwenstein, Mark R; Rich, Anina N

    2015-01-01

    Digit-color synesthetes report experiencing colors when perceiving letters and digits. The conscious experience is typically unidirectional (e.g., digits elicit colors but not vice versa) but recent evidence shows subtle bidirectional effects. We examined whether short-term memory for colors could be affected by the order of presentation reflecting more or less structure in the associated digits. We presented a stream of colored squares and asked participants to report the colors in order. The colors matched each synesthete's colors for digits 1-9 and the order of the colors corresponded either to a sequence of numbers (e.g., [red, green, blue] if 1 = red, 2 = green, 3 = blue) or no systematic sequence. The results showed that synesthetes recalled sequential color sequences more accurately than pseudo-randomized colors, whereas no such effect was found for the non-synesthetic controls. Synesthetes did not differ from non-synesthetic controls in recall of color sequences overall, providing no evidence of a general advantage in memory for serial recall of colors.

  11. Stable structures for Al{sub 20} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yao Changhong [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)]. E-mail: phych@zju.edu.cn; Song Bin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao Peilin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2005-06-20

    The low-lying energy structures of Al{sub 20} cluster are obtained by full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method. A set of new low-lying energy structures including a new lowest energy structure, were found in our calculation. The waist-capped double icosahedral structure, which was considered as the global minimum previously, is merely one of the low-lying structures. Comparison and discussion between Al{sub 20} and Si{sub 20} have been made.

  12. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.

    Science.gov (United States)

    Lopez-Garcia, Martin; Masters, Nathan; O'Brien, Heath E; Lennon, Joseph; Atkinson, George; Cryan, Martin J; Oulton, Ruth; Whitney, Heather M

    2018-04-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia . The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.

  13. Lithographically-generated 3D lamella layers and their structural color

    Science.gov (United States)

    Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen

    2016-04-01

    Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ~ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.

  14. Structural Color Model Based on Surface Morphology of MORPHO Butterfly Wing Scale

    Science.gov (United States)

    Huang, Zhongjia; Cai, Congcong; Wang, Gang; Zhang, Hui; Huttula, Marko; Cao, Wei

    2016-05-01

    Color production through structural coloration is created by micrometer and sub-micrometer surface textures which interfere with visible light. The shiny blue of morpho menelaus is a typical example of structural coloring. Modified from morphology of the morpho scale, a structure of regular windows with two side offsets was constructed on glass substrates. Optical properties of the bioinspired structure were studied through numerical simulations of light scattering. Results show that the structure can generate monochromatic light scattering. Wavelength of scattered light is tunable via changing the spacing between window shelves. Compared to original butterfly model, the modified one possesses larger illumination scopes in azimuthal distributions despite being less in polar directions. Present bionic structure is periodically repeated and is easy to fabricate. It is hoped that the computational materials design work can inspire future experimental realizations of such a structure in photonics applications.

  15. The Socially Stable Core in Structured Transferable Utility Games

    NARCIS (Netherlands)

    Herings, P.J.J.; van der Laan, G.; Talman, A.J.J.

    2004-01-01

    We consider cooperative games with transferable utility (TU-games), in which we allow for a social structure on the set of players, for instance a hierarchical ordering or a dominance relation.The social structure is utilized to refine the core of the game, being the set of payoffs to the players

  16. Blue and Black Cloth Targets: Effects of Size, Shape and Color on Stable Fly (L.) (Diptera: Muscidae) Attraction

    Science.gov (United States)

    Stable fly management has been challenging. Insecticide-treated targets made from blue and black fabric, developed in Africa, were evaluated in Louisiana and Florida to determine if they would attract and kill stable flies. Untreated targets were used to answer questions about configuration, size an...

  17. A Color-Texture-Structure Descriptor for High-Resolution Satellite Image Classification

    Directory of Open Access Journals (Sweden)

    Huai Yu

    2016-03-01

    Full Text Available Scene classification plays an important role in understanding high-resolution satellite (HRS remotely sensed imagery. For remotely sensed scenes, both color information and texture information provide the discriminative ability in classification tasks. In recent years, substantial performance gains in HRS image classification have been reported in the literature. One branch of research combines multiple complementary features based on various aspects such as texture, color and structure. Two methods are commonly used to combine these features: early fusion and late fusion. In this paper, we propose combining the two methods under a tree of regions and present a new descriptor to encode color, texture and structure features using a hierarchical structure-Color Binary Partition Tree (CBPT, which we call the CTS descriptor. Specifically, we first build the hierarchical representation of HRS imagery using the CBPT. Then we quantize the texture and color features of dense regions. Next, we analyze and extract the co-occurrence patterns of regions based on the hierarchical structure. Finally, we encode local descriptors to obtain the final CTS descriptor and test its discriminative capability using object categorization and scene classification with HRS images. The proposed descriptor contains the spectral, textural and structural information of the HRS imagery and is also robust to changes in illuminant color, scale, orientation and contrast. The experimental results demonstrate that the proposed CTS descriptor achieves competitive classification results compared with state-of-the-art algorithms.

  18. Amorphous silicon-based PINIP structure for color sensor

    International Nuclear Information System (INIS)

    Zhang, S.; Raniero, L.; Fortunato, E.; Ferreira, I.; Aguas, H.; Martins, R.

    2005-01-01

    A series of hydrogenated amorphous silicon carbide (a-SiC:H) films was prepared by plasma enhanced chemical vapor deposition (PECVD) technology. The microstructure and photoelectronic properties of the film are investigated by absorption spectra (in the ultraviolet to near-infrared range) and Fourier transform infrared (FTIR) spectra. The results show that good band gap controllability (1.83-3.64 eV) was achieved by adjusting the plasma parameters. In the energy range around 2.1 eV, the a-Si 1-x C x :H films exhibit good photosensitivity, opening the possibility to use this wide band gap material for device application, especially when blue color detectors are concerned. A multilayer device with a stack of glass/TCO(ZnO:Ga)/P(a-SiC:H)/I(a-SiC:H)/N(a-Si:H)/I(a-Si:H)/P(a-Si:H)/Al has been prepared. The devices can detect blue and red colors under different bias voltages. The optimization of the device, especially the film thickness and the band gap offset used to achieve better detectivity, is also done in this work

  19. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards

    Science.gov (United States)

    2013-01-01

    Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive

  20. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes

    Science.gov (United States)

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-01-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements. PMID:25071950

  1. Active structural control with stable fuzzy PID techniques

    CERN Document Server

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  2. The structure of the stable negative ion of calcium

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    The structure of the Ca/sup /minus// ion has been determined using a crossed laser-ion beams apparatus. The photoelectron detachment spectrum shows that, contrary to earlier expectations, the Ca/sup /minus// ion is stably bound in the (4s 2 4p) 2 p state. The electron affinity of Ca was measured to be 0.043 +- 0.007 eV

  3. How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Prum, Richard O.; Dufresne, Eric R.; Cao, Hui (Yale)

    2012-03-26

    We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures. Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.

  4. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  5. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    Full Text Available Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue and Plebejus argus (Silver-studded Blue use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence

  6. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue) and Plebejus argus (Silver-studded Blue) use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species) was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence measurements and

  7. The retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure

    Science.gov (United States)

    Mittl, Peer R. E.; Deillon, Christine; Sargent, David; Liu, Niankun; Klauser, Stephan; Thomas, Richard M.; Gutte, Bernd; Grütter, Markus G.

    2000-01-01

    The question of whether a protein whose natural sequence is inverted adopts a stable fold is still under debate. We have determined the 2.1-Å crystal structure of the retro-GCN4 leucine zipper. In contrast to the two-stranded helical coiled-coil GCN4 leucine zipper, the retro-leucine zipper formed a very stable, parallel four-helix bundle, which now lends itself to further structural and functional studies. PMID:10716989

  8. High taxonomic variability despite stable functional structure across microbial communities.

    Science.gov (United States)

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael

    2016-12-05

    Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.

  9. Numerically stable fluid–structure interactions between compressible flow and solid structures

    KAUST Repository

    Grétarsson, Jón Tómas

    2011-04-01

    We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. © 2011 Elsevier Inc.

  10. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2018-03-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  11. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2017-05-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  12. Bioinspired Non-iridescent Structural Color from Polymer Blend Thin Films

    Science.gov (United States)

    Nallapaneni, Asritha; Shawkey, Matthew; Karim, Alamgir

    Colors exhibited in biological species are either due to natural pigments, sub-micron structural variation or both. Structural colors thus exhibited can be iridescent (ID) or non-iridescent (NID) in nature. NID colors originate due to interference and coherent scattering of light with quasi-ordered micro- and nano- structures. Specifically, in Eastern Bluebird (Sialia sialis) these nanostructures develop as a result of phase separation of β-keratin from cytoplasm present in cells. We replicate these structures via spinodal blend phase separation of PS-PMMA thin films. Colors of films vary from ultraviolet to blue. Scattering of UV-visible light from selectively leeched phase separated blends are studied in terms of varying domain spacing (200nm to 2 μm) of film. We control these parameters by tuning annealing time and temperature. Angle-resolved spectroscopy studies suggest that the films are weakly iridescent and scattering from phase-separated films is more diffused when compared to well-mixed films. This study offers solutions to several color-based application in paints and coatings industry.

  13. Bio-inspired Structural Colors from Deposition of Synthetic Melanin Nanoparticles by Evaporative Self-assembly

    Science.gov (United States)

    Xiao, Ming; Li, Yiwen; Deheyn, Dimitri; Yue, Xiujun; Gianneschi, Nathan; Shawkey, Matthew; Dhinojwala, Ali

    2015-03-01

    Melanin, a ubiquitous black or brown pigment in the animal kingdom, is a unique but poorly understood biomaterial. Many bird feathers contain melanosomes (melanin-containing organelles), which pack into ordered nanostructures, like multilayer or two-dimensional photonic crystal structures, to produce structural colors. To understand the optical properties of melanin and how melanosomes assemble into certain structures to produce colors, we prepared synthetic melanin (polydopamine) particles with variable sizes and aspect ratios. We have characterized the absorption and refractive index of the synthetic melanin particles. We have also shown that we can use an evaporative process to self-assemble melanin films with a wide range of colors. The colors obtained using this technique is modeled using a thin-film interference model and the optical properties of the synthetic melanin nanoparticles. Our results on self-assembly of synthetic melanin nanoparticles provide an explanation as why the use of melanosomes to produce colors is prevalent in the animal kingdom. National science foundation, air force office of scientific research, human frontier science program.

  14. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    Science.gov (United States)

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structural (UV) and carotenoid-based plumage coloration - signals for parental investment?

    Science.gov (United States)

    Lucass, Carsten; Iserbyt, Arne; Eens, Marcel; Müller, Wendt

    2016-05-01

    Parental care increases parental fitness through improved offspring condition and survival but comes at a cost for the caretaker(s). To increase life-time fitness, caring parents are, therefore, expected to adjust their reproductive investment to current environmental conditions and parental capacities. The latter is thought to be signaled via ornamental traits of the bearer. We here investigated whether pre- and/or posthatching investment of blue tit (Cyanistes caeruleus) parents was related to ornamental plumage traits (UV crown coloration and carotenoid-based plumage coloration) expressed by either the individual itself (i.e. "good parent hypothesis") or its partner (i.e. "differential allocation hypothesis"). Our results show that neither prehatching (that is clutch size and offspring begging intensity) nor posthatching parental investment (provisioning rate, offspring body condition at fledging) was related to an individual's UV crown coloration or to that of its partner. Similar observations were made for carotenoid-based plumage coloration, except for a consistent positive relationship between offspring begging intensity and maternal carotenoid-based plumage coloration. This sex-specific pattern likely reflects a maternal effect mediated via maternally derived egg substances, given that the relationship persisted when offspring were cross-fostered. This suggests that females adjust their offspring's phenotype toward own phenotype, which may facilitate in particular mother-offspring co-adaptation. Overall, our results contribute to the current state of evidence that structural or pigment-based plumage coloration of blue tits are inconsistently correlated with central life-history traits.

  16. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms.

    Science.gov (United States)

    Wilts, Bodo D; Vey, Aidan J M; Briscoe, Adriana D; Stavenga, Doekele G

    2017-11-21

    Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.

  17. Design and fabrication of structural color by local surface plasmonic meta-molecules

    International Nuclear Information System (INIS)

    Ma Ya-Qi; Shao Jin-Hai; Lu Bing-Rui; Zhang Si-Chao; Chen Yi-Fang; Zhang Ya-Feng; Sun Yan; Qu Xin-Ping

    2015-01-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. (paper)

  18. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers.

    Science.gov (United States)

    Boyle, Bret M; French, Tracy A; Pearson, Ryan M; McCarthy, Blaine G; Miyake, Garret M

    2017-03-28

    The incorporation of structural color into 3D printed parts is reported, presenting an alternative to the need for pigments or dyes for colored parts produced through additive manufacturing. Thermoplastic build materials composed of dendritic block copolymers were designed, synthesized, and used to additively manufacture plastic parts exhibiting structural color. The reflection properties of the photonic crystals arise from the periodic nanostructure formed through block copolymer self-assembly during polymer processing. The wavelength of reflected light could be tuned across the visible spectrum by synthetically controlling the block copolymer molecular weight and manufacture parts that reflected violet, green, or orange light with the capacity to serve as selective optical filters and light guides.

  19. Effect of gamma irradiation on the color, structure and morphology of nickel-doped polyvinyl alcohol films: Alternative use as dosimeter or irradiation indicator

    Science.gov (United States)

    Raouafi, A.; Daoudi, M.; Jouini, K.; Charradi, K.; Hamzaoui, A. H.; Blaise, P.; Farah, K.; Hosni, F.

    2018-06-01

    Nickel-doped poly vinyl alcohol (PVA) films were developed for potential application in industrial sectors like radiation processing. We report in this paper the results of an experimental investigation of 60Co source γ-radiation effect on colorimetric, structural and morphological properties of PVA films doped with 0.5% Ni2+ ions (PVA/Ni2+). The PVA/Ni2+ films were irradiated by different gamma-radiation doses varying from 5 to 100 kGy. Color modification of films were studied using L∗, a∗ and b∗ color space measurements as function of the γ-dose and post-irradiation time. The visual change in all samples was verified by microstructure analysis, Fourier transforms infrared (FTIR) spectroscopy, X-Rays diffraction (XRD) and scanning electron microscopy (SEM). The color space exhibited a linear dose response at a dose ranging from 5 to 50 kGy, and then it reached saturation for higher γ-doses. The calculated color changes (ΔE) show a linear dose response relationship from 9.90 to 115.02 in the dose range from 0 to 50 kGy. It showed also the activation of stable color centers. The variability of the color change did not exceed 3% during 80 h (h) post-irradiation. Furthermore, the microstructure analysis evidenced that the color modification due to the optical activation of nickel-oxide (NiO) color center were obtained by complexing Ni2+ ions in irradiated PVA films. The obtained results inspire the possibility to use PVA films for the control process in industrial radiation facilities in dose range 5-50 kGy.

  20. The Effects of Lesson Screen Background Color on Declarative and Structural Knowledge

    Science.gov (United States)

    Clariana, Roy B.; Prestera, Gustavo E.

    2009-01-01

    This experimental investigation replicates previous investigations of the effects of left margin screen background color hue to signal lesson sections on declarative knowledge and extends those investigations by adding a measure of structural knowledge. Participants (N = 80) were randomly assigned to receive 1 of 4 computer-based lesson treatments…

  1. A model study on color and related structural properties of cured porcine batters

    NARCIS (Netherlands)

    Palombo, R.

    1990-01-01

    Color, determined by tristimulus colorimeters, and related structural properties, i.e., microstructure, surface rheology, and bulk rheology, of cured porcine meat batters were studied.

    Effects of various processing factors (such as, temperature, air pressure during chopping, and

  2. Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence

    Czech Academy of Sciences Publication Activity Database

    Mika, Filip; Matějková-Plšková, J.; Jiwajinda, S.; Dechkrong, P.; Shiojiri, M.

    2012-01-01

    Roč. 5, č. 5 (2012), s. 754-771 ISSN 1996-1944 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : butterfly scale * structure color * natural photonic crystal * E. mulciber * S. charonda * C. ataxus * T. aeacus Subject RIV: JJ - Other Materials Impact factor: 2.247, year: 2012

  3. The movement ecology of the straw-colored fruit bat, Eidolon helvum, in sub-Saharan Africa assessed by stable isotope ratios.

    Directory of Open Access Journals (Sweden)

    Gonzalo Ossa

    Full Text Available Flying foxes (Pteropodidae are key seed dispersers on the African continent, yet their migratory behavior is largely unknown. Here, we studied the movement ecology of the straw-colored fruit bat, Eidolon helvum, and other fruit bats by analyzing stable isotope ratios in fur collected from museum specimens. In a triple-isotope approach based on samples of two ecologically similar non-migratory pteropodids, we first confirmed that a stable isotope approach is capable of delineating between geographically distinct locations in Sub-Saharan Africa. A discriminant function analysis assigned 84% of individuals correctly to their capture site. Further, we assessed how well hydrogen stable isotope ratios (δ(2H of fur keratin collected from non-migratory species (n = 191 individuals records variation in δ(2H of precipitation water in sub-Saharan Africa. Overall, we found positive, negative and no correlations within the six studied species. We then developed a reduced major axis regression equation based on individual data of non-migratory species to predict where potentially migratory E. helvum (n = 88 would come from based on their keratin δ(2H. Across non-migratory species, δ(2H of keratin and local water correlated positively. Based on the isoscape origin model, 22% of E. helvum were migratory, i.e. individuals had migrated over at least 250 km prior to their capture. Migratory individuals came from locations at a median distance of about 860 km from the collection site, four even from distances of at least 2,000 km. Ground-truthing of our isoscape origin model based on keratin δ(2H of extant E. helvum (n = 76 supported a high predictive power of assigning the provenance of African flying foxes. Our study highlights that stable isotope ratios can be used to explain the migratory behavior of flying foxes, even on the isotopically relatively homogenous African continent, and with material collected by museums many decades or more than a century ago.

  4. The movement ecology of the straw-colored fruit bat, Eidolon helvum, in sub-Saharan Africa assessed by stable isotope ratios.

    Science.gov (United States)

    Ossa, Gonzalo; Kramer-Schadt, Stephanie; Peel, Alison J; Scharf, Anne K; Voigt, Christian C

    2012-01-01

    Flying foxes (Pteropodidae) are key seed dispersers on the African continent, yet their migratory behavior is largely unknown. Here, we studied the movement ecology of the straw-colored fruit bat, Eidolon helvum, and other fruit bats by analyzing stable isotope ratios in fur collected from museum specimens. In a triple-isotope approach based on samples of two ecologically similar non-migratory pteropodids, we first confirmed that a stable isotope approach is capable of delineating between geographically distinct locations in Sub-Saharan Africa. A discriminant function analysis assigned 84% of individuals correctly to their capture site. Further, we assessed how well hydrogen stable isotope ratios (δ(2)H) of fur keratin collected from non-migratory species (n = 191 individuals) records variation in δ(2)H of precipitation water in sub-Saharan Africa. Overall, we found positive, negative and no correlations within the six studied species. We then developed a reduced major axis regression equation based on individual data of non-migratory species to predict where potentially migratory E. helvum (n = 88) would come from based on their keratin δ(2)H. Across non-migratory species, δ(2)H of keratin and local water correlated positively. Based on the isoscape origin model, 22% of E. helvum were migratory, i.e. individuals had migrated over at least 250 km prior to their capture. Migratory individuals came from locations at a median distance of about 860 km from the collection site, four even from distances of at least 2,000 km. Ground-truthing of our isoscape origin model based on keratin δ(2)H of extant E. helvum (n = 76) supported a high predictive power of assigning the provenance of African flying foxes. Our study highlights that stable isotope ratios can be used to explain the migratory behavior of flying foxes, even on the isotopically relatively homogenous African continent, and with material collected by museums many decades or more than a century ago.

  5. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    OpenAIRE

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2015-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP....

  6. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    Science.gov (United States)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  7. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer.

    Science.gov (United States)

    Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin

    2017-01-25

    Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

  8. Color-tunable and highly thermal stable Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Lei, Bingfu, E-mail: tleibf@scau.edu.cn [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Deng, Jiankun [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Liu, Wei-Ren [Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan (China); Zeng, Yuan; Zheng, Lingling; Zhao, Minyi [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China)

    2017-06-01

    Tb{sup 3+} activated Sr{sub 2}MgAl{sub 22}O{sub 36} phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic {sup 5}D{sub 3}-{sup 7}F{sub J} and {sup 5}D{sub 4}-{sup 7}F{sub J} transitions of the Tb{sup 3+} ion, respectively. The cross-relaxation mechanism between the {sup 5}D{sub 3} and {sup 5}D{sub 4} emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb{sup 3+} doping concentration. Furthermore, the thermal quenching temperature (T{sub 1/2}) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} shows highly thermal stable. • The cross-relaxation mechanism between the {sup 5}D{sub 3} and {sup 5}D{sub 4} emission was investigated and discussed.

  9. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  10. Global control of colored moiré pattern in layered optical structures

    Science.gov (United States)

    Li, Kunyang; Zhou, Yangui; Pan, Di; Ma, Xueyan; Ma, Hongqin; Liang, Haowen; Zhou, Jianying

    2018-05-01

    Accurate description of visual effect of colored moiré pattern caused by layered optical structures consisting of gratings and Fresnel lens is proposed in this work. The colored moiré arising from the periodic and quasi-periodic structures is numerically simulated and experimentally verified. It is found that the visibility of moiré pattern generated by refractive optical elements is related to not only the spatial structures of gratings but also the viewing angles. To effectively control the moiré visibility, two constituting gratings are slightly separated. Such scheme is proved to be effective to globally eliminate moiré pattern for displays containing refractive optical films with quasi-periodic structures.

  11. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    Science.gov (United States)

    Kimura, Yusuke

    2018-03-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface into a pair of isomorphic rational elliptic surfaces. When two rational elliptic surfaces have different complex structures, whether their sum glued along a smooth fiber admits deformation to a K3 surface can be determined by studying the structure of the K3 lattice. We investigate the lattice theoretic condition to determine whether a deformation to a K3 surface exists for pairs of extremal rational elliptic surfaces. In addition, we discuss the configurations of singular fibers under stable degeneration. The sum of two isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface, the singular fibers of which are twice that of the rational elliptic surface. For special situations, singular fibers of the resulting K3 surface collide and they are enhanced to a fiber of another type. Some K3 surfaces become attractive in these situations. We determine the complex structures and the Weierstrass forms of these attractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on these attractive K3 surfaces times a K3. E 6, E 7, E 8, SU(5), and SO(10) gauge groups arise in these compactifications.

  12. Highly conductive and flexible color filter electrode using multilayer film structure

    Science.gov (United States)

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-07-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices.

  13. Analyzing vortex breakdown flow structures by assignment of colors to tensor invariants.

    Science.gov (United States)

    Rütten, Markus; Chong, Min S

    2006-01-01

    Topological methods are often used to describe flow structures in fluid dynamics and topological flow field analysis usually relies on the invariants of the associated tensor fields. A visual impression of the local properties of tensor fields is often complex and the search of a suitable technique for achieving this is an ongoing topic in visualization. This paper introduces and assesses a method of representing the topological properties of tensor fields and their respective flow patterns with the use of colors. First, a tensor norm is introduced, which preserves the properties of the tensor and assigns the tensor invariants to values of the RGB color space. Secondly, the RGB colors of the tensor invariants are transferred to corresponding hue values as an alternative color representation. The vectorial tensor invariants field is reduced to a scalar hue field and visualization of iso-surfaces of this hue value field allows us to identify locations with equivalent flow topology. Additionally highlighting by the maximum of the eigenvalue difference field reflects the magnitude of the structural change of the flow. The method is applied on a vortex breakdown flow structure inside a cylinder with a rotating lid.

  14. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-01-01

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  15. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022 (China); Li, Shuyi; Niu, Shichao [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Cao, Xiaowen [Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2016-08-30

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  16. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates

    International Nuclear Information System (INIS)

    Jia, Yanrong; Zhang, Yun; Zhou, Qiubao; Fan, Qinguo; Shao, Jianzhong

    2014-01-01

    The SiO 2 /polyethyleneimine (PEI) films with structural colors on poly(ethylene terephthalate) (PET) substrates were fabricated by an electrostatic self-assembly method. The morphology of the films was characterized by Scanning Electron Microscopy. The results showed that there was no distinguishable multilayered structure found of SiO 2 /PEI films. The optical behaviors of the films were investigated through the color photos captured by a digital camera and the color measurement by a multi-angle spectrophotometer. Different hue and brightness were observed at various viewing angles. The structural colors were dependent on the SiO 2 particle size and the number of assembly cycles. The mechanism of the structural colors generated from the assembled films was elucidated. The morphological structures and the optical properties proved that the SiO 2 /PEI film fabricated on PET substrate formed a homogeneous inorganic/organic SiO 2 /PEI composite layer, and the structural colors were originated from single thin film interference. - Highlights: • SiO 2 /PEI thin films were electrostatic self-assembled on PET substrates. • The surface morphology and optical behavior of the film were investigated. • The structural colors varied with various SiO 2 particle sizes and assembly cycles. • Different hue and lightness of SiO 2 /PEI film were observed at various viewing angles. • Structural color of the SiO 2 /PEI film originated from single thin film interference

  17. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  18. Embodied memory: effective and stable perception by combining optic flow and image structure.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P

    2013-12-01

    Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.

  19. Review of beetle forewing structures and their biomimetic applications in China: (I) On the structural colors and the vertical and horizontal cross-sectional structures.

    Science.gov (United States)

    Chen, Jinxiang; Xie, Juan; Wu, Zhishen; Elbashiry, Elsafi Mohamed Adam; Lu, Yun

    2015-10-01

    This paper discusses the progress made in China in terms of the structural colors, microstructure and mechanical properties of the beetle forewing. 1) The forewing microstructures can be classified into six phases, the first three of which are characterized by sandwich, multilayer and fiber layer structures, respectively. The fracture behaviors resulting from these three phases suggest that different scale microstructures or coupled adjacent scale microstructures can determine the macroscopic mechanical behavior of the forewing. 2) The forewing colors are derived from three features: regulation of the structural parameters of the internal optical structures, i.e., a sculpted multilayer composite two-dimensional nanopillar structure grating system; scattering on the three-dimensional surface of the bowl-shaped structure; and reversible color changes due to changes in the physical microstructure of fluffs. Their formation mechanisms were clarified, and fibers with ecological biomimetic structural colors have been developed. 3) Beetles exhibit a lightweight sectional frame structure with a trabecular core structure. Both of the joints on the left and right are concave-convex butt-joint structures with burrs, which provide an efficient docking mechanism with high intensity. The forewing of dichotoma exhibits a non-equiangular layered structure, which results in anisotropy in its tensile strength. Finally, the authors propose potential new research directions for the next 20 years. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion

    Science.gov (United States)

    Kok, Mang Hin; Ma, Rui; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Chan, C. T.; Sheng, Ping; Cheah, Kok Wai

    2005-10-01

    We have fabricated planar structures of silver nanoparticles in monochromatic gelatin emulsion with a continuous spacing ranging from 0.15-0.40 micron using a two-beam interference of a single laser source. Our planar holograms display a colorful “rainbow” pattern and photonic bandgaps covering the visible and IR ranges. We model the planar silver nanoparticle-gelatin composite system using an effective medium approach and good agreement is obtained between theory and experiment.

  1. Electrically and chemically tunable soft-solid block copolymer structural color (Conference Presentation)

    Science.gov (United States)

    Park, Cheolmin

    2016-09-01

    1D photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied due to their potential use in low-power reflective mode displays, e-books and sensors, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid swollen block copolymer films. Placement of a polymer/ionic liquid (IL) film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2vinyl pyridine) (PS-b-QP2VP) copolymer SC film allowed the development of R, G and B full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3V to +6V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.

  2. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  3. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  4. Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene

    KAUST Repository

    Shi, Xueliang

    2015-10-08

    Quinoidal thia-acene analogues, as the respective isoelectronic structures of pentacene and nonacene, were synthesized and an unusual 1,2-sulfur migration was observed during the Friedel-Crafts alkylation reaction. The analogues display a closed-shell quinoidal structure in the ground state with a distinctive dipolar character. In contrast to their acene isoelectronic structures, both compounds are stable because of the existence of more aromatic sextet rings, a dipolar character, and kinetic blocking. They exhibit unique packing in single crystals resulting from balanced dipole-dipole and [C-H⋯π]/[C-H⋯S] interactions.

  5. Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors

    Science.gov (United States)

    Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung

    2016-01-01

    Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique. PMID:27487978

  6. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    OpenAIRE

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Ob...

  7. Design and fabrication of structural color by local surface plasmonic meta-molecules

    Science.gov (United States)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  8. Structural change of cooper pairs in color superconductivity. Crossover from weak coupling to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)

    2002-09-01

    The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)

  9. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Science.gov (United States)

    Yavuz, G.; Zille, A.; Seventekin, N.; Souto, A. P.

    2017-10-01

    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fabric provided cationic groups on the fiber surface promoting electrostatic interaction with photonic crystals. SEM images of the washed samples indicate that the PCs are firmly coated on the cotton surface only in the chitosan treated sample. The photonic nanospheres show an average diameter of 280 nm and display a face-centered cubic closepacking structure with an average thickness of 10 μm. A further chitosan post-treatment enhances color yield of the samples due to the chitosan transparent covering layer that induce bright reflections where the angles of incidence and reflection are the same. After washing, no photonic crystal can be detected on control fabric surface. However, the sample that received a chitosan post-treatment showed a good washing fastness maintaining a reasonable degree of iridescence. Chitosan fills the spaces between the polymer spheres in the matrix stabilizing the photonic structure. Sizeable variations in lattice spacing will allow color variations using more flexible non-close-packed photonic crystal arrays in chitosan hydrogels matrices.

  10. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  11. Dye and pigment-free structural colors and angle-insensitive spectrum filters

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lingjie Jay; Hollowell, Andrew E.; Wu, Yi-Kuei

    2017-01-17

    Optical spectrum filtering devices displaying minimal angle dependence or angle insensitivity are provided. The filter comprises a localized plasmonic nanoresonator assembly having a metal material layer defining at least one nanogroove and a dielectric material disposed adjacent to the metal material layer. The dielectric material is disposed within the nanogroove(s). The localized plasmonic nanoresonator assembly is configured to funnel and absorb a portion of an electromagnetic spectrum in the at least one nanogroove via localized plasmonic resonance to generate a filtered output having a predetermined range of wavelengths that displays angle insensitivity. Thus, flexible, high efficiency angle independent color filters having very small diffraction limits are provided that are particularly suitable for use as pixels for various display devices or for use in anti-counterfeiting and cryptography applications. The structures can also be used for colored print applications and the elements can be rendered as pigment-like particles.

  12. Color metallography

    International Nuclear Information System (INIS)

    Hasson, Raymond.

    1976-06-01

    After a short introduction explaining the reasons why color metallography was adopted, the various operations involved in this technique are described in turn and illustrated by colored photomicrographs. The sample preparation (cutting, covering) and surface preparation (trimming, polishing, finishing) are described briefly. The operations specific to color metallography are then detailed: revelation of the structure of polished surfaces, dye impregnation techniques, optical systems used in macrography, in micrography, different light sources used in microscopy, photographic methods [fr

  13. Gluon structure function of a color dipole in the light-cone limit of lattice QCD

    International Nuclear Information System (INIS)

    Gruenewald, D.; Ilgenfritz, E.-M.; Pirner, H. J.

    2009-01-01

    We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of x B . The quark and antiquark are external nondynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the 'experimental value' in a proton, we compare our gluon structure function for a dipole state with four links with the next-to-leading-order MRST 2002 and the CTEQ AB-0 parametrizations at Q 2 =1.5 GeV 2 . Within the systematic uncertainty we find rather good agreement. We also discuss the low x B behavior of the gluon structure function in our model calculation.

  14. Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes

    Science.gov (United States)

    Mengarelli, V.; Auvray, L.; Zeghal, M.

    2009-03-01

    We study the formation and structure of stable electrostatic complexes between oppositely charged polyelectrolytes, a long polymethacrylic acid and a shorter polyethylenimine, at low pH, where the polyacid is weakly charged. We explore the phase diagram as a function of the charge and concentration ratio of the constituents. In agreement with theory, turbidity and ζ potential measurements show two distinct regimes of weak and strong complexation, which appear successively as the pH is increased and are separated by a well-defined limit. Weak complexes observed by neutron scattering and contrast matching have an open, non-compact structure, while strong complexes are condensed.

  15. Dynamic Risk Assessment of Sexual Offenders: Validity and Dimensional Structure of the Stable-2007.

    Science.gov (United States)

    Etzler, Sonja; Eher, Reinhard; Rettenberger, Martin

    2018-02-01

    In this study, the predictive and incremental validity of the Stable-2007 beyond the Static-99 was evaluated in an updated sample of N = 638 adult male sexual offenders followed-up for an average of M = 8.2 years. Data were collected at the Federal Evaluation Center for Violent and Sexual Offenders (FECVSO) in Austria within a prospective-longitudinal research design. Scores and risk categories of the Static-99 (AUC = .721; p risk categories contributed incrementally to the prediction of sexual recidivism beyond the Static-99. Analyzing the dimensional structure of the Stable-2007 yielded three factors, named Antisociality, Sexual Deviance, and Hypersexuality. Antisociality and Sexual Deviance were significant predictors for sexual recidivism. Sexual Deviance was negatively associated with non-sexual violent recidivism. Comparisons with latent dimensions of other risk assessment instruments are made and implications for applied risk assessment are discussed.

  16. Towards the study of color naming in Portuguese: structure and meaning of constructed nouns and adjectives

    Directory of Open Access Journals (Sweden)

    Margarita Correia

    2013-08-01

    Full Text Available Color naming is a central study subject in Lexicology, although its systematic morphological description in Portuguese is still lacking. In this study we describe the morphological and semantic aspects of complex nouns and adjectives constructed on the basis of the basic color terms from the Portuguese language. We focus on a description of the internal structure of these complex words, as well as on aspects concerning the productivity of the morphological processes, and attempt to associate those aspects with the referential capacities of the studied words. Lexicographical data were used, collected from the Vocabulário Ortográfico do Português, and the theoretical framework of this research is SILEX’s constructional model of Morphology. We verified that suffixation is the most productive process, followed by composition. Prefixation is rather unproductive. There are differences in the way that derived nouns and adjectives, on the one hand, and compounds, on the other, may name color tones and degrees of saturation. Derived words give rise to the naming of tones in a very imprecise manner, while compounds are much more effective and precise in the way they may name them, and composition is the most efficient resource available to denote degrees of brightness.

  17. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    Science.gov (United States)

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  18. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. © 2014 Wiley Periodicals, Inc.

  19. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    Science.gov (United States)

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  20. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure.

    Science.gov (United States)

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).

  1. Feasibility of using a bacteriophage-based structural color sensor for screening the geographical origins of agricultural products

    Science.gov (United States)

    Seol, Daun; Moon, Jong-Sik; Lee, Yujin; Han, Jiye; Jang, Daeil; Kang, Dong-Jin; Moon, Jiyoung; Jang, Eunjin; Oh, Jin-Woo; Chung, Hoeil

    2018-05-01

    An M13 bacteriophage-based color sensor, which can change its structural color upon interaction with a gaseous molecule, was evaluated as a screening tool for the discrimination of the geographical origins of three different agricultural products (garlic, onion, and perilla). Exposure of the color sensor to sample odors induced the self-assembled M13 bacteriophage bundles to swell by the interaction of amino acid residues (repeating units of four glutamates) on the bacteriophage with the odor components, resulting in a change in the structural color of the sensor. When the sensor was exposed to the odors of garlic and onion samples, the RGB color changes were considerable because of the strong interactions of the odor components such as disulfides with the glutamate residues on the sensor. Although the patterns of the color variations were generally similar between the domestic and imported samples, some degrees of dissimilarities in their intensities were also observed. Although the magnitude of color change decreased for perilla, the color change patterns between the two groups were somewhat different. With the acquired RGB data, a support vector machine was employed to distinguish the domestic and imported samples, and the resulting accuracies in the measurements of garlic, onion, and perilla samples were 94.1, 88.7, and 91.6%, respectively. The differences in the concentrations of the odor components between both groups and/or the presence of specific components exclusively in the odor of one group allowed the color sensor-based discrimination. The demonstrated color sensor was thus shown to be a potentially versatile and simple as an on-site screening tool. Strategies able to further improve the sensor performance were also discussed.

  2. Feasibility of using a bacteriophage-based structural color sensor for screening the geographical origins of agricultural products.

    Science.gov (United States)

    Seol, Daun; Moon, Jong-Sik; Lee, Yujin; Han, Jiye; Jang, Daeil; Kang, Dong-Jin; Moon, Jiyoung; Jang, Eunjin; Oh, Jin-Woo; Chung, Hoeil

    2018-05-15

    An M13 bacteriophage-based color sensor, which can change its structural color upon interaction with a gaseous molecule, was evaluated as a screening tool for the discrimination of the geographical origins of three different agricultural products (garlic, onion, and perilla). Exposure of the color sensor to sample odors induced the self-assembled M13 bacteriophage bundles to swell by the interaction of amino acid residues (repeating units of four glutamates) on the bacteriophage with the odor components, resulting in a change in the structural color of the sensor. When the sensor was exposed to the odors of garlic and onion samples, the RGB color changes were considerable because of the strong interactions of the odor components such as disulfides with the glutamate residues on the sensor. Although the patterns of the color variations were generally similar between the domestic and imported samples, some degrees of dissimilarities in their intensities were also observed. Although the magnitude of color change decreased for perilla, the color change patterns between the two groups were somewhat different. With the acquired RGB data, a support vector machine was employed to distinguish the domestic and imported samples, and the resulting accuracies in the measurements of garlic, onion, and perilla samples were 94.1, 88.7, and 91.6%, respectively. The differences in the concentrations of the odor components between both groups and/or the presence of specific components exclusively in the odor of one group allowed the color sensor-based discrimination. The demonstrated color sensor was thus shown to be a potentially versatile and simple as an on-site screening tool. Strategies able to further improve the sensor performance were also discussed. Copyright © 2018. Published by Elsevier B.V.

  3. Using Multispectral False Color Imaging to Characterize Tropical Cyclone Structure and Environment

    Science.gov (United States)

    Cossuth, J.; Bankert, R.; Richardson, K.; Surratt, M. L.

    2016-12-01

    The Naval Research Laboratory's (NRL) tropical cyclone (TC) web page (http://www.nrlmry.navy.mil/TC.html) has provided nearly two decades of near real-time access to TC-centric images and products by TC forecasters and enthusiasts around the world. Particularly, microwave imager and sounder information that is featured on this site provides crucial internal storm structure information by allowing users to perceive hydrometeor structure, providing key details beyond cloud top information provided by visible and infrared channels. Towards improving TC analysis techniques and helping advance the utility of the NRL TC webpage resource, new research efforts are presented. This work demonstrates results as well as the methodology used to develop new automated, objective satellite-based TC structure and intensity guidance and enhanced data fusion imagery products that aim to bolster and streamline TC forecast operations. This presentation focuses on the creation and interpretation of false color RGB composite imagery that leverages the different emissive and scattering properties of atmospheric ice, liquid, and vapor water as well as ocean surface roughness as seen by microwave radiometers. Specifically, a combination of near-realtime data and a standardized digital database of global TCs in microwave imagery from 1987-2012 is employed as a climatology of TC structures. The broad range of TC structures, from pinhole eyes through multiple eyewall configurations, is characterized as resolved by passive microwave sensors. The extraction of these characteristic features from historical data also lends itself to statistical analysis. For example, histograms of brightness temperature distributions allows a rigorous examination of how structural features are conveyed in image products, allowing a better representation of colors and breakpoints as they relate to physical features. Such climatological work also suggests steps to better inform the near-real time application of

  4. [Research progress on food sources and food web structure of wetlands based on stable isotopes].

    Science.gov (United States)

    Chen, Zhan Yan; Wu, Hai Tao; Wang, Yun Biao; Lyu, Xian Guo

    2017-07-18

    The trophic dynamics of wetland organisms is the basis of assessing wetland structure and function. Stable isotopes of carbon and nitrogen have been widely applied to identify trophic relationships in food source, food composition and food web transport in wetland ecosystem studies. This paper provided an overall review about the current methodology of isotope mixing model and trophic level in wetland ecosystems, and discussed the standards of trophic fractionation and baseline. Moreover, we characterized the typical food sources and isotopic compositions of wetland ecosystems, summarized the food sources in different trophic levels of herbivores, omnivores and carnivores based on stable isotopic analyses. We also discussed the limitations of stable isotopes in tra-cing food sources and in constructing food webs. Based on the current results, development trends and upcoming requirements, future studies should focus on sample treatment, conservation and trophic enrichment measurement in the wetland food web, as well as on combing a variety of methodologies including traditional stomach stuffing, molecular markers, and multiple isotopes.

  5. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    Science.gov (United States)

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  6. Optimal physiological structure of small neurons to guarantee stable information processing

    Science.gov (United States)

    Zeng, S. Y.; Zhang, Z. Z.; Wei, D. Q.; Luo, X. S.; Tang, W. Y.; Zeng, S. W.; Wang, R. F.

    2013-02-01

    Spike is the basic element for neuronal information processing and the spontaneous spiking frequency should be less than 1 Hz for stable information processing. If the neuronal membrane area is small, the frequency of neuronal spontaneous spiking caused by ion channel noise may be high. Therefore, it is important to suppress the deleterious spontaneous spiking of the small neurons. We find by simulation of stochastic neurons with Hodgkin-Huxley-type channels that the leakage system is critical and extremely efficient to suppress the spontaneous spiking and guarantee stable information processing of the small neurons. However, within the physiological limit the potassium system cannot do so. The suppression effect of the leakage system is super-exponential, but that of the potassium system is quasi-linear. With the minor physiological cost and the minimal consumption of metabolic energy, a slightly lower reversal potential and a relatively larger conductance of the leakage system give the optimal physiological structure to suppress the deleterious spontaneous spiking and guarantee stable information processing of small neurons, dendrites and axons.

  7. Some structural aspects of language are more stable than others: a comparison of seven methods.

    Directory of Open Access Journals (Sweden)

    Dan Dediu

    Full Text Available Understanding the patterns and causes of differential structural stability is an area of major interest for the study of language change and evolution. It is still debated whether structural features have intrinsic stabilities across language families and geographic areas, or if the processes governing their rate of change are completely dependent upon the specific context of a given language or language family. We conducted an extensive literature review and selected seven different approaches to conceptualising and estimating the stability of structural linguistic features, aiming at comparing them using the same dataset, the World Atlas of Language Structures. We found that, despite profound conceptual and empirical differences between these methods, they tend to agree in classifying some structural linguistic features as being more stable than others. This suggests that there are intrinsic properties of such structural features influencing their stability across methods, language families and geographic areas. This finding is a major step towards understanding the nature of structural linguistic features and their interaction with idiosyncratic, lineage- and area-specific factors during language change and evolution.

  8. Use of systematics in the interpretation of nuclear structure far from the beta-stable region

    International Nuclear Information System (INIS)

    Wood, J.L.

    1979-01-01

    The use of systematics in the interpretation of nuclear structure far from the beta-stable region is discussed. In particular, a set of rules for the use of systematics is presented together with some experimental criteria that need to be fulfilled for radioactive decay scheme studies in order that all states up to a given spin-parity and energy are located. Illustrative examples are taken from the region 180 < A < 210, with particular emphasis on the odd-mass Au and Hg nuclei. 6 figures

  9. Thailand - Social and Structural Review : Beyond the Crisis - Structural Reform for Stable Growth

    OpenAIRE

    World Bank

    2000-01-01

    Following the East Asian financial crisis, the Bank's involvement in Thailand intensified, enabling a multifaceted stabilization, and structural reform dialogue, which deepened the economic, financial, and sector knowledge of the country. The study benefits from this analytical work, and provides an overview on the ongoing policy dialogue, regarding short- and medium-term reform, through a...

  10. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2013-01-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte

  11. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.

    Science.gov (United States)

    Wilts, Bodo D; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G

    2015-10-06

    The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. © 2015 The Author(s).

  12. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    Science.gov (United States)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  13. Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies

    NARCIS (Netherlands)

    Chung, Nancy P. Y.; Matthews, Katie; Kim, Helen J.; Ketas, Thomas J.; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W.; Klasse, Per Johan; Wilson, Ian A.; Ward, Andrew B.; Marozsan, Andre J.; Moore, John P.; Cupo, Albert

    2014-01-01

    Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate

  14. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating

    Science.gov (United States)

    Wang, Chongbin; Li, Zhiyuan; Chen, Jianxin; Yin, Yongheng; Wu, Hong

    2018-01-01

    Graphene oxide (GO)-based membranes possess promising potential in liquid separation for its high flux. The state-of-art GO-based membranes need to be supported by a substrate to ensure that the ultra-thin GO layer can withstand transmembrane pressure in practical applications. The interfacial compatibility of this kind of composite membrane remains a great challenge due to the intrinsic difference in chemical/physical properties between the GO sheets and the substrate. In this paper, a structurally stable GO-based composite nanofiltration membrane was fabricated by coupling the mussel-inspired adhesive platform and filtration-assisted assembly of GO laminates. The water flux for the prepared GO-based nanofiltration membrane reached up to 85 L m-2 h-1 bar-1 with a high retention above 95% and 100% for Orange G and Congo Red, respectively. The membrane exhibited highly stable structure owing to the covalent and noncovalent interactions between GO separation layer and dopamine adhesive platform.

  15. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    Science.gov (United States)

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  16. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    Science.gov (United States)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G. J.; Dufresne, Eric R.; Cao, Hui

    2010-05-01

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broader than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.

  17. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broader than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.

  18. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Mazzolo, A.

    1992-01-01

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  19. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.

    Science.gov (United States)

    Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G

    2013-12-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

  20. A nonlinear deformed su(2) algebra with a two-color quasitriangular Hopf structure

    International Nuclear Information System (INIS)

    Bonatsos, D.; Daskaloyannis, C.; Kolokotronis, P.; Ludu, A.; Quesne, C.

    1997-01-01

    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J 0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as scr(A) q + (1). This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0,1,2,hor-ellipsis. To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su q (2) and scr(A) q + (1), is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su q (2) is carried over to scr(A) q + (1), thereby endowing the latter with a double Hopf structure. In the second step, the definition of the coproduct, counit, antipode, and scr(R)-matrix is extended so that the double Hopf algebra is enlarged into a new algebraic structure. The latter is referred to as a two-color quasitriangular Hopf algebra because the corresponding scr(R)-matrix is a solution of the colored Yang endash Baxter equation, where the open-quotes colorclose quotes parameters take two discrete values associated with the two series of finite-dimensional representations. copyright 1997 American Institute of Physics

  1. Ultra-Stable Zero-CTE HoneySiC and H2CMN Mirror Support Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA MSFC, GSFC and JPL are interested in Ultra-Stable Mirror Support Structures for Exoplanet Missions. Telescopes with Apertures of 4-meters or larger and using an...

  2. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  3. Effect of surface texture and structure on the development of stable fluvial armors

    Science.gov (United States)

    Bertin, Stephane; Friedrich, Heide

    2018-04-01

    Stable fluvial armors are found in river systems under conditions of partial sediment transport and limited sediment supply, a common occurrence in nature. Stable armoring is also readily recreated in experimental flumes. Initially, this bed stabilizing phenomenon was examined for different flow discharges and solely related to surface coarsening and bedload transport reduction. The models developed suggest a specific armor composition (i.e., texture) dependent on the parent bed material and formative discharge. Following developments in topographic remote sensing, recent research suggests that armor structure is an important control on bed stability and roughness. In this paper, replicated flume runs during which digital elevation models (DEMs) were collected from both exposed and flooded gravel beds are used to interpret armoring manifestations and to assess their replicability. A range of methodologies was used for the analysis, providing information on (i) surface grain size and orientation, (ii) bed-elevation distributions, (iii) the spatial coherence of the elevations at the grain-scale, (iv) surface slope and aspect, (v) grain imbrication and (vi) the spatial variability in DEM properties. The bed-surface topography was found to be more responsive than bed-material size to changes in flow strength. Our experimental results also provide convincing evidence that gravel-beds' response to water-work during parallel degradation is unique (i.e., replicable) given the formative parameters. Based on this finding, relationships between the armors' properties and formative parameters are proposed, and are supported by adding extensive data from previous research.

  4. Analysis of the resistance to the stable propagation of fissures in structural steels

    International Nuclear Information System (INIS)

    Alvarez Villar, Nelson; Aquino, Daniel; Aguera, Francisco; Fierro, Victor; Ansaldi, Andrea; Chomik, Enrique; Iorio, Antonio

    2008-01-01

    Linear Elastic Fracture Mechanic (LEFM) is applied to the analysis of highly resistant materials, with correction for plasticity. For moderately ductile materials, structural analysis and design methodologies based on Elastoplastic Fracture Mechanics (EPFM) still have to be developed. The J integral is used in EPFM as a parameter to characterize tenacity to the fracture, following the ASTM standard. It is important to obtain J-Resistant curves, since the use of the stable propagation initiation value (J IC ) as failure criteria, leads to results that are too conservative in most design situations. The application of direct methods allows for results under conditions where the standard methods for obtaining the J-Resistant curve are not applicable. This work analyzes the application of direct methods that are alternatives for the standard, in ferritic-perlitic steels used in gas transport pipes. Experimental results are presented with numerical analysis (FEA) for the adjustment of J-Resistant curves (au)

  5. An experimental test of the role of structural blue and melanin-based chestnut coloration in aggressive contests in male eastern bluebirds

    Directory of Open Access Journals (Sweden)

    Austin eMercadante

    2014-06-01

    Full Text Available Male eastern bluebirds (Sialia sialis have feathers with either structurally based blue coloration or melanin-based chestnut coloration, and they hold territories during the breeding season that they defend vigorously. We tested whether the melanin pigmentation or structural coloration of feathers serve as signals during intrasexual aggressive encounters by placing color-modified stuffed bluebirds in male territories. We recorded the time to attack and the intensity of attacks on each model, and we then compared the response to color-enhanced versus color-reduced models. Male bluebirds attacked models with brighter and more chromatic blue coloration significantly more often than they attacked models with darker and less chromatic blue coloration. In contrast, the darkness of the chestnut breast coloration did not have a significant effect on the rate at which models were attacked. We conclude that territorial male bluebirds perceive intruding males with brighter blue coloration as a greater threat than males with drabber blue coloration, presumably because blue coloration is a signal of fighting ability. In contrast, the chestnut coloration of breast feathers appears to be a signal of gender and sexual maturity and not a graded signal of social status.

  6. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    Science.gov (United States)

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  7. Red, green, blue equals 1, 2, 3 : Digit-color synesthetes can use structured digit information to boost recall of color sequences

    NARCIS (Netherlands)

    Teichmann, A Lina; Nieuwenstein, Mark R; Rich, Anina N

    2015-01-01

    Digit-color synesthetes report experiencing colors when perceiving letters and digits. The conscious experience is typically unidirectional (e.g., digits elicit colors but not vice versa) but recent evidence shows subtle bidirectional effects. We examined whether short-term memory for colors could

  8. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  9. Towards hydrochemical PUB - stable vs. heterogeneous NO3 and COD signatures across hydrographic structure and size

    Science.gov (United States)

    Ecrepont, Stephane; Cudennec, Christophe; Jaffrezic, Anne; de Lavenne, Alban

    2017-04-01

    Towards hydrochemical PUB - stable vs. heterogeneous NO3 and DOC signatures across hydrographic structure and size Ecrepont, S.1Cudennec, C.1 Jaffrézic, A.1 de Lavenne, A.2 1UMR SAS, Agrocampus Ouest, Rennes, France 2 HBAN, Irstea, Antony, France Intensive agriculture is a major disturbing factor for water quality in Brittany, France. Observations of chemical data from 350 catchments over a 15 year period show that the high variability of hydrochemical dynamics between catchments in relation to geographic characteristics and farming practices, decreases with an increase in the catchment size. A stable signature of nitrate and DOC dynamics does emerge for bigger catchments, and was evidenced statistically. We adapted a modified version of the standard deviation formula to calculate an index on mean inter-annual winter nitrate and dissolved organic carbon concentrations to characterize each catchment. The method was applied to the whole sample of catchments, some of them nested, to investigate variation of our new index across scales and regions. Results show an increasing and non-linear relationship between the criterion and the surface, with threshold effects. The stability of the thresholds across river basins in Brittany, and across seasons and years is explored. This emergence relates to the progressive connection of streams with heterogeneous characteristic chemical signatures into a mixing dominant effect. The better assessment of this relationship opens two major perspectives: i) to define a geomorphology-based PUB (Prediction in Ungauged Basins) approach for hydrochemistry; ii) to identify the most critical sub-catchments for mitigating actions in terms of farming and landscape practices towards water quality recovery.

  10. Trophic structure of a coastal fish community determined with diet and stable isotope analyses.

    Science.gov (United States)

    Malek, A J; Collie, J S; Taylor, D L

    2016-09-01

    A combination of dietary guild analysis and nitrogen (δ(15) N) and carbon (δ(13) C) stable-isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ(15) N and δ(13) C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter-species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem-based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles. © 2016 The Fisheries Society of the British Isles.

  11. Phase behavior and structure of stable complexes between a long polyanion and a branched polycation

    Science.gov (United States)

    Mengarelli, Valentina; Zeghal, Mehdi; Auvray, Loïc; Clemens, Daniel

    2011-08-01

    The association between oppositely charged branched polyethylenimine (BPEI) and polymethacrylic acid (PMA) in the dilute regime is investigated using turbidimetric titration and electrophoretic mobility measurements. The complexation is controlled by tuning continuously the pH-sensitive charge of the polyacid in acidic solution. The formation of soluble and stable positively charged complexes is a cooperative process characterized by the existence of two regimes of weak and strong complexation. In the regime of weak complexation, a long PMA chain overcharged by several BPEI molecules forms a binary complex. As the charge of the polyacid increases, these binary complexes condense at a well defined charge ratio of the mixture to form large positively charged aggregates. The overcharging and the existence of two regimes of complexation are analyzed in the light of recent theories. The structure of the polyelectrolytes is investigated at higher polymer concentration by small angle neutron scattering. Binary complexes of finite size present an open structure where the polyacid chains connecting a small number of BPEI molecules have shrunk slightly. In the condensed complexes, BPEI molecules, wrapped by polyacid chains, form networks of stretched necklaces.

  12. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  13. Identification of individual coherent sets associated with flow trajectories using Coherent Structure Coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy; Dabiri, John

    2017-11-01

    In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  14. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    Science.gov (United States)

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. An optical device capable of providing a structural color, and a corresponding method of manufacturing such a device

    DEFF Research Database (Denmark)

    2014-01-01

    ) with respect to the average surface positions. The position, size, and randomness of the protrusions are arranged so as to provide, at least up to a maximum angle of incidence (A_in) with respect to a normal to the surface, an angle-independent substantially homogeneous structural color perception for a normal...

  16. Bare-part color in female budgerigars changes from brown to structural blue following testosterone treatment but is not strongly masculinized.

    Directory of Open Access Journals (Sweden)

    Stefanie E P Lahaye

    Full Text Available Whereas several studies have shown that experimentally increased levels of the androgenic steroid testosterone can affect female behavior, fewer studies have focused on the activational effects of exogenous testosterone on female morphology. With respect to colorful displays in birds, almost exclusively the effects of testosterone manipulation on female carotenoid-based colorations have been studied. Other color types such as structural colors (i.e. UV, blue and violet colors that result from differential light reflection in the nanostructures of the tissue remain largely unstudied. Here, we investigated the short- and long-term effects of exogenous testosterone on the expression of structural bare-part coloration in female budgerigars, Melopsittacus undulatus. In this parrot species, bare-part coloration is expressed in the cere, a structure over the beak which is brown in females and structural blue in males. We experimentally increased plasma testosterone levels in testosterone-treated females (T-females compared to controls (C-females and we performed weekly spectrophotometric measurements of the cere for five weeks after implantation and one measurement after ten weeks. We also estimated the extent to which testosterone masculinized female cere color by comparing the experimental females with untreated males. We found significant effects of testosterone on cere color from week four after implantation onwards. T-females expressed significantly bluer ceres than C-females with higher values for brightness and UV reflectance. T-female cere color, however, remained significantly less blue than in males, while values for brightness and UV reflectance were significantly higher in T-females than in males. Our quantitative results show that exogenous testosterone induces the expression of structural blue color in females but does not strongly masculinize female cere coloration. We provide several potential pathways for the action of testosterone on

  17. Color models of hadrons

    International Nuclear Information System (INIS)

    Greenberg, O.W.; Nelson, C.A.

    1977-01-01

    The evidence for a three-valued 'color' degree of freedom in hadron physics is reviewed. The structure of color models is discussed. Consequences of color models for elementary particle physics are discussed, including saturation properties of hadronic states, π 0 →2γ and related decays, leptoproduction, and lepton pair annihilation. Signatures are given which distinguish theories with isolated colored particles from those in which color is permanently bound. (Auth.)

  18. Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system

    Directory of Open Access Journals (Sweden)

    Shuyin Yu

    2014-10-01

    Full Text Available Using first-principles variable-composition evolutionary methodology, we explored the high-pressure structures of beryllium hydrides between 0 and 400 GPa. We found that BeH2 remains the only stable compound in this pressure range. The pressure-induced transformations are predicted as I b a m → P 3 ̄ m 1 → R 3 ̄ m → C m c m → P 4 / n m m , which occur at 24, 139, 204 and 349 GPa, respectively. P 3 ̄ m 1 and R 3 ̄ m structures are layered polytypes based on close packings of H atoms with Be atoms filling all octahedral voids in alternating layers. Cmcm and P4/nmm contain two-dimensional triangular networks with each layer forming a kinked slab in the ab-plane. P 3 ̄ m 1 and R 3 ̄ m are semiconductors while Cmcm and P4/nmm are metallic. We have explored superconductivity of both metal phases, and found large electron-phonon coupling parameters of λ = 0.63 for Cmcm with a Tc of 32.1-44.1 K at 250 GPa and λ = 0.65 for P4/nmm with a Tc of 46.1-62.4 K at 400 GPa. The dependence of Tc on pressure indicates that Tc initially increases to a maximum of 45.1 K for Cmcm at 275 GPa and 97.0 K for P4/nmm at 365 GPa, and then decreases with increasing pressure for both phases.

  19. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    Science.gov (United States)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (Pvolume during the isovolume maneuver (standard deviationpulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  20. Computing color categories

    NARCIS (Netherlands)

    Yendrikhovskij, S.N.; Rogowitz, B.E.; Pappas, T.N.

    2000-01-01

    This paper is an attempt to develop a coherent framework for understanding, modeling, and computing color categories. The main assumption is that the structure of color category systems originates from the statistical structure of the perceived color environment. This environment can be modeled as

  1. Neutron-diffraction studies of the crystal structure and the color enhancement in γ-irradiated tourmaline

    Science.gov (United States)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    Tourmaline gemstones have an extremely complex composition and show great variety in color. Most color centers are related to transition-metal ions. Oxidation/reduction of these ions is known to be related with the color enhancement of tourmaline caused by gamma-ray ( γ)-irradiation and/or thermal treatment. However, the current understanding of the microscopic structure of the color centers remains weak. In this work, γ-irradiation was performed on three types of tourmaline gemstones to enhance the colors of the gemstones: two pink from Afghanistan and one green from Nigeria. All three samples were irradiated at 600 and 800 kGy. Their crystal structural and chemical behaviors have been investigated by using a Rietveld refinement analysis of neutron diffraction data, Energy Dispersive X-ray Fluorescence (EDXRF), Ultraviolet-visible Spectroscopy (UV-Vis) and X-ray Photoelectron Spectroscopy (XPS), and the results were compared with data obtained for samples in the natural state. Pink tourmaline of a high number of Mn ions (T2, 0.24 wt%) showed significant improvement in the quality of the pink color (rubellite) after irradiation of 800 kGy while the pink tourmaline of low MnO content (T1, 0.08 wt%) showed color adulteration. Pink color enhancement in T2, responding to darker pink, was associated with increases in the two absorption bands, one peaking at 396 and the other at 522 nm, after irradiation. These absorption bands are ascribed to d-d transitions of divalent manganese. T1 with color enhancement due to oxidation of Mn2+ showed a slightly larger distance. The green tourmaline containing much higher amounts of both Mn (T3) and Fe ions, 2.59 wt% and 5.7 wt%, respectively, changed to a yellow color after irradiation at 800 kGy. The refined structural parameters of this sample revealed distortions in the Z site. The distance decreased from 2.033 to 2.0192 Å. In addition, the unit-cell parameter was decreased after irradiation. The color change in T3 is ascribed

  2. Exploring transgender legal name change as a potential structural intervention for mitigating social determinants of health among transgender women of color.

    Science.gov (United States)

    Hill, Brandon J; Crosby, Richard; Bouris, Alida; Brown, Rayna; Bak, Trevor; Rosentel, Kris; VandeVusse, Alicia; Silverman, Michael; Salazar, Laura

    2018-03-01

    The purpose of this exploratory study was to examine the effects of legal name change on socioeconomic factors, general and transgender-related healthcare access and utilization, and transgender-related victimization in a sample of young transgender women (transwomen) of color. A cross-sectional group comparison approach was used to assess the potential effects of legal name change. A convenience sample of young transwomen enrolled in a no-cost legal name change clinic were recruited to complete a 30-minute interviewer-guided telephone survey including sociodemographic and socioeconomic factors, health and well-being, health care utilization, transgender transition-related health care, and transgender-related victimization. Sixty-five transgender women of color (37 = pre-name change group; 28 = post-name change group) completed the survey. Results indicated that the transwomen in the post-name change group were significantly older than the pre-name change group. In age-adjusted analyses, the post-name change group was significantly more likely to have a higher monthly income and stable housing than the pre-name change group. No significant differences were observed for general healthcare utilization; however, a significantly greater percentage of transwomen in the pre-name change group reported postponing medical care due to their gender identity. In addition, a significantly larger proportion of transwomen in the pre-name change group reported using non-prescribed hormones injected by friends and experiencing verbal harassment by family and friends compared to transwomen in the post-name change group. Findings suggest that legal name change may be an important structural intervention for low-income transwomen of color, providing increased socioeconomic stability and improved access to primary and transition-related health care.

  3. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.

    Science.gov (United States)

    Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H

    2012-05-08

    Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Suppressing Structural Colors of Photocatalytic Optical Coatings on Glass: The Critical Role of SiO2.

    Science.gov (United States)

    Li, Ronghua; Boudot, Mickael; Boissière, Cédric; Grosso, David; Faustini, Marco

    2017-04-26

    The appearance of structural colors on coated-glass is a critical esthetical drawback toward industrialization of photocatalytic coatings on windows for architecture or automobile. Herein we describe a rational approach to suppress the structural color of mesoporous TiO 2 -based coatings preserving photoactivity and mechanical stiffness. Addition of SiO 2 as third component is discussed. Ti x Si (1-x) O 2 mesoporous coatings were fabricated by one-step liquid deposition process through the evaporation induced self-assembling and characterized by GI-SAXS, GI-WAXS, electron microscopies, and in situ Environmental Ellipsometry Porosimetry. Guided by optical simulation, we investigated the critical role of SiO 2 on the optical responses of the films but also on the structural, mechanical, and photocatalytic properties, important requirements to go toward real applications. We demonstrate that adding SiO 2 to porous TiO 2 allows tuning and suppression of structural colors through refractive index matching and up to 160% increase in mechanical stiffening of the films. This study leads us to demonstrate an example of "invisible" coating, in which the light reflection is angle- and thickness-independent, and exhibiting high porosity, mechanical stiffness, and photoactivity.

  5. Stable Benzacridine Pigments by Oxidative Coupling of Chlorogenic Acid with Amino Acids and Proteins: Toward Natural Product-Based Green Food Coloring.

    Science.gov (United States)

    Iacomino, Mariagrazia; Weber, Fabian; Gleichenhagen, Maike; Pistorio, Valeria; Panzella, Lucia; Pizzo, Elio; Schieber, Andreas; d'Ischia, Marco; Napolitano, Alessandra

    2017-08-09

    The occasional greening of sweet potatoes and other plant tissues observed during cooking or other food processing has been shown to arise from the autoxidative coupling of chlorogenic acid (CGA, 5-caffeoylquinic acid) with amino acid components, leading to trihydroxybenzacridine pigments. To explore the potential of this reaction for food coloring, we report herein the optimized biomimetic preparation of trihydroxybenzacridine pigments from CGA and amino acids such as glycine and lysine, their straightforward purification by gel filtration chromatography, the UHPLC-MS/MS analysis of the purified pigment fraction, and a detailed characterization of the pH-dependent trihydroxybenzacridine chromophore. Similar green pigments were also obtained by analogous reaction of CGA with a low-cost protein, bovine serum albumin, and by simply adding CGA to chicken egg white (CEW) under stirring. Neither the purified pigments from amino acids nor the pigmented CEW exerted significant toxicity against two human cell lines, Caco-2 and HepG2, at doses compatible with common use in food coloring. Additions of the pure pigments or pigmented CEW to different food matrices imparted intense green hues, and the thermal stability of these preparations proved satisfactory up to 90 °C. The potential application of the greening reaction for the sensing of fish deterioration is also disclosed.

  6. Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.; Subrahmanyam, A.

    2007-01-01

    Tungsten oxide thin films have been deposited by pulsed dc magnetron sputtering of tungsten in argon and oxygen atmosphere. The as-deposited WO 3 film is amorphous, highly transparent, and shows a layered structure along the edges. In addition, the optical properties of the as-deposited film show a steplike behavior of extinction coefficient. However, the electron beam irradiation (3.0 keV) of the as-deposited films results in crystallization, coloration (deep blue), and luminescence (intense red emission). The above changes in physical properties are attributed to the extraction of oxygen atoms from the sample and the structural modifications induced by electron bombardment. The present method of coloration and luminescence has a potential for fabricating high-density optical data storage device

  7. Structure and performance of cationic assembly dispersed in amphoteric surfactants solution as a shampoo for hair damaged by coloring.

    Science.gov (United States)

    Nagahara, Yasuo; Nishida, Yuichi; Isoda, Masanori; Yamagata, Yoshifumi; Nishikawa, Naoki; Takada, Koji

    2007-01-01

    In recent years, hair coloring gains popularity as a trend of consumer's hair care. This coloring frequently damages hair. In response to this, a new shampoo-base was developed for repairing hair damaged by coloring. The new shampoo-base was prepared by dispersing cationic assembly in a solution of amphoteric surfactants. The mixture of behenyl trimethyl ammonium chloride (C22TAC) and behenyl alcohol (C22OH) was applied as the cationic assembly, which are dispersed in amido propyl betaine laurate (LPB) solution. LPB, which behaves as an amphoteric surfactant, was used as the wash-base. It was verified from the results on the measurements of DSC, calorimeter polarization, cryo-SEM and X-ray diffraction that the cationic assembly has a crystalline structure in the LPB solution. The new shampoo-base was highly efficient to change the color-damaged hair from hydrophilic to hydrophobic. The friction level of the hair washed with the new shampoo-base recovered to the same state as that of healthy hair. The exfoliation of cuticle was reduced after washing with the new shampoo-base.

  8. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yao Jianwu; Zhang Chengyun; Liu Haiying; Dai Qiaofeng; Wu Lijun [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Gopal, Achanta Venu [Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Trofimov, Vyacheslav A.; Lysak, Tatiana M. [Department of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2012-07-15

    Ripples with a subwavelength period were induced on the surface of a stainless steel (301 L) foil by femtosecond laser pulses. By optimizing the irradiation fluence of the laser pulses and the scanning speed of the laser beam, ripples with large amplitude ({approx}150 nm) and uniform period could be obtained, rendering vivid structural colors when illuminating the surface with white light. It indicates that these ripples act as a surface grating that diffracts light efficiently. The strong dependence of the ripple orientation on the polarization of laser light offers us the opportunity of decorating different regions of the surface with different types of ripples. As a result, different patterns can be selectively displayed with structural color when white light is irradiated on the surface from different directions. More interestingly, we demonstrated the possibility of decorating the same region with two or more types of ripples with different orientations. In this way, different patterns with spatial overlapping can be selectively displayed with structural color. This technique may find applications in the fields of anti-counterfeiting, color display, decoration, encryption and optical data storage.

  9. Colorism/Neo-Colorism

    Science.gov (United States)

    Snell, Joel

    2017-01-01

    There are numerous aspects to being non-Caucasian that may not be known by Whites. Persons of color suggest folks who are African, South Americans, Native Americans, Biracial, Asians and others. The question is what do these individuals feel relative to their color and facial characteristics. Eugene Robinson suggest that the future favorable color…

  10. High-reflective colorful films fabricated by all-solid multi-layer cholesteric structures

    Science.gov (United States)

    Li, Y.; Luo, D.

    2018-02-01

    We demonstrate all-solid-state film with high-reflectivity based on cholesteric template. The adhesive (NOA81) is both filler and an adhesive, which can be avoids interfacial losses. The reflected right- and left-circularly polarized light has been developed by roll-to-roll method, and the reflectance of the films is more than 78%. Here, the all-solid film was used in distribute feedback laser with dye-doped. In addition, this films also used in include flexible reflective display, color pixels in digital photographs, printing and colored cladding of variety of objects.

  11. DNA-based stable isotope probing: a link between community structure and function

    Czech Academy of Sciences Publication Activity Database

    Uhlík, Ondřej; Ječná, K.; Leigh, M. B.; Macková, Martina; Macek, Tomáš

    2009-01-01

    Roč. 407, č. 12 (2009), s. 3611-3619 ISSN 0048-9697 Grant - others:GA MŠk(CZ) 2B08031 Program:2B Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA-based stable isotope probing * microbial diversity * bioremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.905, year: 2009

  12. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei

    2013-11-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte structure showed good chemical stability in both CO2 and H2O atmosphere, indicating that the BZPY layers effectively protect the inner BCY electrolyte, while the BCY electrolyte alone decomposed completely under the same conditions. Fuel cell prototypes fabricated with the sandwiched electrolyte achieved a relatively high performance of 185 mW cm- 2 at 700 C, with a high electrolyte film conductivity of 4 × 10- 3 S cm- 1 at 600 C. © 2013 Elsevier B.V.

  13. Cone photoreceptor structure in patients with x-linked cone dysfunction and red-green color vision deficiency

    DEFF Research Database (Denmark)

    Patterson, Emily J.; Wilk, Melissa; Langlo, Christopher S.

    2016-01-01

    encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. CONCLUSIONS. Our findings provide a direct link between disruption of the cone mosaic and L/ M opsin variants......PURPOSE. Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/ M opsin gene mutations...... to clarify the link between color vision deficiency and cone dysfunction.  METHODS. We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone...

  14. Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging.

    Science.gov (United States)

    Zhong, Yiling; Sun, Xiaotian; Wang, Siyi; Peng, Fei; Bao, Feng; Su, Yuanyuan; Li, Youyong; Lee, Shuit-Tong; He, Yao

    2015-06-23

    We herein introduce a facile, low-cost photochemical method capable of rapid (nanoparticles (SiNPs) of tunable optical properties (peak emission wavelength in the range of 470-560 nm) under ambient air conditions, by introducing 1,8-naphthalimide as a reducing agent and surface ligands. The as-prepared SiNPs feature robust storage stability and photostability preserving strong and stable fluorescent during long-term (>3 h) high-power UV irradiation, in contrast to the rapid fluorescence quenching within 2 h of conventional organic dyes and II-VI quantum dots under the same conditions. The as-prepared SiNPs serving as photostable nanoprobes are workable for cellular imaging in long-term manners. Our findings provide a powerful method for mild-condition and low-cost, large-quantity production of highly fluorescent and photostable SiNPs for various promising applications.

  15. Structure of magnetic particles studied by small angle neutron scattering. [Magnetic colloid particles in stable liquid dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cebula, D J; Charles, S W; Popplewell, J

    1981-03-01

    The purpose of this note is to show how the use of small angle neutron scattering (SANS) can provide fundamental information on the structure of magnetic colloid particles in stable liquid dispersion. A more detailed account elaborating the use of the technique to provide fundamental information on interactions will appear later. This contribution contains some principal results on particle structure. The technique of SANS provides a very sensitive means of measuring particle size by measuring the scattered neutron intensity, I(Q), as a function of scattered wave vector, Q.

  16. X-ray created metamaterials: applications to metal-free structural colors with full chromaticity spectrum and 80 nm spatial resolution

    KAUST Repository

    Bonifazi, Marcella

    2018-05-07

    We created new types of metamaterials by hard X-rays possessing high fluency. We discuss applications in structural colors that show full spectrum of Cyan, Yellow, Magenta, Black (CYMK), realized in transparent dielectrics with 80 nm resolution.

  17. X-ray created metamaterials: applications to metal-free structural colors with full chromaticity spectrum and 80 nm spatial resolution

    KAUST Repository

    Bonifazi, Marcella; Mazzone, Valerio; Fratalocchi, Andrea

    2018-01-01

    We created new types of metamaterials by hard X-rays possessing high fluency. We discuss applications in structural colors that show full spectrum of Cyan, Yellow, Magenta, Black (CYMK), realized in transparent dielectrics with 80 nm resolution.

  18. QCD demonstration for the color string structures of e+e-→q bar qg and Υ→3g systems

    International Nuclear Information System (INIS)

    Tian, L.; Xie, Q.; Si, Z.

    1994-01-01

    The e + e - →q bar qg→3 jets and Υ→3g→hadrons processes are well suited to the study of the gluon hadronization mechanism. In the LUND model, these two processes are treated by applying the string fragmentation model to the assumed color string structure of q bar qg and 3g systems. In this paper, the color string structure of the q bar qg and ggg systems is given by directly analyzing their color wave functions in the context of perturbative QCD. In addition, the reasonableness and accuracy of the LUND string pictures are discussed

  19. ART OF METALLOGRAPHY: POSSIBILITIES OF DARK-FIELD MICROSCOPY APPLICATION FOR COLORED OBJECTS STRUCTURE ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. G. Anisovich

    2015-01-01

    Full Text Available The application of the method of dark field microscopy for the study of colored objects of material technology was researched. The capability of corrosive damage analysis and determination of the thickness of the metal coating were demonstrated. The performance capability of analysis of «reflection» in the dark field during the study of non-metallic materials – orthopedic implants and fireclay refractory were tested. An example of defect detection of carbon coating was displayed.

  20. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    OpenAIRE

    Yavuz, Gonul; Zille, Andrea; Seventekin, N.; Souto, A. Pedro

    2017-01-01

    Abstract. In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fab...

  1. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans

    Directory of Open Access Journals (Sweden)

    Fernando Abarca

    2014-08-01

    Full Text Available Licanantase (Lic is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm “Rosetta Fold-and-Dock”. To assess the structural stability of our model, Molecular Dynamics (MD and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic’s secondary and tertiary structure.

  2. Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.

    Science.gov (United States)

    Greenfield, Alan Barry

    Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.

  3. Influence of chromium ions on the color center formation in crystals with garnet structure

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Zharikov, E.V.; Laptev, V.V.

    1985-01-01

    The in fluence of chromium ions on the color center formation in crystals of yttrium-aluminium garnet, gadolinium-gallium garnet, gadolinium-scandium-gallium garnet, and yttrium-scandium-gallium garnet is studied. In addition to basic activator ions these crystals were coactivated also by chromium ions with two wide bands of fundamental absorption within the range of pump tube radiation with maximas close to 450 and 650 nm. The color centers for γ-irradiated samples were observed at 300 K by measuring the adsorption spectra within the 300-800 nm range. Temperature of destruction of the charge trapping sites was determined by the method of thermoluminescence measuring in the 100-500 K temperature range. Detection of recombination center luminescence was accomplished within the 200-1600 nm wavelength range. Chromium ions are found to hinder the formation of color centers as a result of γ-irradiation at room and higher temperatures within the wavelength range over 300 nm; i.e. Cr 3+ ions increase radiation resistance of all the investigated crystals

  4. Cellulose Nanocrystal/Poly(ethylene glycol) Composite as an Iridescent Coating on Polymer Substrates: Structure-Color and Interface Adhesion.

    Science.gov (United States)

    Gu, Mingyue; Jiang, Chenyu; Liu, Dagang; Prempeh, Nana; Smalyukh, Ivan I

    2016-11-30

    The broad utility as an environmentally friendly and colorful coating of cellulose nanocrystal (CNC) was limited by its instability of coloration, brittleness, and lack of adhesion to a hydrophobic surface. In the present work, a neutral polymer, poly(ethylene glycol) (PEG) was introduced into CNC coatings through evaporation-induced self-assembly (EISA) on polymer matrices. The structure-color and mechanical properties of the composite coating or coating film were characterized by UV-vis spectroscopy, polarized light microscopy (PLM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WXRD), and tensile tests. Results showed that the reflective wavelength of the iridescent CNCs could be finely tuned by incorporation of PEG with varied loadings from 2.5 to 50 wt %, although the high loading content of PEG would produce some side effects because of the severe microphase separation. Second, PEG played an effective plasticizer to improve the ductility or flexibility of the CNC coating or coating film. Furthermore, as a compatibilizer, PEG could effectively and tremendously enhance the adhesion strength between CNCs and neutral polymer matrices without destroying the chiral nematic mesophases of CNCs. Environmentally friendly CNC/PEG composites with tunable iridescence, good flexibility, and high bonding strength to hydrophobic polymer matrices are expected to be promising candidates in the modern green paint industry.

  5. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Structurally Stable Attractive Nanoscale Emulsions with Dipole-Dipole Interaction-Driven Interdrop Percolation.

    Science.gov (United States)

    Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong

    2017-03-28

    This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tun-Dong; Fan, Tian-E [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Shao, Gui-Fang, E-mail: gfshao@xmu.edu.cn [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Zheng, Ji-Wen [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Wen, Yu-Hua [Institute of Theoretical Physics and Astrophysics, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2014-08-14

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs.

  8. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Liu, Tun-Dong; Fan, Tian-E; Shao, Gui-Fang; Zheng, Ji-Wen; Wen, Yu-Hua

    2014-01-01

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs

  9. Shift Colors

    Science.gov (United States)

    Publications & News Shift Colors Pages default Sign In NPC Logo Banner : Shift Colors Search Navy Personnel Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Library Expand Reference Library Quick Launch Shift Colors Shift Colors Archives Mailing Address How to

  10. Stable isotopes provide insight into population structure and segregation in eastern North Atlantic sperm whales

    DEFF Research Database (Denmark)

    Borrell, Asunción; Velásquez Vacca, Adriana; Pinela, Ana M.

    2013-01-01

    In pelagic species inhabiting large oceans, genetic differentiation tends to be mild and populations devoid of structure. However, large cetaceans have provided many examples of structuring. Here we investigate whether the sperm whale, a pelagic species with large population sizes and reputedly......, use of habitat and/or migratory destinations are dissimilar between whales from the two regions and suggest that the North Atlantic population of sperm whales is more structured than traditionally accepted....

  11. Color-stable and efficient tandem white organic light-emitting devices using a LiF n-doping layer and a MoO{sub x} p-doping layer as charge generating unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Wu, Qingyang; Zhang, Zhensong; Yue, Shouzhen; Guo, Runda; Wang, Peng; Wu, Mingzhu; Gou, Changhua; Zhao, Yi, E-mail: yizhao@jlu.edu.cn; Liu, Shiyong

    2013-10-31

    We have demonstrated color-stable and efficient tandem organic light-emitting devices (OLEDs) using 4,7-diphenyl-1,10-phenanthroline (Bphen):LiF/4,4′,4″-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (m-MTDATA):molybdenum oxide (MoO{sub x}) as charge generating unit (CGU), which has the advantages of air stability and ease of fabrication; the working mechanism of Bphen:LiF/m-MTDATA:MoO{sub x} is also discussed through analysis of the electrical and spectral emission properties of tandem devices with different CGUs. The performance of tandem white OLED, comprising blue and yellow phosphorescent EL units, can be improved by optimizing the thickness of Bphen:LiF layer. The device comprised of 30 nm Bphen:LiF layer has a maximum current efficiency of 38.7 cd/A and it can still maintain 24.6 cd/A at the luminance of 10,370 cd/m{sup 2}. Moreover, the Commission Internationale de L'Eclairage (CIE) coordinates of the device are rather stable and the variation is only (± 0.003, ± 0.007) over a wide range of luminance (100–13,000 cd/m{sup 2}). - Highlights: • LiF n-doping layer and MoO{sub x} p-doping layer were used as charge generating units. • The device performance was improved by optimizing the thickness of n-doping layer. • High luminance and efficiency were both achieved at a very low current density. • The device showed rather stable spectra over a wide range of luminance.

  12. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles

    International Nuclear Information System (INIS)

    Wu Wei; He Quanguo; Chen Hong; Tang Jianxin; Nie Libo

    2007-01-01

    Air-stable nanoparticles of Fe 3 O 4 /Au were prepared via sonolysis of a solution mixture of hydrogen tetrachloroaureate(III) trihydrate (HAuCl 4 ) and (3-aminopropyl)triethoxysilane (APTES)-coated Fe 3 O 4 nanoparticles with further drop-addition of sodium citrate. The Fe 3 O 4 /Au nanoparticles were characterized by x-ray powder diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID) magnetometry. Nanoparticles of Fe 3 O 4 /Au obtained under appropriate conditions possess a very high saturation magnetization of about 63 emu g -1 and their average diameter is about 30 nm

  13. Color Memory

    OpenAIRE

    Pate, Monica; Raclariu, Ana-Maria; Strominger, Andrew

    2017-01-01

    A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a pair of test `quarks' initially in a color singlet generically acquire net color as a result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks. For weak color flux the formula linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills analog of the gravitational memory effect.

  14. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  15. Irradiated beetroot extract as a colorant for cream cheese

    Science.gov (United States)

    Junqueira-Goncalves, Maria Paula; Cardoso, Lediana Pereira; Pinto, Michele Silva; Pereira, Rodrigo Magela; Soares, Nilda Ferreira; Miltz, Joseph

    2011-01-01

    A Brazilian ham-flavored cream cheese was developed using gamma-irradiated beetroot extract as the colorant. An irradiation dose of 5.0 kGy was used based on previous studies that indicated no growth of moulds, yeasts and aerobic psychotropic microorganisms during 12 days at 5 °C, and with no changes in the structure of the pigment. One part of the cheese was colored with the irradiated beetroot extract and the other part with carmine cochineal, which is a natural stable colorant but expensive and difficult to extract. Both portions were submitted to sensory evaluation with 67 panelists. No significant differences were found in flavor and overall appearance. The cream cheese containing carmine cochineal was slightly preferred in regards to color. However, being a new product, these results were encouraging and point towards the potential use of irradiated beetroot extract as a natural food colorant.

  16. Irradiated beetroot extract as a colorant for cream cheese

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira-Goncalves, Maria Paula, E-mail: mpaula.junqueira@usach.c [Universidad de Santiago de Chile, Department of Food Science and Technology, Ecuador 3769, Santiago (Chile); Cardoso, Lediana Pereira; Pinto, Michele Silva; Pereira, Rodrigo Magela; Soares, Nilda Ferreira [Universidade Federal de Vicosa, Department of Food Science and Technology, CEP 36570-000, Vicosa, MG (Brazil); Miltz, Joseph [Technion Israel Institute of Technology, Department of Biotechnology and Food Engineering, Haifa 32000 (Israel)

    2011-01-15

    A Brazilian ham-flavored cream cheese was developed using gamma-irradiated beetroot extract as the colorant. An irradiation dose of 5.0 kGy was used based on previous studies that indicated no growth of moulds, yeasts and aerobic psychotropic microorganisms during 12 days at 5 {sup o}C, and with no changes in the structure of the pigment. One part of the cheese was colored with the irradiated beetroot extract and the other part with carmine cochineal, which is a natural stable colorant but expensive and difficult to extract. Both portions were submitted to sensory evaluation with 67 panelists. No significant differences were found in flavor and overall appearance. The cream cheese containing carmine cochineal was slightly preferred in regards to color. However, being a new product, these results were encouraging and point towards the potential use of irradiated beetroot extract as a natural food colorant.

  17. Irradiated beetroot extract as a colorant for cream cheese

    International Nuclear Information System (INIS)

    Junqueira-Goncalves, Maria Paula; Cardoso, Lediana Pereira; Pinto, Michele Silva; Pereira, Rodrigo Magela; Soares, Nilda Ferreira; Miltz, Joseph

    2011-01-01

    A Brazilian ham-flavored cream cheese was developed using gamma-irradiated beetroot extract as the colorant. An irradiation dose of 5.0 kGy was used based on previous studies that indicated no growth of moulds, yeasts and aerobic psychotropic microorganisms during 12 days at 5 o C, and with no changes in the structure of the pigment. One part of the cheese was colored with the irradiated beetroot extract and the other part with carmine cochineal, which is a natural stable colorant but expensive and difficult to extract. Both portions were submitted to sensory evaluation with 67 panelists. No significant differences were found in flavor and overall appearance. The cream cheese containing carmine cochineal was slightly preferred in regards to color. However, being a new product, these results were encouraging and point towards the potential use of irradiated beetroot extract as a natural food colorant.

  18. DNA-based stable isotope probing: a link between community structure and function

    International Nuclear Information System (INIS)

    Uhlik, Ondrej; Jecna, Katerina; Leigh, Mary Beth; Mackova, Martina; Macek, Tomas

    2009-01-01

    DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing 13C-labeled substrate to a microbial community and subsequent analyses of the 13C-DNA isolated from the community. Isopycnic centrifugation permits separating 13C-labeled DNA of organisms that utilized the substrate from 12C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.

  19. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    International Nuclear Information System (INIS)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-01-01

    Graphical abstract: - Highlights: • Highly transparent, stable, and superhydrophobic PET film was fabricated by dip-coating way. • The gradient structure is beneficial to both hydrophobicity and transparency. • The superhydrophobic PET film after physical damage can quickly regain by one-step spary. • The fabrication method is available for various substrates and large-scale production. - Abstract: Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) <5°. Besides, the average transmittance of this superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  20. Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4.

    Science.gov (United States)

    McKenna, Keith P; Hofer, Florian; Gilks, Daniel; Lazarov, Vlado K; Chen, Chunlin; Wang, Zhongchang; Ikuhara, Yuichi

    2014-12-10

    The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe 3 O 4 ) are of continuing fundamental interest as well as being important for practical applications in spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct information on their structure and properties has remained challenging to obtain. Here we combine predictive first principles modelling with high-resolution transmission electron microscopy to unambiguously determine the three-dimensional structure of APBs in magnetite. We demonstrate that APB defects on the {110} planes are unusually stable and induce antiferromagnetic coupling between adjacent domains providing an explanation for the magnetoresistance and reduced spin polarization often observed. We also demonstrate how the high stability of the {110} APB defects is connected to the existence of a metastable bulk phase of Fe 3 O 4 , which could be stabilized by strain in films or nanostructures.

  1. Structural changes, market concentration and vertical integration: would they lead to more stable markets

    International Nuclear Information System (INIS)

    Tahmassebi, H.

    1991-01-01

    This communication is concerned with three major developments that are likely to have significant impact on the future structure of world oil markets: oil company mergers and acquisitions, shift of exploration and production activity from the United States to overseas, and joint venture agreements between producing countries and oil companies aimed at further downstream integration by OPEC. The last two developments are likely to contribute substantially to price and market stability in the future

  2. Structural changes, market concentration and vertical integration: would they lead to more stable markets

    Energy Technology Data Exchange (ETDEWEB)

    Tahmassebi, H.

    This communication is concerned with three major developments that are likely to have significant impact on the future structure of world oil markets: oil company mergers and acquisitions, shift of exploration and production activity from the United States to overseas, and joint venture agreements between producing countries and oil companies aimed at further downstream integration by OPEC. The last two developments are likely to contribute substantially to price and market stability in the future.

  3. S3-2: Colorfulness Perception Adapting to Natural Scenes

    Directory of Open Access Journals (Sweden)

    Yoko Mizokami

    2012-10-01

    Full Text Available Our visual system has the ability to adapt to the color characteristics of environment and maintain stable color appearance. Many researches on chromatic adaptation and color constancy suggested that the different levels of visual processes involve the adaptation mechanism. In the case of colorfulness perception, it has been shown that the perception changes with adaptation to chromatic contrast modulation and to surrounding chromatic variance. However, it is still not clear how the perception changes in natural scenes and what levels of visual mechanisms contribute to the perception. Here, I will mainly present our recent work on colorfulness-adaptation in natural images. In the experiment, we examined whether the colorfulness perception of an image was influenced by the adaptation to natural images with different degrees of saturation. Natural and unnatural (shuffled or phase-scrambled images are used for adapting and test images, and all combinations of adapting and test images were tested (e.g., the combination of natural adapting images and a shuffled test image. The results show that colorfulness perception was influenced by adaptation to the saturation of images. A test image appeared less colorful after adaptation to saturated images, and vice versa. The effect of colorfulness adaptation was the strongest for the combination of natural adapting and natural test images. The fact that the naturalness of the spatial structure in an image affects the strength of the adaptation effect implies that the recognition of natural scene would play an important role in the adaptation mechanism.

  4. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    Science.gov (United States)

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  5. Morphology and phase structures of CW laser-induced oxide layers on iron surface with evolving reflectivity and colors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Taotao, E-mail: wutaotao@nint.ac.cn; Wang, Lijun; Wei, Chenghua; Zhou, Menglian; He, Minbo; Wu, Lixiong

    2016-11-30

    Highlights: • Firstly, iron samples with different color features were obtained by continuous wave laser irradiation depending on progressive durations. The real-time reflectivity and temperature of samples were measured. The color and the reflectivity evolution were related. They were both caused by the forming oxide films. • Secondly, laser-induced oxidation process of iron was studied by microscope, X-ray diffraction and Raman spectrum. The first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by interference effect. • Lastly, the laser-induced oxide films were thin, orientated and badly crystallized. The Wagner oxidation theory was incapable of describing the non-isothermal and early stage oxidation process. So we emphasized that a precise oxidation model depending on the experiment and the optical constants of the laser-induced oxides must be studied. - Abstract: Laser-induced oxidation will change the laser reflectivity and color features of metal surface. Both changes can be theoretically calculated based on the oxidation kinetics and the optical constants of oxides. For the purpose of calculation, the laser-induced oxidation process of pure polycrystalline iron was studied. Samples with various color features were obtained by continuous wave Nd:YAG fiber laser (1.06 μm) irradiation depending on progressive durations in the intensity of 1.90 W/cm{sup 2}. The real-time reflectivity and temperature were measured with integral sphere and thermocouples. The irradiated surface morphology and phase structures were characterized by microscope, X-ray diffraction and Raman spectrum. It was found that the first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by

  6. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Geenevasen, J.A.J. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A procedure for the preparation of hybrid sols for the synthesis of organic-inorganic microporous materials and thin film membranes is reported. We describe silane reactivity and sol structure for acid-catalysed colloidal sols from mixtures of either tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES), or bis(triethoxysilyl)ethane (BTESE) and MTES. Early-stage hydrolysis and condensation rates of the individual silane precursors were followed with 29Si liquid NMR and structural characteristics of more developed sols were studied with Dynamic Light Scattering. Condensation was found to proceed at more or less similar rates for the different precursors. Homogeneously mixed hybrid colloids can therefore be formed from precursor mixtures. The conditions of preparation under which clear sols with low viscosity could be formed from BTESE/MTES were determined. These sols were synthesised at moderate water/silane and acid/silane ratios and could be applied for the coating of defect-free microporous membranes for molecular separations under hydrothermal conditions.

  7. Space grating optical structure of the retina and RGB-color vision.

    Science.gov (United States)

    Lauinger, Norbert

    2017-02-01

    Diffraction of light at the spatial cellular phase grating outer nuclear layer of the retina could produce Fresnel near-field interferences in three RGB diffraction orders accessible to photoreceptors (cones/rods). At perpendicular light incidence the wavelengths of the RGB diffraction orders in photopic vision-a fundamental R-wave with two G+B-harmonics-correspond to the peak wavelengths of the spectral brightness sensitivity curves of the cones at 559 nmR, 537 nmG, and 447 nmB. In scotopic vision the R+G diffraction orders optically fuse at 512 nm, the peak value of the rod's spectral brightness sensitivity curve. The diffractive-optical transmission system with sender (resonator), space waves, and receiver antennae converts the spectral light components involved in imaging into RGB space. The colors seen at objects are diffractive-optical products in the eye, as the German philosopher A. Schopenhauer predicted. They are second related to the overall illumination in object space. The RGB transmission system is the missing link optically managing the spectral tuning of the RGB photopigments.

  8. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  9. The clustered nucleus-cluster structures in stable and unstable nuclei

    International Nuclear Information System (INIS)

    Freer, Martin

    2007-01-01

    The subject of clustering has a lineage which runs throughout the history of nuclear physics. Its attraction is the simplification of the often uncorrelated behaviour of independent particles to organized and coherent quasi-crystalline structures. In this review the ideas behind the development of clustering in light nuclei are investigated, mostly from the stand-point of the harmonic oscillator framework. This allows a unifying description of alpha-conjugate and neutron-rich nuclei, alike. More sophisticated models of clusters are explored, such as antisymmetrized molecular dynamics. A number of contemporary topics in clustering are touched upon; the 3α-cluster state in 12 C, nuclear molecules and clustering at the drip-line. Finally, an understanding of the 12 C+ 12 C resonances in 24 Mg, within the framework of the theoretical ideas developed in the review, is presented

  10. Fortification of Wheat Bread with Agroindustry By-Products: Statistical Methods for Sensory Preference Evaluation and Correlation with Color and Crumb Structure.

    Science.gov (United States)

    Martins, Z E; Pinho, O; Ferreira, I M P L V O

    2017-09-01

    The use of agroindustry by-products (BP) for fortification of wheat bread can be an alternative to waste disposal because BP are appealing sources of dietary fiber. Moreover, it may also contribute to indirect income generation. In this study, sensory, color, and crumb structure properties of breads fortified with fiber rich fraction recovered from four types of agroindustry BP were tested, namely orange (OE), pomegranate (PE), elderberry (EE), and spent yeast (YE). Statistical models for sensory preference evaluation and correlation with color and crumb structure were developed. External preference mapping indicated consumer preferences and enabled selection of the concentrations of BP fibre-rich fraction with best acceptance, namely 7.0% EE, 2.5% OE, 5.0% PE, and 2.5% YE. Data collected from image analysis complemented sensory profile information, whereas multivariate PLS regression provided information on the relationship between "crust color" and "crumb color" and instrumental data. Regression models developed for both sensory attributes presented good fitting (R 2 Y > 0.700) and predictive ability (Q 2 > 0.500), with low RMSE. Crust and crumb a* parameters had a positive influence on "crust color" and "crumb color" models, while crust L* and b* had a negative influence. © 2017 Institute of Food Technologists®.

  11. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    Science.gov (United States)

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  12. Longitudinal tests of competing factor structures for the Rosenberg Self-Esteem Scale: traits, ephemeral artifacts, and stable response styles.

    Science.gov (United States)

    Marsh, Herbert W; Scalas, L Francesca; Nagengast, Benjamin

    2010-06-01

    Self-esteem, typically measured by the Rosenberg Self-Esteem Scale (RSE), is one of the most widely studied constructs in psychology. Nevertheless, there is broad agreement that a simple unidimensional factor model, consistent with the original design and typical application in applied research, does not provide an adequate explanation of RSE responses. However, there is no clear agreement about what alternative model is most appropriate-or even a clear rationale for how to test competing interpretations. Three alternative interpretations exist: (a) 2 substantively important trait factors (positive and negative self-esteem), (b) 1 trait factor and ephemeral method artifacts associated with positively or negatively worded items, or (c) 1 trait factor and stable response-style method factors associated with item wording. We have posited 8 alternative models and structural equation model tests based on longitudinal data (4 waves of data across 8 years with a large, representative sample of adolescents). Longitudinal models provide no support for the unidimensional model, undermine support for the 2-factor model, and clearly refute claims that wording effects are ephemeral, but they provide good support for models positing 1 substantive (self-esteem) factor and response-style method factors that are stable over time. This longitudinal methodological approach has not only resolved these long-standing issues in self-esteem research but also has broad applicability to most psychological assessments based on self-reports with a mix of positively and negatively worded items.

  13. Stable isotope evidence of long-term changes in North Sea food web structure

    DEFF Research Database (Denmark)

    Richardson, Katherine; Christensen, Jens Tang

    2008-01-01

    coast. Porpoises collected after ~1960 had significantly lower d15N than porpoises collected earlier. This change in d15N implies that fundamental changes in food web structure in, or nutrient availability to, the North Sea have taken place over the last ~150 yr and that most of the change occurred over......, been feeding at a lower trophic level than during the preceding century, i.e. animals from lower trophic levels may now be more dominant than they were prior to the middle of the 20th century. There is no a priori reason to suspect that a change in isotope distributions at the base of the food web has...... occurred during this period and we have not been able to find material that would allow us to test the assumption that there has been no temporal development of d15N at the lowest levels of the food web. Thus, we cannot eliminate the possibility that the change in d15N in harbour porpoise skeletons...

  14. Peculiarities of the fundamental mode structure in stable-resonator lasers upon spatially inhomogeneous amplification

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Kostryukov, P V; Telegin, L S; Tunkin, V G; Yakovlev, D V

    2007-01-01

    The structure of the fundamental mode of a laser is calculated by the iteration Fox-Li method in the case of inhomogeneous unsaturated amplification produced by axially symmetric longitudinal pumping. The calculation is performed for different parameters g 1 and g 2 of the resonator within the entire stability region. It is shown that in the case of inhomogeneous amplification, the fundamental mode considerably deviates from the Gaussian mode of an empty resonator only in the so-called critical configurations of the resonator, when the quantity [arccos(g 1 g 2 ) 1/2 ]/π is zero or takes a number of values expressed by irreducible fractions m/n. For the Fresnel number N F = 9, configurations with m/n = 1/2, 2/5, 3/8, 1/3, 3/10, 1/4, 1/5, 1/6, 1/8, and 1/10 are pronounced. As N F increases, the number of critical configurations increases. The expansion in a system of Laguerre-Gaussian beams shows that the fundamental mode in critical configurations is formed by a set of beams with certain radial indices p phased in the active medium. (resonators. modes)

  15. Stable isotopes indicate population structuring in the southwest Atlantic population of right whales (Eubalaena australis.

    Directory of Open Access Journals (Sweden)

    Morgana Vighi

    Full Text Available From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina and another off central Argentina (Peninsula Valdés. This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n=72 and from contemporary and more recent strandings occurring in central Argentina (n=53. Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas.

  16. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A New Lewis Acid catalyst

    Science.gov (United States)

    Paul, Avijit Kumar

    2018-04-01

    One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.

  17. The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2010-01-01

    The crystal structure of a monomeric mutant of Azami-Green (mAG) from G. fascicularis was determined at 2.2 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2 Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants

  18. Biomarker Evidence of Relatively Stable Community Structure in the Northern South China Sea during the Last Glacial and Holocene

    Directory of Open Access Journals (Sweden)

    Juan He

    2008-01-01

    Full Text Available High-resolution molecular abundance records for several marine biomarkers during the last glacial and Holocene have been generated for core MD05-2904 (19 _ 116 _ 2066 mwater depth from the northern South China Sea. The UK' 37 SST record indicates a 4.4 C cooling during the Last Glacial Maximum for this site, consistent with previous reconstructions. The contents of C37 alkenones, dinosterol, brassicasterol, and C30 alkyl diols are used as productivity proxies for haptophytes, dinoflagellates, diatoms, and eustigmatophytes, respectively. These records reveal that both individual phytoplankton group and total productivity increased by several factors during the LGM compared with those for the Holocene, in response to increased nutrient supply. However, the community structure based on biomarker percentages remained relatively stable during the last glacial-Holocene transition, although there were short-term oscillations.

  19. Transition behavior of asymmetric polystyrene-b-poly(2-vinylpyridine) films: A stable hexagonally modulated layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Koo, Kyosung; Kim, Kyunginn; Ahn, Hyungju; Lee, Byeongdu; Park, Cheolmin; Ryu, Du Yeol

    2015-03-09

    The phase transitions in the films of an asymmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) were investigated by grazing incidence small-angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). Compared with the sequential transitions in the bulk, hexagonally perforated layer (HPL) – gyroid (GYR) – disorder (DIS) upon heating, the transitions in film geometry were dramatically changed with decreasing thickness due to the growing preferential interactions from substrate, resulting in a thickness-dependent transition diagram including four different morphologies of hexagonally modulated layer (HML), coexisting (HML and GYR), GYR, and DIS. Particularly in the films ≤10Lo, where Lo is d-spacing at 150 °C, a stable HML structure was identified even above the order-to-disorder transition (ODT) temperature of the bulk, which was attributed to the suppressed compositional fluctuations by the enhanced substrate interactions.

  20. Photonic Crystals: Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide (Small 25/2016).

    Science.gov (United States)

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    The production of structural colors based on graphene oxide (GO) pseudo-one-dimensional photonic crystals (p1D-PhCs) in the visible spectrum is reported on page 3433 by W. Qi and co-workers. The structural colors could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion. Moreover, GO p1D-PhCs exhibit visible and rapid responsiveness to humidity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

    Science.gov (United States)

    Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2015-12-09

    High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.

  2. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    Science.gov (United States)

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Relating color working memory and color perception.

    Science.gov (United States)

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The structural coloration of textile materials using self-assembled silica nanoparticles.

    Science.gov (United States)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-01-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. Graphical abstract.

  5. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  6. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  7. Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments

    Science.gov (United States)

    Yuan, Le; Weng, Xiaolong; Zhou, Ming; Zhang, Qingyong; Deng, Longjiang

    2017-11-01

    Chromium-doped TiO2 pigments were synthesized via a solid-state reaction method and studied with X-ray diffraction, SEM, XPS, and UV-VIS-NIR reflectance spectroscopy. The incorporation of Cr3+ accelerates the transition from the anatase phase to the rutile phase and compresses the crystal lattice. Moreover, the particle morphology, energy gap, and reflectance spectrum of Cr-doped TiO2 pigments is affected by the crystal structure and doping concentration. For the rutile samples, some of the Cr3+ ions are oxidized to Cr4+ after sintering at a high temperature, which leads to a strong near-infrared absorption band due to the 3A2 → 3 T1 electric dipole-allowed transitions of Cr4+. And the decrease of the band gap causes an obvious redshift of the optical absorption edges as the doping concentration increases. Thus, the VIS and near-infrared average reflectance of the rutile Ti1 - x Cr x O2 sample decrease by 60.2 and 58%, respectively, when the Cr content increases to x = 0.0375. Meanwhile, the color changes to black brown. However, for the anatase Ti1 - x Cr x O2 pigments, only the VIS reflection spectrum is inhibited by forming some characteristic visible light absorption peaks of Cr3+. The morphology, band gap, and NIR reflectance are not significantly affected. Finally, a Cr-doped anatase TiO2 pigment with a brownish-yellow color and 90% near-infrared reflectance can be obtained.

  8. Color naming

    OpenAIRE

    Şahin, Ebru

    1998-01-01

    Ankara : Bilkent University, Department of Interior Architecture and Environmental Design and Institute of Fine Arts, 1998. Thesis (Ph.D) -- Bilkent University, 1998 Includes bibliographical refences. In this study, visual aspects of color and neurophysiological processes involved in the phenomenon, language of color and color models were explained in addition to the discussion of different ideas, orientations and previous works behind the subject of matter. Available color ...

  9. Structural analysis of color video camera installation on tank 241AW101 (2 Volumes)

    Energy Technology Data Exchange (ETDEWEB)

    Strehlow, J.P.

    1994-08-24

    A video camera is planned to be installed on the radioactive storage tank 241AW101 at the DOE` s Hanford Site in Richland, Washington. The camera will occupy the 20 inch port of the Multiport Flange riser which is to be installed on riser 5B of the 241AW101 (3,5,10). The objective of the project reported herein was to perform a seismic analysis and evaluation of the structural components of the camera for a postulated Design Basis Earthquake (DBE) per the reference Structural Design Specification (SDS) document (6). The detail of supporting engineering calculations is documented in URS/Blume Calculation No. 66481-01-CA-03 (1).

  10. Structural analysis of color video camera installation on tank 241AW101 (2 Volumes)

    International Nuclear Information System (INIS)

    Strehlow, J.P.

    1994-01-01

    A video camera is planned to be installed on the radioactive storage tank 241AW101 at the DOE' s Hanford Site in Richland, Washington. The camera will occupy the 20 inch port of the Multiport Flange riser which is to be installed on riser 5B of the 241AW101 (3,5,10). The objective of the project reported herein was to perform a seismic analysis and evaluation of the structural components of the camera for a postulated Design Basis Earthquake (DBE) per the reference Structural Design Specification (SDS) document (6). The detail of supporting engineering calculations is documented in URS/Blume Calculation No. 66481-01-CA-03 (1)

  11. Color transparency and the structure of the proton in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1989-06-01

    Many anomalies suggest that the proton itself is a much more complex object than suggested by simple non-relativistic quark models. Recent analyses of the proton distribution amplitude using QCD sum rules points to highly-nontrivial proton structure. Solutions to QCD in one-space and one-time dimension suggest that the momentum distributions of non-valence quarks in the hadrons have a non-trivial oscillatory structure. The data seems also to be suggesting that the ''intrinsic'' bound state structure of the proton has a non-negligible strange and charm quark content, in addition to the ''extrinsic'' sources of heavy quarks created in the collision itself. As we shall see in this lecture, the apparent discrepancies with experiment are not so much a failure of QCD, but rather symptoms of the complexity and richness of the theory. An important tool for analyzing this complexity is the light-cone Fock state representation of hadron wavefunctions, which provides a consistent but convenient framework for encoding the features of relativistic many-body systems in quantum field theory. 121 refs., 44 figs., 1 tab

  12. Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis

    International Nuclear Information System (INIS)

    Lavoie, Raphael A.; Hebert, Craig E.; Rail, Jean-Francois; Braune, Birgit M.; Yumvihoze, Emmanuel; Hill, Laura G.; Lean, David R.S.

    2010-01-01

    Even at low concentrations in the environment, mercury has the potential to biomagnify in food chains and reaches levels of concern in apex predators. The aim of this study was to relate the transfer of total mercury (THg) and methylmercury (MeHg) in a Gulf of St. Lawrence food web to the trophic structure, from primary consumers to seabirds, using stable nitrogen (δ 15 N) and carbon (δ 13 C) isotope analysis and physical environmental parameters. The energy reaching upper trophic level species was principally derived from pelagic primary production, with particulate organic matter (POM) at the base of the food chain. We developed a biomagnification factor (BMF) taking into account the various prey items consumed by a given predator using stable isotope mixing models. This BMF provides a more realistic estimation than when using a single prey. Lipid content, body weight, trophic level and benthic connection explained 77.4 and 80.7% of the variation in THg and MeHg concentrations, respectively in this food web. When other values were held constant, relationships with lipid and benthic connection were negative whereas relationships with trophic level and body weight were positive. Total Hg and MeHg biomagnified in this food web with biomagnification power values (slope of the relationship with δ 15 N) of 0.170 and 0.235, respectively on wet weight and 0.134 and 0.201, respectively on dry weight. Values of biomagnification power were greater for pelagic and benthopelagic species compared to benthic species whereas the opposite trend was observed for levels at the base of the food chain. This suggests that Hg would be readily bioavailable to organisms at the base of the benthic food chain, but trophic transfer would be more efficient in each trophic level of pelagic and benthopelagic food chains.

  13. Transition metal atoms absorbed on MoS2/h-BN heterostructure: stable geometries, band structures and magnetic properties.

    Science.gov (United States)

    Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin

    2018-06-15

    We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.

  14. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    Science.gov (United States)

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  15. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    Science.gov (United States)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  16. Water‐soluble red pigments from Isaria farinosa and structural characterization of the main colored component

    DEFF Research Database (Denmark)

    Velmurugan, Palanivel; Lee, Yong Hoon; Nanthakumar, Kuppanan

    2010-01-01

    darkness, sucrose and glucose as carbon source, yeast extract, meat peptone and monosodium glutamate at a fixed concentration of 3% as nitrogen source. The addition of 10 mM CaCl2 to the culture medium increased the biomass and pigment production. Structural elucidation of the pigment using gas...... commercial importance in the production of Isaria farinosa pigment for industrial application after considerable toxicological examination. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)......The present study describes the red pigment synthesized by the filamentous fungi Isaria farinosa under submerged culture conditions. The pigment production was optimal under the following conditions: pH 5, agitation speed 150 rpm, temperature 27 °C, incubation time 192 h, light source total...

  17. Color Categories and Color Appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  18. Color Terms and Color Concepts

    Science.gov (United States)

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  19. Trophic structure of mesopelagic fishes in the Gulf of Mexico revealed by gut content and stable isotope analyses

    Science.gov (United States)

    McClain-Counts, Jennifer P.; Demopoulos, Amanda W.J.; Ross, Steve W.

    2017-01-01

    Mesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North-Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co-occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non-crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft-bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth-specific isotope trends in sources and consumers, and assimilation of 15N-depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was

  20. Maceration enzymes and mannoproteins: a possible strategy to increase colloidal stability and color extraction in red wines.

    Science.gov (United States)

    Guadalupe, Zenaida; Palacios, Antonio; Ayestaran, Belén

    2007-06-13

    Different strategies were adopted to achieve increases in color stability in Tempranillo wines: (i) addition of maceration enzymes directly to the must, (ii) addition of commercial mannoproteins to the must, and (iii) inoculation of must with yeast overexpressed of mannoproteins. The addition of enzymes favored color extraction, and the wines obtained presented higher values of wine color, color intensity, bisulfite-stable color, and visually enhanced color intensity. The enzyme hydrolytic activity produced an increase in the acid polysaccharide content and polyphenol index and yielded to wines with more astringency, tannin, and length. Added mannoproteins had clearer effects on the analyzed parameters than yeast. Contrary to what may be thought, mannoproteins did not maintain the extracted polyphenols in colloidal dispersion and neither ensured color stability. These compounds clearly modified the gustative structure of the wines, enhancing the sweetness and roundness.

  1. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    Science.gov (United States)

    Hochberg, E. J.

    2016-02-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  2. Color Analysis

    Science.gov (United States)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  3. Liquid structure as a guide for phase stability in the solid state: Discovery of a stable compound in the Au-Si alloy system

    International Nuclear Information System (INIS)

    Tasci, Emre S.; Sluiter, Marcel H.F.; Pasturel, Alain; Villars, Pierre

    2010-01-01

    A new crystalline ground state was discovered in the Au-Si system through first-principles electronic structure calculations. The new structure was found using the experimentally and theoretically determined local atomic structure in the liquid as a guide for the solid state. Local atomic structure in the liquid was matched with that for all known crystal structures as compiled in the Pauling File structural database. The best matching crystalline structures were then explicitly calculated using first-principles methods. Most candidate crystal structures were found to be close, but above the enthalpy of a composition weighted average of the face-centered cubic Au and diamond structure Si terminal phases, but one crystal structure was more stable than the terminal phases by about 10 meV atom -1 at T = 0 K. As first-principles simulations of local structure are feasible for most liquid alloys, the present methodology is applicable to other alloys lying near a eutectic composition.

  4. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang; Lu, Ang-Yu; Lu, Ping; Yang, Xiulin; Jiang, Chang-Ming; Mariano, Marina; Kaehr, Brian; Lin, Oliver; Taylor, André ; Sharp, Ian D.; Li, Lain-Jong; Chou, Stanley S.; Tung, Vincent

    2017-01-01

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  5. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    Science.gov (United States)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-12-01

    Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  6. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang

    2017-10-12

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  7. Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D.; Habibzadegan, Andrew [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); Tu, Chingkuang; Silverman, David N. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States)

    2013-08-01

    The X-ray crystallographic structure of the disulfide-containing HCAII (dsHCAII) has been solved to 1.77 Å resolution and revealed that successful oxidation of the cysteine bond was achieved while also retaining desirable active-site geometry. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration of CO{sub 2} to bicarbonate and a proton. Recently, there has been industrial interest in utilizing CAs as biocatalysts for carbon sequestration and biofuel production. The conditions used in these processes, however, result in high temperatures and acidic pH. This unfavorable environment results in rapid destabilization and loss of catalytic activity in CAs, ultimately resulting in cost-inefficient high-maintenance operation of the system. In order to negate these detrimental industrial conditions, cysteines at residues 23 (Ala23Cys) and 203 (Leu203Cys) were engineered into a wild-type variant of human CA II (HCAII) containing the mutation Cys206Ser. The X-ray crystallographic structure of the disulfide-containing HCAII (dsHCAII) was solved to 1.77 Å resolution and revealed that successful oxidation of the cysteine bond was achieved while also retaining desirable active-site geometry. Kinetic studies utilizing the measurement of {sup 18}O-labeled CO{sub 2} by mass spectrometry revealed that dsHCAII retained high catalytic efficiency, and differential scanning calorimetry showed acid stability and thermal stability that was enhanced by up to 14 K compared with native HCAII. Together, these studies have shown that dsHCAII has properties that could be used in an industrial setting to help to lower costs and improve the overall reaction efficiency.

  8. Color categories and color appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  9. Supplementary Material for Finding the Stable Structures of N1-xWX with an Ab-initio High-Throughput Approach

    Science.gov (United States)

    2015-05-08

    Supplementary material for “Finding the stable structures of N1−xWX with an ab - initio high-throughput approach” Michael J. Mehl∗ Center for...AND SUBTITLE Supplementary Material for ’Finding the Stable Structures of N1-xWX with an ab - initio High-throughput Approach’ 5a. CONTRACT NUMBER 5b...and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48, 13115–13118 (1993). 2 G. Kresse and J. Hafner, Ab initio

  10. Processing of Color Words Activates Color Representations

    Science.gov (United States)

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  11. Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time

    Directory of Open Access Journals (Sweden)

    Cody Springer Sheik

    2015-05-01

    Full Text Available Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time.

  12. Stable genetic structure and connectivity in pollution-adapted and nearby pollution-sensitive populations of Fundulus heteroclitus

    Science.gov (United States)

    Biancani, Leann M.; Flight, Patrick A.; Nacci, Diane E.; Rand, David M.; Crawford, Douglas L.; Oleksiak, Marjorie F.

    2018-01-01

    Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in Ne and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last

  13. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-10-18

    (Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.

  14. Colored operads

    CERN Document Server

    Yau, Donald

    2016-01-01

    The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.

  15. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  16. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    DEFF Research Database (Denmark)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten

    2011-01-01

    We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our...... simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index...

  17. Modeling human color categorization: Color discrimination and color memory

    OpenAIRE

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The experiments conducted prove the difference between color categorization by the cognitive processes color discrimination and color memory. In addition, they yield a Color Look-Up Table, which can improve c...

  18. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  19. Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai.

    Science.gov (United States)

    Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying

    2017-09-08

    Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation

  20. Colored Chaos

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation. Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D

  1. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  2. Color metasurfaces in industrial perspective

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Kristensen, Anders

    This doctoral thesis describes the utilization of color metasurfaces in an industrial perspective, where nano-scale textures and contingent post processing replace inks, dyes and pigments in plastic production. The concept of colors by structure arguably reduces the number of raw materials......, exemplified in silicon. However, only corresponding faint colors appear in polymeric materials. The concept of all-polymer pigment-free coloration seems somewhat restricted in relation to widespread industrial employment. Finally, a novel plasmon color technology for structural coloration in plastics......, and it is shown that the dependence on polarization can be controlled. In collaboration with industry, polymer-based colored metasurfaces of square-centimeter size are demonstrated by embossing, injection molding, roll-to-roll printing, and film insert molding with full compatibility. Furthermore, post production...

  3. Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection

    DEFF Research Database (Denmark)

    Song, Bokwang; Johansen, Villads Egede; Sigmund, Ole

    2017-01-01

    on the positional disorder among the identical, multilayered ridges as the critical factor for producing angular independent color. Realizing such positional disorder of identical nanostructures is difficult, which in turn has limited experimental verification of different physical mechanisms that have been...... proposed. In this paper, we suggest an alternative model of inter-structural disorder that can achieve the same broad-angle color reflection, and is applicable to wafer-scale fabrication using conventional thin film technologies. Fabrication of a thin film that produces pure, stable blue across a viewing...... angle of more than 120 ° is demonstrated, together with a robust, conformal color coating....

  4. Colored leptons

    International Nuclear Information System (INIS)

    Harari, H.

    1985-01-01

    If leptons are composite and if they contain colored preons, one expects the existence of heavy color-octet fermions with quantum numbers similar to those of ordinary leptons. Such a ''colored lepton'' should decay into a gluon and a lepton, yielding a unique experimental signature. Charged ''colored leptons'' probably have masses of the order of the compositeness scale Λ > or approx. 1 TeV. They may be copiously produced at future multi-TeV e + e - , ep and hadron colliders. ''Colored neutrinos'' may have both Dirac and Majorana masses. They could be much lighter than Λ, possibly as light as 100 GeV or less. In such a case they should be readily produced at the CERN anti pp collider, yielding spectacular monojet and dijet events. They may also be produced at LEP and HERA. (orig.)

  5. What is Color Blindness?

    Science.gov (United States)

    ... Color Blindness? Who Is at Risk for Color Blindness? Color Blindness Causes Color Blindness Diagnosis and Treatment How Color Blindness Is Tested What Is Color Blindness? Leer en Español: ¿Qué es el daltonismo? Written ...

  6. Dissection of Rovibronic Structure by Polarization-Resolved Two-Color Resonant Four-Wave Mixing Spectroscopy

    Science.gov (United States)

    Murdock, Daniel; Burns, Lori A.; Vaccaro, Patrick H.

    2009-08-01

    A synergistic theoretical and experimental investigation of stimulated emission pumping (SEP) as implemented in the coherent framework of two-color resonant four-wave mixing (TC-RFWM) spectroscopy is presented, with special emphasis directed toward the identification of polarization geometries that can distinguish spectral features according to their attendant changes in rotational quantum numbers. A vector-recoupling formalism built upon a perturbative treatment of matter-field interactions and a state-multipole expansion of the density operator allowed the weak-field signal intensity to be cast in terms of a TC-RFWM response tensor, RQ(K)(ɛ4*ɛ3ɛ2*ɛ1;Jg,Je,Jh,Jf), which separates the transverse characteristics of the incident and generated electromagnetic waves (ɛ4*ɛ3ɛ2*ɛ1) from the angular momentum properties of the PUMP and DUMP resonances (Jg,Je,Jh,Jf). For an isolated SEP process induced in an isotropic medium, the criteria needed to discriminate against subsets of rovibronic structure were encoded in the roots of a single tensor element, R0(0)(ɛ4*ɛ3ɛ2*ɛ1;Jg,Je,Jh,Je). By assuming all optical fields to be polarized linearly and invoking the limit of high quantum numbers, specific angles of polarization for the detected signal field were found to suppress DUMP resonances selectively according to the nature of their rotational branch and the rotational branch of the meshing PUMP line. These predictions were corroborated by performing SEP measurements on the ground electronic potential energy surface of tropolone in two distinct regimes of vibrational excitation, with the near-ultraviolet Ã1B2-X˜1A1 (π* ← π) absorption system affording the requisite PUMP and DUMP transitions.

  7. Colored Range Searching in Linear Space

    DEFF Research Database (Denmark)

    Grossi, Roberto; Vind, Søren Juhl

    2014-01-01

    In colored range searching, we are given a set of n colored points in d ≥ 2 dimensions to store, and want to support orthogonal range queries taking colors into account. In the colored range counting problem, a query must report the number of distinct colors found in the query range, while...... an answer to the colored range reporting problem must report the distinct colors in the query range. We give the first linear space data structure for both problems in two dimensions (d = 2) with o(n) worst case query time. We also give the first data structure obtaining almost-linear space usage and o...

  8. Stable3

    Indian Academy of Sciences (India)

    ... S, T, U, V, W, X, Y. 1, Supplementary table 3. All 2,853 putative orthorlogous gene pairs between rice and Arabidopsis and their responses towards N starvation stress. These genes showed differential expression in at least one treatment and one spieces. Cell colored in magenta represents up-regulated in corresponding ...

  9. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  10. Minuutit (Colors).

    Science.gov (United States)

    Pulu, Tupou L.; And Others

    This first grade workbook is designed for children in bilingual Inupiat-English programs in the Alaskan villages of Ambler, Kiana, Kobuk, Noorvik, Selawik, and Shungnak. Each page has a captioned black-and-white drawing to be colored. (CFM)

  11. Color tejido

    OpenAIRE

    Rius Tormo, Palmira

    2010-01-01

    Póster presentado en el IX Congreso Nacional del Color, Alicante, 29-30 junio, 1-2 julio 2010. La exposición que se propone tiene como núcleo principal el color y muestra las posibilidades expresivas que aporta a los diferentes materiales. Las 7 obras presentadas buscan la armonía estética y la fuerza simbólica.

  12. Structural color changes in permanent enamel of patients with cleft lip and palate: a case-control study.

    Science.gov (United States)

    Kulas, Antje; Illge, Christina; Bekes, Katrin; Eckert, Alexander W; Fuhrmann, Robert A W; Hirsch, Christian

    2016-01-01

    White spots are more common in patients with cleft lip and palate (CLP) than in the normal population. Whether these are due to the cleft itself or concomitant circumstances (e.g., surgical procedures, orthodontic treatments, systemic fluoridation, increased caries risk) remains unclear. This case-control study evaluated both their prevalence in CLP patients versus control subjects and associated risk factors. A total of 73 CLP patients (average age 8.7 years, range 6-18 years, 42 % male) and a control group of 73 age- and gender-matched non-CLP patients were included. Enamel color changes, subsuming mineralization defects (DDE index), mild dental fluorosis (Dean's index), and initial caries (ICDAS score 2), were recorded. Caries index (dmf-t/DMF-T) scores were also recorded to distinguish between high or low caries risk as defined by the Deutsche Arbeitsgemeinschaft für Jugendzahnpflege criteria. Histories of systemic fluoridation, trauma to primary teeth, surgery, and orthodontic treatment were obtained using a questionnaire. Statistical analysis included t test, χ (2) test, and multivariable logistic regression. Enamel color changes were observed three times more often in the CLP group than in the control group (39.7 vs. 12.3 %; p enamel color changes was associated with CLP itself [OR (odds ratio) 3.6; 95 % confidence interval (CI) 1.3-9.9] and table salt plus tablets combined for systemic fluoridation (OR 2.7, 95 % CI 1.1-6.9). No increased risks were identified for increased caries risk, history of primary-tooth trauma, or history of orthodontic treatment. The higher prevalence of enamel color changes in the CLP group (more than threefold compared to the control group) was not related to previous orthodontic treatments; however, systemic fluoridation (table salt and tablets) constituted a risk factor for the enamel color changes seen in the CLP patients.

  13. Structural Characterization of the Novel and Thermal Stable Hydrogenases from the Purple Sulfur Bacteria Thiocapsa Roseopersicina and Lamprobacter Modestohalophilus

    Science.gov (United States)

    2011-08-01

    advantages over other types of nanotubes. These CNTs form a stable monolayer which can be transferred to the conductive matrix using the Langmuir - Blodgett ...roseopersicina exhibits high stability in the buffer systems, in which its molecules have a negative charge: at the pH range 7-9 and low ionic strength; 4...coaxial glass cylinders. A modified 100 L bioreactor company ACE GLASS was used for deep cultivation. Sterilization of the total volume of liquid

  14. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO{sub 3} and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2008-01-21

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO{sub 3}/IDT/diamond and diamond/IDT/128{sup 0} rotated Y-X cut LiNbO{sub 3} multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO{sub 2}) or silicon dioxide (SiO{sub 2}). The presence of a TeO{sub 2} over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO{sub 2}. The temperature stable TeO{sub 2}/LiNbO{sub 3}/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) x 10{sup -15} s{sup 3} kg{sup -1} has been obtained for the temperature stable SiO{sub 2}/diamond/IDT/LiNbO{sub 3} layered structure indicating a promising device structure for AO applications.

  15. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond

    Science.gov (United States)

    Shandilya, Swati; Sreenivas, K.; Gupta, Vinay

    2008-01-01

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO3/IDT/diamond and diamond/IDT/128° rotated Y-X cut LiNbO3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO2) or silicon dioxide (SiO2). The presence of a TeO2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO2. The temperature stable TeO2/LiNbO3/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) × 10-15 s3 kg-1 has been obtained for the temperature stable SiO2/diamond/IDT/LiNbO3 layered structure indicating a promising device structure for AO applications.

  16. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond

    International Nuclear Information System (INIS)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay

    2008-01-01

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO 3 /IDT/diamond and diamond/IDT/128 0 rotated Y-X cut LiNbO 3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO 2 ) or silicon dioxide (SiO 2 ). The presence of a TeO 2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO 2 . The temperature stable TeO 2 /LiNbO 3 /IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) x 10 -15 s 3 kg -1 has been obtained for the temperature stable SiO 2 /diamond/IDT/LiNbO 3 layered structure indicating a promising device structure for AO applications

  17. Stable structures of Al510–800 clusters and lowest energy sequence of truncated octahedral Al clusters up to 10,000 atoms

    International Nuclear Information System (INIS)

    Wu, Xia; He, Chengdong

    2012-01-01

    Highlights: ► The stable structures of Al 510–800 clusters are obtained with the NP-B potential. ► Al 510–800 clusters adopt truncated octahedral (TO) growth pattern based on complete TOs at Al 405 , Al 586 , and Al 711 . ► The lowest energy sequence of complete TOs up to the size 10,000 is proposed. -- Abstract: The stable structures of Al 510–800 clusters are obtained using dynamic lattice searching with constructed cores (DLSc) method by the NP-B potential. According to the structural growth rule, octahedra and truncated octahedra (TO) configurations are adopted as the inner cores in DLSc method. The results show that in the optimized structures two complete TO structures are found at Al 586 and Al 711 . Furthermore, Al 510–800 clusters adopt TO growth pattern on complete TOs at Al 405 , Al 586 , and Al 711 , and the configurations of the surface atoms are investigated. On the other hand, Al clusters with complete TO motifs are studied up to the size 10,000 by the geometrical construction method. The structural characteristics of complete TOs are denoted by the term “family”, and the growth sequence of Al clusters is investigated. The lowest energy sequence of complete TOs is proposed.

  18. Color vision test

    Science.gov (United States)

    ... present from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... Vision test - color; Ishihara color vision test Images Color blindness tests References Bowling B. Hereditary fundus dystrophies. In: ...

  19. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  20. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  1. Modeling human color categorization: Color discrimination and color memory

    NARCIS (Netherlands)

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The

  2. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.

    Science.gov (United States)

    Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori

    2016-12-01

    The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Color superconductivity

    International Nuclear Information System (INIS)

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  4. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  5. Carbon sources and trophic structure in an eelgrass (Zostera marina L.) bed based on stable isotope and fatty acid analyses

    OpenAIRE

    Jaschinski, Sybill; Brepohl, Daniela C.; Sommer, Ulrich

    2008-01-01

    Multiple stable isotope and fatty acid analyses were applied to examine food web dynamics in an eelgrass Zostera marina L. system in the western Baltic Sea. Samples of eelgrass, epiphytic algae, sand microflora, red algae, phytoplankton and main consumer species were collected in June 2002. delta C-13 values of primary producers ranged from -9.6%. for eelgrass to the most depleted value of -34.9%. for the most abundant red alga, Delesseria sanguinea, Epiphyte delta C-13 (-11.3 parts per thous...

  6. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  7. Working Memory Is Related to Perceptual Processing: A Case from Color Perception

    Science.gov (United States)

    Allen, Elizabeth C.; Beilock, Sian L.; Shevell, Steven K.

    2011-01-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and…

  8. Synthesis and characterization of highly efficient and stable Pr6O11/Ag3PO4/Pt ternary hybrid structure

    International Nuclear Information System (INIS)

    Deng, Jiatao; Liu, Lin; Niu, Tongjun; Sun, Xiaosong

    2017-01-01

    Highlights: • Visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalysts were prepared. • Pr 6 O 11 /Ag 3 PO 4 /Pt showed highly efficient and stable photocatalystic activity. • The photocatalytic mechanism of Pr 6 O 11 /Ag 3 PO 4 /Pt composite was given. - Abstract: Ag 3 PO 4 is an excellent photocatalyst with high efficiency and quantum yield, but suffers from the fast recombination of photogenerated electron-hole pairs and photo-corrosion. Hereby, the highly efficient and stable visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalyst were prepared via a three-step wet chemical approach. The as-prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite was characterized by X-ray diffraction, US-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectra and transient photocurrent as well. Comparing with single Pr 6 O 11 or Ag 3 PO 4 , the prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite exhibited much higher photocatalytic activity and stability for the degradation of Rhodamine B under visible light irradiation (>420 nm). The enhanced photocatalytic performance of Pr 6 O 11 /Ag 3 PO 4 /Pt composite has been attributed to the efficient separation of photo-generated electron-hole pairs through a scheme system composed of Pr 6 O 11, Ag 3 PO 4 and Pt.

  9. Color maps of Arp 146

    Science.gov (United States)

    Schultz, A. B.; Spight, L. D.; Colegrove, P. T.; Disanti, M. A.; Fink, U.

    1990-01-01

    Four color maps of Arp 146 are given. The structure and color of the ring galaxy and its companion show evidence of a bridge of material between the companion and the remnant nucleus of the original galaxy now forming the ring. Broad band spatial coverage clearly defines regions of starburst occurrence.

  10. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    OpenAIRE

    Qidi Xie; Bowen Li; Xin He; Mei Zhang; Yan Chen; Qingguang Zeng

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to ...

  11. Color Sense

    Science.gov (United States)

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  12. Color transparency

    International Nuclear Information System (INIS)

    Jennings, B.K.; Miller, G.A.

    1993-01-01

    The anomously large transmission of nucleons through a nucleus following a hard collision is explored. This effect, known as color transparency, is believed to be a prediction of QCD. The necessary conditions for its occurrence and the effects that must be included a realistic calculation are discussed

  13. Color transparency

    International Nuclear Information System (INIS)

    Miller, G.A.

    1993-01-01

    Imagine shooting a beam of protons of high momentum P through an atomic nucleus. Usually the nuclear interactions prevent the particles from emerging with momentum ∼P. Further, the angular distribution of elastically scattered protons is close to the optical diffraction pattern produced by a black disk. Thus the nucleus acts as a black disk and is not transparent. However, certain high momentum transfer reactions in which a proton is knocked out of the nucleus may be completely different. Suppose that the high momentum transfer process leads to the formation of a small-size color singlet wavepacket that is ejected from the nucleus. The effects of gluons emitted by color singlet systems of closely separated quarks and gluons tend to cancel. Thus the wavepacket-nuclear interactions are suppressed, the nucleus becomes transparant and one says that color transparency CT occurs. The observation of CT also requires that the wavepacket not expand very much while it moves through the nucleus. Simple quantum mechanical formulations can assess this expansion. The creation of a small-sized wavepacket is expected in asymptotic perturbative effects. The author reviews the few experimental attempts to observe color transparency in nuclear (e,e'p) and (p,pp) reactions and interpret the data and their implications

  14. Color transparency

    International Nuclear Information System (INIS)

    Pire, B.; Ralston, J.P.

    1991-01-01

    This paper reviews the physics of color transparency and the unexpected energy dependence of recent measurements of high-energy fixed-angle elastic scattering in nuclear targets. The authors point out advantages of using transparency as a tool, introducing two concepts - spin and flavor flow filtering - that may be studied with nuclear targets. The special case of electroproduction is also considered

  15. Expression Differences of Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three Contrasting Kiwifruit Cultivars

    Directory of Open Access Journals (Sweden)

    Yanfei Liu

    2017-09-01

    Full Text Available Fruits of kiwifruit cultivars (Actinidia chinensis and A. deliciosa generally have green or yellow flesh when ripe. A small number of genotypes have red flesh but this coloration is usually restricted to the inner pericarp. Three kiwifruit cultivars having red (‘Hongyang’, or yellow (‘Jinnong-2’, or green (‘Hayward’ flesh were investigated for their color characteristics and pigment contents during development and ripening. The results show the yellow of the ‘Jinnong-2’ fruit is due to the combined effects of chlorophyll degradation and of beta-carotene accumulation. The red inner pericarps of ‘Hongyang’ fruit are due to anthocyanin accumulation. Expression differences of the pathway genes in the inner pericarps of the three different kiwifruits suggest that stay-green (SGR controls the degradation of chlorophylls, while lycopene beta-cyclase (LCY-β controls the biosynthesis of beta-carotene. The abundance of anthocyanin in the inner pericarps of the ‘Hongyang’ fruit is the results of high expressions of UDP flavonoid glycosyltransferases (UFGT. At the same time, expressions of anthocyanin transcription factors show that AcMYBF110 expression parallels changes in anthocyanin concentration, so seems to be a key R2R3 MYB, regulating anthocyanin biosynthesis. Further, transient color assays reveal that AcMYBF110 can autonomously induce anthocyanin accumulation in Nicotiana tabacum leaves by activating the transcription of dihydroflavonol 4-reductase (NtDFR, anthocyanidin synthase (NtANS and NtUFGT. For basic helix-loop-helix proteins (bHLHs and WD-repeat proteins (WD40s, expression differences show these may depend on AcMYBF110 forming a MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis, instead of it having a direct involvement.

  16. Stable isotopes and mercury in a model estuarine fish: Multibasin comparisons with water quality, community structure, and available prey base

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Douglas H., E-mail: Doug.Adams@MyFWC.com; Paperno, Richard

    2012-01-01

    Stable-isotope ratios ({delta}{sup 13}C and {delta}{sup 15}N) and mercury in a model predator, and associated prey community assessments were used to make inferences regarding food web relationships and how these relationships are influenced by habitat variability and anthropogenic factors. Although interconnected, the three major basins of the Indian River Lagoon system on the Atlantic coast of Florida comprise noticeably different available habitat types with spatially distinct faunal communities and available prey for spotted seatrout, Cynoscion nebulosus, a model predatory fish species. Water quality, degree of urbanization, human population density, and levels of nitrogen enrichment clearly differ between these representative estuarine basins. The differences can influence feeding ecology and therefore result in different mercury concentrations and different stable-isotope signatures of spotted seatrout between basins. Mercury concentrations in spotted seatrout were greatest in Mosquito Lagoon (ML) and least in the Indian River Lagoon proper (IRL), although concentrations were low for all basins. Spotted seatrout from IRL were carbon-depleted and nitrogen-enriched compared with those from the other basins; this suggests either that the fish's primary source of carbon in IRL is an algae- or phytoplankton-based food web or that the pathway through the food web is shorter there. The {delta}{sup 15}N values of IRL spotted seatrout were greater than those in the Banana River Lagoon or ML, suggesting slightly different trophic positioning of fish in these basins. The greater {delta}{sup 15}N values in IRL spotted seatrout may also reflect the greater human population density and resultant anthropogenic inputs (e.g., observed higher total nitrogen levels) in IRL compared with the other more pristine basins examined. Understanding species' responses to broad-scale habitat heterogeneity in estuaries and knowing basin-specific differences in stable isotopes

  17. QCD: color or glow

    International Nuclear Information System (INIS)

    Reya, E.

    1982-01-01

    The some of motivations for color and the numerous qualitative successes of QCD are presented. Non-leading higher order contributions to the (x, Q 2 )-dependence of scaling violations of non-singlet and singlet structure functions are discussed, especially non-perturbative correction to deep inelastic processes such as higher twist contributions. Finally the topic of how to account theoretically for the existence of free fractionally charged particles by concentrating mainly on spontaneously breaking SU(3) color is presented. (M.F.W.)

  18. Color Vision in Aniridia.

    Science.gov (United States)

    Pedersen, Hilde R; Hagen, Lene A; Landsend, Erlend C S; Gilson, Stuart J; Utheim, Øygunn A; Utheim, Tor P; Neitz, Maureen; Baraas, Rigmor C

    2018-04-01

    To assess color vision and its association with retinal structure in persons with congenital aniridia. We included 36 persons with congenital aniridia (10-66 years), and 52 healthy, normal trichromatic controls (10-74 years) in the study. Color vision was assessed with Hardy-Rand-Rittler (HRR) pseudo-isochromatic plates (4th ed., 2002); Cambridge Color Test and a low-vision version of the Color Assessment and Diagnosis test (CAD-LV). Cone-opsin genes were analyzed to confirm normal versus congenital color vision deficiencies. Visual acuity and ocular media opacities were assessed. The central 30° of both eyes were imaged with the Heidelberg Spectralis OCT2 to grade the severity of foveal hypoplasia (FH, normal to complete: 0-4). Five participants with aniridia had cone opsin genes conferring deutan color vision deficiency and were excluded from further analysis. Of the 31 with aniridia and normal opsin genes, 11 made two or more red-green (RG) errors on HRR, four of whom also made yellow-blue (YB) errors; one made YB errors only. A total of 19 participants had higher CAD-LV RG thresholds, of which eight also had higher CAD-LV YB thresholds, than normal controls. In aniridia, the thresholds were higher along the RG than the YB axis, and those with a complete FH had significantly higher RG thresholds than those with mild FH (P = 0.038). Additional increase in YB threshold was associated with secondary ocular pathology. Arrested foveal formation and associated alterations in retinal processing are likely to be the primary reason for impaired red-green color vision in aniridia.

  19. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers.

    Science.gov (United States)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  20. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  1. Color guided amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Broedel, Johannes [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA (United States); Dixon, Lance J. [SLAC National Accelerator Laboratory, Stanford University, Stanford, CA (United States)

    2012-07-01

    Amplitudes in gauge thoeries obtain contributions from color and kinematics. While these two parts of the amplitude seem to exhibit different symmetry structures, it turns out that they can be reorganized in a way to behave equally, which leads to the so-called color-kinematic dual representations of amplitudes. Astonishingly, the existence of those representations allows squaring to related gravitational theories right away. Contrary to the Kawaii-Levellen-Tye relations, which have been used to relate gauge theories and gravity previously, this method is applicable not only to tree amplitudes but also at loop level. In this talk, the basic technique is introduced followed by a discussion of the existence of color-kinematic dual representations for amplitudes derived from gauge theory actions which are deformed by higher-operator insertions. In addition, it is commented on the implications for deformed gravitational theories.

  2. Buckling control of morphing composite airfoil structure using multi-stable laminate by piezoelectric sensors/actuators

    Science.gov (United States)

    Zareie, Shahin; Zabihollah, Abolghassem; Azizi, Aydin

    2011-04-01

    In the present work, an unsymmetric laminated plate with surface bonded piezoelectric sensors, and actuators has been considered. Piezoelectric sensor were used to monitor the load and deformation bifurcation occurs. Monitoring the shape and load of a morphing structure is essential to ascertain that the structure is properly deployed and it is not loaded excessively ,thus, preventing structural to failure. A piezoceramic actuator is used to provide activation load and to force the structure to change its stability state from one to another. A non-linear finite element model based on the layerwise displacement theory considering the electro-mechanical coupling effects of piezoelectric elements has been developed for simulation purposes. A control mechanism is also employed to actively control the shape of the structure. It is observed that, utilizing multistable composite to design a morphing structure may significantly reduce the energy required for changing the shape. Further controlling the buckling phenomena using piezoelectric sensor and actuator along with an ON/OFF controller can effectively and efficiency enhance the performance of the morphing structure during manoeuver.

  3. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  4. Interaction of ultra high intensity laser pulse with structured target and fast particle generation in a stable mode

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.A. [Max-Born Institute, Berlin (Germany); Platonov, K.Yu. [Vavilov State Optical Institute, St. Petersburg (Russian Federation)

    2013-02-15

    It is shown that the relief structure with optimum parameters can significantly increase the short-pulse laser absorption, which is connected with the enhancement of moving electrons between relief ledges. Analytical modeling and numerical simulations confirm this argumentation. In the considered cases, degradation of a structure by a laser pre-pulse is the most important factor and for this scheme to work, one needs a very high-contrast laser-pulse and a nanosecond laser pre-pulse duration. The limitation on laser pulse duration is not so strong because after destruction of a first relief a secondary dynamic structure of ion density appears. Thus, high absorption connected with a relief existence continues during a long time that gives a possibility for structure targets to be more efficient compared to a plane one. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    Science.gov (United States)

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  6. The use of protein structure/activity relationships in the rational design of stable particulate delivery systems

    Directory of Open Access Journals (Sweden)

    M.H.B. Costa

    2002-06-01

    Full Text Available The recombinant heat shock protein (18 kDa-hsp from Mycobacterium leprae was studied as a T-epitope model for vaccine development. We present a structural analysis of the stability of recombinant 18 kDa-hsp during different processing steps. Circular dichroism and ELISA were used to monitor protein structure after thermal stress, lyophilization and chemical modification. We observed that the 18 kDa-hsp is extremely resistant to a wide range of temperatures (60% of activity is retained at 80ºC for 20 min. N-Acylation increased its ordered structure by 4% and decreased its ß-T1 structure by 2%. ELISA demonstrated that the native conformation of the 18 kDa-hsp was preserved after hydrophobic modification by acylation. The recombinant 18 kDa-hsp resists to a wide range of temperatures and chemical modifications without loss of its main characteristic, which is to be a source of T epitopes. This resistance is probably directly related to its lack of organization at the level of tertiary and secondary structures.

  7. Color extended visual cryptography using error diffusion.

    Science.gov (United States)

    Kang, InKoo; Arce, Gonzalo R; Lee, Heung-Kyu

    2011-01-01

    Color visual cryptography (VC) encrypts a color secret message into n color halftone image shares. Previous methods in the literature show good results for black and white or gray scale VC schemes, however, they are not sufficient to be applied directly to color shares due to different color structures. Some methods for color visual cryptography are not satisfactory in terms of producing either meaningless shares or meaningful shares with low visual quality, leading to suspicion of encryption. This paper introduces the concept of visual information pixel (VIP) synchronization and error diffusion to attain a color visual cryptography encryption method that produces meaningful color shares with high visual quality. VIP synchronization retains the positions of pixels carrying visual information of original images throughout the color channels and error diffusion generates shares pleasant to human eyes. Comparisons with previous approaches show the superior performance of the new method.

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  9. Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Schulte, Lars; Grydgaard, Anne; Jakobsen, Mathilde R.

    2011-01-01

    matrix component) and secondly degrading PDMS (the expendable component). Depending on the temperature of the cross-linking reaction different morphologies can be ‘frozen’ from the same block copolymer. Starting with a block copolymer precursor of lamellar morphology at room temperature, the gyroid...... structure or a metastable structure showing hexagonal symmetry (probably HPL) were permanently captured by cross-linking the precursor at 140 °C or at 85 °C, respectively. PDMS was degraded by reaction with tetrabutylamonium fluoride; considerations on the mechanism of cleaving reaction are presented...

  10. Facile synthesis of stable structured MoS{sub 2}-Mo-CNFs heteroarchitecture with enhanced hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Qionghua [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Faculty of Material and Energy, South West University, Chongqing 400700 (China); Yao, Yucen [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Liu, Bitao, E-mail: liubitao007@163.com [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Peng, Lingling; Yan, Hengqing; Hou, Zhupei; Wang, Jun [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Lin, Yue, E-mail: linyue@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026 (China)

    2017-06-01

    3D structured MoS{sub 2} are grown in-situ on Mo particles embedded carbon nanofibers (CNFs) via a hydrothermal method. Due to this special structure, the bonding and effective electron delivery between CNFs and MoS{sub 2} are both enhanced, and which will exhibits a better hydrogen evolution activity. The onset potential of this MoS{sub 2}-Mo-CNFs catalyst will decreased to 60 mV compared to the 90 mV for the MoS{sub 2}-CNFs. And its current density nearly no change with 5000 cycles which is better than the 32.3% decrease of MoS{sub 2}-CNFs at η = 300 mV (V vs RHE). - Highlights: • Newly structured MoS{sub 2}-Mo-CNFs with effectively connection between MoS{sub 2} and CNFs successfully synthesized. • This structure can enhance the charge transfer and significantly increase electrocatalytic efficiency. • Nearly no HER activity loss after 5000 CV cycles.

  11. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    Science.gov (United States)

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  12. Formation of a stable, three-dimensional porous structure with self-assembled glass spheres using the plasma-induced electromeniscus phenomenon

    International Nuclear Information System (INIS)

    Matsuura, Hiroshi; Tanikawa, Tamio; Ando, Yasuhisa; Miyake, Koji; Sasaki, Shinya

    2006-01-01

    We develop a method for fabricating a stable, three-dimensional porous structure with self-assembled glass spheres. This three-dimensional (3D) self-assembly of glass spheres is achieved using the electromeniscus phenomenon, which is associated with a microscale solution current. The current encloses a group of glass spheres, carries the spheres, and assembles them three dimensionally with its surface tension at the desired site. The assembled glass spheres are fixed using a plasma-induced reaction combined with thermal treatment of the solution. These assembled microscale spheres create a large number of openings with extensive surface areas. This extensive area among 3D porous structures would be particularly useful for fabricating high-performance catalysts and high-resolution hydrogen sensors

  13. Structural characteristics and harmonic vibrational analysis of the stable conformer of 2,3-epoxypropanol by quantum chemical methods.

    Science.gov (United States)

    Arjunan, V; Rani, T; Santhanam, R; Mohan, S

    2012-10-01

    The FT-IR and FT-Raman spectra of H bond inner conformer of 2,3-epoxypropanol have been recorded in the regions 3700-400 and 3700-100 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The normal coordinate analysis was carried out to confirm the precision of the assignments. The structure of the conformers H bond inner and H bond outer1 were optimised and the structural characteristics were determined by density functional theory (DFT) using B3LYP and MP2 methods with 6-31G** and 6-311++G** basis sets. The vibrational frequencies were calculated in all these methods and were compared with the experimental frequencies which yield good agreement between observed and calculated frequencies. The electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. [Study of spectrum drifting of primary colors and its impact on color rendering properties].

    Science.gov (United States)

    Cui, Xiao-yan; Zhang, Xiao-dong

    2012-08-01

    LEDs are currently used widely to display text, graphics and images in large screens. With red, green and blue LEDs as three primary colors, color rendition will be realized through color mixing. However, LEDs' spectrum will produce drifts with the changes in the temperature environment. With the changes in the driving current simulating changes in the temperature, the three primary color LEDs' spectral drifts were tested, and the drift characteristics of the three primary colors were obtained respectively. Based on the typical characteristics of the LEDs and the differences between LEDs with different colors in composition and molecular structure, the paper analyzed the reason for the spectrum drifts and the drift characteristics of different color LEDs, and proposed the equations of spectrum drifts. Putting the experimental data into the spectrum drift equations, the paper analyzed the impacts of primary colors on the mixed color, pointed out a way to reduce the chromatic aberration, and provided the theory for engineering application of color LEDs.

  15. Structural determination of stable MoOx monolayers on O/Cu3Au(1 0 0): DFT calculations

    International Nuclear Information System (INIS)

    Valadares, George C.S.; Mendes, F.M.T.; Dionízio Moreira, M.; Leitão, A.A.; Niehus, H.

    2012-01-01

    Highlights: ► Molybdenum oxide is widely used in catalysis in the chemical industry. ► Recently, ultra-thin (monolayer) films of MoO x have been produced on top of O-Cu 3 Au substrates. ► XPS measurements suggest an unusual +5 charge state of the Mo cation. ► Seeking for a low-energy structure with good match to the experimental STM and XPS. ► Bader charges indicate indeed an intermediate charge state as compared to the more common Mo +4 O 2 and Mo +6 O 3 bulk oxides. -- Abstract: Using ab initio calculations based on density functional theory (DFT), we propose a geometrical structure for MoO x monolayers recently grown on O/Cu 3 Au(1 0 0) substrates. The proposed structure reproduces the p(2 × 2) symmetry found by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED), as well as the intermediate oxidation state between Mo(IV) and Mo(VI) identified by X-ray photoelectron spectroscopy (XPS). Simulated STM images assign the bright spots in the experimental images to oxygen 2p states.

  16. A Color-Opponency Based Biological Model for Color Constancy

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2011-05-01

    Full Text Available Color constancy is the ability of the human visual system to adaptively correct color-biased scenes under different illuminants. Most of the existing color constancy models are nonphysiologically plausible. Among the limited biological models, the great majority is Retinex and its variations, and only two or three models directly simulate the feature of color-opponency, but only of the very earliest stages of visual pathway, i.e., the single-opponent mechanisms involved at the levels of retinal ganglion cells and lateral geniculate nucleus (LGN neurons. Considering the extensive physiological evidences supporting that both the single-opponent cells in retina and LGN and the double-opponent neurons in primary visual cortex (V1 are the building blocks for color constancy, in this study we construct a color-opponency based color constancy model by simulating the opponent fashions of both the single-opponent and double-opponent cells in a forward manner. As for the spatial structure of the receptive fields (RF, both the classical RF (CRF center and the nonclassical RF (nCRF surround are taken into account for all the cells. The proposed model was tested on several typical image databases commonly used for performance evaluation of color constancy methods, and exciting results were achieved.

  17. Do focal colors look particularly "colorful"?

    Science.gov (United States)

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  18. Fundamental understanding of oxygen reduction and reaction behavior and developing high performance and stable hetero-structured cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2016-11-14

    New unique hetero-structured cathode has been developed in this project. La2NiO4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove the enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO2 & La2-xNiO4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.

  19. Atomic structure of a stable high-index Ge surface: G2(103)-(4x1)

    DEFF Research Database (Denmark)

    Seehofer, L.; Bunk, O.; Falkenberg, G.

    1997-01-01

    Based on scanning tunneling microscopy and surface X-ray diffraction, we propose a complex structural model for the Ge(103)-(4 x 1) reconstruction. Each unit cell contains two (103) double steps, which gives rise to the formation of stripes of Ge atoms oriented in the [] direction....... The stripes and the spaces between them are covered with threefold-coordinated Ge adatoms. Charge is transferred from the bulk-like edge atoms of the double steps to the adatoms. The formation of the reconstruction can be explained in terms of stress relief, charge transfer, and minimization of the dangling...

  20. Effects of enzymatic extraction on anthocyanins yield of saffron tepals (Crocos sativus along with its color properties and structural stability

    Directory of Open Access Journals (Sweden)

    Leila Lotfi

    2015-06-01

    Full Text Available An aqueous solution of Pectinex (containing cellulase, hemicellulase, and pectinase at 1%, 2.5%, 5%, 7%, and 10% concentrations and 40°C was used to extract anthocyanins (Acys of saffron tepals at 20, 40, 60, 120 and 180 min reaction times and compared with ethanol solvent under similar conditions. The Acys of the Pectinex solution reached 6.7 mg/g of tepal powder (∼40% more than the ethanol method when the enzyme concentrations and extraction times were, respectively, 5% and 60 min. The Acys of aqueous enzymes had three times slower degradation rates and 50% more attractive chroma color than the ones recovered by ethanol solution after 3 h of extraction time. Additionally, the Acys of the ethanol solution lost its content sharply (>45% and its chroma changed quickly (due to the browning and polymerization. High performance liquid chromatography (HPLC analysis showed that Acys extracted with mixed enzymes had about 80% more cyanidin 3-glucosides and 20% less pelargonidin 3,5-glucosides than with the ethanol method. Most probably, the high content of cyanidin 3-glycosides in enzyme-extracted Acys of saffron tepals was the key factor for its high stability.

  1. Automatic color preference correction for color reproduction

    Science.gov (United States)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  2. Perception and psychology of colors and their application in design

    OpenAIRE

    Despot, Katerina; Sandeva, Vaska; Donev, Aleksandar

    2011-01-01

    Color science is the science that studies the properties of color and their application in different areas of life. More complex emotional states produce colors in works of art. Their impact far beyond the immediate sensations associated in stable and strong feelings. The same meaning is embedded in the words of the great Soviet artist Kuzma Petrov-Vodkin "There are colors and soothing irritation, screaming, arguing with each other and living together gently. In their fight or consent is born...

  3. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  4. The high Andes, gene flow and a stable hybrid zone shape the genetic structure of a wide-ranging South American parrot

    Directory of Open Access Journals (Sweden)

    Schaefer H Martin

    2011-06-01

    Full Text Available Abstract Background While the gene flow in some organisms is strongly affected by physical barriers and geographical distance, other highly mobile species are able to overcome such constraints. In southern South America, the Andes (here up to 6,900 m may constitute a formidable barrier to dispersal. In addition, this region was affected by cycles of intercalating arid/moist periods during the Upper/Late Pleistocene and Holocene. These factors may have been crucial in driving the phylogeographic structure of the vertebrate fauna of the region. Here we test these hypotheses in the burrowing parrot Cyanoliseus patagonus (Aves, Psittaciformes across its wide distributional range in Chile and Argentina. Results Our data show a Chilean origin for this species, with a single migration event across the Andes during the Upper/Late Pleistocene, which gave rise to all extant Argentinean mitochondrial lineages. Analyses suggest a complex population structure for burrowing parrots in Argentina, which includes a hybrid zone that has remained stable for several thousand years. Within this zone, introgression by expanding haplotypes has resulted in the evolution of an intermediate phenotype. Multivariate regressions show that present day climatic variables have a strong influence on the distribution of genetic heterogeneity, accounting for almost half of the variation in the data. Conclusions Here we show how huge barriers like the Andes and the regional environmental conditions imposed constraints on the ability of a parrot species to colonise new habitats, affecting the way in which populations diverged and thus, genetic structure. When contact between divergent populations was re-established, a stable hybrid zone was formed, functioning as a channel for genetic exchange between populations.

  5. An AgI@g-C3N4 hybrid core@shell structure: Stable and enhanced photocatalytic degradation

    Science.gov (United States)

    Liu, Li; Qi, Yuehong; Yang, Jinyi; Cui, Wenquan; Li, Xingang; Zhang, Zisheng

    2015-12-01

    A novel visible-light-active material AgI@g-C3N4 was prepared by ultrasonication/chemisorption method. The core@shell structure AgI@g-C3N4 catalyst showed high efficiency for the degradation of MB under visible light irradiation (λ > 420 nm). Nearly 96.5% of MB was degraded after 120 min of irradiation in the presence of the AgI@g-C3N4 photocatalyst. Superior stability was also observed in the cyclic runs indicating that the as prepared hybrid composite is highly desirable for the remediation of organic contaminated wastewaters. The improved photocatalytic performance is due to synergistic effects at the interface of AgI and g-C3N4 which can effectively accelerate the charge separation and reinforce the photostability of hybrid composite. The possible mechanism for the photocatalytic activity of AgI@g-C3N4 was tentatively proposed.

  6. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    International Nuclear Information System (INIS)

    Olcese, M.; Caso, C.; Castiglioni, G.; Cereseto, R.; Cuneo, S.; Dameri, M.; Gemme, C.; Glitza, K.-W.; Lenzen, G.; Mora, F.; Netchaeva, P.; Ockenfels, W.; Piano, E.; Pizzorno, C.; Puppo, R.; Rebora, A.; Rossi, L.; Thadome, J.; Vernocchi, F.; Vigeolas, E.; Vinci, A.

    2004-01-01

    The design of an ultra light structure, the so-called 'stave', to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high-dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed

  7. Cognitive aspects of color

    Science.gov (United States)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  8. Effect of nightguard vital bleaching gel on the color stability of provisional restorative materials

    Directory of Open Access Journals (Sweden)

    Salwa Omar Bajunaid

    2016-01-01

    Conclusions: Composite-based provisional material showed highest color stability when exposed to vital tooth bleaching gel, whereas methacrylate-based material was the least color stable. Polycarbonate crowns were more color stable when exposed to 15% bleaching gel as opposed to 10% bleaching gel.

  9. Emergence of a few distinct structures from a single formal structure type during high-throughput screening for stable compounds: The case of RbCuS and RbCuSe

    Science.gov (United States)

    Trimarchi, Giancarlo; Zhang, Xiuwen; DeVries Vermeer, Michael J.; Cantwell, Jacqueline; Poeppelmeier, Kenneth R.; Zunger, Alex

    2015-10-01

    Theoretical sorting of stable and synthesizable "missing compounds" from those that are unstable is a crucial step in the discovery of previously unknown functional materials. This active research area often involves high-throughput (HT) examination of the total energy of a given compound in a list of candidate formal structure types (FSTs), searching for those with the lowest energy within that list. While it is well appreciated that local relaxation methods based on a fixed list of structure types can lead to inaccurate geometries, this approach is widely used in HT studies because it produces answers faster than global optimization methods (that vary lattice vectors and atomic positions without local restrictions). We find, however, a different failure mode of the HT protocol: specific crystallographic classes of formal structure types each correspond to a series of chemically distinct "daughter structure types" (DSTs) that have the same space group but possess totally different local bonding configurations, including coordination types. Failure to include such DSTs in the fixed list of examined candidate structures used in contemporary high-throughput approaches can lead to qualitative misidentification of the stable bonding pattern, not just quantitative inaccuracies. In this work, we (i) clarify the understanding of the general DST-FST relationship, thus improving current discovery HT approaches, (ii) illustrate this failure mode for RbCuS and RbCuSe (the latter being a yet unreported compound and is predicted here) by developing a synthesis method and accelerated crystal-structure determination, and (iii) apply the genetic-algorithm-based global space-group optimization (GSGO) approach which is not vulnerable to the failure mode of HT searches of fixed lists, demonstrating a correct identification of the stable DST. The broad impact of items (i)-(iii) lies in the demonstrated predictive ability of a more comprehensive search strategy than what is currently

  10. The Disunity of Color

    OpenAIRE

    Matthen, Mohan

    1999-01-01

    What is color? What is color vision? Most philosophers answer by reference to humans: to human color qualia, or to the environmental properties or "quality spaces" perceived by humans. It is argued, with reference to empirical findings concerning comparative color vision and the evolution of color vision, that all such attempts are mistaken. An adequate definition of color vision must eschew reference to its outputs in the human cognition and refer only to inputs: color vision consists in...

  11. Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid.

    Science.gov (United States)

    Cherel, Y; Ridoux, V; Spitz, J; Richard, P

    2009-06-23

    Although deep-sea cephalopods are key marine organims, their feeding ecology remains essentially unknown. Here, we report for the first time the trophic structure of an assemblage of these animals (19 species) by measuring the isotopic signature of wings of their lower beaks, which accumulated in stomachs of stranded sperm whales. Overall, the species encompassed a narrow range in delta(13)C values (1.7 per thousand), indicating that they lived in closely related and overlapping habitats. delta(13)C values can be interpreted in terms of distribution with the more (13)C-depleted species (e.g. Stigmatoteuthis arcturi, Vampyroteuthis infernalis) having a more pelagic habitat than the more (13)C-enriched, bathyal species (e.g. Todarodes sagittatus and the giant squid Architeuthis dux). The cephalopods sampled had delta(15)N values ranging 4.6 per thousand, which is consistent with the species spanning approximately 1.5 trophic levels. Neither the giant octopod (Haliphron atlanticus) nor the giant squid reached the highest trophic position. Species delta(15)N was independent of body size, with large squids having both the highest (Taningia danae) and lowest (Lepidoteuthis grimaldii) delta(15)N values. Their trophic position indicates that some species share the top of the food web, together with other megacarnivores such as the sperm whale.

  12. Hearing Color

    Science.gov (United States)

    Bieryla, Allyson; Diaz Merced, Wanda; Davis, Daniel

    2018-06-01

    In astronomy, the relationship between color and temperature is an important concept. This concept can be demonstrated in a laboratory or seen at telescope when observing stars. A blind/visually-impaired (B/VI) person would not be able to engage in the same observational demonstrations that are typically done to explain this concept. We’ve developed a tool for B/VI students to participate in these types of observational activities. Using an arduino compatible micro controller with and RGB light sensor, we are able to convert filtered light into sound. The device will produce different timbres for different wavelengths of light, which can then be used to distinguish the temperature of an object. The device is handheld, easy to program and inexpensive to reproduce (< $50). It is also fitted to mount on a telescope for observing. The design schematic and code will be open source and available for download.

  13. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy

    Science.gov (United States)

    2009-01-01

    Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195

  14. Long-term behaviour of concrete under saline conditions for long-term stable sealing structures; Langzeitverhalten von Beton unter salinaren Bedingungen fuer langzeitstabile Verschlussbauwerke

    Energy Technology Data Exchange (ETDEWEB)

    Dahlhaus, Frank; Haucke, Joerg [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau und Spezialtiefbau

    2012-03-15

    The authors of the contribution under consideration examine the long-term behaviour of concrete under saline conditions and in particular the suitability of the dam construction materials salt concrete and brine concrete for the use as a part of a sealing system of long-term stable geotechnical sealing structures. The long-term stability of the building material mainly is determined by the corrosion of the cement paste phases. The specific shrinkage behaviour of the construction material is analyzed experimentally in order to verify the expected cracks. The mechanisms of cracking in the salt concrete and brine concrete are analyzed by means of a mesomechanical approach in numerical finite-element calculations.

  15. Use of a Novel Two Color PALM Method to Examine Structural Properties of Drp1 Helical Rings during Mammalian Mitochondrial Fission In Situ

    Science.gov (United States)

    Rosenbloom, Alyssa Blair

    In this thesis, we accomplish two goals: 1) we develop a novel two color photoactivatable light microscopy (PALM) method for imaging in mammalian cells and 2) we explore our original biological question and discern the structural properties of the Drp1 helical ring during fission. We established that mitochondrial membranes can be distinguished with the available photoactivatable fluorescent protein mEos2. However, we were not able to use any of the published photoactivatable and photoswitchable green fluorescent proteins, predominantly because of an inability to identify individual fluorescent events due to rapidity of the photoswitiching. Based on published crystal structures, we created novel Dronpa variants with increasing steric hindrance around the chromophore, likely partially inhibiting the isomerization. We replaced Val157 with isoleucine, leucine, or phenyalanine. DronpaV157F showed no fluorescence and was discarded. DronpaV157I and DronpaV157L showed photoswitchable green fluorescence, with individual fluorescent events that were more easily discerned. DronpaV157L in particular had bright fluorescent events that were well separated when imaged in mammalian cells at 20 Hz. We named this new variant rsKame. Using PALM we successfully imaged rsKame expressed and localized to the mammalian mitochondrial inner membrane. With the novel photoswitchable fluorescent protein, rsKame, available, we returned to the development of a novel two color PALM method. We chose PAmCherry1 as the partner for rsKame since PAmCherry1 has distinct and well separated excitation/emission spectra from rsKame and is not activated by low 405 nm laser power density. We first imaged rsKame with 405 nm activation at (0.61 mW/mm2) and 488 nm activation/excitation (5.87 W/mm 2) to completion. We then imaged PAmCherry1 with increasing 405 nm activation (0.6-6.0 W/mm2) and 561 nm excitation (22 W/mm 2). With the novel PALM imaging method, we labeled the inner and outer mitochondrial

  16. Using color management in color document processing

    Science.gov (United States)

    Nehab, Smadar

    1995-04-01

    Color Management Systems have been used for several years in Desktop Publishing (DTP) environments. While this development hasn't matured yet, we are already experiencing the next generation of the color imaging revolution-Device Independent Color for the small office/home office (SOHO) environment. Though there are still open technical issues with device independent color matching, they are not the focal point of this paper. This paper discusses two new and crucial aspects in using color management in color document processing: the management of color objects and their associated color rendering methods; a proposal for a precedence order and handshaking protocol among the various software components involved in color document processing. As color peripherals become affordable to the SOHO market, color management also becomes a prerequisite for common document authoring applications such as word processors. The first color management solutions were oriented towards DTP environments whose requirements were largely different. For example, DTP documents are image-centric, as opposed to SOHO documents that are text and charts centric. To achieve optimal reproduction on low-cost SOHO peripherals, it is critical that different color rendering methods are used for the different document object types. The first challenge in using color management of color document processing is the association of rendering methods with object types. As a result of an evolutionary process, color matching solutions are now available as application software, as driver embedded software and as operating system extensions. Consequently, document processing faces a new challenge, the correct selection of the color matching solution while avoiding duplicate color corrections.

  17. Modeling human color categorization

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Th.E.; Kisters, P.M.F.

    A unique color space segmentation method is introduced. It is founded on features of human cognition, where 11 color categories are used in processing color. In two experiments, human subjects were asked to categorize color stimuli into these 11 color categories, which resulted in markers for a

  18. ANALYSIS OF COST STRUCTURE FOR PHARMACOTHERAPY OF PATIENTS WITH STABLE ANGINA (THE CASE OF CARDIOLOGY DEPARTMENT OF TVER REGIONAL CLINICAL HOSPITAL

    Directory of Open Access Journals (Sweden)

    M. A. Demidova

    2012-01-01

    Full Text Available Aim. To analyze the cost structure for pharmacotherapy of patients with stable angina (SA, in particular, to compare the cost of pharmacotherapy with drugs, both included and not included into the official Standard of care (SC. Material and methods. Medical records of patients with SA (n=100 admitted to the cardiology department of Tver Regional Clinical Hospital in January-July 2010 were studied retrospectivelly. Costs of treatment with drugs specified in SC for patients with SA as well as drugs not included in SC were considered. Costs of pharmacotherapy and cost structure were determined. Pharmacoeconomical methods, especially ABC analysis, were partially used.  Results. Totally 65502.39 ruble was spent for pharmacotherapy of 100 patients with SA. Cost structure was the following: 32679.34 ruble was spent for drugs recommended by SC, 23698.18 ruble — for drugs not included in SC, and 9124.87 ruble — for drugs to treat concomitant diseases which are not taken into account by SC for patients with SA. Conclusion. SA pharmacotherapy counts 50% of the total cost for drugs recommended by SC, 36% — for drugs not included in SC but belonged to pharmacological class presented in SC, and 14% — drugs from pharmacological class not included in SC. In the process of new SC elaboration for SA patients it is necessary to take into account treatment costs of concomitant diseases especially diabetes mellitus which can account up to 9.5% of total treatment cost of SA patients.

  19. Alternatives to those artificial FD&C food colorants.

    Science.gov (United States)

    Wrolstad, Ronald E; Culver, Catherine A

    2012-01-01

    Replacement of artificial food dyes with natural colorants is a current marketing trend, notwithstanding the fact that neither the United States nor the European Union (EU) has defined natural with respect to food colors. Consumer groups have concerns over the safety of synthetic colorants, and in addition, many of the naturally derived colorants provide health benefits. Food scientists frequently have the assignment of replacing artificial colorants with natural alternatives. This can be challenging, as naturally derived colorants are usually less stable, and all desired hues might, in fact, not be obtainable. In this review, the chemical and physical properties, limitations, and more suitable applications for those colorants that are legally available as substitutes for the synthetic colorants are summarized. Issues and challenges for certain foods are discussed, and in addition, colorants that may be available in the future are briefly described.

  20. A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles

    International Nuclear Information System (INIS)

    Azofeifa, D.E.; Hernández-Jiménez, M.; Libby, E.; Solís, A.; Barboza-Aguilar, C.; Vargas, W.E.

    2015-01-01

    Under normal incidence of non-polarized light, reflection spectra from the cuticle of golden-like C. aurigans scarabs shows a broad band displayed from 525 to 950 nm, with a spectral ripple structure that consists of a uniform sequence of peaks superimposed on the main reflection band. Cross sectional Scanning Electron Microscope (SEM) images of the cuticle initially suggest the presence of a multilayered structure. A radiative transfer matrix formalism is first applied to describe as much as possible the main features of coherent reflection spectra, by assuming optically homogenous layers distributed through the exocuticle, with chitin as the major constituent material. Additional non-coherent multiple reflections due to layers in the endocuticle are also evaluated from this approach. The presence of a pigmented micron sized structure beneath the procuticle requires the evaluation of a diffuse light contribution to the reflection. This was carried out from a four-flux radiative transfer model. Optical anisotropy is introduced by interpreting the SEM images in terms of a twisted Bouligand-type structure, and reflection spectra are evaluated from an implementation of the so-called 4×4 Berreman's formalism. We have been able to approach the main features characterizing the reflection spectra of C. aurigans' elytra following this progressive way. - Highlights: • Polarization of light reflected by the cuticle of C. aurigans scarabs is established. • The pitch of the helical structure in the cuticle is established from SEM images. • C. aurigans is a broadband natural reflector with the wider reflection band observed

  1. ColorFull: a C++ library for calculations in SU(Nc) color space

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedahl, Malin [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden)

    2015-05-15

    ColorFull, a C++ package for treating QCD color structure, is presented. ColorFull, which utilizes the trace basis approach, is intended for interfacing with event generators, but can also be used as a stand-alone package for squaring QCD amplitudes, calculating interferences, and describing the effect of gluon emission and gluon exchange. (orig.)

  2. Cryptically patterned moths perceive bark structure when choosing body orientations that match wing color pattern to the bark pattern.

    Directory of Open Access Journals (Sweden)

    Chang-Ku Kang

    Full Text Available Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i whether a choice of resting orientation by moths depends on the properties of natural background, and ii what sensory cues moths use. We studied moths' behavior on natural (a tree log and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature. We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel to achieve crypticity in another sensory modality (visual. This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.

  3. Cryptically patterned moths perceive bark structure when choosing body orientations that match wing color pattern to the bark pattern.

    Science.gov (United States)

    Kang, Chang-Ku; Moon, Jong-Yeol; Lee, Sang-Im; Jablonski, Piotr G

    2013-01-01

    Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths' behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.

  4. The central object R 136 in the gas nebula 30 Doradus - Structure, color, mass and excitation parameter

    Science.gov (United States)

    Feitzinger, J. V.; Schlosser, W.; Schmidt-Kaler, T.; Winkler, C.

    1980-04-01

    Photographic observations with the 3,6 m ESO and 0,61 m Bochum telescopes in different colours of the central part of the 30 Doradus Nebula are presented. The structure of the central object R 136 is studied by image analysis methods, i.e. digitalisation and contrast enhancement. The central object R 136 of the supergiant gas nebula 30 Doradus consists of three components; the main component covers an area of (0.7 pc)2. The components show a colour gradient, R 136a being much bluer than R 136c. This composite structure is seen in photographic IR, U and V likewise. A plot of the spectral intensity distribution from λ = 73 cm to 1550 Å of the central 2'.5 × 2'.5 region of 30 Doradus is given. The main contribution in the UV can be attributed to R 136. This object dominates the of the central part of 30 Doradus. It determines together with 16 other bright stars in the center the excitation parameter of the nebula. Its effective temperature lies between 50000 and 55000K and the tipper and lower mass values are 250 and 103 solar masses. The bolometric magnitude is brighter than -l4m. The inner structure of 30 Doradus can be explained as the result of the stellar-wind of R 136.

  5. Embedding Color Watermarks in Color Images

    Directory of Open Access Journals (Sweden)

    Wu Tung-Lin

    2003-01-01

    Full Text Available Robust watermarking with oblivious detection is essential to practical copyright protection of digital images. Effective exploitation of the characteristics of human visual perception to color stimuli helps to develop the watermarking scheme that fills the requirement. In this paper, an oblivious watermarking scheme that embeds color watermarks in color images is proposed. Through color gamut analysis and quantizer design, color watermarks are embedded by modifying quantization indices of color pixels without resulting in perceivable distortion. Only a small amount of information including the specification of color gamut, quantizer stepsize, and color tables is required to extract the watermark. Experimental results show that the proposed watermarking scheme is computationally simple and quite robust in face of various attacks such as cropping, low-pass filtering, white-noise addition, scaling, and JPEG compression with high compression ratios.

  6. Urine - abnormal color

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  7. Skin color - patchy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...

  8. Tooth - abnormal colors

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  10. Application of nitrogen and carbon stable isotopes (δ(15N and δ(13C to quantify food chain length and trophic structure.

    Directory of Open Access Journals (Sweden)

    Matthew J Perkins

    Full Text Available Increasingly, stable isotope ratios of nitrogen (δ(15N and carbon (δ(13C are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR using δ(15N, and carbon range (CR using δ(13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15N or δ(13C from source to consumer between trophic levels and among food chains. δ(15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰, and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority

  11. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    Science.gov (United States)

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  12. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    Science.gov (United States)

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  13. Using color and grayscale images to teach histology to color-deficient medical students.

    Science.gov (United States)

    Rubin, Lindsay R; Lackey, Wendy L; Kennedy, Frances A; Stephenson, Robert B

    2009-01-01

    Examination of histologic and histopathologic microscopic sections relies upon differential colors provided by staining techniques, such as hematoxylin and eosin, to delineate normal tissue components and to identify pathologic alterations in these components. Given the prevalence of color deficiency (commonly called "color blindness") in the general population, it is likely that this reliance upon color differentiation poses a significant obstacle for several medical students beginning a course of study that includes examination of histologic slides. In the past, first-year medical students at Michigan State University who identified themselves as color deficient were encouraged to use color transparency overlays or tinted contact lenses to filter out problematic colors. Recently, however, we have offered such students a computer monitor adjusted to grayscale for in-lab work, as well as grayscale copies of color photomicrographs for examination purposes. Grayscale images emphasize the texture of tissues and the contrasts between tissues as the students learn histologic architecture. Using this approach, color-deficient students have quickly learned to compensate for their deficiency by focusing on cell and tissue structure rather than on color variation. Based upon our experience with color-deficient students, we believe that grayscale photomicrographs may also prove instructional for students with normal (trichromatic) color vision, by encouraging them to consider structural characteristics of cells and tissues that may otherwise be overshadowed by stain colors.

  14. Towards tricking a pathogen's protease into fighting infection: the 3D structure of a stable circularly permuted onconase variant cleavedby HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Mariona Callís

    Full Text Available Onconase® is a highly cytotoxic amphibian homolog of Ribonuclease A. Here, we describe the construction of circularly permuted Onconase® variants by connecting the N- and C-termini of this enzyme with amino acid residues that are recognized and cleaved by the human immunodeficiency virus protease. Uncleaved circularly permuted Onconase® variants are unusually stable, non-cytotoxic and can internalize in human T-lymphocyte Jurkat cells. The structure, stability and dynamics of an intact and a cleaved circularly permuted Onconase® variant were determined by Nuclear Magnetic Resonance spectroscopy and provide valuable insight into the changes in catalytic efficiency caused by the cleavage. The understanding of the structural environment and the dynamics of the activation process represents a first step toward the development of more effective drugs for the treatment of diseases related to pathogens expressing a specific protease. By taking advantage of the protease's activity to initiate a cytotoxic cascade, this approach is thought to be less susceptible to known resistance mechanisms.

  15. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  16. Crystallography of color superconductivity

    International Nuclear Information System (INIS)

    Bowers, Jeffrey A.; Rajagopal, Krishna

    2002-01-01

    We develop the Ginzburg-Landau approach to comparing different possible crystal structures for the crystalline color superconducting phase of QCD, the QCD incarnation of the Larkin-Ovchinnikov-Fulde-Ferrell phase. In this phase, quarks of different flavor with differing Fermi momenta form Cooper pairs with nonzero total momentum, yielding a condensate that varies in space like a sum of plane waves. We work at zero temperature, as is relevant for compact star physics. The Ginzburg-Landau approach predicts a strong first-order phase transition (as a function of the chemical potential difference between quarks) and for this reason is not under quantitative control. Nevertheless, by organizing the comparison between different possible arrangements of plane waves (i.e., different crystal structures) it provides considerable qualitative insight into what makes a crystal structure favorable. Together, the qualitative insights and the quantitative, but not controlled, calculations make a compelling case that the favored pairing pattern yields a condensate which is a sum of eight plane waves forming a face-centered cubic structure. They also predict that the phase is quite robust, with gaps comparable in magnitude to the BCS gap that would form if the Fermi momenta were degenerate. These predictions may be tested in ultracold gases made of fermionic atoms. In a QCD context, our results lay the foundation for a calculation of vortex pinning in a crystalline color superconductor, and thus for the analysis of pulsar glitches that may originate within the core of a compact star

  17. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  18. Layered Crystal Structure, Color-Tunable Photoluminescence, and Excellent Thermal Stability of MgIn2P4O14 Phosphate-Based Phosphors.

    Science.gov (United States)

    Zhang, Jing; Cai, Ge-Mei; Yang, Lv-Wei; Ma, Zhi-Yuan; Jin, Zhan-Peng

    2017-11-06

    Single-component white phosphors stand a good chance to serve in the next-generation high-power white light-emitting diodes. Because of low thermal stability and containing lanthanide ions with reduced valence state, most of reported phosphors usually suffer unstable color of lighting for practical packaging and comparably complex synthetic processes. In this work, we present a type of novel color-tunable blue-white-yellow-emitting MgIn 2 P 4 O 14 :Tm 3+ /Dy 3+ phosphor with high thermal stability, which can be easily fabricated in air. Under UV excitation, the MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 white phosphor exhibits negligible thermal-quenching behavior, with a 99.5% intensity retention at 150 °C, relative to its initial value at room temperature. The phosphor host MgIn 2 P 4 O 14 was synthesized and reported for the first time. MgIn 2 P 4 O 14 crystallizes in the space group of C2/c (No. 15) with a novel layered structure built of alternate anionic and cationic layers. Its disordering structure, with Mg and In atoms co-occupying the same site, is believed to facilitate the energy transfer between rare-earth ions and benefit by sustaining the luminescence with increasing temperature. The measured absolute quantum yields of MgIn 2 P 4 O 14 :Dy 0.04 , MgIn 2 P 4 O 14 :Tm 0.01 Dy 0.04 , and MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 phosphors under the excitation of 351 nm ultraviolet radiation are 70.50%, 53.24%, and 52.31%, respectively. Present work indicates that the novel layered MgIn 2 P 4 O 14 is a promising candidate as a single-component white phosphor host with an excellent thermal stability for near-UV-excited white-light-emitting diodes (wLEDs).

  19. Representing Color Ensembles.

    Science.gov (United States)

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-10-01

    Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.

  20. Color on emergency mapping

    Science.gov (United States)

    Jiang, Lili; Qi, Qingwen; Zhang, An

    2007-06-01

    There are so many emergency issues in our daily life. Such as typhoons, tsunamis, earthquake, fires, floods, epidemics, etc. These emergencies made people lose their lives and their belongings. Every day, every hour, even every minute people probably face the emergency, so how to handle it and how to decrease its hurt are the matters people care most. If we can map it exactly before or after the emergencies; it will be helpful to the emergency researchers and people who live in the emergency place. So , through the emergency map, before emergency is occurring we can predict the situation, such as when and where the emergency will be happen; where people can refuge, etc. After disaster, we can also easily assess the lost, discuss the cause and make the lost less. The primary effect of mapping is offering information to the people who care about the emergency and the researcher who want to study it. Mapping allows the viewers to get a spatial sense of hazard. It can also provide the clues to study the relationship of the phenomenon in emergency. Color, as the basic element of the map, it can simplify and clarify the phenomenon. Color can also affects the general perceptibility of the map, and elicits subjective reactions to the map. It is to say, structure, readability, and the reader's psychological reactions can be affected by the use of color.

  1. Coloring geographical threshold graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  2. Advanced Plasmonic Materials for Dynamic Color Display.

    Science.gov (United States)

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2018-04-01

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Memory for color reactivates color processing region.

    Science.gov (United States)

    Slotnick, Scott D

    2009-11-25

    Memory is thought to be constructive in nature, where features processed in different cortical regions are synthesized during retrieval. In an effort to support this constructive memory framework, the present functional magnetic resonance imaging study assessed whether memory for color reactivated color processing regions. During encoding, participants were presented with colored and gray abstract shapes. During retrieval, old and new shapes were presented in gray and participants responded 'old-colored', 'old-gray', or 'new'. Within color perception regions, color memory related activity was observed in the left fusiform gyrus, adjacent to the collateral sulcus. A retinotopic mapping analysis indicated this activity occurred within color processing region V8. The present feature specific evidence provides compelling support for a constructive view of memory.

  4. Natural Colorants: Food Colorants from Natural Sources.

    Science.gov (United States)

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  5. Stabilisation of the [6]-prismane structure by silicon substitution

    Indian Academy of Sciences (India)

    Asif Equbal

    structure becomes increasingly more stable, relative to the two isolated benzene (like) structures. A similar trend is observed ... a theoretical point of view.1–4 However, experimental evidence .... For multi-Si-substituted benzene, the stability of the dimer depends on .... The light green color in the ring indicates silicon atoms.

  6. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2018-03-01

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE 00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  7. Structural equation modeling of the effects of racism, LGBTQ discrimination, and internalized oppression on illicit drug use in LGBTQ people of color.

    Science.gov (United States)

    Drazdowski, Tess K; Perrin, Paul B; Trujillo, Michael; Sutter, Megan; Benotsch, Eric G; Snipes, Daniel J

    2016-02-01

    Experiences with lesbian, gay, bisexual, transgender, or queer (LGBTQ) discrimination and racism have both been associated with mental health problems and illicit drug use. However, the cumulative effects of both forms of discrimination--and resulting internalized oppression--on illicit drug use in LGBTQ people of color (POC) has not been examined in the research literature. Using online questionnaires, this study collected self-report data from 200 LGBTQ POC about their experiences with racism, LGBTQ discrimination, internalized racism, internalized LGBTQ discrimination, and illicit drug use. Two structural equation models yielded adequate fit indices in which experiences with racism and LGBTQ discrimination led to more internalized oppression, which then led to greater illicit drug use magnitude. LGBTQ discrimination was directly related to increased internalized oppression, which was positively associated with illicit drug use magnitude; the relationship between LGBTQ discrimination and illicit drug use magnitude was mediated by internalized oppression in both models. However, racism and the interaction between racism and LGBTQ discrimination did not show valid direct effects on internalized oppression or indirect effects on illicit drug use magnitude. LGBTQ POC can be the targets of both racism and LGBTQ discrimination, although the current study found that the most psychologically damaging effects may come from LGBTQ discrimination. Interventions meant to decrease or prevent illicit drug use in LGBTQ POC may benefit from helping participants examine the links among LGBTQ discrimination, internalized oppression, and illicit drug use as a coping strategy, focusing on substituting more adaptive coping. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  9. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, BaAl2O4:Eu2+, Dy3+ Phosphors

    Directory of Open Access Journals (Sweden)

    Qidi Xie

    2017-10-01

    Full Text Available (Sr, Ca, BaAl2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, CaAl2O4:Eu2+,Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, BaAl2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED. Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(InN near UV chips.

  10. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  11. New insights about the population structure of the blue jack mackerel (Trachurus picturatus in the NE Atlantic using otolith stable isotope ratios

    Directory of Open Access Journals (Sweden)

    Cláudia Moreira

    2015-11-01

    Full Text Available The blue jack mackerel Trachurus picturatus is a pelagic fish widely distributed in the NE Atlantic and also found in the Mediterranean and Black Seas. It is an economically important resource in the Macaronesian islands of Azores, Madeira and Canaries, but despite its fishery value and ecological importance, fluctuations in the landings are difficult to explain since studies regarding the population dynamics, stocks structure, fish movements and habitat connectivity are inexistent. The populations of marine pelagic fishes, in particular the migratory ones, such as T. picturatus,, may be erroneously considered an homogenous population unit because they show broad geographic distributions, large population sizes and high migratory movements. Stable isotope ratios, namely δ18O and δ13C, measured by standard mass spectrometric techniques in whole otolith samples of T. picturatus adults sampled in the fishery grounds of the Islands of Azores, Madeira and Canaries, and at the Portuguese mainland (Matosinhos, Peniche and Portimão during the spring-summer of 2013 were analysed. The 18O signatures followed the general tendency taking into account the seawater temperatures of the sampling regions. 13C signatures showed however differences between the oceanic or continental origin of the fish. Both variables provided location-specific signatures. Further studies including mitochondrial and nuclear DNA studies are also been conducted to acquire new knowledge for fisheries conservation purposes.

  12. Synthesis and X-ray Crystal Structure of a Stable cis-1,2-bis(diphenylphosphinoethene Monodentate Thiolate Platinum Complex and TGA Studies of its Precursors

    Directory of Open Access Journals (Sweden)

    Vaz Rodrigo H.

    2002-01-01

    Full Text Available The stable Pt(II complex [Pt(SPh2(dppen (4, (dppen, Ph2PCH=CHPPh2 was obtained from [PtCl(SPh2(SnPh3cod] (1 (cod = 1,5-cyclooctadiene by reductive elimination reaction of SnClPh3 and substitution of the cod ligand by the diphosphine, albeit in low yields. Yields of 80% were obtained when [Pt(SPh2cod] (3 was used as the starting material instead. The viability of these reactions was suggested by a TG study, performed on the starting materials. Complex 4 was characterized by multinuclear NMR (195Pt, 31P, ¹H and 13C and IR spectroscopies and elemental analysis. The molecular structure, solved by an X-ray diffraction study, exhibted a slightly distorted square-planar geometry and short C=C and Pt-P bond distances which were interpreted in terms of a p interaction between the double bond and the metal-ligand bond, as observed for other diphosphine compounds described previously.

  13. Sensory Drive, Color, and Color Vision.

    Science.gov (United States)

    Price, Trevor D

    2017-08-01

    Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.

  14. Electrolytic coloration of O22--doped NaCl crystals

    International Nuclear Information System (INIS)

    Qin Fang; Gu Hongen; Song Cuiying; Wang Na; Guo Meili; Wang Fen; Liu Jia

    2007-01-01

    O 2 2- -doped NaCl crystals are colored electrolytically by using a pointed cathode and a flat anode at various temperatures and voltages, which mainly benefit from appropriate coloration temperatures and voltages as well as anode structure of used electrolysis apparatus. Characteristic OH - , U, V 2 m , U A , V 2 , V 3 , O 2- -V a + complex, F, R 1 , R 2 and M absorption bands are observed in absorption spectra of the colored crystals. Production and conversion of color centers in electrolytic coloration is explained. Current-time curves for electrolytic colorations and their relationships with electrolytic colorations were given

  15. Green fluorescent protein (GFP color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1 transfected endothelial modification.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND: Human Parvovirus B19 (PVB19 has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. METHODS AND FINDINGS: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP color reporter gene in the non-structural segment 1 (NS1 of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304. The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1 and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147 were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber. NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; P<0.05 and induces endothelial expression of EMMPRIN/CD147 (CD147: mean ± SEM: NS1-GFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; P<0.05 compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05. The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR analysis. CONCLUSIONS: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  16. Industrial Color Physics

    CERN Document Server

    Klein, Georg A

    2010-01-01

    This unique book starts with a short historical overview of the development of the theories of color vision and applications of industrial color physics. The three dominant factors producing color - light source, color sample, and observer - are described in detail. The standardized color spaces are shown and related color values are applied to characteristic color qualities of absorption as well as of effect colorants. The fundamentals of spectrometric and colorimetric measuring techniques together with specific applications are described. Theoretical models for radiative transfer in transparent, translucent, and opaque layers are detailed; the two, three, and multi-flux approximations are presented for the first time in a coherent formalism. These methods constitute the fundamentals not only for the important classical methods, but also modern methods of recipe prediction applicable to all known colorants. The text is supplied with 52 tables, more than 200 partially colored illustrations, an appendix, and a...

  17. Color: Physics and Perception

    Science.gov (United States)

    Gilbert, Pupa

    Unless we are colorblind, as soon as we look at something, we know what color it is. Simple, isn't it? No, not really. The color we see is rarely just determined by the physical color, that is, the wavelength of visible light associated with that color. Other factors, such as the illuminating light, or the brightness surrounding a certain color, affect our perception of that color. Most striking, and useful, is understanding how the retina and the brain work together to interpret the color we see, and how they can be fooled by additive color mixing, which makes it possible to have color screens and displays. I will show the physical origin of all these phenomena and give live demos as I explain how they work. Bring your own eyes! For more information: (1) watch TED talk: ``Color: Physics and Perception'' and (2) read book: PUPA Gilbert and W Haeberli ``Physics in the Arts'', ISBN 9780123918789.

  18. Evidence of stable genetic structure across a remote island archipelago through self-recruitment in a widely dispersed coral reef fish

    KAUST Repository

    Priest, Mark

    2012-11-19

    We used microsatellite markers to assess the population genetic structure of the scribbled rabbitfish Siganus spinus in the western Pacific. This species is a culturally important food fish in the Mariana Archipelago and subject to high fishing pressure. Our primary hypothesis was to test whether the individuals resident in the southern Mariana Island chain were genetically distinct and hence should be managed as discrete stocks. In addition to spatial sampling of adults, newly-settled individuals were sampled on Guam over four recruitment events to assess the temporal stability of the observed spatial patterns, and evidence of self-recruitment. We found significant genetic structure in S. spinus across the western Pacific, with Bayesian analyses revealing three genetically distinct clusters: the southernMariana Islands, east Micronesia, and the west Pacific; with the southern Mariana Islands beingmore strongly differentiated fromthe rest of the region. Analyses of temporal samples from Guam indicated the southern Mariana cluster was stable over time, with no genetic differentiation between adults versus recruits, or between samples collected across four separate recruitment events spanning 11 months. Subsequent assignment tests indicated seven recruits had self-recruited from within the Southern Mariana Islands population. Our results confirm the relative isolation of the southern Mariana Islands population and highlight how local processes can act to isolate populations that, by virtue of their broad-scale distribution, have been subject to traditionally high gene flows. Our results add to a growing consensus that self-recruitment is a highly significant influence on the population dynamics of tropical reef fish. 2012 The Authors. Ecology and Evolution published by Blackwell Publishing Ltd.

  19. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  20. Cross-Cultural Color-Odor Associations

    OpenAIRE

    Levitan, Carmel A.; Ren, Jiana; Woods, Andy T.; Boesveldt, Sanne; Chan, Jason S.; McKenzie, Kirsten J.; Dodson, Michael; Levin, Jai A.; Leong, Christine X. R.; van den Bosch, Jasper J. F.

    2014-01-01

    Colors and odors are associated; for instance, people typically match the smell of strawberries to the color pink or red. These associations are forms of crossmodal correspondences. Recently, there has been discussion about the extent to which these correspondences arise for structural reasons (i.e., an inherent mapping between color and odor), statistical reasons (i.e., covariance in experience), and/or semantically-mediated reasons (i.e., stemming from language). The present study probed th...

  1. Cross-cultural color-odor associations

    OpenAIRE

    Levitan, C.A.; Ren, J.; Boesveldt, S.; Chan, J.; McKenzie, K.J.; Levin, J.A.; Leong, C.X.; Bosch, van den, J.F.

    2014-01-01

    Colors and odors are associated; for instance, people typically match the smell of strawberries to the color pink or red. These associations are forms of crossmodal correspondences. Recently, there has been discussion about the extent to which these correspondences arise for structural reasons (i.e., an inherent mapping between color and odor), statistical reasons (i.e., covariance in experience), and/or semantically-mediated reasons (i.e., stemming from language). The present study probed th...

  2. The weight of color

    OpenAIRE

    Brunberg, Mikael

    2013-01-01

    This paper explores the weight of color, with the focus lying on the symbolic significance ofcolor. Exploring whether color in itself conveys symbolic significance and is the symbolicsignificance of color permanent, or is it an after construction? It will be looking at differentareas such as what makes us humans able to perceive colors in the first place, beginning withan insight at some of the foundations in the area of color theory. Mentioning experiments ondecomposed white light, that cont...

  3. The use of color infrared aerial photography in determining salt marsh vegetation and delimiting man-made structures of Lynnhaven Bay, Virginia. M.S. Thesis

    Science.gov (United States)

    Holman, R. E., III

    1974-01-01

    Color infrared aerial photography was found to be superior to color aerial photography in an ecological study of Lynnhaven Bay, Virginia. The research was divided into three phases: (1) Determination of the feasibility of correlating color infrared aerial photography with saline wetland species composition and zonation patterns, (2) determination of the accuracy of the aerial interpretation and problems related to the aerial method used; and (3) comparison of developed with undeveloped areas along Lynnhaven Bay's shoreline. Wetland species composition and plant community zonation bands were compared with aerial infrared photography and resulted in a high degree of correlation. Problems existed with changing physical conditions; time of day, aircraft angle and sun angle, making it necessary to use several different characteristics in wetland species identification. The main characteristics used were known zonation patterns, textural signatures and color tones. Lynnhaven Bay's shoreline was 61.5 percent developed.

  4. Comment on "Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide" and Thin-Film Interference from Dried Graphene Oxide Film.

    Science.gov (United States)

    Hong, Seung-Ho; Song, Jang-Kun

    2017-04-01

    The mechanism of the iridescent color reflection from dried thin graphene oxide (GO) film on Si wafer is clarified. Dissimilarly to the photonic crystalline reflection in aqueous GO dispersion, the color reflection in dried GO film originates from the thin film interference. The peak reflection can reach 23% by optimizing the GO thickness and the substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Short-term memory affects color perception in context.

    OpenAIRE

    Olkkonen, M.; Allred, S. R.

    2014-01-01

    Color-based object selection — for instance, looking for ripe tomatoes in the market — places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. He...

  6. Cross-cultural color-odor associations

    NARCIS (Netherlands)

    Levitan, C.A.; Ren, J.; Boesveldt, S.; Chan, J.; McKenzie, K.J.; Levin, J.A.; Leong, C.X.; Bosch, van den J.F.

    2014-01-01

    Colors and odors are associated; for instance, people typically match the smell of strawberries to the color pink or red. These associations are forms of crossmodal correspondences. Recently, there has been discussion about the extent to which these correspondences arise for structural reasons

  7. Coloring mixed hypergraphs

    CERN Document Server

    Voloshin, Vitaly I

    2002-01-01

    The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory of colorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and th

  8. Preferred skin color enhancement for photographic color reproduction

    Science.gov (United States)

    Zeng, Huanzhao; Luo, Ronnier

    2011-01-01

    Skin tones are the most important colors among the memory color category. Reproducing skin colors pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the color preference of skin color reproduction. Several methods to morph skin colors to a smaller preferred skin color region has been reported in the past. In this paper, a new approach is proposed to further improve the result of skin color enhancement. An ellipsoid skin color model is applied to compute skin color probabilities for skin color detection and to determine a weight for skin color adjustment. Preferred skin color centers determined through psychophysical experiments were applied for color adjustment. Preferred skin color centers for dark, medium, and light skin colors are applied to adjust skin colors differently. Skin colors are morphed toward their preferred color centers. A special processing is applied to avoid contrast loss in highlight. A 3-D interpolation method is applied to fix a potential contouring problem and to improve color processing efficiency. An psychophysical experiment validates that the method of preferred skin color enhancement effectively identifies skin colors, improves the skin color preference, and does not objectionably affect preferred skin colors in original images.

  9. Sensitive color dosimeters using photochromic diarylethenes

    International Nuclear Information System (INIS)

    Irie, Setsuko; Irie, Masahiro

    2008-01-01

    Various types of color dosimeters are conveniently used for estimating absorbed dose in the radiation sterilization of biomedical materials. Diarylethenes with heterocyclic aryl groups are extensively studied for the applications to the optoelectronic devices, such as optical memory media and photowitching devices because of their thermally irreversible and fatigue-resistant properties. The colors of diarylethenes never fade in the dark conditions. The thermally stable dithienylethene derivatives are applied to sensitive color dosimeters. Upon γ-irradiation, polystyrene films containing diarylethene derivatives, such as 1,2-bis(2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene 1 or 1,2-bis(2,5-dimethyl-3-thienyl) perfluorocyclopentene 2, and fluorescent metal complexes turned blue or red. Even if the absorbed dose was as small as 10 Gy, a clear color change was observed. (author)

  10. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  11. Structural and luminescent study of TeO2-BaO-Bi2O3-Ag glass system doped with Eu3+ and Dy3+ for possible color-tunable phosphor application

    Science.gov (United States)

    Lewandowski, Tomasz; Seweryński, Cezary; Walas, Michalina; Łapiński, Marcin; Synak, Anna; Sadowski, Wojciech; Kościelska, Barbara

    2018-05-01

    Tellurite glass systems of 73TeO2-4BaO-3Bi2O3-1Ag:xEu2O3-(2-x)Dy2O3 (where x = 0.5, 1, 1.5, 2 in molar ratio) composition have been successfully synthesized. In order to acquire Ag nanoparticles, materials have been heat treated at 350 °C in the air atmosphere. Structural properties of obtained samples were evaluated with various techniques. X-Ray Diffraction (XRD) measurements indicated that obtained materials are amorphous in nature. UV-vis results presented transitions characteristic to Dy3+ and Eu3+ ions. Additionally, X-Ray Photoelectron Spectroscopy (XPS) analysis indicated the presence of silver in metallic form. Photoluminescence measurements shown influence of Ag nanoparticles on emission characteristics. Simultaneous emission of Dy3+ and Eu3+ has been observed when samples were excited with λexc = 390 nm. Change of the emission color induced by heat treatment has been observed and described in case of x = 1 glass series. According to CIE results emission color changes as Eu/Dy ratio and heat treatment time are changed. Emission shifts from reddish-orange to yellowish white color. Obtained photoluminescence results confirm that synthesized materials are good candidates for color tunable phosphors.

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ...

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ... away without suffering an eye injury. However, the natural protective mechanisms of the eye – such as the ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are ... this month in the New England Journal of Medicine. Unfortunately, this kind of injury is all too ...

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ... 2018 By Dan T. Gudgel Do you know what the difference is between ophthalmologists and optometrists? A ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lentes de contacto de color Sep. 26, 2013 It started as an impulsive buy from a souvenir ... Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored contact lenses without ...

  18. Facts About Color Blindness

    Science.gov (United States)

    ... color? Normal Human Retina What color is a strawberry? Most of us would say red, but do ... light and shorter wavelength corresponds to blue light. Strawberries and other objects reflect some wavelengths of light ...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering buying approved by the ... Service For Advertisers For Media Ophthalmology Job Center © American ...

  20. Fingers that change color

    Science.gov (United States)

    ... gov/ency/article/003249.htm Fingers that change color To use the sharing features on this page, please enable JavaScript. Fingers or toes may change color when they are exposed to cold temperatures or ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Peligros asociados con los lentes de contacto de color Sep. 26, 2013 It started as an impulsive ... Halloween is a popular time for people to use colored contact lenses to enhance their costumes. From ...

  2. Colored Tensor Models - a Review

    Directory of Open Access Journals (Sweden)

    Razvan Gurau

    2012-04-01

    Full Text Available Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions, non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.

  3. Color and experimental physics

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1975-01-01

    After a brief review of the color hypothesis and the motivations for its introduction, the experimental tests arare discussed. It is assumed that colored states have not been produced at present energies and only experimental tests which apply below the color threshold, when color is a ''hidden symmetry,'' are discussed. Some of these tests offer the possibility of distinguishing between quark models with fractional and integral quark charges. (auth)

  4. Color ordering in QCD

    OpenAIRE

    Schuster, Theodor

    2013-01-01

    We derive color decompositions of arbitrary tree and one-loop QCD amplitudes into color ordered objects called primitive amplitudes. Furthermore, we derive general fermion flip and reversion identities spanning the null space among the primitive amplitudes and use them to prove that all color ordered tree amplitudes of massless QCD can be written as linear combinations of color ordered tree amplitudes of $\\mathcal{N}=4$ super Yang-Mills theory.

  5. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  6. Developmental Color Perception

    Science.gov (United States)

    Gaines, Rosslyn; Little, Angela C.

    1975-01-01

    A sample of 107 subjects including kindergarteners, fifth graders, high school sophomores, parents of kindergarteners, and master artists were presented with a 108-item color perception test to investigate surface color perception at these age levels. A set of surface color perception rules was generated. (GO)

  7. Computational Cognitive Color Perception

    NARCIS (Netherlands)

    Ciftcioglu, O.; Bittermann, M.S.

    2016-01-01

    Comprehension of aesthetical color characteristics based on a computational model of visual perception and color cognition are presented. The computational comprehension is manifested by the machine’s capability of instantly assigning appropriate colors to the objects perceived. They form a scene

  8. ColorTracker

    NARCIS (Netherlands)

    Holzheu, Stefanie; Lee, S.; Herneoja, Aulikki; Österlund, Toni; Markkanen, Piia

    2016-01-01

    With the work-in-progress research project ColorTracker we explore color as a formal design tool. This project-based paper describes a novel software application that processes color composition of a place and transcribes the data into three-dimensional geometries for architectural design. The

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to enhance their costumes. From ... MD, professor of ophthalmology at Case Western Reserve University in Cleveland. "This is far ... Use Facts About Colored Contacts and Halloween Safety Colored ...

  10. Herbivory of Omnivorous Fish Shapes the Food Web Structure of a Chinese Tropical Eutrophic Lake: Evidence from Stable Isotope and Fish Gut Content Analyses

    Directory of Open Access Journals (Sweden)

    Jian Gao

    2017-01-01

    Full Text Available Studies suggest that, unlike the situation in temperate lakes, high biomasses of omnivorous fish are maintained in subtropical and tropical lakes when they shift from a turbid phytoplankton-dominated state to a clear water macrophyte-dominated state, and the predation pressure on large-bodied zooplankton therefore remains high. Whether this reflects a higher degree of herbivory in warm lakes than in temperate lakes is debatable. We combined food web studies using stable isotopes with gut content analyses of the most dominant fish species to elucidate similarities and differences in food web structure between a clear water macrophyte-dominated basin (MDB and a turbid phytoplankton-dominated basin (PDB of Huizhou West Lake, a shallow tropical Chinese lake. The δ13C–δ15N biplot of fish and invertebrates revealed community-wide differences in isotope-based metrics of the food webs between MDB and PDB. The range of consumer δ15N (NR was lower in MDB than in PDB, indicating shorter food web length in MDB. The mean nearest neighbor distance (MNND and standard deviation around MNND (SDNND were higher in MDB than in PDB, showing a markedly low fish trophic overlap and a more uneven packing of species in niches in MDB than in PDB. The range of fish δ13C (CR of consumers was more extensive in MDB than in PDB, indicating a wider feeding range for fish in MDB. Mixing model results showed that macrophytes and associated periphyton constituted a large fraction of basal production sources for the fish in MDB, while particulate organic matter (POM contributed a large fraction in PDB. In MDB, the diet of the dominant fish species, crucian carp (Carassius carassius, consisted mainly of vegetal matter (macrophytes and periphyton and zooplankton, while detritus was the most important food item in PDB. Our results suggest that carbon from macrophytes with associated periphyton may constitute an important food resource for omnivorous fish, and this may strongly

  11. Human Colors-The Rainbow Garden of Pathology: What Gives Normal and Pathologic Tissues Their Color?

    Science.gov (United States)

    Piña-Oviedo, Sergio; Ortiz-Hidalgo, Carlos; Ayala, Alberto G

    2017-03-01

    - Colors are important to all living organisms because they are crucial for camouflage and protection, metabolism, sexual behavior, and communication. Human organs obviously have color, but the underlying biologic processes that dictate the specific colors of organs and tissues are not completely understood. A literature search on the determinants of color in human organs yielded scant information. - To address 2 specific questions: (1) why do human organs have color, and (2) what gives normal and pathologic tissues their distinctive colors? - Endogenous colors are the result of complex biochemical reactions that produce biologic pigments: red-brown cytochromes and porphyrins (blood, liver, spleen, kidneys, striated muscle), brown-black melanins (skin, appendages, brain nuclei), dark-brown lipochromes (aging organs), and colors that result from tissue structure (tendons, aponeurosis, muscles). Yellow-orange carotenes that deposit in lipid-rich tissues are only produced by plants and are acquired from the diet. However, there is lack of information about the cause of color in other organs, such as the gray and white matter, neuroendocrine organs, and white tissues (epithelia, soft tissues). Neoplastic tissues usually retain the color of their nonneoplastic counterpart. - Most available information on the function of pigments comes from studies in plants, microorganisms, cephalopods, and vertebrates, not humans. Biologic pigments have antioxidant and cytoprotective properties and should be considered as potential future therapies for disease and cancer. We discuss the bioproducts that may be responsible for organ coloration and invite pathologists and pathology residents to look at a "routine grossing day" with a different perspective.

  12. Colors, colored overlays, and reading skills

    OpenAIRE

    Uccula, Arcangelo; Enna, Mauro; Mulatti, Claudio

    2014-01-01

    In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e., who experience eyestrain and/or visual distortions – e.g., color, shape, or movement illusions – while reading. This condition would interest the 12–14% of the ge...

  13. Inverse design of nanostructured surfaces for color effects

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Johansen, Villads Egede; Friis, Kasper Storgaard

    2014-01-01

    We propose an inverse design methodology for systematic design of nanostructured surfaces for color effects. The methodology is based on a 2D topology optimization formulation based on frequency-domain finite element simulations for E and/or H polarized waves. The goal of the optimization...... is to maximize color intensity in prescribed direction(s) for a prescribed color (RGB) vector. Results indicate that nanostructured surfaces with any desirable color vector can be generated; that complex structures can generate more intense colors than simple layerings; that angle independent colorings can...

  14. Tuning the Color of Silicon Nanostructures

    KAUST Repository

    Cao, Linyou; Fan, Pengyu; Barnard, Edward S.; Brown, Ana M.; Brongersma, Mark L.

    2010-01-01

    and Si structures have already been engineered to enable light emission, optical cloaking, waveguiding, nonlinear optics, enhanced light absorption, and sensing. Here, we demonstrate that a wide spectrum of colors can be generated by harnessing the strong

  15. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  16. Cross-Cultural Color-Odor Associations

    Science.gov (United States)

    Levitan, Carmel A.; Ren, Jiana; Woods, Andy T.; Boesveldt, Sanne; Chan, Jason S.; McKenzie, Kirsten J.; Dodson, Michael; Levin, Jai A.; Leong, Christine X. R.; van den Bosch, Jasper J. F.

    2014-01-01

    Colors and odors are associated; for instance, people typically match the smell of strawberries to the color pink or red. These associations are forms of crossmodal correspondences. Recently, there has been discussion about the extent to which these correspondences arise for structural reasons (i.e., an inherent mapping between color and odor), statistical reasons (i.e., covariance in experience), and/or semantically-mediated reasons (i.e., stemming from language). The present study probed this question by testing color-odor correspondences in 6 different cultural groups (Dutch, Netherlands-residing-Chinese, German, Malay, Malaysian-Chinese, and US residents), using the same set of 14 odors and asking participants to make congruent and incongruent color choices for each odor. We found consistent patterns in color choices for each odor within each culture, showing that participants were making non-random color-odor matches. We used representational dissimilarity analysis to probe for variations in the patterns of color-odor associations across cultures; we found that US and German participants had the most similar patterns of associations, followed by German and Malay participants. The largest group differences were between Malay and Netherlands-resident Chinese participants and between Dutch and Malaysian-Chinese participants. We conclude that culture plays a role in color-odor crossmodal associations, which likely arise, at least in part, through experience. PMID:25007343

  17. Cross-cultural color-odor associations.

    Directory of Open Access Journals (Sweden)

    Carmel A Levitan

    Full Text Available Colors and odors are associated; for instance, people typically match the smell of strawberries to the color pink or red. These associations are forms of crossmodal correspondences. Recently, there has been discussion about the extent to which these correspondences arise for structural reasons (i.e., an inherent mapping between color and odor, statistical reasons (i.e., covariance in experience, and/or semantically-mediated reasons (i.e., stemming from language. The present study probed this question by testing color-odor correspondences in 6 different cultural groups (Dutch, Netherlands-residing-Chinese, German, Malay, Malaysian-Chinese, and US residents, using the same set of 14 odors and asking participants to make congruent and incongruent color choices for each odor. We found consistent patterns in color choices for each odor within each culture, showing that participants were making non-random color-odor matches. We used representational dissimilarity analysis to probe for variations in the patterns of color-odor associations across cultures; we found that US and German participants had the most similar patterns of associations, followed by German and Malay participants. The largest group differences were between Malay and Netherlands-resident Chinese participants and between Dutch and Malaysian-Chinese participants. We conclude that culture plays a role in color-odor crossmodal associations, which likely arise, at least in part, through experience.

  18. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  19. Angina Pectoris (Stable Angina)

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Aug 21,2017 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, ...

  20. Tuning the Structure and Ionic Interactions in a Thermochemically Stable Hybrid Layered Titanate-Based Nanocomposite for High Temperature Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Lubbers, Roy; Veldhuis, Sjoerd; Narygina, Olga; Lette, Walter; Schipper, Dirk J.; ten Elshof, Johan E.

    2017-01-01

    Solid inorganic lubricants are thermally stable but they are often limited by their lack of deformability, while organic lubricants have limitations in terms of thermal stability. In this study, a novel solid organic–inorganic nanocomposite lubricant that synergistically combines the

  1. Eutectic Gallium-Indium (EGaIn) : A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature

    NARCIS (Netherlands)

    Dickey, Michael D.; Chiechi, Ryan C.; Larsen, Ryan J.; Weiss, Emily A.; Weitz, David A.; Whitesides, George M.

    2008-01-01

    This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGaIn) as it is injected into microfluidic channels to form stable microstructures of liquid metal. EGaIn is well-suited for this application because of its rheological properties at room temperature: it

  2. Colors, colored overlays, and reading skills

    Directory of Open Access Journals (Sweden)

    Arcangelo eUccula

    2014-07-01

    Full Text Available In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e. who experience eyestrain and/or visual distortions – e.g. color, shape or movement illusions – while reading. This condition would interest the 12-14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature.

  3. Color Reproduction with a Smartphone

    Science.gov (United States)

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-01-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition…

  4. The effect of background and illumination on color identification of real, 3D objects

    OpenAIRE

    Allred, Sarah R.; Olkkonen, Maria

    2013-01-01

    For the surface reflectance of an object to be a useful cue to object identity, judgments of its color should remain stable across changes in the object's environment. In 2D scenes, there is general consensus that color judgments are much more stable across illumination changes than background changes. Here we investigate whether these findings generalize to real 3D objects. Observers made color matches to cubes as we independently varied both the illumination impinging on the cube and th...

  5. Nature's palette: the search for natural blue colorants.

    Science.gov (United States)

    Newsome, Andrew G; Culver, Catherine A; van Breemen, Richard B

    2014-07-16

    The food and beverage industry is seeking to broaden the palette of naturally derived colorants. Although considerable effort has been devoted to the search for new blue colorants in fruits and vegetables, less attention has been directed toward blue compounds from other sources such as bacteria and fungi. The current work reviews known organic blue compounds from natural plant, animal, fungal, and microbial sources. The scarcity of blue-colored metabolites in the natural world relative to metabolites of other colors is discussed, and structural trends common among natural blue compounds are identified. These compounds are grouped into seven structural classes and evaluated for their potential as new color additives.

  6. Colorful Microbial Cell Factories

    DEFF Research Database (Denmark)

    Petersen, Pia Damm

    Yeast cell factories are powerful tools used for the production of high-value natural compounds otherwise not easily available. Many bioactive and industrially important plant secondary metabolites can be produced in yeast by engineering their biosynthetic pathways into yeast cells, as these both...... anthocyanins. Yeast cell factories present a platform to circumvent the problem of low yields of interesting molecular structures in plant tissues, as hand-picking of desired enzyme activities allows for specific biosynthesis of the precise pigment of interest, as well as choosing more stable structures...... for heterologous biosynthesis is possible. In cell factories, great improvements in yields can be achieved through molecular engineering of flux from endogenous yeast precursors, e.g. by elimination of by-product formation, and by genetic optimization of pathway components, such as fine-tuning of expression levels...

  7. Full-color OLED on silicon microdisplay

    Science.gov (United States)

    Ghosh, Amalkumar P.

    2002-02-01

    eMagin has developed numerous enhancements to organic light emitting diode (OLED) technology, including a unique, up- emitting structure for OLED-on-silicon microdisplay devices. Recently, eMagin has fabricated full color SVGA+ resolution OLED microdisplays on silicon, with over 1.5 million color elements. The display is based on white light emission from OLED followed by LCD-type red, green and blue color filters. The color filters are patterned directly on OLED devices following suitable thin film encapsulation and the drive circuits are built directly on single crystal silicon. The resultant color OLED technology, with hits high efficiency, high brightness, and low power consumption, is ideally suited for near to the eye applications such as wearable PCS, wireless Internet applications and mobile phone, portable DVD viewers, digital cameras and other emerging applications.

  8. Comparison of the performance of masterbatch and liquid color concentrates for mass coloration of polypropylene

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Broch, Thomas

    2016-01-01

    The properties of polypropylene (PP) mixed with masterbatch (MB) and liquid color concentrates (LCC), respectively, were compared by preparing samples of PP with MB and PP with LCC and neat PP as a reference material using 1–4 extrusion cycles. Two colors were examined, i.e., a white color...... consisting of pigment white 6, and a green color consisting of pigment white 6, pigment blue 15:3, and pigment green 7. The color difference between PP prepared with MB and LCC was determined and the mechanical, rheological, and crystalline properties of PP prepared with MB and LCC were found to be generic....... The color of PP obtained from MB and LCC were comparable. Further, it was found that the tensile strength, the viscosity, and the crystal structure obtained were similar when using LCC instead of MB. The viscosity of the treated PP generally decreased with increasing extruder retention time due to thermal...

  9. Color management: printing processes - opportunities and limitations

    Science.gov (United States)

    Ingram, Samuel T.

    2002-06-01

    Digital tools have impacted traditional methods employed to reproduce color images during the past decade. The shift from a purely photomechanical process in color reproduction to colorimetric reproduction offers tremendous opportunity in the graphic arts industry. But good things do not necessarily come to all in the same package. Printing processes possess different reproduction attributes: tone reproduction, gray balance and color correction requirements are as different as the ingredient sets selected for color reproduction. This paper will provide insight toward understanding advantages and limitations offered by the new digital technologies in printing, publishing and packaging. For the past five years the Clemson University Graphic Communications Department has conducted numerous color projects using the new digital colorimetric tools during the previous decade. Several approaches have been used including experimental research and typical production workflows. The use of colorimetric data in color reproduction has given an opportunity to realize real gains in color use, predictability and consistency. Meeting an image's separation and reproduction requirements for a specified printing process can involve disruption of the anticipated workflow. Understanding the printing process requirements and the fit within the specifications of a colorimetric workflow are critical to the successful adoption of a color managed workflow. The paper will also provide an insight into the issues and challenges experienced with a color managed workflow. The printing processes used include offset litho, narrow and wide-web flexography (paper, liner board, corrugated and film), screen printing (paper board and polycarbonates), and digital imaging with toner, ink and inkjet systems. A proposal for technology integration will be the focus of the presentation drawn from documented experiences in over 300 applications of color management tools. Discussion will include the structure of

  10. Laser color recording unit

    Science.gov (United States)

    Jung, E.

    1984-05-01

    A color recording unit was designed for output and control of digitized picture data within computer controlled reproduction and picture processing systems. In order to get a color proof picture of high quality similar to a color print, together with reduced time and material consumption, a photographic color film material was exposed pixelwise by modulated laser beams of three wavelengths for red, green and blue light. Components of different manufacturers for lasers, acousto-optic modulators and polygon mirrors were tested, also different recording methods as (continuous tone mode or screened mode and with a drum or flatbed recording principle). Besides the application for the graphic arts - the proof recorder CPR 403 with continuous tone color recording with a drum scanner - such a color hardcopy peripheral unit with large picture formats and high resolution can be used in medicine, communication, and satellite picture processing.

  11. Rotation Invariant Color Retrieval

    OpenAIRE

    Swapna Borde; Udhav Bhosle

    2013-01-01

    The new technique for image retrieval using the color features extracted from images based on LogHistogram is proposed. The proposed technique is compared with Global color histogram and histogram ofcorners .It has been observed that number of histogram bins used for retrieval comparison of proposedtechnique (Log Histogram)is less as compared to Global Color Histogram and Histogram of corners. Theexperimental results on a database of 792 images with 11 classes indicate that proposed method (L...

  12. Colored fused filament fabrication

    OpenAIRE

    Song, Haichuan; Lefebvre, Sylvain

    2017-01-01

    Filament fused fabrication is the method of choice for printing 3D models at low cost, and is the de-facto standard for hobbyists, makers and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating ...

  13. Realtime Color Stereovision Processing

    National Research Council Canada - National Science Library

    Formwalt, Bryon

    2000-01-01

    .... This research takes a step forward in real time machine vision processing. It investigates techniques for implementing a real time stereovision processing system using two miniature color cameras...

  14. Luminance contours can gate afterimage colors and "real" colors.

    Science.gov (United States)

    Anstis, Stuart; Vergeer, Mark; Van Lier, Rob

    2012-09-06

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The color of the afterimage depends on two adapting colors, those both inside and outside the test. Here, we further explore this phenomenon and show that the color-contour interactions shown for afterimage colors also occur for "real" colors. We argue that similar mechanisms apply for both types of stimulation.

  15. CFA-aware features for steganalysis of color images

    Science.gov (United States)

    Goljan, Miroslav; Fridrich, Jessica

    2015-03-01

    Color interpolation is a form of upsampling, which introduces constraints on the relationship between neighboring pixels in a color image. These constraints can be utilized to substantially boost the accuracy of steganography detectors. In this paper, we introduce a rich model formed by 3D co-occurrences of color noise residuals split according to the structure of the Bayer color filter array to further improve detection. Some color interpolation algorithms, AHD and PPG, impose pixel constraints so tight that extremely accurate detection becomes possible with merely eight features eliminating the need for model richification. We carry out experiments on non-adaptive LSB matching and the content-adaptive algorithm WOW on five different color interpolation algorithms. In contrast to grayscale images, in color images that exhibit traces of color interpolation the security of WOW is significantly lower and, depending on the interpolation algorithm, may even be lower than non-adaptive LSB matching.

  16. Encyclopedia of color science and technology

    CERN Document Server

    2016-01-01

    The Encyclopedia of Color Science and Technology provides an authoritative single source for understanding and applying the concepts of color to all fields of science and technology, including artistic and historical aspects of color. Many topics are discussed in this timely reference, including an introduction to the science of color, and entries on the physics, chemistry and perception of color. Color is described as it relates to optical phenomena of color and continues on through colorants and materials used to modulate color and also to human vision of color. The measurement of color is provided as is colorimetry, color spaces, color difference metrics, color appearance models, color order systems and cognitive color. Other topics discussed include industrial color, color imaging, capturing color, displaying color and printing color. Descriptions of color encodings, color management, processing color and applications relating to color synthesis for computer graphics are included in this work. The Encyclo...

  17. Genomics of coloration in natural animal populations.

    Science.gov (United States)

    San-Jose, Luis M; Roulin, Alexandre

    2017-07-05

    Animal coloration has traditionally been the target of genetic and evolutionary studies. However, until very recently, the study of the genetic basis of animal coloration has been mainly restricted to model species, whereas research on non-model species has been either neglected or mainly based on candidate approaches, and thereby limited by the knowledge obtained in model species. Recent high-throughput sequencing technologies allow us to overcome previous limitations, and open new avenues to study the genetic basis of animal coloration in a broader number of species and colour traits, and to address the general relevance of different genetic structures and their implications for the evolution of colour. In this review, we highlight aspects where genome-wide studies could be of major utility to fill in the gaps in our understanding of the biology and evolution of animal coloration. The new genomic approaches have been promptly adopted to study animal coloration although substantial work is still needed to consider a larger range of species and colour traits, such as those exhibiting continuous variation or based on reflective structures. We argue that a robust advancement in the study of animal coloration will also require large efforts to validate the functional role of the genes and variants discovered using genome-wide tools.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  18. Color-Kinematics Duality for QCD Amplitudes

    CERN Document Server

    Johansson, Henrik

    2016-01-01

    We show that color-kinematics duality is present in tree-level amplitudes of quantum chromodynamics with massive flavored quarks. Starting with the color structure of QCD, we work out a new color decomposition for n-point tree amplitudes in a reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and (n-2k) gluons, are taken in the (n-2)!/k! Melia basis, and are independent under the color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca, Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new decomposition are given by compact expressions valid for arbitrary gauge group and representation. Considering the kinematic structure, we show through explicit calculations that color-kinematics duality holds for amplitudes with general configurations of gluons and massive quarks. The new (massive) amplitude relations that follow from the duality can be mapped to a well-defined subset of the familiar BCJ relations for gluo...

  19. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  20. Tensor voting for robust color edge detection

    OpenAIRE

    Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec

    2014-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...

  1. Millennial Teachers of Color

    Science.gov (United States)

    Dilworth, Mary E., Ed.

    2018-01-01

    "Millennial Teachers of Color" explores the opportunities and challenges for creating and sustaining a healthy teaching force in the United States. Millennials are the largest generational cohort in American history, with approximately ninety million members and, of these, roughly 43 percent are people of color. This book, edited by…

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... MD, professor of ophthalmology at Case Western Reserve University in Cleveland. "This is far from the truth." ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering buying approved by the ... Service For Advertisers For Media Ophthalmology Job Center © American ...

  3. Gauge color codes

    DEFF Research Database (Denmark)

    Bombin Palomo, Hector

    2015-01-01

    Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...

  4. On color transparency

    International Nuclear Information System (INIS)

    Jennings, B.K.; Miller, G.A.

    1989-10-01

    A quantum mechanical treatment of high momentum transfer nuclear processes is presented. Color transparency, the suppression of initial and final state interaction effects, is shown to arise from using the closure approximation. New conditions for the appearance of color transparency are derived

  5. Color and magnetic charge

    International Nuclear Information System (INIS)

    Kim, B.R.

    1976-01-01

    Schwinger's conjecture that the color degree of freedom of a quark is equivalent to its degree of freedom of taking different magnetic charges provides a plausible motivation for extending color to leptons. Leptons are just quarks with zero magnetic charges. It is shown that baryon number and lepton number can be replaced by fermion number and magnetic charge

  6. Equivalent Colorings with "Maple"

    Science.gov (United States)

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  7. The Color of Lobsters

    NARCIS (Netherlands)

    Wijk, Arjan van

    2005-01-01

    Synthesis of 13C-enriched carotenoids. Carotenoids are natural colorants, ranging in color from pale yellow to deep purple, with important biological functions. Carotenoids in the human diet have a beneficial health effect, playing a role in the prevention of cardiovascular disease and cancer. To

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... eye-care team . Consumer warning about the improper use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering buying approved by the FDA? Check the FDA's database of approved contact lenses . Related Stories Prevent Infection ...

  9. Perceptually optimal color reproduction

    NARCIS (Netherlands)

    Yendrikhovskij, S.N.; Blommaert, F.J.J.; Ridder, de H.; Rogowitz, B.E.; Pappas, T.N.

    1998-01-01

    What requirements do people place on optimal color reproduction of real-life scenes? We suggest that when people look at images containing familiar categories of objects, two primary factors shape their subjective impression of how optimal colors are reproduced: perceived naturalness and perceived

  10. Color display and encryption with a plasmonic polarizing metamirror

    Directory of Open Access Journals (Sweden)

    Song Maowen

    2018-01-01

    Full Text Available Structural colors emerge when a particular wavelength range is filtered out from a broadband light source. It is regarded as a valuable platform for color display and digital imaging due to the benefits of environmental friendliness, higher visibility, and durability. However, current devices capable of generating colors are all based on direct transmission or reflection. Material loss, thick configuration, and the lack of tunability hinder their transition to practical applications. In this paper, a novel mechanism that generates high-purity colors by photon spin restoration on ultrashallow plasmonic grating is proposed. We fabricated the sample by interference lithography and experimentally observed full color display, tunable color logo imaging, and chromatic sensing. The unique combination of high efficiency, high-purity colors, tunable chromatic display, ultrathin structure, and friendliness for fabrication makes this design an easy way to bridge the gap between theoretical investigations and daily-life applications.

  11. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration

    Science.gov (United States)

    Vatankhah-Varnosfaderani, Mohammad; Keith, Andrew N.; Cong, Yidan; Liang, Heyi; Rosenthal, Martin; Sztucki, Michael; Clair, Charles; Magonov, Sergei; Ivanov, Dimitri A.; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2018-03-01

    Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.

  12. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    Science.gov (United States)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  13. Color Constancy by Deep Learning

    NARCIS (Netherlands)

    Lou, Z.; Gevers, T.; Hu, N.; Lucassen, M.P.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    Computational color constancy aims to estimate the color of the light source. The performance of many vision tasks, such as object detection and scene understanding, may benefit from color constancy by estimating the correct object colors. Since traditional color constancy methods are based on

  14. Influence of Surrounding Colors in the Illuminant-Color Mode on Color Constancy

    Directory of Open Access Journals (Sweden)

    Kazuho Fukuda

    2011-05-01

    Full Text Available On color constancy, we showed that brighter surrounding colors had greater influence than dim colors (Uchikawa, Kitazawa, MacLeod, Fukuda, 2010 APCV. Increasing luminance of a stimulus causes the change in appearance from the surface-color to the illuminant-color mode. However it is unknown whether the visual system considers such color appearance mode of surrounding colors to achieve color constancy. We investigated the influence of surrounding colors that appeared illuminant on color constancy. The stimulus was composed of a central test stimulus and surrounding six colors: bright and dim red, green and blue. The observers adjusted the chromaticity of the test stimulus to be appeared as an achromatic surface. The luminance balance of three bright surrounding colors was equalized with that of the optimal colors in three illuminant conditions, then, the luminance of one of the three bright colors was varied in the range beyond the critical luminance of color appearance mode transition. The results showed that increasing luminance of a bright surrounding color shifted the observers' achromatic setting toward its chromaticity, but this effect diminished for the surrounding color in the illuminant-color mode. These results suggest that the visual system considers color appearance mode of surrounding colors to accomplish color constancy.

  15. Color quarks and octonions

    International Nuclear Information System (INIS)

    Guersey, F.

    1974-01-01

    A mathematical framework based on octonions is developed for the description of the color quark scheme in which quarks are unobservable, the color SU(3) is exact, and only color singlets correspond to observable hadrons. The fictitious Hilbert space in which quarks operate is taken to be a space of vectors with octonion components. This space admits as a gauge group an exact SU(3) identified with the color SU/sub C/(3). Because of the nonassociativity of the underlying algebra, nonsinglet representations of SU/sub C/(3) are unobservable, while the subspace of color singlets satisfies associativity along with conditions for observability. Octonion quark fields satisfy the commutation relations of parafermions of order 3, leading to the correct SU(6) multiplets for hadrons. (U.S.)

  16. Revisiting "Color Names and Color Notions": a contemporary examination of the language and attitudes of skin color among young black women.

    Science.gov (United States)

    Wilder, JeffriAnne

    2010-01-01

    Employing the pioneering work of Charles Parrish as a basis of comparison, this study serves as a follow-up to “Color Names and Color Notions” by deconstructing the contemporary language and attitudes surrounding skin color. Nine focus groups with 58 black women between the ages of 18 and 25 reveal that the color names and color notions offered were consistent with many of the terms and stereotypes that Parrish found, thereby indicating that there has been no change in colorist ideology among African Americans. Participants discussed 40 color names regularly employed to describe light, medium, and dark skin tones. The terms and attitudes associated with light skin tones were generally negative; conversely, the terms and attitudes associated with dark skin tones were derogatory. The language and beliefs connected to medium skin tones indicate that colorism operates as a three-tiered structure rather than the traditionally situated binary paradigm.

  17. Color evaluation of computer-generated color rainbow holography

    International Nuclear Information System (INIS)

    Shi, Yile; Wang, Hui; Wu, Qiong

    2013-01-01

    A color evaluation approach for computer-generated color rainbow holography (CGCRH) is presented. Firstly, the relationship between color quantities of a computer display and a color computer-generated holography (CCGH) colorimetric system is discussed based on color matching theory. An isochromatic transfer relationship of color quantity and amplitude of object light field is proposed. Secondly, the color reproduction mechanism and factors leading to the color difference between the color object and the holographic image that is reconstructed by CGCRH are analyzed in detail. A quantitative color calculation method for the holographic image reconstructed by CGCRH is given. Finally, general color samples are selected as numerical calculation test targets and the color differences between holographic images and test targets are calculated based on our proposed method. (paper)

  18. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  19. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  20. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The